Handbuch zur vSphere-Ressourcenverwaltung

Update 2 VMware vSphere 8.0 VMware ESXi 8.0 vCenter Server 8.0

Die aktuellste technische Dokumentation finden Sie auf der VMware-Website unter:

https://docs.vmware.com/de/

VMware, Inc. 3401 Hillview Ave. Palo Alto, CA 94304 www.vmware.com VMware Global, Inc. Zweigniederlassung Deutschland Willy-Brandt-Platz 2 81829 München Germany Tel.: +49 (0) 89 3706 17 000 Fax: +49 (0) 89 3706 17 333 www.vmware.com/de

Copyright [©] 2006-2023 VMware, Inc. Alle Rechte vorbehalten. Urheberrechts- und Markenhinweise.

Inhalt

Handbuch zur vSphere-Ressourcenverwaltung 10

- 1 Erste Schritte mit der Ressourcenverwaltung auf vSphere 11
 - ESXi-Ressourcentypen 11 Verwenden von physischen Ressourcen 12 Nutzen von Ressourcen 12 Ziele der Ressourcenverwaltung mit vSphere 13

2 Konfigurieren der Einstellungen für die Ressourcenzuteilung in vSphere 14

Anteile der Ressourcenzuteilung 14 Reservierung für die Ressourcenzuteilung 16 Grenzwert für die Ressourcenzuteilung 16 Vorschläge für Einstellungen zur Ressourcenzuteilung 17 Einstellungen in vSphere bearbeiten 17 Beispiel für das Ändern von Einstellungen für die Ressourcenzuteilung 18 Zugangssteuerung in vSphere 19

3 CPU-Virtualisierung in vSphere 21

Softwarebasierte CPU-Virtualisierung 22 Hardwaregestützte CPU-Virtualisierung 22 Virtualisierung und prozessorspezifisches Verhalten 22 Auswirkungen der CPU-Virtualisierung auf die Leistung 23

4 Verwalten von CPU-Ressourcen in vSphere 24

Anzeigen von Prozessorinformationen 24 Angeben der CPU-Konfiguration 24 Prozessoren mit mehreren Kernen 25

5 Hyper-Threading mit vSphere 27

Hyper-Threading und ESXi-Hosts28Aktivieren von Hyper-Threading28

6 Verwenden der CPU-Affinität mit vSphere 30

Zuweisen einer virtuellen Maschine zu einem bestimmten Prozessor 31 Mögliche Probleme mit der CPU-Affinität 31

7 Host-Energieverwaltungsrichtlinien in ESXi 33

Auswahl einer CPU-Energieverwaltungsrichtlinie 34

Konfigurieren von benutzerdefinierten Richtlinienparametern für die Energieverwaltung des Hosts 34

8 Arbeitsspeichervirtualisierung mit vSphere 36

Arbeitsspeicher virtueller Maschinen 36 Arbeitsspeicherüberbelegung 37 Gemeinsame Arbeitsspeichernutzung 38 Speichervirtualisierung 39 Hardwaregestützte Arbeitsspeichervirtualisierung 40 Unterstützung für große Seiten 41

9 Verwalten Ihrer Arbeitsspeicherressourcen mit vSphere 42

Grundlegende Informationen zum Arbeitsspeicher-Overhead 43 Overhead-Arbeitsspeicher bei virtuellen Maschinen 43 Arbeitsspeicherzuteilung durch ESXi-Hosts 44 Leerlaufbelastung für Arbeitsspeicher virtueller Maschinen 45 VMX-Auslagerungsdateien 45 Arbeitsspeicherrückgewinnung 46 Arbeitsspeicher-Balloon-Treiber 46 Gemeinsame Arbeitsspeichernutzung durch mehrere virtuelle Maschinen 47 Arbeitsspeicherkomprimierung 48 Aktivieren bzw. Deaktivieren des Cachespeichers für die Arbeitsspeicherkomprimierung 49 Festlegen der maximalen Größe des Cachespeichers für die Arbeitsspeicherkomprimierung 49 Messen und Unterscheiden von Arbeitsspeichernutzungstypen 50 Arbeitsspeicherzuverlässigkeit 52 Korrigieren einer Fehlerisolierungsbenachrichtigung 52 Systemauslagerung 52 Konfigurieren der Systemauslagerung 53

10 Verwenden von Auslagerungsdateien mit vSphere 55

Speicherort der Auslagerungsdatei 55 Aktivieren der lokalen Auslagerung auf einem Host für einen DRS-Cluster 56 Aktivieren der lokalen Auslagerung für einen eigenständigen Host 57 Auslagerungsbereich und Arbeitsspeicherüberbelegung 57 Konfigurieren der Eigenschaften von VM-Auslagerungsdateien für den Host 58 Konfigurieren des Speicherorts der VM-Auslagerungsdatei für einen Cluster 60 Löschen von Auslagerungsdateien 61

11 Verwenden von persistentem Arbeitsspeicher mit vSphere 62

Konfigurieren von vSphere HA für PMem-VMs 65 PMem-Reservierung für die vSphere HA-Zugangssteuerung 66

vSphere vMMR (Memory Monitoring and Remediation) 67 **12** Konfigurieren von virtuellen Grafiken in vSphere 70 Anzeigen von GPU-Statistiken 70 Hinzufügen eines NVIDIA GRID vGPU zu einer virtuellen Maschine 71 Konfigurieren von Hostgrafiken 71 Konfigurieren von Grafikgeräten 72 Migrieren von VMs mit vGPUs 73 13 Verwalten von Speicher-E/A-Ressourcen mit vSphere 74 Speicherrichtlinien für virtuelle Maschinen 75 E/A-Filter 76 Storage I/O Control - Anforderungen 76 Ressourcenanteile und Grenzwerte für Storage I/O Control 77 Anzeigen von Ressourcenanteilen und Grenzwerten für Storage I/O Control 77 Überwachen der Anteile von Storage I/O Control 78 Festlegen von Ressourcenanteilen und Grenzwerten für Storage I/O Control 78 Storage I/O Control aktivieren 79 Einstellen des Schwellenwerts für Storage I/O Control 80 Speicher-DRS-Integration mit Speicherprofilen 81

14 Verwalten von Ressourcenpools mit vSphere 83

Gründe für die Verwendung von Ressourcenpools 84 Erstellen eines Ressourcenpools 87 Bearbeiten eines Ressourcenpools 89 Hinzufügen einer virtuellen Maschine zu einem Ressourcenpool 90 Entfernen einer virtuellen Maschine aus einem Ressourcenpool 91 Entfernen eines Ressourcenpools 92 Ressourcenpool-Zugangssteuerung 92 Erweiterbare Reservierung, Beispiel 1 93 Erweiterbare Reservierung, Beispiel 2 93

15 vSphere Cluster Services 95

vSphere DRS- und vCLS-VMs 96 Datenspeicherauswahl für vCLS-VMs 96 vCLS-Datenspeicherplatzierung 97 Überwachen der vSphere Cluster Services 97 Aufrechterhalten der Integrität der vSphere Cluster Services 99 Versetzen eines Clusters in den Rückzugsmodus 100 Abrufen des Kennworts für vCLS-VMs 101 Anti-Affinitätsrichtlinien für vCLS-VMs 101 Erstellen oder Löschen einer vCLS-VM-Anti-Affinitätsrichtlinie 102

16 Erstellen eines vSphere DRS-Clusters 104 Zugangssteuerung und anfängliche Platzierung 105 Einschalten einer einzelnen virtuellen Maschine 105 Gruppeneinschaltung 106 Migrieren von virtuellen Maschinen 107 DRS-Migrationsschwellenwert 108 Migrationsempfehlungen 109 DRS-Cluster-Anforderungen 110 Gemeinsam genutzter Speicher, Anforderungen 110 Anforderungen an gemeinsam genutzte VMFS-Volumes 110 Anforderungen an die Prozessorkompatibilität 111 vMotion-Anforderungen für DRS-Cluster 112 Konfigurieren von DRS mit virtuellem Flash 112 Erstellen eines Clusters 113 Bearbeiten von Clustereinstellungen 114 Festlegen einer benutzerdefinierten Automatisierungsebene für eine virtuelle Maschine 116 Deaktivieren von DRS 118 Wiederherstellen einer Ressourcenpoolstruktur 119 DRS-Awareness vSAN Stretched Cluster 119 DRS-Platzierung von vGPUs 120

17 Funktion "vSphere DRS-Wartungsmodus" mit ROBO Enterprise-Lizenz 122

Einschränkungen des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz 122 Verwenden des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz 123 Fehlerbehebung für den DRS-Wartungsmodus mit ROBO Enterprise-Lizenz 124

18 Verwenden von DRS-Clustern zum Verwalten von Ressourcen mit vSphere 125

Hinzufügen von Hosts zu einem Cluster 125

Hinzufügen eines verwalteten Hosts zu einem Cluster 126

Hinzufügen eines nicht verwalteten Hosts zu einem Cluster 127

Hinzufügen virtueller Maschinen zu einem Cluster 128

Verschieben einer virtuellen Maschine in einen Cluster 128

Entfernen virtueller Maschinen aus einem Cluster 128

Verschieben einer virtuellen Maschine aus einem Cluster 129

Entfernen eines Hosts aus einem Cluster 129

Versetzen eines Hosts in den Wartungsmodus 130

Entfernen eines Hosts aus einem Cluster 131

Verwendung des Standby-Modus 131

DRS-Clustergültigkeit 132

Gültige DRS-Cluster 132 Überbelegte DRS-Cluster 135 Ungültige DRS-Cluster 136 Verwalten von Energieressourcen 137 Konfigurieren von IPMI- oder iLO-Einstellungen für vSphere DPM 138 Testen von Wake-on-LAN für vSphere DPM 139 Aktivieren von vSphere DPM für einen DRS-Cluster 140 Überwachen von vSphere DPM 142 Statische Stromversorgung von VMs 143 Verwenden von DRS-Affinitätsregeln 144 Erstellen einer Host-DRS-Gruppe 145 Erstellen einer VM-DRS-Gruppe 145 VM-VM-Affinitätsregeln 146 VM-Host-Affinitätsregeln 147

19 Erstellen eines Datenspeicher-Clusters in vSphere 150

Anfängliche Platzierung und fortdauernde Verteilung 151
Empfehlungen für die Speichermigration 151
Datenspeicher-Cluster erstellen 152
Aktivieren und Deaktivieren von Storage DRS 152
Festlegen der Automatisierungsebene für Datenspeicher-Cluster 153
Festlegen der Aggressivitätsebene für Storage DRS 154
Festlegen von Storage DRS-Laufzeitregeln 155
Anforderungen für Datenspeicher-Cluster 156
Hinzufügen und Entfernen von Datenspeichern aus einem Datenspeicher-Cluster 157

20 Verwenden des Datenspeicher-Clusters zur Verwaltung von Speicherressourcen im vSphere Client 158

Verwenden des Speicher-DRS-Wartungsmodus 158

Versetzen eines Datenspeichers in den Wartungsmodus 159

Ignorieren von Speicher-DRS-Affinitätsregeln für den Wartungsmodus 159

Übernehmen von Speicher-DRS-Empfehlungen 160

Speicher-DRS-Empfehlung aktualisieren 161

Ändern der Speicher-DRS-Automatisierungsebene für eine virtuelle Maschine 162

Einrichten von Zeitplänen außerhalb der Geschäftszeiten für Speicher-DRS 162

Speicher-DRS-Anti-Affinitätsregeln 163

Erstellen von VM-Anti-Affinitätsregeln 165

Erstellen von VMDK-Anti-Affinitätsregeln 166

Außer Kraft setzen der VMDK-Affinitätsregeln 167

Bereinigen der Speicher-DRS-Statistiken 168

Storage vMotion-Kompatibilität mit Datenspeicher-Clustern 168

21 Verwenden von NUMA-Systemen mit ESXi 170

Was ist NUMA? 171 Herausforderungen für Betriebssysteme 171 So funktioniert die ESXi-NUMA-Planung 172 VMware NUMA-Optimierungsalgorithmen und -einstellungen 173 Stammknoten und anfängliche Platzierung 173 Dynamischer Lastenausgleich und Seitenmigration 174 Für NUMA optimierte, transparente gemeinsame Seitennutzung 175 Ressourcenverwaltung in NUMA-Architekturen 176 Verwenden von virtueller NUMA 176 Virtuelle Topologie in ESXi 8.0 177 Steuerelemente für virtuelle NUMA 177 Angeben von NUMA-Steuerelementen 179 Verknüpfen von virtuelle Maschinen mit bestimmten Prozessoren 180 Verknüpfen von Arbeitsspeicherzuweisungen mit einem NUMA-Knoten unter Verwendung der Arbeitsspeicheraffinität 181 Verknüpfen von virtuellen Maschinen mit angegebenen NUMA-Knoten 182

22 Erweiterte Attribute in vSphere 183

Festlegen von erweiterten Hostattributen 183

Erweiterte Arbeitsspeicherattribute 184

Erweiterte NUMA-Attribute 186

Festlegen von erweiterten Attributen von virtuellen Maschinen 187

Erweiterte Attribute für virtuelle Maschinen 187

Erweiterte Attribute für virtuelle NUMA 188

Latenzempfindlichkeit 190

Einstellen der Latenzempfindlichkeit 190

Unterstützung von virtuellem Hyper-Threading für VMs 191

Vollständige vHT-CPU-Reservierung 191

Aktivieren von vHT für VMs 192

Zuverlässiger Arbeitsspeicher 192

Anzeigen des zuverlässigen Arbeitsspeichers 193

Sichern von Gast-vRAM mit 1GB-Seiten 193

23 Fehlerdefinitionen 195

Virtuelle Maschine ist gebunden 196

Virtuelle Maschine ist mit keinem Host kompatibel 196

Verstoß gegen die VM/VM-DRS-Regel beim Verschieben auf einen anderen Host 196

Host nicht kompatibel mit virtueller Maschine 196

Host beinhaltet eine virtuelle Maschine, die gegen VM/VM-DRS-Regeln verstößt 197

Unzureichende Kapazität des Hosts für die virtuelle Maschine 197

Host nicht im richtigen Zustand 197 Host hat zu wenige physische CPUs für die virtuelle Maschine 197 Unzureichende Kapazität des Hosts für alle CPUs der virtuellen Maschinen 197 Virtuelle Maschine ist in vMotion 197 Kein aktiver Host im Cluster 197 Unzureichende Ressourcen 198 Unzureichende Ressourcen zum Erfüllen des für HA konfigurierten Failover-Levels 198 Kein kompatibler Host mit fester Affinität 198 Kein kompatibler Host mit weicher Affinität 198 Korrekturen von Verstößen gegen weiche Regeln nicht zulässig 198 Auswirkungen der Korrekturen von Verstößen gegen weiche Regeln 199

24 DRS-Fehlerbehebungsinformationen 200

Cluster-Probleme 200

Lasten-Ungleichgewicht im Cluster 200

Cluster ist gelb 201

Cluster ist rot aufgrund eines inkonsistenten Ressourcenpools 201

Cluster ist rot, weil ein Verstoß gegen die Failover-Kapazität vorliegt 202

Es werden keine Hosts ausgeschaltet, wenn die gesamte Cluster-Last niedrig ist 202

Es werden Hosts ausgeschaltet, wenn die gesamte Cluster-Last hoch ist 203

DRS führt selten oder nie vMotion-Migrationen durch 204

Hostprobleme 204

DRS empfiehlt, dass der Host eingeschaltet wird, um die Kapazität zu erhöhen, wenn die gesamte Cluster-Last niedrig ist 205

Die gesamte Cluster-Last ist hoch 205

Die gesamte Cluster-Last ist niedrig 206

DRS entfernt einen Host nicht, der in den Wartungs- oder Standby-Modus wechseln soll 206

DRS verschiebt keine virtuellen Maschinen auf einen Host 207

DRS verschiebt keine virtuellen Maschinen von einem Host 207

Probleme mit virtuellen Maschinen 208

Unzureichende CPU- oder Arbeitsspeicherressourcen 208

Verstoß gegen eine VM/VM-DRS-Regel oder eine VM/Host-DRS-Regel 210

Einschalten der virtuellen Maschine fehlgeschlagen 210

DRS verschiebt die virtuelle Maschine nicht 211

Handbuch zur vSphere-Ressourcenverwaltung

Die vSphere-Ressourcenverwaltung beschreibt die Ressourcenverwaltung für VMware[®] ESXiund vCenter[®] Server-Umgebungen.

Dieses Buch befasst sich mit den folgenden Themen.

- Ressourcenzuteilung und Konzepte der Ressourcenverwaltung
- Attribute virtueller Maschinen und Zugangssteuerung
- Ressourcenpools und ihre Verwaltung
- Cluster, vSphere[®] Distributed Resource Scheduler (DRS), vSphere Distributed Power Management (DPM) und ihre Verwendung
- Datenspeicher-Cluster, Speicher-DRS, Storage I/O Control und wie man diese einsetzt
- Erweiterte Ressourcenverwaltungsoptionen
- Überlegungen zur Leistung

Wir bei VMware legen Wert auf die Verwendung neutraler Sprache. Um dieses Prinzip bei unseren Kunden und Partnern sowie innerhalb der internen Community zu fördern, erstellen wir Inhalte mit neutraler Sprache.

Zielgruppe

Dieses Buch richtet sich an Systemadministratoren, die nachvollziehen möchten, wie die Ressourcenzuteilung im System erfolgt und wie das Standardverhalten angepasst werden kann. Sie sind außerdem wichtig für jeden, der Ressourcenpools, Cluster, DRS, Datenspeicher-Cluster, Speicher-DRS, Storage I/O Control oder vSphere DPM verstehen und verwenden möchte.

Diese Dokumentation setzt voraus, dass Sie über Anwendungserfahrungen mit VMware ESXi und vCenter Server verfügen.

Hinweis In diesem Dokument kann sich "Arbeitsspeicher" auf den physischen oder den persistenten Arbeitsspeicher beziehen.

1

Erste Schritte mit der Ressourcenverwaltung auf vSphere

Um die vSphere-Ressourcenverwaltung zu verstehen, müssen Sie ihre Komponenten sowie Ziele kennen und wissen, wie Sie sie in einer Clusterumgebung am besten implementieren können.

Es werden Einstellungen für die Ressourcenzuteilung für eine virtuelle Maschine (Anteile, Reservierung und Grenzwert), einschließlich der Einrichtung und der Anzeige, behandelt. Außerdem wird die Zugangssteuerung erklärt, der Prozess, durch den die Einstellungen für die Ressourcenzuteilung anhand vorhandener Ressourcen validiert werden.

Ressourcenverwaltung ist die Zuweisung von Ressourcen von Anbietern von Ressourcen an Ressourcenverbraucher.

Der Bedarf für die Ressourcenverwaltung entsteht durch die Mehrfachvergabe von Ressourcen, d. h., dass es mehr Bedarf als Kapazität gibt, und aus der Tatsache, dass Bedarf und Kapazität variieren. Mithilfe der Ressourcenverwaltung können Sie Ressourcen dynamisch neu zuteilen, um die verfügbare Kapazität effektiver zu verwenden.

Hinweis In diesem Kapitel bezieht sich "Arbeitsspeicher" auf den physischen Arbeitsspeicher.

Lesen Sie als Nächstes die folgenden Themen:

- ESXi-Ressourcentypen
- Verwenden von physischen Ressourcen
- Nutzen von Ressourcen
- Ziele der Ressourcenverwaltung mit vSphere

ESXi-Ressourcentypen

Zu den Ressourcen gehören CPU-, Arbeitsspeicher-, Energie-, Speicher- und Netzwerkressourcen.

Hinweis ESXi verwaltet Netzwerkbandbreite und Datenträgerressourcen pro Host, indem es den Netzwerkverkehr anpasst und einen Mechanismus zur proportionalen Freigabe verwendet.

Verwenden von physischen Ressourcen

Sie können Hosts und Cluster, einschließlich Datenspeicher-Clustern, als physische Ressourcen mit vSphere verwenden.

Für Hosts bestehen die verfügbaren Ressourcen aus der Hardwarespezifikation des Hosts, abzüglich der von der Virtualisierungssoftware genutzten Ressourcen.

Ein Cluster ist eine Gruppe von Hosts. Mithilfe des vSphere Client können Sie einen Cluster erstellen und dem Cluster mehrere Hosts hinzufügen. vCenter Server verwaltet die Ressourcen dieser Hosts gemeinsam: Dder Cluster besitzt sämtliche CPUs und den gesamten Arbeitsspeicher aller Hosts. Für den Cluster können die Funktionen für den gemeinsamen Lastausgleich oder für Failover aktiviert werden. Weitere Informationen hierzu finden Sie unter Kapitel 16 Erstellen eines vSphere DRS-Clusters.

Ein Datenspeicher-Cluster ist eine Gruppe von Datenspeichern. Wie bei DRS-Clustern können Sie mithilfe von vSphere Client einen Datenspeicher-Cluster erstellen und mehrere Datenspeicher zum Cluster hinzufügen. vCenter Server verwaltet die Datenspeicherressourcen gemeinsam. Sie können Speicher-DRS aktivieren, um die E/A-Last und die Speicherplatznutzung auszugleichen. Weitere Informationen hierzu finden Sie unter Kapitel 19 Erstellen eines Datenspeicher-Clusters in vSphere.

Nutzen von Ressourcen

Bei virtuellen Maschinen handelt es sich um Ressourcenverbraucher.

Bei den meisten Maschinen funktionieren die bei der Erstellung zugewiesenen Standardressourceneinstellungen einwandfrei. Die Einstellungen der virtuellen Maschine können später bearbeitet werden, um einen anteilsabhängigen Prozentsatz der Gesamtmenge an CPU, Arbeitsspeicher und Speicher-E/A des Ressourcenlieferanten oder eine garantierte CPU- und Arbeitsspeicherzuteilung zuzuweisen. Beim Einschalten der virtuellen Maschine überprüft der Server, ob ausreichend noch nicht reservierte Ressourcen verfügbar sind und ermöglicht das Einschalten, wenn dies der Fall ist. Dieser Vorgang wird als Zugangssteuerung bezeichnet.

Ein Ressourcenpool ist eine logische Abstraktion für eine flexible Verwaltung von Ressourcen. Ressourcenpools können in Hierarchien angeordnet und zur hierarchischen Partitionierung verfügbarer CPU- und Arbeitsspeicherressourcen verwendet werden. Ressourcenpools können demzufolge sowohl als Anbieter als auch als Verbraucher von Ressourcen betrachtet werden. Sie bieten Ressourcen für untergeordnete Ressourcenpools und virtuelle Maschinen, sind aber auch Ressourcenverbraucher, weil sie die Ressourcen der ihnen übergeordneten Elemente verbrauchen. Weitere Informationen hierzu finden Sie unter Kapitel 14 Verwalten von Ressourcenpools mit vSphere.

ESXi-Hosts weisen jeder virtuellen Maschine einen Teil der zugrunde liegenden Hardwareressourcen zu, ausgehend von verschiedenen Faktoren:

- Vom Benutzer definierte Ressourcenlimits.
- Menge der verfügbaren Ressourcen für den ESXi-Host (oder den Cluster).

- Anzahl der eingeschalteten virtuellen Maschinen und ihre Ressourcennutzung.
- Erforderlicher Overhead zum Verwalten der Virtualisierung.

Ziele der Ressourcenverwaltung mit vSphere

Bei der Verwaltung Ihrer Ressourcen mit vSphere sollten Sie wissen, was Ihre Ziele sind.

Die Ressourcenverwaltung über vSphere kann Ihnen neben dem Vermeiden der Ressourcenüberbelegung dabei helfen, Folgendes zu erreichen:

- Leistungsisolierung: Virtuelle Maschinen am Monopolisieren von Ressourcen hindern und vorhersehbare Dienstraten garantieren.
- Effiziente Verwendung: Ausnutzen unterbelegter Ressourcen und Überbelegen mit geregelter Herabstufung.
- Einfache Verwaltung: Beschränken der relativen Wichtigkeit von virtuellen Maschinen, Bereitstellung von flexibler und dynamischer Partitionierung und Erfüllen von absoluten Service Level Agreements.

Konfigurieren der Einstellungen für die Ressourcenzuteilung in vSphere

2

Wenn die verfügbare Ressourcenkapazität die Erfordernisse der Ressourcenverbraucher (und des Virtualisierungs-Overheads) nicht erfüllt, müssen Administratoren möglicherweise die Menge der Ressourcen anpassen, die virtuellen Maschinen oder Ressourcenpools in vSphere zugeteilt sind.

Verwenden Sie die Einstellungen für die Ressourcenzuteilung (Anteile, Reservierung und Grenzwert) zum Bestimmen der CPU-, Arbeitsspeicher- und Speicherressourcen, die einer virtuellen Maschine zur Verfügung gestellt werden. Vor allen Administratoren stehen mehrere Optionen für die Zuteilung von Ressourcen zur Verfügung.

- Reservieren der physischen Ressourcen des Hosts oder Clusters.
- Festlegen einer Obergrenze f
 ür die Ressourcen, die einer virtuellen Maschine zugeteilt werden k
 önnen.

Hinweis In diesem Kapitel bezieht sich "Arbeitsspeicher" auf den physischen Arbeitsspeicher.

Lesen Sie als Nächstes die folgenden Themen:

- Anteile der Ressourcenzuteilung
- Reservierung für die Ressourcenzuteilung
- Grenzwert f
 ür die Ressourcenzuteilung
- Vorschläge für Einstellungen zur Ressourcenzuteilung
- Einstellungen in vSphere bearbeiten
- Beispiel für das Ändern von Einstellungen für die Ressourcenzuteilung
- Zugangssteuerung in vSphere

Anteile der Ressourcenzuteilung

Anteile geben die relative Wichtigkeit einer virtuellen Maschine (oder eines Ressourcenpools) an. Wenn eine virtuelle Maschine über doppelt so viele Anteile einer Ressource wie eine andere virtuelle Maschine verfügt, dann ist sie berechtigt, auch doppelt so viele Ressourcen zu verbrauchen, wenn beide Maschinen einen Anspruch auf die Ressourcen erheben.

Anteile werden üblicherweise mit den Einstellungen **Hoch (High)**, **Normal** oder **Niedrig (Low)**, und diese Werte geben den Anteilswert mit einem Verhältnis von 4:2:1 an. Sie können auch **Benutzerdefiniert** auswählen, um jeder virtuellen Maschine eine bestimmte Anzahl an Anteilen zuzuweisen (und damit eine proportionale Gewichtung vorzunehmen).

Das Festlegen von Anteilen macht nur in Bezug auf hierarchisch gleichwertige virtuelle Maschinen oder Ressourcenpools Sinn, also bei virtuelle Maschinen oder Ressourcenpools, die innerhalb der Ressourcenpoolhierarchie über denselben übergeordneten Ressourcenpool verfügen. Hierarchisch gleichwertige Elemente teilen sich Ressourcen auf der Basis ihrer relativen Anteilswerte, die an die Reservierung und die Grenzwerte geknüpft sind. Wenn Sie einer virtuellen Maschine Anteile zuweisen, wird dadurch stets die relative Priorität dieser virtuellen Maschine im Vergleich zu anderen eingeschalteten virtuelle Maschinen festgelegt.

Die folgende Tabelle zeigt die normalen CPU- und Arbeitsspeicher-Anteilswerte für eine virtuelle Maschine. Für Ressourcenpools sind die normalen CPU- und Arbeitsspeicher-Anteilswerte gleich, müssen aber so multipliziert werden, als sei der Ressourcenpool eine virtuelle Maschine mit vier virtuelle CPUs und 16 GB Arbeitsspeicher.

Einstellung	CPU-Anteilswerte	Arbeitsspeicher-Anteilswerte
Hoch	2000 Anteile pro virtueller CPU	20 Anteile pro Megabyte konfiguriertem Arbeitsspeicher der virtuellen Maschine.
Normal	1000 Anteile pro virtueller CPU	10 Anteile pro Megabyte konfiguriertem Arbeitsspeicher der virtuellen Maschine.
Niedrig	500 Anteile pro virtueller CPU	5 Anteile pro Megabyte konfiguriertem Arbeitsspeicher der virtuellen Maschine.

Tabelle 2-1. Anteilswerte

So verfügt beispielsweise eine virtuelle SMP-Maschine mit zwei virtuellen CPUs und einem 1 GB RAM, deren CPU- und Speicheranteile auf **Normal** eingestellt sind, über 2 x 1000 = 2000 CPU-Anteile und 10 x 1024 = 10240 Arbeitsspeicheranteile.

Virtuelle Maschinen mit mehr als einer virtuellen CPU werden als virtuelle SMP-Maschinen bezeichnet (Symmetric Multiprocessing).

Die relative Priorität der einzelnen Anteile ändert sich, wenn eine neue virtuelle Maschine eingeschaltet wird. Dies betrifft alle virtuellen Maschinen im selben Ressourcenpool. Alle virtuellen Maschinen haben dieselbe Anzahl virtueller CPUs. Beachten Sie die folgenden Beispiele.

- Zwei CPU-gebundene virtuelle Maschinen werden auf einem Host mit insgesamt 8 GHz CPU-Leistung ausgeführt. Die CPU-Anteile sind auf Normal eingestellt und erhalten jeweils 4 GHz.
- Eine dritte CPU-gebundene virtuelle Maschine wird eingeschaltet. Der CPU-Anteilswert ist auf **Hoch (High)** eingestellt, was bedeutet, dass die virtuelle Maschine doppelt so viele

Anteile erhalten sollte wie die Maschinen, deren Einstellung **Normal** lautet. Die neue virtuelle Maschine erhält demnach 4 GHz, die beiden anderen virtuelle Maschinen jeweils nur 2 GHz. Das gleiche Ergebnis wird erzielt, wenn der Benutzer einen benutzerdefinierten Anteilswert von 2000 für die dritte virtuelle Maschine festlegt.

Reservierung für die Ressourcenzuteilung

Eine Reservierung gibt die garantierte Mindestzuteilung für eine virtuelle Maschine an.

Mit vCenter Server oder ESXi können Sie eine virtuelle Maschine nur dann einschalten, wenn genügend nicht reservierte Ressourcen vorhanden sind, um die Reservierung der virtuellen Maschine zu erfüllen. Der Server garantiert diese Menge auch dann, wenn der physische Server stark ausgelastet ist. Die Reservierung wird in konkreten Einheiten (Megahertz oder Megabyte) ausgedrückt.

Angenommen, Sie haben 2 GHz verfügbar und geben eine Reservierung von 1 GHz für VM1 und 1 GHz für VM2 an. Jede virtuelle Maschine erhält jetzt garantiert 1 GHz, wenn sie sie benötigt. Wenn VM1 jedoch nur 500 MHz verwendet, kann VM2 1,5 GHz verwenden.

Der Standardwert für die Reservierung lautet O. Sie können eine Reservierung angeben, wenn Sie sicherstellen müssen, dass die erforderlichen Mindestmengen an CPU oder Arbeitsspeicher immer für die virtuelle Maschine verfügbar sind.

Grenzwert für die Ressourcenzuteilung

Der Grenzwert legt eine Obergrenze für CPU-, Arbeitsspeicher- oder Speicher-E/A-Ressourcen fest, die einer virtuellen Maschine zugeteilt werden können.

Ein Server kann einer virtuellen Maschine mehr Ressourcen zuteilen als die Reservierung vorsieht, der festgelegte Grenzwert kann jedoch selbst dann nicht überschritten werden, wenn ungenutzte Ressourcen im System vorhanden sind. Der Grenzwert wird in festen Einheiten angegeben (Megahertz, Megabyte oder E/A-Vorgänge pro Sekunde).

Der Standardgrenzwert für CPU, Arbeitsspeicher und Speicher-E/A lautet "unbegrenzt". Bei Auswahl dieser Einstellung wird die Menge des Arbeitsspeichers, die bei der Erstellung der virtuellen Maschine konfiguriert wurde, zum tatsächlichen Grenzwert.

In der Regel ist es nicht erforderlich, einen Grenzwert festzulegen. Es gibt in diesem Zusammenhang sowohl Vorteile als auch Nachteile:

 Vorteile – Das Zuweisen eines Grenzwerts kann sich als nützlich erweisen, wenn Sie mit wenigen virtuellen Maschinen starten und die Benutzeranforderungen steuern möchten. Mit dem Hinzufügen weiterer virtueller Maschinen verschlechtert sich die Leistung. Durch Festlegen eines Grenzwerts können Sie das Vorhandensein einer geringeren Anzahl verfügbarer Ressourcen simulieren. Nachteile – Durch Festlegen eines Grenzwerts vergeuden Sie möglicherweise im Leerlauf befindliche Ressourcen. Das System lässt nicht zu, dass virtuelle Maschinen Ressourcen nutzen, die über den für sie festgelegten Grenzwert hinausgehen, auch wenn das System nicht voll ausgelastet ist und die im Leerlauf befindlichen Ressourcen verfügbar sind. Geben Sie nur dann einen Grenzwert an, wenn es hierfür gute Gründe gibt.

Vorschläge für Einstellungen zur Ressourcenzuteilung

Wählen Sie Einstellungen für die Ressourcenzuteilung (Anteile, Reservierung und Grenzwert), die für Ihre ESXi-Umgebung angemessen sind.

Die folgenden Richtlinien können Ihnen dabei helfen, die Leistung Ihrer virtuellen Maschinen zu verbessern.

- Verwenden Sie den Parameter **Reservierung**, um eine annehmbare Mindestgröße für Arbeitsspeicher oder CPU festzulegen, anstatt eine gewünschte verfügbare Größe festzulegen. Der Umfang der tatsächlichen durch die Reservierung dargestellten Ressourcen bleibt bei einer Änderung der Umgebung erhalten, z. B. wenn virtuelle Maschinen hinzugefügt oder entfernt werden. Der Host weist bei Verfügbarkeit zusätzliche Ressourcen zu und richtet sich dabei nach der Anzahl der Anteile, dem geschätzten Bedarf und dem für die virtuelle Maschine festgelegten Grenzwert.
- Vergeben Sie beim Festlegen der Reservierungen für virtuelle Maschinen nicht alle Ressourcen (lassen Sie mindestens 10 % nicht reserviert). Je dichter Sie sich an einer vollständigen Reservierung aller Kapazitäten des Systems bewegen, desto schwieriger wird es, Änderungen an der Reservierung und der Ressourcenpoolhierarchie vorzunehmen, ohne dabei die Zugangssteuerung zu verletzen. In einem für DRS aktivierten Cluster kann eine Reservierung, die eine vollständige Vergabe der Kapazität des Clusters oder einzelner Hosts des Clusters vorsieht, dazu führen, dass virtuelle Maschinen nicht über DRS zwischen zwei Hosts migriert werden.
- Wenn Sie eher häufige Änderungen der insgesamt verfügbaren Ressourcen erwarten, verwenden Sie für eine gleichmäßige Ressourcenzuteilung zu den virtuellen Maschinen am besten den Parameter Anteile (Shares). Wenn Sie Anteile verwenden und beispielsweise ein Host-Upgrade durchführen, verfügt jede virtuelle Maschine weiterhin über dieselbe Priorität (dieselbe Anzahl an Anteilen), obwohl der einzelne Anteil eine größere Menge an Arbeitsspeicher-, CPU- oder Speicher-E/A-Ressourcen darstellt.

Einstellungen in vSphere bearbeiten

Zum Ändern der Ressourcenzuteilungen für Arbeitsspeicher und CPU verwenden Sie das Dialogfeld "Einstellungen bearbeiten".

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
- 2 Klicken Sie mit der rechten Maustaste und wählen Sie Einstellungen bearbeiten aus.

3 Bearbeiten Sie die CPU-Ressourcen.

Option	Beschreibung
Anteile	Der Anteil der CPU-Ressourcen dieses Ressourcenpools an den CPU- Gesamtressourcen des übergeordneten Ressourcenpools. Hierarchisch gleichwertige Ressourcenpools teilen sich Ressourcen auf der Basis ihrer relativen Anteilswerte, die an die Reservierung und die Grenzwerte geknüpft sind. Wählen Sie Niedrig, Normal oder Hoch . Dadurch werden die Anteilswerte im Verhältnis 1:2:4 festgelegt. Wählen Sie die Einstellung Benutzerdefiniert , um jeder virtuellen Maschine einen bestimmten Anteil zuzuweisen, der einer proportionalen Gewichtung entspricht.
Reservierung	Garantierte CPU-Zuweisung für diesen Ressourcenpool.
Grenzwert	Die Obergrenze der CPU-Zuweisung für diesen Ressourcenpool. Wählen Sie Unbegrenzt , wenn Sie keine Obergrenze definieren möchten.

4 Bearbeiten Sie die Arbeitsspeicherressourcen.

Option	Beschreibung
Anteile	Der Anteil der Arbeitsspeicherressourcen dieses Ressourcenpools an den Gesamtressourcen des übergeordneten Ressourcenpools. Hierarchisch gleichwertige Ressourcenpools teilen sich Ressourcen auf der Basis ihrer relativen Anteilswerte, die an die Reservierung und die Grenzwerte geknüpft sind. Wählen Sie Niedrig, Normal oder Hoch . Dadurch werden die Anteilswerte im Verhältnis 1:2:4 festgelegt. Wählen Sie die Einstellung Benutzerdefiniert , um jeder virtuellen Maschine einen bestimmten Anteil zuzuweisen, der einer proportionalen Gewichtung entspricht.
Reservierung	Garantierte Arbeitsspeicherzuweisung für diesen Ressourcenpool.
Grenzwert	Obergrenze der Arbeitsspeicherzuteilung für diesen Ressourcenpool. Wählen Sie Unbegrenzt , wenn Sie keine Obergrenze definieren möchten.

5 Klicken Sie auf OK.

Beispiel für das Ändern von Einstellungen für die Ressourcenzuteilung

Das folgende Beispiel zeigt, wie Sie die Einstellungen für die Ressourcenzuteilung ändern können, um die Leistung der virtuellen Maschine zu optimieren.

Angenommen, Sie haben zwei neue virtuelle Maschinen auf einem ESXi-Host erstellt, jeweils eine für die Qualitätssicherung (VM-QA) und das Marketing (VM-Marketing).

Abbildung 2-1. Einzelhost mit zwei virtuellen Maschinen

Im folgenden Beispiel wird angenommen, dass VM-QA arbeitsspeicherintensiv ist und Sie dementsprechend die Einstellungen für die Ressourcenzuteilung für die zwei virtuellen Maschinen ändern möchten:

- Legen Sie fest, dass die VM-QA im Falle einer Mehrfachvergabe des Systemarbeitsspeichers doppelt so viele CPU- und Arbeitsspeicherressourcen nutzen kann wie die virtuelle Maschine der Marketingabteilung. Legen Sie die CPU- und Arbeitsspeicheranteile für VM-QA auf Hoch und für VM-Marketing auf Normal fest.
- Stellen Sie sicher, dass die virtuelle Maschine der Marketingabteilung über eine bestimmte Menge an garantierten CPU-Ressourcen verfügt. Dies können Sie über eine Reservierungseinstellung erreichen.

Verfahren

- 1 Navigieren Sie zu den virtuellen Maschinen im vSphere Client.
- 2 Klicken Sie mit der rechten Maustaste auf VM-QA, die virtuelle Maschine, deren Anteile Sie ändern möchten, und wählen Sie Einstellungen bearbeiten.
- 3 Erweitern Sie unter Virtuelle Hardware die Option "CPU" und wählen Sie dann Hoch im Dropdown-Menü Anteile.
- 4 Erweitern Sie unter Virtuelle Hardware die Option "Arbeitsspeicher" und wählen Sie dann Hoch im Dropdown-Menü Anteile.
- 5 Klicken Sie auf OK.
- 6 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine der Marketing-Abteilung (VM-Marketing) und wählen Sie Einstellungen bearbeiten.
- 7 Erweitern Sie unter Virtuelle Hardware die Option "CPU" und ändern Sie den Wert Reservierung wie gewünscht.
- 8 Klicken Sie auf OK.

Zugangssteuerung in vSphere

Wenn Sie eine virtuelle Maschine einschalten, überprüft das System die Menge der noch nicht reservierten CPU- und Arbeitsspeicherressourcen. Basierend auf den verfügbaren nicht reservierten Ressourcen bestimmt das System, ob die für die virtuelle Maschine konfigurierte Reservierung garantiert werden kann (sofern vorhanden). Dieser Vorgang wird als Zugangssteuerung bezeichnet.

Wenn genügend nicht reservierte CPU- und Arbeitsspeicherressourcen verfügbar sind oder wenn keine Reservierung vorhanden ist, wird die virtuelle Maschine eingeschaltet. Ansonsten wird eine Warnung mit dem Inhalt Unzureichende Ressourcen angezeigt.

Hinweis Zusätzlich zur benutzerdefinierten Arbeitsspeicherreservierung ist für jede virtuelle Maschine auch Overhead-Arbeitsspeicher verfügbar. Diese zusätzliche Arbeitsspeichervergabe ist in der Berechnung der Zugangssteuerung enthalten.

Wenn die vSphere DPM-Funktion aktiviert ist, werden Hosts möglicherweise in den Standby-Modus versetzt (d. h. ausgeschaltet), um den Energieverbrauch zu senken. Die ungenutzten reservierten Ressourcen dieser Hosts gelten für die Zugangssteuerung als verfügbar. Wenn eine virtuelle Maschine ohne diese Ressourcen nicht eingeschaltet werden kann, wird die Empfehlung ausgegeben, Standby-Hosts in ausreichender Zahl einzuschalten. Weitere Informationen finden Sie unter Verwalten von Energieressourcen.

CPU-Virtualisierung in vSphere

Die CPU-Virtualisierung ist auf die Leistung ausgerichtet und wird möglichst direkt auf dem Prozessor ausgeführt. Die zugrunde liegenden physischen Ressourcen werden so weit wie möglich genutzt, und die Virtualisierungsschicht führt nur bei Bedarf Befehle aus, damit die virtuellen Maschinen so funktionieren, als würden sie direkt auf einer physischen Maschine ausgeführt werden.

Die CPU-Virtualisierung ist nicht identisch mit der Emulation. ESXi verwendet keine Emulation zum Ausführen virtueller CPUs. Bei der Emulation werden alle Vorgänge in Software von einem Emulator ausgeführt. Ein Software-Emulator ermöglicht die Ausführung von Programmen auf einem anderen Computersystem als dem, für das sie ursprünglich geschrieben wurden. Der Emulator emuliert oder reproduziert dazu das Verhalten des ursprünglichen Computers, indem er die gleichen Daten oder Eingaben akzeptiert und die gleichen Ergebnisse erzielt. Die Emulation bietet Portabilität und ermöglicht die Ausführung von Software, die für eine Plattform entwickelt wurde, auf mehreren Plattformen.

Wenn die CPU-Ressourcen überlastet sind, teilt der ESXi-Host die physischen Prozessoren auf alle virtuellen Maschinen auf, sodass jede virtuelle Maschine so ausgeführt wird, als hätte sie die angegebene Anzahl virtueller Prozessoren. Wenn ein ESXi-Host mehrere virtuelle Maschinen ausführt, teilt er jeder virtuellen Maschine einen Anteil der physischen Ressourcen zu. Mit den Standardeinstellungen für die Ressourcenzuteilung erhalten alle virtuellen Maschinen, die mit demselben Host verbunden sind, den gleichen Anteil an CPU pro virtueller CPU. Dies bedeutet, dass einer virtuellen Maschine mit einem Prozessor nur die Hälfte der Ressourcen einer virtuellen Maschine mit zwei Prozessoren zugeteilt wird.

Lesen Sie als Nächstes die folgenden Themen:

- Softwarebasierte CPU-Virtualisierung
- Hardwaregestützte CPU-Virtualisierung
- Virtualisierung und prozessorspezifisches Verhalten
- Auswirkungen der CPU-Virtualisierung auf die Leistung

Softwarebasierte CPU-Virtualisierung

Mit der softwarebasierten CPU-Virtualisierung wird der Gastanwendungscode direkt auf dem Prozessor ausgeführt, während der privilegierte Code des Gasts übersetzt wird und der übersetzte Code auf dem Prozessor ausgeführt wird.

Der übersetzte Code ist geringfügig größer und wird in der Regel langsamer ausgeführt als die native Version. Daher werden Gastanwendungen, die über eine kleine privilegierte Codekomponente verfügen, mit annähernd der Geschwindigkeit der nativen Version ausgeführt. Anwendungen mit einer größeren privilegierten Codekomponente, z. B. Systemaufrufe, Traps oder Seitentabellenaktualisierungen, werden in der virtualisierten Umgebung möglicherweise langsamer ausgeführt.

Hardwaregestützte CPU-Virtualisierung

Gewisse Prozessoren bieten Hardwareunterstützung für die CPU-Virtualisierung.

Mithilfe dieser Unterstützung kann der Gast einen separaten Ausführungsmodus verwenden, der als Gastmodus bezeichnet wird. Ob Anwendungscode oder berechtigter Code – der Gastcode wird im Gastmodus ausgeführt. Bei bestimmten Ereignissen beendet der Prozessor den Gastmodus und wechselt in den Root-Modus. Der Hypervisor wird im Root-Modus ausgeführt, ermittelt den Grund für den Wechsel, führt alle erforderlichen Aktionen aus und startet den Gast im Gastmodus neu.

Wenn Sie Hardwareunterstützung für die Virtualisierung verwenden, muss der Code nicht übersetzt werden. Daher werden Systemaufrufe oder Trap-intensive Arbeitslasten mit annähernd ursprünglicher Geschwindigkeit ausgeführt. Einige Arbeitslasten, z. B. das Aktualisieren von Seitentabellen betreffende Arbeitslasten, führen zu einer Vielzahl an Wechseln vom Gastmodus in den Root-Modus. Abhängig von der Anzahl solcher Wechsel und der insgesamt für die Wechsel aufgewendeten Zeit kann die hardwaregestützte CPU-Virtualisierung für eine wesentliche Erhöhung der Ausführungsgeschwindigkeit sorgen.

Virtualisierung und prozessorspezifisches Verhalten

Obwohl die CPU durch die VMware-Software virtualisiert wird, erkennt die virtuelle Maschine das spezifische Modell des Prozessors, auf dem sie ausgeführt wird.

Prozessormodelle verfügen möglicherweise über unterschiedliche CPU-Funktionen, die von auf der virtuellen Maschine ausgeführten Anwendungen verwendet werden können. Deshalb kann vMotion[®] nicht zum Migrieren von virtuellen Maschinen zwischen Systemen mit Prozessoren, die unterschiedliche Funktionssätze aufweisen, verwendet werden. Sie können diese Einschränkung in manchen Fällen umgehen, indem Sie EVC (Enhanced vMotion Compatibility) mit Prozessoren verwenden, die diese Funktion unterstützen. Weitere Informationen hierzu finden Sie in der Dokumentation zu *vCenter Server und Hostverwaltung*.

Auswirkungen der CPU-Virtualisierung auf die Leistung

Bei der CPU-Virtualisierung werden variable Anteile des Overheads hinzugefügt, die von der Arbeitslast und dem verwendeten Virtualisierungstyp abhängen.

Eine Anwendung wird als CPU-gebunden bezeichnet, wenn sie die meiste Zeit mit der Ausführung von Anweisungen verbringt, statt mit dem Warten auf externe Ereignisse, wie Benutzerinteraktionen, Geräteeingaben oder Datenabrufe. Für solche Anwendungen enthält der CPU-Virtualisierungs-Overhead die zusätzlichen Anweisungen, die ausgeführt werden müssen. Dieser Overhead beansprucht CPU-Verarbeitungszeit, die die Anwendung selbst verwenden kann. Der CPU-Virtualisierungs-Overhead führt normalerweise zu einer Verringerung der Leistung insgesamt.

Bei Anwendungen, die nicht CPU-gebunden sind, führt die CPU-Virtualisierung eher zu einem Anstieg der CPU-Nutzung. Kann der Overhead durch die CPU abgefangen werden, ist noch immer eine vergleichbare Leistung in Hinblick auf den allgemeinen Durchsatz möglich.

ESXi unterstützt bis zu 128 virtuelle Prozessoren (CPUs) pro virtueller Maschine.

Hinweis Stellen Sie Einzel-Thread-Anwendungen auf virtuellen Einzelprozessormaschinen statt auf virtuellen SMP-Maschinen bereit, die mit mehreren CPU ausgestattet sind, um eine optimale Leistung und Ressourcennutzung zu erzielen.

Einzel-Thread-Anwendungen können nur eine einzige CPU nutzen. Durch das Bereitstellen solcher Anwendungen in virtuellen Maschinen mit zwei Prozessoren kann die Anwendung nicht beschleunigt werden. Dies führt vielmehr dazu, dass die zweite virtuelle CPU physische Ressourcen nutzt, die ansonsten durch andere virtuelle Maschinen genutzt werden könnten.

Verwalten von CPU-Ressourcen in vSphere

Sie haben die Möglichkeit, virtuelle Maschinen mit mindestens einem virtuellen Prozessor zu konfigurieren, wobei jeder über einen eigene Register und Steuerungsstrukturen verfügt.

Bei der Planung einer virtuellen Maschine wird festgelegt, dass die virtuellen Prozessoren auf physischen Prozessoren ausgeführt werden. Der VMkernel Resource Manager plant die virtuellen CPUs auf physischen CPUs, wodurch der Zugriff der virtuellen Maschine auf physische CPU-Ressourcen verwaltet wird.

Hinweis In diesem Kapitel kann sich "Arbeitsspeicher" auf den physischen oder den persistenten Arbeitsspeicher beziehen.

Lesen Sie als Nächstes die folgenden Themen:

- Anzeigen von Prozessorinformationen
- Angeben der CPU-Konfiguration
- Prozessoren mit mehreren Kernen

Anzeigen von Prozessorinformationen

Sie können auf Informationen über die aktuelle CPU-Konfiguration im vSphere Client zugreifen.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Erweitern Sie unter **Hardware** die Option **CPU**, um die Informationen über die Anzahl und den Typ der physischen Prozessoren sowie die Anzahl der logischen Prozessoren anzuzeigen.

Hinweis Bei Systemen mit aktivierter Hyper-Threading-Funktion ist jeder Hardware-Thread ein logischer Prozessor. Beispielsweise verfügt ein Dual-Core-Prozessor mit aktivierter Hyper-Threading-Funktion über zwei Cores und vier logische Prozessoren.

Angeben der CPU-Konfiguration

Sie können die CPU-Konfiguration festlegen, um die Ressourcenverwaltung zu optimieren. Falls Sie die CPU-Konfiguration jedoch nicht anpassen, verwendet der ESXi-Host Standardwerte, die in den meisten Situationen zu zufriedenstellenden Ergebnissen führen. Sie können die CPU-Konfiguration folgendermaßen festlegen:

- Verwenden Sie die Attribute und speziellen Funktionen, die über den vSphere Client verfügbar sind. Mit dem vSphere Client können Sie eine Verbindung mit dem ESXi-Host oder einem vCenter Server-System herstellen.
- Verwenden Sie unter bestimmten Umständen die erweiterten Einstellungen.
- Verwenden Sie die vSphere-SDK f
 ür die Skript-CPU-Reservierung.
- Verwenden Sie Hyper-Threading.

Prozessoren mit mehreren Kernen

Prozessoren mit mehreren Kernen bieten zahlreiche Vorteile für einen Host, der mehrere Aufgaben virtueller Maschinen gleichzeitig ausführt.

Hinweis In diesem Thema kann sich "Speicher" auf den physischen Arbeitsspeicher oder den persistenten Speicher beziehen.

Die von Intel und AMD entwickelten Prozessoren kombinieren zwei oder mehrere Prozessorkerne in einem einzelnen integrierten Schaltkreis (häufig als Paket oder Socket bezeichnet). VMware verwendet den Begriff "Socket", um ein einzelnes Paket zu beschreiben, das mindestens einen Prozessorkern mit mindestens einem logischen Prozessor in jedem Kern umfassen kann.

Beispielsweise erbringt ein Prozessor mit zwei Kernen annähernd die doppelte Leistung eines Prozessors mit einem Kern, da er die gleichzeitige Ausführung von zwei virtuellen CPUs ermöglicht. Kerne innerhalb eines Prozessors verfügen in der Regel über einen von allen Kernen genutzten Last-Level-Cache, wodurch die erforderlichen Zugriffe auf langsameren Hauptarbeitsspeicher verringert werden können. Ein gemeinsam genutzter Arbeitsspeicherbus, der einen physischen Prozessor mit einem Hauptarbeitsspeicher verbindet, kann zu einer Leistungseinschränkung der logischen Prozessoren führen, wenn die darauf ausgeführten virtuellen Maschinen arbeitsspeicherintensive Arbeitslasten ausführen, die um dieselben Ressourcen des Arbeitsspeicherbusses konkurrieren.

Alle logischen Prozessoren der einzelnen Prozessorkerne werden unabhängig voneinander vom ESXi-CPU-Scheduler zum Ausführen virtueller Maschinen verwendet, wodurch Funktionen bereitstellt werden, die mit SMP-Systemen vergleichbar sind. Beispielsweise kann eine virtuelle Zwei-Wege-Maschine die eigenen virtuellen Prozessoren auf logischen Prozessoren ausführen, die zum selben Kern gehören oder sich auf anderen physischen Kernen befinden.

Der ESXi-CPU-Scheduler kann die Prozessortopologie und die Beziehungen zwischen Prozessorkernen und den darauf befindlichen logischen Prozessoren erkennen. Diese Informationen werden zur Planung der virtuellen Maschinen und Leistungsoptimierung eingesetzt. Der ESXi-CPU-Scheduler kann die Prozessortopologie erkennen, einschließlich der Beziehungen zwischen Sockets, Kernen und logischen Prozessoren. Der Scheduler verwendet Topologieinformationen zum Optimieren der Platzierung der virtuellen CPUs auf verschiedenen Sockets. Dank dieser Optimierung kann die Cache-Nutzung insgesamt maximiert und die Cache-Affinität durch Minimieren der virtuellen CPU-Migrationen verbessert werden.

Hyper-Threading mit vSphere

Mit der Hyper-Threading-Technologie kann ein einzelner physischer Prozessorkern als zwei logische Prozessoren fungieren. Der Prozessor kann zwei unabhängige Anwendungen zur selben Zeit ausführen. Um Verwechslungen zwischen logischen und physischen Prozessoren zu vermeiden, bezeichnet Intel einen physischen Prozessor als Socket. In der Diskussion in diesem Kapitel wird ebenfalls dieser Begriff verwendet.

Die Intel Corporation entwickelte die Hyper-Threading-Technologie, um die Leistung ihrer Pentium IV- und Xeon-Prozessorlinien zu verbessern. Die Hyper-Threading-Technologie ermöglicht einem einzelnen Prozessorkern die gleichzeitige Ausführung von zwei unabhängigen Threads.

Hyper-Threading verdoppelt zwar nicht die Leistung eines Systems, kann jedoch die Leistung steigern, indem Ressourcen im Leerlauf besser genutzt werden, was zu einem höheren Durchsatz für bestimmte wichtige Arbeitslasttypen führt. Eine Anwendung, die auf einem logischen Prozessor eines ausgelasteten Kerns ausgeführt wird, kann etwas mehr als die Hälfte des Durchsatzes erwarten, den sie allein auf einem Prozessor ohne Hyper-Threading erhält. Hyper-Threading-Leistungsverbesserungen sind in hohem Maße anwendungsabhängig. Bei einigen Anwendungen kann es zu Leistungsbeeinträchtigungen mit Hyper-Threading kommen, da viele Prozessorressourcen (z. B. der Cache) von logischen Prozessoren gemeinsam genutzt werden.

Hinweis Auf Prozessoren mit Intel Hyper-Threading-Technologie kann jeder Kern über zwei logische Prozessoren verfügen, die die meisten Ressourcen des Kerns gemeinsam nutzen, z. B. Arbeitsspeicher-Caches und Funktionale Einheiten. Solche logischen Prozessoren werden in der Regel Threads genannt.

Viele Prozessoren unterstützen Hyper-Threading nicht und haben daher nur einen Thread pro Kern. Bei solchen Prozessoren entspricht die Anzahl der Kerne auch der Anzahl der logischen Prozessoren. Die folgenden Prozessoren unterstützen Hyper-Threading und verfügen über zwei Threads pro Kern.

- Prozessoren, die auf der Mikroarchitektur des Intel Xeon 5500-Prozessors basieren.
- Intel Pentium 4 (HT-fähig)
- Intel Pentium EE 840 (HT-fähig)

Lesen Sie als Nächstes die folgenden Themen:

Hyper-Threading und ESXi-Hosts

Aktivieren von Hyper-Threading

Hyper-Threading und ESXi-Hosts

Ein Host mit aktiviertem Hyper-Threading sollte sich ähnlich wie ein Host ohne Hyper-Threading verhalten. Sie müssen jedoch möglicherweise bestimmte Faktoren beachten, wenn Sie Hyper-Threading aktivieren.

ESXi-Hosts verwalten die Prozessorzeit intelligent, um sicherzustellen, dass die Last gleichmäßig über alle physischen Kerne des Systems verteilt wird. Logische Prozessoren auf demselben Kern verfügen über fortlaufende CPU-Nummern, d. h. die CPUs 0 und 1 befinden sich zusammen auf dem ersten Kern, die CPUs 2 und 3 auf dem zweiten Kern usw. Virtuelle Maschinen werden vorzugsweise statt für zwei logische Prozessoren auf demselben Kern für zwei unterschiedliche Kernen eingeplant.

Wenn für einen logischen Prozessor keine Arbeitslast vorhanden ist, wird er in einen angehaltenen Status versetzt, sodass seine Ausführungsressourcen freigesetzt werden. Dadurch kann die auf dem anderen Prozessor desselben Kerns ausgeführte virtuelle Maschine alle Ausführungsressourcen des Kerns verwenden. Der VMware-Scheduler berücksichtigt diese angehaltene Zeit genau und überträgt einer virtuellen Maschine, die mit den vollständigen Ressourcen eines Kerns ausgeführt wird, mehr Arbeitslast als einer virtuellen Maschine, die auf einem halben Kern ausgeführt wird. Dieser Ansatz für die Prozessorverwaltung gewährleistet, dass der Server keine der Standardregeln für die Ressourcenzuteilung von ESXi verletzt.

Überdenken Sie Ihren Bedarf für die Ressourcenverwaltung, bevor Sie die CPU-Affinität auf Hosts mit Hyper-Threading aktivieren. Wenn Sie beispielsweise eine virtuelle Maschine mit hoher Priorität an CPU 0 und eine andere virtuelle Maschine mit hoher Priorität an CPU 1 binden, müssen beide virtuelle Maschinen denselben physischen Kern verwenden. In diesem Fall ist es eventuell nicht möglich, den Ressourcenanforderungen dieser beiden virtuellen Maschinen gerecht zu werden. Stellen Sie sicher, dass die benutzerdefinierten Affinitätseinstellungen auf einem System mit Hyper-Threading sinnvoll sind.

Aktivieren von Hyper-Threading

Zum Aktivieren von Hyper-Threading müssen Sie es zuerst in den BIOS-Einstellungen des Systems aktivieren und dann im vSphere Client aktivieren. Hyper-Threading ist standardmäßig aktiviert.

Lesen Sie Ihre Systemdokumentation, um festzustellen, ob Ihre CPU Hyper-Threading unterstützt.

Verfahren

- 1 Stellen Sie sicher, dass Ihr System die Hyper-Threading-Technologie unterstützt.
- 2 Aktivieren Sie Hyper-Threading im System-BIOS.

Einige Hersteller bezeichnen diese Option als Logischer Prozessor, andere als Hyper-Threading aktivieren.

- 3 Stellen Sie sicher, dass Hyper-Threading für den ESXi-Host aktiviert ist.
 - a Navigieren Sie im vSphere Client zum Host.
 - b Klicken Sie auf Konfigurieren.
 - c Klicken Sie unter **System** auf **Erweiterte Systemeinstellungen** und wählen Sie **VMkernel.Boot.hyperthreading**.

Damit die Einstellung wirksam wird, muss der Host neu gestartet werden. Hyper-Threading ist aktiviert, wenn der Wert **true** lautet.

4 Klicken Sie unter **Hardware** auf **Prozessoren**, um die Anzahl der logischen Prozessoren anzuzeigen.

Ergebnisse

Hyper-Threading ist aktiviert.

Verwenden der CPU-Affinität mit vSphere

6

Durch die Angabe einer CPU-Affinitätseinstellung für jede virtuelle Maschine können Sie die Zuweisung virtueller Maschinen auf eine Teilmenge der verfügbaren Prozessoren in Multiprozessorsystemen beschränken. Mit dieser Funktion können Sie jede virtuelle Maschine den Prozessoren im angegebenen Affinitätssatz zuweisen.

Die CPU-Affinität spezifiziert Platzierungsbeschränkungen zwischen virtuellen Maschinen und Prozessoren und unterscheidet sich von der Beziehung, die durch eine VM-VM- oder VM-Host-Affinitätsregel erstellt wird, die Platzierungsbeschränkungen zwischen VMs und VM-Hosts spezifiziert.

In diesem Zusammenhang bezieht sich der Begriff CPU auf einen logischen Prozessor in einem Hyperthreading-System und auf einen Kern in einem System ohne Hyperthreading.

Die CPU-Affinitätseinstellung für eine virtuelle Maschine gilt für alle virtuellen CPUs, die mit der virtuellen Maschine verbunden sind, und für alle anderen Threads (auch als "worlds" bezeichnet), die mit der virtuellen Maschine verbunden sind. Solche VM-Threads führen die Verarbeitung durch, die für die Emulation von Maus, Tastatur, Bildschirm, CD-ROM und verschiedenen Legacy-Geräten erforderlich ist.

In einigen Fällen, z. B. bei anzeigeintensiven Arbeitslasten, kann es zu einer erheblichen Kommunikation zwischen den virtuellen CPUs und diesen anderen VM-Threads kommen. Die Leistung kann sich verringern, wenn die Affinitätseinstellung der virtuellen Maschine verhindert, dass diese zusätzlichen Threads gleichzeitig mit den virtuellen CPUs der virtuellen Maschine geplant werden. Beispiele hierfür sind eine Einzelprozessor-VM mit Affinität zu einer einzelnen CPU oder eine virtuelle Zwei-Wege-SMP-Maschine mit Affinität zu nur zwei CPUs.

Um eine optimale Leistung zu erzielen, empfiehlt VMware bei der Verwendung manueller Affinitätseinstellungen, dass Sie mindestens eine zusätzliche physische CPU in die Affinitätseinstellung aufnehmen, damit mindestens einer der Threads der virtuellen Maschine zur gleichen Zeit wie die virtuellen CPUs geplant werden kann. Beispiele hierfür sind eine Einzelprozessor-VM mit Affinität zu mindestens zwei CPUs oder eine virtuelle Zwei-Wege-SMP-Maschine mit Affinität zu mindestens drei CPUs.

Lesen Sie als Nächstes die folgenden Themen:

- Zuweisen einer virtuellen Maschine zu einem bestimmten Prozessor
- Mögliche Probleme mit der CPU-Affinität

Zuweisen einer virtuellen Maschine zu einem bestimmten Prozessor

Unter Verwendung der CPU-Affinität können Sie eine virtuelle Maschine einem bestimmten Prozessor zuweisen. Dadurch können Sie die Zuweisung von virtuellen Maschinen auf einen bestimmten verfügbaren Prozessor in Systemen mit mehreren Prozessoren beschränken.

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Wählen Sie VMs aus.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und klicken Sie auf **Einstellungen bearbeiten**.
- 3 Erweitern Sie unter "Virtuelle Hardware" CPU.
- 4 Wählen Sie unter "Planen von Affinität" eine physische Prozessoraffinität für die virtuelle Maschine aus.

Verwenden Sie '-' für Bereiche und ',', um Werte zu trennen.

Beispielsweise gibt "0, 2, 4-7" die Prozessoren 0, 2, 4, 5, 6 und 7 an.

5 Wählen Sie die Prozessoren, auf denen die virtuelle Maschine ausgeführt werden soll, und klicken Sie auf **OK**.

Mögliche Probleme mit der CPU-Affinität

Vor der Verwendung der CPU-Affinität müssen Sie unter Umständen bestimmte Probleme berücksichtigen.

Mögliche Probleme mit der CPU-Affinität sind unter anderem:

- Bei Multiprozessorsystemen führen ESXi-Systeme einen automatischen Lastausgleich durch. Vermeiden Sie eine manuelle Spezifikation der VM-Affinität, damit der Scheduler die Last besser über mehrere Prozessoren ausgleichen kann.
- Die Affinität kann zu einer Beeinträchtigung des ESXi-Hosts bei der Einhaltung der für eine virtuelle Maschine angegebenen Reservierung und Anteile führen.
- Da die Affinität von der CPU-Zugangssteuerung nicht berücksichtigt wird, erhält eine virtuelle Maschine mit manuellen Affinitätseinstellungen möglicherweise nicht immer die vollständige Reservierung.

Virtuelle Maschinen ohne manuelle Affinitätseinstellungen werden durch virtuelle Maschinen mit manuellen Affinitätseinstellungen nicht beeinträchtigt.

- Wenn Sie eine virtuelle Maschine von einem Host auf einen anderen verschieben, besteht möglicherweise keine Affinität mehr, da der neue Host eventuell eine andere Anzahl an Prozessoren aufweist.
- Der NUMA-Scheduler ist in diesem Fall unter Umständen nicht in der Lage, eine virtuelle Maschine zu verwalten, die bereits unter Verwendung von Affinität bestimmten Prozessoren zugewiesen ist. Weitere Informationen finden Sie unter Kapitel 21 Verwenden von NUMA-Systemen mit ESXi.
- Die Affinität kann sich darauf auswirken, ob bzw. wie der Host virtuelle Maschinen auf Prozessoren mit mehreren Kernen oder Hyper-Threading planen kann, um die auf solchen Prozessoren gemeinsam genutzten Ressourcen vollständig zu nutzen.

Host-Energieverwaltungsrichtlinien in ESXi

Sie können in ESXi zahlreiche Energieverwaltungsfunktionen anwenden, die die Host-Hardware zur Einstellung des Gleichgewichts zwischen Leistung und Energie bereitstellt. Sie können steuern, wie ESXi diese Funktionen nutzt, indem Sie eine Energieverwaltungsrichtlinie auswählen.

Die Auswahl einer Richtlinie für hohen Energieverbrauch bietet mehr absolute Leistung, jedoch eine niedrigere Effizienz und Leistung pro Watt. Richtlinien für wenig Energieverbrauch bieten weniger absolute Leistung, aber eine höher Effizienz.

Sie können mit dem VMware Host Client eine Richtlinie für den Host auswählen, den Sie verwalten. Wenn Sie keine Richtlinie auswählen, verwendet ESXi standardmäßig die Richtlinie "Ausgeglichen".

Energieverwaltungsrichtlinie	Beschreibung
Hochleistung	Keine Energieverwaltungsfunktionen verwenden
Ausgeglichen (Standard)	Energieverbrauch mit minimalen Leistungseinbußen reduzieren
Geringer Energieverbrauch	Energieverbrauch auf Gefahr einer geringeren Leistung reduzieren
Benutzerdefiniert	Benutzerdefinierte Energieverwaltungsrichtlinie Ermöglicht weiterreichende Konfigurationen

Tabelle 7-1. CPU-Energieverwaltungsrichtlinien

Wenn eine CPU mit einer niedrigeren Frequenz läuft, kann sie auch mit einer niedrigeren Spannung laufen und somit Energie sparen. Diese Art der Energieverwaltung wird typischerweise DVFS (Dynamic Voltage and Frequency Scaling) genannt. ESXi versucht, die CPU-Frequenzen so anzupassen, dass die Leistung der virtuellen Maschinen nicht beeinträchtigt wird.

Wenn eine CPU im Leerlauf ist, kann ESXi so genannte Deep-Halt-Zustände (auch "C-Status" genannt) anwenden. Je niedriger der "C-Status", desto weniger Betriebsleistung wird von der CPU verwendet, aber die CPU benötigt mehr Zeit, bis sie wieder läuft. Wenn sich eine CPU im Leerlauf befindet, wendet ESXi einen Algorithmus an, um die Dauer vorherzusagen, während derer sie sich im Leerlauf befinden wird, und wählt einen entsprechenden "C-Status" aus, in den die CPU versetzt werden soll. In Energieverwaltungsrichtlinien, die keine niedrigen "C-Status" nutzen, verwendet ESXi nur den flachsten Haltzustand (C1) für CPUs im Leerlauf.

Lesen Sie als Nächstes die folgenden Themen:

- Auswahl einer CPU-Energieverwaltungsrichtlinie
- Konfigurieren von benutzerdefinierten Richtlinienparametern f
 ür die Energieverwaltung des Hosts

Auswahl einer CPU-Energieverwaltungsrichtlinie

Sie legen die CPU-Energieverwaltungsrichtlinie für einen Host mithilfe des vSphere Client fest.

Voraussetzungen

Stellen Sie sicher, dass die BIOS-Einstellungen auf dem Hostsystem zulassen, dass das Betriebssystem die Energieverwaltung steuert (z. B. **Betriebssystemgesteuert**). Wenn die Hosthardware nicht zulässt, dass das Betriebssystem die Energie verwaltet, steht nur die Richtlinie "Nicht unterstützt" zur Verfügung. (Auf manchen Systemen steht nur die Hochleistungsrichtlinie zur Verfügung.)

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter "Hardware" die Option "Übersicht" aus und klicken Sie auf Energieeinstellungen bearbeiten.
- 4 Wählen Sie eine Energieverwaltungsrichtlinie für den Host aus und klicken Sie auf OK.

Die ausgewählte Richtlinie wird in der Hostkonfiguration gespeichert und kann beim Starten erneut verwendet werden. Sie können sie jederzeit ändern. Zum Aktivieren ist kein Neustart des Servers erforderlich.

Konfigurieren von benutzerdefinierten Richtlinienparametern für die Energieverwaltung des Hosts

Wenn Sie die Richtlinie "Benutzerdefiniert" für die Energieverwaltung des Hosts verwenden, basiert ESXi seine Energieverwaltungsrichtlinie auf den Werten mehrerer erweiterter Konfigurationsparameter.

Voraussetzungen

Wählen Sie **Benutzerdefiniert** als Energieverwaltungsrichtlinie, wie unter Auswahl einer CPU-Energieverwaltungsrichtlinie beschrieben.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter System Erweiterte Systemeinstellungen aus.

4 Sie können im rechten Bereich die Energieverwaltungsparameter bearbeiten, die Ihre benutzerdefinierte Richtlinie beeinflussen.

Energieverwaltungsparameter, die die Richtlinie "Benutzerdefiniert" beeinflussen, haben Beschreibungen, die mit **In benutzerdefinierter Richtlinie** beginnen. Alle anderen Energieparameter betreffen alle Energieverwaltungsrichtlinien.

5 Wählen Sie den Parameter aus und klicken Sie auf die Schaltfläche **Bearbeiten**.

Hinweis Die Standardwerte der Parameter für die Energieverwaltung stimmen mit der Richtlinie "Ausgeglichen" überein.

Parameter	Beschreibung
Power.UsePStates	Verwenden Sie ACPI P-Statuszustände zur Energieeinsparung, wenn der Prozessor beschäftigt ist.
Power.MaxCpuLoad	Verwenden Sie P-States zur Einsparung von Energie nur dann, wenn eine CPU für weniger als den angegebenen Prozentsatz der Echtzeit beschäftigt ist.
Power.MinFreqPct	Verwenden Sie keine P-Statuszustände, die langsamer als der angegebene Prozentsatz der vollen CPU-Geschwindigkeit sind.
Power.UseStallCtr	Verwenden Sie einen tieferen P-State, wenn der Prozessor beim Warten auf Ereignisse häufig ins Stocken gerät, wie z. B. bei Cache-Misses.
Power.TimerHz	Steuert, wie oft in der Sekunde ESXi den P-State neu auswertet, den jede CPU aufweisen muss.
Power.UseCStates	Verwenden Sie tiefe ACPI C-Status (C2 oder niedriger), wenn sich der Prozessor im Leerlauf befindet.
Power.CStateMaxLatency	Verwenden Sie keine C-Status, deren Latenz größer als dieser Wert ist.
Power.CStateResidencyCoef	Wenn sich eine CPU im Leerlauf befindet, wählen Sie den niedrigsten C- Status aus, dessen Latenz multipliziert mit diesem Wert weniger als die Vorhersage des Hosts über die Dauer des Leerlaufs ist. Größere Werte führen dazu, dass ESXi tiefe C-Status eher konservativ verwendet, wobei kleinere Werte aggressiver sind.
Power.CStatePredictionCoef	Ein Parameter im ESXi-Algorithmus für die Vorhersage, wie lange eine CPU, die sich im Leerlauf befindet, im Leerlauf bleiben wird. Es wird nicht empfohlen, diesen Wert zu ändern.
Power.PerfBias	Performance Energy Bias Hint (nur Intel). Legt ein MSR auf Intel-Prozessoren auf einen von Intel empfohlenen Wert fest. Intel empfiehlt 0 für Hochleistung, 6 für ausgeglichen und 15 für geringen Energieverbrauch. Andere Werte sind nicht definiert.

6 Klicken Sie auf OK.

Arbeitsspeichervirtualisierung mit vSphere

8

Bevor Sie mit dem Verwalten von Arbeitsspeicherressourcen beginnen, sollte Ihnen bekannt sein, wie diese von ESXi virtualisiert und verwendet werden.

Der VMkernel verwaltet den gesamten physischen Arbeitsspeicher (RAM) auf dem Host. Einen Teil dieses verwalteten physischen Arbeitsspeichers reserviert der VMkernel für sich selbst. Der Rest steht den virtuellen Maschinen zur Verfügung.

Der virtuelle Arbeitsspeicherplatz ist in Blöcke unterteilt, die als Seiten bezeichnet werden. Wenn der physische Arbeitsspeicher voll ist, werden die Daten der virtuellen Seiten, die nicht im physischen Arbeitsspeicher aufgenommen werden können, auf Festplatte gespeichert. Je nach der Prozessorarchitektur umfassen die Seiten normalerweise 4 KB oder 2 MB. Weitere Informationen hierzu finden Sie unter Erweiterte Arbeitsspeicherattribute.

Lesen Sie als Nächstes die folgenden Themen:

- Arbeitsspeicher virtueller Maschinen
- Arbeitsspeicherüberbelegung
- Gemeinsame Arbeitsspeichernutzung
- Speichervirtualisierung
- Hardwaregestützte Arbeitsspeichervirtualisierung
- Unterstützung für große Seiten

Arbeitsspeicher virtueller Maschinen

Jede virtuelle Maschine verbraucht Arbeitsspeicher auf der Grundlage der für sie konfigurierten Größe, sowie einen zusätzlichen Overhead-Arbeitsspeicher für die Virtualisierung.

Die konfigurierte Größe ist die Größe des Arbeitsspeichers, der dem Gastbetriebssystem zur Verfügung gestellt wird. Dieser Wert unterscheidet sich von dem physischen Arbeitsspeicher, der der virtuellen Maschine zugeteilt ist. Der Letztere hängt von den Ressourceneinstellungen (Anteile, Reservierung, Grenzwert) und dem Grad der Arbeitsspeicherbelastung auf dem Host ab.
Nehmen Sie eine virtuelle Maschine mit einer konfigurierten Größe von 1 GB als Beispiel. Wenn das Gastbetriebssystem startet, erkennt es, dass es auf einer dedizierten Maschine mit 1 GB an physischem Arbeitsspeicher ausgeführt wird. In einigen Fällen kann dabei der virtuellen Maschine die gesamte Größe von 1 GB zugeteilt werden. In anderen Fällen wäre die Zuteilung kleiner. Unabhängig von der aktuellen Zuteilung verhält sich das Gastbetriebssystem weiterhin, als ob es auf einer dedizierten virtuellen Maschine mit 1 GB physischem Arbeitsspeicher ausgeführt werden würde.

Anteile

Anteile legen die relative Priorität einer virtuellen Maschine fest, falls ein über die Reservierung hinausgehender Speicher verfügbar ist.

Reservierung

Die Reservierung ist eine garantierte Untergrenze für die Menge an physischem Arbeitsspeicher, die der Host für eine virtuelle Maschine reserviert, auch wenn der Arbeitsspeicher mehrfach vergeben wird. Die Reservierung sollte so festgelegt werden, dass die virtuelle Maschine über ausreichend Arbeitsspeicher verfügt, um eine effiziente Ausführung ohne übermäßiges Paging zu gewährleisten.

Nachdem eine virtuelle Maschine die zugehörige Reservierung voll ausgeschöpft hat, behält sie diese Menge an Arbeitsspeicher bei. Dieser Arbeitsspeicher wird auch dann nicht zurückgefordert, wenn sich die virtuelle Maschine im Leerlauf befindet. Einige Gastbetriebssysteme (z. B. Linux) greifen möglicherweise direkt nach dem Starten nicht auf den gesamten konfigurierten Arbeitsspeicher zu. Bis die virtuellen Maschinen die zugehörige Reservierung voll ausschöpfen, kann der VMkernel ungenutzte Anteile dieser Reservierung anderen virtuellen Maschinen zuweisen. Wenn jedoch die Arbeitslast des Gastbetriebssystems ansteigt und die virtuelle Maschine ihre Reservierung voll ausschöpft, behält sie danach diese Arbeitsspeichermenge.

Grenzwert

Ein Grenzwert ist eine obere Einschränkung der Menge an physischem Arbeitsspeicher, die der Host der virtuellen Maschine zuweisen kann. Die Arbeitsspeicherzuteilung für eine virtuelle Maschine wird zudem ausdrücklich durch die konfigurierte Größe begrenzt.

Arbeitsspeicherüberbelegung

Für jede ausgeführte virtuelle Maschine reserviert das System physischen Arbeitsspeicher (RAM), sowohl für die Reservierung der virtuellen Maschine (falls vorhanden) als auch für ihren Virtualisierungs-Overhead.

Der insgesamt konfigurierte Arbeitsspeicher von allen virtuellen Maschinen kann den auf dem Host verfügbaren physischen Arbeitsspeicher überschreiten. Dies bedeutet jedoch nicht notwendigerweise eine Überbelegung des Arbeitsspeichers. Der Arbeitsspeicher ist überbelegt, wenn der kombinierte Arbeitsspeicherbedarf von allen virtuellen Maschinen die Arbeitsspeichergröße der Hosts überschreitet. Aufgrund der vom ESXi-Host angewendeten Verfahren für die Arbeitsspeicherverwaltung ist es jedoch möglich, dass die virtuellen Maschinen mehr virtuellen Arbeitsspeicher (RAM) nutzen, als physischer Arbeitsspeicher auf dem Host zur Verfügung steht. Wenn Sie beispielsweise über einen Host mit einem Arbeitsspeicher von 2 GB verfügen und vier virtuelle Maschinen mit einem Arbeitsspeicher von je 1 GB ausführen, ist der Arbeitsspeicher mehrfach vergeben. Wenn sich beispielsweise alle vier virtuellen Maschinen im Leerlauf befinden, kann der kombinierte belegte Arbeitsspeicher weit unter 2 GB liegen. Wenn jedoch alle virtuellen Maschinen mit 4 GB aktiv Arbeitsspeicher verbrauchen, kann der Arbeitsspeicherbedarf 2 GB überschreiten, sodass der ESXi-Host überbelegt ist.

Die Mehrfachvergabe ist deshalb sinnvoll, weil normalerweise einige virtuelle Maschinen nur wenig beansprucht werden, andere wiederum stark, und die relativen Aktivitätsstufen im Zeitverlauf variieren.

Im Hinblick auf eine verbesserte Arbeitsspeichernutzung überträgt der ESXi-Host automatisch Arbeitsspeicher von im Leerlauf befindlichen virtuellen Maschinen auf virtuelle Maschinen, die mehr Arbeitsspeicher benötigen. Verwenden Sie die Parameter für die Reservierung bzw. Anteile, um vorzugsweise wichtigen virtuellen Maschinen Arbeitsspeicher zuzuteilen. Dieser Arbeitsspeicher steht anderen virtuellen Maschinen weiterhin zur Verfügung, wenn er nicht genutzt wird. ESXi implementiert verschiedene Mechanismen wie beispielsweise Ballooning, gemeinsame Arbeitsspeichernutzung, Arbeitsspeicherkomprimierung und Arbeitsspeicher des Hosts nicht stark überbelegt ist.

Auf einem ESXi-Host kann Arbeitsspeicher fehlen, wenn virtuelle Maschinen den gesamten reservierbaren Arbeitsspeicher in einer Umgebung mit Arbeitsspeichüberbelegung verbrauchen. Die eingeschalteten virtuellen Maschinen sind davon zwar nicht betroffen, aber eine neue virtuelle Maschine kann möglicherweise nicht eingeschaltet werden, da nicht genügend Arbeitsspeicher verfügbar ist.

Hinweis Jeder Arbeitsspeicher-Overhead von virtuellen Maschinen wird auch als reserviert betrachtet.

Zudem wird die Arbeitsspeicherkomprimierung auf ESXi-Hosts standardmäßig aktiviert, um die Leistung der virtuellen Maschinen zu verbessern, wenn der Arbeitsspeicher überbelegt ist, wie unter Arbeitsspeicherkomprimierung beschrieben.

Gemeinsame Arbeitsspeichernutzung

Die gemeinsame Arbeitsspeichernutzung ist eine proprietäre ESXi-Technik, die zu einer größeren Arbeitsspeicherdichte auf einem Host beitragen kann.

Die gemeinsame Arbeitsspeichernutzung stützt sich auf die Beobachtung, dass mehrere virtuelle Maschinen möglicherweise Instanzen des gleichen Gastbetriebssystems ausführen. Auf diesen virtuellen Maschinen können die gleichen Anwendungen oder Komponenten geladen sein, oder sie können gemeinsame Daten enthalten. In einem solchen Fall wendet der Host eine proprietäre Technik für die transparente gemeinsame Nutzung von Arbeitsspeicherseiten an, um redundante Kopien von Arbeitsspeicherseiten zu eliminieren. Durch die gemeinsame Arbeitsspeichernutzung ist der Arbeitsspeicherverbrauch durch die Arbeitslast einer virtuellen Maschine oftmals geringer als bei der Ausführung auf physischen Maschinen. Folglich kann eine höhere Überbelegung effizient unterstützt werden. Die Menge an Arbeitsspeicher, die durch die gemeinsame Arbeitsspeichernutzung gespart wird, hängt davon ab, ob die Arbeitslast aus nahezu identischen Maschinen besteht, in welchem Fall mehr Arbeitsspeicher freigegeben werden kann. Bei größeren Unterschieden bei der Arbeitslast wird möglicherweise nur ein geringerer Prozentsatz an Arbeitsspeicher eingespart.

Hinweis Aufgrund von Sicherheitsbedenken ist die transparente Seitenteilung zwischen virtuellen Maschinen standardmäßig deaktiviert und die Seitenteilung wird auf die gemeinsame Nutzung des Speichers innerhalb einer virtuellen Maschine beschränkt. Die gemeinsame Nutzung von Arbeitsspeicherseiten erfolgt nicht zwischen virtuellen Maschinen, sondern nur innerhalb einer virtuellen Maschine. Weitere Informationen hierzu finden Sie unter Gemeinsame Arbeitsspeichernutzung durch mehrere virtuelle Maschinen.

Speichervirtualisierung

Aufgrund der mit der Virtualisierung einhergehenden zusätzlichen Ebene der Arbeitsspeicherzuordnung kann mit ESXi eine effektive Arbeitsspeicherverwaltung für alle virtuellen Maschinen umgesetzt werden.

Ein Teil des physischen Arbeitsspeichers einer virtuellen Maschine könnte dabei gemeinsam genutzten Seiten, nicht zugeordneten Seiten oder ausgelagerten Seiten zugeordnet werden.

Ein Host führt die virtuelle Arbeitsspeicherverwaltung aus, ohne dass das Gastbetriebssystem darüber informiert ist und ohne Einfluss auf das eigene Subsystem der Arbeitsspeicherverwaltung im Gastbetriebssystem.

Der VMM der einzelnen virtuellen Maschinen übernimmt die Zuordnung der physischen Arbeitsspeicherseiten des Gastbetriebssystems zu den physischen Arbeitsspeicherseiten der zugrunde liegenden Maschine. (VMware bezeichnet die physischen Seiten des zugrunde liegenden Hosts als Maschinenseiten und die physischen Seiten des Gastbetriebssystems als physische Seiten.)

Jede virtuelle Maschine verfügt über einen zusammenhängenden, nullbasierten, adressierbaren physischen Arbeitsspeicher. Der zugrunde liegende Maschinenarbeitsspeicher des von den virtuellen Maschinen verwendeten Servers ist nicht unbedingt zusammenhängend.

Die virtuellen und physischen Gastadressen werden vom Gastbetriebssystem verwaltet. Der Hypervisor ist nur für das Übersetzen der physischen Gastadressen in Maschinenadressen zuständig. Die hardwaregestützte Arbeitsspeichervirtualisierung generiert mithilfe der Hardwarekomponente die kombinierten Zuordnungen mit den Seitentabellen des Gasts und den vom Hypervisor verwalteten verschachtelten Seitentabellen.

Das Diagramm veranschaulicht die Implementierung der Arbeitsspeichervirtualisierung bei ESXi.

Abbildung 8-1. Arbeitsspeicherzuordnung bei ESXi

- Durch die Kästchen werden Seiten dargestellt; die Pfeile veranschaulichen die verschiedenen Arbeitsspeicherzuordnungen.
- Die Pfeile vom virtuellen Arbeitsspeicher des Gasts zum physischen Arbeitsspeicher des Gasts zeigen die durch die Seitentabellen des Gastbetriebssystems gepflegte Zuordnung. (Die Zuordnung vom virtuellen Arbeitsspeicher zum linearen Arbeitsspeicher für Prozessoren mit x86-Architektur ist nicht dargestellt).
- Die Pfeile vom physischen Arbeitsspeicher des Gasts zum Maschinenarbeitsspeicher stellen die durch den VMM gepflegte Zuordnung dar.
- Die gestrichelten Pfeile zeigen die Zuordnung vom virtuellen Arbeitsspeicher des Gasts zum Maschinenarbeitsspeicher in den Schattenseitentabellen, die ebenfalls durch den VMM gepflegt werden. Der zugrunde liegende Prozessor, der die virtuelle Maschine ausführt, verwendet die Zuordnungen in der Schattenseitentabelle.

Hardwaregestützte Arbeitsspeichervirtualisierung

Einige CPUs, wie z. B. AMD SVM-V und die Intel Xeon 5500-Serie, ermöglichen durch die Verwendung von zwei Seitentabellenebenen eine Hardwareunterstützung für die Arbeitsspeichervirtualisierung.

Hinweis In diesem Thema kann sich "Arbeitsspeicher" auf den physischen Arbeitsspeicher oder den persistenten Speicher beziehen.

In der ersten Ebene der Seitentabellen sind die V2P-Übertragungen (Virtual-To-Physical) gespeichert, während in der zweiten Ebene die Speichertabellen die P2M-Übertragungen (Physical-To-Machine) gespeichert werden. Der TLB (Translation Look-aside Buffer) ist ein Cache für Übersetzungen, der von der MMU-Hardware des Prozessors verwaltet wird. Eine fehlgeschlagene TLB-Suche bedeutet, dass bestimmte Informationen nicht in diesem Cache vorhanden sind. In diesem Fall muss die Hardware (möglicherweise viele Male) auf den Arbeitsspeicher zugreifen, um die erforderliche Übersetzung zu finden. Wenn eine bestimmte virtuelle Gastadresse nicht im TLB vorhanden ist, werden von der Hardware beide Seitentabellen berücksichtigt, um die virtuelle Gastadresse in die Maschinenadresse zu übersetzen. Die erste Ebene von Seitentabellen wird vom Gastbetriebssystem verwaltet. Der VMM verwaltet nur die zweite Ebene von Seitentabellen.

Überlegungen zur Leistung

Wenn Sie die Hardwareunterstützung verwenden, wird dadurch der Overhead für die softwarebasierte Arbeitsspeichervirtualisierung eliminiert. Insbesondere beseitigt die Hardwareunterstützung den Overhead, der für die Synchronisierung der Schattenseitentabellen mit Gastseitentabellen benötigt wird. Die TLB-Fehlerlatenz bei Verwendung der Hardwareunterstützung ist jedoch deutlich höher. Der Hypervisor verwendet bei den hardwaregestützten Modi standardmäßig große Seiten, um die Kosten für TLB-Fehler zu senken. Ob eine Arbeitslast die Hardwareunterstützung zum Vorteil nutzen kann oder nicht, hängt demnach vom Overhead ab, der durch die Arbeitsspeichervirtualisierung bei Verwendung einer softwarebasierten Arbeitsspeichervirtualisierung verursacht wird. Wenn eine Arbeitslast eine geringe Menge an Seitentabellenaktivität umfasst (wie Prozesserstellung, Arbeitsspeicherzuordnung oder Kontext-Switches), verursacht die softwarebasierte Virtualisierung keinen erheblichen Overhead. Umgekehrt ist es wahrscheinlich, dass Arbeitslasten mit einem großen Anteil an Seitentabellenaktivität von der Hardwareunterstützung profitieren.

Der Hypervisor verwendet bei den hardwaregestützten Modi standardmäßig große Seiten, um die Kosten für TLB-Fehler zu senken. Die optimale Leistung ergibt sich bei Verwendung großer Seiten sowohl bei der Übersetzung von virtuellen in physische Gastadressen als auch bei der Übersetzung von physischen Adressen in Maschinenadressen.

Die Option **LPage.LPageAlwaysTryForNPT** kann die Richtlinie für die Verwendung großer Seiten bei der Übersetzung von physischen Gastadressen in Maschinenadressen ändern. Weitere Informationen finden Sie unter Erweiterte Arbeitsspeicherattribute.

Unterstützung für große Seiten

ESXi bietet nur eingeschränkte Unterstützung für große Seiten.

Die x86-Architektur ermöglicht der Systemsoftware die Verwendung von 4KB-, 2MB- und 1GB-Seiten. Wir bezeichnen 4KB-Seiten als kleine Seiten und 2MB- und 1GB-Seiten als große Seiten. Große Seiten verringern die Anforderungen an den Übersetzungs-Lookaside-Puffer (Translation Lookaside Buffer, TLB) und reduzieren den Aufwand beim Bearbeiten von Tabellen, was zu einer verbesserten Arbeitsleistung führt.

In virtuellen Umgebungen können große Seiten unabhängig vom Hypervisor und dem Gastbetriebssystem verwendet werden. Während die größten Leistungsverbesserungen erzielt werden, wenn große Seiten vom Gastbetriebssystem und dem Hypervisor verwendet werden, können in den meisten Fällen Leistungssteigerungen auch dann beobachtet werden, wenn große Seiten nur auf der Hypervisor-Ebene eingesetzt werden.

ESXi-Hypervisor verwendet standardmäßig 2MB-Seiten zum Sichern des Gast-vRAM. vSphere ESXi bietet eingeschränkte Unterstützung für das Sichern von Gast-vRAM mit 1GB-Seiten. Weitere Informationen finden Sie unter *Sichern von Gast-vRAM mit 1GB-Seiten*.

9

Verwalten Ihrer Arbeitsspeicherressourcen mit vSphere

Mit dem vSphere Client können Sie Informationen zu Einstellungen für die Arbeitsspeicherzuteilung anzeigen und Änderungen an diesen Einstellungen vornehmen. Damit Sie Ihre Arbeitsspeicherressourcen effektiv verwalten können, müssen Sie auch mit dem Arbeitsspeicher-Overhead, der Leerlaufbelastung für Arbeitsspeicher und dem Prozess der Rückgewinnung von Arbeitsspeicher durch ESXi-Hosts vertraut sein.

Beim Verwalten von Arbeitsspeicherressourcen können Sie die Arbeitsspeicherzuteilung festlegen. Falls Sie die Arbeitsspeicherzuteilung nicht anpassen, verwendet der ESXi-Host Standardwerte, die in den meisten Situationen zu zufriedenstellenden Ergebnissen führen.

Sie können die Arbeitsspeicherzuteilung auf verschiedene Weisen festlegen.

- Verwenden Sie die Attribute und speziellen Funktionen, die über den vSphere Client verfügbar sind. Mit dem vSphere Client können Sie eine Verbindung mit dem ESXi-Host oder dem vCenter Server-System herstellen.
- Verwenden Sie die erweiterten Einstellungen.
- Verwenden Sie für die Skript-Arbeitsspeicherzuteilung das vSphere-SDK.

Hinweis In diesem Kapitel kann sich "Arbeitsspeicher" auf den physischen oder den persistenten Arbeitsspeicher beziehen.

Lesen Sie als Nächstes die folgenden Themen:

- Grundlegende Informationen zum Arbeitsspeicher-Overhead
- Overhead-Arbeitsspeicher bei virtuellen Maschinen
- Arbeitsspeicherzuteilung durch ESXi-Hosts
- Leerlaufbelastung für Arbeitsspeicher virtueller Maschinen
- VMX-Auslagerungsdateien
- Arbeitsspeicherrückgewinnung
- Arbeitsspeicher-Balloon-Treiber
- Gemeinsame Arbeitsspeichernutzung durch mehrere virtuelle Maschinen
- Arbeitsspeicherkomprimierung

- Aktivieren bzw. Deaktivieren des Cachespeichers für die Arbeitsspeicherkomprimierung
- Festlegen der maximalen Größe des Cachespeichers für die Arbeitsspeicherkomprimierung
- Messen und Unterscheiden von Arbeitsspeichernutzungstypen
- Arbeitsspeicherzuverlässigkeit
- Korrigieren einer Fehlerisolierungsbenachrichtigung
- Systemauslagerung
- Konfigurieren der Systemauslagerung

Grundlegende Informationen zum Arbeitsspeicher-Overhead

Die Virtualisierung von Arbeitsspeicherressourcen bringt einen gewissen Overhead mit sich.

Bei virtuellen Maschinen in ESXi sind zwei Arten von Arbeitsspeicher-Overhead möglich.

- Die zusätzliche Zeit für den Arbeitsspeicherzugriff innerhalb einer virtuellen Maschine.
- Der zusätzliche Bereich, der vom ESXi-Host, über den zugeteilten Arbeitsspeicher der einzelnen virtuellen Maschinen hinausgehend, für seinen eigenen Code und seine eigenen Datenstrukturen benötigt wird.

Die Arbeitsspeichervirtualisierung in ESXi erzeugt einen geringfügigen zeitlichen Overhead beim Arbeitsspeicherzugriff. Die Paging-Hardware des Prozessors verwendet Seitentabellen direkt (Schattenseitentabellen für den softwarebasierten Ansatz oder Seitentabellen mit zwei Ebenen für den hardwaregestützten Ansatz), weshalb die meisten Arbeitsspeicherzugriffe innerhalb der virtuellen Maschine ohne Overhead bei der Adressübersetzung ausgeführt werden können.

Der Arbeitsspeicherbereich-Overhead setzt sich aus zwei Komponenten zusammen.

- Einem festen, systemweiten Overhead für den VMkernel.
- Einem zusätzlichen Overhead für jede virtuelle Maschine.

Overhead-Arbeitsspeicher besteht aus für den Bildspeicher der virtuellen Maschine und für verschiedene Virtualisierungsdatenstrukturen, z. B. Schattenseitentabellen, reserviertem Speicher. Der Overhead-Arbeitsspeicher hängt von der Anzahl an virtuellen CPUs und dem konfigurierten Arbeitsspeicher für das Gastbetriebssystem ab.

Overhead-Arbeitsspeicher bei virtuellen Maschinen

Virtuelle Maschinen benötigen zum Einschalten eine bestimmte Menge an verfügbarem Overhead-Arbeitsspeicher. Die Menge dieses Overheads sollte Ihnen bekannt sein. Der für eine virtuelle Maschine erforderliche Umfang an Overhead-Arbeitsspeicher ist abhängig von sehr vielen Faktoren, wie beispielsweise von der vCPU-Anzahl und der Arbeitsspeichergröße, von der Anzahl und vom Typ der Geräte, vom verwendeten Ausführungsmodus sowie von der Hardwareversion der virtuellen Maschine. Die verwendete vSphere-Version kann sich ebenfalls auf den erforderlichen Arbeitsspeicher auswirken. VMX berechnet den für eine virtuelle Maschinen benötigten Overhead-Arbeitsspeicher automatisch.

Wenn Sie feststellen möchten, wie viel Overhead-Arbeitsspeicher für Ihre spezielle Konfiguration erforderlich ist, schalten Sie zunächst die betreffende virtuelle Maschine ein. Öffnen Sie die Datei "vmware.log". Beim Einschalten der virtuellen Maschine wird der benötigte Overhead-Arbeitsspeicher in dieser Datei protokolliert. Suchen Sie in der Protokolldatei nach VMMEM, um zu erfahren, wie viel Overhead-Arbeitsspeicher für die virtuelle Maschine anfänglich und tatsächlich reserviert ist.

Arbeitsspeicherzuteilung durch ESXi-Hosts

Der Host teilt den einzelnen virtuellen Maschinen den Arbeitsspeicher gemäß der Festlegung im Grenzwert-Parameter zu, es sei denn, der Arbeitsspeicher ist überbelegt. ESXi teilt einer virtuellen Maschine nie mehr Arbeitsspeicher zu, als für ihre physische Arbeitsspeichergröße festgelegt wurde.

So kann eine virtuelle Maschine mit 1GB beispielsweise über den Standardgrenzwert (unbegrenzt) oder einen benutzerdefinierten Grenzwert (z. B. 2GB) verfügen. In beiden Fällen weist der ESXi-Host nie mehr als 1 GB zu und folgt damit der festgelegten physischen Arbeitsspeichergröße.

Bei einer Überbelegung des Arbeitsspeichers wird jeder virtuellen Maschine eine Arbeitsspeichermenge zugeteilt, die zwischen dem Wert für **Reservierung** und dem Wert für **Grenzwert** liegt. Die Arbeitsspeichermenge, die einer virtuellen Maschine oberhalb der für sie festgelegten Reservierung zugeteilt wird, ist normalerweise von der aktuellen Arbeitsspeicherlast abhängig.

Der Host bestimmt die Zuteilungen für die einzelnen virtuellen Maschinen basierend auf der Anzahl der ihnen zugeteilten Anteile und anhand einer Größenschätzung des aktuellen Working Sets.

- Anteile ESXi-Hosts verwenden eine geänderte Richtlinie für die zum Anteil proportionale Arbeitsspeicherzuteilung. Arbeitsspeicheranteile berechtigen eine virtuelle Maschine zum Erhalt eines Bruchteils des verfügbaren physischen Arbeitsspeichers.
- Working Set-Größe ESXi-Hosts schätzen das Working Set einer virtuellen Maschine, indem sie die Arbeitsspeicheraktivität während der Ausführungszeit über mehrere aufeinander folgende Zeiträume hinweg überwachen. Die Schätzungen werden über mehrere Zeiträume hinweg ausgeglichen, wobei Methoden angewandt werden, die schnell auf den Anstieg und etwas langsamer auf die Verringerung der Working Set-Größe reagieren.

Durch diesen Ansatz wird sichergestellt, dass eine virtuelle Maschine, aus der Arbeitsspeicheranteile im Leerlauf zurückgewonnen werden, schnell auf ihre volle anteilsbasierte Zuweisung aufstocken kann, sobald sie mehr Arbeitsspeicher benötigt. Die Arbeitsspeicheraktivität wird zum Schätzen der Working Set-Größen für einen Standard-Zeitraum von 60 Sekunden überwacht. Sie können diesen Standardwert ändern, indem Sie die erweiterte Einstellung Mem.SamplePeriod anpassen. Weitere Informationen hierzu finden Sie unter Festlegen von erweiterten Hostattributen.

Leerlaufbelastung für Arbeitsspeicher virtueller Maschinen

Wenn eine virtuelle Maschine nicht den gesamten ihr derzeit zugeteilten Arbeitsspeicher aktiv nutzt, belastet ESXi den im Leerlauf befindlichen Arbeitsspeicher mehr als den genutzten. Dadurch wird verhindert, dass Arbeitsspeicher im Leerlauf durch die virtuellen Maschinen angehäuft wird.

Die Leerlaufbelastung für Arbeitsspeicher wird auf progressive Weise angewendet. Die effektive Belastungrate erhöht sich, wenn das Verhältnis von Arbeitsspeicher im Leerlauf zu aktivem Arbeitsspeicher für die virtuelle Maschine ansteigt. (In früheren Versionen von ESXi, die keine hierarchischen Ressourcenpools unterstützten, wurde der gesamte Arbeitsspeicher im Leerlauf für eine virtuelle Maschine gleich stark belastet).

Sie können die Rate der Leerlaufbelastung für Arbeitsspeicher mithilfe der Option Mem.IdleTax ändern. Diese Option kann zusammen mit dem erweiterten Attribut Mem.SamplePeriod verwendet werden, um zu steuern, wie das System Zielarbeitsspeicherreservierungen für virtuelle Maschinen festlegt. Weitere Informationen hierzu finden Sie unter Festlegen von erweiterten Hostattributen.

Hinweis In den meisten Fällen sind Änderungen an Mem.IdleTax weder notwendig noch angebracht.

VMX-Auslagerungsdateien

Mit Virtual Machine Executable (VMX)-Auslagerungsdateien kann der Host die für den VMX-Prozess reservierte Menge an Overhead-Arbeitsspeicher erheblich reduzieren.

Hinweis VMX-Auslagerungsdateien sind nicht mit der Funktion zum Auslagern in den Hostauslagerungs-Cache oder mit Auslagerungsdateien auf der regulären Hostebene vergleichbar.

ESXi reserviert Speicher pro virtuelle Maschine für mehrere Zwecke. Für bestimmte Komponenten benötigter Speicher, wie zum Beispiel VMM (Virtual Machine Monitor) und virtuelle Komponenten, wird beim Einschalten eines virtuellen Geräts vollständig reserviert. Ein Teil des Overhead-Speichers, der für den VMX-Prozess reserviert ist, kann jedoch ausgelagert werden. Mit der VMX-Auslagerungsfunktion wird die VMX-Speicherreservierung erheblich reduziert (beispielsweise von über 50 MB oder mehr pro virtuelle Maschine zu 10 MB pro virtuelle Maschine). Auf diese Weise kann der verbleibende Speicher ausgelagert werden, wenn der Hostspeicher überlastet ist. Die Overhead-Speicherreservierung für jede virtuelle Maschine kann somit reduziert werden. Der Host erstellt die VMX-Auslagerungsdateien automatisch, vorausgesetzt, zum Zeitpunkt des Einschaltens einer virtuellen Maschine ist genügend freier Speicherplatz vorhanden.

Arbeitsspeicherrückgewinnung

ESXi-Hosts können Arbeitsspeicher aus virtuellen Maschinen zurückgewinnen.

Ein Host weist die durch eine Reservierung festgelegte Arbeitsspeichermenge direkt einer virtuellen Maschine zu. Alles, was über die Reservierung hinausgeht, wird mithilfe der physischen Ressourcen des Hosts zugewiesen, oder – falls keine physischen Ressourcen verfügbar sind – durch Anwendung eines speziellen Verfahrens, wie z. B. des Ballooningoder Auslagerungsverfahrens. Hosts können zwei verschiedene Verfahren anwenden, um die Größe des zugeteilten Arbeitsspeichers für virtuelle Maschinen dynamisch zu erweitern oder zu reduzieren.

- ESXi-Systeme verwenden einen Arbeitsspeicher-Balloon-Treiber (vmmemctl), der in das auf der virtuellen Maschine ausgeführte Gastbetriebssystem geladen wird. Siehe Arbeitsspeicher-Balloon-Treiber.
- Das ESXi-System wechselt ohne Einbindung des Gastbetriebssystems von einer virtuellen Maschine zu einer Serverauslagerungsdatei. Jede virtuelle Maschine verfügt über eine eigene Auslagerungsdatei.

Arbeitsspeicher-Balloon-Treiber

Der Arbeitsspeicher-Balloon-Treiber (vmmemctl) arbeitet mit dem Server zusammen, um Seiten zurückzugewinnen, die vom Gastbetriebssystem als am wenigsten wichtig eingestuft werden.

Der Treiber verwendet ein eigenes Balloon-Verfahren für die Vorhersage von Leistung, das dem Verhalten eines ursprünglichen Systems unter vergleichbaren Arbeitsspeichereinschränkungen weitestgehend entspricht. Durch dieses Verfahren wird die Arbeitsspeicherbelastung auf dem Gastbetriebssystem erhöht oder verringert, wodurch der Gast zur Verwendung seiner eigenen, nativen Arbeitsspeicherverwaltungs-Algorithmen veranlasst wird. Wenn der Arbeitsspeicher knapp ist, wird durch das Gastbetriebssystem festgelegt, welche Seiten abgerufen werden sollen, und die Seiten werden ggf. auf der eigenen virtuellen Festplatte ausgelagert.

Abbildung 9-1. Arbeitsspeicher-Ballooning im Gastbetriebssystem

Hinweis Dem Gastbetriebssystem muss bei der Konfiguration ausreichender Auslagerungsspeicherplatz zugeteilt werden. Einige Gastbetriebssysteme weisen zusätzliche Einschränkungen auf.

Falls erforderlich, kann der durch vmmemctl abgerufene Arbeitsspeicher mithilfe des Parameters **sched.mem.maxmemctl** für eine spezifische virtuelle Maschine begrenzt werden. Über diese Option wird die maximale Arbeitsspeichermenge in Megabyte (MB) festgelegt, die von einer virtuellen Maschine abgerufen werden kann. Weitere Informationen hierzu finden Sie unter Festlegen von erweiterten Attributen von virtuellen Maschinen.

Gemeinsame Arbeitsspeichernutzung durch mehrere virtuelle Maschinen

Viele ESXi-Arbeitslasten bieten Möglichkeiten für die gemeinsame Nutzung von Arbeitsspeicher durch mehrere virtuelle Maschinen (und ebenso innerhalb einer einzelnen virtuellen Maschine).

In ESXi wird die gemeinsame Arbeitsspeichernutzung im Hintergrund ausgeführt, wobei Möglichkeiten für eine zeitweise gemeinsame Arbeitsspeichernutzung ermittelt werden. Die Menge des gesparten Arbeitsspeichers variiert im Laufe der Zeit. Bei einer relativ konstanten Arbeitslast steigt die Menge im Allgemeinen langsam, bis alle Möglichkeiten der gemeinsamen Nutzung ausgeschöpft sind.

Wenn Sie die Wirksamkeit der gemeinsamen Arbeitsspeichernutzung für eine gegebene Arbeitslast bestimmen möchten, führen Sie die Arbeitslast aus und zeigen Sie die tatsächlichen Einsparungen mithilfe des Dienstprogramms resktop oder esktop an. Sie finden diese Informationen auf der Arbeitsspeicherseite im Feld PSHARE des interaktiven Modus. Mithilfe der erweiterten Einstellungen **Mem. ShareScanTime** und **Mem. ShareScanGHz** kann festgelegt werden, wie oft das System den Arbeitsspeicher überprüft, um Gelegenheiten für eine gemeinsame Arbeitsspeichernutzung zu identifizieren.

Sie können die gemeinsame Arbeitsspeichernutzung auch für einzelne virtuelle Maschinen konfigurieren, indem Sie die Option **sched.mem.pshare.enable** festlegen.

Aufgrund von Sicherheitsbedenken ist die transparente Seitenteilung zwischen virtuellen Maschinen standardmäßig deaktiviert und die Seitenteilung wird auf die gemeinsame Nutzung des Speichers innerhalb einer virtuellen Maschine beschränkt. Dies bedeutet, dass die gemeinsame Nutzung von Arbeitsspeicherseiten nicht zwischen virtuellen Maschinen, sondern nur innerhalb einer virtuellen Maschine verwendet wird. Das Salting-Konzept wurde eingeführt, um etwaige Sicherheitsbedenken von Systemadministratoren im Zusammenhang mit der transparenten gemeinsamen Nutzung von Arbeitsspeicherseiten zu entkräften. Das Salting ermöglicht im Vergleich zu vorher eine detailliertere Verwaltung der virtuellen Maschinen, die an der transparenten gemeinsamen Nutzung von Arbeitsspeicherseiten beteiligt sind. Mit den neuen Salting-Einstellungen können virtuelle Maschinen Arbeitsspeicherseiten nur gemeinsam nutzen, wenn der Salt-Wert und die Inhalte der Arbeitsspeicherseiten identisch sind. Die neue Hostkonfigurationsoption **Mem. ShareForceSalting** kann konfiguriert werden, um das Salting zu aktivieren bzw. zu deaktivieren.

Weitere Informationen zum Festlegen erweiterter Optionen finden Sie unter Kapitel 22 Erweiterte Attribute in vSphere.

Arbeitsspeicherkomprimierung

ESXi stellt einen Cachespeicher für die Arbeitsspeicherkomprimierung zur Verfügung, um bei der Verwendung der Mehrfachvergabe von Arbeitsspeicher die Leistung der virtuellen Maschine zu verbessern. Die Arbeitsspeicherkomprimierung ist standardmäßig aktiviert. Wenn der Arbeitsspeicher eines Hosts mehrfach vergeben wird, komprimiert ESXi virtuelle Seiten und bewahrt sie im Arbeitsspeicher auf.

Weil der Zugriff auf komprimierten Arbeitsspeicher schneller als der Zugriff auf Arbeitsspeicher ist, der auf die Festplatte ausgelagert wurde, ermöglicht Ihnen die Arbeitsspeicherkomprimierung unter ESXi die Mehrfachzuteilung von Arbeitsspeicher, ohne die Leistung erheblich zu beeinträchtigen. Wenn eine virtuelle Seite ausgelagert werden muss, versucht ESXi zunächst, die Seite zu komprimieren. Seiten, die auf eine Größe von 2 KB oder weniger komprimiert werden können, werden im Komprimierungs-Cache der virtuellen Maschine gespeichert, was die Kapazität des Hosts vergrößert.

Sie können mithilfe des Dialogfelds "Erweiterte Einstellungen" des vSphere Client die maximale Größe des Komprimierungs-Cache festlegen und die Arbeitsspeicherkomprimierung deaktivieren.

Aktivieren bzw. Deaktivieren des Cachespeichers für die Arbeitsspeicherkomprimierung

Die Arbeitsspeicherkomprimierung ist standardmäßig aktiviert. Mithilfe der erweiterten Systemeinstellungen im vSphere Client können Sie die Arbeitsspeicherkomprimierung für einen Host aktivieren oder deaktivieren.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter System Erweiterte Systemeinstellungen aus.
- 4 Navigieren Sie zu Mem.MemZipEnable und klicken Sie auf die Schaltfläche Bearbeiten.
- **5** Geben Sie zum Aktivieren des Cachespeichers für die Arbeitsspeicherkomprimierung 1 oder zum Deaktivieren 0 ein.
- 6 Klicken Sie auf OK.

Festlegen der maximalen Größe des Cachespeichers für die Arbeitsspeicherkomprimierung

Sie können die maximale Größe des Cachespeichers für die Arbeitsspeicherkomprimierung für die virtuellen Maschinen des Hosts festlegen.

Sie legen die Größe des Cachespeichers für die Arbeitsspeicherkomprimierung als Prozentsatz der Arbeitsspeichergröße der virtuellen Maschine fest. Wenn Sie beispielsweise "20" eingeben und die Größe des Arbeitsspeichers einer virtuellen Maschine 1.000 MB beträgt, kann ESXi bis zu 200 MB Hostspeicher verwenden, um die komprimierten Seiten der virtuellen Maschine zu speichern.

Wenn Sie die Größe des Komprimierungs-Cachespeichers nicht festlegen, verwendet ESXi den Standardwert von 10 %.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter SystemErweiterte Systemeinstellungen aus.
- 4 Suchen Sie Mem.MemZipMaxPct und klicken Sie auf die Schaltfläche Bearbeiten.

Der Wert dieses Attributs bestimmt die maximale Größe des Cachespeichers für die Arbeitsspeicherkomprimierung der virtuellen Maschine.

- Geben Sie die maximale Größe des Cachespeichers für die Arbeitsspeicherkomprimierung ein.
 Der Wert ist ein Prozentsatz der Größe der virtuellen Maschine und muss zwischen 5 und 100
- 6 Klicken Sie auf **OK**.

Prozent liegen.

Messen und Unterscheiden von Arbeitsspeichernutzungstypen

Auf der Registerkarte **Leistung** des vSphere Client werden mehrere Metriken angezeigt, die zur Analyse der Arbeitsspeichernutzung verwendet werden können.

Einige dieser Arbeitsspeichermetriken messen den physischen Gastarbeitsspeicher, andere den Maschinenarbeitsspeicher. Beispielsweise sind zwei Typen der Arbeitsspeichernutzung, die Sie mithilfe von Leistungsmetriken untersuchen können, der physische Gastarbeitsspeicher und der Maschinenarbeitsspeicher. Der physische Gastarbeitsspeicher wird mithilfe der Metrik "Zugeteilter Arbeitsspeicher" (für eine virtuelle Maschine) bzw. "Gemeinsamer Arbeitsspeicher" (für einen Host) gemessen. Verwenden Sie zum Messen des Maschinenarbeitsspeichers jedoch die Metrik "Belegter Arbeitsspeicher" (für eine virtuelle Maschine) bzw. "Gemeinsamer Arbeitsspeicher – allgemein" (für einen Host). Um zu verstehen, was diese Metriken messen und wie sie interpretiert werden, ist es wichtig, den konzeptuellen Unterschied zwischen diesen Typen der Arbeitsspeichernutzung zu kennen.

Der VMkernel ordnet den physischen Gastarbeitsspeicher dem Maschinenarbeitsspeicher zu, die Zuordnung erfolgt jedoch nicht immer eins zu eins. Möglicherweise werden mehrere Bereiche des physischen Gastarbeitsspeichers demselben Bereich des Maschinenarbeitsspeichers zugeordnet (bei gemeinsamer Arbeitsspeichernutzung) oder bestimmte Bereiche des physischen Gastarbeitsspeichers werden dem Maschinenarbeitsspeicher nicht zugeordnet (wenn der VMkernel eine Auslagerung oder ein Ballooning des physischen Gastarbeitsspeichers durchführt). In diesen Situationen unterscheiden sich die Berechnungen der Nutzung des physischen Gastarbeitsspeichers und der Nutzung des Maschinenarbeitsspeichers für eine einzelne virtuelle Maschine oder einen Host.

Betrachten Sie das Beispiel in der folgenden Abbildung, die zwei virtuellen Maschinen auf einem Host zeigt. Jeder Block steht für 4 KB an Arbeitsspeicher und jede Farbe bzw. jeder Buchstabe für einen anderen Datensatz auf einem Block.

Abbildung 9-2. Beispiel für die Arbeitsspeichernutzung

Die Leistungsmetriken für die virtuellen Maschinen können wie folgt ermittelt werden:

- Um den zugeteilten Arbeitsspeicher (die Menge an physischem Gastarbeitsspeicher, die dem Maschinenarbeitsspeicher zugeordnet ist) für die virtuelle Maschine 1 zu ermitteln, zählen Sie die Blöcke im physischen Gastarbeitsspeicher der virtuellen Maschine 1, von denen Pfeile zum Maschinenarbeitsspeicher ausgehen, und multiplizieren Sie diesen Wert mit 4 KB. Da fünf Blöcke mit Pfeilen vorhanden sind, beträgt der Wert für die Metrik "Zugeteilter Arbeitsspeicher" 20 KB.
- Der belegte Arbeitsspeicher ist die Menge an Maschinenarbeitsspeicher, die der virtuellen Maschine zugeteilt ist, wobei Einsparungen durch die gemeinsame Arbeitsspeichernutzung berücksichtigt werden. Zählen Sie zuerst die Blöcke im Maschinenarbeitsspeicher, zu denen Pfeile vom physischen Gastarbeitsspeicher der virtuellen Maschine 1 vorhanden sind. Es gibt drei Blöcke, auf die dies zutrifft, von denen einer jedoch gemeinsam mit der virtuellen Maschine 2 genutzt wird. Zählen Sie also zwei ganze Blöcke und die Hälfte des dritten und multiplizieren Sie dies mit 4 KB, woraus sich ein Gesamtwert von 10 KB für die Metrik "Belegter Arbeitsspeicher" ergibt.

Der wichtige Unterschied zwischen diesen beiden Metriken besteht darin, dass für den zugeteilten Arbeitsspeicher die Anzahl an Blöcken mit Pfeilen auf der Ebene des physischen Gastarbeitsspeichers und für den belegten Arbeitsspeicher die Anzahl an Blöcken mit Pfeilen auf der Ebene des Maschinenarbeitsspeichers gezählt werden. Die Anzahl an Blöcken ist auf den beiden Ebenen aufgrund der gemeinsamen Arbeitsspeichernutzung verschieden, daher weichen die Werte für "Zugeteilter Arbeitsspeicher" und "Belegter Arbeitsspeicher" voneinander ab. Durch die gemeinsame Nutzung oder andere Rückgewinnungsmethoden wird Arbeitsspeicher eingespart.

Zu einem ähnlichen Ergebnis gelangt man beim Ermitteln der Werte für die Metriken "Gemeinsamer Arbeitsspeicher" und "Gemeinsamer Arbeitsspeicher – allgemein" für den Host.

- Der Wert für "Gemeinsamer Arbeitsspeicher" für den Host ist die Summe der Werte für "Gemeinsamer Arbeitsspeicher" der einzelnen virtuellen Maschinen. Berechnen Sie den gemeinsam genutzten Arbeitsspeicher, indem Sie den physischen Gastarbeitsspeicher der einzelnen virtuellen Maschinen betrachten und die Anzahl an Blöcken zählen, von denen Pfeile zu Maschinenarbeitsspeicherblöcken ausgehen, auf die wiederum mehrere Pfeile weisen.
 In dem Beispiel gibt es sechs Blöcke, auf die dies zutrifft, also beträgt der Wert für "Gemeinsamer Arbeitsspeicher" für den Host 24 KB.
- Der Wert für die Metrik "Gemeinsamer Arbeitsspeicher allgemein" ist die Menge an Maschinenarbeitsspeicher, die von virtuellen Maschinen gemeinsam genutzt wird. Um den gemeinsamen Arbeitsspeicher zu ermitteln, betrachten Sie den Maschinenarbeitsspeicher und zählen Sie die Anzahl an Blöcken, auf die mehrere Pfeile weisen. Es sind drei Blöcke vorhanden, auf die dies zutrifft, daher beträgt der Wert für "Gemeinsamer Arbeitsspeicher – allgemein" 12 KB.

Bei der Metrik "Gemeinsamer Arbeitsspeicher" geht es um den physischen Gastarbeitsspeicher und den Ausgangspunkt der Pfeile. Bei "Gemeinsamer Arbeitsspeicher – allgemein" werden jedoch der Maschinenarbeitsspeicher und das Ziel der Pfeile betrachtet. Die Arbeitsspeichermetriken, die den physischen Gastarbeitsspeicher und den Maschinenarbeitsspeicher messen, mögen widersprüchlich erscheinen. Tatsächlich messen sie unterschiedliche Aspekte der Arbeitsspeichernutzung einer virtuellen Maschine. Wenn Sie die Unterschiede zwischen diesen Metriken verstehen, können Sie sie besser zur Diagnose von Leistungsproblemen einsetzen.

Arbeitsspeicherzuverlässigkeit

Arbeitsspeicherzuverlässigkeit, auch als Fehlerisolierung bekannt, ermöglicht es ESXi, die Verwendung von Teilen des Arbeitsspeichers zu vermeiden, wenn festgestellt wird, dass möglicherweise ein Ausfall eintreten wird bzw. bereits eingetreten ist.

Wenn ausreichend behobene Fehler an einer bestimmten Adresse gemeldet werden, verwendet ESXi diese Adresse nicht mehr, um zu verhindern, dass der behobene Fehler zum nicht behobenen Fehler wird.

Die Arbeitsspeicherzuverlässigkeit bietet trotz behobener und nicht behobener Fehler im RAM eine verbesserte VMkernel-Zuverlässigkeit. Darüber hinaus ermöglicht sie es dem System, die Verwendung von fehlerbehafteten Arbeitsspeicherseiten zu vermeiden.

Korrigieren einer Fehlerisolierungsbenachrichtigung

Mit Arbeitsspeicherzuverlässigkeit verwendet VMkernel keine Seiten, die eine Fehlerisolierungsbenachrichtigung erhalten.

Der Benutzer empfängt ein Ereignis im vSphere Client, wenn VMkernel nach einem nicht behebbaren Speicherfehler wiederhergestellt wird, wenn VMkernel aufgrund einer großen Anzahl von behebbaren Fehlern einen erheblichen Prozentsatz des Systemarbeitsspeichers stillegt oder wenn es eine große Anzahl von Seiten gibt, die nicht stillgelegt werden können.

Verfahren

- 1 Machen Sie Speicherplatz auf dem Host frei.
- 2 Migrieren Sie die virtuellen Maschinen.
- 3 Führen Sie arbeitsspeicherbezogene Hardwaretests durch.

Systemauslagerung

Systemauslagerung ist ein Prozess zur Arbeitsspeicherrückgewinnung, der von ungenutzten Arbeitsspeicherressourcen im gesamten System profitieren kann.

Mithilfe der Systemauslagerung kann das System Arbeitsspeicher von Arbeitsspeicherverbrauchern zurückgewinnen, die keine virtuellen Maschinen sind. Bei der Aktivierung der Systemauslagerung können Sie einen Ausgleich zwischen der Auswirkung bei der Freigabe von Arbeitsspeicher aus einem anderen Prozess und der Fähigkeit schaffen, Arbeitsspeicher für virtuelle Maschinen zuzuweisen, die diesen benutzen können. Die Menge des erforderlichen Speicherplatzes für die Systemauslagerung beträgt 1 GB.

Arbeitsspeicher wird freigegeben, indem Daten aus dem Arbeitsspeicher genommen und in einen Hintergrundspeicher geschrieben werden. Der Zugriff auf Daten aus dem Hintergrundspeicher ist langsamer als der Zugriff auf Daten aus dem Arbeitsspeicher. Es ist daher wichtig, den Speicherort der ausgelagerten Daten genau auszuwählen.

ESXi legt automatisch fest, wo die ausgelagerten Dateien gespeichert werden. Dieser Speicherort wird als **Bevorzugter Speicherort der Auslagerungsdatei** bezeichnet. Diese Entscheidung kann durch die Auswahl bestimmter Optionen unterstützt werden. Das System wählt die bestmögliche aktivierte Option aus. Wenn keine dieser Optionen geeignet ist, wird die Systemauslagerung nicht aktiviert.

Folgende Optionen stehen zur Verfügung:

- Datenspeicher: Die Verwendung des angegebenen Datenspeichers erlauben. Beachten Sie, dass ein vSAN- oder VMware vSphere® Virtual Volumes™-Datenspeicher für Systemauslagerungsdateien nicht angegeben werden kann.
- Hostauslagerungs-Cache: Die Verwendung eines Teils des Hostauslagerungs-Cache erlauben.
- Bevorzugter Speicherort der Auslagerungsdatei: Die Verwendung des bevorzugten Speicherorts der Auslagerungsdatei erlauben, der für den Host konfiguriert ist.

Konfigurieren der Systemauslagerung

Sie können die Optionen anpassen, die den Speicherort für die Systemauslagerung festlegen.

Voraussetzungen

Aktivieren Sie das Kontrollkästchen **Aktiviert** im Dialogfeld **Einstellungen für Systemauslagerung** bearbeiten.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter System die Option Systemauslagerung aus.
- 4 Klicken Sie auf Bearbeiten.
- 5 Aktivieren Sie die Kontrollkästchen für jede Option, die Sie aktivieren möchten.
- 6 Wenn Sie die Option **Datenspeicher** wählen, wählen Sie einen Datenspeicher aus dem Dropdown-Menü aus.

7 Klicken Sie auf OK.

Verwenden von Auslagerungsdateien mit vSphere

Sie können den Speicherort Ihrer Gastauslagerungsdatei angeben, Auslagerungsspeicherplatz reservieren, wenn der Arbeitsspeicher überbelegt ist, und Auslagerungsdateien löschen.

ESXi-Hosts verwenden Auslagerungsdateien, um die Rückgewinnung von Arbeitsspeicher von einer virtuellen Maschine zu erzwingen, wenn der vmmemctl-Treiber nicht verfügbar ist oder nicht reagiert.

- Der Treiber wurde nie installiert.
- Er wurde explizit deaktiviert.
- Er wird nicht ausgeführt (beispielsweise während des Startvorgangs des Gastbetriebssystems).
- Er ist vorübergehend nicht in der Lage, Arbeitsspeicher schnell genug zurückzugewinnen, um die aktuellen Systemanforderungen zu erfüllen.
- Er funktioniert ordnungsgemäß, aber die maximale Balloon-Größe wurde erreicht.

Durch das standardmäßige Abrufauslagerungsverfahren werden die Seiten wieder eingelagert, sobald die virtuelle Maschine sie benötigt.

Lesen Sie als Nächstes die folgenden Themen:

- Speicherort der Auslagerungsdatei
- Aktivieren der lokalen Auslagerung auf einem Host für einen DRS-Cluster
- Aktivieren der lokalen Auslagerung für einen eigenständigen Host
- Auslagerungsbereich und Arbeitsspeicherüberbelegung
- Konfigurieren der Eigenschaften von VM-Auslagerungsdateien f
 ür den Host
- Konfigurieren des Speicherorts der VM-Auslagerungsdatei für einen Cluster
- Löschen von Auslagerungsdateien

Speicherort der Auslagerungsdatei

Standardmäßig wird die Auslagerungsdatei im selben Speicherort erstellt wie die Konfigurationsdatei der virtuellen Maschine. Dabei kann es sich entweder um einen VMFS-Datenspeicher, einen vSAN-Datenspeicher oder einen VMware vSphere® Virtual VolumesTM- Datenspeicher handeln. Auf einem vSAN- oder vVols-Datenspeicher wird die Auslagerungsdatei als separates vSAN- oder vVols-Objekt erstellt.

Der ESXi-Host erstellt eine Auslagerungsdatei, wenn eine virtuelle Maschine eingeschaltet ist. Wenn diese Datei nicht erstellt werden kann, lässt sich die virtuelle Maschine nicht einschalten. Statt die Standardeinstellung zu übernehmen, haben Sie auch folgende Möglichkeiten:

- Verwenden Sie die Konfigurationsoptionen der einzelnen virtuellen Maschinen, um den Datenspeicher in einen anderen gemeinsam genutzten Speicherort zu ändern.
- Verwenden Sie die lokale Auslagerung auf dem Host, um einen lokal auf dem Host befindlichen Datenspeicher anzugeben. Auf diese Weise können Sie Dateien auf Hostebene auslagern und so Speicherplatz im SAN sparen. Dieses Verfahren kann jedoch zu einem geringen Leistungsabfall bei vSphere vMotion führen, da in eine lokale Auslagerungsdatei auf dem Quellhost ausgelagerte Seiten durch das Netzwerk zum Zielhost übertragen werden müssen. Derzeit können vSAN- und vVols-Datenspeicher nicht für die lokale Auslagerung auf dem Host angegeben werden.

Aktivieren der lokalen Auslagerung auf einem Host für einen DRS-Cluster

Die lokale Auslagerung auf einem Host ermöglicht Ihnen, einen lokal auf dem Host gespeicherten Datenspeicher als Speicherort für die Auslagerungsdatei anzugeben. Sie können die lokale Auslagerung für einen DRS-Cluster aktivieren.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter **KonfigurationAllgemein** aus, um den Speicherort der Auslagerungsdatei anzuzeigen, und klicken Sie auf **Bearbeiten**, um ihn zu ändern.
- 4 Wählen Sie die Option Vom Host festgelegter Datenspeicher aus und klicken Sie auf OK.
- 5 Navigieren Sie im vSphere Client zu einem der Hosts im Cluster.
- 6 Klicken Sie auf Konfigurieren.
- 7 Wählen Sie unter "Virtuelle Maschinen" die Option Speicherort der Auslagerungsdatei aus.
- 8 Klicken Sie auf "Bearbeiten", wählen Sie den zu verwendenden lokalen Datenspeicher aus und klicken Sie auf **OK**.
- 9 Wiederholen Sie die Schritte Schritt 5 bis Schritt 8 für jeden Host im Cluster.

Ergebnisse

Die lokale Auslagerung auf einem Host ist jetzt für den DRS-Cluster aktiviert.

Aktivieren der lokalen Auslagerung für einen eigenständigen Host

Die lokale Auslagerung auf einem Host ermöglicht Ihnen, einen lokal auf dem Host gespeicherten Datenspeicher als Speicherort für die Auslagerungsdatei anzugeben. Sie können die lokale Auslagerung für einen eigenständigen Host aktivieren.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie unter Virtuelle MaschinenSpeicherort der Auslagerungsdatei aus.
- 4 Klicken Sie auf Bearbeiten und wählen Sie Ausgewählter Datenspeicher.
- 5 Wählen Sie einen lokalen Datenspeicher aus der Liste aus und klicken Sie auf OK.

Ergebnisse

Die lokale Auslagerung ist jetzt für den eigenständigen Host aktiviert.

Auslagerungsbereich und Arbeitsspeicherüberbelegung

Sie müssen für den nicht reservierten Arbeitsspeicher einer virtuellen Maschine (entspricht dem Unterschied zwischen der Reservierung und der konfigurierten Arbeitsspeichergröße) einen Auslagerungsbereich in den Auslagerungsdateien jeder virtuellen Maschine reservieren.

Diese Auslagerungsreservierung ist erforderlich, um sicherzustellen, dass der ESXi-Host den Arbeitsspeicher der virtuellen Maschine unter allen Umständen beibehalten kann. In der Praxis wird vermutlich nur ein geringer Anteil des Auslagerungsbereichs auf der Hostebene tatsächlich genutzt.

Wenn Sie Arbeitsspeicher mit ESXi überbelegen, stellen Sie sicher, dass Ihre Gastbetriebssysteme ebenfalls über einen ausreichend großen Auslagerungsbereich verfügen, um die durch das Ballooning hervorgerufene gastinterne Auslagerung zu unterstützen. Dieser Auslagerungsbereich auf der Gastebene muss größer oder gleich dem Unterschied zwischen der konfigurierten Arbeitsspeichergröße und der Reservierung der virtuellen Maschine sein.

Vorsicht Eine Überbelegung des Arbeitsspeichers und eine Konfiguration des Gastbetriebssystems mit einem unzureichenden Auslagerungsbereich kann zum Ausfall des Gastbetriebssystems innerhalb der virtuellen Maschine führen. Vergrößern Sie den Auslagerungsbereich der virtuelle Maschinen, um deren Ausfall zu verhindern.

 Windows-Gastbetriebssysteme – Bei Windows-Betriebssystemen wird der Auslagerungsbereich als Auslagerungsdateien bezeichnet. Einige Windows-Betriebssysteme versuchen automatisch die Größe der Auslagerungsdateien zu erhöhen, sofern genügend freier Speicherplatz zur Verfügung steht.

Weitere Informationen finden Sie in der Dokumentation von Microsoft Windows oder in den Windows-Hilfedateien zum Thema "Auslagerungsdateien". Folgen Sie den Anweisungen, um die Größe der Auslagerungsdatei für den virtuellen Arbeitsspeicher zu ändern.

- Linux-Gastbetriebssystem Bei Linux-Betriebssystemen wird der Auslagerungsbereich als Auslagerungsdateien bezeichnet. Weitere Informationen zum Vergrößern von Swap-Dateien finden Sie in den folgenden Manpages von Linux:
 - mkswap Richtet einen Linux-Auslagerungsbereich ein.
 - swapon Ermöglicht das Auslagern von Geräten und Dateien.

Gastbetriebssysteme mit einem großen Arbeitsspeicher und kleinen virtuellen Festplatten (beispielsweise eine virtuelle Maschine mit einem Arbeitsspeicher von 8 GB und einer virtuellen Festplattem von 2 GB) verfügen eher über einen zu geringen Auslagerungsbereich.

Hinweis Speichern Sie Auslagerungsdateien nicht in Thin-bereitgestellten LUNs. Die Ausführung einer virtuellen Maschine mit einer Auslagerungsdatei, die in einer Thin-bereitgestellten LUN gespeichert ist, kann dazu führen, dass das Anwachsen der Auslagerungsdatei fehlschlägt und die virtuelle Maschine beendet wird.

Beim Erstellen einer großen Auslagerungsdatei (zum Beispiel größer als 100 GB) kann sich die Einschaltdauer der virtuellen Maschine erheblich verlängern. Um dies zu vermeiden, legen Sie eine hohe Reservierung für große virtuelle Maschinen fest.

Mit Dateien für die lokale Auslagerung auf dem Host können Auslagerungsdateien ebenfalls auf kostengünstigeren Speichergeräten platziert werden.

Konfigurieren der Eigenschaften von VM-Auslagerungsdateien für den Host

Konfigurieren Sie einen Speicherort der Auslagerungsdatei für den Host, um den Standardspeicherort der Auslagerungsdateien für virtuelle Maschinen im vSphere Client festzulegen.

Standardmäßig befinden sich die Auslagerungsdateien für eine virtuelle Maschine in einem Datenspeicher in dem Ordner, in dem sich auch die anderen Dateien der virtuellen Maschine befinden. Sie können jedoch den Host so konfigurieren, dass die Auslagerungsdateien der virtuellen Maschine in einem anderen Datenspeicher gespeichert werden. Mithilfe dieser Option können Sie VM-Auslagerungsdateien in einem kosteneffizienteren oder leistungsfähigeren Speicher ablegen. Zudem haben Sie die Möglichkeit, diese Einstellung für einzelne virtuelle Maschinen auf Hostebene außer Kraft zu setzen.

Die Festlegung eines alternativen Speicherortes für die Auslagerungsdateien kann dazu führen, dass mit vMotion durchgeführte Migrationen langsamer abgeschlossen werden. vMotion erzielt die höchste Leistung, wenn die virtuelle Maschine in einem lokalen Datenspeicher und nicht im selben Verzeichnis wie die VM-Auslagerungsdateien gespeichert wird. Wenn die virtuelle Maschine in einem lokalen Datenspeicher gespeichert ist, führt die gemeinsame Speicherung der Auslagerungsdatei mit anderen Dateien der virtuellen Maschine zu keiner Leistungsverbesserung bei vMotion.

Voraussetzungen

Erforderliche Berechtigung: Hostmaschine.Konfiguration.Konfiguration für Speicherpartition

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf Konfigurieren.
- 3 Klicken Sie unter Virtuelle Maschinen auf Speicherort der Auslagerungsdatei.

Der ausgewählte Speicherort der Auslagerungsdatei wird angezeigt. Falls die Konfiguration des Speicherorts für die Auslagerungsdateien auf dem ausgewählten Host nicht unterstützt wird, wird auf der Registerkarte eine entsprechende Meldung angezeigt.

Gehört der Host zu einem Cluster und legen die Clustereinstellungen fest, dass die Auslagerungsdateien im selben Verzeichnis wie Dateien der virtuellen Maschine gespeichert werden, kann der Speicherort für die Auslagerungsdateien für den Host nicht über **Konfigurieren** bearbeitet werden. Den Speicherort der Auslagerungsdateien für einen solchen Host können Sie in den Clustereinstellungen ändern.

4 Klicken Sie auf **Bearbeiten**.

Option	Beschreibung
Verzeichnis der virtuellen Maschine	Speichert die Auslagerungsdatei im selben Verzeichnis wie die Konfigurationsdatei der virtuellen Maschine.
Bestimmten Datenspeicher verwenden	Speichert die Auslagerungsdatei an einem Speicherort, den Sie festlegen. Wenn die Auslagerungsdatei nicht in dem vom Host angegebenen Datenspeicher gespeichert werden kann, wird die Auslagerungsdatei im selben Verzeichnis wie die virtuelle Maschine gespeichert.

5 Wählen Sie aus, wo die Auslagerungsdatei gespeichert werden soll.

- 6 (Optional) Wenn Sie **Bestimmten Datenspeicher verwenden** auswählen, wählen Sie einen Datenspeicher aus der Liste aus.
- 7 Klicken Sie auf OK.

Ergebnisse

Die VM-Auslagerungsdatei wird an dem von Ihnen ausgewählten Speicherort gespeichert.

Konfigurieren des Speicherorts der VM-Auslagerungsdatei für einen Cluster

Standardmäßig befinden sich die Auslagerungsdateien für eine virtuelle Maschine in einem Datenspeicher in dem Ordner, in dem sich auch die anderen Dateien der virtuellen Maschine befinden. Sie können die Hosts in Ihrem Cluster jedoch stattdessen so konfigurieren, dass die VM-Auslagerungsdateien in einem anderen Datenspeicher Ihrer Wahl abgelegt werden.

Sie können einen alternativen Speicherort der Auslagerungsdatei konfigurieren, um die VM-Auslagerungsdateien je nach Bedarf entweder in einem kosteneffizienteren Speicher oder einem leistungsfähigeren Speicher abzulegen.

Voraussetzungen

Bevor Sie den Speicherort der Auslagerungsdatei einer virtuellen Maschine für einen Cluster konfigurieren, müssen Sie die Speicherorte der VM-Auslagerungsdateien der Hosts im Cluster konfigurieren, wie unter Konfigurieren der Eigenschaften von VM-Auslagerungsdateien für den Host beschrieben.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf Konfigurieren.
- 3 Wählen Sie Konfiguration > Allgemein aus.
- 4 Klicken Sie neben "Speicherort der Auslagerungsdatei" auf Bearbeiten.
- 5 Wählen Sie aus, wo die Auslagerungsdatei gespeichert werden soll.

Option	Beschreibung
Verzeichnis der virtuellen Maschine	Speichert die Auslagerungsdatei im selben Verzeichnis wie die Konfigurationsdatei der virtuellen Maschine.
Vom Host festgelegter Datenspeicher	Speichert die Auslagerungsdatei an dem Speicherort, der in der Hostkonfiguration angegeben wurde.
	Wenn die Auslagerungsdatei nicht in dem vom Host angegebenen Datenspeicher gespeichert werden kann, wird die Auslagerungsdatei im selben Verzeichnis wie die virtuelle Maschine gespeichert.

6 Klicken Sie auf OK.

Löschen von Auslagerungsdateien

Wenn ein Host ausfällt, auf dem virtuelle Maschinen ausgeführt werden, die Auslagerungsdateien verwenden, bestehen die Auslagerungsdateien nach wie vor und verbrauchen mehrere Gigabyte an Speicherplatz. Sie können die Auslagerungsdateien löschen, um dieses Problem zu beheben.

Verfahren

- 1 Starten Sie die virtuelle Maschine neu, die sich auf dem ausgefallenen Host befand.
- 2 Halten Sie die virtuelle Maschine an.

Ergebnisse

Die Auslagerungsdatei für die virtuelle Maschine wird gelöscht.

Verwenden von persistentem Arbeitsspeicher mit vSphere

Im persistenten Speicher (PMem), auch bekannt als nicht flüchtiger Speicher (NVM, Non-Volatile Memory) können Daten selbst nach einem Stromausfall beibehalten werden. PMem kann von Anwendungen verwendet werden, die häufig ausfallen und hohe Leistung erfordern.

VMs können so konfiguriert werden, dass sie PMem auf einem eigenständigen Host oder in einem Cluster verwenden. PMem wird als lokaler Datenspeicher behandelt. Durch persistenten Speicher wird Speicherlatenz erheblich reduziert. In ESXi können Sie VMs erstellen, die mit PMem konfiguriert sind. Anwendungen innerhalb dieser VMs können dann die Vorteile der erhöhten Geschwindigkeit nutzen. Sobald eine virtuelle Maschine erstmals eingeschaltet wird, wird PMem für sie reserviert. Dabei spielt es keine Rolle, ob die virtuelle Maschine ein- oder ausgeschaltet ist. Dieser PMem bleibt solange reserviert, bis die virtuelle Maschine migriert oder entfernt wird.

Persistenter Speicher kann von virtuellen Maschinen in zwei verschiedenen Modi verbraucht werden. Ältere Gastbetriebssysteme können weiterhin die Vorteile der vPMemDisk-Funktion nutzen.

Virtual Persistent Memory (vPMem)

Mithilfe von vPMem wird der Speicher einem Gastbetriebssystem als virtuelles NVDIMM zur Verfügung gestellt. Dadurch kann das Gastbetriebssystem den PMem im byte-adressierbaren Zufallsmodus verwenden.

Hinweis Sie müssen die VM-Hardwareversion 14 und ein Gastbetriebssystem verwenden, das NVM-Technologie unterstützt.

Hinweis Sie müssen für die vSphere HA-Konfiguration für PMem-VMs die VM-Hardwareversion 19 verwenden. Weitere Informationen finden Sie unter Konfigurieren von vSphere HA für PMem-VMs.

Virtual Persistent Memory Disk (vPMemDisk)

Unter Verwendung von vPMemDisk kann das Gastbetriebssystem als virtuelles SCSI-Gerät auf den Speicher zugreifen, die virtuelle Festplatte wird jedoch in einem PMem-Datenspeicher abgelegt. Bei der Erstellung einer virtuellen Maschine mit PMem wird zum Zeitpunkt der Festplattenerstellung Speicher für sie reserviert. Die Zugangssteuerung erfolgt auch zum Zeitpunkt der Festplattenerstellung. Weitere Informationen finden Sie unter PMem-Reservierung für die vSphere HA-Zugangssteuerung.

In einem Cluster verfügt jede VM über eine bestimmte Kapazität für den PMem. Die PMem-Gesamtmenge darf nicht größer als die im Cluster verfügbare Gesamtmenge sein. Der PMem-Verbrauch bezieht sich auf eingeschaltete und ausgeschaltete VMs. Wenn eine virtuelle Maschine zur Verwendung von PMem konfiguriert ist und DRS nicht verwendet wird, müssen Sie manuell einen Host mit ausreichend PMem zum Platzieren der VM auswählen.

NVDIMM und herkömmlicher Speicher

Auf NVDIMM wird als Speicher zugegriffen. Bei Verwendung von herkömmlichem Speicher befindet sich zwischen Anwendungen und Speichergeräten Software, die Verzögerungen bei der Verarbeitung auslösen kann. Bei Einsatz von PMem verwenden die Anwendungen den Speicher direkt. Dies bedeutet, dass die PMem-Leistung höher als die des herkömmlichen Speichers ist. Der Speicher befindet sich lokal auf dem Host. Da die Systemsoftware die Änderungen jedoch nicht verfolgen kann, können Lösungen wie Backups derzeit nicht mit dem PMem verwendet werden.

Lösungen wie vSphere HA haben einen begrenzten Geltungsbereich, wenn vPMem in einem Modus verwendet wird, der kein Write-Through-Modus zu einem Nicht-PMem-Datenspeicher ist. Wenn vSphere HA für vPMem-VMs mit aktiviertem Failover aktiviert ist, kann ein Failover der VM auf einen anderen Host ausgeführt werden. In diesem Fall verwendet die VM die PMem-Ressourcen auf dem neuen Host. Um die Ressourcen auf dem alten Host freizugeben, identifiziert ein Garbage Collector diese Ressourcen in regelmäßigen Abständen und gibt sie für die Verwendung durch andere VMs frei.

Namespaces

Namespaces für PMem werden vor dem Starten von ESXi konfiguriert. Namespaces sind mit Festplatten auf dem System vergleichbar. ESXi liest Namespaces und fasst mehrere Namespaces durch Schreiben von GPT-Headern in einem logischen Volume zusammen. Die Formatierung erfolgt standardmäßig automatisch, wenn Sie das Volume nicht zuvor konfiguriert haben. Wenn Sie es bereits formatiert haben, versucht ESXi, den PMem zu mounten.

GPT-Tabellen

Wenn die Daten im PMem-Speicher beschädigt sind, kann dies zum Fehlschlagen von ESXi führen. Um dies zu vermeiden, führt ESXi während des Mountens des PMem eine Überprüfung auf Fehler in den Metadaten durch.

PMem-Regionen

Bei PMem-Regionen handelt es sich um ununterbrochene Byte-Streams, die ein einzelnes vNVDimm oder eine vPMemDisk darstellen. Jedes PMem-Volume gehört zu einem einzelnen Host. Die Verwaltung könnte unter Umständen schwierig sein, wenn ein Administrator jeden einzelnen Host in einem Cluster mit vielen Hosts verwalten müsste. Es ist aber nicht notwendig, jeden einzelnen Datenspeicher zu verwalten. Stattdessen können Sie die gesamte PMem-Kapazität im Cluster als einen Datenspeicher betrachten.

VC und DRS automatisieren die erstmalige Platzierung von PMem-Datenspeichern. Wählen Sie ein lokales PMem-Speicherprofil aus, wenn die virtuelle Maschine erstellt oder das Gerät zur VM hinzugefügt wird. Der Rest der Konfiguration ist automatisiert. Eine Beschränkung besteht darin, dass ESXi nicht zulässt, dass Sie das Basisverzeichnis der virtuellen Maschine in einem PMem-Datenspeicher ablegen. Der Grund hierfür besteht darin, dass dieser Vorgang wertvollen Speicherplatz zum Ablegen von Protokoll- und Statistikdateien der virtuellen Maschine beansprucht. Diese Regionen werden zum Darstellen der VM-Daten verwendet und können als byte-adressierbare nvDimms oder vPMem-Festplatten bereitgestellt werden.

Migration

Da es sich bei dem PMem um einen lokalen Datenspeicher handelt, müssen Sie Storage vMotion zum Verschieben einer virtuellen Maschine verwenden. Eine virtuelle Maschine mit vPMem kann nur mit einer PMem-Ressource auf einen ESX-Host migriert werden. Eine virtuelle Maschine mit vPMemDisk kann ohne eine PMem-Ressource zu einem ESX-Host migriert werden.

Fehlerbehandlung und NVDimm-Verwaltung

Hostfehler können zu einem Verlust der Verfügbarkeit auf vPMem-VMs führen, die sich nicht im Write-Through-Modus befinden. Bei schwerwiegenden Fehlern gehen unter Umständen alle Daten verloren und es müssen manuelle Schritte zum Neuformatieren des PMem durchgeführt werden.

Persistenter vSphere-Arbeitsspeicher mit dem vSphere Client

Eine kurze konzeptuelle Einführung in persistenten Arbeitsspeicher finden Sie unter:

(Persistenter vSphere-Arbeitsspeicher mit dem vSphere Client)

Verbesserungen bei der Arbeit mit PMem im vSphere Client

Eine kurze Übersicht über Verbesserungen im HTML5-basierten vSphere Client beim Arbeiten mit PMem finden Sie unter:

(Verbesserungen bei der Arbeit mit PMem im vSphere Client)

Migrieren und Klonen von VMs mithilfe von PMem im vSphere Client

Eine kurze Übersicht über das Migrieren und Klonen von virtuellen Maschinen, die PMem verwenden, finden Sie unter:

(Migrieren und Klonen von VMs mithilfe von PMem im vSphere Client)

Lesen Sie als Nächstes die folgenden Themen:

- Konfigurieren von vSphere HA f
 ür PMem-VMs
- PMem-Reservierung für die vSphere HA-Zugangssteuerung
- vSphere vMMR (Memory Monitoring and Remediation)

Konfigurieren von vSphere HA für PMem-VMs

Sie können vSphere HA für PMem-VMs im Write-Through-Modus konfigurieren, damit die VMs bei einem Host-Fehler auf einem anderen funktionierenden Host wiederhergestellt werden können.

Voraussetzungen

- Sie müssen die Hardwareversion 19 auswählen.
- PMem-VMs mit vPMemDisks werden nicht unterstützt.

Verfahren

- 1 Wählen Sie beim Erstellen einer neuen VM im Assistenten **Neue virtuelle Maschine** die Option **Hardware benutzerdefinieren** aus.
 - a Klicken Sie auf die Schaltfläche **NEUES GERÄT HINZUFÜGEN** und wählen Sie **NVDIMM** hinzufügen aus dem Dropdown-Menü aus.
 - b Klicken Sie in das Kontrollkästchen Failover auf einem anderen Host für alle NVDIMM-Geräte zulassen.
 - c Klicken Sie auf WEITER und führen Sie den Assistenten Neue virtuelle Maschine aus.

Bei einem Hostfehler können NVDIMM-PMem-Daten nicht wiederhergestellt werden. Standardmäßig versucht HA nicht, diese virtuelle Maschine auf einem anderen Host neu zu starten. Wenn HA auf dem Host kein Failover der virtuellen Maschine durchführen kann, startet die virtuelle Maschine auf einem anderen Host mit einem neuen, leeren NVDIMM neu.

- 2 Um HA auf einer vorhandenen VM zu aktivieren, navigieren Sie zur VM.
 - a Klicken Sie unter VM-Hardware auf BEARBEITEN.
 - b Wählen Sie den NVDIMM aus.

- c Klicken Sie in das Kontrollkästchen Failover auf einem anderen Host für alle NVDIMM-Geräte zulassen.
- d Klicken Sie auf OK.

Bei einem Hostausfall startet HA diese virtuelle Maschine auf einem anderen Host mit neuen, leeren NVDIMMs neu.

PMem-Reservierung für die vSphere HA-Zugangssteuerung

Die Zugangssteuerung ist eine von vSphere HA verwendete Richtlinie, um die Failover-Kapazität in einem Cluster zu gewährleisten.

Wenn Sie die Anzahl der zu tolerierenden potenziellen Hostfehler erhöhen, erhöhen sich die Verfügbarkeit und die reservierte Kapazität. Sie können einen bestimmten Prozentsatz des persistenten Arbeitsspeichers für die Failover-Kapazität des Hosts reservieren. Dies ist die tatsächliche Speicherkapazität, die blockiert ist und für das Ausschalten des Hosts berücksichtigt werden muss.

Unter **Edit-Clustereinstellungen können Sie** Zugangssteuerung **auswählen**, um die Anzahl der vom Host tolerierten Fehler anzugeben.

Wenn Sie die CPU-/Arbeitsspeicherreservierung auswählen, die definiert ist durch:

- Cluster-Ressourcenprozentsatz: Ein Teil der Kapazität des persistenten Arbeitsspeichers im Cluster dient Failover-Zwecken, selbst wenn die virtuellen Maschinen im Cluster derzeit keinen persistenten Arbeitsspeicher verwenden. Dieser Prozentsatz kann entweder durch eine Außerkraftsetzung angegeben werden oder er wird automatisch gemäß der Einstellung Zu tolerierende Host-Fehler berechnet. Wenn die PMem-Zugangssteuerung aktiviert ist, wird die PMem-Kapazität im Cluster reserviert, selbst wenn PMem von VMs als Festplatten verwendet werden.
- Steckplatzrichtlinie (eingeschaltete VMs), die Zugangssteuerung für persistenten Arbeitsspeicher überschreibt die Richtlinie für die Steckplatzeinstellung mit der Richtlinie "Prozentsatz der Clusterressourcen", nur für persistente Arbeitsspeicherressourcen. Der Prozentwert wird automatisch anhand der Einstellung Host-Fehler, die der Cluster toleriert berechnet und kann nicht außer Kraft gesetzt werden.
- Dedizierte Failover-Hosts, der persistente Arbeitsspeicher der dedizierten Failover-Hosts ist für Failover-Zwecke vorgesehen und Sie können virtuellen Maschinen keinen persistenten Arbeitsspeicher auf diesen Hosts bereitstellen.

Hinweis Nachdem Sie eine Zugangssteuerungsrichtlinie ausgewählt haben, müssen Sie zur Aktivierung der PMem-Zugangssteuerung auch das Kontrollkästchen **Failover-Kapazität des persistenten Arbeitsspeichers** aktivieren.

vSphere vMMR (Memory Monitoring and Remediation)

vMMR erfasst Daten und bietet einen Überblick über Leistungsstatistiken, sodass Sie feststellen können, ob Ihre Anwendungsarbeitslast aufgrund des Arbeitsspeichermodus rückläufig ist.

Der persistente Intel Optane-Arbeitsspeicher kann in den BIOS-Einstellungen im App Direct- oder im Arbeitsspeichermodus konfiguriert werden. Im App Direct-Modus kann auf den persistenten Arbeitsspeicher als byte-adressierbarer, persistenter Arbeitsspeicher zusammen mit dem DRAM zugegriffen werden. Im Arbeitsspeichermodus wird der DRAM zum Hardwarecache, und der größere PMem wird zum flüchtigen Arbeitsspeicher und als Systemarbeitsspeicher angezeigt.

Der Arbeitsspeichermodus ist für VMs unsichtbar und transparent. Sobald Sie das System im Arbeitsspeichermodus konfiguriert haben, wird es als herkömmliches System mit DRAM angezeigt. Ein Cluster kann über eine Kombination von Hosts mit unterschiedlichen Konfigurationen verfügen. vSphere zeigt zusätzliche Informationen über das System an, das sich im Arbeitsspeichermodus befindet. In ESXi werden Leistungsindikatoren programmiert, die Informationen zu Statistiken auf Host- und VM-Ebene erfassen. Diese Leistungsstatistiken werden zum Erstellen von Alarmen herangezogen. Darüber hinaus werden Statistiken auch in Leistungsdiagrammen nachverfolgt.

Auf der Registerkarte **Übersicht** des Hosts können Sie unter **Mehrstufiger Arbeitsspeicher: Hardware** (mit einigen zusätzlichen Details) feststellen, ob sich das System im Arbeitsspeichermodus befindet.

Summary	Monitor Configur	e Permiss	ions VMs	Datastores	Networks	Updates
0	Logical Processors: NICs:	96 3				
	Virtual Machines: Memory Tiering:	1 Hardware DETAILS _ Intel Optane™ Persistent Memory configured in				×
	State: Uptime:	Connected 6 hours	Memory Mode.			

Sie können die Größe von DRAM und PMem auch unter **Konfigurieren > Hardware > Überblick > Arbeitsspeicher** anzeigen.

Summary	Monitor	Configure	Permissions	VMs	Datastores	Networks	Updates
System F	Resource Rese	ervation	Memory				
Services			Total	503.68 G	βB		
Security	Profile		System	385.17 M	В		
System S	Swap		Virtual machines	503.3 GE	3		
Package	S		Memory Tiering	Hardwar	e (i)		
Hardware		~	Tier 0	256 GB [DRAM (Cache)		
Overview	v		Tier 1	503 67 6	B PMem (Memor	V)	
Graphics				503.07 0	D PMeni (Menio	y)	

ESXi erfasst zwei Arten von Arbeitsspeicherstatistiken und macht diese verfügbar:

- Statistiken auf Hostebene: Eine Unterkomponente des Arbeitsspeichers misst die DRAM- und PMem-Leistung und programmiert dazu Leistungsindikatoren. Die Statistiken auf Hostebene beziehen sich auf die Gesamtgröße, Lese-/Schreibbandbreite, Lese-/Schreiblatenz und Fehlerrate für die verschiedenen Arbeitsspeichertypen (DRAM, PMem).
- Statistiken auf VM-Ebene: vSphere überwacht Leistungsindikatoren, um Daten zur DRAMund PMem-Lesebandbreite der VM abzurufen.

Sowohl Host als auch VM verfügen unter Leistungsdiagrammen über einen neuen Bereich "Arbeitsspeicher". Hier werden Arbeitsspeicherdetails, beispielsweise die Arbeitsspeichernutzung und -rückgewinnung, sowie neue Statistiken angezeigt. Auf der ESXi-Hostebene können Sie die Diagramme "Arbeitsspeicherbandbreite" und "Arbeitsspeicherfehlerrate" überwachen. Auf VM-Ebene können Sie die PMem-Lesebandbreite und die DRAM-Lesebandbreite anzeigen.

Auf der Registerkarte **VMs** eines ESXi-Hosts können Sie eine Liste mit Leistungsinformationen zu allen virtuellen Maschinen anzeigen, die sich auf dem Host befinden. Um Informationen über die Auswirkungen des Arbeitsspeichermodus auf eine virtuelle Maschine anzuzeigen, klicken

Sie auf das Symbol zum Anzeigen von Spalten (Ш) und wählen Sie die Metriken "Aktiver Arbeitsspeicher", "DRAM-Lesebandbreite" und "PMem-Lesebandbreite" aus.

Es gibt zwei vorkonfigurierte Standardalarme: einer auf Hostebene ("Hohe aktive DRAM-Nutzung im Host-Arbeitsspeichermodus") und ein anderer auf VM-Ebene ("Hohe PMem-Bandbreitennutzung der virtuellen Maschine"). Ist die Bedingung für einen Alarm erfüllt, wird ein Ereignis zur Auslösung des entsprechenden Alarms veröffentlicht. Sie können auch benutzerdefinierte Alarme basierend auf Leistungsmetriken erstellen. vMMR-Alarme funktionieren nur auf Hosts, die mit dem Arbeitsspeichermodus konfiguriert sind.

Wenn DRS im Cluster aktiviert und vollständig automatisiert ist und die aktive Arbeitsspeichernutzung des Hosts einen bestimmten Prozentsatz der DRAM-Cachegröße übersteigt, verschiebt DRS möglicherweise einige VMs aus dem Host, um die Last auszugleichen. Weitere Informationen finden Sie unter vSphere-Überwachung und -Leistung.

Hinweis vMMR wird auf Intel Broadwell-, Skylake-, Cascade Lake- und Ice Lake-Plattformen unterstützt. DRAM-Statistiken auf Hostebene sind auf diesen Plattformen verfügbar. PMem-Statistiken auf Host- und VM-Ebene sind nur auf Cascade Lake- und Ice Lake-Hosts verfügbar, die im Arbeitsspeichermodus konfiguriert sind.

Konfigurieren von virtuellen Grafiken in vSphere

12

Sie können Grafikeinstellungen für unterstützte Grafikimplementierungen bearbeiten.

vSphere unterstützt mehrere Grafikimplementierungen.

- VMware unterstützt 3D-Grafiklösungen von AMD, Intel und NVIDIA.
- NVIDIA GRID-Unterstützung.
- Lässt einzelnen NVIDIA VIB zu, um vSGA- und vGPU-Implementierungen zu unterstützen.
- Stellt vCenter-GPU-Leistungsdiagramme für Intel und NVIDIA bereit.
- Aktiviert Grafiken für Horizon View-VDI-Desktops.
- Sie können eine VM mit und bis zu 16 vGPU-Geräten erstellen. HWv21 muss für ESXi und vCenter aktiviert sein.

Sie können die Einstellungen für Hostgrafiken konfigurieren sowie die Einstellungen für vGPU-Grafiken VM-spezifisch anpassen.

Hinweis In diesem Kapitel bezieht sich "Arbeitsspeicher" auf den physischen Arbeitsspeicher.

Lesen Sie als Nächstes die folgenden Themen:

- Anzeigen von GPU-Statistiken
- Hinzufügen eines NVIDIA GRID vGPU zu einer virtuellen Maschine
- Konfigurieren von Hostgrafiken
- Konfigurieren von Grafikgeräten
- Migrieren von VMs mit vGPUs

Anzeigen von GPU-Statistiken

Sie können detaillierte Informationen für eine Host-Grafikkarte anzeigen.

Sie können die Temperatur, Auslastung und Arbeitsspeichernutzung der GPU anzeigen.

Hinweis Diese Statistiken werden nur angezeigt, wenn der GPU-Treiber auf dem Host installiert ist.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf der Registerkarte Überwachen auf Leistung.
- 3 Klicken Sie auf Erweitert und wählen Sie aus dem Dropdown-Menü GPU aus.

Hinzufügen eines NVIDIA GRID vGPU zu einer virtuellen Maschine

Wenn ein ESXi-Host über ein NVIDIA GRID GPU-Grafikgerät verfügt, können Sie eine virtuelle Maschine für die Verwendung der NVIDIA GRID vGPU-Technologie (virtual GPU, virtueller Grafikprozessor) konfigurieren.

NVIDIA GRID GPU-Grafikgeräte sind so konzipiert, dass sie komplexe Grafikvorgänge optimieren und dadurch mit Hochleistung ausgeführt werden können, ohne dabei den Hauptprozessor zu überlasten.

Voraussetzungen

- Stellen Sie sicher, dass auf dem Host ein NVIDIA GRID GPU-Grafikgerät mit entsprechendem Treiber installiert ist. Informationen finden Sie in der Dokumentation vSphere-Upgrade.
- Vergewissern Sie sich, dass die virtuelle Maschine mit ESXi 6.0 und höher kompatibel ist.

Verfahren

- 1 Klicken Sie mit der rechten Maustaste auf eine virtuelle Maschine und wählen Sie **Einstellungen bearbeiten** aus.
- 2 Wählen Sie auf der Registerkarte Virtuelle Hardware die Option Neues Gerät hinzufügen und anschließend im Dropdown-Menü die Option Neues PCI-Gerät aus.
- 3 Erweitern Sie die Option **Neues PCI-Gerät** und wählen Sie das NVIDIA GRID vGPU-Passthrough-Gerät aus, mit dem die virtuelle Maschine verbunden werden soll.

Hinweis Vollständige Arbeitsspeicherreservierung wird automatisch angewendet. Sie ist für das PCI-Gerät erforderlich.

4 Wählen Sie ein GPU-Profil aus.

Ein GPU-Profil stellt den vGPU-Typ dar.

5 Klicken Sie auf OK.

Ergebnisse

Die virtuelle Maschine kann auf das Gerät zugreifen.

Konfigurieren von Hostgrafiken

Sie können die Grafikoptionen hostspezifisch anpassen.

Voraussetzungen

Virtuelle Maschinen sollten ausgeschaltet sein.

Verfahren

- 1 Wählen Sie einen Host und dann Konfigurieren > Hardware > Grafiken aus.
- 2 Wählen Sie unter Hostgrafiken Bearbeiten aus.
- 3 Wählen Sie im Fenster Einstellungen für Hostgrafiken bearbeiten Folgendes aus:

Option	Beschreibung
Gemeinsam genutzt	Von VMware freigegebene virtuelle Grafiken
Direkt freigegeben	Vom Anbieter freigegebene Passthrough-Grafiken

- 4 Wählen Sie eine Richtlinie für die Zuweisung von freigegebenen Passthrough-GPUs aus.
 - a VMs über GPUs verteilen (beste Performance)
 - b VMs auf GPU bis Kapazitätsgrenze gruppieren (GPU-Konsolidierung)
- 5 Klicken Sie auf OK.

Nächste Schritte

Nachdem Sie auf **OK** geklickt haben, müssen Sie Xorg auf dem Host neu starten.

Konfigurieren von Grafikgeräten

Sie können den Grafiktyp für eine Videokarte bearbeiten.

Voraussetzungen

Virtuelle Maschinen müssen ausgeschaltet sein.

Verfahren

- 1 Wählen Sie unter Grafikgeräte eine Grafikkarte aus und klicken Sie auf Bearbeiten.
 - a Wählen Sie Freigegeben für von VMware freigegebene virtuelle Grafiken aus.
 - b Wählen Sie Direkt freigegeben für vom Anbieter freigegebene Passthrough-Grafiken aus.
- 2 Klicken Sie auf OK.

Ergebnisse

Wenn Sie ein Gerät auswählen, wird angezeigt, welche virtuellen Maschinen dieses Gerät verwenden, wenn sie aktiv sind.

Nächste Schritte

Nachdem Sie auf OK geklickt haben, müssen Sie Xorg auf dem Host neu starten.
Migrieren von VMs mit vGPUs

Sie können VMs mit vGPUs migrieren.

Ab vSphere 8.0 U2 kann DRS VMs mit vGPUs automatisch migrieren. Wenn die erweiterten Optionen für DRS-Cluster festgelegt sind und die geschätzte Ausfallzeit des VM-Geräts für eine VM niedriger ist als der Grenzwert für die Ausfallzeit des VM-Geräts für vMotion ist, automatisiert DRS die Migration von VMs.

Um diese Funktion zu aktivieren, stellen Sie sicher, dass die Infrastruktur die folgenden Anforderungen erfüllt:

- Fehlerfreie vSphere Lifecycle Services (siehe KB 91891)
- Konfigurieren der vGPU-Geräte der VM nur über vCenter
- Fehlerfreies vMotion-Netzwerk (Einrichtung der vMotion-Netzwerkkarten)

Wenn diese Anforderungen erfüllt sind, fügen Sie die folgenden erweiterten Optionen für DRS-Cluster hinzu:

Erweiterte Optionen für DRS-Cluster	Wert
PassthroughDrsAutomation	1
LBMaxVmotionPerHost	1

Für vGPU-VMs mit Einfrierzeiten, die das "vMotion-Einfrierzeitlimit" (Standardwert: 100 Sekunden) überschreiten, kann ein VI-Administrator die folgende erweiterte Option für DRS Cluster hinzufügen:

Erweiterte Optionen für DRS-Cluster	Wert
VmDevicesStunTimeTolerated	<anzahl als="" die="" geschätzte<br="" größer="" ist="" sekunden,="" von="">Einfrierzeit einer beliebigen VM im Cluster> (Standardwert: 100 Sekunden)</anzahl>

Sie können auch den Abschnitt "vMotion-Einfrierzeitlimit" auf der Registerkarte VM-Konfiguration > > Registerkarte "VM-Optionen" > Erweiterte Einstellung ändern.

Für frühere Versionen:

Informationen zu Evakuierungen im Wartungsmodus finden Sie im KB-Artikel 88271 Automatische Migration von virtuellen vGPU-Maschinen für den Host-Wartungsmodus in einem DRS-Cluster.

Wenn Probleme bei der VM-Platzierung auftreten, reduzieren Sie "DRS-Automatisierung" auf **Teilweise automatisiert**. Weitere Informationen finden Sie unter Bearbeiten von Clustereinstellungen.

Sie können VMs mit vGPUs manuell auf einen anderen Host migrieren. Weitere Informationen finden Sie unter "Verwenden von vMotion zum Migrieren von virtuellen vGPU-Maschinen" im Handbuch "vCenter Server und Hostverwaltung".

Verwalten von Speicher-E/A-Ressourcen mit vSphere

13

vSphere Storage I/O Control ermöglicht eine Speicher-E/A-Priorisierung im gesamten Cluster, wodurch eine verbesserte Arbeitslastkonsolidierung ermöglicht und zusätzliche, mit Over-Provisioning verbundene Kosten reduziert werden.

Storage I/O Control erweitert die Konstrukte von Anteilen und Grenzwerten, um Speicher-E/A-Ressourcen zu verarbeiten. Sie können die Menge an Speicher-E/A, die während Zeiträumen von E/A-Überlastung virtuellen Maschinen zugeteilt ist, steuern. Auf diese Weise wird sichergestellt, dass wichtigere virtuelle Maschinen gegenüber weniger wichtigen virtuellen Maschinen für E/A-Ressourcenzuteilung bevorzugt werden.

Wenn Sie Storage I/O Control in einem Datenspeicher aktivieren, beginnt ESXi mit der Überwachung der Gerätelatenz, die Hosts bei der Kommunikation mit diesem Datenspeicher berücksichtigen. Wenn die Gerätelatenz einen Schwellenwert überschreitet, wird der Datenspeicher als überlastet angesehen. Jeder virtuellen Maschine, die auf diesen Datenspeicher zugreift, werden E/A-Ressourcen im Verhältnis zu dazugehörigen Anteilen zugewiesen. Sie legen Anteile pro virtueller Maschine fest. Sie können die Anzahl für jede je nach Bedarf anpassen.

Mit dem E/A-Filter-Framework (VAIO) können VMware und dazugehörige Partner Filter entwickeln, die E/A für jede VMDK unterbrechen; außerdem wird dadurch die gewünschte Funktionalität an der VMDK-Granularität bereitgestellt. VAIO funktioniert mit SPBM (Storage Policy-Based Management, Speicherrichtlinienbasierte Verwaltung), wodurch Sie die Filtervoreinstellungen durch eine Speicherrichtlinie, die mit VMDKs verbunden ist, festlegen können.

Die Konfiguration von Storage I/O Control ist ein zweistufiger Vorgang:

- 1 Aktivieren Sie Storage I/O Control für den Datenspeicher.
- 2 Legen Sie die Anzahl der Speicher-E/A-Anteile und den oberen Grenzwert für die E/A-Vorgänge pro Sekunde (IOPS) fest, die für jede virtuelle Maschine zulässig ist.

Standardmäßig werden alle Anteile virtueller Maschinen auf Normal (1000) mit unbegrenztem IOPS festgelegt.

Hinweis Storage I/O Control ist standardmäßig auf Speicher-DRS-aktivierten Datenspeicher-Clustern aktiviert.

Hinweis vSphere 8.0 U1 unterstützt das nahtlose Hinzufügen und Entfernen eines LWD-I/O-Filters im laufenden Betrieb während der VM-Neukonfiguration.

Hinweis In diesem Kapitel bezieht sich "Arbeitsspeicher" auf den physischen Arbeitsspeicher.

Lesen Sie als Nächstes die folgenden Themen:

- Speicherrichtlinien für virtuelle Maschinen
- E/A-Filter
- Storage I/O Control Anforderungen
- Ressourcenanteile und Grenzwerte für Storage I/O Control
- Anzeigen von Ressourcenanteilen und Grenzwerten für Storage I/O Control
- Überwachen der Anteile von Storage I/O Control
- Festlegen von Ressourcenanteilen und Grenzwerten für Storage I/O Control
- Storage I/O Control aktivieren
- Einstellen des Schwellenwerts für Storage I/O Control
- Speicher-DRS-Integration mit Speicherprofilen

Speicherrichtlinien für virtuelle Maschinen

VM-Speicherrichtlinien sind entscheidend für die Bereitstellung von virtuellen Maschinen. Mit den Richtlinien wird gesteuert, welcher Speichertyp für die virtuelle Maschine bereitgestellt wird, wie die virtuelle Maschine innerhalb des Speichers platziert wird und welche Datendienste für die virtuelle Maschine angeboten werden.

vSphere enthält Standardspeicherrichtlinien. Sie können jedoch neue Richtlinien definieren und zuweisen.

Mithilfe der Schnittstelle für VM-Speicherrichtlinien können Sie eine Speicherrichtlinie erstellen. Wenn Sie die Richtlinie definieren, geben Sie verschiedene Speicheranforderungen für Anwendungen an, die auf virtuellen Maschinen ausgeführt werden. Sie können auch mithilfe von Speicherrichtlinien bestimmte Datendienste für virtuelle Festplatten anfordern. Zu diesen Diensten gehören beispielsweise Caching oder Replizierung. Sie wenden die Speicherrichtlinie an, wenn Sie die virtuelle Maschine erstellen, klonen oder migrieren. Nachdem Sie die Speicherrichtlinie angewendet haben, platziert der SPBM-Mechanismus (Storage Policy Based Management, Speicherrichtlinienbasierte Verwaltungsrichtlinien) die virtuelle Maschine in einem passenden Datenspeicher. Weiterhin legt der Mechanismus in bestimmten Speicherumgebungen fest, wie die Speicherobjekte der virtuellen Maschine innerhalb der Speicherressource bereitgestellt und zugewiesen werden, um die erforderliche Dienstebene zu garantieren. SPBM aktiviert auch angeforderte Datendienste für die virtuelle Maschine. vCenter Server überwacht die Einhaltung der Richtlinie und sendet eine Warnung, wenn die virtuelle Maschine die zugewiesene Speicherrichtlinie verletzt.

Weitere Informationen finden Sie unter vSphere-Speicher.

E/A-Filter

E/A-Filter, die virtuellen Festplatten zugeordnet sind, haben direkten Zugriff auf den E/A-Pfad der virtuellen Maschine, und zwar unabhängig von der zugrunde liegenden Speichertopologie.

VMware bietet bestimmte Kategorien von E/A-Filtern an. Außerdem können die E/A-Filter durch Drittanbieter erstellt werden. Normalerweise werden sie als Pakete verteilt, die ein Installationsprogramm bereitstellen, um Filterkomponenten auf Hostclustern von vCenter Server und ESXi bereitzustellen.

Wenn E/A-Filter auf dem ESXi-Cluster bereitgestellt werden, konfiguriert und registriert vCenter Server automatisch einen E/A-Filter-Speicheranbieter – auch als VASA-Anbieter bezeichnet – für jeden Host im Cluster. Die Speicheranbieter kommunizieren mit vCenter Server und vom E/A-Filter angebotene Datendienste werden in der Schnittstelle für VM-Speicherrichtlinien angezeigt. Beim Festlegen gemeinsamer Regeln für eine VM-Richtlinie können Sie auf diese Datendienste zurückgreifen. Nachdem Sie diese Richtlinie virtuellen Festplatten zugeordnet haben, werden die E/A-Filter auf den virtuellen Festplatten aktiviert.

Weitere Informationen finden Sie unter vSphere-Speicher.

Storage I/O Control - Anforderungen

Für Storage I/O Control gibt es mehrere Anforderungen und Einschränkungen.

- Datenspeicher, die über Storage I/O Control aktiviert werden, müssen von einem einzelnen vCenter Server-System verwaltet werden.
- Storage I/O Control wird auf Fibre-Channel-, iSCSI- und NFS-verbundenem Speicher unterstützt. Die Raw-Gerätezuordnung (RDM) wird nicht unterstützt.
- Storage I/O Control unterstützt keine Datenspeicher mit mehreren Erweiterungen.
- Bevor Sie Storage I/O Control auf Datenspeichern verwenden, die von Arrays mit automatischen Storage-Tiering-Funktionen gestützt werden, lesen Sie den VMware Storage/SAN Compatibility Guide, um sicherzugehen, dass Ihr automatisches Tiered-Storage-Array mit Storage I/O Control kompatibel ist.

Unter automatischem Storage-Tiering versteht man die Möglichkeit eines Arrays (oder einer Gruppe von Arrays), anhand von benutzerdefinierten Richtlinien und aktuellen E/A-Mustern LUNs/Volumes oder Teile von LUNs/Volumes automatisch auf verschiedene Typen von Speichermedien (SSD, FC, SAS, SATA) zu migrieren. Für Arrays, die nicht über diese automatischen Migration/Tiering-Funktionen verfügen (dazu gehören auch jene Arrays, die die Möglichkeit bieten, Daten zwischen verschiedenen Typen von Speichermedien manuell zu migrieren) ist keine spezielle Zertifizierung erforderlich.

Ressourcenanteile und Grenzwerte für Storage I/O Control

Sie teilen die Anzahl der Speicher-E/A-Anteile und den oberen Grenzwert für die E/A-Vorgänge pro Sekunde (IOPS) zu, die für jede virtuelle Maschine zulässig ist. Wenn für einen Datenspeicher eine Speicher-E/A-Überlastung erkannt wird, werden die E/A-Workloads der virtuellen Maschinen, die auf den Datenspeicher zugreifen, gemäß der Proportion der VM-Anteile angepasst, die jede virtuelle Maschine besitzt.

Speicher-E/A-Anteile entsprechen den für die Ressourcenzuteilung bei Arbeitsspeicher und CPU verwendeten Anteilen, die unter Anteile der Ressourcenzuteilung beschrieben sind. Diese Anteile repräsentieren die relative Wichtigkeit einer virtuellen Maschine im Hinblick auf die Verteilung von Speicher-E/A-Ressourcen. Bei Ressourcenkonflikten haben virtuelle Maschinen mit höheren Anteilswerten mehr Zugriff auf das Speicherarray. Wenn Sie Speicher-E/A-Ressourcen zuteilen, können Sie die IOPS begrenzen, die für eine virtuelle Maschine zulässig sind. Standardmäßig sind IOPs nicht begrenzt.

Die Vor- und Nachteile des Festlegens von Ressourcengrenzwerten sind unter Grenzwert für die Ressourcenzuteilung beschrieben. Wenn der Grenzwert, den Sie für eine virtuelle Maschine festlegen möchten, in Form von MB pro Sekunde anstatt in IOPS vorliegt, können Sie auf Basis der Standard-E/A-Größe für diese virtuelle Maschine die MB pro Sekunde in IOPS konvertieren. Wenn Sie beispielsweise eine Sicherungsanwendung mit E/A-Vorgängen von 64 KB auf 10 MB pro Sekunde beschränken möchten, legen Sie einen Grenzwert von 160 IOPS fest.

Anzeigen von Ressourcenanteilen und Grenzwerten für Storage I/O Control

Sie können die Anteile und Grenzwerte aller virtuellen Maschinen einsehen, die auf einem Datenspeicher ausgeführt werden. Anhand dieser Informationen können Sie ungeachtet des Clusters, auf dem sie ausgeführt werden, die Einstellungen aller virtuellen Maschinen vergleichen, die auf den Datenspeicher zugreifen.

Verfahren

- 1 Wechseln Sie im vSphere Client zum Datenspeicher.
- 2 Klicken Sie auf die Registerkarte VMs.

Die Registerkarte zeigt jede virtuelle Maschine an, die auf dem Datenspeicher ausgeführt wird, sowie die zugewiesenen Anteilswerte und den Prozentsatz der Datenspeicheranteile.

Überwachen der Anteile von Storage I/O Control

Anhand der Datenspeicher-Registerkarte **Leistung** können Sie überwachen, wie Storage I/O Control die E/A-Arbeitslasten der virtuellen Maschinen verarbeitet, die auf Basis ihrer Anteile auf einen Datenspeicher zugreifen.

Die Leistungsdiagramme des Datenspeichers ermöglichen Ihnen die Überwachung der folgenden Informationen:

- Durchschnittliche Latenz und aggregierte IOPS auf dem Datenspeicher
- Latenz f
 ür Hosts
- Warteschlangentiefe f
 ür Hosts
- Lese/Schreib-IOPS für Hosts
- Latenz für Lese-/Schreibvorgänge für Festplatten virtueller Maschinen
- Lese/Schreib-IOPS für Festplatten virtueller Maschinen

Verfahren

- 1 Wechseln Sie im vSphere Client zum Datenspeicher.
- 2 Klicken Sie auf der Registerkarte Überwachen auf Leistung.
- 3 Wählen Sie Erweitert aus.

Festlegen von Ressourcenanteilen und Grenzwerten für Storage I/O Control

Teilen Sie den virtuellen Maschinen Speicher-E/A-Ressourcen basierend auf der Wichtigkeit zu, indem Sie der virtuellen Maschine eine relative Menge an Anteilen zuweisen.

Freigaben schreiben nicht unbedingt die Zuteilung in Form von E/A-Vorgängen oder MB pro Sekunde vor, es sei denn, die Arbeitslasten der virtuellen Maschine sind sehr ähnlich. Höhere Anteile erlauben einer virtuellen Maschine, am Speichergerät oder Datenspeicher mehr gleichzeitige E/A-Vorgänge bereitzuhalten als einer virtuellen Maschine mit niedrigeren Anteilen. Die beiden virtuellen Maschinen haben je nach Arbeitslast möglicherweise einen unterschiedlichen Durchsatz.

Voraussetzungen

Weitere Informationen zum Erstellen von VM-Speicherrichtlinien und zum Festlegen allgemeiner Regeln für VM-Speicherrichtlinien finden Sie unter *vSphere-Speicher*.

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und klicken Sie auf **Einstellungen bearbeiten**.
- 3 Klicken Sie auf die Registerkarte Virtuelle Hardware und wählen Sie aus der Liste eine virtuelle Festplatte aus. Erweitern Sie **Festplatte**.
- 4 Wählen Sie aus dem Dropdown-Menü eine VM-Speicherrichtlinie aus.

Wenn Sie eine Speicherrichtlinie auswählen, konfigurieren Sie **Anteile** und **Grenzwert – IOPS** nicht manuell.

5 Klicken Sie unter **Anteile** auf das Dropdown-Menü und wählen Sie die relative Menge an Anteilen ("Niedrig", "Normal" oder "Hoch") aus, die der virtuellen Maschine zugeteilt werden soll.

Sie können die Option Benutzerdefiniert auswählen und eigene Anteilswerte angeben.

6 Klicken Sie unter **Grenzwert – IOPs** auf das Dropdown-Menü und geben Sie den oberen Grenzwert für Speicherressourcen an, die der virtuellen Maschine zugeteilt werden sollen.

Unter IOPs versteht man die Anzahl an E/A-Vorgängen pro Sekunde. Standardmäßig sind IOPs nicht begrenzt. Sie wählen "Niedrig" (500), "Normal" (1000) oder "Hoch" (2000), oder sie können "Benutzerdefiniert" wählen, um eine benutzerdefinierte Anzahl an Anteilen einzugeben.

7 Klicken Sie auf OK.

Storage I/O Control aktivieren

Wenn Sie Storage I/O Control aktivieren, überwacht ESXi die Datenspeicherlatenz und drosselt die an den Datenspeicher gesendete E/A-Last, wenn die durchschnittliche Latenz des Datenspeichers den Schwellenwert überschreitet.

Verfahren

- 1 NavigiereWechseln Sie zum Datenspeicher im vSphere Client zum Datenspeicher.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.
- 3 Klicken Sie auf Einstellungen und klicken Sie dann auf Allgemein.
- 4 Klicken Sie auf Bearbeiten für Datenspeicherfunktionen.
- 5 Wählen Sie das Kontrollkästchen Aktivieren von Storage I/O Control.
- 6 Klicken Sie auf OK.

Ergebnisse

Unter Datenspeicherfunktionen ist Storage I/O Control für den Datenspeicher aktiviert.

Einstellen des Schwellenwerts für Storage I/O Control

Der Überlastungsschwellenwert eines Datenspeichers ist die für den Datenspeicher maximal zulässige Latenz, die erreicht werden kann, bevor Storage I/O Control damit beginnt, den VM-Arbeitslasten ihren Anteilen entsprechend eine Wichtigkeit zuzuweisen.

In den meisten Umgebungen kann die Einstellung des Schwellenwerts beibehalten werden.

Vorsicht Storage I/O Control wird möglicherweise nicht ordnungsgemäß ausgeführt, wenn Sie dieselben Spindeln in zwei verschiedenen Datenspeichern verwenden.

Falls Sie die Einstellung für den Überlastungsschwellenwert ändern möchten, ziehen Sie dabei Folgendes in Betracht.

- Ein höherer Wert führt in der Regel zu einem höheren Aggregatdurchsatz und zu einer schwächeren Isolation. Eine Drosselung tritt erst dann ein, wenn die durchschnittliche Latenz den Schwellenwert überschreitet.
- Falls der Durchsatz eine größerer Bedeutung als die Latenz hat, stellen Sie den Wert nicht zu niedrig ein. Für Fibre-Channel-Festplatten kann beispielsweise ein Wert unter 20 ms den Spitzendurchsatz bei Festplatten beeinträchtigen. Ein sehr hoher Wert (mehr als 50 ms) lässt eine sehr hohe Latenz zu, möglicherweise jedoch ohne signifikanten Nutzen für den Gesamtdurchsatz.
- Ein niedrigerer Wert führt zu kürzerer Gerätelatenz und zu stärkerer E/A-Leistungsisolation bei der virtuellen Maschine. Stärkere Isolation bedeutet, dass die Anteilsteuerung häufiger durchgeführt wird. Eine geringere Gerätelatenz bewirkt bei virtuellen Maschinen mit den höchsten Anteilen eine geringere E/A-Latenz. Dabei muss bei den virtuellen Maschinen mit geringeren Anteilen eine höhere E/A-Latenz in Kauf genommen werden.
- Ein sehr niedriger Wert (niedriger als 20 ms) führt zu einer niedrigeren
 Gerätelatenz und besseren Isolation der E/As auf Kosten einer Verringerung des
 Gesamtdatenspeicherdurchsatzes.
- Ein äußerst hoher oder niedriger Wert führt zu einer schlechten Isolierung.

Voraussetzungen

Überprüfen Sie, ob Storage I/O Control aktiviert ist.

Verfahren

- 1 Wechseln Sie im vSphere Client zum Datenspeicher.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Einstellungen.
- 3 Klicken Sie auf Allgemein.

- 4 Klicken Sie auf Bearbeiten für Datenspeicherfunktionen.
- 5 Wählen Sie das Kontrollkästchen Aktivieren von Storage I/O Control.

Storage I/O Control (Speicher-E/A-Steuerung) legt automatisch den Latenz-Schwellenwert fest, der der geschätzten Latenz entspricht, wenn der Datenspeicher mit 90 % seines Spitzendurchsatzes arbeitet.

6 (Optional) Passen Sie den Überlastungsschwellenwert an.

Wählen Sie im Dropdown-Menü Prozentsatz des Spitzendurchsatzes einen Wert aus.
 Der Wert für "Prozentsatz des Spitzendurchsatzes" zeigt den geschätzten
 Latenzschwellenwert an, wenn der Datenspeicher diesen Prozentsatz seines geschätzten
 Spitzendurchsatzes verwendet.

• Wählen Sie im Dropdown-Menü Manuell einen Wert aus.

Der Wert muss zwischen 5 ms und 100 ms liegen. Das Festlegen von unpassenden Überlastungsschwellenwerten wirkt sich möglicherweise negativ auf die Leistung der virtuellen Maschinen im Datenspeicher aus.

- 7 (Optional) Klicken Sie auf Auf Standardwerte zurücksetzen, um den Überlastungsschwellenwert auf den Standardwert (30 ms) zurückzusetzen.
- 8 Klicken Sie auf OK.

Speicher-DRS-Integration mit Speicherprofilen

Mit SPBM (Storage Policy Based Management, Speicherrichtlinienbasierte Verwaltung) können Sie die Richtlinie für eine virtuelle Maschine festlegen, die durch Storage DRS erzwungen wird. Ein Datenspeicher-Cluster kann über eine Gruppe von Datenspeichern mit unterschiedlichen Funktionsprofilen verfügen. Wenn den virtuellen Maschinen Speicherprofile zugewiesen sind, kann Storage DRS eine Platzierung basierend auf den zugrunde liegenden Datenspeicherfunktionen erzwingen.

Als Teil der Storage DRS-Integration mit Speicherprofilen wird die erweiterte Option EnforceStorageProfiles der Storage DRS-Clusterebene eingeführt. Die erweiterte Option EnforceStorageProfiles verwendet einen dieser Ganzzahlwerte: 0,1 oder 2. Der Standardwert ist 0. Wenn die Option auf 0 festgelegt ist, wird angezeigt, dass keine Speicherprofil- oder Richtliniendurchsetzung im Storage DRS-Cluster vorhanden ist. Wenn die Option auf 1 festgelegt ist, wird angezeigt, dass eine weiche Speicherprofil- oder Richtliniendurchsetzung im Storage DRS-Cluster vorhanden ist. Dies ist analog zu weichen DRS-Regeln. Storage DRS entspricht dem Speicherprofil oder der Richtlinie auf der optimalen Ebene. Storage DRS verletzt die Einhaltung des Speicherprofils, wenn dies erforderlich ist. Storage DRS-Affinitätsregeln verfügen nur über eine höhere Priorität gegenüber Speicherprofilen, wenn die Durchsetzung der Speicherprofile auf 1 festgelegt ist. Wenn die Option auf 2 festgelegt ist, wird angezeigt, dass eine harte Speicherprofil- oder Richtliniendurchsetzung im Storage DRS-Cluster vorhanden ist. Dies ist analog zu harten DRS-Regeln. Storage DRS verletzt nicht das Speicherprofil oder die Einhaltung der Richtlinie. Speicherprofile verfügen über eine höhere Priorität gegenüber Affinitätsregeln. Storage DRS generiert folgenden Fehler: Verstoß gegen Antiaffinitätsregel konnte nicht behoben werden.

Voraussetzungen

Standardmäßig erzwingt Storage DRS keine Speicherrichtlinien, die mit einer virtuellen Maschine verbunden sind. Konfigurieren Sie die EnforceStorageProfiles-Option entsprechend Ihren Anforderungen. Die Optionen sind Standard (0), Weich (1) oder Hart (2).

Verfahren

- 1 Melden Sie sich beim vSphere Client als Administrator an.
- 2 Klicken Sie im vSphere Client auf den Storage DRS-Cluster und wählen Sie dann Verwalten > Einstellungen > Storage DRS aus.
- 3 Klicken Sie auf Bearbeiten > Erweiterte Optionen.
- 4 Klicken Sie in den Bereich unter der Optionsüberschrift und geben Sie EnforceStorageProfiles ein.
- 5 Klicken Sie in den Bereich unter der Wertüberschrift rechts von dem zuvor eingegebenem erweiterten Optionsnamen und geben Sie den Wert 0, 1 oder 2 ein.
- 6 Wählen Sie Hinzufügen aus.
- 7 Klicken Sie auf OK.

Verwalten von Ressourcenpools mit vSphere

14

Ein Ressourcenpool ist eine logische Abstraktion für eine flexible Verwaltung von Ressourcen. Ressourcenpools können in Hierarchien angeordnet und zur hierarchischen Partitionierung verfügbarer CPU- und Arbeitsspeicherressourcen verwendet werden.

Jeder eigenständige Host und jeder DRS-Cluster verfügt über einen (nicht sichtbaren) Root-Ressourcenpool, der die Ressourcen des Hosts oder Clusters gruppiert. Der Root-Ressourcenpool erscheint deshalb nicht, weil er stets mit den Ressourcen des Hosts (oder Clusters) identisch ist.

Der Benutzer hat die Möglichkeit, auf Basis des Root-Ressourcenpools oder anderer, durch Benutzer erstellter, untergeordneter Ressourcenpools weitere untergeordnete Ressourcenpools zu erstellen. Jeder untergeordnete Ressourcenpool besitzt einen gewissen Anteil der übergeordneten Ressourcen und kann seinerseits selbst über eine Hierarchie untergeordneter Ressourcenpools verfügen, um immer kleinere Einheiten der Rechenfähigkeit abzubilden.

In einem Ressourcenpool können untergeordnete Ressourcenpools, virtuelle Maschinen oder beides enthalten sein. So entsteht eine hierarchische Ordnung gemeinsam genutzter Ressourcen. Die Ressourcenpools einer höheren Ebene werden als übergeordnete Ressourcenpools bezeichnet. Ressourcenpools und virtuelle Maschinen derselben Ebene werden als hierarchisch gleichwertig bezeichnet. Der Cluster selbst stellt den Root-Ressourcenpool dar. Falls Sie keine untergeordneten Ressourcenpools erstellen, gibt es lediglich die Root-Ressourcenpools.

Im folgenden Beispiel ist RP-QA der übergeordnete Ressourcenpool für RP-QA-UI. RP-Marketing und RP-QA sind hierarchisch gleichwertige Ressourcenpools. Die drei virtuelle Maschinen direkt unter RP-Marketing sind ebenfalls hierarchisch gleichwertig.

Abbildung 14-1. Übergeordnete, untergeordnete und hierarchisch gleichwertige Ressourcenpools in der Ressourcenpoolhierarchie

Für jeden Ressourcenpool können Werte für Reservierung, Grenze und Anteile festgelegt und bestimmt werden, ob die Reservierung erweiterbar sein soll. Die Ressourcen des Ressourcenpools sind anschließend für untergeordnete Ressourcenpools und virtuelle Maschinen verfügbar.

Hinweis In diesem Kapitel bezieht sich "Arbeitsspeicher" auf den physischen Arbeitsspeicher.

Lesen Sie als Nächstes die folgenden Themen:

- Gründe für die Verwendung von Ressourcenpools
- Erstellen eines Ressourcenpools
- Bearbeiten eines Ressourcenpools
- Hinzufügen einer virtuellen Maschine zu einem Ressourcenpool
- Entfernen einer virtuellen Maschine aus einem Ressourcenpool
- Entfernen eines Ressourcenpools
- Ressourcenpool-Zugangssteuerung
- Erweiterbare Reservierung, Beispiel 1
- Erweiterbare Reservierung, Beispiel 2

Gründe für die Verwendung von Ressourcenpools

Ressourcenpools ermöglichen das Delegieren der Kontrolle über Ressourcen eines Hosts (oder Clusters). Die Vorteile von Ressourcenpools werden jedoch besonders deutlich, wenn Sie Ressourcenpools zum Aufteilen aller Ressourcen in einem Cluster verwenden. Sie können mehrere Ressourcenpools als direkte untergeordnete Objekte eines Hosts oder Clusters erstellen und entsprechend konfigurieren. Anschließend können Sie deren Steuerung an andere Personen oder Organisationen delegieren.

Die Verwendung von Ressourcenpools kann die folgenden Vorteile bieten.

- Flexible hierarchische Organisation Sie können Ressourcenpools je nach Bedarf hinzufügen, entfernen oder neu anordnen bzw. Ressourcenzuteilungen ändern.
- Isolierung zwischen den Pools, gemeinsame Verwendung innerhalb der Pools Administratoren der obersten Ebene können einem Administrator auf Abteilungsebene einen Ressourcenpool zur Verfügung stellen. Zuweisungsänderungen innerhalb eines abteilungsbezogenen Ressourcenpools wirken sich nicht unerlaubterweise auf andere unabhängige Ressourcenpools aus.
- Zugangssteuerung und Delegation Wenn ein Administrator der obersten Ebene einem Administrator auf Abteilungsebene einen Ressourcenpool zur Verfügung stellt, kann dieser

sämtliche Erstellungs- und Verwaltungsvorgänge für virtuelle Maschinen durchführen, solange er sich hierbei in dem Ressourcenrahmen bewegt, zu dem der Ressourcenpool aufgrund der aktuellen festgelegten Anteile, Reservierung und Grenzwerte berechtigt ist. Die Delegierung erfolgt in der Regel in Verbindung mit Berechtigungseinstellungen.

Trennung zwischen Ressourcen und Hardware – Wenn Sie für DRS aktivierte Cluster verwenden, werden die Ressourcen aller Hosts stets dem Cluster zugewiesen. Dies bedeutet, dass Administratoren die Ressourcenverwaltung unabhängig von den Hosts durchführen können, die tatsächlich zu den Ressourcen beitragen. Wenn Sie drei Hosts mit je 2 GB durch zwei Hosts mit je 3 GB ersetzen, müssen Sie keine Änderungen an der Ressourcenzuteilung vornehmen.

Durch diese Trennung können sich Administratoren Computing-Kapazitäten zusammenfassen und müssen sich weniger mit einzelnen Hosts befassen.

Verwaltung von virtuellen Maschinensätzen, die einen Multi-Tier-Dienst ausführen – Fassen Sie virtuelle Maschinen für einen Multi-Tier-Dienst in einem Ressourcenpool zusammen. Sie müssen die Ressourcen nicht auf jeder virtuellen Maschine einzeln einrichten. Stattdessen können Sie die Zuteilung der gemeinsamen Ressourcen zu den virtuellen Maschinen steuern, indem Sie die Einstellungen des Ressourcenpools ändern, dem diese virtuellen Maschinen zugewiesen sind.

Angenommen, ein Host verfügt über eine bestimmte Anzahl virtueller Maschinen. Drei der virtuellen Maschinen werden von der Marketingabteilung und zwei von der Abteilung für Qualitätssicherung verwendet. Da in der Qualitätssicherung größere CPU- und Arbeitsspeichermengen benötigt werden, erstellt der Administrator für jede Gruppe einen Ressourcenpool. und setzt beim Pool der Qualitätssicherung den Wert **CPU-Anteile** auf **Hoch** und beim Pool der Marketingabteilung auf **Normal**, damit die Benutzer der Abteilung Qualitätssicherung automatisierte Tests durchführen können. Der zweite Ressourcenpool mit den geringeren CPU- und Arbeitsspeicherressourcen ist für die geringere Arbeitslast der Marketingmitarbeiter dennoch ausreichend. Immer wenn die Qualitätssicherungsabteilung ihre Zuteilung nicht vollständig nutzt, können die verfügbaren Ressourcen von der Marketingabteilung verwendet werden.

Die Zahlen der folgenden Abbildung stellen die effektiven Ressourcenpoolzuweisungen dar.

Abbildung 14-2. Zuteilen von Ressourcen zu Ressourcenpools

Erstellen eines Ressourcenpools

Sie können einen untergeordneten Ressourcenpool eines beliebigen ESXi-Hosts, Ressourcenpools oder DRS-Clusters erstellen.

Hinweis Wenn ein Host zu einem Cluster hinzugefügt wurde, ist es nicht möglich, untergeordnete Ressourcenpools dieses Hosts zu erstellen. Wenn der Cluster für DRS aktiviert ist, können Sie untergeordnete Ressourcenpools des Clusters erstellen.

Im Rahmen der Erstellung eines untergeordneten Ressourcenpools werden Sie aufgefordert, Attributinformationen für den Ressourcenpool einzugeben. Das System verwendet eine Zugangssteuerung, um sicherzustellen, dass nicht verfügbare Ressourcen nicht zugeteilt werden. Wenn Sie möchten, dass Ihre Freigaben beim Hinzufügen oder Entfernen von VMs dynamisch skaliert werden, können Sie skalierbare Freigaben auswählen.

Hinweis Freigaben werden auf der übergeordneten Ebene skaliert. Alle abgeleiteten Ressourcenpools, die aus einem übergeordneten Element mit skalierbaren Freigaben erstellt wurden, verfügen standardmäßig über skalierbare Freigaben.

Voraussetzungen

Der vSphere Client ist mit dem vCenter Server-System verbunden.

Verfahren

- 1 Wählen Sie im vSphere Client ein übergeordnetes Objekt für den Ressourcenpool aus (einen Host, einen anderen Ressourcenpool oder einen DRS-Cluster).
- 2 Klicken Sie mit der rechten Maustaste auf das Objekt und wählen Sie Neuer Ressourcenpool.
- 3 Geben Sie einen Namen zur Identifikation des Ressourcenpools ein.
- 4 Aktivieren Sie das Kontrollkästchen, wenn Sie skalierbare Freigaben aktivieren möchten.

5 Geben Sie an, wie die CPU- und Arbeitsspeicherressourcen zugeteilt werden sollen.

Die CPU-Ressourcen Ihres Ressourcenpools sind die garantierten physischen Ressourcen, die der Host für einen Ressourcenpool reserviert. In der Regel sollten Sie die Voreinstellung übernehmen, und dem Host die Zuteilung der Ressourcen überlassen.

Option	Beschreibung
Anteile	 Geben Sie den Anteil der Ressourcen dieses Ressourcenpools an den Gesamtressourcen des übergeordneten Ressourcenpools an. Hierarchisch gleichwertige Ressourcenpools teilen sich Ressourcen auf der Basis ihrer relativen Anteilswerte, die an die Reservierung und die Grenzwerte geknüpft sind. Wählen Sie Niedrig, Normal oder Hoch. Dadurch werden die Anteilswerte im Verhältnis 1:2:4 festgelegt. Wählen Sie die Einstellung Benutzerdefiniert, um jeder virtuellen Maschine einen bestimmten Anteil zuzuweisen, der einer proportionalen Gewichtung entspricht.
Reservierung	Geben Sie eine garantierte CPU- oder Arbeitsspeicherzuteilung für diesen Ressourcenpool an. Die Standardeinstellung lautet O. Eine Reservierung ungleich Null wird von den nicht reservierten Ressourcen des übergeordneten Hosts oder Ressourcenpools subtrahiert. Die Ressourcen werden als reserviert betrachtet, auch wenn keine virtuellen Maschinen mit dem Ressourcenpool verknüpft sein sollten.
Erweiterbare Reservierung	Wenn das Kontrollkästchen ausgewählt ist (Standardeinstellung), werden erweiterbare Reservierungen bei der Zugangssteuerung berücksichtigt. Wenn Sie eine virtuelle Maschine in diesem Ressourcenpool einschalten und die gesamten Reservierungen der virtuellen Maschinen größer als die Reservierung des Ressourcenpools sind, kann der Ressourcenpool Ressourcen vom übergeordneten Pool verwenden.
Grenzwert	Geben Sie die Obergrenze der Zuteilung von CPU- oder Arbeitsspeicheranteilen für diesen Ressourcenpool an. In der Regel können Sie die Voreinstellung übernehmen (Unbegrenzt). Deaktivieren Sie das Kontrollkästchen Unbegrenzt , um einen Grenzwert festzulegen.

6 Klicken Sie auf OK.

Ergebnisse

Nachdem Sie einen Ressourcenpool erstellt haben, können Sie ihm virtuelle Maschinen hinzufügen. Die Anteile einer virtuellen Maschine sind relativ zu anderen virtuellen Maschinen (oder Ressourcenpools) mit demselben übergeordneten Ressourcenpool.

Beispiel: Erstellen von Ressourcenpools

Angenommen, Sie haben einen Host, der 6 GHz an CPU und 3 GB an Arbeitsspeicher liefert und von Ihrer Marketing- und Ihrer QA-Abteilung gemeinsam verwendet werden muss. Sie möchten die Ressourcen außerdem ungleichmäßig verteilen und der einen Abteilung (QA) eine höhere Priorität einräumen. Dies lässt sich erreichen, indem man einen Ressourcenpool für jede Abteilung erstellt und das Attribut **Anteile** verwendet, um die Ressourcenzuteilung zu priorisieren.

In dem Beispiel wird gezeigt, wie Sie mit dem ESXi-Host als übergeordneter Ressource einen Ressourcenpool erstellen.

- 1 Geben Sie im Dialogfeld **Neuer Ressourcenpool** einen Namen für den Ressourcenpool der QA-Abteilung ein (z. B. RP-QA).
- 2 Legen Sie für die **Anteile (Shares)** die Option **Hoch (High)** fest, und zwar sowohl für die CPUals auch die Arbeitsspeicherressourcen von RP-QS.
- 3 Erstellen Sie einen zweiten Ressourcenpool namens "RP-Marketing".

Übernehmen Sie die Anteilseinstellung Normal für CPU- und Arbeitsspeicherressourcen.

4 Klicken Sie auf **OK**.

Wenn Ressourcenkonflikte auftreten, erhält "RP-QA" 4GHz an Taktfrequenz und 2GB an Arbeitsspeicher und "RP-Marketing" 2GHz und 1GB. Anderenfalls können sie mehr als diesen Anteil erhalten. Diese Ressourcen sind anschließend für die virtuellen Maschinen im jeweiligen Ressourcenpool verfügbar.

Bearbeiten eines Ressourcenpools

Nachdem Sie den Ressourcenpool erstellt haben, können Sie seine Einstellungen für die Speicherressourcen und die CPU bearbeiten.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Ressourcenpool.
- 2 Wählen Sie im Dropdown-Menü Aktionen die Option Ressourceneinstellungen bearbeiten aus.
- **3** (Optional) Sie können alle Attribute des ausgewählten Ressourcenpools entsprechend der Beschreibung in Erstellen eines Ressourcenpools ändern.
 - Markieren Sie das Kontrollkästchen, wenn Sie skalierbare Freigaben aktivieren möchten.

Hinweis Freigaben werden auf der übergeordneten Ebene skaliert. Alle abgeleiteten Ressourcenpools, die aus einem übergeordneten Element mit skalierbaren Freigaben erstellt wurden, verfügen standardmäßig über skalierbare Freigaben.

- Wählen Sie unter **CPU** die CPU-Ressourceneinstellungen aus.
- Wählen Sie unter Arbeitsspeicher die Ressourceneinstellungen f
 ür den Arbeitsspeicher aus.
- 4 Klicken Sie auf **OK**, um Ihre Änderungen zu speichern.

Hinzufügen einer virtuellen Maschine zu einem Ressourcenpool

Wenn Sie eine virtuelle Maschine erstellen, können Sie einen Speicherort für den Ressourcenpool als Teil des Erstellungsvorgangs angeben. Darüber hinaus können Sie eine vorhandene virtuelle Maschine zu einem Ressourcenpool hinzufügen.

Folgendes geschieht, wenn Sie eine virtuelle Maschine in einen neuen Ressourcenpool verschieben:

- Reservierung und Grenzwert der virtuellen Maschine ändern sich nicht.
- Wenn die Anteile der virtuellen Maschine hoch, mittel oder gering sind, gibt % Anteile (%Shares) die Gesamtzahl der im neuen Ressourcenpool genutzten Anteile wieder.
- Wurden der virtuellen Maschine benutzerdefinierte Anteile zugewiesen, bleibt der Anteilswert unverändert.

Hinweis Da sich Anteilszuordnungen stets auf einen Ressourcenpool beziehen, müssen Sie die Anteile einer virtuellen Maschine möglicherweise beim Verschieben in einen Ressourcenpool manuell ändern, damit diese mit den relativen Werten im neuen Ressourcenpool konsistent sind. Es wird eine Meldung angezeigt, falls eine virtuelle Maschine einen sehr hohen (oder sehr geringen) Prozentsatz der gesamten Anteile erhalten würde.

Die unter Überwachen auf der Registerkarte Ressourcenreservierung angezeigten Informationen zu reservierten und nicht reservierten CPU- und Arbeitsspeicherressourcen des Ressourcenpools ändern sich, um ggf. die mit der virtuellen Maschine verknüpften Reservierungen wiederzugeben.

Hinweis Falls die virtuelle Maschine ausgeschaltet oder angehalten wurde, kann sie zwar verschoben werden, die insgesamt verfügbaren Ressourcen (wie reservierte und nicht reservierte CPU- und Arbeitsspeicheranteile) des Ressourcenpools werden dadurch jedoch nicht beeinträchtigt.

Verfahren

- 1 WechselnNavigieren Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und klicken Sie auf **Migrieren**.
 - Sie können die virtuelle Maschine auf einen anderen Host verschieben.
 - Sie können den Speicher der virtuellen Maschine in einen anderen Datenspeicher verschieben.

- Sie können die virtuelle Maschine auf einen anderen Host und ihren Speicher in einen anderen Datenspeicher verschieben.
- 3 Wählen Sie einen Ressourcenpool aus, in dem die virtuelle Maschine ausgeführt wird.
- 4 Überprüfen Sie Ihre Auswahl und klicken Sie auf Beenden.

Ergebnisse

Wenn eine virtuelle Maschine eingeschaltet ist und der Zielressourcenpool nicht über ausreichende CPU- oder Arbeitsspeicheranteile verfügt, um die Reservierung der virtuellen Maschine zu garantieren, wird die Verschiebung durch die Zugangssteuerung unterbunden. In einem Fehlerdialogfeld werden die verfügbaren und angeforderten Ressourcen angezeigt, sodass Sie abwägen können, ob das Problem durch eine entsprechende Anpassung behoben werden könnte.

Entfernen einer virtuellen Maschine aus einem Ressourcenpool

Sie können eine virtuelle Maschine aus einem Ressourcenpool entfernen, indem Sie die virtuelle Maschine entweder in einen anderen Ressourcenpool verschieben oder löschen.

Wenn Sie eine virtuelle Maschine aus einem Ressourcenpool entfernen, sinkt die Gesamtzahl der mit dem Ressourcenpool verknüpften Anteile, sodass jeder verbleibende Anteil nun mehr Ressourcen darstellt. Angenommen, Sie verfügen über einen Pool mit einer Berechtigung von 6 GHz, in dem drei virtuelle Maschinen enthalten sind, für deren Anteile die Einstellung auf **Normal** gesetzt wurde. Nehmen wir weiter an, die virtuellen Maschinen sind CPU-gebunden und verfügen über eine gleiche Zuteilung von je 2 GHz. Falls nun eine der drei Maschinen in einen anderen Ressourcenpool verschoben wird, erhalten die beiden verbleibenden virtuellen Maschinen eine gleiche Zuteilung von je 3 GHz.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Ressourcenpool.
- 2 Wählen Sie eine der folgenden Methoden zum Entfernen der virtuellen Maschine aus dem Ressourcenpool aus.
 - Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie
 Verschieben nach... aus, um die virtuelle Maschine in einen anderen Ressourcenpool zu verschieben.

Die virtuelle Maschine muss nicht ausgeschaltet werden, wenn Sie sie verschieben möchten.

Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie die Option
 Von Festplatte löschen aus.

Die virtuelle Maschine muss ausgeschaltet sein, damit sie vollständig entfernt werden kann.

Entfernen eines Ressourcenpools

Sie können einen Ressourcenpool aus der Bestandsliste entfernen.

Verfahren

1 Klicken Sie im vSphere Client mit der rechten Maustaste auf den Ressourcenpool und wählen Sie Löschen aus.

Ein Bestätigungsdialogfeld wird angezeigt.

2 Klicken Sie auf Ja, um den Ressourcenpool zu entfernen.

Ressourcenpool-Zugangssteuerung

Wenn Sie eine virtuelle Maschine in einem Ressourcenpool einschalten oder versuchen, einen untergeordneten Ressourcenpool zu erstellen, führt das System eine zusätzliche Zugangssteuerung durch, um sicherzustellen, dass die für den Ressourcenpool geltenden Einschränkungen nicht verletzt werden.

Vergewissern Sie sich vor dem Einschalten einer virtuellen Maschine oder dem Erstellen eines Ressourcenpools, dass auf der Registerkarte **Ressourcenreservierung** im vSphere Client ausreichend Ressourcen verfügbar sind. Der Wert **Reservierung verfügbar** für CPU und Arbeitsspeicher zeigt Ressourcen an, die nicht reserviert sind.

Wie die verfügbaren CPU- und Arbeitsspeicherressourcen berechnet werden und ob Aktionen ausgeführt werden, hängt vom **Typ der Reservierung** ab.

Typ der Reservierung	Beschreibung
Korrigiert	Das System prüft, ob der ausgewählte Ressourcenpool über eine ausreichende Menge an nicht reservierten Ressourcen verfügt. Ist dies der Fall, kann die Aktion durchgeführt werden. Ist dies nicht der Fall, wird eine Meldung angezeigt und die Aktion kann nicht durchgeführt werden.
Erweiterbar	Das System betrachtet die Ressourcen als im ausgewählten Ressourcenpool
(Standard)	und dem ihm unmittelbar übergeordneten Ressourcenpool verfügbar. Ist für den übergeordneten Ressourcenpool ebenfalls die Option Erweiterbare Reservierung aktiviert, kann dieser Ressourcen aus dem übergeordneten Ressourcenpool leihen. Das Leihen von Ressourcen geschieht rekursiv von den höher übergeordneten Ressourcenpools des aktuellen Ressourcenpools, wenn die Option Erweiterbare Reservierung aktiviert ist. Eine dauerhafte Aktivierung dieser Option bietet zwar eine höhere Flexibilität, jedoch auch weniger Schutz. Der Besitzer eines untergeordneten Ressourcenpools reserviert möglicherweise mehr Ressourcen, als Sie vorsehen.

Tabelle 14-1.	Reservierungstypen
	Reservici ungstypen

Das System unterbindet die Verletzung der vorkonfigurierten Einstellungen **Reservierung** bzw. **Grenzwert**. Bei jeder Neukonfiguration eines Ressourcenpools bzw. bei jedem Einschalten einer virtuellen Maschine validiert das System sämtliche Parameter, damit allen Service-Level-Garantien zu jeder Zeit entsprochen werden kann.

Erweiterbare Reservierung, Beispiel 1

In diesem Beispiel wird dargestellt, wie ein Ressourcenpool mit erweiterbaren Reservierungen funktioniert.

Angenommen, ein Administrator verwaltet den Pool P und definiert zwei untergeordnete Ressourcenpools, S1 und S2, für zwei unterschiedliche Benutzer (oder Gruppen).

Dem Administrator ist zwar bekannt, dass die Benutzer virtuelle Maschinen mit gewissen Reservierungen einschalten möchten, er weiß jedoch nicht, wie viele Ressourcen die beiden Benutzer jeweils reservieren müssen. Wenn die Reservierungen für S1 und S2 als erweiterbar festlegt sind, verfügt der Administrator über mehr Flexibilität, was das Teilen und Übernehmen der gemeinsamen Reservierung für Pool P betrifft.

Ohne erweiterbare Reservierungen müsste der Administrator S1 und S2 eine bestimmte Menge explizit zuteilen. Solch spezifische Zuteilungen können sich, insbesondere in Ressourcenpoolhierarchien mit vielen Ebenen, als unflexibel erweisen und das Festlegen von Reservierungen in der Ressourcenpoolhierarchie komplizieren.

Erweiterbare Reservierungen führen zu einem Verlust der strengen Isolierung. S1 könnte die gesamte Reservierung für P für sich nutzen, sodass für S2 keine Arbeitsspeicher- oder CPU-Anteile direkt verfügbar wären.

Erweiterbare Reservierung, Beispiel 2

In diesem Beispiel wird dargestellt, wie ein Ressourcenpool mit erweiterbaren Reservierungen funktioniert.

Stellen Sie sich das folgende Szenario vor, wie in der Abbildung dargestellt.

- Der übergeordnete Pool RP-MAMA verfügt über eine Reservierung von of 6 GHz und eine ausgeführte virtuelle Maschine VM-M1 mit einer Reservierung von 1 GHz.
- Sie erstellen einen untergeordneten Ressourcenpool RP-KIND mit einer Reservierung von 2 GHz und der festgelegten Option Erweiterbare Reservierung (Expandable Reservation).
- Sie fügen zwei virtuelle Maschinen, nämlich VM-K1 und VM-K2, mit einer Reservierung von je 2 GHz zum untergeordneten Ressourcenpool hinzu und versuchen, sie einzuschalten.
- VM-K1 kann direkt von RP-KIND (mit 2 GHz) Ressourcen reservieren.
- Für VM-K2 sind lokal keine Ressourcen verfügbar, weshalb diese virtuelle Maschine Ressourcen des übergeordneten Ressourcenpools RP-MAMA entleiht. RP-MAMA verfügt über 6 GHz minus 1 GHz (reserviert durch die virtuelle Maschine), minus 2 GHz (reserviert durch RP-KIND), sodass nicht reservierte Ressourcen von 3 GHz übrig bleiben. Mit den verfügbaren 3 GHz kann die virtuelle 2 GHz-Maschine eingeschaltet werden.

Abbildung 14-3. Zugangssteuerung bei erweiterbaren Ressourcenpools: Einschalten erfolgreich

Betrachten wir nun ein anderes Szenario mit VM-M1 und VM-M2.

- Sie schalten in RP-MAMA zwei virtuelle Maschinen mit einer Gesamtreservierung von 3 GHz ein.
- Sie können auch VM-K1 in RP-KIND einschalten, da lokal 2 GHz verfügbar sind.
- Wenn Sie versuchen, VM-K2 einzuschalten, weist RP-KIND keine nicht reservierte CPU-Kapazität auf und muss den übergeordneten Ressourcenpool prüfen. RP-MAMA weist lediglich 1 GHz nicht reservierte Kapazität auf (5 GHz von RP-MAMA sind bereits in Verwendung: 3 GHz werden durch die lokalen virtuellen Maschinen reserviert, 2 GHz werden von RP-KIND reserviert). Als Ergebnis kann VM-K2 nicht eingeschaltet werden, da eine Reservierung von 2 GHz nicht möglich ist.

Abbildung 14-4. Zugangssteuerung bei erweiterbaren Ressourcenpools: Einschalten verhindert

vSphere Cluster Services

15

vSphere Cluster Services (vCLS) ist standardmäßig aktiviert und wird in allen vSphere-Clustern ausgeführt. vCLS stellt sicher, dass bei Nichtverfügbarkeit des vCenter Servers Clusterdienste weiterhin zur Verfügung stehen, um die Ressourcen und die Integrität der in den Clustern ausgeführten Arbeitslasten beizubehalten. vCenter Server ist weiterhin erforderlich, um DRS und HA ausführen zu können.

vCLS ist aktiviert, wenn Sie ein Upgrade auf vSphere 7.0 Update 3 durchführen oder über eine neue Bereitstellung von vSphere 7.0 Update 3 oder höher verfügen. vCLS wird im Rahmen des vCenter Server-Upgrades aktualisiert.

vCLS verwendet virtuelle Agent-Maschinen, um die Integrität der Clusterdienste beizubehalten. Die virtuellen Agent-Maschinen von vCLS (vCLS-VMs) werden erstellt, wenn Sie Hosts zu Clustern hinzufügen. Es müssen bis zu drei vCLS-VMs in jedem vSphere-Cluster ausgeführt und innerhalb eines Clusters verteilt werden. vCLS ist auch auf Clustern aktiviert, die nur einen oder zwei Hosts enthalten. In diesen Clustern ist die Anzahl der vCLS-VMs eins bzw. zwei.

Neue Anti-Affinitätsregeln werden automatisch angewendet. Alle drei Minuten wird eine Prüfung durchgeführt, wenn sich mehrere vCLS-VMs auf einem einzelnen Host befinden und automatisch an verschiedene Hosts verteilt werden.

Anzahl der Hosts in einem Cluster	Anzahl der vCLS-Agent-VMs
1	1
2	2
3 oder mehr	3

Tabelle 15-1. Anzahl der vCLS-Agent-VMs in Clustern

vCLS-VMs werden in jedem Cluster ausgeführt, selbst wenn Clusterdienste wie vSphere DRS oder vSphere HA nicht auf dem Cluster aktiviert sind. Die Lebenszyklusvorgänge der vCLS-VMs werden von vCenter Server-Diensten wie ESX Agent Manager und der Steuerungsebene für Arbeitslasten verwaltet. vCLS-VMs unterstützen keine Netzwerkkarten (NICs).

Ein Cluster, der mit vCLS aktiviert ist, kann ESXi-Hosts unterschiedlicher Versionen enthalten, wenn die ESXi-Versionen mit dem vCenter Server kompatibel sind. vCLS funktioniert mit vSphere Lifecycle Manager-Clustern.

Lesen Sie als Nächstes die folgenden Themen:

- vSphere DRS- und vCLS-VMs
- Datenspeicherauswahl f
 ür vCLS-VMs
- vCLS-Datenspeicherplatzierung
- Überwachen der vSphere Cluster Services
- Aufrechterhalten der Integrität der vSphere Cluster Services
- Versetzen eines Clusters in den Rückzugsmodus
- Abrufen des Kennworts f
 ür vCLS-VMs
- Anti-Affinitätsrichtlinien f
 ür vCLS-VMs
- Erstellen oder Löschen einer vCLS-VM-Anti-Affinitätsrichtlinie

vSphere DRS- und vCLS-VMs

Bei vSphere DRS handelt es sich um eine wichtige vSphere-Funktion, die zum Aufrechterhalten der Integrität der in einem vSphere-Cluster ausgeführten Arbeitslasten benötigt wird. DRS hängt von der Verfügbarkeit von vCLS-VMs ab.

Hinweis Wenn Sie versuchen, DRS auf einem Cluster zu aktivieren, bei dem Probleme mit den vCLS-VMs auftreten, wird eine Warnmeldung auf der Seite **Clusterübersicht** angezeigt.

Hinweis Wenn DRS aktiviert ist, es jedoch Probleme mit den vCLS-VMs gibt, müssen Sie diese Probleme beheben, damit DRS funktioniert. Eine Warnmeldung wird auf der Seite **Clusterübersicht** angezeigt.

Wenn DRS nicht funktionsfähig ist, bedeutet dies nicht, dass DRS deaktiviert ist. Bestehende DRS-Einstellungen und Ressourcenpools bleiben über ein verlorenes vCLS-VMs-Quorum hinaus erhalten. Der Zustand von vCLS wird in einem Cluster mit aktiviertem DRS nur **Nicht ordnungsgemäß**, wenn vCLS-VMs nicht ausgeführt werden und die erste Instanz von DRS aus diesem Grund übersprungen wird. Der Zustand von vCLS bleibt auf einem Cluster ohne aktiviertes DRS **herabgestuft**, wenn mindestens eine vCLS-VM nicht ausgeführt wird.

Datenspeicherauswahl für vCLS-VMs

Der Datenspeicher für vCLS-VMs wird automatisch basierend auf der Platzierung aller Datenspeicher ausgewählt, die mit den Hosts innerhalb des Clusters verbunden sind.

Ein Datenspeicher wird wahrscheinlicher ausgewählt, wenn Hosts im Cluster mit kostenlosen reservierten DRS-Steckplätzen mit dem Datenspeicher verbunden sind. Der Algorithmus versucht, vCLS-VMs nach Möglichkeit in einem gemeinsam genutzten Datenspeicher zu platzieren, bevor ein lokaler Datenspeicher ausgewählt wird. Ein Datenspeicher mit mehr freiem Speicherplatz wird bevorzugt, und der Algorithmus versucht nicht, mehr als eine vCLS-VM auf demselben Datenspeicher zu platzieren. Sie können den Datenspeicher von vCLS-VMs erst ändern, nachdem sie bereitgestellt und eingeschaltet wurden.

Wenn Sie die VMDKs für vCLS-VMs in einen anderen Datenspeicher verschieben oder eine andere Speicherrichtlinie anhängen möchten, können Sie vCLS-VMs neu konfigurieren. Es wird eine Warnmeldung angezeigt, wenn Sie diesen Vorgang ausführen.

Sie können einen Storage vMotion-Vorgang durchführen, um vCLS-VMs zu einem anderen Datenspeicher zu migrieren. Sie können vCLS-VMs kennzeichnen oder benutzerdefinierte Attribute anhängen, wenn Sie sie separat von den Arbeitslast-VMs gruppieren möchten, z. B. wenn Sie über eine spezifische Metadatenstrategie für alle VMs verfügen, die in einem Datencenter ausgeführt werden.

Hinweis Wenn ein Datenspeicher, der vCLS-VMs hostet, in den Wartungsmodus versetzt wird, müssen Sie den Storage vMotion-Vorgang manuell auf die vCLS-VMs anwenden, um sie an einen neuen Speicherort zu verschieben, oder den Cluster in den Rückzugsmodus versetzen. Es wird eine Warnmeldung angezeigt.

Die Aufgabe zum Wechsel in den Wartungsmodus wird zwar gestartet, kann aber nicht abgeschlossen werden, da sich 1 virtuelle Maschine auf dem Datenspeicher befindet. Sie können die Aufgabe jederzeit in Ihren kürzlich bearbeiteten Aufgaben abbrechen, wenn Sie fortfahren möchten.

Der ausgewählte Datenspeicher speichert möglicherweise vSphere Clusterdienst-VMs, die nicht ausgeschaltet werden können. Um die Integrität von vSphere Cluster Services zu gewährleisten, müssen diese VMs manuell mit vMotion in einen anderen Datenspeicher innerhalb des Clusters verschoben werden, bevor dieser Datenspeicher für die Wartung heruntergefahren werden kann. Informationen hierzu finden Sie im KB-Artikel KB 79892.

Aktivieren Sie das Kontrollkästchen Zulassen, dass ich den Speicher für alle virtuellen Maschinen migrieren und nach der Migration in den Wartungsmodus wechseln kann., um fortzufahren.

vCLS-Datenspeicherplatzierung

Sie können die standardmäßige Datenspeicherplatzierung für vCLS-VMs außer Kraft setzen.

Der Datenspeicherort für vSphere Cluster Services-VMs (vCLS) wird durch eine standardmäßige Datenspeicherauswahllogik ausgewählt. Um die standardmäßige vCLS-VM-Datenspeicherplatzierung für einen Cluster außer Kraft zu setzen, können Sie einen Satz zulässiger Datenspeicher angeben, indem Sie zum Cluster navigieren und unter **Konfigurieren > vSphere Cluster Service > Datenspeicher** auf **HINZUFÜGEN** klicken. Einige Datenspeicher können nicht für vCLS ausgewählt werden, da sie von Lösungen wie SRM oder vom vSAN-Wartungsmodus blockiert werden, in denen bzw. dem vCLS nicht konfiguriert werden kann. Benutzer können von Lösungen blockierte Datenspeicher für vCLS-VMs nicht hinzufügen oder entfernen.

Überwachen der vSphere Cluster Services

Sie können die von vCLS-VMs verbrauchten Ressourcen und deren Integritätsstatus überwachen.

vCLS-VMs werden in der Bestandslistenstruktur auf der Registerkarte **Hosts und Cluster** nicht angezeigt. vCLS-VMs aus allen Clustern innerhalb eines Datencenters werden in einem separaten VM- und Vorlagenordner mit der Bezeichnung **vCLS** abgelegt. Dieser Ordner und die vCLS-VMs werden nur auf der Registerkarte **VMs und Vorlagen** des vSphere Client angezeigt. Für diese VMs wird ein anderes Symbol als für reguläre Arbeitslast-VMs verwendet. Sie können Informationen zum Zweck der vCLS-VMs auf der Registerkarte **Übersicht** der vCLS-VMs anzeigen.

Sie können die von vCLS-VMs verbrauchten Ressourcen auf der Registerkarte Überwachen überwachen.

Eigenschaft	Größe
VMDK-Größe	245 MB (Thin-Festplatte)
Arbeitsspeicher	128 MB
CPU	1 vCPU
Festplatte	2 GB
Speicher in Datenspeicher	480 MB (Thin-Festplatte)

Tabelle 15-2. vCLS-VM – Ressourcenzuteilung

Hinweis Für jede vCLS-VM sind 100 MHz und 100 MB an Kapazität im Cluster reserviert. Abhängig von der Anzahl der im Cluster ausgeführten vCLS-VMs können für diese VMs maximal 400 MHz und 400 MB an Kapazität reserviert werden.

Sie können den Integritätsstatus von vCLS im Portlet **Clusterdienste** überwachen, das auf der Registerkarte **Übersicht** des Clusters angezeigt wird.

Tabelle 15-3.	Integritätsstatus	von vCLS
---------------	-------------------	----------

Status	Farbcodierung	Übersicht
Ordnungsgemäß	Grün	Bei mindestens einer ausgeführten vCLS-VM wird die Integrität des Status unabhängig von der Anzahl der Hosts im Cluster beibehalten.
Herabgestuft	Gelb	Wenn weniger als 3 Minuten (180 Sekunden) keine vCLS-VM ausgeführt wird, kommt es zu einer Herabstufung des Status.
Nicht ordnungsgemäß	Rot	Wenn mindestens 3 Minuten keine vCLS-VM ausgeführt wird, ist der Status im DRS-fähigen Cluster fehlerhaft.

Aufrechterhalten der Integrität der vSphere Cluster Services

vCLS-VMs sind immer eingeschaltet, weil vSphere DRS von der Verfügbarkeit dieser VMs abhängig ist. Diese VMs sollten als System-VMs behandelt werden. Nur Administratoren können selektive Vorgänge auf vCLS-VMs durchführen. Um einen Ausfall der Clusterdienste zu vermeiden, führen Sie keine Konfigurationen oder Vorgänge auf den vCLS-VMs durch.

vCLS-VMs sind vor versehentlichem Löschen geschützt. Cluster-VMs und -Ordner sind vor Änderungen durch Benutzer, einschließlich Administratoren, geschützt.

Nur Benutzer, die Teil der Administrator-SSO-Gruppe sind, können die folgenden Vorgänge durchführen:

- ReadOnly-Zugriff für vCLS-VMs
- Konsolenzugriff auf vCLS-VMs
- vCLS-VMs mithilfe von Cold- oder Hot-Migration entweder in neuen Speicher, in Computing-Ressourcen oder beides verlagern
- Verwenden von Tags und benutzerdefinierten Attributen für vCLS-VMs

Vorgänge, die das reibungslose Funktionieren der vCLS-VMs stören könnten:

- Andern des Betriebszustands der vCLS-VMs
- Erneute Ressourcenkonfiguration der vCLS-VMs, wie z. B. Ändern der CPU, des Arbeitsspeichers, der Festplattengröße und Festplattenplatzierung
- VM-Verschlüsselung
- Auslösen von vMotion für die vCLS-VMs
- Ändern des BIOS
- Entfernen der vCLS-VMs aus der Bestandsliste
- Löschen der vCLS-VMs von der Festplatte
- Aktivieren von Fault Tolerance für vCLS-VMs
- Klonen von vCLS-VMs
- Konfigurieren von PMem
- Verschieben der vCLS-VM in einen anderen Ordner
- Umbenennen der vCLS-VMs
- Umbenennen der vCLS-Ordner
- Aktivieren von DRS-Regeln und Außerkraftsetzungen auf vCLS-VMs
- Aktivieren der HA-Zugangssteuerungsrichtlinie auf vCLS-VMs
- Aktivieren von HA-Außerkraftsetzungen auf vCLS-VMs
- Verschieben von vCLS-VMs in einen Ressourcenpool

Wiederherstellen von vCLS-VMs aus einem Snapshot

Wenn Sie einen unterbrechenden Vorgang auf den vCLS-VMs durchführen, wird ein Warndialogfeld angezeigt.

Fehlerbehebung:

Der Systemzustand der vCLS-VMs, einschließlich des Betriebsstatus, wird von EAM- und WCP-Diensten verwaltet. Wenn es bei den vCLS-VMs zu einem Stromausfall kommt oder die erste DRS-Instanz für einen Cluster aufgrund eines mangelnden Quorums von vCLS-VMs übersprungen wird, wird auf der Seite "Cluster-Übersicht" ein Banner sowie ein Link zu einem Knowledgebase-Artikel mit Anweisungen zum Beheben des Fehlers angezeigt.

Da vCLS-VMs als System-VMs behandelt werden, müssen Sie diese VMs weder sichern noch Snapshots für diese VMs erstellen. Der Systemzustand dieser VMs wird von vCenter-Diensten verwaltet.

Versetzen eines Clusters in den Rückzugsmodus

Wenn ein Datenspeicher, der vCLS-VMs hostet, in den Wartungsmodus versetzt wird, müssen Sie die vCLS-VMs mit vMotion manuell an einem neuen Speicherort speichern oder den Cluster in den Rückzugsmodus versetzen.

In dieser Aufgabe wird erläutert, wie Sie einen Cluster in den Rückzugsmodus versetzen.

Verfahren

- 1 Melden Sie sich beim vSphere Client an.
- 2 Navigieren Sie zu dem Cluster, auf dem vCLS deaktiviert werden muss.
- 3 Kopieren Sie die Clusterdomänen-ID aus der URL des Browsers. Sie sollte ein mit domainc (number) vergleichbares Format aufweisen.

Hinweis Kopieren Sie nur die Zahlen links neben dem Doppelpunkt in der URL.

- 4 Navigieren Sie in vCenter Server zur Registerkarte Konfigurieren.
- 5 Klicken Sie unter Erweiterte Einstellungen auf die Schaltfläche Einstellungen bearbeiten.
- 6 Fügen Sie einen neuen Eintrag config.vcls.clusters.domain-c(number).enabled hinzu. Verwenden Sie die in Schritt 3 kopierte Domänen-ID.
- 7 Legen Sie den Wert auf Falsch fest.
- 8 Klicken Sie auf Speichern.

Ergebnisse

Der vCLS-Überwachungsdienst wird alle 30 Sekunden ausgeführt. Innerhalb von 1 Minute werden alle vCLS-VMs im Cluster bereinigt, und die Integrität von **Clusterdienste** wird auf **Herabgestuft** gesetzt. Wenn DRS für den Cluster aktiviert ist, funktioniert er nicht mehr und es wird eine

zusätzliche Warnung in der **Clusterübersicht** angezeigt. Selbst wenn DRS aktiviert ist, funktioniert es erst dann wieder, nachdem vCLS aus dem Rückzugsmodus entfernt und dadurch neu konfiguriert wurde.

vSphere HA führt während eines Hostausfallszenarios keine optimale Platzierung durch. HA hängt von DRS für Platzierungsempfehlungen ab. HA wird die VMs weiterhin einschalten, aber diese VMs werden möglicherweise auf einem weniger optimalen Host eingeschaltet.

Zum Entfernen des Rückzugmodus aus dem Cluster ändern Sie den Wert in Schritt 7 in True.

Abrufen des Kennworts für vCLS-VMs

Sie können das Kennwort für die Anmeldung bei den vCLS-VMs abrufen.

Vermeiden Sie den Zugriff auf die vCLS-VMs, um die Integrität der Clusterdienste sicherzustellen. Dieses Dokument ist ausdrücklich für die Diagnose von vCLS-VMs vorgesehen.

Verfahren

- 1 Melden Sie sich mithilfe von SSH bei der vCenter Server Appliance an.
- 2 Führen Sie das folgende Python-Skript aus:

/usr/lib/vmware-wcp/decrypt_clustervm_pw.py

3 Lesen Sie die Ausgabe für das Kennwort.

```
pwd-script-output
Read key from file
Connected to PSQL
PWD: (password displayed here)
```

Ergebnisse

Mit dem abgerufenen Kennwort können Sie sich bei den vCLS-VMs anmelden.

Anti-Affinitätsrichtlinien für vCLS-VMs

vSphere unterstützt Anti-Affinität zwischen vCLS-VMs und einer anderen Gruppe von Arbeitslast-VMs.

Durch Computing-Richtlinien kann angegeben werden, wie der vSphere Distributed Resource Scheduler (DRS) VMs auf Hosts in einem Ressourcenpool platzieren soll. Verwenden Sie den vSphere-Editor für Computing-Richtlinien, um Computing-Richtlinien zu erstellen und zu löschen. Sie können eine Computing-Richtlinie erstellen oder löschen, aber nicht ändern. Wenn Sie ein in der Definition der Richtlinie verwendetes Kategorie-Tag löschen, wird die Richtlinie ebenfalls gelöscht. Öffnen Sie die **VM-Zusammenfassungsseite** in vSphere, um die für eine VM geltenden Computing-Richtlinien und deren Konformitätsstatus mit den einzelnen Richtlinien anzuzeigen. Sie können eine Computing-Richtlinie für eine Gruppe von Arbeitslast-VMs erstellen, die gegenüber der Gruppe der vCLS-VMs anti-affin ist. Eine vCLS-Anti-Affinitätsrichtlinie kann ein einzelnes für Benutzer sichtbares Tag für eine Gruppe von Arbeitslast-VMs aufweisen. Die andere Gruppe von vCLS-VMs wird intern erkannt.

Erstellen oder Löschen einer vCLS-VM-Anti-Affinitätsrichtlinie

Eine vCLS-VM-Anti-Affinitätsrichtlinie beschreibt eine Beziehung zwischen einer Kategorie von VMs und vCLS-System-VMs.

Eine vCLS-VM-Anti-Affinitätsrichtlinie verhindert die Platzierung von vCLS-VMs und Anwendungs-VMs auf demselben Host. Diese Art von Richtlinie kann nützlich sein, wenn sich vCLS-VMs und virtuelle Maschinen, die kritische Arbeitslasten ausführen, auf demselben Host befinden. Einige Best Practices für die Ausführung kritischer Arbeitslasten, wie z. B. SAP HANA, benötigen dedizierte Hosts. Nach der Erstellung der Richtlinie platziert das Platzierungsmodul vCLS-VMs auf den Hosts, auf denen keine Richtlinien-VMs ausgeführt werden.

Die Einhaltung einer vCLS-VM-Anti-Affinitätsrichtlinie kann auf verschiedene Arten beeinflusst werden:

- Wenn die Richtlinie auf mehrere VMs auf verschiedenen Hosts angewendet wird und nicht genügend Hosts zum Verteilen von vCLS-VMs vorhanden sind, werden vCLS-VMs in den Hosts ohne Richtlinien-VMs zusammengefasst.
- Bei Angabe eines Zielhosts in einem Bereitstellungsvorgang wird diese Spezifikation immer berücksichtigt, auch wenn sie gegen die Richtlinie verstößt. DRS versucht, die vCLS-VMs mithilfe eines nachfolgenden Standardisierungszyklus auf einen kompatiblen Host zu verschieben.

Verfahren

- 1 Erstellen Sie eine Kategorie und ein Tag für jede Gruppe von VMs, die in eine vCLS-VM-Anti-Affinitätsrichtlinie aufgenommen werden sollen.
- 2 Kennzeichnen Sie die VMs, die einbezogen werden sollen.
- 3 Erstellen Sie eine vCLS-VM-Anti-Affinitätsrichtlinie.
 - a Klicken Sie in vSphere auf Richtlinien und Profile > Computing-Richtlinien.
 - b Klicken Sie auf Hinzufügen, um den Assistenten Neue Computing-Richtlinie zu öffnen.
 - c Füllen Sie die Richtlinie **Name** aus und wählen Sie **vCLS-VM-Anti-Affinität** im Dropdown-Steuerelement **Richtlinientyp** aus.

Der Name der Richtlinie muss eindeutig sein.

d Geben Sie eine **Beschreibung** der Richtlinie an und verwenden Sie dann **VM-Tag**, um die **Kategorie** und das **Tag** auszuwählen, auf die die Richtlinie angewendet wird.

Sofern Sie einer Kategorie nicht mehrere VM-Tags zugeordnet haben, befüllt der Assistent das VM-Tag nach Auswahl des Tags **Kategorie**.

- e Klicken Sie auf **Erstellen**, um die Richtlinie zu erstellen.
- 4 (Optional) Zum Löschen einer Computing-Richtlinie öffnen Sie vSphere und klicken auf Richtlinien und Profile > Computing-Richtlinien, um jede Richtlinie als Karte anzuzeigen. Klicken Sie auf LÖSCHEN, um eine Richtlinie zu löschen.

Erstellen eines vSphere DRS-Clusters

16

Ein Cluster ist eine Sammlung von ESXi-Hosts und verknüpften virtuellen Maschinen mit gemeinsam genutzten Ressourcen und einer gemeinsamen Verwaltungsoberfläche. Sie müssen einen Cluster erstellen und DRS aktivieren, um die Vorteile der Ressourcenverwaltung auf Clusterebene ausnutzen zu können.

Je nachdem, ob Enhanced vMotion Compatibility (EVC) aktiviert ist, verhält sich DRS anders, wenn Sie virtuelle vSphere Fault Tolerance (vSphere FT)-Maschinen im Cluster verwenden.

EVC	DRS (Lastausgleich)	DRS (anfängliche Platzierung)
Aktiviert	Aktiviert (primäre und sekundäre virtuelle Maschinen)	Aktiviert (primäre und sekundäre virtuelle Maschinen)
Deaktiviert	Deaktiviert (primäre und sekundäre virtuelle Maschinen)	Deaktiviert (primäre virtuelle Maschine) Vollautomatisiert (sekundäre virtuelle Maschinen)

Tabollo 16-1	DDS-Vorhalton	mit virtuellen ve	Soboro ET-Mag	schinen und EVC
	DRS-vernallen	mit virtuellen va	spriere Fil-Mas	schinen und EVC

Lesen Sie als Nächstes die folgenden Themen:

- Zugangssteuerung und anfängliche Platzierung
- Einschalten einer einzelnen virtuellen Maschine
- Gruppeneinschaltung
- Migrieren von virtuellen Maschinen
- DRS-Migrationsschwellenwert
- Migrationsempfehlungen
- DRS-Cluster-Anforderungen
- Gemeinsam genutzter Speicher, Anforderungen
- Anforderungen an gemeinsam genutzte VMFS-Volumes
- Anforderungen an die Prozessorkompatibilität
- vMotion-Anforderungen für DRS-Cluster
- Konfigurieren von DRS mit virtuellem Flash
- Erstellen eines Clusters

- Bearbeiten von Clustereinstellungen
- Festlegen einer benutzerdefinierten Automatisierungsebene für eine virtuelle Maschine
- Deaktivieren von DRS
- Wiederherstellen einer Ressourcenpoolstruktur
- DRS-Awareness vSAN Stretched Cluster
- DRS-Platzierung von vGPUs

Zugangssteuerung und anfängliche Platzierung

Wenn Sie versuchen, eine einzelne virtuelle Maschine oder eine Gruppe von virtuellen Maschinen in einem DRS-aktivierten Cluster einzuschalten, führt vCenter Server die Zugangssteuerung durch. Dabei wird geprüft, ob der Cluster über ausreichende Ressourcen für die virtuelle(n) Maschine(n) verfügt.

Sollten die Ressourcen im Cluster zum Einschalten einer einzigen virtuellen Maschine oder einer der virtuellen Maschine in einer Gruppe nicht ausreichen, wird eine Meldung angezeigt. Anderenfalls empfiehlt DRS für jede virtuelle Maschine einen Host zum Ausführen der virtuellen Maschine und unternimmt eine der folgenden Aktionen:

- Führt die Platzierungsempfehlung automatisch aus.
- Zeigt die Platzierungsempfehlung an, sodass der Benutzer auswählen kann, ob er sie annehmen oder überschreiben möchte.

Hinweis Es werden keine Empfehlungen zur anfänglichen Platzierung für virtuelle Maschinen auf eigenständigen Hosts oder in Nicht-DRS-Clustern ausgegeben. Beim Einschalten werden diese auf dem Host platziert, auf dem sie sich derzeit befinden.

 DRS berücksichtigt die Netzwerkbandbreite. Durch die Berechnung der Netzwerksättigung ist DRS in der Lage, bessere Entscheidungen bei der Platzierung zu treffen. Ein umfangreicheres Verständnis der Umgebung kann helfen, Leistungsbeeinträchtigungen von virtuellen Maschinen zu vermeiden.

Einschalten einer einzelnen virtuellen Maschine

In einem DRS-Cluster können Sie eine einzelne virtuelle Maschine einschalten und Empfehlungen für die anfängliche Platzierung erhalten.

Wenn Sie eine einzelne virtuelle Maschine einschalten, gibt es zwei Arten von Empfehlungen zur anfänglichen Platzierung:

• Es wird eine einzelne virtuelle Maschine eingeschaltet, es sind keine vorbereitenden Schritte erforderlich.

Dem Benutzer wird eine Liste sich gegenseitig ausschließender Platzierungsempfehlungen für die virtuelle Maschine angezeigt. Sie können nur eine Empfehlung auswählen.

• Es wird eine einzelne virtuelle Maschine eingeschaltet, es sind jedoch vorbereitende Schritte erforderlich.

Zu diesen Schritten gehören das Versetzen eines Hosts in den Standby-Modus oder das Migrieren anderer virtueller Maschinen zwischen Hosts. In diesem Fall haben die Empfehlungen mehrere Zeilen, die jede der vorausgesetzten Aktionen aufführen. Der Benutzer kann entweder die gesamte Empfehlung akzeptieren oder das Einschalten der virtuellen Maschine abbrechen.

Gruppeneinschaltung

Sie können versuchen, mehrere virtuelle Maschinen gleichzeitig einzuschalten (Gruppeneinschaltung).

Die für einen Gruppeneinschaltvorgang ausgewählten virtuellen Maschinen müssen sich nicht im selben DRS-Cluster befinden. Sie können aus verschiedenen Clustern ausgewählt werden, müssen sich aber im selben Datencenter befinden. Es können auch virtuelle Maschinen in Nicht-DRS-Clustern oder auf eigenständigen Hosts eingeschaltet werden. Diese virtuellen Maschinen werden automatisch eingeschaltet und es wird keine Empfehlung zur anfänglichen Platzierung ausgegeben.

Die Empfehlungen zur anfänglichen Platzierung für Gruppeneinschaltvorgänge werden auf Clusterbasis gegeben. Wenn alle platzierungsbezogenen Schritte für einen Gruppeneinschaltvorgang im automatischen Modus ablaufen, werden die virtuellen Maschinen ohne Empfehlung zur anfänglichen Platzierung eingeschaltet. Wenn platzierungsbezogene Schritte für alle virtuellen Maschinen im manuellen Modus ablaufen, werden alle virtuellen Maschinen (einschließlich der virtuellen Maschinen, die sich im automatischen Modus befinden) manuell eingeschaltet. Diese Aktionen werden in einer Empfehlung zur anfänglichen Platzierung erläutert.

Für jeden DRS-Cluster, dem die einzuschaltenden virtuellen Maschinen angehören, gibt es eine individuelle Einzelempfehlung, die alle vorbereitenden Schritte umfasst (oder keine Empfehlung). Sämtliche dieser clusterspezifischen Empfehlungen werden zusammen auf der Registerkarte **Empfehlungen zum Einschalten** angezeigt.

Wenn ein nicht automatischer Gruppeneinschaltversuch unternommen wird und virtuelle Maschinen beteiligt sind, für die keine Empfehlung zur anfänglichen Platzierung ausgegeben wurde (d. h. die virtuellen Maschinen auf eigenständigen Hosts oder in Nicht-DRS-Clustern), versucht vCenter Server, diese automatisch einzuschalten. Falls der Einschaltvorgang erfolgreich ist, werden die virtuellen Maschinen auf der Registerkarte **Erfolgreiche Einschaltvorgänge** angezeigt. Alle virtuellen Maschinen, bei denen das Einschalten fehlschlägt, werden auf der Registerkarte **Fehlgeschlagene Einschaltvorgänge** angezeigt.

Beispiel: Gruppeneinschaltung

Der Benutzer wählt drei virtuelle Maschinen aus demselben Datencenter für einen Gruppeneinschaltvorgang aus. Die ersten beiden virtuellen Maschinen (VM1 und VM2) befinden sich im selben DRS-Cluster (Cluster1), während die dritte virtuelle Maschine (VM3) ein eigenständiger Host ist. VM1 befindet sich im automatischen und VM2 im manuellen Modus. In diesem Szenario wird dem Benutzer eine Empfehlung zur anfänglichen Platzierung für Cluster1 angezeigt (auf der Registerkarte **Empfehlungen zu Einschaltvorgängen**), die Aktionen zum Einschalten von VM1 und VM2 umfasst. Es wird versucht, VM3 automatisch einzuschalten. Ist dies erfolgreich, wird VM3 auf der Registerkarte **Erfolgreiche Einschaltvorgänge** aufgeführt. Schlägt der Versuch fehl, wird die virtuelle Maschine auf der Registerkarte **Fehlgeschlagene Einschaltversuche** aufgelistet.

Migrieren von virtuellen Maschinen

Obwohl DRS anfängliche Platzierungen vornimmt, sodass die Last im Cluster gleichmäßig verteilt ist, können Änderungen an der Last der virtuellen Maschine und der Verfügbarkeit von Ressourcen zu einer ungleichmäßigen Lastverteilung führen. DRS generiert Migrationsempfehlungen, um eine ungleichmäßige Lastverteilung auszugleichen.

Wenn DRS auf dem Cluster aktiviert wird, kann die Last gleichmäßiger verteilt werden, um das Ungleichgewicht zu reduzieren. Beispielsweise sind die drei Hosts auf der linken Seite der folgenden Abbildung unausgewogen. Angenommen, Host 1, Host 2 und und 3 verfügen über identische Kapazitäten und alle virtuellen Maschinen über dieselbe Konfiguration und Last (dazu gehört die Reservierung, sofern festgelegt). Trotzdem sind die Ressourcen von Host 1 überansprucht, da sechs virtuelle Maschinen vorhanden sind, während auf Host 2 und Host 3 ausreichend Ressourcen zur Verfügung stehen. DRS migriert deshalb virtuelle Maschinen von Host 1 auf Host 2 und Host 3 (bzw. empfiehlt diese Migration). Rechts in der Abbildung erscheint das Ergebnis der ordnungsgemäßen Lastausgleichskonfiguration der Hosts.

Abbildung 16-1. Lastenausgleich

Im Falle eines Ungleichgewichts bei einem Cluster gibt DRS – je nach Automatisierungsebene – Empfehlungen aus oder migriert die virtuellen Maschinen:

- Wenn es sich um einen manuellen oder teilautomatisierten Cluster handelt, führt vCenter Server keine automatischen Aktionen zum Ausgleich der Ressourcen durch. Vielmehr wird auf der Seite "Übersicht" darauf hingewiesen, dass Migrationsempfehlungen verfügbar sind. Auf der Seite "DRS-Empfehlungen" werden die Änderungsempfehlungen angezeigt, die zur effizientesten Ressourcennutzung innerhalb des Clusters führen.
- Wenn es sich um einen Cluster und virtuelle Maschinen handelt, die vollautomatisiert sind, migriert vCenter Server ausgeführte virtuelle Maschinen bei Bedarf zwischen den Hosts, um eine effiziente Nutzung der Clusterressourcen sicherzustellen.

Hinweis Auch bei der Einrichtung einer automatischen Migration können Benutzer einzelne virtuelle Maschinen explizit migrieren, allerdings könnte vCenter Server diese virtuellen Maschinen bei der Optimierung von Clusterressourcen auf andere Hosts verschieben.

Standardmäßig wird die Automatisierungsebene für den gesamten Cluster festgelegt. Für einzelne virtuelle Maschinen kann auch eine benutzerdefinierte Automatisierungsebene festgelegt werden.

DRS-Migrationsschwellenwert

Der DRS-Migrationsschwellenwert ermöglicht Ihnen das Festlegen der Empfehlungen, die erzeugt und dann angewendet werden (wenn die virtuellen Maschinen, die von der Empfehlung betroffen sind, sich im vollautomatisierten Modus befinden) oder angezeigt werden (im manuellen
Modus). Dieser Schwellenwert gilt als Maß für die Aggressivität, mit der DRS Migrationen zur Verbesserung der VM-Zufriedenheit empfiehlt.

Sie können den Schwellenwert-Schieberegler verschieben, um eine von fünf Einstellungen zu verwenden, von "Konservativ" bis "Aggressiv". Je höher die Einstellung für die Aggressivität, desto häufiger empfiehlt DRS Migrationen zur Verbesserung der VM-Zufriedenheit. Die Einstellung "Konservativ" erzeugt nur Empfehlungen mit Priorität 1 (obligatorische Empfehlungen).

Nachdem eine Empfehlung eine Prioritätsebene erhält, wird diese Ebene mit dem von Ihnen festgelegten Migrationsschwellenwert verglichen. Wenn die Prioritätsebene niedriger oder gleich der Einstellung des Schwellenwerts ist, wird die Empfehlung entweder angewendet (wenn die relevanten virtuellen Maschinen sich im vollautomatisierten Modus befinden) oder dem Benutzer zur Bestätigung angezeigt (im manuellen oder teilautomatisierten Modus).

DRS-Punktzahl

Jede Migrationsempfehlung wird unter Verwendung der VM-Zufriedenheitsmetrik berechnet, die die Ausführungseffizienz misst. Diese Metrik wird als DRS-Punktzahl auf der Registerkarte "Übersicht" des Clusters im vSphere Client angezeigt. Mit Empfehlungen zum DRS-Lastausgleich wird versucht, die DRS-Punktzahl einer VM zu verbessern. Bei der DRS-Punktzahl des Clusters handelt es sich um einen gewichteten Durchschnitt der DRS-Punktzahlen aller eingeschalteten VMs im Cluster. Die DRS-Punktzahl des Clusters steht in der Messanzeige zur Verfügung. Die Farbe des ausgefüllten Abschnitts ändert sich je nach dem Wert, der mit dem entsprechenden Balken im Histogramm "DRS-Punktzahl der VM" übereinstimmt. Die Balken im Histogramm zeigen den Prozentsatz der VMs an, die über eine DRS-Punktzahl in diesem Bereich verfügen. Sie können die Liste mit serverseitiger Sortierung und Filterung anzeigen, indem Sie die Registerkarte "Überwachen" des Clusters und vSphere DRS auswählen, um eine Liste der VMs im Cluster zu erhalten, die nach DRS-Punktzahl in aufsteigender Reihenfolge sortiert sind.

Migrationsempfehlungen

Bei der Erstellung eines Clusters im standardmäßigen manuellen oder teilautomatisierten Modus zeigt vCenter Server auf der Seite "DRS-Empfehlungen" Migrationsempfehlungen an.

Das System liefert so viele Empfehlungen, wie für die Durchsetzung von Regeln und dem Ressourcenausgleich des Clusters erforderlich sind. Jede Empfehlung enthält die zu verschiebende virtuelle Maschine, den aktuellen Host (Quellhost) und den Zielhost sowie einen Grund für die Empfehlung. Folgende Gründe sind möglich:

- Ausgleichen der durchschnittlichen CPU-Lasten oder -Reservierungen.
- Ausgleichen der durchschnittlichen Arbeitsspeicherlasten oder -reservierungen.
- Anwenden von Ressourcenpoolreservierungen.
- Eine Affinitätsregel anwenden.

Der Host wechselt in den Wartungs- oder Standby-Modus.

Hinweis Wenn Sie die vSphere DPM-Funktion (Distributed Power Management) verwenden, erhalten Sie neben Migrationsempfehlungen auch Host-Betriebszustandsempfehlungen.

DRS-Cluster-Anforderungen

Zu einem DRS-Cluster hinzugefügte Hosts müssen bestimmte Voraussetzungen erfüllen, damit Clusterfunktionen erfolgreich verwendet werden können.

Hinweis Bei vSphere DRS handelt es sich um eine wichtige vSphere-Funktion, die zum Aufrechterhalten der Integrität der in einem vSphere-Cluster ausgeführten Arbeitslasten benötigt wird. Ab vSphere 7.0 Update 1 hängt DRS von der Verfügbarkeit der vCLS-VMs ab. Weitere Informationen hierzu finden Sie unter Kapitel 15 vSphere Cluster Services.

Gemeinsam genutzter Speicher, Anforderungen

Für einen DRS-Cluster gelten bestimmte Anforderungen hinsichtlich des gemeinsam genutzten Speichers.

Stellen Sie sicher, dass die verwalteten Hosts einen gemeinsamen Speicher nutzen. Gemeinsam genutzter Speicher befindet sich im Allgemeinen in einem SAN, er kann jedoch auch über gemeinsam genutzte NAS-Speicher implementiert werden.

Siehe die Dokumentation zu *vSphere-Speicher* für Informationen zu anderen gemeinsam genutzten Speichern.

Anforderungen an gemeinsam genutzte VMFS-Volumes

Für einen DRS-Cluster gelten bestimmte Anforderungen hinsichtlich des gemeinsam genutzten VMFS-Volumes.

Konfigurieren Sie für die Verwendung gemeinsam genutzter VMFS-Volumes alle verwalteten Hosts.

- Platzieren Sie die Festplatten aller virtuellen Maschinen auf VMFS-Volumes, auf die Quell- und Zielhosts zugreifen können.
- Stellen Sie sicher, dass das VMFS-Volume groß genug ist, um alle virtuellen Festplatten der virtuellen Maschinen zu speichern.

 Stellen Sie sicher, dass die VMFS-Volumes auf den Quell- und Zielhosts Volume-Namen verwenden und diese durch alle virtuellen Maschinen beim Festlegen der virtuellen Festplatten verwendet werden.

Hinweis Die Auslagerungsdateien der virtuellen Maschinen müssen sich ebenfalls auf einem VMFS-Volume befinden, auf das sowohl Quell- als auch Zielhosts zugreifen können (genau wie die virtuellen Festplattendateien .vmdk). Diese Anforderung gilt nicht, wenn alle Quellund Zielhosts über ESX Server 3.5 oder höher verfügen und die lokale Auslagerung auf einem Host verwenden. In diesem Fall wird vMotion mit Auslagerungsdateien auf einem nicht gemeinsam genutzten Speicher unterstützt. Die Auslagerungsdateien werden standardmäßig auf einem VMFS-Volume abgelegt. Möglicherweise wurde dieser Dateispeicherort jedoch durch den Administrator mithilfe erweiterter Konfigurationsoptionen für virtuelle Maschinen überschrieben.

Anforderungen an die Prozessorkompatibilität

Für DRS-Cluster gelten bestimmte Anforderungen hinsichtlich der Prozessorkompatibilität.

Sie müssen die Kompatibilität der Prozessoren von Quell- und Zielhosts im Cluster maximieren, damit die Funktionen von DRS nicht eingeschränkt werden.

vMotion überträgt den laufenden architektonischen Zustand einer virtuellen Maschine zwischen zugrunde liegenden ESXi-Hosts. vMotion-Kompatibilität bedeutet folglich, dass die Prozessoren des Zielhosts in der Lage sein müssen, die Ausführung anhand gleichwertiger Anweisungen an der Stelle fortzusetzen, an der die Prozessoren des Quellhosts angehalten wurden. Die Taktfrequenzen der Prozessoren sowie die Cachegrößen können zwar unterschiedlich sein, allerdings müssen die Prozessoren derselben Herstellerkategorie (Intel oder AMD) und derselben Prozessorfamilie entsprechen, um für die Migration mit vMotion kompatibel zu sein.

Prozessorfamilien werden von den Prozessoranbietern definiert. Sie können verschiedene Prozessorversionen aus derselben Familie unterscheiden, indem Sie Prozessormodell, Stepping-Level und erweiterte Funktionen vergleichen.

Manchmal wurden durch die Prozessorhersteller innerhalb derselben Prozessorfamilie signifikante Änderungen an der Architektur eingeführt (wie z. B. 64-Bit-Erweiterungen und SSE3). VMware identifiziert solche Ausnahmen, falls eine erfolgreiche Migration mit vMotion nicht garantiert werden kann.

vCenter Server bietet Funktionen um sicherzustellen, dass die mit vMotion migrierten virtuellen Maschinen die Anforderungen an die Prozessorkompatibilität erfüllen. Zu diesen Funktionen zählen:

 Enhanced vMotion Compatibility (EVC) – Mithilfe der EVC-Funktion können Sie vMotion-Kompatibilität für die Hosts in einem Cluster sicherstellen. EVC stellt sicher, dass alle Hosts in einem Cluster denselben CPU-Funktionssatz gegenüber der virtuellen Maschine offenlegen – selbst dann, wenn die tatsächlichen CPUs auf den Hosts abweichen. Auf diese Weise wird verhindert, dass mit vMotion durchgeführte Migrationen aufgrund nicht kompatibler CPUs fehlschlagen. Konfigurieren Sie EVC über das Dialogfeld mit den Clustereigenschaften. Die Hosts müssen innerhalb des Clusters bestimmte Anforderungen erfüllen, damit der Cluster EVC verwenden kann. Weitere Informationen zu EVC und EVC-Anforderungen finden Sie unter *vCenter Server und Hostverwaltung*.

 CPU-Kompatibilitätsmasken – vCenter Server vergleicht die für eine virtuelle Maschine verfügbaren CPU-Funktionen mit den CPU-Funktionen des Zielhosts, um zu ermitteln, ob Migrationen mit vMotion zulässig sind oder nicht. Durch die Anwendung von CPU-Kompatibilitätsmasken auf einzelne virtuelle Maschinen können bestimmte CPU-Funktionen für die virtuelle Maschine ausgeblendet werden, um das potenzielle Fehlschlagen von Migrationen mit vMotion aufgrund von nicht kompatiblen CPUs zu verhindern.

vMotion-Anforderungen für DRS-Cluster

Ein DRS-Cluster hat bestimmte vMotion-Anforderungen.

Die Hosts in Ihrem Cluster müssen Teil eines vMotion-Netzwerks sein, damit die Verwendung der DRS-Migrationsempfehlungen aktiviert werden kann. Falls die Hosts zu keinem vMotion-Netzwerk gehören, kann DRS dennoch Empfehlungen zur anfänglichen Platzierung ausgeben.

Jeder Host des Clusters muss im Hinblick auf die vMotion-Konfiguration folgende Anforderungen erfüllen:

- vMotion unterstützt keine Raw-Festplatten oder die Migration von Anwendungen, die über Microsoft Cluster Service (MSCS) geclustert wurden.
- vMotion benötigt ein privates Gigabit-Ethernet-Migrationsnetzwerk zwischen allen vMotionfähigen, verwalteten Hosts. Wenn vMotion auf einem verwalteten Host aktiviert ist, konfigurieren Sie ein eindeutiges Netzwerkkennungsobjekt für den verwalteten Host und verbinden Sie ihn mit dem privaten Migrationsnetzwerk.

Konfigurieren von DRS mit virtuellem Flash

DRS kann virtuelle Maschinen mit Reservierungen für virtuelles Flash verwalten.

Die vFlash-Kapazität wird als Statistik angezeigt, die der Host regelmäßig an den vSphere Client meldet. Bei jeder Ausführung von DRS wird der zuletzt gemeldete Kapazitätswert verwendet.

Sie können eine vFlash-Ressource pro Host konfigurieren. Dies bedeutet, dass DRS beim Einschalten der virtuellen Maschine keine Auswahl zwischen verschiedenen vFlash-Ressourcen auf einem bestimmten Host treffen muss.

DRS wählt einen Host, dessen verfügbare vFlash-Kapazität ausreichend ist, um die virtuelle Maschine zu starten. Wenn DRS die vFlash-Reservierung einer virtuellen Maschine nicht erfüllen kann, kann sie nicht eingeschaltet werden. DRS geht bei einer eingeschalteten virtuellen Maschine mit vFlash-Reservierung davon aus, dass diese eine weiche Affinität mit ihrem aktuellen Host besitzt. DRS empfiehlt eine solche virtuelle Maschine nicht für vMotion, es sei denn, es liegt ein obligatorischer Grund vor, beispielsweise wenn ein Host in den Wartungsmodus versetzt werden muss oder wenn die Last eines überlasteten Hosts verringert werden muss.

Erstellen eines Clusters

Ein Cluster ist eine Gruppe von Hosts. Wenn Sie einem Cluster einen Host hinzufügen, werden die Ressourcen des Hosts zu den Ressourcen des Clusters hinzugefügt. Der Cluster verwaltet die Ressourcen aller zugehörigen Hosts.

Cluster ermöglichen die Verwendung der Lösungen vSphere HA (vSphere High Availability) und vSphere DRS (vSphere Distributed Resource Scheduler).

Hinweis Bei vSphere DRS handelt es sich um eine wichtige vSphere-Funktion, die zum Aufrechterhalten der Integrität der in einem vSphere-Cluster ausgeführten Arbeitslasten benötigt wird. Ab vSphere 7.0 Update 1 hängt DRS von der Verfügbarkeit der vCLS-VMs ab. Weitere Informationen hierzu finden Sie unter Kapitel 15 vSphere Cluster Services.

Voraussetzungen

- Stellen Sie sicher, dass Sie über ausreichende Berechtigungen zum Erstellen eines Clusterobjekts verfügen.
- Stellen Sie sicher, dass in der Bestandsliste ein Datencenter vorhanden ist.
- Wenn Sie vSAN verwenden möchten, muss es aktiviert werden, bevor Sie vSphere HA konfigurieren.

Verfahren

- 1 WechselnNavigieren Sie im vSphere Client zu einem Datencenter.
- 2 Klicken Sie mit der rechten Maustaste auf das Datencenter und wählen Sie Neuer Cluster.
- 3 Geben Sie einen Namen für den Cluster ein.
- 4 Wählen Sie die DRS- und vSphere HA-Cluster-Funktionen.

Option	Beschreibung	
So verwenden Sie DRS mit diesem Cluster	 a Aktivieren Sie das Kontrollkästchen DRS einschalten. b Wählen Sie einen Schwellenwert für die Automatisierung und die Migration aus. 	
So verwenden Sie HA mit diesem Cluster	 a Aktivieren Sie das Kontrollkästchen vSphere HA einschalten. b Wählen Sie, ob Sie Hostüberwachung und Zugangssteuerung aktivieren möchten. 	
	 c Geben Sie bei Aktivierung der Zugangssteuerung eine Richtlinie an. d Wählen Sie eine VM-Überwachungsoption aus. e Legen Sie die Empfindlichkeit für die Überwachung virtueller Maschinen fest. 	

5 Wählen Sie eine EVC-Einstellung (Enhanced vMotion Compatibility) aus.

EVC stellt sicher, dass alle Hosts in einem Cluster denselben CPU-Funktionssatz gegenüber der virtuellen Maschine offenlegen – selbst dann, wenn die tatsächlichen CPUs auf den Hosts abweichen. Auf diese Weise wird verhindert, dass mit vMotion durchgeführte Migrationen aufgrund nicht kompatibler CPUs fehlschlagen.

6 Klicken Sie auf OK.

Ergebnisse

Der Cluster wird zur Bestandsliste hinzugefügt.

Nächste Schritte

Fügen Sie Hosts und Ressourcenpools zum Cluster hinzu.

Hinweis Auf der Seite **Cluster-Übersicht** wird unter **Clusterdienste** der Integritätsstatus der vSphere Cluster Services angezeigt.

Bearbeiten von Clustereinstellungen

Wenn Sie einen Host zu einem DRS-Cluster hinzufügen, werden die Ressourcen des Hosts zu den Ressourcen des Clusters hinzugefügt. Zusätzlich zu dieser Ressourcenansammlung können Sie mithilfe eines DRS-Clusters clusterweite Ressourcenpools unterstützen und Ressourcenzuteilungsrichtlinien auf Clusterebene festlegen.

Die folgenden Ressourcenverwaltungsfunktionen auf Clusterebene sind ebenfalls verfügbar.

Lastausgleich

Die Verteilung und Verwendung von CPU- und Arbeitsspeicherressourcen für alle Hosts und virtuelle Maschinen im Cluster werden kontinuierlich überwacht. DRS vergleicht diese Metriken mit einer idealen Ressourcennutzung, die sich aus den Attributen der Ressourcenpools und der virtuellen Maschinen des Clusters, des aktuellen Bedarfs sowie aus Ziel des Ungleichgewichts ergibt. DRS stellt dann Empfehlungen bereit oder führt entsprechende Migrationen für virtuelle Maschinen aus. Weitere Informationen hierzu finden Sie unter Migrieren von virtuellen Maschinen. Wird eine virtuelle Maschine im Cluster eingeschaltet, versucht DRS, einen ordnungsgemäßen Lastausgleich aufrechtzuerhalten, indem er entweder eine geeignete Platzierung der virtuellen Maschine vornimmt oder eine entsprechende Empfehlung ausgibt. Weitere Informationen hierzu finden Sie unter Zugangssteuerung und anfängliche Platzierung.

Energieverwaltung

Wenn die Funktion vSphere Distributed Power Management (DPM) aktiviert ist, vergleicht DRS die Kapazitäten auf Cluster- und Hostebene mit dem Bedarf der virtuellen Maschinen im Cluster. Hierbei wird auch der Bedarfsverlauf der letzten Zeit berücksichtigt. DRS empfiehlt Ihnen anschließend, Hosts in den Standby-Modus zu versetzen. Wenn Überkapazitäten vorhanden sind, werden die Hosts automatisch in den Standby-Modus versetzt. DRS schaltet Hosts ein, wenn mehr Kapazität benötigt wird. Je nach Empfehlungen für den Hostenergiestatus müssen virtuelle Maschinen möglicherweise auf einen Host migriert oder von diesem verschoben werden. Weitere Informationen hierzu finden Sie unter Verwalten von Energieressourcen.

Affinitätsregeln

Durch die Verwendung von Affinitätsregeln können Sie die Platzierung von virtuellen Maschinen auf Hosts innerhalb eines Clusters steuern. Weitere Informationen hierzu finden Sie unter Verwenden von DRS-Affinitätsregeln.

Voraussetzungen

Sie können einen Cluster zwar ohne zusätzliche Lizenz erstellen, Sie benötigen jedoch eine Lizenz zur Aktivierung eines Clusters für vSphere DRS oder vSphere HA.

Hinweis Bei vSphere DRS handelt es sich um eine wichtige vSphere-Funktion, die zum Aufrechterhalten der Integrität der in einem vSphere-Cluster ausgeführten Arbeitslasten benötigt wird. Ab vSphere 7.0 Update 1 hängt DRS von der Verfügbarkeit der vCLS-VMs ab. Weitere Informationen hierzu finden Sie unter Kapitel 15 vSphere Cluster Services.

Verfahren

- 1 Navigieren Sie zu einem Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Klicken Sie unter vSphere DRS auf Bearbeiten.
- 4 Wählen Sie unter DRS-Automatisierung eine Standardautomatisierungsebene für DRS aus.

Automatisierungsebene	Aktion	
Manuell	Anfängliche Platzierung: Der empfohlene Hosts wird angezeigt.Migration: Die Empfehlung wird angezeigt.	
Teilautomatisiert	Anfängliche Platzierung: Automatisch.Migration: Die Empfehlung wird angezeigt.	
Vollautomatisiert	Anfängliche Platzierung: Automatisch.Migration: Die Empfehlung wird automatisch ausgeführt.	

- 5 Legen Sie den Migrationsschwellenwert für DRS fest.
- 6 Aktivieren Sie das Kontrollkästchen Predictive DRS. Zusätzlich zu Echtzeitmetriken reagiert DRS auf prognostizierte Metriken, die vom vRealize Operations-Server bereitgestellt werden. In vRealize Operations-Versionen, die Predictive DRS unterstützen, müssen Sie diese Funktion auch konfigurieren.

7 Aktivieren Sie das Kontrollkästchen **Automatisierungsebene der virtuellen Maschinen**, um Automatisierungsebenen der einzelnen virtuellen Maschinen zu aktivieren.

Außerkraftsetzungen für einzelne virtuelle Maschinen können über die Seite "VM-Außerkraftsetzungen" festgelegt werden.

8 Aktivieren Sie unter **Weitere Optionen** ein Kontrollkästchen, um eine der Standardrichtlinien zu erzwingen.

Option	Beschreibung	
VM-Verteilung	Verteilen Sie im Hinblick auf die Verfügbarkeit eine gleiche Anzahl an virtuellen Maschinen auf Hosts. Dies ist für DRS-Lastausgleich sekundär.	
Speichermetrik für Lastausgleich	Lastausgleich basierend auf dem belegten Arbeitsspeicher virtueller Maschinen statt auf dem aktiven Arbeitsspeicher. Diese Einstellung wird nur für Cluster empfohlen, bei denen der Hostarbeitsspeicher nicht überbelegt ist.	
	Hinweis Diese Einstellung wird nicht mehr unterstützt und wird in vCenter 7.0 nicht mehr angezeigt.	
CPU-Überbelegung	Steuern Sie die CPU-Überbelegung im Cluster.	
Skalierbare Freigaben	Aktivieren Sie skalierbare Freigaben für die Ressourcenpools in diesem Cluster.	

- 9 Wählen Sie unter Energieverwaltung "Automatisierungsebene" aus.
- 10 Wenn DPM aktiviert ist, legen Sie den DPM-Schwellenwert fest.
- 11 Klicken Sie auf OK.

Nächste Schritte

Hinweis Auf der Seite **Cluster-Übersicht** wird unter **Clusterdienste** der Integritätsstatus der vSphere Cluster Services angezeigt.

Sie können die Arbeitsspeichernutzung für DRS im vSphere Client anzeigen. Weitere Informationen finden Sie unter:

(Anzeigen der Arbeitsspeichernutzung von Distributed Resource Scheduler)

Festlegen einer benutzerdefinierten Automatisierungsebene für eine virtuelle Maschine

Nachdem Sie einen DRS-Cluster erstellt haben, können Sie die Automatisierungsebene für einzelne virtuelle Maschinen anpassen, um den standardmäßigen Automatisierungsmodus des Clusters außer Kraft zu setzen. So können Sie zum Beispiel für bestimmte virtuelle Maschinen in einem vollautomatisierten Cluster **Manuell** oder für bestimmte virtuelle Maschinen in einem manuellen Cluster **Teilautomatisiert** auswählen.

Wenn eine virtuelle Maschine auf **Deaktiviert** gesetzt ist, führt vCenter Server keine Migration dieser virtuellen Maschine durch bzw. bietet keine entsprechenden Migrationsempfehlungen an.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Wählen Sie unter "Dienste" die Option **vSphere DRS** und klicken Sie auf **Bearbeiten**. Erweitern Sie "DRS-Automatisierung".
- 4 Aktivieren Sie das Kontrollkästchen Automatisierungsebenen von individuellen virtuellen Maschinen aktivieren.
- 5 Deaktivieren Sie das Kontrollkästchen Automatisierungsebenen von individuellen virtuellen Maschinen aktivieren, um alle einzeln festgelegten VM-Außerkraftsetzungen vorübergehend zu deaktivieren.

Wenn das Kontrollkästchen wieder aktiviert wird, werden die Einstellungen der virtuellen Maschine wiederhergestellt.

- 6 Um vorübergehend alle vMotion-Aktivitäten in einem Cluster anzuhalten, versetzen Sie den Cluster in den manuellen Modus und heben die Auswahl des Kontrollkästchens Automatisierungsebenen von individuellen virtuellen Maschinen aktivieren auf.
- 7 Wählen Sie eine oder mehrere virtuelle Maschinen aus.
- 8 Klicken Sie auf die Spalte **Automatisierungsebene** und wählen Sie eine Automatisierungsebene aus dem Dropdown-Menü aus.

Option	Beschreibung
Manuell	Die Empfehlungen zur Platzierung und zur Migration werden angezeigt, jedoch erst ausgeführt, wenn Sie die Empfehlungen manuell übernommen haben.
Vollautomatisiert	Die Empfehlungen zur Platzierung und zur Migration werden automatisch ausgeführt.
Teilautomatisiert	Die anfängliche Platzierung wird automatisch durchgeführt. Die Migrationsempfehlungen werden angezeigt, aber nicht ausgeführt.
Deaktiviert	vCenter Server migriert die virtuelle Maschine nicht und gibt auch keine Migrationsempfehlungen für sie.

9 Klicken Sie auf OK.

Ergebnisse

Hinweis Andere VMware-Produkte oder Funktionen, z. B. vSphere vApp und vSphere Fault Tolerance, können die Automatisierungsebenen von virtuellen Maschinen in einem DRS-Cluster möglicherweise außer Kraft setzen. Weitere Informationen finden Sie in der produktspezifischen Dokumentation.

Deaktivieren von DRS

Sie können DRS für ein Cluster deaktivieren.

Wenn DRS deaktiviert ist:

- DRS-Affinitätsregeln werden nicht entfernt, sondern erst angewendet, wenn DRS erneut aktiviert wird.
- Host- und VM-Gruppen werden nicht entfernt, sondern erst angewendet, wenn DRS erneut aktiviert wird.
- Ressourcenpools werden dauerhaft aus dem Cluster entfernt. Damit Sie die Ressourcenpools nicht verlieren, speichern Sie einen Snapshot der Ressourcenpoolstruktur auf Ihrem Iokalen Computer. Sie können mithilfe des Snapshots den Ressourcenpool wiederherstellen, wenn Sie DRS aktivieren.

Hinweis Deaktivieren Sie DRS nicht, wenn die Arbeitslastverwaltung aktiviert ist. Dadurch können WCP-Dienste nicht wiederhergestellt werden.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Klicken Sie unter vSphere DRS auf Bearbeiten.
- 4 Heben Sie die Aktivierung des Kontrollkästchens vSphere DRS einschalten auf.
- 5 Klicken Sie auf **OK**, um DRS zu deaktivieren.
- 6 (Optional) Wählen Sie eine Option, um den Ressourcenpool zu speichern.
 - Klicken Sie auf Ja, um den Snapshot der Ressourcenpoolstruktur auf einem lokalen Computer zu speichern.
 - Klicken Sie auf Nein, um DRS zu deaktivieren, ohne dass dabei der Snapshot der Ressourcenpoolstruktur gespeichert wird.

Ergebnisse

DRS ist deaktiviert.

Hinweis Bei vSphere DRS handelt es sich um eine wichtige vSphere-Funktion, die zum Aufrechterhalten der Integrität der in einem vSphere-Cluster ausgeführten Arbeitslasten benötigt wird. Ab vSphere 7.0 Update 1 hängt DRS von der Verfügbarkeit der vCLS-VMs ab. Weitere Informationen hierzu finden Sie unter Kapitel 15 vSphere Cluster Services.

Wiederherstellen einer Ressourcenpoolstruktur

Sie können einen zuvor gespeicherten Snapshot einer Ressourcenpoolstruktur wiederherstellen.

Voraussetzungen

- vSphere DRS muss eingeschaltet sein.
- Sie können einen Snapshot nur in demselben Cluster wiederherstellen, in dem er erstellt wurde.
- Es befinden sich keine anderen Ressourcenpools im Cluster.
- Sicherung und Wiederherstellung müssen immer auf derselben Version von vCenter und ESXi durchgeführt werden.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie mit der rechten Maustaste auf das Cluster und wählen Sie **Ressourcenpoolstruktur** wiederherstellen.
- 3 Klicken Sie auf **Durchsuchen** und navigieren Sie zur Snapshot-Datei auf Ihrer lokalen Maschine.
- 4 Klicken Sie auf Öffnen.
- 5 Klicken Sie auf OK, um die Ressourcenpoolstruktur wiederherzustellen.

DRS-Awareness vSAN Stretched Cluster

DRS Awareness vSAN Stretched Cluster ist auf Stretched Clustern mit aktivierter DRS verfügbar, die vSphere 7.0 U2 verwenden. Ein vSAN Stretched Cluster hat Leselokalität, wobei die VM Daten von einer lokalen Site liest. Durch das Abrufen von Lesezugriffen von einer Remote-Site kann die VM-Leistung beeinträchtigt werden. In Versionen vor vSphere 7.0 U2 hatte DRS keine Kenntnis der Lese-Lokalität für einen vSAN Stretched Cluster und hat daher unter Umständen versehentlich eine VM auf einer Remote-Site ohne Lese-Lokalität platziert. Mit DRS Awareness of vSAN Stretched Cluster kennt DRS jetzt die VM-Lese-Lokalität vollständig und platziert somit die VM auf einer Site, auf der die Lese-Lokalität in vollem Umfang vorhanden ist. Dies geschieht automatisch, es gibt keine konfigurierbaren Optionen. DRS Awareness vSAN Stretched Cluster funktioniert mit den vorhandenen Affinitätsregeln. Es funktioniert mit vSphere 7.0 U2 und VMware Cloud on AWS.

vSAN Stretched Cluster mit vSphere HA und vSphere DRS bieten Ausfallsicherheit, indem für den Fall von Fehlern zwei Kopien der Daten über zwei Fehlerdomänen und einen Zeugenknoten in einer dritten Fehlerdomäne verteilt sind. Die beiden aktiven Fehlerdomänen ermöglichen die Replizierung von Daten, sodass beide Fehlerdomänen über eine aktuelle Kopie der Daten verfügen.

vSAN Stretched Cluster bietet eine automatisierte Methode zum Verschieben von Arbeitslasten innerhalb der beiden Fehlerdomänen. Bei vollständigen Site-Ausfällen werden VMs von vSphere HA auf der sekundären Site neu gestartet. Dadurch ist sichergestellt, dass es keine Ausfallzeiten für kritische Produktionsarbeitslasten gibt. Sobald die primäre Site wieder online ist, gleicht DRS die VMs mit sanften Affinitätshosts sofort wieder mit der primäre Site ab. Dieser Vorgang führt dazu, dass die VM von der sekundären Site liest und schreibt, während die VM-Datenkomponenten noch neu erstellt werden, wodurch die VM-Leistung beeinträchtigt werden kann.

In Versionen vor vSphere 7.0 U2 wird empfohlen, DRS vom vollautomatisierten in den teilautomatisierten Modus wechseln zu lassen, um zu vermeiden, dass VMs migriert werden, während eine Neusynchronisierung auf die primäre Site ausgeführt wird. Legen Sie DRS erst nach Abschluss der Neusynchronisierung auf "vollautomatisiert" fest.

Mit vSphere 7.0 U2 führt DRS Awareness of vSAN Stretched Cluster eine vollständig automatisierte Lese-Lokalitätslösung zur Wiederherstellung nach Ausfällen in einem vSAN Stretched Cluster ein. Die Informationen zur Lese-Lokalität verweisen auf die Hosts, auf die die VM voll zugreifen kann, und DRS verwendet diese Informationen, wenn eine VM auf einem Host auf vSAN Stretched Clustern platziert wird. DRS verhindert, dass VMs auf die primäre Site zurückfallen, während die vSAN-Neusynchronisierung in der Site-Wiederherstellungsphase noch läuft. DRS migriert eine VM automatisch zurück zur primären affinen Site, wenn ihre Datenkomponenten die vollständige Lese-Lokalität erreicht haben. Auf diese Weise können Sie DRS im vollautomatischen Modus betreiben, falls eine vollständige Site ausfallen sollte.

Bei partiellen Site-Ausfällen identifiziert vSphere DRS die VMs, die eine sehr hohe Lesebandbreite belegen und versucht, sie wieder mit der sekundären Site abzugleichen, wenn die VM die Lese-Lokalität aufgrund eines Verlusts von Datenkomponenten größer als oder gleich ihrem Wert für "Zu tolerierende Fehler" verliert. Dadurch ist sichergestellt, dass VMs mit einer hohen Lesearbeitslast bei partiellen Site-Ausfällen nicht beeinträchtigt werden. Sobald die primäre Site wieder online ist und die Datenkomponenten die Neusynchronisierung abgeschlossen haben, wird die VM wieder zurück zu der Site verschoben, zu der sie affin ist.

DRS-Platzierung von vGPUs

DRS verteilt vGPU-VMs auf die Hosts eines Clusters.

DRS verteilt vGPU-VMs auf eine prinzipiell breite Art und Weise auf die Hosts eines Clusters. Die fraktionierte vGPU-Profilzuteilung für eine VM unterliegt möglicherweise Regeln für den gegenseitigen Ausschluss homogener Profile.

- Migrieren Sie vGPU-VMs manuell auf einen gewünschten Host, um nicht verwendete physische GPU-Kapazität zu öffnen.
- Verwenden Sie dieselbe vGPU-Profilkonfiguration in allen vGPU-VMs in einem Cluster.
- Aktivieren Sie "GPU-Konsolidierung" des Hosts. Weitere Informationen finden Sie unter Konfigurieren von Hostgrafiken.
- Wenn DRS Automation aktiv ist, sollten Sie den Cluster oder die VM in den Modus
 Teilweise automatisiert versetzen. Weitere Informationen finden Sie unter Bearbeiten von Clustereinstellungen.

17

Funktion "vSphere DRS-Wartungsmodus" mit ROBO Enterprise-Lizenz

Die umfangreiche ROBO Enterprise-Lizenz (Remote Office Branch Office) von VMware unterstützt automatische VM-Entfernungen, wenn ein Host in den Wartungsmodus versetzt wird.

In einem ROBO Enterprise-Cluster ist DRS standardmäßig deaktiviert und Sie können keine Änderungen an der DRS-Konfiguration vornehmen. Wenn ein Host in einem ROBO Enterprise-Cluster in den Wartungsmodus versetzt wird, werden VMs automatisch mithilfe von DRS vom Host evakuiert. DRS erstellt vor der Evakuierung der VMs vom Host VM-Host-Affinitätszuordnungen, um die Platzierung der VMs zu verfolgen. Wenn der Host im Wartungsmodus vorhanden ist, werden die auf dem Host ausgeführten VMs zurück auf den Host migriert. VM-Host-Affinitätszuordnungen werden nach der Migration gelöscht.

Lesen Sie als Nächstes die folgenden Themen:

- Einschränkungen des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz
- Verwenden des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz
- Fehlerbehebung für den DRS-Wartungsmodus mit ROBO Enterprise-Lizenz

Einschränkungen des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz

Die DRS Funktionen mit ROBO Enterprise-Lizenz bieten nicht den vollen DRS-Funktionsumfang.

Es gibt einige Einschränkungen, die Sie beachten sollten, bevor Sie den Wartungsmodus auf einem ROBO Enterprise-Cluster starten. Auf einem ROBO Enterprise-Cluster ist DRS standardmäßig deaktiviert. Wenn Sie von einer von DRS-unterstützten Lizenz zu einer ROBO Enterprise-Lizenz migriert haben, enthält Ihr System möglicherweise VMs mit Affinitäts- oder Anti-Affinitätsregeln. Sie müssen VMs mit Affinitäts- oder Anti-Affinitätsregeln deaktivieren oder löschen. Andernfalls ist der ROBO Enterprise-Wartungsmodus deaktiviert. Der ROBO Enterprise-Wartungsmodus ist deaktiviert, wenn DRS nicht auf den vollständig automatisierten Modus festgelegt ist. Die DRS-Automatisierungsebene muss auf den vollständig automatisierten Modus festgelegt sein, damit VMs automatisch über den Hostwartungs-Workflow evakuiert werden. Wenn eine VM den vollständig automatisierten DRS-Modus außer Kraft setzt, müssen Sie die VM manuell evakuieren.

Verwenden des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz

vSphere unterstützt eingeschränkte Funktionen des DRS-Wartungsmodus mit ROBO Enterprise-Lizenz.

Voraussetzungen

- Überprüfen Sie, ob für alle Hosts in einem Cluster die ROBO Enterprise-Lizenz installiert ist.
 Wenn dies nicht der Fall ist, müssen Sie die Lizenz installieren.
- Überprüfen Sie, ob DRS-Regeln konfiguriert und aktiviert sind. Ist dies der Fall, müssen Sie sie deaktivieren oder löschen, um den ROBO Enterprise-Wartungsmodus zu verwenden.

Verfahren

- 1 Damit der DRS-Wartungsmodus zusammen mit der ROBO Enterprise-Lizenz funktioniert, vergewissern Sie sich, dass auf jedem Host im Cluster die ROBO Enterprise-Lizenz installiert ist.
 - Wenn die Lizenz nicht installiert ist, fahren Sie mit Schritt 2 fort.
 - Wenn die Lizenz installiert ist, gehen Sie zu Schritt 3.
- 2 Installieren der ROBO Enterprise-Lizenz
 - a Navigieren Sie im vSphere Client zum Host.
 - b Wählen Sie auf der Registerkarte Konfigurieren die Option Lizenzierung.
 - c Klicken Sie auf LIZENZ ZUWEISEN.
 - d Geben Sie Ihren ROBO Enterprise-Lizenzschlüssel ein, und klicken Sie auf **OK**.

Sie müssen diese Schritte für alle Hosts im Cluster wiederholen.

3 Wählen Sie den Host im Cluster aus, klicken Sie mit der rechten Maustaste und wählen Sie In den Wartungsmodus wechseln. Klicken Sie dann auf OK.

Die VMs auf dem Host werden automatisch evakuiert.

Ergebnisse

Nachdem der Host den Wartungsmodus verlassen hat, werden die VMs automatisch zurück auf den Host migriert. Der Host wird auf den ursprünglichen Zustand wiederhergestellt. Wenn allerdings ein Host überlastet ist, kann DRS keine VMs zurück auf den ursprünglichen Host migrieren. DRS versucht, den Host auf den ursprünglichen Zustand wiederherzustellen, kann jedoch einen Host nicht überlasten.

Nächste Schritte

Wenn Sie den DRS-Wartungsmodus mit ROBO Enterprise-Lizenz deaktivieren müssen, können Sie die Datei "vpxd.cfg" bearbeiten. Öffnen Sie die Datei "vpxd.cfg". Ändern Sie unter der Option **<cluster>** die Einstellung **<roboMMEnabled>true</roboMMEnabled>** zu **<roboMMEnabled>false</roboMMEnabled>**. Dies ist eine Laufzeitkonfiguration. Daher brauchen Sie vpxd nach dem Aktualisieren der Konfiguration nicht neu zu starten.

Fehlerbehebung für den DRS-Wartungsmodus mit ROBO Enterprise-Lizenz

Beachten Sie Folgendes, wenn bei Verwendung des Wartungsmodus mit Ihrem ROBO Enterprise-Cluster Probleme auftreten.

Gehen Sie wie folgt vor, damit der Wartungsmodus zusammen mit einem ROBO Enterprise-Cluster korrekt funktioniert:

- Überprüfen Sie, ob für alle Hosts in einem Cluster die ROBO Enterprise-Lizenz installiert ist.
 Wenn dies nicht der Fall ist, müssen Sie die Lizenz installieren.
- Überprüfen Sie, ob DRS-Regeln konfiguriert und aktiviert sind. Ist dies der Fall, müssen Sie sie deaktivieren oder löschen, um den ROBO Enterprise-Wartungsmodus zu verwenden.
- Wenn die Kompatibilitätsprüfung fehlschlägt, stellen Sie sicher, dass die anderen Hosts mit der VM kompatibel sind.

Verwenden von DRS-Clustern zum Verwalten von Ressourcen mit vSphere

18

Nachdem Sie einen DRS-Cluster erstellt haben, können Sie ihn anpassen und zur Ressourcenverwaltung verwenden.

Um Ihren DRS-Cluster und die enthaltenen Ressourcen anzupassen, können Sie Affinitätsregeln konfigurieren sowie Hosts und virtuelle Maschinen hinzufügen und entfernen. Wenn die Einstellungen und Ressourcen eines Clusters definiert wurden, sollten Sie sicherstellen, dass es sich um einen gültigen Cluster handelt und dies so bleibt. Mit einem gültigen DRS-Cluster können Sie zudem Betriebsressourcen verwalten und mit vSphere HA interoperieren.

Hinweis In diesem Kapitel kann sich "Arbeitsspeicher" auf den physischen oder den persistenten Arbeitsspeicher beziehen.

Lesen Sie als Nächstes die folgenden Themen:

- Hinzufügen von Hosts zu einem Cluster
- Hinzufügen virtueller Maschinen zu einem Cluster
- Entfernen virtueller Maschinen aus einem Cluster
- Entfernen eines Hosts aus einem Cluster
- DRS-Clustergültigkeit
- Verwalten von Energieressourcen
- Verwenden von DRS-Affinitätsregeln

Hinzufügen von Hosts zu einem Cluster

Die Vorgehensweise für das Hinzufügen von Hosts zu einem Cluster unterscheidet sich für Hosts, die durch denselben vCenter Server (verwaltete Hosts) verwaltet werden, im Vergleich zu Hosts, die derzeit nicht durch diesen Server verwaltet werden. Nach dem Hinzufügen eines Hosts werden die virtuellen Maschinen, die für den Host bereitgestellt wurden, Bestandteil des Clusters und DRS kann das Migrieren von einigen virtuellen Maschinen auf andere Hosts in dem Cluster empfehlen.

Hinweis Bei vSphere DRS handelt es sich um eine wichtige vSphere-Funktion, die zum Aufrechterhalten der Integrität der in einem vSphere-Cluster ausgeführten Arbeitslasten benötigt wird. Ab vSphere 7.0 Update 1 hängt DRS von der Verfügbarkeit der vCLS-VMs ab. Weitere Informationen hierzu finden Sie unter Kapitel 15 vSphere Cluster Services.

Hinzufügen eines verwalteten Hosts zu einem Cluster

Wenn Sie einen eigenständigen Host, der bereits von vCenter Server verwaltet wird, zu einem DRS-Cluster hinzufügen, werden dem Cluster die Ressourcen des Hosts zugeordnet.

Sie können auswählen, ob vorhandene virtuelle Maschinen und Ressourcenpools dem Root-Ressourcenpool des Clusters zugeordnet oder die Ressourcenpoolhierarchie übertragen werden soll.

Hinweis Falls ein Host über keine untergeordneten Ressourcenpools oder virtuellen Maschinen verfügt, werden dem Cluster die Host-Ressourcen hinzugefügt, es wird jedoch keine Ressourcenpool-Hierarchie mit einem Ressourcenpool oberster Ebene erstellt.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie mit der rechten Maustaste auf den Host und wählen Sie Verschieben nach... aus.
- 3 Wählen Sie einen Cluster aus.
- 4 Klicken Sie auf OK, damit die Änderungen wirksam werden.
- **5** Geben Sie die weitere Verfahrensweise mit den virtuellen Maschinen und Ressourcenpools des Hosts an.
 - Alle virtuellen Maschinen dieses Hosts im Root-Ressourcenpool des Clusters platzieren

vCenter Server entfernt alle vorhandenen Ressourcenpools des Hosts und die virtuellen Maschinen in der Hierarchie des Hosts werden alle Root zugeordnet. Da Anteilszuordnungen stets relativ zu einem Ressourcenpool sind, müssen Sie die Anteile einer virtuellen Maschine möglicherweise manuell ändern, nachdem Sie diese Option ausgewählt haben, die die Ressourcenpoolhierarchie zerstört.

Einen Ressourcenpool f ür die virtuellen Maschinen und Ressourcenpools dieses Hosts erstellen

vCenter Server erstellt einen Ressourcenpool auf oberster Ebene, der zu einem dem Cluster direkt untergeordneten Element wird, und fügt alle untergeordneten Elemente des Hosts zu diesem neuen Ressourcenpool hinzu. Für diesen neuen Ressourcenpool der obersten Ebene können Sie einen Namen vergeben. Der Standard ist **Übertragen von** <host_name>.

Ergebnisse

Der Host wurde zum Cluster hinzugefügt.

Hinzufügen eines nicht verwalteten Hosts zu einem Cluster

Sie können einen nicht verwalteten Host zu einem Cluster hinzufügen. Ein solcher Host wird derzeit nicht durch dasselbe vCenter Server-System wie der Cluster verwaltet und ist im vSphere Client nicht sichtbar.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie mit der rechten Maustaste auf den Cluster und wählen Sie Host hinzufügen.
- 3 Geben Sie den Hostnamen, den Benutzernamen und das Kennwort ein und klicken Sie auf Weiter.
- 4 Zeigen Sie die Informationsübersicht an, und klicken Sie auf Weiter.
- 5 Weisen Sie dem Host einen vorhandenen oder neuen Lizenzschlüssel zu und klicken Sie auf Weiter.
- 6 (Optional) Sie können einen Sperrmodus aktivieren, um zu verhindern, dass sich Remotebenutzer direkt beim Host anmelden.

Wenn Sie den Sperrmodus nicht aktivieren, können Sie diese Option zu einem späteren Zeitpunkt konfigurieren, indem Sie das Sicherheitsprofil in den Hosteinstellungen bearbeiten.

- **7** Geben Sie die weitere Verfahrensweise mit den virtuellen Maschinen und Ressourcenpools des Hosts an.
 - Alle virtuellen Maschinen dieses Hosts im Root-Ressourcenpool des Clusters platzieren

vCenter Server entfernt alle vorhandenen Ressourcenpools des Hosts und die virtuellen Maschinen in der Hierarchie des Hosts werden alle Root zugeordnet. Da Anteilszuordnungen stets relativ zu einem Ressourcenpool sind, müssen Sie die Anteile einer virtuellen Maschine möglicherweise manuell ändern, nachdem Sie diese Option ausgewählt haben, die die Ressourcenpoolhierarchie zerstört.

 Einen Ressourcenpool f
ür die virtuellen Maschinen und Ressourcenpools dieses Hosts erstellen

vCenter Server erstellt einen Ressourcenpool auf oberster Ebene, der zu einem dem Cluster direkt untergeordneten Element wird, und fügt alle untergeordneten Elemente des Hosts zu diesem neuen Ressourcenpool hinzu. Für diesen neuen Ressourcenpool der obersten Ebene können Sie einen Namen vergeben. Der Standard ist **Übertragen von** <host_name>.

8 Überprüfen Sie die Einstellungen und klicken Sie auf **Beenden**.

Ergebnisse

Der Host wurde zum Cluster hinzugefügt.

Hinzufügen virtueller Maschinen zu einem Cluster

Es gibt mehrere Möglichkeiten, eine virtuelle Maschine zu einem Cluster hinzuzufügen.

- Wird ein Host zu einem Cluster hinzugefügt, werden alle auf dem Host befindlichen virtuellen Maschinen ebenfalls zum Cluster hinzugefügt.
- Bei der Erstellung einer virtuellen Maschine werden Sie durch den Assistenten zum Erstellen neuer virtuellen Maschinen aufgefordert, den Speicherort der virtuellen Maschine festzulegen. Sie können einen eigenständigen Host oder einen Cluster auswählen und jeden Ressourcenpool in dem Host oder Cluster auswählen.
- Sie können mithilfe des Assistenten für das Migrieren einer virtuellen Maschine eine virtuelle Maschine von einem eigenständigen Host oder von einem Cluster auf einen anderen Cluster migrieren. Um diesen Assistenten zu starten, klicken Sie mit der rechten Maustaste auf den Namen der virtuellen Maschine und wählen Sie Migrieren.

Verschieben einer virtuellen Maschine in einen Cluster

Sie können eine virtuelle Maschine in einen Cluster verschieben.

Verfahren

- 1 Suchen Sie die virtuelle Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie Verschieben nach... aus.
- 3 Wählen Sie einen Cluster aus.
- 4 Klicken Sie auf OK.

Entfernen virtueller Maschinen aus einem Cluster

Sie können virtuelle Maschine aus einem Cluster entfernen.

Sie haben zwei Möglichkeiten, um eine virtuelle Maschine aus einem Cluster zu entfernen.

Wenn Sie einen Host aus einem Cluster entfernen, werden alle ausgeschalteten virtuellen Maschinen, die nicht auf andere Hosts migriert werden, ebenfalls entfernt. Ein Host kann nur entfernt werden, wenn er sich im Wartungsmodus befindet oder nicht verbunden ist. Wird ein Host aus einem DRS-Cluster entfernt, wird der Cluster möglicherweise aufgrund einer Überbelegung gelb gekennzeichnet. Sie können mithilfe des Assistenten zum Migrieren eine virtuelle Maschine von einem eigenständigen Host oder Cluster auf einen anderen Cluster migrieren. Um diesen Assistenten zu starten, klicken Sie mit der rechten Maustaste auf den Namen der virtuellen Maschine und wählen Sie Migrieren.

Verschieben einer virtuellen Maschine aus einem Cluster

Sie können eine virtuelle Maschine aus einem Cluster hinaus verschieben.

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie Migrieren.
- 3 Wählen Sie Datenspeicher ändern und klicken Sie auf Weiter.
- 4 Wählen Sie einen Datenspeicher, und klicken Sie auf Weiter.
- 5 Klicken Sie auf Beenden.

Falls die virtuelle Maschine zur Regelgruppe eines DRS-Clusters gehört, zeigt vCenter Server eine Warnmeldung an, bevor die Migration fortgesetzt werden kann. Die Warnmeldung weist darauf hin, dass abhängige virtuelle Maschinen nicht automatisch migriert werden. Sie müssen die Warnmeldung zunächst bestätigen, damit die Migration fortgesetzt wird.

Entfernen eines Hosts aus einem Cluster

Wenn Sie einen Host aus einem DRS-Cluster entfernen, wirkt sich dies auf die Ressourcenpoolhierarchien und die virtuellen Maschinen aus und Sie erstellen möglicherweise ungültige Cluster. Berücksichtigen Sie die Auswirkungen auf die betroffenen Objekte, bevor Sie den Host entfernen.

 Ressourcenpoolhierarchien – Nach dem Entfernen eines Hosts aus einem Cluster behält der Host nur noch den Root-Ressourcenpool bei, selbst wenn Sie einen DRS-Cluster verwendet haben und beim Hinzufügen des Hosts zum Cluster die Option gewählt haben, den Ressourcenpool des Hosts zu übertragen. In diesem Fall bleibt die Hierarchie im Cluster erhalten. Sie können eine hostspezifische Ressourcenpoolhierarchie erstellen.

Hinweis Stellen Sie sicher, dass Sie den Host aus dem Cluster entfernen, indem Sie ihn zuerst in den Wartungsmodus versetzen. Wenn Sie stattdessen die Verbindung des Hosts trennen, bevor Sie ihn aus dem Cluster entfernen, behält der Host den Ressourcenpool bei, der die Clusterhierarchie wiedergibt.

 Virtuelle Maschinen – Ein Host muss sich im Wartungsmodus befinden, damit Sie ihn aus dem Cluster entfernen können, und alle eingeschalteten virtuellen Maschinen müssen von dem Host migriert werden, damit der Host in den Wartungsmodus versetzt werden kann. Wenn Sie angeben, dass ein Host in den IWartungsmodus versetzt wird, werden Sie gefragt, ob alle ausgeschalteten virtuellen Maschinen auf dem Host auf andere Hosts im Cluster migriert werden sollen.

Ungültige Cluster – Wird ein Host aus einem Cluster entfernt, nimmt auch die Zahl der für den Cluster verfügbaren Ressourcen ab. Falls der Cluster über ausreichende Ressourcen verfügt, um den Reservierungsanforderungen aller virtuellen Maschinen und Ressourcenpools des Clusters gerecht zu werden, passt der Cluster die Ressourcenzuteilung an, um den verringerten Umfang an Ressourcen anzuzeigen. Falls der Cluster nicht über ausreichende Ressourcen verfügt, um den Reservierungsanforderungen aller Ressourcenpools, jedoch denen der virtuellen Maschinen des Clusters gerecht zu werden, wird eine Alarmmeldung ausgegeben und der Cluster gelb gekennzeichnet. DRS wird weiterhin ausgeführt.

Versetzen eines Hosts in den Wartungsmodus

Sie sollten einen Host in den Wartungsmodus versetzen, wenn Sie Wartungstätigkeiten ausführen müssen, beispielsweise das Installieren von zusätzlichem Arbeitsspeicher. Ein Host wird in den Wartungsmodus nur auf Benutzeranforderung versetzt bzw. verlässt diesen nur dann.

Virtuelle Maschinen, die auf einem Host ausgeführt werden, der in den Wartungsmodus wechselt, müssen auf einen anderen Host migriert (manuell oder automatisch durch DRS) oder heruntergefahren werden. Der Host befindet sich so lange im Status **Wechsel in den Wartungsmodus**, bis alle ausgeführten virtuellen Maschinen ausgeschaltet oder auf andere Hosts migriert wurden. Sie können auf einem Host, der gerade in den Wartungsmodus wechselt, keine virtuellen Maschinen einschalten oder eine Migration virtueller Maschinen auf diesen Host durchführen.

Wenn sich auf dem Host keine ausgeführten virtuellen Maschinen mehr befinden, ändert sich das Hostsymbol in Wartungsphase und der neue Betriebszustand wird im Fenster **Übersicht (Summary)** des Hosts angezeigt. Während sich der Host im Wartungsmodus befindet, können virtuelle Maschinen weder bereitgestellt noch eingeschaltet werden.

Hinweis Die Migration virtueller Maschinen von einem Host, der in den Wartungs- oder Standby-Modus versetzt wird, wird von DRS nicht empfohlen (und im Fall des vollautomatisierten Modus nicht durchgeführt), wenn nach dem Übergang in den angeforderten Modus gegen die vSphere HA-Failover-Ebene verstoßen würde.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie mit der rechten Maustaste auf den Host und wählen Sie **Wartungsmodus > In den** Wartungsmodus wechseln aus.
 - Wenn der Host Teil eines teilweise automatisierten oder manuellen DRS-Clusters ist, navigieren Sie zu Cluster > Überwachen > DRS > Empfehlungen und klicken Sie auf Empfehlungen übernehmen.

- Wenn der Host Teil eines automatisierten DRS-Clusters ist, werden virtuelle Maschinen auf unterschiedliche Hosts migriert, wenn der Host in den Wartungsmodus wechselt.
- 3 Klicken Sie auf Ja, sofern zutreffend.

Ergebnisse

Der Host befindet sich im Wartungsmodus, bis Sie **Wartungsmodus > Wartungsmodus beenden** auswählen.

Entfernen eines Hosts aus einem Cluster

Sie können Hosts aus einem Cluster entfernen.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie mit der rechten Maustaste auf den Host und wählen Sie **Wartungsmodus > In den** Wartungsmodus wechseln aus.

Im Wartungsmodus kann der Host an einen anderen Bestandslistenspeicherort verschoben werden – entweder in das Datencenter der obersten Ebene oder in einen anderen Cluster.

- 3 Klicken Sie mit der rechten Maustaste auf den Host und wählen Sie Verschieben nach... aus.
- 4 Wählen Sie einen neuen Speicherort für den Host aus und klicken Sie auf OK.

Ergebnisse

Beim Verschieben des Hosts werden seine Ressourcen aus dem Cluster entfernt. Wenn Sie die Ressourcenpoolhierarchie des Hosts in den Cluster übertragen haben, bleibt diese Hierarchie im Cluster erhalten.

Nächste Schritte

Nachdem Sie einen Host aus einem Cluster entfernt haben, können Sie die folgenden Aufgaben ausführen.

- Entfernen des Hosts aus vCenter Server.
- Führen Sie den Host unter vCenter Server als eigenständigen Host aus.
- Verschieben Sie den Host in einen anderen Cluster.

Verwendung des Standby-Modus

Beim Versetzen eines Hosts in den Standby-Modus wird dieser ausgeschaltet.

Normalerweise werden Hosts durch die vSphere DPM-Funktion in den Standby-Modus versetzt, um die Betriebszeiten zu optimieren. Sie können einen Host auch manuell in den Standby-Modus versetzen. Allerdings macht DRS beim nächsten Start möglicherweise Ihre Änderung rückgängig (oder empfiehlt das Rückgängigmachen). Damit ein Host ausgeschaltet bleibt, versetzen Sie diesen in den Wartungsmodus und schalten Sie ihn aus.

DRS-Clustergültigkeit

Der vSphere Client zeigt an, ob ein DRS-Cluster gültig, überbelegt (gelb) oder ungültig (rot) ist.

DRS-Cluster können aufgrund mehrerer Ursachen überbelegt oder ungültig sein.

- Ein Cluster wird möglicherweise überbelegt, falls ein Host ausfällt.
- Ein Cluster wird ungültig, wenn vCenter Server ausfällt und virtuelle Maschinen mit dem vSphere Client eingeschaltet werden.
- Ein Cluster wird ungültig, wenn der Benutzer die Reservierung auf einem übergeordneten Ressourcenpool verringert, während gerade ein Failover einer virtuellen Maschine durchgeführt wird.
- Wenn Sie mit dem vSphere Client Änderungen an Hosts oder virtuellen Maschinen vornehmen, während vCenter Server nicht verfügbar ist, werden diese Änderungen wirksam. Ist vCenter Server anschließend wieder verfügbar, sind einige Cluster möglicherweise rot oder gelb gekennzeichnet, da die Clusteranforderungen nicht mehr erfüllt werden.

Beim Betrachten der verschiedenen Clustergültigkeitsszenarien sollten Sie diese Begriffe verstehen.

Reservierung

Eine feste, garantierte Zuteilung für die Ressourcenpooleingabe des Benutzers.

Verwendete Reservierung

Die Summe der Reservierungen oder genutzten Reservierungen (je nachdem, welcher Wert größer ist) für jeden untergeordneten Ressourcenpool, rekursiv hinzugefügt.

Nicht reserviert

Diese nicht-negative Zahl ist je nach Ressourcenpooltyp verschieden.

- Nicht erweiterbare Ressourcenpools: Reservierung minus verwendeter Reservierung.
- Erweiterbare Ressourcenpools: (Reservierung minus verwendeter Reservierung) zuzüglich der nicht reservierten Ressourcen, die von übergeordneten Ressourcenpools ausgeliehen werden können.

Gültige DRS-Cluster

In einem gültigen Cluster stehen genügend Ressourcen zur Verfügung, um alle Reservierungen zu bedienen und alle gerade ausgeführten virtuellen Maschinen zu unterstützen.

Die folgende Abbildung enthält ein Beispiel zu einem gültigen Cluster mit festen Ressourcenpools und zeigt wie seine CPU- und Arbeitsspeicherressourcen berechnet werden.

Der Cluster verfügt über die folgenden Eigenschaften:

- Ein Cluster mit Gesamtressourcen von 12 GHz.
- Drei Ressourcenpools, je vom Typ Fest (die Option Erweiterbare Reservierung ist nicht aktiviert).
- Die Gesamtreservierung aller drei Ressourcenpools zusammen beläuft sich auf 11 GHz (4+4+3 GHz). Der Gesamtwert wird im Feld Reservierte Arbeitsspeicherkapazität des Clusters angezeigt.
- RP1 wurde mit einer Reservierung von 4 GHz erstellt. Zwei virtuelle Maschinen (VM1 und VM7) mit je 2 GHz sind eingeschaltet (Genutzte Reservierung (Reservation Used): 4 GHz). Es sind keine Ressourcen mehr übrig, um zusätzliche virtuelle Maschinen einzuschalten. VM6 wird als nicht eingeschaltet dargestellt. Sie verbraucht keine Reservierung.
- RP2 wurde mit einer Reservierung von 4 GHz erstellt. Zwei virtuelle Maschinen mit 1 GHz und 2 GHz sind eingeschaltet (Genutzte Reservierung (Reservation Used): 3 GHz). 1 GHz bleibt nicht reserviert.
- RP3 wurde mit einer Reservierung von 3 GHz erstellt. Eine virtuelle Maschine mit 3 GHz ist eingeschaltet. Es sind keine Ressourcen verfügbar, um zusätzliche virtuelle Maschinen einzuschalten.

Die folgende Abbildung enthält ein Beispiel eines gültigen Clusters mit einigen Ressourcenpools (RP1 und RP3) unter Verwendung des Reservierungstyps **Erweiterbar**.

Ein gültiger Cluster kann wie folgt konfiguriert werden:

- Ein Cluster mit Gesamtressourcen von 16 GHz.
- RP1 und RP3 entsprechen dem Typ Erweiterbar, RP2 entspricht Typ "Fest".
- Die Gesamtreservierung der drei Ressourcenpools zusammen beträgt 16 GHz (6 GHz für RP1, 5 GHz für RP2 und 5 GHz für RP3). 16 GHz wird als Reservierte Arbeitsspeicherkapazität für den Cluster der obersten Ebene angezeigt.
- RP1 wurde mit einer Reservierung von 4 GHz erstellt. Drei virtuelle Maschinen mit je 2 GHz sind eingeschaltet. Zwei dieser virtuellen Maschinen (z. B. VM1 und VM7) können die Reservierungen von RP1 verwenden, die dritte virtuelle Maschine (VM6) kann Reservierungen über den Ressourcenpool des Clusters verwenden. (Würde der Typ dieses Ressourcenpools auf **Fest** lauten, könnte die zusätzliche virtuelle Maschine nicht eingeschaltet werden.)
- RP2 wurde mit einer Reservierung von 5 GHz erstellt. Zwei virtuelle Maschinen mit 1 GHz und 2 GHz sind eingeschaltet (Genutzte Reservierung (Reservation Used): 3 GHz). 2 GHz bleibt nicht reserviert.

RP3 wurde mit einer Reservierung von 5 GHz erstellt. Zwei virtuelle Maschinen mit 3 GHz und 2 GHz sind eingeschaltet. Obwohl dieser Ressourcenpool dem Typ **Erweiterbar (Expandable)** entspricht, kann keine zusätzliche virtuelle Maschine mit 2 GHz eingeschaltet werden, da die zusätzlichen Ressourcen der übergeordneten virtuellen Maschine bereits durch RP1 genutzt werden.

Überbelegte DRS-Cluster

Ein Cluster ist überbelegt (gelb), wenn der Baum der Ressourcenpools und virtuellen Maschinen intern konsistent ist, aber der Cluster nicht die Kapazität hat, alle von den untergeordneten Ressourcenpools reservierten Ressourcen zu unterstützen.

Es werden immer genügend Ressourcen vorhanden sein, um alle gerade ausgeführten virtuellen Maschinen zu unterstützen, da bei einem Ausfall des Hosts mit ihm sämtliche virtuellen Maschinen ausfallen. Ein Cluster wird in der Regel dann gelb gekennzeichnet, wenn die Clusterkapazität plötzlich verringert wird, z. B. weil ein Host im Cluster ausfällt. Es wird empfohlen, ausreichende zusätzliche Ressourcen im Cluster zu belassen, damit der Cluster nicht gelb gekennzeichnet wird.

Abbildung 18-3. Gelber Cluster

Beispiel:

- Sie verfügen über einen Cluster mit Ressourcen von insgesamt 12 GHz aus drei Hosts mit je 4 GHz.
- Drei Ressourcenpools reservieren insgesamt 12 GHz.
- Die durch alle drei Ressourcenpools genutzte Gesamtreservierung beläuft sich auf 12 GHz (4+5+3 GHz). Diese wird als Reservierte Arbeitsspeicherkapazität des Clusters angezeigt.
- Einer der Hosts mit 4 GHz fällt aus, sodass sich die Gesamtressourcen auf 8 GHz verringern.
- Gleichzeitig werden VM4 (1 GHz) und VM3 (3 GHz), die zuvor auf dem ausgefallenen Host ausgeführt wurden, nicht mehr ausgeführt.

 Der Cluster führt nun virtuelle Maschinen mit einem Gesamtbedarf von 6 GHz aus. Der Cluster verfügt weiterhin über 8 GHz, eine für die Anforderungen der virtuellen Maschinen ausreichende Menge.

Die Ressourcenpoolreservierungen von 12 GHz können nicht mehr gehalten werden, sodass der Cluster gelb gekennzeichnet wird.

Ungültige DRS-Cluster

Ein Cluster mit aktivierter DRS-Funktion wird als ungültig (rot) gekennzeichnet, wenn die Struktur in sich nicht mehr konsistent ist und Ressourceneinschränkungen nicht überwacht werden.

Die Gesamtmenge der Ressourcen im Cluster hat keinen Einfluss darauf, ob der Cluster rot gekennzeichnet wird. Ein DRS-Cluster kann "rot" sein, obwohl auf Root-Ebene ausreichend Ressourcen vorhanden sind, wenn in einer untergeordneten Ebene Inkonsistenzen vorliegen.

Sie können das Problem eines rot gekennzeichneten DRS-Clusters lösen, indem Sie mindestens eine virtuelle Maschine ausschalten, virtuelle Maschinen in Strukturbereiche mit ausreichenden Ressourcen verschieben oder die Ressourcenpooleinstellungen im roten Bereich bearbeiten. Das Hinzufügen von Ressourcen schafft in der Regel nur im gelben Status Abhilfe.

Ein Cluster kann auch dann rot gekennzeichnet werden, wenn Sie einen Ressourcenpool neu konfigurieren, während gerade ein Failover einer virtuellen Maschine durchgeführt wird. Bei einer virtuellen Maschine, an der gerade ein Failover ausgeführt wird, wird die Verbindung getrennt und sie wird bei den Ressourcen des übergeordneten Ressourcenpools nicht berücksichtigt. Sie können die Reservierung des übergeordneten Ressourcenpools vor Abschluss des Failovers verringern. Sobald das Failover abgeschlossen ist, werden die Ressourcen der virtuellen Maschine wieder dem übergeordneten Ressourcenpool zugeordnet. Wenn die Poolnutzung über die neue Reservierung hinausgeht, wird der Cluster rot gekennzeichnet.

Wenn ein Benutzer eine virtuelle Maschine (ohne Unterstützung) mit einer Reservierung von 3 GHz unter Ressourcenpool 2 starten kann, würde der Cluster rot gekennzeichnet, wie in der folgenden Abbildung dargestellt.

Abbildung 18-4. Roter Cluster

Verwalten von Energieressourcen

Die vSphere Distributed Power Management-Funktion (DPM) ermöglicht die Senkung des Energieverbrauchs eines DRS-Clusters, indem Hosts auf Basis der Clusterressourcennutzung einund ausgeschaltet werden.

vSphere DPM überwacht den kumulativen Bedarf aller virtuellen Maschinen im Cluster nach Arbeitsspeicher- und CPU-Ressourcen und vergleicht ihn mit der Gesamtkapazität der verfügbaren Ressourcen aller Hosts im Cluster. Wenn eine ausreichende Überkapazität ermittelt wird, versetzt vSphere DPM einen oder mehrere Hosts in den Standby-Modus und schaltet sie aus, nachdem alle virtuellen Maschinen, die auf diesen Hosts ausgeführt werden, auf andere Hosts migriert wurden. Wenn umgekehrt die Kapazität als nicht ausreichend angesehen wird, holt DRS Hosts aus dem Standby-Modus (schaltet sie ein) und migriert mithilfe von vMotion virtuelle Maschinen auf diese Hosts. Beim Durchführen dieser Berechnungen berücksichtigt vSphere DPM nicht nur den aktuellen Bedarf, sondern auch alle vom Benutzer angegebenen VM-Ressourcenreservierungen.

Wenn Sie bei der Erstellung eines DRS-Clusters **Prognostizierte Metriken** aktivieren, gibt DPM im Voraus Vorschläge aus, abhängig von dem ausgewählten Zeitfenster für die rollierende Prognose.

Hinweis ESXi-Hosts können nur dann automatisch aus dem Standby-Modus geholt werden, wenn sie in einem von vCenter Server verwalteten Cluster ausgeführt werden.

vSphere DPM kann eines von drei Energieverwaltungsprotokollen verwenden, um einen Host aus dem Standby-Modus zu aktivieren: Intelligent Platform Management Interface (IPMI), Hewlett-Packard Integrated Lights-Out (iLO) oder Wake-on-LAN (WOL). Jedes Protokoll benötigt eine eigene Hardwareunterstützung und -konfiguration. Wenn ein Host keines dieser Protokolle unterstützt, kann er nicht von vSphere DPM in den Standby-Modus versetzt werden. Wenn ein Host mehrere Protokolle unterstützt, werden sie in der folgenden Reihenfolge verwendet: IPMI, iLO, WOL.

Hinweis Ein Host im Standby-Modus darf weder getrennt noch aus dem DRS-Cluster verschoben werden, ohne ihn erst einzuschalten. Anderenfalls kann vCenter Server den Host nicht mehr einschalten.

Konfigurieren von IPMI- oder iLO-Einstellungen für vSphere DPM

IPMI ist eine Hardwarespezifikation und Hewlett-Packard iLO ist eine eingebettete Servermanagementtechnologie. Beide definieren eine Schnittstelle für die Remoteüberwachung und -steuerung von Computern und stellen diese zur Verfügung.

Sie müssen den folgenden Vorgang auf jedem Host durchführen.

Voraussetzungen

Sowohl IPMI als auch iLO benötigen einen Baseboard Management Controller (BMC), um ein Gateway zum Zugriff auf Hardwaresteuerungsfunktionen bereitzustellen und zu ermöglichen, dass von einem Remotesystem mit einer seriellen oder LAN-Verbindung auf die Schnittstelle zugegriffen werden kann. Der BMC wird auch dann eingeschaltet, selbst wenn der Host ausgeschaltet wird. Sofern ordnungsgemäß aktiviert, reagiert der BMC auf Befehle zum Einschalten.

Wenn Sie IPMI oder iLO als Wake-Protokoll verwenden möchten, müssen Sie den BMC konfigurieren. Die BMC-Konfiguration variiert je nach Modell. Weitere Informationen finden Sie in der Dokumentation Ihres Anbieters. Mit IPMI müssen Sie zudem sicherstellen, dass der BMC LAN-Kanal so konfiguriert ist, dass er immer verfügbar ist und Operatorbefehle zulässig sind. Wenn Sie auf einigen IPMI-Systemen "IPMI über LAN" aktivieren, müssen Sie dies im BIOS konfigurieren und ein bestimmtes IPMI-Konto angeben.

vSphere DPM nur mit IPMI unterstützt die MD5- und textbasierte Authentifizierung, die MD2basierte Authentifizierung wird dagegen nicht unterstützt. vCenter Server verwendet MD5, wenn der BMC eines Hosts meldet, dass er unterstützt wird und für die Operatorrolle aktiviert ist. Anderenfalls wird die textbasierte Authentifizierung verwendet, wenn BMC meldet, dass sie unterstützt wird und aktiviert ist. Falls weder die MD5- noch die textbasierte Authentifizierung aktiviert ist, kann IPMI nicht mit dem Host verwendet werden. In diesem Fall versucht vCenter Server, Wake-on-LAN zu verwenden.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.

- 3 Klicken Sie unter System auf Energieverwaltung.
- 4 Klicken Sie auf Bearbeiten.
- 5 Geben Sie die folgenden Informationen ein.
 - Benutzername und Kennwort f
 ür ein BMC-Konto. (Der Benutzername muss die Berechtigung haben, den Host remote einzuschalten.)
 - IP-Adresse der dem BMC zugewiesenen Netzwerkkarte im Unterschied zur IP-Adresse des Hosts. Die IP-Adresse sollte statisch oder eine DHCP-Adresse mit unbegrenzter Lease sein.
 - MAC-Adresse der dem BMC zugeordneten Netzwerkkarte.
- 6 Klicken Sie auf OK.

Testen von Wake-on-LAN für vSphere DPM

Die Verwendung von Wake-on-LAN (WOL) für die vSphere DPM-Funktion wird vollständig unterstützt, sofern Sie sie konfigurieren und gemäß den VMware-Richtlinien erfolgreich testen. Sie müssen diese Schritte durchführen, bevor Sie vSphere DPM zum ersten Mal für einen Cluster aktivieren, bzw. diese auf jedem Host durchführen, der zu einem Cluster hinzugefügt wird, der vSphere DPM verwendet.

Voraussetzungen

Stellen Sie sicher, dass der Cluster alle Voraussetzungen erfüllt, bevor Sie WOL testen.

- Der Cluster muss mindestens zwei Hosts der Version ESX 3.5 (oder ESX 3i Version 3.5) oder höher enthalten.
- Der VMotion-Netzwerk-Link muss auf jeden Host ordnungsgemäß funktionieren. Das VMotion-Netzwerk sollte auch ein Einzel-IP-Subnetz sein, nicht mehrere, durch Router getrennte Subnetze.
- Die VMotion-Netzwerkkarte muss auf jedem Host WOL unterstützen. Ermitteln Sie zum Prüfen auf WOL-Unterstützung zunächst den Namen des physischen Netzwerkadapters, der dem VMkernel-Port zugewiesen ist, indem Sie im Bestandslistenbereich des vSphere Client den Host auswählen, dann die Registerkarte Konfiguration auswählen und auf Netzwerk klicken. Nachdem Sie die Informationen gesammelt haben, klicken Sie auf Netzwerkadapter und suchen Sie den für den Netzwerkadapter entsprechenden Eintrag. In der Spalte Wakeon-LAN unterstützt des entsprechenden Adapters sollte "Ja" stehen.
- Zur Anzeige des WOL-Kompatibilitätsstatus der einzelnen Netzwerkkarten auf dem Host wählen Sie im Bestandslistenbereich des vSphere Client den Host, klicken Sie auf die Registerkarte Konfiguration und anschließend auf Netzwerkadapter. Für die Netzwerkkarte muss in der Spalte Wake-on-LAN unterstützt "Ja" angezeigt werden.

 Der Switch-Port, in dem jede WOL-unterstützende VMotion-Netzwerkkarte eingesteckt ist, sollte so eingestellt sein, dass die Linkgeschwindigkeit automatisch ausgehandelt wird. Legen Sie keine feste Geschwindigkeit fest (z. B. 1000 Mb/s). Viele Netzwerkkarten unterstützen WOL nur dann, wenn sie auf eine Geschwindigkeit von 100 Mb/s oder weniger umschalten können, wenn der Host ausgeschaltet wird.

Nachdem Sie diese Voraussetzungen verifiziert haben, testen Sie jeden ESXi-Host, der WOL zum Unterstützen von vSphere DPM verwenden wird. Wenn Sie diese Hosts testen, stellen Sie sicher, dass die vSphere DPM-Funktion für den Cluster deaktiviert ist.

Vorsicht Vergewissern Sie sich, dass jeder zu einem vSphere-DPM-Cluster hinzugefügte Host, der WOL als Wake-Protokoll verwendet, getestet und von der Verwendung der Energieverwaltung deaktiviert wird, wenn er den Test nicht besteht. Wird dies nicht durchgeführt, schaltet vSphere DPM möglicherweise Hosts aus, die es anschließend nicht mehr einschalten kann.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie mit der rechten Maustaste auf den Host und wählen Sie **Betrieb > In Standby-**Modus wechseln aus.

Diese Aktion fährt den Host herunter.

- 3 Klicken Sie mit der rechten Maustaste auf den Host und wählen Sie **Betrieb > Einschalten**, um zu versuchen, ihn aus dem Standby-Modus zu holen.
- 4 Achten Sie darauf, dass der Host wieder erfolgreich eingeschaltet wird.
- 5 Für jeden Host, der den Standby-Modus nicht erfolgreich beenden kann, führen Sie folgende Schritte aus.
 - a Wählen Sie im vSphere Client den Host aus und wählen Sie die Registerkarte **Konfigurieren** aus.
 - b Klicken Sie unter **Hardware > Energieverwaltung** auf **Bearbeiten**, um die Energieverwaltungsrichtlinie anzupassen.

Nach Durchführung dieser Schritte hält vSphere DPM den Host nicht für einen Kandidaten, der ausgeschaltet werden soll.

Aktivieren von vSphere DPM für einen DRS-Cluster

Nachdem Sie die Konfigurations- oder Testschritte durchgeführt haben, die von dem auf den jeweiligen Hosts verwendeten Wake-Protokoll benötigt werden, können Sie vSphere DPM aktivieren.

Konfigurieren Sie die Automatisierungsebene für Energieverwaltung, den Schwellenwert und die Außerkraftsetzungen auf Hostebene. Diese Einstellungen werden unter **Energieverwaltung** im Dialogfeld Einstellungen des Clusters konfiguriert.

Sie können auch geplante Aufgaben erstellen, um mithilfe des Assistenten **Aufgabe planen:** Stromversorgungseinstellungen für Cluster ändern DPM für einen Cluster zu aktivieren und zu deaktivieren.

Hinweis Wenn für einen Host in Ihrem DRS-Cluster USB-Geräte verbunden sind, deaktivieren Sie DPM für den Host. Anderenfalls schaltet DPM möglicherweise den Host aus und trennt die Verbindung zwischen dem Gerät und der virtuellen Maschine, die es verwendet hat.

Automatisierungsebene

Ob die von vSphere DPM generierten Empfehlungen zum Energiestatus des Hosts und zur Migration automatisch angewendet werden, hängt von der für die Funktion ausgewählten Automatisierungsebene für die Energieverwaltung ab.

Die Automatisierungsebene wird unter **Energieverwaltung** im Dialogfeld Einstellungen des Clusters konfiguriert.

Hinweis Die Automatisierungsebene der Energieverwaltung ist nicht identisch mit der DRS-Automatisierungsebene.

Option	Beschreibung
Aus	Die Funktion ist deaktiviert und es werden keine Empfehlungen gegeben.
Manuell	Es werden Empfehlungen zum Betriebsvorgang des Hosts und zur verbundenen VM- Migration gemacht, die Empfehlungen werden jedoch nicht automatisch angewendet.
Automatisch	Betriebszustandsänderungen des Hosts werden automatisch ausgeführt, wenn alle damit verbundene Migrationen virtueller Maschinen automatisch ausgeführt werden können.

Tabelle 18-1. Automatisierungsebene für Energieverwaltung

vSphere DPM-Schwellenwert

Den von der vSphere DPM-Funktion generierten Betriebszustandsempfehlungen (Host einschalten oder ausschalten) werden Prioritäten der Ebene 1 bis 5 zugewiesen.

Diese Prioritätsebenen basieren auf der Über- oder Unterbeanspruchung im DRS-Cluster und der erwarteten Verbesserung durch die vorgesehene Änderung im Betriebszustand des Hosts. Eine Empfehlung der obersten Prioritätsebene ist verpflichtend, während eine Empfehlung der untersten Prioritätsebene nur eine geringfügige Verbesserung bewirkt.

Der Schwellenwert wird im Dialogfeld **Einstellungen** des Clusters unter Energieverwaltung konfiguriert. Jede Ebene, um die Sie den Schieberegler für den vSphere DPM-Schwellenwert nach rechts verschieben, ermöglicht die Aufnahme einer weiteren Prioritätsebene in die Gruppe der Empfehlungen, die automatisch ausgeführt werden bzw. als Empfehlungen ausgegeben werden und manuell ausgeführt werden müssen. Bei der Einstellung "Konservativ" werden nur Empfehlungen mit der höchsten Prioritätsstufe erzeugt, bei der nächsten Stufe rechts daneben werden Empfehlungen ab der zweithöchsten Prioritätsstufe aufwärts erzeugt usw., bis hin zur Stufe "Aggressiv", die Empfehlungen ab der Prioritätsstufe 5 erzeugt (d. h., alle Empfehlungen werden erzeugt).

Hinweis Der DRS-Schwellenwert und der vSphere DPM-Schwellenwert sind im Wesentlichen voneinander unabhängig. Sie können die Aggressivität der Migration bzw. die Empfehlungen für den Betriebszustand des Hosts auseinanderhalten.

Außerkraftsetzungen auf Hostebene

Wenn Sie vSphere DPM in einem DRS-Cluster aktivieren, erben standardmäßig alle Hosts im Cluster die vSphere DPM-Automatisierungsebene.

Sie können diese Standardeinstellung für einen einzelnen Host außer Kraft setzen, indem Sie die Seite "Hostoptionen" des Dialogfelds "Einstellungen" des Clusters auswählen und auf die Einstellung **Energieverwaltung** klicken. Sie können diese Einstellung in die folgenden Optionen ändern:

- Deaktiviert
- Manuell
- Automatisch

Hinweis Ändern Sie nicht die Energieverwaltungseinstellung eines Hosts, wenn sie aufgrund eines Fehlschlags beim Testen des Beendens des Standby-Modus auf "Deaktiviert" gesetzt wurde.

Nach dem Aktivieren und Ausführen von vSphere DPM können Sie dessen ordnungsgemäße Funktion überprüfen, indem Sie die Angaben unter **Letztes Beenden des Standby-Modus** für die einzelnen Hosts prüfen, die auf der Seite "Hostoptionen" im Dialogfeld "Einstellungen" des Clusters und auf der Registerkarte **Hosts** für jeden Cluster angezeigt werden. Dieses Feld zeigt einen Zeitstempel an und gibt außerdem an, ob der letzte Versuch von vCenter Server, den Host aus dem Standby-Modus zu holen, erfolgreich war oder fehlgeschlagen ist. Wenn bislang kein derartiger Versuch unternommen wurde, zeigt das Feld "Nie" an.

Hinweis Die Zeiten für das Textfeld **Letztes Beenden des Standby-Modus** werden dem vCenter Server-Ereignisprotokoll entnommen. Wenn dieses Protokoll gelöscht wird, werden die Zeiten auf "Nie" zurückgesetzt.

Überwachen von vSphere DPM

Sie können in vCenter Server ereignisbasierte Alarme zum Überwachen von vSphere DPM verwenden.

Der schwerwiegendste potenzielle Fehler, der bei der Verwendung von vSphere DPM auftreten kann, besteht darin, dass ein Host nicht aus dem Standby-Modus geholt werden kann, wenn seine Kapazität vom DRS-Cluster benötigt wird. Wenn dieser Fehler auftritt, können Sie die Instanzen überwachen, indem Sie den vorkonfigurierten Alarm **Fehler bei Standby-Beendigung** in vCenter Server verwenden. Sie können diesen Alarm so konfigurieren, dass eine E-Mail mit einer Warnung an den Administrator oder mithilfe eines SNMP-Traps eine Benachrichtigung gesendet wird, wenn vSphere DPM einen Host nicht aus dem Standby-Modus holen kann (vCenter Server-Ereignis DrsExitStandbyModeFailedEvent). Standardmäßig wird dieser Alarm gelöscht, sobald vCenter Server eine Verbindung zu diesem Host herstellen kann.

Zum Überwachen der vSphere DPM-Aktivität können Sie auch Alarme für die folgenden vCenter Server-Ereignisse erstellen.

Ereignistyp	Ereignisname
Wechsel in den Standby-Modus (Ausschalten des Hosts steht unmittelbar bevor)	DrsEnteringStandbyModeEvent
Erfolgreich in Standby-Modus gewechselt (Ausschalten des Hosts erfolgreich)	DrsEnteredStandbyModeEvent
Standby-Modus wird beendet (Einschalten des Hosts steht unmittelbar bevor)	DrsExitingStandbyModeEvent
Standby-Modus wurde erfolgreich beendet (Einschalten erfolgreich)	DrsExitedStandbyModeEvent

Tabelle 18-2. vCenter Server-Ereignisse

Weitere Informationen zum Erstellen und Bearbeiten von Alarmen finden Sie in der Dokumentation zu *vSphere-Überwachung und -Leistung*.

Falls Sie andere Überwachungssoftware als vCenter Server verwenden und diese Software beim unerwarteten Ausschalten physischer Hosts Alarme auslöst, kann es sein, dass falsche Alarme generiert werden, wenn vSphere DPM einen Host in den Standby-Modus versetzt. Wenn Sie keine derartigen Alarme erhalten möchten, wenden Sie sich an Ihren Anbieter, damit eine Version der Überwachungssoftware bereitgestellt wird, die in vCenter Server integriert ist. Sie können auch vCenter Server selbst als Überwachungslösung verwenden, da vSphere DPM ab vSphere 4.x von diesem erkannt wird und keine falschen Alarme dieser Art ausgelöst werden.

Statische Stromversorgung von VMs

In vSphere 8.0 U1 wird eine neue Stromversorgungsmetrik zur Schätzung der statischen Stromversorgung von VMs eingeführt.

Sie können diese Stromversorgungsmetrik im Fensterbereich **Erweitert** der Seite "vCenter-Leistungsüberwachung" in vCenter anzeigen. Diese Stromversorgungsmetrik ist ein halbfester Wert, der eine Funktion der VM-Konfiguration darstellt, insbesondere die Anzahl der vCPUs und die Arbeitsspeichergröße sowie die Konfiguration des Hosts, auf dem sie ausgeführt wird. Die statische Stromversorgung der VM schätzt die minimal erforderliche Leistung basierend auf den Anforderungen einer physischen Maschine mit derselben Konfiguration, die auf einer ähnlichen Hardware wie der ESXi-Host ausgeführt wird. Eine VM meldet möglicherweise unterschiedliche Werte für die statische Stromversorgung auf zwei unterschiedlichen Hosts, wenn ein Host energieeffizienter ist als der andere. Dies ist für dynamische Arbeitslastplatzierungsstrategien zur Optimierung der Gesamtleistung nützlich und kann bei der Schätzung der Energieeinsparung aufgrund der Virtualisierung von Arbeitslasten hilfreich sein.

Verwenden von DRS-Affinitätsregeln

Durch die Verwendung von Affinitätsregeln können Sie die Platzierung von virtuellen Maschinen auf Hosts innerhalb eines Clusters steuern.

Sie können zwei Typen von Regeln erstellen.

Werden verwendet, um die Affinität oder Anti-Affinität zwischen einer Gruppe virtueller Maschinen und einer Gruppe von Hosts anzugeben. Eine Affinitätsregel legt fest, dass die Mitglieder einer ausgewählten VM-DRS-Gruppe auf den Mitgliedern einer bestimmten Host-DRS-Gruppe ausgeführt werden können bzw. müssen. Eine Anti-Affinitätsregel legt fest, dass die Mitglieder einer ausgewählten VM-DRS-Gruppe nicht auf den Mitgliedern einer bestimmten Host-DRS-Gruppe ausgeführt werden können.

Weitere Informationen über das Erstellen und Verwenden dieses Regeltyps finden Sie unter VM-Host-Affinitätsregeln.

Werden verwendet, um die Affinität bzw. die Anti-Affinität zwischen individuellen virtuellen Maschinen anzugeben. Eine Regel, die die Affinität angibt, führt dazu, dass DRS versucht, die angegebenen virtuellen Maschinen auf demselben Host zusammenzuhalten, z. B. aus Leistungsgründen. Mit einer Anti-Affinitätsregel versucht DRS, die angegebenen virtuellen Maschinen voneinander zu trennen, damit beispielsweise beim Auftreten eines Problems auf einem Host nicht beide virtuellen Maschinen verloren gehen.

Weitere Informationen über das Erstellen und Verwenden dieses Regeltyps finden Sie unter VM-VM-Affinitätsregeln.

Wird eine Affinitätsregel hinzugefügt oder bearbeitet und der aktuelle Status des Clusters steht in Widerspruch zur Regel, wird das System weiterhin ausgeführt und versuchen, die Regelverletzung zu korrigieren. Bei manuellen und teilautomatisierten DRS-Clustern werden die Migrationsempfehlungen, die sowohl auf die Erfüllung der Regel als auch auf dem Lastausgleich basieren, zur Genehmigung präsentiert. Sie müssen die Regeln zwar nicht erfüllen, jedoch bleiben die zugehörigen Empfehlungen solange bestehen, bis die Regeln erfüllt sind.

Um zu prüfen, ob gegen aktivierte Affinitätsregeln verstoßen wird und dies nicht von DRS korrigiert werden kann, wählen Sie die Registerkarte **DRS** des Clusters aus und klicken Sie auf **Fehler**. Alle Regeln, die verletzt werden, weisen einen entsprechenden Fehler auf dieser Seite auf. Der Fehler gibt an, warum DRS die jeweilige Regel nicht einhalten kann. Regelverletzungen generieren auch Protokollierungsereignisse.

Hinweis VM-VM- und VM-Host-Affinitätsregeln unterscheiden sich von den CPU-Affinitätsregeln eines einzelnen Hosts.
Erstellen einer Host-DRS-Gruppe

Eine VM-Host-Affinitätsregel stellt eine Affinitäts- oder eine Anti-Affinitätsbeziehung zwischen einer VM-DRS-Gruppe und einer Host-DRS-Gruppe her. Sie müssen zunächst beide Gruppen erstellen, bevor Sie eine Regel erstellen können, die auf diese Gruppen verweist.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.
- 3 Wählen Sie unter KonfigurationVM/Host-Gruppen aus und klicken Sie auf Hinzufügen.
- 4 Geben Sie im Dialogfeld VM/Host-Gruppe erstellen einen Namen für die Gruppe ein.
- 5 Wählen Sie Hostgruppe aus dem Dropdown-Feld Typ aus und klicken Sie auf Hinzufügen.
- 6 Klicken Sie auf das Kontrollkästchen neben einem Host, um ihn hinzuzufügen. Wiederholen Sie diesen Vorgang, bis alle gewünschten Hosts hinzugefügt wurden.
- 7 Klicken Sie auf OK.

Nächste Schritte

Mithilfe dieser Host-DRS-Gruppe können Sie eine VM-Host-Affinitätsregel erstellen, die eine Affinitäts- oder eine Anti-Affinitätsbeziehung zwischen dieser Gruppe und einer geeigneten VM-DRS-Gruppe herstellt.

Erstellen einer VM-DRS-Gruppe

Erstellen einer VM-Host-Affinitätsregel

Erstellen einer VM-DRS-Gruppe

Affinitätsregeln stellen eine Affinitätsbeziehung (oder eine Anti-Affinitätsbeziehung) zwischen DRS-Gruppen her. Sie müssen zunächst DRS-Gruppen erstellen, bevor Sie eine Regel erstellen können, die auf diese Gruppen verweist.

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.
- 3 Wählen Sie unter KonfigurationVM/Host-Gruppen aus und klicken Sie auf Hinzufügen.
- 4 Geben Sie im Dialogfeld VM/Host-Gruppe erstellen einen Namen für die Gruppe ein.
- 5 Wählen Sie VM-Gruppe aus dem Dropdown-Feld Typ aus und klicken Sie auf Hinzufügen.
- 6 Klicken Sie auf das Kontrollkästchen neben einer virtuellen Maschine, um diese hinzuzufügen. Wiederholen Sie diesen Vorgang, bis alle gewünschten virtuellen Maschinen hinzugefügt wurden.
- 7 Klicken Sie auf OK.

Nächste Schritte

Erstellen einer Host-DRS-Gruppe

Erstellen einer VM-Host-Affinitätsregel

Erstellen einer VM-VM-Affinitätsregel

VM-VM-Affinitätsregeln

Eine VM-VM-Affinitätsregel gibt an, ob ausgewählte virtuelle Maschinen auf demselben oder verschiedenen Hosts ausgeführt werden sollen. Dieser Regeltyp wird zum Erstellen der Affinität oder Anti-Affinität zwischen einzelnen, von Ihnen ausgewählten virtuellen Maschinen verwendet.

Wenn eine Affinitätsregel erstellt wird, versucht DRS, die angegebenen virtuellen Maschinen auf einem Host zusammenzuhalten. Dies ist z. B. sinnvoll, um die Leistung zu verbessern.

Bei einer Anti-Affinitätsregel versucht DRS, die angegebenen virtuellen Maschinen auseinanderzuhalten. Sie könnten eine solche Regel verwenden, wenn Sie sichergehen möchten, dass sich bestimmte virtuelle Maschinen immer auf unterschiedlichen physischen Hosts befinden. In diesem Fall riskieren Sie nicht den Ausfall aller virtuellen Maschinen, falls es Probleme mit dem Host gibt.

Erstellen einer VM-VM-Affinitätsregel

Sie können VM-VM-Affinitätsregeln erstellen, um anzugeben, ob ausgewählte einzelne virtuelle Maschinen auf demselben Host ausgeführt werden oder auf separaten Hosts verbleiben sollen.

Hinweis Wenn Sie in vSphere HA die Zugangssteuerungsrichtlinie "Failover-Hosts angeben" verwenden und dabei mehrere Failover-Hosts auswählen, werden VM-VM-Affinitätsregeln nicht unterstützt.

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.
- 3 Klicken Sie unter Konfiguration auf VM/Host-Regeln.
- 4 Klicken Sie auf Hinzufügen.
- 5 Geben Sie in das Dialogfeld VM/Host-Regel erstellen einen Namen für die Regel ein.
- 6 Wählen Sie im Dropdown-Menü Typ entweder Virtuelle Maschinen zusammenhalten oder Separate virtuelle Maschinen aus.
- 7 Klicken Sie auf Hinzufügen.
- 8 Wählen Sie mindestens zwei virtuelle Maschinen aus, auf die die Regel angewendet werden soll, und klicken Sie auf **OK**.
- 9 Klicken Sie auf OK.

VM-VM-Affinitätsregelkonflikte

Sie können mehrere VM-VM-Affinitätsregeln erstellen und verwenden. Dies kann jedoch zu Situationen führen, in denen die Regeln miteinander in Konflikt geraten.

Wenn zwei VM-VM-Affinitätsregeln in Konflikt stehen, können Sie nicht beide aktivieren. Wenn beispielsweise eine Regel zwei virtuelle Maschinen zusammenfasst und eine andere Regel dieselben zwei virtuellen Maschinen voneinander trennt, können Sie nicht beide Regeln aktivieren. Wählen Sie eine der Regeln aus, die Sie anwenden möchten, und deaktivieren oder entfernen Sie die in Konflikt stehende Regel.

Wenn sich zwei VM-VM-Affinitätsregeln widersprechen, hat die ältere Regel Vorrang und die neuere wird deaktiviert. DRS versucht nur, aktivierte Regeln zu erfüllen, deaktivierte Regeln werden ignoriert. DRS räumt der Verhinderung von Verstößen gegen Anti-Affinitätsregeln einen höheren Stellenwert ein als Verstößen gegen Affinitätsregeln.

VM-Host-Affinitätsregeln

Eine VM-Host-Affinitätsregel legt fest, ob die Mitglieder einer ausgewählten VM-DRS-Gruppe auf den Mitgliedern einer bestimmten Host-DRS-Gruppe ausgeführt werden können.

Im Unterschied zu einer VM/VM-Affinitätsregel, die die Affinität (oder Anti-Affinität) zwischen einzelnen virtuellen Maschinen angibt, gibt eine VM/Host-Affinitätsregel die Affinität zwischen einer Gruppe virtueller Maschinen und einer Gruppe von Hosts an. Es gibt "erforderliche" Regeln ("muss") und "bevorzugte" Regeln ("sollte").

Eine VM-Host-Affinitätsregel umfasst die folgenden Komponenten.

- Eine VM-DRS-Gruppe.
- Eine Host-DRS-Gruppe.
- Eine Festlegung, ob es sich bei der Regel um eine Voraussetzung ("muss") oder eine Präferenz ("sollte") sowie um eine Affinität ("wird ausgeführt auf") oder eine Anti-Affinität ("wird nicht ausgeführt auf") handelt.

Weil VM-Host-Affinitätsregeln clusterbasiert sind, müssen sich alle in die Regel aufgenommenen virtuellen Maschinen und Hosts in demselben Cluster befinden. Wenn eine virtuelle Maschine aus dem Cluster entfernt wird, verliert sie auch dann ihre DRS-Gruppenzugehörigkeit, wenn sie später erneut in den Cluster aufgenommen wird.

Erstellen einer VM-Host-Affinitätsregel

Sie können VM-Host-Affinitätsregeln erstellen, um festzulegen, ob die Mitglieder einer ausgewählten VM-DRS-Gruppe auf den Mitgliedern einer bestimmten Host-DRS-Gruppe ausgeführt werden können.

Voraussetzungen

Erstellen Sie für die virtuelle Maschine und den Host die DRS-Gruppen, für die die VM-Host-Affinitätsregel gilt.

Verfahren

- 1 Navigieren Sie zum Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.
- 3 Klicken Sie unter Konfiguration auf VM/Host-Regeln.
- 4 Klicken Sie auf Hinzufügen.
- 5 Geben Sie in das Dialogfeld VM/Host-Regel erstellen einen Namen für die Regel ein.
- 6 Wählen Sie aus dem Dropdown-Menü **Typ** die Option **Virtuelle Maschinen zu Hosts** aus.
- 7 Wählen Sie die VM-DRS-Gruppe und die Host-DRS-Gruppe aus, auf die die Regel angewendet werden soll.
- 8 Wählen Sie eine Spezifikation für die Regel aus.
 - Muss auf Hosts in der Gruppe ausgeführt werden Virtuelle Maschinen in VM-Gruppe 1 müssen auf Hosts in Hostgruppe A ausgeführt werden.
 - Sollte auf Hosts in der Gruppe ausgeführt werden. Virtuelle Maschinen in VM-Gruppe 1 sollten, müssen aber nicht auf Hosts in Hostgruppe A ausgeführt werden.
 - Darf nicht auf Hosts in der Gruppe ausgeführt werden. Virtuelle Maschinen in VM-Gruppe
 1 dürfen niemals auf Hosts in Hostgruppe A ausgeführt werden.
 - Sollte nicht auf Hosts in der Gruppe ausgeführt werden. Virtuelle Maschinen in VM-Gruppe 1 sollten nicht, können aber auf Hosts in Hostgruppe A ausgeführt werden.
- 9 Klicken Sie auf OK.

Verwendung von VM-Host-Affinitätsregeln

Sie verwenden eine VM-Host-Affinitätsregel, um eine Affinitätsbeziehung zwischen einer Gruppe virtueller Maschinen und einer Gruppe von Hosts anzugeben. Bei der Verwendung von VM-Host-Affinitätsregeln sollten Sie wissen, wann sie am nützlichsten sind, wie Konflikte zwischen Regeln gelöst werden und wie wichtig der sorgfältige Umgang beim Festlegen von erforderlichen Affinitätsregeln ist.

Wenn Sie mehr als eine VM-Host-Affinitätsregel erstellen, werden sie nicht gewichtet, sondern gleichermaßen angewendet. Seien Sie sich darüber im Klaren, dass sich dies auf die Interaktion der Regeln auswirkt. Eine virtuelle Maschine zum Beispiel, die zwei DRS-Gruppen angehört, bei denen jede Gruppe zu einer anderen erforderlichen Regel gehört, kann nur auf Hosts ausgeführt werden, die beiden Host-DRS-Gruppen angehören, die in den Regeln repräsentiert sind.

Wenn Sie eine VM-Host-Affinitätsregel erstellen, wird ihre Fähigkeit, im Zusammenspiel mit anderen Regeln zu funktionieren, nicht überprüft. Somit ist es möglich, eine Regel zu erstellen, die mit anderen angewendeten Regeln in Konflikt steht. Wenn sich zwei VM-Host-Affinitätsregeln widersprechen, hat die ältere Regel Vorrang und die neuere wird deaktiviert. DRS versucht nur, aktivierte Regeln zu erfüllen, deaktivierte Regeln werden ignoriert. DRS, vSphere HA und vSphere DPM ergreifen keine Aktionen, die gegen erforderliche Affinitätsregeln verstoßen (d. h. Regeln, die besagen, dass die VM-DRS-Gruppe "auf" oder "nicht auf" der Host-DRS-Gruppe ausgeführt werden muss). Demzufolge sollten Sie bei der Verwendung dieses Regeltyps vorsichtig sein, denn sie kann sich potenziell negativ auf das Funktionieren des Clusters auswirken. Wenn erforderliche VM-Host-Affinitätsregeln nicht ordnungsgemäß verwendet werden, kann dies dazu führen, dass der Cluster fragmentiert und somit das ordnungsgemäße Funktionieren von DRS, vSphere HA und vSphere DPM beeinträchtigt wird.

Mehrere Clusterfunktionen werden nicht ausgeführt, wenn dies gegen eine erforderliche Affinitätsregel verstoßen würde.

- DRS entfernt keine virtuellen Maschinen, wenn ein Host in den Wartungsmodus versetzt wird.
- DRS platziert keine virtuellen Maschinen zum Einschalten noch führt DRS einen Lastausgleich von virtuellen Maschinen durch.
- vSphere HA führt kein Failover durch.
- vSphere DPM optimiert die Energieverwaltung nicht durch das Versetzen von Hosts in den Standby-Modus.

Um diese Situationen zu vermeiden, seien Sie beim Erstellen mehrerer erforderlichen Affinitätsregeln vorsichtig oder verwenden Sie nur bevorzugte VM-Host-Affinitätsregeln (d. h. Regeln, die besagen, dass die VM-DRS-Gruppe "auf" oder "nicht auf" der Host-DRS-Gruppe ausgeführt werden soll). Stellen Sie sicher, dass die Anzahl der Hosts im Cluster, dem jede virtuelle Maschine angegliedert ist, groß genug ist, sodass es im Falle eines Hostausfalls immer noch genug Hosts gibt, auf denen die virtuelle Maschine ausgeführt werden kann. Gegen bevorzugte Regeln kann verstoßen werden, um das ordnungsgemäße Funktionieren von DRS, vSphere HA und vSphere DPM zu ermöglichen.

Hinweis Sie können einen ereignisbasierenden Alarm erstellen, der ausgelöst wird, wenn eine virtuelle Maschine gegen eine VM-Host-Affinitätsregel verstößt. Fügen Sie einen neuen Alarm für die virtuelle Maschine hinzu und wählen Sie **VM verstößt gegen eine VM-Host-Affinitätsregel** als Auslöser aus. Weitere Informationen zum Erstellen und Bearbeiten von Alarmen finden Sie in der Dokumentation zur vSphere-Überwachung und -Leistung.

Erstellen eines Datenspeicher-Clusters in vSphere

19

Ein Datenspeicher-Cluster ist eine Sammlung von Datenspeichern mit gemeinsam genutzten Ressourcen und einer gemeinsamen Verwaltungsoberfläche. Datenspeicher-Cluster sind für Datenspeicher das, was Cluster für Hosts sind. Wenn Sie einen Datenspeicher-Cluster erstellen, können Sie vSphere Storage DRS verwenden, um Speicherressourcen zu verwalten.

Hinweis Datenspeicher-Cluster werden im vSphere API als Speicher-Pods bezeichnet.

Wenn Sie einen Datenspeicher zu einem Datenspeicher-Cluster hinzufügen, werden die Ressourcen des Datenspeichers Teil der Ressourcen des Datenspeicher-Clusters. Wie bei Clustern von Hosts verwenden Sie Datenspeicher-Cluster, um Speicherressourcen zu aggregieren, wodurch Sie Richtlinien für die Ressourcenzuteilung auf der Ebene des Datenspeicher-Clusters unterstützen können. Die folgenden Ressourcenverwaltungsfunktionen sind auch pro Datenspeicher-Cluster verfügbar.

Lastausgleich für die Speichernutzung

Sie können einen Schwellenwert für die Speichernutzung festlegen. Wenn die Speichernutzung auf einem Datenspeicher den Schwellenwert überschreitet, generiert Storage DRS Empfehlungen oder führt Storage vMotion-Migrationen durch, um die Speichernutzung im gesamten Datenspeicher-Cluster auszugleichen.

Lastausgleich für E/A-Latenz

Sie können einen Schwellenwert für die E/A-Latenz zur Vermeidung von Engpässen festlegen. Wenn die E/A-Latenz auf einem Datenspeicher den Schwellenwert überschreitet, generiert Storage DRS Empfehlungen oder führt Storage vMotion-Migrationen durch, um die hohe E/A-Last zu verringern.

Anti-Affinitätsregeln

Sie können Anti-Affinitätsregeln für Festplatten virtueller Maschinen erstellen. Beispielsweise müssen die virtuellen Festplatten einer bestimmten virtuellen Maschine auf unterschiedlichen Datenspeichern gespeichert werden. Standardmäßig werden alle virtuellen Festplatten für eine virtuelle Maschine auf demselben Datenspeicher platziert.

Lesen Sie als Nächstes die folgenden Themen:

Anfängliche Platzierung und fortdauernde Verteilung

- Empfehlungen für die Speichermigration
- Datenspeicher-Cluster erstellen
- Aktivieren und Deaktivieren von Storage DRS
- Festlegen der Automatisierungsebene für Datenspeicher-Cluster
- Festlegen der Aggressivitätsebene f
 ür Storage DRS
- Anforderungen für Datenspeicher-Cluster
- Hinzufügen und Entfernen von Datenspeichern aus einem Datenspeicher-Cluster

Anfängliche Platzierung und fortdauernde Verteilung

Speicher-DRS bietet Datenspeichern in einem Speicher-DRS-aktivierten Datenspeicher-Cluster Empfehlungen für die anfängliche Platzierung und zum laufenden Lastausgleich.

Die anfängliche Platzierung erfolgt, wenn Speicher-DRS einen Datenspeicher in einem Datenspeicher-Cluster auswählt, auf dem die Festplatte einer virtuellen Maschine platziert werden soll. Dies geschieht, wenn die virtuelle Maschine erstellt oder geklont wird, wenn die Festplatte einer virtuellen Maschine in einen anderen Datenspeicher-Cluster migriert wird oder wenn Sie eine Festplatte zu einer vorhandenen virtuellen Maschine hinzufügen.

Empfehlungen zur anfänglichen Platzierung werden entsprechend den Speicherplatzeinschränkungen und bezüglich der Ziele des Lastausgleichs von Speicherplatz und E/A erteilt. Diese Ziele sollen die Gefahren der Überbereitstellung eines Datenspeichers, von Storage I/O-Engpässen und der Leistungsauswirkungen auf virtuelle Maschinen minimieren.

Speicher-DRS wird gemäß der konfigurierten Häufigkeit (standardmäßig alle acht Stunden) oder dann aufgerufen, wenn mindestens ein Datenspeicher in einem Datenspeicher-Cluster die vom Benutzer konfigurierten Schwellenwerte für die Speicherplatznutzung überschreitet. Wenn Speicher-DRS aufgerufen wird, vergleicht es die Werte für die Speicherplatznutzung und die E/A-Latenz eines jeden Datenspeichers mit den jeweiligen Schwellenwerten. Im Falle der E/A-Latenz verwendet Speicher-DRS den E/A-Latenzwert des 90. Perzentils, der im Laufe eines Tages gemessen wurde, für den Vergleich mit dem Schwellenwert.

Empfehlungen für die Speichermigration

vCenter Server zeigt Migrationsempfehlungen auf der Seite "Speicher-DRS-Empfehlungen" für Datenspeicher-Cluster an, die sich im manuellen Automatisierungsmodus befinden.

Das System beinhaltet so viele Empfehlungen, wie zum Erzwingen der Speicher-DRS-Regeln und zum Ausgleichen der Speicher- und E/A-Ressourcen des Datenspeicher-Clusters erforderlich sind. Jede Empfehlung enthält den Namen der virtuellen Maschine, den Namen der virtuellen Festplatte, den Namen des Datenspeicher-Clusters, den Quell- und Zieldatenspeicher und einen Grund für die Empfehlung.

Datenspeicherplatznutzung verteilen

E/A-Arbeitslast des Datenspeichers verteilen

Für folgende Situationen gibt Speicher-DRS standardmäßig Empfehlungen für die Migration aus:

- Kein freier Speicherplatz im Datenspeicher.
- Die Anti-Affinitäts- oder Affinitätsregeln wurden verletzt.
- Der Datenspeicher wechselt in den Wartungsmodus und muss entfernt werden.

Zudem werden optionale Empfehlungen gegeben, wenn der Speicherplatz im Datenspeicher in Kürze aufgebraucht ist oder Anpassungen an den Speicher oder den E/A-Lastenausgleich vorgenommen werden sollten.

Speicher-DRS zieht die Verschiebung von virtuelle Maschinen in Betracht, die zwecks Lastenausgleich aus- bzw. eingeschaltet werden. Speicher-DRS schließt das Ausschalten von virtuelle Maschinen mit Snapshots in diese Überlegungen mit ein.

Datenspeicher-Cluster erstellen

Sie können Datenspeicher-Clusterressourcen mithilfe von Speicher-DRS verwalten.

Verfahren

- 1 WechselnNavigieren Sie im vSphere Client zu Datencentern.
- 2 Klicken Sie mit der rechten Maustaste auf das Datencenter und wählen Sie **Speicher**, **Neuer Datenspeicher-Cluster** aus.
- **3** Folgen Sie den Eingabeaufforderungen, um den Assistenten **Neuer Datenspeicher-Cluster** zu beenden.
- 4 Klicken Sie auf Beenden.

Aktivieren und Deaktivieren von Storage DRS

(Sie können mithilfe von Speicher-DRS die aggregierten Ressourcen eines Datenspeicher-Clusters verwalten. Wenn Storage DRS aktiviert ist, werden Empfehlungen für die Platzierung von VM-Festplatten sowie zur Migration von virtuelle Maschinen ausgesprochen, damit Speicherplatz- und E/A-Ressourcen über alle Datenspeicher im Datenspeicher-Cluster hinweg ausgeglichen werden.

Wenn Sie Storage DRS aktivieren, aktivieren Sie die folgenden Funktionen.

- Speicherplatz-Lastausgleich zwischen Datenspeichern innerhalb eines Datenspeicher-Clusters.
- E/A-Lastausgleich zwischen Datenspeichern innerhalb eines Datenspeicher-Clusters.
- Anfängliche Platzierung für virtuelle Festplatten auf Basis von Speicherplatz und E/A-Arbeitslast.

Durch Aktivieren des Kontrollkästchens "Storage DRS aktivieren" im Dialogfeld "Datenspeicher-Clustereinstellungen" werden alle diese Komponenten gleichzeitig aktiviert bzw. deaktiviert. Falls erforderlich, können Sie die E/A-bezogenen Funktionen von Storage DRS unabhängig von den Speicherplatzverteilungsfunktionen deaktivieren.

Wenn Sie Storage DRS auf einem Datenspeicher-Cluster deaktivieren, werden die Storage DRS-Einstellungen beibehalten. Wenn Sie Storage DRS aktivieren, werden die Einstellungen für den Datenspeicher-Cluster bis zu dem Punkt wiederhergestellt, an dem Storage DRS deaktiviert wurde.

Verfahren

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Wählen Sie Speicher-DRS aus und klicken Sie auf Bearbeiten.
- 4 Wählen Sie vSphere DRS einschalten und klicken Sie auf OK.
- 5 (Optional) Führen Sie die folgenden Schritte aus, um nur die E/A-bezogenen Funktionen von Storage DRS zu deaktivieren, ohne auch die Speicherplatzverteilungsfunktionen zu deaktivieren.
 - a Wählen Sie unter Speicher-DRS die Option Bearbeiten.
 - b Deaktivieren Sie das Kontrollkästchen **E/A-Metrik für SDRS-Empfehlungen aktivieren** und klicken Sie auf **OK**.

Festlegen der Automatisierungsebene für Datenspeicher-Cluster

Die Automatisierungsebene für einen Datenspeicher-Cluster legt fest, ob Platzierungs- und Migrationsempfehlungen aus Speicher-DRS automatisch angewendet werden.

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Wählen Sie **DRS** aus und klicken Sie auf **Bearbeiten**.

4 Erweitern Sie "DRS-Automatisierung" und wählen Sie eine Automatisierungsebene.

"Manuell" ist die Standardautomatisierungsebene.

Option	Beschreibung
Keine Automatisierung (Manueller Modus)	Die Empfehlungen zur Platzierung und zur Migration werden angezeigt, jedoch erst ausgeführt, wenn Sie die Empfehlungen manuell übernommen haben.
Vollautomatisiert	Die Empfehlungen zur Platzierung und zur Migration werden automatisch ausgeführt.

5 Klicken Sie auf OK.

Festlegen der Aggressivitätsebene für Storage DRS

Die Aggressivität von Speicher-DRS wird durch die Angabe von Schwellenwerten für den verwendeten Speicher und E/A-Latenz festgelegt.

Speicher-DRS erfasst Ressourcenverwendungsinformationen für Datenspeicher in einem Datenspeicher-Cluster. vCenter Server generiert mit diesen Informationen Empfehlungen für die Platzierung virtueller Festplatten in Datenspeichern.

Wenn Sie eine niedrige Aggressivitätsstufe für einen Datenspeicher-Cluster festlegen, empfiehlt Speicher-DRS Storage vMotion-Migrationen nur in dringenden Fällen, beispielweise, wenn die E/A-Last, die Speichernutzung oder deren Ungleichgewicht hoch ist. Wenn Sie eine hohe Aggressivitätsstufe für einen Datenspeicher-Cluster festlegen, empfiehlt Speicher-DRS immer dann Migrationen, wenn der Datenspeicher-Cluster Nutzen aus der Speichernutzung oder dem E/A-Lastenausgleich ziehen kann.

Im vSphere Client können Sie die folgenden Schwellenwerte zum Festlegen der Aggressivitätsstufe für Speicher-DRS festlegen:

Speicherplatznutzung

Speicher-DRS generiert Empfehlungen oder führt Migrationen durch, wenn der Prozentsatz des verwendeten Speichers im Datenspeicher höher als der von Ihnen im vSphere Client festgelegte Schwellenwert ist.

E/A-Latenz

Speicher-DRS generiert Empfehlungen oder führt Migrationen durch, wenn die für einen Tag gemessene E/A-Latenz im 90. Perzentil für den Datenseicher über dem Schwellenwert liegt.

Sie können ebenfalls erweiterte Optionen festlegen, um die Aggressivitätsstufe für Speicher-DRS mit weiteren Einstellungen zu konfigurieren.

Unterschiedliche Speicherplatzauslastung

Dieser Schwellenwert stellt sicher, dass es irgendeinen minimalen Unterschied zwischen dem Speicherplatzauslastung der Quelle und des Ziels gibt. Wenn beispielsweise auf Datenspeicher A 82 % des Speicherplatzes genutzt werden und auf Datenspeicher B 79 %, beträgt die Differenz 3. Wenn der Schwellenwert 5 ist, gibt Speicher-DRS keine Empfehlungen für die Migration von Datenspeicher A nach Datenspeicher B.

Aufrufintervall für E/A-Lastenausgleich

Nach diesem Intervall wird Speicher-DRS für die E/A-Lastverteilung ausgeführt.

E/A-Ungleichgewichtsschwellenwert

Das Herabsetzen dieses Werts sorgt für einen weniger aggressiven Lastausgleich. Speicher-DRS berechnet eine E/A-Fairness-Metrik zwischen 0 und 1, wobei 1 die gerechteste Verteilung darstellt. Die E/A-Lastverteilung läuft nur, wenn die berechnete Metrik kleiner als 1 ist - (E/A-Ungleichgewichtsschwellenwert/100).

Festlegen von Storage DRS-Laufzeitregeln

Mit der Option "Storage DRS festlegen" werden erweiterte Optionen für den Datenspeicher-Cluster ausgelöst und konfiguriert.

Verfahren

 (Optional) Aktivieren oder deaktivieren Sie das Kontrollkästchen E/A-Metrik für SDRS-Empfehlungen aktivieren, um die Berücksichtigung von E/A-Metriken zu aktivieren bzw. zu deaktivieren.

Wenn Sie diese Option deaktivieren, berücksichtigt vCenter Server keine E/A-Metriken beim Abgeben von Storage DRS-Empfehlungen. Wenn Sie diese Option deaktivieren, deaktivieren Sie die folgenden Elemente von Storage DRS:

- E/A-Lastausgleich zwischen Datenspeichern innerhalb eines Datenspeicher-Clusters.
- Anfängliche Platzierung für virtuelle Festplatten basierend auf der E/A-Arbeitslast. Die anfängliche Platzierung berücksichtigt lediglich den Speicherplatz.
- 2 (Optional) Legen Sie die Storage DRS-Schwellenwerte fest.

Sie legen die Aggressivität von Storage DRS fest, indem Sie Schwellenwerte für den genutzten Speicherplatz und die E/A-Latenz festlegen.

Verwenden Sie den Schieberegler f
ür den verwendeten Speicherplatz, um den maximal zulässigen Prozentsatz an belegtem Speicherplatz festzulegen, ab dem Storage DRS ausgelöst wird. Storage DRS gibt Empfehlungen und f
ührt Migrationen durch, wenn die Speicherplatznutzung auf den Datenspeichern
über dem Schwellenwert liegt. Verwenden Sie den Schieberegler f
ür die E/A-Latenz, um die maximal zul
ässige E/A-Latenz festzulegen, ab der Storage DRS ausgel
öst wird. Storage DRS gibt Empfehlungen und f
ührt Migrationen durch, wenn die Latenz
über dem Schwellenwert liegt.

Hinweis Der E/A-Latenz-Schwellenwert für Storage DRS für den Datenspeicher-Cluster sollte niedriger oder gleich dem Überlastungsschwellenwert von Storage I/O Control sein.

- 3 (Optional) Konfigurieren Sie erweiterte Optionen.
 - Keine Empfehlungen, bis die Nutzungsdifferenz zwischen Quelle und Ziel erreicht ist: Verwenden Sie den Schieberegler, um den Schwellenwert für die Nutzungsdifferenz festzulegen. Auslastung ist gleich Nutzung * 100/Kapazität.

Dieser Schwellenwert stellt sicher, dass es irgendeinen minimalen Unterschied zwischen dem Speicherplatzauslastung der Quelle und des Ziels gibt. Wenn beispielsweise auf Datenspeicher A 82 % des Speicherplatzes genutzt werden und auf Datenspeicher B 79 %, beträgt die Differenz 3. Wenn der Schwellenwert 5 ist, gibt Speicher-DRS keine Empfehlungen für die Migration von Datenspeicher A nach Datenspeicher B.

- E/A-Ungleichgewichte überprüfen alle: Geben Sie an, wie oft Storage DRS den Lastausgleich für die Speicherplatznutzung und den E/A-Lastausgleich prüfen soll.
- E/A-Ungleichgewichtsschwellenwert: Verwenden Sie den Schieberegler, um die Aggressivität des E/A-Lastausgleichs festzulegen. Das Herabsetzen dieses Werts sorgt für einen weniger aggressiven Lastausgleich. Speicher-DRS berechnet eine E/A-Fairness-Metrik zwischen 0 und 1, wobei 1 die gerechteste Verteilung darstellt. Die E/A-Lastverteilung läuft nur, wenn die berechnete Metrik kleiner als 1 ist - (E/A-Ungleichgewichtsschwellenwert/100).
- 4 Klicken Sie auf OK.

Anforderungen für Datenspeicher-Cluster

Datenspeicher und Hosts, die einem Datenspeicher-Cluster zugeordnet sind, müssen bestimmte Anforderungen erfüllen, um die Datenspeicher-Clusterfunktionen erfolgreich verwenden zu können.

Befolgen Sie diese Richtlinien, wenn Sie einen Datenspeicher-Cluster erstellen.

Datenspeicher-Cluster müssen ähnliche oder austauschbare Datenspeicher enthalten.

Ein Datenspeicher-Cluster kann eine Mischung aus Datenspeichern mit unterschiedlichen Größen und E/A-Kapazitäten enthalten und kann von verschiedenen Arrays und Anbietern stammen. Allerdings können die folgenden Arten von Datenspeichern nicht in einem Datenspeicher-Cluster koexistieren.

- NFS- und VMFS-Und VMFS-Datenspeicher können in demselben Datenspeicher-Cluster nicht kombiniert werden.
- Replizierte Datenspeicher können mit nicht-replizierten Datenspeichern in demselben Speicher-DRS-aktivierten Datenspeicher-Cluster nicht kombiniert werden.

- Alle mit Datenspeicher eines Datenspeicher-Clusters verbundenen Hosts müssen ESXi 5.0 oder höher ausführen. Wenn Datenspeicher im Datenspeicher-Cluster mit ESX/ESXi 4.x- und früheren Hosts verbunden sind, wird Speicher-DRS nicht ausgeführt.
- In mehreren Datencentern freigegebene Datenspeicher können nicht in ein Datenspeicher-Cluster aufgenommen werden.
- Als Best Practice nehmen Sie keine Datenspeicher, bei denen die Hardwarebeschleunigung aktiviert ist, in denselben Datenspeicher-Cluster auf wie Datenspeicher, bei denen die Hardwarebeschleunigung nicht aktiviert ist. Die Datenspeicher in einem Datenspeicher-Cluster müssen homogen sein, um das von der Hardwarebeschleunigung unterstützte Verhalten zu gewährleisten.

Hinzufügen und Entfernen von Datenspeichern aus einem Datenspeicher-Cluster

Sie können vorhandenen Datenspeicher-Clustern weitere Datenspeicher hinzufügen oder Datenspeicher aus ihnen entfernen.

Sie können einem Datenspeicher-Cluster jeden Datenspeicher hinzufügen, der auf einem Host in der vSphere Client-Bestandsliste gemountet ist. Es gelten die folgenden Ausnahmen:

- Alle mit dem Datenspeicher verbundenen Hosts müssen ESXi 5.0 und höher sein.
- Der Datenspeicher kann sich nicht in mehr als einem Datencenter in derselben Instanz des vSphere Client befinden.

Wenn Sie einen Datenspeicher aus einem Datenspeicher-Cluster entfernen, verbleibt der Datenspeicher in der vSphere Client-Bestandsliste und es wird kein Unmount vom Host für ihn durchgeführt.

Verwenden des Datenspeicher-Clusters zur Verwaltung von Speicherressourcen im vSphere Client

Nachdem Sie einen Datenspeicher-Cluster erstellt haben, können Sie ihn anpassen und zum

Verwalten der Speicher-E/A und der Speichernutzungsressourcen verwenden.

Lesen Sie als Nächstes die folgenden Themen:

- Verwenden des Speicher-DRS-Wartungsmodus
- Übernehmen von Speicher-DRS-Empfehlungen
- Andern der Speicher-DRS-Automatisierungsebene für eine virtuelle Maschine
- Einrichten von Zeitplänen außerhalb der Geschäftszeiten für Speicher-DRS
- Speicher-DRS-Anti-Affinitätsregeln
- Bereinigen der Speicher-DRS-Statistiken
- Storage vMotion-Kompatibilität mit Datenspeicher-Clustern

Verwenden des Speicher-DRS-Wartungsmodus

Sie versetzen einen Datenspeicher in den Wartungsmodus, wenn er zwecks Wartung vorübergehend nicht benutzt werden soll. Ein Datenspeicher wird in den Wartungsmodus nur auf Benutzeranforderung versetzt bzw. verlässt diesen nur dann.

Der Wartungsmodus ist für Datenspeicher innerhalb eines Storage DRS-fähigen Datenspeicher-Clusters verfügbar. Eigenständige Datenspeicher können nicht in den Wartungsmodus versetzt werden.

Virtuelle Festplatten, die sich auf einem Datenspeicher befinden, der in den Wartungsmodus übergeht, müssen zu einem anderen Datenspeicher migriert werden, entweder manuell oder mit Storage DRS. Wenn Sie versuchen, einen Datenspeicher in den Wartungsmodus zu versetzen, zeigt die Registerkarte **Platzierungsempfehlungen** eine Liste von Migrationsempfehlungen und Datenspeichern innerhalb desselben Datenspeicher-Clusters an, zu dem virtuelle Festplatten migriert werden können. Auf der Registerkarte **Fehler** zeigt vCenter Server eine Liste der Festplatten an, die nicht migriert werden können, sowie die Gründe dafür. Wenn Storage DRS-Affinitäts- oder Anti-Affinitätsregeln die Migration von Festplatten verhindern, können Sie die Option "Affinitätsregeln für die Wartung ignorieren" aktivieren. Der Datenspeicher befindet sich im Zustand "Wechsel in den Wartungsmodus", bis alle virtuellen Festplatten migriert wurden.

Versetzen eines Datenspeichers in den Wartungsmodus

Wenn Sie einen Datenspeicher außer Betrieb stellen müssen, können Sie den Datenspeicher in den Speicher-DRS-Wartungsmodus versetzen.

Voraussetzungen

Speicher-DRS ist auf dem Datenspeicher-Cluster aktiviert, der den Datenspeicher enthält, der in den Wartungsmodus wechselt.

Es sind keine CD-ROM-Image-Dateien auf dem Datenspeicher gespeichert.

Es gibt mindestens zwei Datenspeicher im Datenspeicher-Cluster.

Verfahren

- 1 Wechseln Sie im vSphere Client zum Datenspeicher.
- 2 Klicken Sie mit der rechten Maustaste auf den Datenspeicher und wählen Sie Wartungsmodus > In den Wartungsmodus wechseln aus.

Eine Liste von Datenspeicher-Wartungsmodus-Migrationsempfehlungen erscheint.

3 (Optional) Deaktivieren Sie auf der Registerkarte "Platzierungsempfehlungen" alle Empfehlungen, die Sie nicht übernehmen möchten.

Hinweis Der Datenspeicher kann erst in den Wartungsmodus versetzt werden, nachdem alle Festplatten entfernt wurden. Wenn Sie die Empfehlungen deaktivieren, müssen Sie die betroffenen virtuellen Maschinen manuell verschieben.

4 Klicken Sie, falls erforderlich, auf Empfehlungen übernehmen.

vCenter Server verwendet Storage vMotion, um die virtuellen Festplatten vom Quell- zum Zieldatenspeicher zu migrieren, und der Datenspeicher wechselt in den Wartungsmodus.

Ergebnisse

Möglicherweise wird das Datenspeichersymbol nicht sofort aktualisiert, um den aktuellen Status des Datenspeichers wiederzugeben. Wenn Sie das Symbol sofort aktualisieren möchten, klicken Sie auf **Aktualisieren**.

Ignorieren von Speicher-DRS-Affinitätsregeln für den Wartungsmodus

Affinitäts- oder Anti-Affinitätsregeln für Speicher-DRS verhindern möglicherweise den Wechsel eines Datenspeichers in den Wartungsmodus. Sie können diese Regeln ignorieren, wenn Sie einen Datenspeicher in den Wartungsmodus versetzen. Wenn Sie für einen Datenspeicher-Cluster die Option zum Ignorieren der Affinitätsregeln für die Wartung aktivieren, ignoriert vCenter Server die Storage DRS-Affinitäts- und -Anti-Affinitätsregeln, die verhindern, dass ein Datenspeicher in den Wartungsmodus versetzt wird.

Speicher-DRS-Regeln werden nur im Falle von Entfernungsempfehlungen ignoriert. vCenter Server verstößt nicht gegen die Regeln beim Erteilen von Speicherplatz- und Lastausgleichsempfehlungen oder Empfehlungen für die anfängliche Platzierung.

Verfahren

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Wählen Sie DRS aus und klicken Sie auf Bearbeiten.
- 4 Erweitern Sie Erweiterte Optionen und klicken Sie auf Hinzufügen.
- 5 Geben Sie in der Spalte "Option" IgnoreAffinityRulesForMaintenance ein.
- 6 Geben Sie in der Spalte "Wert" 1 ein, um die Option zu aktivieren.

Geben Sie **0** ein, um die Option zu deaktivieren.

7 Klicken Sie auf OK.

Ergebnisse

Die Option zum Ignorieren der Affinitätsregeln für die Wartung wird auf den Datenspeicher-Cluster angewendet.

Übernehmen von Speicher-DRS-Empfehlungen

Storage DRS erfasst Ressourcennutzungsinformationen für alle Datenspeicher in einem Datenspeicher-Cluster. Speicher-DRS generiert mit diesen Informationen Empfehlungen für die Platzierung virtueller Maschinen auf Datenspeicher in einem Datenspeicher-Cluster.

Speicher-DRS-Empfehlungen werden auf der Registerkarte **Speicher-DRS** in der Datenspeicheransicht vom vSphere Client angezeigt. Empfehlungen werden außerdem angezeigt, wenn Sie versuchen, einen Datenspeicher in den Speicher-DRS-Wartungsmodus zu versetzen. Wenn Sie Speicher-DRS-Empfehlungen übernehmen, verwendet vCenter Server Storage vMotion, um die Festplatten virtueller Maschinen in andere Datenspeicher im Datenspeicher-Cluster zu migrieren und somit einen Ressourcenausgleich zu schaffen.

Wenn Sie eine Untermenge an Empfehlungen übernehmen möchten, aktivieren Sie das Kontrollkästchen "Angegebene DRS-Empfehlungen außer Kraft setzen" und wählen Sie die zu übernehmenden Empfehlungen aus.

Tabelle 20-1. Storage DRS-Empfehlun	gen
-------------------------------------	-----

Bezeichnung	Beschreibung
Priorität	Prioritätsstufe (1-5) der Empfehlung. (Standardmäßig ausgeblendet.)
Empfehlung	Von Storage DRS empfohlene Aktion.
Grund	Warum die Aktion erforderlich ist.
Speicherplatznutzung % vorher (Quelle) und (Ziel)	Prozentsatz des verwendeten Speicherplatzes im Quell- und Zieldatenspeicher vor der Migration.
Speicherplatznutzung % nachher (Quelle) und (Ziel)	Prozentsatz des verwendeten Speicherplatzes im Quell- und Zieldatenspeicher nach der Migration.
E/A-Latenz vorher (Quelle)	Wert der E/A-Latenz im Quelldatenspeicher vor der Migration.
E/A-Latenz vorher (Ziel)	Wert der E/A-Latenz im Zieldatenspeicher vor der Migration.

Speicher-DRS-Empfehlung aktualisieren

Migrationsempfehlungen für Speicher-DRS werden auf der Registerkarte **Speicher-DRS** im vSphere Client angezeigt. Sie können diese Empfehlungen durch die Ausführung von Speicher-DRS aktualisieren.

Voraussetzungen

Mindestens ein Datenspeichercluster muss in der vSphere Client-Bestandsliste vorhanden sein.

Aktivieren Sie Speicher-DRS für den Datenspeicher-Cluster. Die Registerkarte **Speicher-DRS** wird nur angezeigt, wenn Speicher-DRS aktiviert ist.

Verfahren

- 1 Wählen Sie in der Datenspeicheransicht des vSphere Client den Datenspeichercluster aus und klicken Sie auf die Registerkarte **Speicher-DRS**.
- 2 Wählen Sie die Ansicht **Empfehlungen** aus und klicken Sie in der oberen rechte Ecke auf den Link **Speicher-DRS ausführen**.

Ergebnisse

Die Empfehlungen werden aktualisiert. Der Zeitstempel des letzten Updates zeigt das Datum und die Uhrzeit des letzten Updates der Speicher-DRS-Empfehlungen an.

Ändern der Speicher-DRS-Automatisierungsebene für eine virtuelle Maschine

Sie können für einzelne virtuelle Maschinen die für den Datenspeicher-Cluster geltende Automatisierungsebene außer Kraft setzen. Sie können zudem die Standard-Affinitätsregel für virtuelle Festplatten außer Kraft setzen.

Verfahren

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Konfiguration.
- 3 Wählen Sie unter VM-Außerkraftsetzungen die Option Hinzufügen.
- 4 Wählen Sie eine virtuelle Maschine aus.
- 5 Klicken Sie auf das Dropdown-Menü "Automatisierungsebene" und wählen Sie eine Automatisierungsebene für die virtuelle Maschine aus.

Option	Beschreibung
Standard (Manuell)	Die Empfehlungen zur Platzierung und zur Migration werden angezeigt, jedoch erst ausgeführt, wenn Sie die Empfehlungen manuell übernommen haben.
Vollautomatisiert	Die Empfehlungen zur Platzierung und zur Migration werden automatisch ausgeführt.
Deaktiviert	vCenter Server migriert die virtuelle Maschine nicht und gibt auch keine Migrationsempfehlungen für sie.

6 Klicken Sie auf das Dropdown-Menü VMDKs zusammenhalten, um die Standard-VMDK-Affinität außer Kraft zu setzen.

Weitere Informationen hierzu finden Sie unter Außer Kraft setzen der VMDK-Affinitätsregeln.

7 Klicken Sie auf OK.

Einrichten von Zeitplänen außerhalb der Geschäftszeiten für Speicher-DRS

Sie können eine geplante Aufgabe erstellen, um die Speicher-DRS-Einstellungen für einen Datenspeicher-Cluster zu ändern, damit Migrationen für vollautomatisierte Datenspeicher-Cluster vorwiegend außerhalb der Geschäftszeiten durchgeführt werden.

Sie können eine geplante Aufgabe erstellen, um die Automatisierungsebene und die Aggressivitätsebene für einen Datenspeicher-Cluster zu ändern. Beispielsweise können Sie Speicher-DRS so konfigurieren, dass er in Spitzenzeiten – wenn die Leistung oberste Priorität hat – weniger aggressiv ausgeführt wird, um die Anzahl an Speichermigrationen zu minimieren. Außerhalb der Spitzenzeiten kann Speicher-DRS in einem aggressiveren Modus ausgeführt und häufiger aufgerufen werden.

Voraussetzungen

Aktivieren Sie Speicher-DRS.

Verfahren

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Dienste.
- 3 Klicken Sie unter vSphere DRS auf die Schaltfläche DRS planen.
- 4 Klicken Sie im Dialogfeld "Datenspeicher-Cluster bearbeiten" auf SDRS-Zeitplan.
- 5 Erweitern Sie DRS-Automatisierung.
 - a Wählen Sie eine Automatisierungsebene.
 - b Legen Sie den Migrationsschwellenwert fest.

Wählen Sie mit dem Schieberegler "Migration" die Prioritätsstufe der vCenter Server-Empfehlungen aus, die für den Lastausgleich des Clusters am besten geeignet sind.

c Legen Sie fest, ob Sie die VM-Automatisierung aktivieren möchten.

Außerkraftsetzungen für einzelne virtuelle Maschinen können über die Seite 'VM-Außerkraftsetzungen' festgelegt werden.

- 6 Erweitern Sie Energieverwaltung.
 - a Wählen Sie eine Automatisierungsebene.
 - b Legen Sie den DPM-Schwellenwert fest.

Verwenden Sie den DPM-Schieberegler, um die Energieempfehlungen auszuwählen, die vCenter Server übernehmen wird.

- 7 Geben Sie einen Namen für die Aufgabe ein.
- 8 Geben Sie eine Beschreibung der Aufgabe ein, die Sie erstellt haben.
- **9** Klicken Sie unter "Konfigurierter Scheduler" auf Ändern, wählen Sie die Ausführungszeit für die Aufgabe aus und klicken Sie auf **OK**.
- **10** Geben Sie eine E-Mail-Adresse für die Benachrichtigungs-E-Mail beim Abschluss der Aufgabe an.
- 11 Klicken Sie auf OK.

Ergebnisse

Die geplante Aufgabe wird zum festgelegten Zeitpunkt ausgeführt.

Speicher-DRS-Anti-Affinitätsregeln

Sie können Speicher-DRS-Anti-Affinitätsregeln erstellen, um zu kontrollieren, welche virtuellen Festplatten nicht auf demselben Datenspeicher innerhalb eines Datenspeicher-Clusters platziert werden sollen. Standardmäßig werden die virtuellen Festplatten einer virtuellen Maschine auf demselben Datenspeicher zusammengehalten.

Wenn Sie eine Anti-Affinitätsregel erstellen, gilt sie für alle relevanten virtuellen Festplatten im Datenspeicher-Cluster. Anti-Affinitätsregeln werden während der anfänglichen Platzierung und während der von Speicher-DRS empfohlenen Migrationen durchgesetzt. Sie werden jedoch nicht durchgesetzt, wenn eine Migration von einem Benutzer initiiert wird.

Hinweis Anti-Affinitätsregeln gelten nicht für CD-ROM-ISO-Imagedateien, die auf einem Datenspeicher in einem Datenspeicher-Cluster gespeichert sind. Sie gelten auch nicht für Auslagerungsdateien, die in benutzerdefinierten Speicherorten gespeichert sind.

VM-Anti-Affinitätsregeln

Geben Sie an, welche virtuellen Maschinen nie auf demselben Datenspeicher gespeichert werden sollen. Weitere Informationen hierzu finden Sie unter Erstellen von VM-Anti-Affinitätsregeln.

VMDK-Anti-Affinitätsregeln

Geben Sie mit einer bestimmten virtuellen Maschine verknüpfte virtuelle Festplatten an, die auf unterschiedlichen Datenspeichern gehalten werden müssen. Weitere Informationen hierzu finden Sie unter Erstellen von VMDK-Anti-Affinitätsregeln.

Wenn Sie eine virtuelle Festplatte aus einem Datenspeicher-Cluster verschieben, gilt die Affinitäts- bzw. Anti-Affinitätsregel nicht mehr für diese Festplatte.

Wenn Sie virtuelle Festplattendateien auf einen Datenspeicher-Cluster verschieben, der über Affinitäts- und Anti-Affinitätsregeln verfügt, gilt das folgende Verhalten:

- Datenspeicher-Cluster B verfügt über eine Intra-VM-Affinitätsregel. Wenn Sie eine virtuelle Festplatte von Datenspeicher-Cluster A auf Datenspeicher-Cluster B verschieben, gelten alle Regeln nicht mehr, die für die virtuelle Festplatte einer bestimmten virtuellen Maschine in Datenspeicher-Cluster A galten. Die virtuelle Festplatte unterliegt jetzt der Intra-VM-Affinitätsregel im Datenspeicher-Cluster B.
- Datenspeicher-Cluster B verfügt über eine VM-Anti-Affinitätsregel. Wenn Sie eine virtuelle Festplatte von Datenspeicher-Cluster A auf Datenspeicher-Cluster B verschieben, gelten alle Regeln nicht mehr, die für die virtuelle Festplatte einer bestimmten virtuellen Maschine in Datenspeicher-Cluster A galten. Die virtuelle Festplatte unterliegt jetzt der VM-Anti-Affinitätsregel im Datenspeicher-Cluster B.

 Datenspeicher-Cluster B verfügt über eine VMDK-Anti-Affinitätsregel. Wenn Sie eine virtuelle Festplatte von Datenspeicher-Cluster A auf Datenspeicher-Cluster B verschieben, gilt die VMDK-Anti-Affinitätsregel für die virtuelle Festplatte einer bestimmten virtuellen Maschine nicht, da die Regel auf die angegebenen virtuellen Festplatten im Datenspeicher-Cluster B beschränkt ist.

Hinweis Speicher-DRS verhindert möglicherweise den Wechsel eines Datenspeichers in den Wartungsmodus. Sie können auswählen, die Speicher-DRS-Regeln für den Wartungsmodus zu ignorieren, indem Sie die Option zum Ignorieren der Affinitätsregeln für die Wartung aktivieren.

Erstellen von VM-Anti-Affinitätsregeln

Sie können eine Anti-Affinitätsregel erstellen, um anzugeben, dass sich alle virtuellen Festplatten bestimmter virtueller Maschinen auf unterschiedlichen Datenspeichern befinden müssen. Diese Regel gilt für einzelne Datenspeicher-Cluster.

Virtuelle Maschinen, für die eine VM-Anti-Affinitätsregel in einem Datenspeicher-Cluster gilt, müssen einer Intra-VM-Affinitätsregel im Datenspeicher-Cluster zugewiesen sein. Die virtuellen Maschinen müssen zudem der Intra-VM-Affinitätsregel entsprechen.

Wenn eine virtuelle Maschine einer VM-Anti-Affinitätsregel unterliegt, trifft folgendes Verhalten zu:

- Speicher-DRS platziert die virtuellen Festplatten der virtuellen Maschine entsprechend der festgelegten Regel.
- Speicher-DRS migriert die virtuellen Festplatten mit vMotion auch dann der Regel entsprechend, wenn die Migration aus einem obligatorischen Grund stattfindet, z. B. wenn der Datenspeicher in den Wartungsmodus versetzt wird.
- Wenn die virtuelle Festplatte der virtuellen Maschine gegen die Regel verstößt, gibt Speicher-DRS Migrationsempfehlungen, um den Fehler zu beheben, oder meldet den Verstoß als Fehler, falls keine Empfehlung gegeben werden kann, die den Fehler beheben würde.

VM-Anti-Affinitätsregeln sind standardmäßig nicht definiert.

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Konfiguration.
- 3 Wählen Sie VM/Host-Regeln aus.
- 4 Klicken Sie auf Hinzufügen.
- 5 Geben Sie einen Namen für die Regel ein.
- 6 Wählen Sie im Menü "Typ" die Option VM-Anti-Affinität.
- 7 Klicken Sie auf Hinzufügen.
- 8 Klicken Sie auf Virtuelle Maschine auswählen.

- 9 Wählen Sie mindestens zwei virtuelle Maschinen aus und klicken Sie auf OK.
- 10 Klicken Sie auf OK, um die Regel zu speichern.

Erstellen von VMDK-Anti-Affinitätsregeln

Sie können eine VMDK-Anti-Affinitätsregel für eine virtuelle Maschine erstellen, die vorschreibt, welche ihrer virtuellen Festplatten sich auf unterschiedlichen Datenspeichern befinden müssen.

VMDK-Anti-Affinitätsregeln gelten für die virtuelle Maschine, für die die Regel definiert ist, und nicht für alle virtuellen Maschinen. Die Regel wird als eine Liste der virtuellen Festplatten angegeben, die voneinander getrennt werden müssen.

Wenn Sie versuchen, eine VMDK-Anti-Affinitätsregel und eine Intra-VM-Affinitätsregel für eine virtuelle Maschine zu definieren, lehnt vCenter Server die zuletzt definierte Regel ab.

Wenn eine virtuelle Maschine einer VMDK-Anti-Affinitätsregel unterliegt, trifft folgendes Verhalten zu:

- Speicher-DRS platziert die virtuellen Festplatten der virtuellen Maschine entsprechend der festgelegten Regel.
- Speicher-DRS migriert die virtuellen Festplatten mit vMotion auch dann der Regel entsprechend, wenn die Migration aus einem obligatorischen Grund stattfindet, z. B. wenn der Datenspeicher in den Wartungsmodus versetzt wird.
- Wenn die virtuelle Festplatte der virtuellen Maschine gegen die Regel verstößt, gibt Speicher-DRS Migrationsempfehlungen, um den Fehler zu beheben, oder meldet den Verstoß als Fehler, falls keine Empfehlung gegeben werden kann, die den Fehler beheben würde.

VMDK-Anti-Affinitätsregeln sind standardmäßig nicht definiert.

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Konfiguration.
- 3 Wählen Sie VM/Host-Regeln aus.
- 4 Klicken Sie auf Hinzufügen.
- 5 Geben Sie einen Namen für die Regel ein.
- 6 Wählen Sie im Menü "Typ" die Option VMDK-Anti-Affinität.
- 7 Klicken Sie auf Hinzufügen.
- 8 Klicken Sie auf Virtuelle Maschine auswählen.
- 9 Wählen Sie eine virtuelle Maschine aus und klicken Sie auf OK.
- 10 Wählen Sie mindestens zwei virtuelle Festplatten aus, auf die die Regel angewendet werden soll, und klicken Sie auf **OK**.
- 11 Klicken Sie auf OK, um die Regel zu speichern.

Außer Kraft setzen der VMDK-Affinitätsregeln

VMDK-Affinitätsregeln geben an, dass sich alle virtuellen Festplatten in einem Datenspeicher-Cluster, die einer bestimmten virtuellen Maschine zugewiesen wurden, in demselben Datenspeicher im Datenspeicher-Cluster befinden. Diese Regeln gelten für einzelne Datenspeicher-Cluster.

VMDK-Affinitätsregeln werden standardmäßig für alle virtuellen Maschinen aktiviert, die sich in einem Datenspeicher-Cluster befinden. Sie können die Standardeinstellung für den Datenspeicher-Cluster oder für einzelne virtuelle Maschinen außer Kraft setzen.

Virtuelle Maschinen, die VMDK-Affinitätsregeln unterliegen, haben folgendes Verhalten:

- Speicher-DRS platziert die virtuellen Festplatten der virtuellen Maschine entsprechend der festgelegten Regel.
- Speicher-DRS migriert die virtuellen Festplatten mit vMotion auch dann der Regel entsprechend, wenn die Migration aus einem obligatorischen Grund stattfindet, z. B. wenn der Datenspeicher in den Wartungsmodus versetzt wird.
- Wenn die virtuelle Festplatte der virtuellen Maschine gegen die Regel verstößt, gibt Speicher-DRS Migrationsempfehlungen, um den Fehler zu beheben, oder meldet den Verstoß als Fehler, falls keine Empfehlung gegeben werden kann, die den Fehler beheben würde.

Wenn Sie einem Datenspeicher-Cluster, der für Storage DRS aktiviert ist, einen Datenspeicher hinzufügen, wird die VMDK-Affinitätsregel für diejenigen virtuellen Maschinen deaktiviert, die in diesem Datenspeicher über virtuelle Festplatten verfügen, wenn diese auch über virtuelle Festplatten auf anderen Datenspeichern verfügen.

- 1 Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf Konfiguration.
- 3 Wählen Sie VM-Außerkraftsetzungen aus.
- 4 Klicken Sie auf Hinzufügen.
- 5 Wählen Sie virtuelle Maschinen über die Schaltfläche + aus.
- 6 Klicken Sie auf das Dropdown-Menü VMDKs zusammenhalten und wählen Sie Nein.
- 7 Klicken Sie auf OK.

Bereinigen der Speicher-DRS-Statistiken

Zur Diagnose von Problemen mit Speicher-DRS können Sie die Speicher-DRS-Statistiken löschen, bevor Sie Speicher-DRS manuell ausführen.

Wichtig Wenn Sie die Option zum Löschen der Storage DRS-Statistiken aktivieren, werden die Statistiken bei jeder Ausführung von Storage DRS so lange gelöscht, bis Sie die Option deaktivieren. Deaktivieren Sie die Option immer, nachdem Sie das Storage DRS-Problem diagnostiziert haben.

Voraussetzungen

Aktivieren Sie Speicher-DRS für den Datenspeicher-Cluster.

Verfahren

- 1 Aktivieren Sie die Option ClearIoStatsOnSdrsRun.
 - a Wechseln Sie zum Datenspeicher-Cluster im vSphere Client.
 - b Klicken Sie auf die Registerkarte Konfiguration und anschließend auf Dienste.
 - c Wählen Sie vSphere DRS aus und klicken Sie auf Bearbeiten.
 - d Erweitern Sie Erweiterte Optionen und klicken Sie auf Hinzufügen.
 - e Geben Sie in der Spalte "Option" ClearIoStatsOnSdrsRun ein.
 - f Geben Sie im entsprechenden Textfeld "Wert" 1 ein.
 - g Klicken Sie auf **OK**.
- 2 Führen Sie Speicher-DRS auf dem Datenspeicher-Cluster aus.

Die aktuellen Speicher-DRS-Statistiken für alle Datenspeicher und virtuellen Festplatten in allen Datenspeicher-Clustern in der vSphere Client-Bestandsliste werden gelöscht; es werden jedoch keine neuen Statistiken erfasst.

- 3 Ändern Sie den Wert von ClearIoStatsOnSdrsRun in 0, um es zu deaktivieren.
- 4 Führen Sie Speicher-DRS erneut aus.

Speicher-DRS wird normal ausgeführt. Die neue Einstellung wird erst nach einigen Stunden wirksam.

Storage vMotion-Kompatibilität mit Datenspeicher-Clustern

Ein Datenspeicher-Cluster weist bestimmte vSphere Storage vMotion $^{\ensuremath{\mathbb{R}}}$ -Anforderungen auf.

- Auf dem Host muss eine Version von ESXi ausgeführt werden, die Storage vMotion unterstützt.
- Der Host muss Schreibzugriff auf den Quell- und den Zieldatenspeicher haben.
- Der Host muss über ausreichend freie Speicherressourcen für Storage vMotion verfügen.

- Der Zieldatenspeicher muss über ausreichend Festplattenspeicher verfügen.
- Der Zieldatenspeicher darf sich nicht im Wartungsmodus befinden oder in diesen wechseln.

Verwenden von NUMA-Systemen mit ESXi

21

ESXi unterstützt die Optimierung des Arbeitsspeicherzugriffs für Intel- und AMD Opteron-Prozessoren in Serverarchitekturen, die den nicht einheitlichen Speicherzugriff (Non-Uniform Memory Access, NUMA) unterstützen.

Nachdem Sie verstanden haben, wie die NUMA-Planung in ESXi erfolgt und die NUMA-Algorithmen von VMware funktionieren, können Sie NUMA-Steuerelemente angeben, um die Leistung Ihrer virtuellen Maschinen zu optimieren.

Lesen Sie als Nächstes die folgenden Themen:

- Was ist NUMA?
- Herausforderungen f
 ür Betriebssysteme
- So funktioniert die ESXi-NUMA-Planung
- VMware NUMA-Optimierungsalgorithmen und -einstellungen
- Stammknoten und anfängliche Platzierung
- Dynamischer Lastenausgleich und Seitenmigration
- Für NUMA optimierte, transparente gemeinsame Seitennutzung
- Ressourcenverwaltung in NUMA-Architekturen
- Verwenden von virtueller NUMA
- Virtuelle Topologie in ESXi 8.0
- Steuerelemente f
 ür virtuelle NUMA
- Angeben von NUMA-Steuerelementen
- Verknüpfen von virtuelle Maschinen mit bestimmten Prozessoren
- Verknüpfen von Arbeitsspeicherzuweisungen mit einem NUMA-Knoten unter Verwendung der Arbeitsspeicheraffinität
- Verknüpfen von virtuellen Maschinen mit angegebenen NUMA-Knoten

Was ist NUMA?

NUMA-Systeme sind erweiterte Serverplattformen mit mehr als einem Systembus. Sie können eine große Anzahl von Prozessoren in einem einzelnen System-Image mit ausgezeichnetem Preis-Leistungs-Verhältnis nutzen.

Eine CPU mit mehreren GHz muss mit einer großen Menge an Arbeitsspeicherbandbreite bereitgestellt werden, um ihre Verarbeitungsleistung effektiv nutzen zu können. Selbst eine einzelne CPU, auf der eine arbeitsspeicherintensive Arbeitslast ausgeführt wird, wie z. B. eine Computing-Anwendung, kann durch die Arbeitsspeicherbandbreite eingeschränkt werden.

Dieses Problem verschärft sich bei symmetrischen Multiprozessorsystemen (SMP), bei denen viele Prozessoren um die Bandbreite auf demselben Systembus konkurrieren müssen. Einige High-End-Systeme versuchen oft, dieses Problem zu lösen, indem sie einen Hochgeschwindigkeits-Datenbus erstellen. Eine solche Lösung ist jedoch teuer und in ihrer Skalierbarkeit begrenzt.

NUMA ist ein alternativer Ansatz, der mehrere kleine, kostengünstige Knoten mithilfe einer Hochleistungsverbindung verbindet. Jeder Knoten enthält Prozessoren und Arbeitsspeicher, ähnlich wie ein kleines SMP-System. Ein erweiterter Arbeitsspeicher-Controller ermöglicht einem Knoten jedoch die Verwendung von Arbeitsspeicher auf allen anderen Knoten, wodurch ein einzelnes System-Image erstellt wird. Wenn ein Prozessor auf Arbeitsspeicher zugreift, der nicht innerhalb seines eigenen Knotens (Remotearbeitsspeicher) liegt, müssen die Daten über die NUMA-Verbindung übertragen werden, die langsamer ist als der Zugriff auf lokalen Arbeitsspeicher. Die Zugriffszeiten auf den Arbeitsspeicher sind nicht einheitlich und hängen, wie der Name der Technologie schon sagt, vom Speicherort und dem Knoten ab, von dem aus der Zugriff erfolgt.

Herausforderungen für Betriebssysteme

Da eine NUMA-Architektur ein einziges System-Image liefert, kann sie ein Betriebssystem oft ohne besondere Optimierungen ausführen.

Die hohe Latenz von Remotespeicherzugriffen kann dazu führen, dass die Auslastung der Prozessoren zu niedrig ist und diese konstant auf Daten warten, die auf den lokalen Knoten übertragen werden sollen. Die NUMA-Verbindung kann zu einem Engpass für Anwendungen mit einem hohen Bedarf an Arbeitsspeicherbandbreite werden.

Außerdem kann die Leistung solcher Systeme in hohem Maße variieren. Dies ist beispielsweise dann der Fall, wenn sich der Arbeitsspeicher einer Anwendung lokal auf einer Benchmark-Ausführung befindet und bei einer nachfolgende Ausführung der gesamte Arbeitsspeicher auf einem Remoteknoten platziert wird. Dieses Phänomen kann die Kapazitätsplanung erschweren.

Einige High-End-UNIX-Systeme unterstützen NUMA-Optimierungen in ihren Kompilierprogrammen und Programmbibliotheken. Aufgrund dieser Unterstützung müssen Softwareentwickler ihre Programme für eine optimale Leistung abstimmen und neu kompilieren. Die Optimierungen für ein bestimmtes System funktionieren nicht unbedingt auch in Verbindung mit der nächsten Generation dieses Systems. Andere Systeme sehen vor, dass ein Administrator explizit entscheidet, auf welchem Knoten eine bestimmte Anwendung ausgeführt werden soll. Während dieser Ansatz für bestimmte Anwendungen durchaus annehmbar ist, die einen 100 % lokalen Arbeitsspeicher erfordern, kann er bei variablen Arbeitslasten zu einer administrativen Herausforderung werden und zu einem Ungleichgewicht zwischen einzelnen Knoten führen.

Im Idealfall bietet die Systemsoftware eine transparente NUMA-Unterstützung, damit die Anwendungen unmittelbar und ohne Änderungen davon profitieren können. Das System sollte die Verwendung des lokalen Arbeitsspeichers maximieren und die Programme intelligent planen, ohne dass hierfür ein permanenter Eingriff durch den Administrator erforderlich ist. Schließlich muss das System problemlos auf geänderte Bedingungen ohne Beeinträchtigungen von Gleichgewicht oder Leistung reagieren.

So funktioniert die ESXi-NUMA-Planung

ESXi verwendet einen ausgereiften NUMA-Scheduler, um die Prozessorlast und die Vielfachbelegung des Arbeitsspeichers bzw. den ProzessorLastausgleich dynamisch auszugleichen.

- 1 Jeder vom NUMA-Scheduler verwalteten virtuellen Maschine wird ein Startknoten zugewiesen. Ein Stammknoten ist einer der NUMA-Knoten des Systems, der Prozessoren und lokalen Arbeitsspeicher enthält, wie in der Tabelle für die Zuteilung von Systemressourcen (SRAT) angegeben.
- 2 Bei der Zuteilung von Arbeitsspeicher zu einer virtuellen Maschine weist der ESXi-Host diesen vorzugsweise aus dem Stammknoten zu. Die virtuellen CPUs der virtuellen Maschine werden gezwungenermaßen auf dem Startknoten ausgeführt, um die Speicherlokalität zu maximieren.
- 3 Der NUMA-Scheduler kann den Startknoten einer virtuellen Maschine dynamisch ändern, um auf Änderungen der Systemlast zu reagieren. Der Scheduler kann eine virtuelle Maschine auch auf einen neuen Stammknoten migrieren, um ein Ungleichgewicht der Prozessorlast zu verringern. Weil hierzu möglicherweise auf einen größeren Anteil an Remotearbeitsspeicher für die virtuelle Maschine zugegriffen wird, kann der Scheduler den Arbeitsspeicher der virtuellen Maschine dynamisch auf ihren neuen Stammknoten migrieren, um so die Arbeitsspeicherbelegung zu verbessern. Darüber hinaus lassen sich virtuelle Maschinen mit dem NUMA-Scheduler zwischen den einzelnen Knoten auslagern, wenn dadurch die Arbeitsspeicherbelegung insgesamt verbessert wird.

Einige virtuelle Maschinen werden nicht durch den NUMA-Scheduler von ESXi verwaltet. Wenn Sie beispielsweise die Prozessor- oder Arbeitsspeicheraffinität für eine virtuelle Maschine manuell festlegen, kann diese virtuelle Maschine möglicherweise nicht durch den NUMA-Scheduler verwaltet werden. Virtuelle Maschinen, die nicht vom NUMA-Scheduler verwaltet werden, werden weiterhin ordnungsgemäß ausgeführt. Sie profitieren jedoch nicht von ESXi-NUMA-Optimierungen. Durch die NUMA-Planung und Platzierungsrichtlinien für Arbeitsspeicher innerhalb von ESXi können alle virtuellen Maschinen transparent verwaltet werden, sodass sich der Administrator nicht mit dem komplexen Verfahren zum expliziten Ausgleichen virtueller Maschinen zwischen den Knoten auseinandersetzen muss.

Die Optimierungen funktionieren nahtlos und unabhängig vom Gastbetriebssystemtyp. ESXi bietet auch für virtuelle Maschinen, die keine NUMA-Hardware unterstützen, wie z. B. Windows NT 4.0, NUMA-Unterstützung. Dies führt dazu, dass Sie die Vorteile der neuen Hardware auch bei älteren Betriebssystemen nutzen können.

Eine virtuelle Maschine, deren Anzahl an virtuellen Prozessoren höher ist als die Anzahl an auf einem einzelnen Hardwareknoten verfügbaren physischen Prozessorkernen, kann automatisch verwaltet werden. Der NUMA-Scheduler kommt einer solchen virtuellen Maschine entgegen, indem er diese über NUMA-Knoten erstreckt. D. h., sie wird in mehrere NUMA-Clients unterteilt, von denen jeder einem Knoten zugewiesen und anschließend vom Scheduler als ein normaler, sich nicht über mehrere Knoten erstreckender Client verwaltet wird. Bei bestimmten arbeitsspeicherintensiven Arbeitslasten mit hoher Lokalität kann dies die Leistung erhöhen. Weitere Informationen zur Konfiguration des Verhaltens dieser Funktion finden Sie unter Erweiterte Attribute für virtuelle Maschinen.

ESXi bietet jetzt Unterstützung für die Offenlegung der virtuellen NUMA-Topologie für Gastbetriebssysteme. Weitere Informationen zur virtuellen NUMA-Steuerung finden Sie unter Verwenden von virtueller NUMA.

VMware NUMA-Optimierungsalgorithmen und -einstellungen

In diesem Abschnitt werden die von VMware ESXi verwendeten Algorithmen und Einstellungen beschrieben, die zur Leistungssteigerung von Anwendungen unter Einhaltung der Ressourcengarantien eingesetzt werden.

Stammknoten und anfängliche Platzierung

Wenn eine virtuelle Maschine eingeschaltet wird, weist ESXi ihr einen Startknoten zu. Eine virtuelle Maschine wird nur auf Prozessoren innerhalb ihres Stammknotens ausgeführt, und ihr neu zugeteilter Arbeitsspeicher stammt ebenfalls aus dem Stammknoten.

Wenn sich der Stammknoten einer virtuellen Maschine nicht ändert, verwendet sie nur den lokalen Speicher und vermeidet so die Leistungsverluste, die durch Remote-Speicherzugriffe auf andere NUMA-Knoten entstehen. Wenn eine virtuelle Maschine eingeschaltet wird, wird ihr ein anfänglicher Stammknoten zugewiesen, sodass die gesamte CPU- und Arbeitsspeicherlast zwischen NUMA-Knoten ausgeglichen bleibt. Da die Latenzzeiten zwischen Knoten in einem großen NUMA-System erheblich variieren können, ermittelt ESXi die Latenzen beim Start und nutzt diese Informationen bei der Startplatzierung von virtuellen Maschinen, die mehr als einen NUMA-Knoten umfassen. Diese breiten virtuellen Maschinen werden auf NUMA-Knoten platziert, die nah aneinander liegen, um die niedrigste Arbeitsspeicherlatenz zu erzielen.

Ansätze, bei denen lediglich eine Startplatzierung vorgenommen wird, sind für Systeme mit nur einer Arbeitslast üblicherweise ausreichend (z. B. eine Benchmarking-Konfiguration, die während der gesamten Ausführung des Systems unverändert bleibt). Allerdings kann dieser Ansatz keine zufriedenstellende Leistung und Verteilung für ein System der Datencenterklasse garantieren, das wechselnde Arbeitslasten unterstützt. Folglich nimmt ESXi zusätzlich zur anfänglichen Platzierung eine dynamische Migration der virtuellen CPUs und des Arbeitsspeichers zwischen NUMA-Knoten vor, um die CPU-Verteilung zu verbessern und die Menge des lokalen Arbeitsspeichers zu erhöhen.

Dynamischer Lastenausgleich und Seitenmigration

ESXi kombiniert den herkömmlichen Ansatz zur anfänglichen Platzierung mit einem dynamischen Neuverteilungsalgorithmus. Das System untersucht regelmäßig (standardmäßig alle zwei Sekunden) die Lasten auf den verschiedenen Knoten und bestimmt, ob eine neue Lastverteilung durch Verschieben einer virtuellen Maschine auf einen anderen Knoten sinnvoll ist.

Bei dieser Berechnung werden die Ressourceneinstellungen der virtuellen Maschinen und Ressourcenpools berücksichtigt, damit die Leistung verbessert werden kann, ohne das Gleichgewicht zu beeinträchtigen oder Ressourcenberechtigungen zu verletzen.

Bei der Neuverteilung wird eine geeignete virtuelle Maschine gewählt, der als neuer Stammknoten der Knoten mit der geringsten Last zugewiesen wird. Soweit möglich, verschiebt das Neuverteilungsprogramm eine virtuelle Maschine, deren Arbeitsspeicher sich bereits teilweise auf dem Zielknoten befindet. Von diesem Zeitpunkt an wird der virtuellen Maschine (sofern sie nicht erneut verschoben wird) Arbeitsspeicher des neuen Stammknotens zugeteilt, und sie wird ausschließlich auf den Prozessoren dieses neuen Stammknotens ausgeführt.

Die Neuverteilung ist eine effiziente Lösung, um das Gleichgewicht zu erhalten und sicherzustellen, dass alle Knoten vollständig genutzt werden. Möglicherweise muss das Neuverteilungsprogramm eine virtuelle Maschine auf einen Knoten verschieben, auf dem ihr nur wenig oder gar kein Arbeitsspeicher zugewiesen ist. In diesem Fall führt die große Anzahl an Remotespeicherzugriffen zu einem Leistungsabfall der virtuellen Maschine. ESXi kann diesen Leistungsabfall durch das transparente Migrieren von Arbeitsspeicher aus dem ursprünglichen Knoten der virtuellen Maschinen auf den neuen Stammknoten beseitigen:

1 Das System wählt eine Seite (4 KB des zusammenhängenden Arbeitsspeichers) auf dem ursprünglichen Knoten und kopiert die darauf befindlichen Daten auf eine Seite des Zielknotens. 2 Das System verwendet die Überwachungsebene der virtuellen Maschine und die Arbeitsspeicher-Verwaltungshardware des Prozessors, um die Arbeitsspeicherübersicht der virtuellen Maschine nahtlos neu zuzuordnen. Diese Seite wird für künftige Referenzen auf dem Zielknoten verwendet, um so eine Beeinträchtigung durch den Remotespeicherzugriff zu vermeiden.

Sobald eine virtuelle Maschine auf einen neuen Knoten verschoben wird, wird durch ESXi umgehend eine derartige Arbeitsspeichermigration eingeleitet. ESX Server verwaltet die Frequenz, um eine Überanspruchung des Systems insbesondere dann zu vermeiden, wenn nur noch wenig Remotearbeitsspeicher für die virtuelle Maschine vorhanden ist oder der Zielknoten über wenig freien Arbeitsspeicher verfügt. Der Arbeitsspeicher-Migrationsalgorithmus stellt außerdem sicher, dass Arbeitsspeicher durch den ESXi-Host nicht unnötigerweise verschoben wird, wenn zum Beispiel eine virtuelle Maschine nur kurzzeitig auf einen neuen Knoten verschoben wird.

Wenn anfängliche Platzierung, dynamische Neuverteilung und intelligente Arbeitsspeichermigration gemeinsam zum Einsatz kommen, stellen sie auch bei variablen Arbeitslasten eine gute Arbeitsspeicherleistung auf NUMA-Systemen sicher. Bei Auftreten einer signifikanten Arbeitslaständerung, beispielsweise wenn neue virtuelle Maschinen gestartet werden, benötigt das System eine gewisse Zeit, um sich anzupassen und virtuelle Maschinen und Arbeitsspeicher an neue Standorte zu migrieren. Nach kurzer Zeit, normalerweise innerhalb weniger Sekunden oder Minuten, hat das System die Neuanpassungen abgeschlossen und befindet sich in einem stabilen Betriebszustand.

Für NUMA optimierte, transparente gemeinsame Seitennutzung

Bei vielen ESXi-Arbeitslasten bietet sich für virtuelle Maschinen die gemeinsame Nutzung von Arbeitsspeicher an.

So können beispielsweise mehrere virtuelle Maschinen Instanzen desselben Gastbetriebssystems ausführen, gleiche Anwendungen oder Komponenten laden oder gemeinsame Daten enthalten. In solchen Fällen wenden ESXi-Systeme ein eigenständiges transparentes Verfahren für die gemeinsame Nutzung von Seiten an, um redundante Kopien von Arbeitsspeicherseiten zu eliminieren. Durch die gemeinsame Arbeitsspeichernutzung ist der Arbeitsspeicherverbrauch durch die Arbeitslast einer virtuellen Maschine oftmals geringer als bei der Ausführung auf einer physischen Maschine. Folglich kann eine höhere Überbelegung effizient unterstützt werden.

Die transparente gemeinsame Seitennutzung für ESXi-Systeme wurde ebenfalls für die Verwendung auf NUMA-Systemen optimiert. Auf NUMA-Systemen werden die Seiten pro Knoten gemeinsam genutzt, sodass jeder NUMA-Knoten über eine eigene lokale Kopie der intensiv gemeinsam genutzten Seiten verfügt. Wenn virtuelle Maschinen gemeinsam genutzte Seiten verwenden, brauchen sie nicht auf Remotearbeitsspeicher zuzugreifen.

Hinweis Dieses Standardverhalten ist in allen vorherigen Versionen von ESX und ESXi identisch.

Ressourcenverwaltung in NUMA-Architekturen

Sie können die Ressourcenverwaltung mit verschiedenen Typen von NUMA-Architekturen durchführen.

Mit der Verbreitung von Multicore-Systemen werden NUMA-Architekturen immer beliebter, da diese Architekturen eine bessere Leistungsskalierung von speicherintensiven Arbeitslasten ermöglichen. Bei allen modernen Intel- und AMD-Systemen ist die NUMA-Unterstützung in die Prozessoren integriert. Darüber hinaus gibt es herkömmliche NUMA-Systeme wie IBM Enterprise X-Architecture, die Intel- und AMD-Prozessoren mit NUMA-Verhalten mit spezieller Chipset-Unterstützung erweitern.

In der Regel können Sie BIOS-Einstellungen verwenden, um das NUMA-Verhalten zu aktivieren und zu deaktivieren. In AMD Opteron-basierten HP Proliant-Servern kann NUMA beispielsweise deaktiviert werden, indem die Knotenverschachtelung im BIOS aktiviert wird. Wenn NUMA aktiviert ist, erstellt das BIOS eine Systemressourcenzuteilungstabelle (SRAT), die ESXi verwendet, um die bei Optimierungen verwendeten NUMA-Informationen zu generieren. Zur Gleichmäßigkeit der Planung werden NUMA-Optimierungen nicht für Systeme aktiviert, die zu wenige Kerne pro NUMA-Knoten oder insgesamt zu wenige Kerne aufweisen. Sie können die Optionen für numa.rebalancecorestotal und numa.rebalancecoresnode bearbeiten, um dieses Verhalten zu ändern.

Verwenden von virtueller NUMA

Mit vSphere wurde die Unterstützung für die Offenlegung der NUMA-Topologie für Gastbetriebssysteme eingeführt. Diese Einführung ermöglicht Leistungsverbesserungen durch die Vereinfachung des Gastbetriebssystems sowie durch Optimierungen der Anwendungs-NUMA.

Die virtuelle NUMA-Topologie ist für virtuelle Maschinen verfügbar und wird standardmäßig aktiviert, wenn die Anzahl der virtuellen CPUs größer als acht ist. Sie können die virtuelle NUMA-Topologie ebenfalls mit erweiterten Konfigurationsoptionen beeinflussen.

Beim ersten Einschalten einer für virtuellen NUMA aktivierten virtuellen Maschine basiert deren virtuelle NUMA-Topologie auf der NUMA-Topologie des zugrunde liegenden physischen Hosts. Nachdem die virtuelle NUMA-Topologie der virtuellen Maschine initialisiert wurde, ändert sie sich nicht mehr, es sei denn, die Anzahl der vCPUs in dieser virtuellen Maschine ändert sich.

Die virtuelle NUMA-Topologie berücksichtigt den auf einer virtuellen Maschine konfigurierten Arbeitsspeicher nicht. Die virtuelle NUMA-Topologie wird von der Anzahl der virtuellen Sockets und Anzahl der Kerne pro Socket für eine virtuelle Maschine nicht beeinflusst.

Informationen dazu, wenn die virtuelle NUMA-Topologie außer Kraft gesetzt werden muss, finden Sie unter Steuerelemente für virtuelle NUMA.

Hinweis Durch Aktivieren von CPU Hot-Add wird der virtuelle NUMA deaktiviert. Weitere Informationen hierzu finden Sie unter https://kb.vmware.com/kb/2040375.

Virtuelle Topologie in ESXi 8.0

ESXi 8.0 enthält eine erweiterte virtuelle Topologiefunktion.

Die virtuelle Topologie einer VM ermöglicht die Optimierung innerhalb von GOS für die Platzierung und den Lastausgleich. Die Auswahl einer genauen virtuellen Topologie, die mit der zugrunde liegenden physischen Topologie des Hosts übereinstimmt, auf dem die VM ausgeführt wird, ist entscheidend für die Anwendungsleistung.

ESXi 8.0 wählt automatisch eine optimale coresPerSocket-Größe für eine VM und eine optimale virtuelle L3-Größe aus. Außerdem ist ein neues virtuelles Motherboard-Layout enthalten, um NUMA für virtuelle Geräte und vNUMA-Topologie bei aktiviertem CPU-Hotplug zu ermöglichen.

Hinweis Die erweiterte virtuelle Topologie ist nur unter ESXi 8.0 verfügbar. VMs müssen über Hardwareversion 20 oder höher verfügen, um diese Funktion nutzen zu können.

Verfahren

- 1 Um die VM-Topologie manuell zu konfigurieren, navigieren Sie zunächst zur VM.
- 2 Wählen Sie VM-Optionen. Unter CPU können Sie Kerne pro Socket und NUMA-Knoten anpassen.

Um eine im laufenden Betrieb hinzugefügte CPU für einen neuen NUMA-Knoten zu aktivieren, fügen Sie **numa.allowHotadd** in den erweiterten Konfigurationsoptionen hinzu. Anschließend können Sie manuell eine NUMA-Konfiguration hinzufügen.

Hinweis Standardmäßig erzwingt eine VM mit aktiviertem CPU-Hotplug die Topologie eines einzelnen NUMA-Knotens. Alle im laufenden Betrieb hinzugefügten CPUs werden zum einzelnen NUMA-Knoten geleitet.

3 Unter **Gerätezuweisung** können Sie einem virtuellen NUMA-Knoten auch ein Gerät zuweisen oder die Zuweisung aufheben.

Ergebnisse

Diese neu konfigurierte Topologie wird im Abschnitt für vorhandene VM-Topologie als **Manuell** angezeigt. Ohne manuelle Konfiguration wird diese Registerkarte beim Einschalten als **Beim Einschalten zugewiesen** angezeigt.

Steuerelemente für virtuelle NUMA

Für virtuelle Maschinen mit einem überproportional großen Arbeitsspeicherbedarf können Sie die Standardeinstellungen für virtuelle CPUs mithilfe der erweiterten Optionen überschreiben.

Sie können diese erweiterten Optionen zur Konfigurationsdatei der virtuellen Maschine hinzufügen.

Tabelle 21-1. Erweiterte Optionen für Steuerelemente für virtuelle NUMA

Option	Beschreibung	Standardwert
cpuid.coresPerSocket	Bestimmt die Anzahl der virtuellen Kerne pro virtuellem CPU-Socket. Diese Option hat keinen Einfluss auf die virtuelle NUMA-Topologie, außer "numa.vcpu.followcorespersocket" wurde konfiguriert.	1
	Hinweis ESXi 8.0 wählt automatisch den optimalen coresPerSocket-Wert für eine VM aus. Der Standardwert wird als 0 angezeigt.	
numa.vcpu.maxPerVirtualNode	Bestimmt die Anzahl der virtuellen NUMA-Knoten, indem die vCPU-Gesamtanzahl gleichmäßig aufgeteilt wird, und zwar mit dem hier angegebenen Wert als Divisor.	8
numa.autosize.once	Wenn Sie eine VM-Vorlage mit diesen Einstellungen erstellen und die virtuelle Maschine dann mit dem Standardwert "Wahr" einschalten, bleiben die Einstellungen erhalten. Wird der Wert auf "Falsch" gesetzt, wird die virtuelle NUMA-Topologie bei jedem Einschalten aktualisiert. Wird die konfigurierte Anzahl der virtuellen CPUs in der virtuellen Maschine zu einem späteren Zeitpunkt geändert, wird die virtuelle NUMA- Topologie neu ausgewertet.	FALSE
numa.vcpu.min	Die zum Generieren einer virtuellen NUMA-Topologie mindestens erforderliche Anzahl virtueller CPUs in einer virtuellen Maschine. Eine virtuelle Maschine ist immer UMA, wenn die Größe geringer als "numa.vcpu.min" ist.	9
numa.vcpu.followcorespersocket	Wird der Wert auf 1 gesetzt, wird das alte Verhalten der Dimensionierung der an "cpuid.coresPerSocket" gebundenen virtuellen NUMA-Knoten wiederhergestellt.	0
numa.allowHotadd	Um die Funktion zum Hinzufügen von CPU im laufenden Betrieb zu einem neuen NUMA-Knoten zu aktivieren, fügen Sie unter den erweiterten Konfigurationsoptionen numa.allowHotadd hinzu. Anschließend können Sie manuell eine NUMA-Konfiguration hinzufügen, während CPU im laufenden Betrieb (Hot-Add) aktiviert ist.	FALSE
numa.vcpu.coresPerNode	VMX-Parameter zum Konfigurieren der Größe des virtuellen NUMA-Knotens, der von der Neukonfiguration der Benutzeroberfläche interpretiert wird. Dieser Parameter ist nur für HWv20 wirksam. Der Standardwert ist 0, was bedeutet, dass ESXi die vNUMA-Größe automatisch auswählt.	0
	Hinweis Wenn diese Option in Konflikt mit numa.vcpu.maxPerVirtualNode steht, kann die VM nicht eingeschaltet werden.	
vcpu.hotadd	Wenn diese Option TRUE lautet, wird der virtuelle NUMA deaktiviert. Die VM sieht immer einen virtuellen NUMA- Knoten, wenn die VM CPU-HotPlug ausführen kann.	

Option	Beschreibung	Standardwert
llc.multiLLCPerSocket	VM zeigt zutreffende vLLC auf AMD Epyc an, wenn diese Option "TRUE" ist. Die offengelegte vLLC-Größe kann sich von der Größe des virtuellen Sockets unterscheiden.	FALSE
llc.size.vcpu	Die Anzahl der manuell konfigurierten vCPUs für vLLC auf AMD Epyc. Der Wert wird ignoriert, wenn er mit anderen Einstellungen der VM nicht kompatibel ist.	
chipset.motherboardLayout	Typ des von dieser VM verwendeten virtuellen Motherboards. Dieser Wert kann nur einen der beiden folgenden Werte annehmen: acpi: Neues Layout des Motherboards ab HWv 20. i440bx: Veraltetes Layout des Motherboards	
cpuid.coresPerSocket.cookie	Dies ist ein von ESXi generierter vmx-Eintrag zum Speichern des automatisch generierten coresPerSocket-Werts. Die Konsistenz von vMotion wird dadurch sichergestellt. Ändern oder entfernen Sie ihn nicht manuell.	

Tabelle 21-1. Erweiterte Optionen für Steuerelemente für virtuelle NUMA (Fortsetzung)

Angeben von NUMA-Steuerelementen

Falls Sie über arbeitsspeicherintensive Anwendungen oder wenige virtuelle Maschinen verfügen, können Sie die Leistung durch explizites Festlegen der CPU- und Arbeitsspeicherplatzierung für die virtuellen Maschinen optimieren.

Das Angeben von Steuerelementen ist nützlich, wenn eine virtuelle Maschine eine arbeitsspeicherintensive Arbeitslast ausführt, z.B. eine arbeitsspeicherinterne Datenbank oder eine wissenschaftliche Rechenanwendung mit großen Datensätzen. Möglicherweise möchten Sie die NUMA-Platzierungen aber auch manuell optimieren, weil die Arbeitslast des Systems bekanntermaßen einfach und konsistent ist. So ist beispielsweise die explizite Optimierung eines Systems mit acht Prozessoren, auf dem acht virtuelle Maschinen mit ähnlichen Arbeitslasten ausgeführt werden, relativ einfach.

Hinweis In den meisten Fällen lässt sich mithilfe der automatischen NUMA-Optimierungen eines ESXi-Hosts eine gute Leistung erzielen.

ESXi bietet drei Steuerelemente für die NUMA-Platzierung, sodass sowohl die Arbeitspeicherals auch die Prozessorplatzierung einer virtuellen Maschine durch den Administrator gesteuert werden kann.

Sie können die folgenden Optionen angeben.

NUMA-Knoten-Affinität

Beim Festlegen dieser Option kann NUMA eine virtuelle Maschine nur auf den in der Affinität angegebenen Knoten planen.

CPU-Affinität

Wenn Sie diese Option festlegen, verwendet eine virtuelle Maschine nur die Prozessoren, die in der Affinität angegeben sind.

Arbeitsspeicheraffinität

Wenn Sie diese Option festlegen, wird nur den angegebenen Knoten Speicher durch den Server zugewiesen.

Eine virtuelle Maschine wird auch dann von NUMA verwaltet, wenn Sie die NUMA-Knotenaffinität angeben. Auf die jeweiligen CPUs kann jedoch nur auf den Knoten zugegriffen werden, die in der NUMA-Knotenaffinität angegeben sind. Ebenso kann nur über Knoten auf Speicher zugegriffen werden, die in der NUMA-Knotenaffinität angegeben sind. Wenn Sie CPU- oder Speicheraffinitäten angeben, wird eine virtuelle Maschine nicht mehr von NUMA verwaltet. Die NUMA-Verwaltung dieser virtuelle Maschinen tritt in Kraft, wenn Sie die Beschränkungen für die CPU- und Speicheraffinität entfernen.

Die manuelle NUMA-Platzierung kann im Konflikt mit den ESXi-

Ressourcenverwaltungsalgorithmen stehen, die Prozessorressourcen gleichmäßig über ein System verteilen. Wenn beispielsweise zehn virtuelle Maschinen mit prozessorintensiven Arbeitslasten manuell auf einem Knoten platziert werden und nur zwei virtuelle Maschinen manuell auf einem anderen Knoten platziert werden, ist das System nicht in der Lage, allen zwölf virtuelle Maschinen gleiche Anteile an Systemressourcen zuzuweisen.

Verknüpfen von virtuelle Maschinen mit bestimmten Prozessoren

Möglicherweise können Sie die Leistung der Anwendungen auf einer virtuellen Maschine verbessern, indem sie ihre virtuellen CPUs an feste Prozessoren binden. Dies ermöglicht Ihnen, die Migration der virtuellen CPUs über NUMA-Knoten hinweg zu verhindern.

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und klicken Sie auf **Einstellungen bearbeiten**.
- 3 Wählen Sie die Registerkarte Virtuelle Hardware und erweitern Sie CPU.
4 Legen Sie unter "Planen von Affinität" die CPU-Affinität auf die bevorzugten Prozessoren fest.

Hinweis Sie müssen alle Prozessoren im NUMA-Knoten manuell auswählen. Die CPU-Affinität wird pro Prozessor und nicht pro Knoten festgelegt.

Verknüpfen von Arbeitsspeicherzuweisungen mit einem NUMA-Knoten unter Verwendung der Arbeitsspeicheraffinität

Sie können festlegen, dass bei künftigen Arbeitsspeicherzuteilungen auf einer virtuellen Maschine die mit einem einzigen NUMA-Knoten verknüpften Seiten genutzt werden (auch bekannt als manuelle Arbeitsspeicheraffinität).

Hinweis Sie sollten die für künftige Arbeitsspeicherzuteilungen zu verwendenden Knoten nur dann festlegen, wenn Sie auch die CPU-Affinität festgelegt haben. Wenn Sie lediglich an den Arbeitsspeicheraffinitätseinstellungen manuelle Änderungen vornehmen, wird der automatische NUMA-Ausgleich beeinträchtigt.

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.
- 3 Klicken Sie auf Einstellungen und dann auf VM-Hardware.
- 4 Klicken Sie auf Bearbeiten.
- 5 Wählen Sie die Registerkarte Virtuelle Hardware und erweitern Sie Arbeitsspeicher.
- 6 Legen Sie unter "NUMA-Arbeitsspeicheraffinität" die Arbeitsspeicheraffinität fest.

Beispiel: Verknüpfen einer virtuellen Maschine mit einem einzigen NUMA-Knoten

Das folgende Beispiel zeigt, wie Sie die letzten vier physischen CPUs mit einem einzigen NUMA-Knoten für eine virtuelle 2-Wege-Maschine manuell auf einem 8-Wege-Server verknüpfen.

Die CPUs, z. B. 4, 5, 6 und 7, stellen die physischen CPU-Nummern dar.

- 1 Klicken Sie im vSphere Client mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie **Einstellungen bearbeiten** aus.
- 2 Klicken Sie auf die Registerkarte Erweiterte Parameter.
- 3 Aktivieren Sie im vSphere Client die CPU-Affinität für die Prozessoren 4, 5, 6 und 7.

Diese virtuelle Maschine soll nur auf Knoten 1 ausgeführt werden.

1 Wählen Sie im Bestandslistenbereich vom vSphere Client die virtuelle Maschine aus und wählen Sie **Einstellungen bearbeiten**.

- 2 Klicken Sie auf die Registerkarte Erweiterte Parameter.
- 3 Setzen Sie im vSphere Client die Arbeitsspeicheraffinität für den NUMA-Knoten auf 1.

Durch Ausführen dieser beiden Aufgaben wird sichergestellt, dass die virtuelle Maschine ausschließlich auf Knoten 1 ausgeführt wird und möglichst Arbeitsspeicher dieses Knotens zuteilt.

Verknüpfen von virtuellen Maschinen mit angegebenen NUMA-Knoten

Wenn Sie einen NUMA-Knoten mit einer virtuellen Maschine verknüpfen, um die NUMA-Knotenaffinität anzugeben, beschränken Sie den Satz von NUMA-Knoten, auf denen ESXi die virtuelle CPU und den virtuellen Arbeitsspeicher einer virtuellen Maschine planen kann.

Hinweis Wenn Sie NUMA-Knotennaffinitäten beschränken, kann dies die Fähigkeit des ESXI-NUMA-Schedulers zur ausgleichenden Neuverteilung von virtuelle Maschinen über NUMA-Knoten hinweg beeinträchtigen. Geben Sie die NUMA-Knoten-Affinität nur an, wenn Sie die Knotenneuverteilung bedacht haben.

Verfahren

- 1 Navigieren Sie zur VM im vSphere Client.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie **Einstellungen** bearbeiten.
- 3 Klicken Sie auf die Registerkarte Erweiterte Parameter.
- 4 (Optional) Um einen Parameter hinzuzufügen, geben Sie einen Attributnamen und einen Wert für den Parameter ein und klicken Sie auf **Hinzufügen**.
- 5 (Optional) Um einen Parameter zu ändern, geben Sie einen neuen Wert in das Textfeld **Wert** für diesen Parameter ein und klicken Sie zur Bestätigung auf das Häkchen.
- 6
- Geben Sie zur Angabe des NUMA-Knotens für die virtuelle Maschine in der Spalte "Name" den Wert numa.nodeAffinity ein.
 - Zur Angabe des NUMA-Knotens für einen bestimmten virtuellen NUMA-Knoten auf der virtuellen Maschine geben Sie in der Spalte "Name" den Wert sched.nodeX.affinity ein, wobei X die Nummer des virtuellen NUMA-Knotens darstellt. Mit sched.node0.affinity wird beispielsweise der virtuelle NUMA-Knoten 0 auf der virtuellen Maschine angegeben.
- 7 Geben Sie in der Spalte Wert die NUMA-Knoten ein, auf denen die virtuelle Maschine oder der virtuelle NUMA-Knoten geplant werden kann.

Verwenden Sie für die Eingabe mehrerer Knoten eine kommagetrennte Liste. Geben Sie beispielsweise 0,1 ein, um die VM-Ressourcenplanung auf die NUMA-Knoten 0 und 1 zu beschränken.

8 Klicken Sie auf OK.

Erweiterte Attribute in vSphere

22

Sie können erweiterte Attribute für Hosts oder einzelne virtuelle Maschinen festlegen, um die Anpassung der Ressourcenverwaltung zu vereinfachen.

In den meisten Fällen führt das Anpassen der grundlegenden Einstellungen für die Ressourcenzuteilung (Reservierung, Grenzwert, Anteile) oder das Akzeptieren der Standardeinstellungen zu einer entsprechenden Ressourcenzuteilung. Sie können jedoch erweiterte Attribute verwenden, um die Ressourcenverwaltung für einen Host oder eine bestimmte virtuelle Maschine anzupassen.

Lesen Sie als Nächstes die folgenden Themen:

- Festlegen von erweiterten Hostattributen
- Festlegen von erweiterten Attributen von virtuellen Maschinen
- Latenzempfindlichkeit
- Unterstützung von virtuellem Hyper-Threading für VMs
- Vollständige vHT-CPU-Reservierung
- Aktivieren von vHT f
 ür VMs
- Zuverlässiger Arbeitsspeicher
- Sichern von Gast-vRAM mit 1GB-Seiten

Festlegen von erweiterten Hostattributen

Sie können für einen Host erweiterte Hostattribute festlegen.

Vorsicht Das Ändern der erweiterten Optionen wird nicht unterstützt. In der Regel werden mit den Standardeinstellungen bereits beste Ergebnisse erzielt. Ändern Sie die erweiterten Optionen nur dann, wenn Sie spezifische Anweisungen hierzu vom technischen Support von VMware erhalten oder einem Knowledgebase-Artikel entnehmen.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf die Registerkarte Konfigurieren.

- 3 Klicken Sie unter System auf Erweiterte Systemeinstellungen.
- 4 Klicken Sie auf die Schaltfläche Bearbeiten.
- 5 Suchen Sie das entsprechende Element und ändern Sie den Wert.
- 6 Klicken Sie auf OK.

Erweiterte Arbeitsspeicherattribute

Sie können die erweiterten Arbeitsspeicherattribute zum Anpassen der Arbeitsspeicherressourcennutzung verwenden.

Tabelle 22-1. Erweiterte Arbeitsspeicherattribute

Attribut	Beschreibung	Standard
Mem.ShareForceSalting	Mem.ShareForceSalting 0: Das Verhalten der transparenten gemeinsamen Nutzung von Arbeitsspeicherseiten zwischen virtuellen Maschinen bleibt erhalten. Der Wert der VMX- Option sched.mem.pshare.salt wird ignoriert, selbst wenn er vorhanden ist.	2
	Mem.ShareForceSalting 1: Der Salt-Wert wird standardmäßig von sched.mem.pshare.salt übernommen. Wenn dieser Wert nicht angegeben ist, wird wieder das vorherige Verhalten der transparenten gemeinsamen Nutzung von Arbeitsspeicherseiten (zwischen VMs) verwendet, indem Salt-Werte für die virtuelle Maschine als 0 interpretiert werden.	
	Mem.ShareForceSalting 2: Der Salt-Wert wird standardmäßig von sched.mem.pshare.salt (soweit vorhanden) übernommen oder von vc.uuid. Wenn dieser Wert nicht vorhanden ist, generiert der Algorithmus für die gemeinsame Nutzung von Arbeitsspeicherseiten pro virtueller Maschine einen eindeutigen Salt-Wert nach dem Zufallsprinzip. Dies kann von den Benutzern nicht konfiguriert werden.	
Mem.SamplePeriod	Legt das periodische Zeitintervall innerhalb der Ausführungszeit einer virtuellen Maschine in Sekunden fest, über das die Arbeitsspeicheraktivität zum Schätzen der Working Set-Größe überwacht wird.	60
Mem.BalancePeriod	Gibt das periodische Zeitintervall in Sekunden für automatische Speicherneuzuweisungen an. Neuzuteilungen können auch durch signifikante Größenänderungen des freien Arbeitsspeichers ausgelöst werden.	15
Mem.ldleTax	Legt die Rate der Leerlaufbelastung für Arbeitsspeicher als Prozentsatz fest. Durch diese Belastung werden die virtuellen Maschinen auf wirksame Weise höher für Arbeitsspeicher im Leerlauf als für aktiv genutzten Arbeitsspeicher belastet. Eine Belastungsrate von O Prozent definiert eine Zuteilungsrichtlinie, die Working Sets ignoriert und Arbeitsspeicher strikt nach Anteilen zuteilt. Über die Zuteilungsrichtlinie bei einer hohen Belastungsrate lässt sich Arbeitsspeicher im Leerlauf, der unproduktiverweise durch virtuelle Maschinen angesammelt wird, an anderer Stelle neu zuteilen.	75

Tabelle 22-1. Erweiterte Arbeitsspeicherattribute (Fortsetzung)

Attribut	Beschreibung	Standard
Mem.ShareScanGHz	Legt die Höchstmenge an Arbeitsspeicherseiten fest, die (pro Sekunde) auf Gelegenheiten zur gemeinsamen Arbeitsspeichernutzung für jedes GHz der verfügbaren CPU- Ressource des Hosts geprüft wird. Der Standardwert ist beispielsweise 4 MB/s pro 1 GHz.	4
Mem.ShareScanTime	Legt den Zeitraum in Minuten fest, in dem eine gesamte virtuelle Maschine auf Gelegenheiten für die gemeinsame Seitennutzung geprüft wird. Die Standardeinstellung sind 60 Minuten.	60
Mem.CtlMaxPercent	Begrenzt die maximale Menge des über den Arbeitsspeicher- Balloon-Treiber (vmmemctl) von einer beliebigen virtuellen Maschine zurückgewonnenen Arbeitsspeichers auf Basis eines Prozentsatzes der jeweiligen konfigurierten Arbeitsspeichergröße. Legen Sie "O" fest, um die Rückgewinnung für alle virtuellen Maschinen zu deaktivieren.	65
Mem.AllocGuestLargePage	Aktiviert die Sicherung von großen Seiten des Gasts durch große Seiten des Hosts. Reduziert TLB-Fehler und verbessert die Leistung von Serverarbeitslasten, die auf große Seiten des Gasts zugreifen. 0=deaktivieren.	1
Mem.AllocUsePSharePool und Mem.AllocUseGuestPool	Reduziert die Arbeitsspeicherfragmentierung durch die Erhöhung der Wahrscheinlichkeit, dass große Seiten des Gasts durch große Seiten des Hosts gesichert werden. Durch einen fragmentierten Hostarbeitsspeicher wird die Verfügbarkeit von großen Seiten des Hosts verringert. 0 = deaktivieren.	15
Mem.MemZipEnable	Aktiviert die Arbeitsspeicherkomprimierung für den Host. 0 = deaktivieren.	1
Mem.MemZipMaxPct	Gibt die maximale Größe des Komprimierungs-Cache-Speichers bezogen auf den maximalen Anteil des Arbeitsspeichers einer jeden virtuellen Maschine an, der als komprimierter Arbeitsspeicher gespeichert werden kann.	10
LPage.LPageDefragEnable	Aktiviert die Defragmentierung großer Seiten. 0 = deaktivieren.	1
LPage.LPageDefragRateVM	Maximale Anzahl der Versuche pro Sekunde und virtueller Maschine, große Seiten zu defragmentieren. Zulässige Wert liegen zwischen 1 und 1024.	32
LPage.LPageDefragRateTotal	Maximale Anzahl der Versuche pro Sekunde, große Seiten zu defragmentieren. Zulässige Wert liegen zwischen 1 und 10240.	256
LPage.LPageAlwaysTryForNPT	Versuchen Sie, große Seiten für verschachtelte Seitentabellen (wird von AMD als "RVI" bezeichnet, von Intel als "EPT") zuzuteilen. Wenn Sie diese Option aktivieren, wird der gesamte Gastarbeitsspeicher in Maschinen, die verschachtelte Seitentabellen verwenden (z. B. AMD Barcelona), durch große Seiten gestützt. Ist NPT nicht verfügbar, wird nur ein Teil des Gastarbeitsspeichers durch große Seiten gestützt. O= deaktivieren.	1

Erweiterte NUMA-Attribute

Sie können die erweiterten NUMA-Attribute zum Anpassen der NUMA-Nutzung verwenden.

Tabelle 22-2. Erweiterte NUMA-Attribute

Attribut	Beschreibung	Standard
Numa.RebalancePeriod	Steuert die Häufigkeit der Neuverteilungsperioden in Millisekunden. Eine häufigere Neuverteilung kann zu erhöhten CPU-Overheads führen, insbesondere bei Maschinen mit einer großen Anzahl an gerade ausgeführten virtuellen Maschinen. Darüber hinaus kann das Gleichgewicht durch eine häufigere Neuverteilung verbessert werden.	2000
Numa.MigImbalanceThreshold	Der NUMA-Scheduler berechnet das CPU-Ungleichgewicht zwischen den Knoten, das für die Differenz zwischen der CPU-Zeitberechtigung einer virtuellen Maschine und dem tatsächlichen Verbrauch verantwortlich ist. Durch diese Option wird das minimale Lastungleichgewicht zwischen Knoten in Prozent festgelegt, das zum Auslösen der Migration einer virtuellen Maschine erforderlich ist.	10
Numa.RebalanceEnable	Aktivieren von NUMA-Neuverteilung und -Planung. Diese Option wird auf 0 gesetzt, um die gesamte NUMA- Neuverteilung und die anfängliche Platzierung virtueller Maschinen zu deaktivieren und den NUMA-Scheduler wirksam außer Kraft zu setzen.	1
Numa.RebalanceCoresTotal	Legt die Mindestanzahl an insgesamt auf einem Host vorhandenen Prozessorkernen fest, die zur Aktivierung des NUMA-Schedulers erforderlich ist.	4
Numa.RebalanceCoresNode	Legt die Mindestanzahl an Prozessorkernen pro Knoten fest, die zur Aktivierung des NUMA-Schedulers erforderlich ist. Diese Option sowie Numa.RebalanceCoresTotal sind dann nützlich, wenn die NUMA-Neuverteilungsfunktion bei kleineren NUMA-Konfigurationen deaktiviert wird (beispielsweise bei 2-Wege-Opteron-Hosts), bei denen die geringe Anzahl an Prozessoren insgesamt bzw. an Prozessoren pro Knoten eine faire Verteilung beim Aktivieren der NUMA-Neuverteilungsfunktion beeinträchtigen kann.	2
Numa.AutoMemAffinity	Automatisches Festlegen der Arbeitsspeicheraffinität für virtuelle Maschinen, bei denen die CPU-Affinität festgelegt ist.	1
Numa.PageMigEnable	Automatisches Migrieren von Seiten zwischen NUMA- Knoten zum Verbessern der Arbeitsspeicherbelegung. Manuell festgelegte Seitenmigrationsraten sind weiterhin gültig.	1

Festlegen von erweiterten Attributen von virtuellen Maschinen

Sie können erweiterte Attribute für virtuelle Maschinen festlegen.

Voraussetzungen

Schalten Sie die VM aus, bevor Sie erweiterte Attribute festlegen.

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und wählen Sie **Einstellungen** bearbeiten.
- 3 Klicken Sie auf die Registerkarte Erweiterte Parameter.
- 4 (Optional) Um einen Parameter hinzuzufügen, geben Sie einen Attributnamen und einen Wert für den Parameter ein und klicken Sie auf **Hinzufügen**.
- 5 (Optional) Um einen Parameter zu ändern, geben Sie einen neuen Wert in das Textfeld **Wert** für diesen Parameter ein und klicken Sie zur Bestätigung auf das Häkchen.
- 6 Klicken Sie auf OK.

Erweiterte Attribute für virtuelle Maschinen

Sie können die erweiterten Attribute von virtuellen Maschinen zum Anpassen der Konfiguration virtueller Maschinen verwenden.

Tabelle 22-3. Erweiterte Attribute für virtuelle Maschinen

Attribut	Beschreibung	Standard
sched.mem.maxmem ctl	Höchstgröße des von der ausgewählten virtuellen Maschine über das Balloon-Verfahren zurückgenommenen Arbeitsspeichers in Megabyte (MB). Wenn der ESXi-Host zusätzlichen Arbeitsspeicher abrufen muss, wird eine Auslagerung erzwungen. Eine Auslagerung ist weniger wünschenswert als die Anwendung des Balloon- Verfahrens.	-1 (Unbegrenzt)
sched.mem.pshare.en able	Aktiviert die gemeinsame Arbeitsspeichernutzung für eine ausgewählte virtuelle Maschine. Dieser boolesche Wert ist standardmäßig auf True gesetzt. Wird er für eine virtuelle Maschine auf "False" gesetzt, wird die gemeinsame Arbeitsspeichernutzung deaktiviert.	Wahr

Attribut	Beschreibung	Standard
sched.mem.pshare.sal t	Ein Salt-Wert ist eine für jede virtuelle Maschine konfigurierbare VMX-Option. Falls diese Option in der VMX-Datei der virtuellen Maschine nicht vorhanden ist, wird der Wert der Option vc.uuid vmx als Standardwert verwendet. Da vc.uuid für jede virtuelle Maschine eindeutig ist, erfolgt die transparente gemeinsame Nutzung von Arbeitsspeicherseiten nur zwischen den Seiten, die zu einer bestimmten virtuellen Maschine gehören (Intra-VM). Falls eine Gruppe von virtuellen Maschinen als vertrauenswürdig betrachtet wird, können Arbeitsspeicherseiten zwischen diesen virtuellen Maschinen gemeinsam genutzt werden, indem für alle diese virtuellen Maschinen ein gemeinsamer Salt- Wert festgelegt wird (Inter-VM).	Vom Benutzer konfigurierbar
sched.swap.persist	Legt fest, ob die Auslagerungsdateien einer virtuellen Maschine beim Ausschalten beibehalten oder gelöscht werden sollen. Das System erstellt beim Einschalten der virtuellen Maschine standardmäßig eine Auslagerungsdatei und löscht diese beim Ausschalten.	Falsch
sched.swap.dir	Verzeichnis, in dem sich die Auslagerungsdatei der virtuellen Maschine befindet. Standardmäßig ist dies das Arbeitsverzeichnis der virtuellen Maschine, also das Verzeichnis, in dem sich die Konfigurationsdatei der virtuellen Maschine befindet. Dieses Verzeichnis muss auf einem Host bleiben, auf den die virtuelle Maschine zugreifen kann. Wenn Sie die virtuelle Maschine (oder einen Klon davon) verschieben, müssen Sie dieses Attribut möglicherweise zurücksetzen.	Entspricht workingDir

Tabelle 22-3. Erweiterte Attribute für virtuelle Maschinen (Fortsetzung)

Erweiterte Attribute für virtuelle NUMA

Sie können die erweiterten Attribute der virtuellen NUMA zum Anpassen der NUMA-Nutzung verwenden.

Tabelle 22-4. Er	weiterte	NUMA-Attribute	è
------------------	----------	----------------	---

Attribut	Beschreibung	Standard
cpuid.coresPerSocket	Gibt die Anzahl der virtuellen Kerne pro virtuellem CPU- Socket an. Wenn der Wert größer als 1 ist, wird zudem die Größe der virtuellen NUMA-Knoten angegeben, falls eine virtuelle Maschine über eine virtuelle NUMA-Topologie verfügt. Sie können diese Option festlegen, falls Sie die genaue virtuelle NUMA-Topologie eines jeden physischen Hosts kennen.	1
numa.autosize	Wenn Sie diese Option festlegen, hat die virtuelle NUMA-Topologie dieselbe Anzahl an virtuellen CPUs pro virtuellem Knoten, wie es Kerne an jedem physischen Knoten gibt.	Falsch
numa.autosize.once	Wenn Sie mit diesen Einstellungen eine Vorlage für eine virtuelle Maschine erstellen, bleiben die Einstellungen garantiert jedes Mal, wenn Sie die virtuelle Maschine einschalten, dieselben. Die virtuelle NUMA-Topologie wird neu bewertet, wenn die konfigurierte Anzahl an virtuellen CPUs auf der virtuellen Maschine geändert wird.	Wahr
numa.vcpu.maxPerVirtualNode	Falls cpuid.coresPerSocket als Zweierpotenz zu restriktiv ist, können Sie numa.vcpu.maxPerVirtualNode direkt festlegen. Legen Sie in diesem Fall nicht cpuid.coresPerSocket fest.	8
numa.vcpu.min	Mindestanzahl an virtuellen CPUs in einer virtuellen Maschine, die erforderlich ist, um eine virtuelle NUMA- Topologie zu generieren.	9
numa.vcpu.maxPerMachineNode	Maximale Anzahl an virtuellen CPUs, die zu derselben virtuellen Maschine gehören und die auf einem NUMA-Knoten gleichzeitig geplant werden können. Verwenden Sie dieses Attribut, um die maximale Bandbreite sicherzustellen, indem die Verteilung unterschiedlicher NUMA-Clients auf unterschiedliche NUMA-Knoten erzwungen wird.	Anzahl der Kerne pro Knoten auf dem physischen Host, auf dem eine virtuelle Maschine ausgeführt wird.
numa.vcpu.maxPerClient	Maximale Anzahl an virtuellen CPUs in einem NUMA- Client. Ein Client ist eine Gruppe von virtuellen CPUs, die von NUMA als einzelnes Element verwaltet werden. Standardmäßig ist jeder virtuelle NUMA-Knoten ein NUMA- Client. Wenn aber ein virtueller NUMA-Knoten größer als ein physischer NUMA-Knoten ist, kann ein einzelner virtueller NUMA-Knoten durch mehrere NUMA-Clients gestützt werden.	Entspricht numa.vcpu. maxPerMach ineNode

Attribut	Beschreibung	Standard
numa.nodeAffinity	Schränkt die Gruppe von NUMA-Knoten ein, auf denen die virtuelle CPU und der Arbeitsspeicher einer virtuellen Maschine geplant werden können.	
	Hinweis Wenn Sie die Affinitäten von NUMA-Knoten einschränken, beeinträchtigt dies möglicherweise die Fähigkeit des NUMA-Schedulers zur Neuverteilung von virtuellen Maschinen über NUMA-Knoten hinweg. Geben Sie die NUMA-Knoten-Affinität nur an, wenn Sie die Knotenneuverteilung bedacht haben.	
numa.mem.interleave	Gibt an, ob der Arbeitsspeicher, der einer virtuellen Maschine zugeteilt wird, über alle NUMA-Knoten hinweg, auf denen seine dazugehörigen NUMA-Clients ausgeführt werden und keine virtuelle NUMA-Topologie offengelegt ist, statisch durchsetzt ist (Interleaving).	Wahr

Tabelle 22-4. Erweiterte NUMA-Attribute (Fortsetzung)

Latenzempfindlichkeit

Sie können die Latenzempfindlichkeit einer virtuellen Maschine anpassen, um die Planungsverzögerung bei latenzempfindlichen Anwendungen zu optimieren.

ESXi ist für den hohen Durchsatz optimiert. Sie können Ihre virtuelle Maschine optimieren, um der niedrigen Latenzanforderung latenzempfindlicher Anwendungen gerecht zu werden. Beispiele für latenzempfindliche Anwendungen sind VoIP- bzw. Media-Player-Anwendungen oder Anwendungen, die häufigen Zugriff auf die Maus oder Tastaturgeräte erfordern.

Einstellen der Latenzempfindlichkeit

Sie können die Latenzempfindlichkeit einer virtuellen Maschine anpassen.

Voraussetzungen

ESXi benötigt eine vollständige CPU-Reservierung, um eine virtuelle Maschine mit Hardwareversion 14 einzuschalten, wenn die Latzenzempfindlichkeit auf **Hoch** eingestellt ist.

Verfahren

- 1 Wechseln Sie zur virtuellen Maschine im vSphere Client.
 - a Wählen Sie zum Suchen einer virtuellen Maschine ein Datencenter, einen Ordner, einen Cluster, einen Ressourcenpool oder einen Host aus.
 - b Klicken Sie auf die Registerkarte VMs.
- 2 Klicken Sie mit der rechten Maustaste auf die virtuelle Maschine und klicken Sie auf **Einstellungen bearbeiten**.
- 3 Klicken Sie auf VM-Optionen und anschließend auf Erweitert.

- 4 Wählen Sie eine Einstellung aus dem Dropdown-Menü Latenzempfindlichkeit.
- 5 Klicken Sie auf OK.

Unterstützung von virtuellem Hyper-Threading für VMs

Virtuelles Hyper-Threading (vHT) wird für VMs unterstützt.

In vSphere 8.0 wird vHT für VMs unterstützt. vHT ist standardmäßig deaktiviert und kann in den Einstellungen für Latenzempfindlichkeit für jede VM aktiviert werden. vHT unterstützt eine maximale HT-Größe von 2.

vHT ist eine Erweiterung der Funktion für hohe Latenzempfindlichkeit. Anwendungen, die von Hyper-Threading profitieren, können Leistungsverbesserungen mit hoher Latenzempfindlichkeit und aktivierter vHT verzeichnen. Der Leistungsgewinn kann aus einer ausreichenden Ressourcenreservierung und der exklusiven physischen CPUs der VM stammen.

Wenn vHT auf ESXi nicht aktiviert ist, entspricht jede virtuelle CPU (vCPU) einem einzelnen Kern ohne Hyper-Threading, der dem Gastbetriebssystem zur Verfügung steht. Wenn vHT aktiviert ist, wird jede Gast-vCPU als einzelner Hyper-Thread eines virtuellen Kerns (vCore) behandelt.

Virtuelle Hyper-Threads desselben vCore belegen denselben physischen Kern. Dies führt dazu, dass vCPUs der VM denselben Kern gemeinsam nutzen können, anstatt mehrere Kerne auf VMs mit hoher Latenzempfindlichkeit zu verwenden, bei denen vHT deaktiviert ist.

ESXi-Hosts und die VM, auf denen ältere Hardwareversionen ausgeführt werden, können diese Funktion nicht verwenden.

Vollständige vHT-CPU-Reservierung

Sie können eine Formel verwenden, um die vollständige CPU-Reservierung für vHT zu berechnen.

Bei einer VM mit niedriger Latenz ohne vHT weist jede vCPU der VM eine exklusive Affinität zu einem Thread des physischen Kerns auf. Für Hosts mit aktivierter Hyper-Threading-Funktion hat das Partner-Hyper-Thread eine exklusive Affinität zu einer Leerlauf-World. Jeder vCPU einer VM mit niedriger Latenz wird ein dedizierter physischer Kern zugeteilt.

Die CPU-Reservierung für eine VM mit niedriger Latenz wird wie folgt berechnet:

CPU-Mindestreservierung für VM mit niedriger Latenz (ohne vHT) = numVcpus * cpuFrequency

Wenn jedoch vHT für eine VM aktiviert ist, wird jeder Hypertwin des physischen Kerns von mehreren vCPUs der VM gemeinsam genutzt, wobei jeder Hypertwin eine exklusive Affinität zu einer vCPU der VM hat. Dies bedeutet, dass ein Kern mit physischen numSMT-Hyper-Threads von virtuellen numSMT-Threads gemeinsam genutzt wird. In diesem Fall wird die CPU-Reservierungsanforderung wie folgt berechnet:

CPU-Mindestreservierung für VM mit niedriger Latenz (mit vHT) = (numVcpus / numSMT) * cpuFrequency

Tabelle 22-5. Beispiel für den Start einer VM mit niedriger Latenz mit 20 vCPUs auf einem Host mit einer CPU-Frequenz von 2 GHz

	numSMT = 1(ohne vHT)	numSMT = 2 (mit vHT)
numVcpus	20	20
Anzahl der physischen Kerne	20	10 (jeder Kern wird von 2 vCPUs gemeinsam genutzt)
Erforderliche CPU- Mindestreservierung	20 * 2,0 GHz = 40 GHz	(20/2) * 2,0 GHz = 20 GHz

Aktivieren von vHT für VMs

vHT wird mit ESXi 8.0 unterstützt, ist aber standardmäßig deaktiviert. Sie können vHT unter den Einstellungen für die Latenzempfindlichkeit für jede VM aktivieren.

Voraussetzungen

Wenn vHT aktiviert ist, müssen CPU und Arbeitsspeicher auf die vollständige Reservierung festgelegt werden. Wenn Sie die Reservierung niedriger festlegen, wird eine Warnung angezeigt.

Verfahren

- 1 Wählen Sie in vSphere die VM aus.
- 2 Wählen Sie Aktionen aus und klicken Sie auf Einstellungen bearbeiten.
- 3 Klicken Sie unter "Latenzempfindlichkeit" auf das Dropdown-Menü und wählen Sie Hoch mit Hyper-Threading aus.
- 4 Klicken Sie auf OK.

Ergebnisse

vHT ist aktiviert.

Zuverlässiger Arbeitsspeicher

ESXi unterstützt zuverlässigen Arbeitsspeicher.

Einige Systeme verfügen über zuverlässigen Arbeitsspeicher. Dies ist ein Teil des Arbeitsspeichers, in dem Fehler in der Arbeitsspeicherhardware weniger wahrscheinlich sind als in den anderen Bereichen des Arbeitsspeichers im System. Wenn die Hardware Informationen über die verschiedenen Zuverlässigkeitsstufen offenlegt, kann ESXi möglicherweise eine höhere Systemzuverlässigkeit erzielen.

Anzeigen des zuverlässigen Arbeitsspeichers

Sie können anzeigen, ob die Lizenz zuverlässigen Arbeitsspeicher zulässt oder nicht.

Verfahren

- 1 Navigieren Sie im vSphere Client zum Host.
- 2 Klicken Sie auf die Registerkarte Konfigurieren und anschließend auf System.
- 3 Wählen Sie Lizenzierung.
- 4 Stellen Sie unter Lizenzierte Funktionen sicher, dass "Zuverlässiger Arbeitsspeicher" angezeigt wird.

Nächste Schritte

Sie können nachschlagen, wie viel Arbeitsspeicher als zuverlässig angesehen wird, indem Sie den ESXCLI-Befehl hardware memory get eingeben.

Sichern von Gast-vRAM mit 1GB-Seiten

vSphere ESXi bietet eingeschränkte Unterstützung für das Sichern von Gast-vRAM mit 1GB-Seiten.

Zur Verwendung von 1GB-Seiten zum Sichern des Gastarbeitsspeichers müssen Sie die Option **sched.mem.lpage.enable1GPage = "TRUE**" für die VM anwenden. Sie können diese Option unter "Erweiterte Optionen" festlegen, wenn Sie **Einstellungen bearbeiten** auswählen. Sie können 1 GB-Seiten nur auf einer ausgeschalteten VM aktivieren.

Eine virtuelle Maschine mit aktivierten 1GB-Seiten muss vollständige Arbeitsspeicherreservierung aufweisen. Andernfalls kann die VM nicht eingeschaltet werden. Der gesamte vRAM für VMs mit aktivierten 1GB-Seiten wird beim Einschalten vorab zugeteilt. Da diese VMs über vollständige Arbeitsspeicherreservierung verfügen, sind sie nicht von der Arbeitsspeicherrückgewinnung betroffen und der entsprechende Arbeitsspeicherverbrauch verbleibt während der gesamten Lebensdauer der virtuellen Maschine auf dem Höchstwert.

Das Sichern von vRAM mit 1GB-Seiten erfolgt opportunistisch. 1GB-Seiten werden auf Basis des besten Angebots zugeteilt. Hierzu gehören Fälle, in denen Host-CPUs keine 1GB-Funktionen aufweisen. Zur Erhöhung der Wahrscheinlichkeit, dass Gast-vRAM mit 1GB-Seiten gesichert wird, empfehlen wir das Starten von VMs, die 1GB-Seiten benötigen, auf einem neu gestarteten Host, da der Arbeitsspeicher des Hosts mit der Zeit fragmentiert wird. Eine virtuelle Maschine mit aktivierten 1GB-Seiten kann auf einen anderen Host migriert werden. Die Größe der 1GB-Seiten kann auf dem Zielhost unter Umständen nicht in der gleichen Menge zugeteilt werden wie auf dem Quellhost. Möglicherweise wird ein Teil des vRAM, der auf dem Quellhost mit einer 1GB-Seite gesichert ist, auf dem Zielhost nicht mehr mit einer 1GB-Seite gesichert.

Das opportunistische Verhalten von 1GB-Seiten erstreckt sich auch auf vSphere-Dienste, wie z. B. HA und DRS, die das Sichern von vRAM mit 1GB-Seiten nicht beibehalten können. Diese Dienste sind nicht mit den 1GB-Funktionen des Zielhosts vertraut und ziehen die Sicherung von Arbeitsspeicher mit 1GB-Seiten bei Platzierungsentscheidungen nicht in Betracht.

Fehlerdefinitionen

23

DRS-Fehler geben die Ursachen an, die das Generieren von DRS-Aktionen (bzw. das Empfehlen dieser Aktionen im manuellen Modus) verhindern.

In diesem Abschnitt werden die DRS-Fehler beschrieben.

Hinweis In diesem Kapitel kann sich "Arbeitsspeicher" auf den physischen oder den persistenten Arbeitsspeicher beziehen.

Lesen Sie als Nächstes die folgenden Themen:

- Virtuelle Maschine ist gebunden
- Virtuelle Maschine ist mit keinem Host kompatibel
- Verstoß gegen die VM/VM-DRS-Regel beim Verschieben auf einen anderen Host
- Host nicht kompatibel mit virtueller Maschine
- Host beinhaltet eine virtuelle Maschine, die gegen VM/VM-DRS-Regeln verstößt
- Unzureichende Kapazität des Hosts f
 ür die virtuelle Maschine
- Host nicht im richtigen Zustand
- Host hat zu wenige physische CPUs f
 ür die virtuelle Maschine
- Unzureichende Kapazität des Hosts für alle CPUs der virtuellen Maschinen
- Virtuelle Maschine ist in vMotion
- Kein aktiver Host im Cluster
- Unzureichende Ressourcen
- Unzureichende Ressourcen zum Erfüllen des für HA konfigurierten Failover-Levels
- Kein kompatibler Host mit fester Affinität
- Kein kompatibler Host mit weicher Affinität
- Korrekturen von Verstößen gegen weiche Regeln nicht zulässig
- Auswirkungen der Korrekturen von Verstößen gegen weiche Regeln

Virtuelle Maschine ist gebunden

Dieser Fehler tritt auf, wenn DRS eine virtuelle Maschine nicht verschieben kann, weil DRS für diese Maschine deaktiviert ist. Das heißt, die virtuelle Maschine ist auf ihrem registrierten Host "gebunden".

Virtuelle Maschine ist mit keinem Host kompatibel

Dieser Fehler triff auf, wenn DRS keinen Host ermitteln kann, auf dem die virtuelle Maschine ausgeführt werden kann.

Dies tritt möglicherweise dann auf, wenn beispielsweise die CPU- oder Speicherressourcenerfordernisse der virtuellen Maschine von keinem Host abgedeckt werden können oder wenn kein Host über den von der virtuellen Maschine benötigten Netzwerk- oder Speicherzugriff verfügt.

Um dieses Problem zu beheben, stellen Sie einen Host bereit, der die Anforderungen der virtuellen Maschine erfüllen kann.

Verstoß gegen die VM/VM-DRS-Regel beim Verschieben auf einen anderen Host

Dieser Fehler tritt auf, wenn mehr als eine virtuelle Maschine, die auf demselben Host läuft und Affinitätsregeln miteinander teilt, nicht auf einen anderen Host verschoben werden kann.

Dieses Problem kann auftreten, weil nicht alle virtuellen Maschinen vMotion vom aktuellen Host ausführen können. Zum Beispiel ist die DRS-Funktion bei einer der virtuellen Maschinen in der Gruppe deaktiviert.

Um dies zu verhindern, suchen Sie nach Gründen, warum einige virtuelle Maschinen in der Gruppe keinen vMotion-Vorgang durchführen können.

Host nicht kompatibel mit virtueller Maschine

Dieser Fehler triff auf, wenn DRS die Migration einer virtuellen Maschine auf einen Host plant und dabei erkennt, dass der Host mit der betreffenden virtuellen Maschine nicht kompatibel ist.

Dies könnte auftreten, wenn der Zielhost keinen Zugriff auf das Netzwerk oder die von der virtuellen Maschine benötigte Speicherverbindung hat. Eine weitere Ursache für diesen Fehler besteht darin, dass der Zielhost eine CPU aufweist, die sich wesentlich von der des aktuellen Hosts unterscheidet, sodass die Verwendung von vMotion zwischen Hosts nicht unterstützt wird.

Um dieses Problem zu vermeiden, erstellen Sie Cluster, sodass alle Hosts konsistent konfiguriert sind und vMotion zwischen Hosts kompatibel ist.

Ein weiterer Grund, weshalb der Host mit der virtuellen Maschine nicht kompatibel ist, liegt darin, dass es eine erforderliche VM/Host-DRS-Regel gibt, die DRS anweist, diese virtuelle Maschine nie auf diesem Host zu platzieren.

Host beinhaltet eine virtuelle Maschine, die gegen VM/VM-DRS-Regeln verstößt

Dieser Fehler tritt auf, wenn die virtuelle Maschine beim Einschalten oder beim Verschieben durch vMotion gegen eine VM/VM-DRS-Regel verstößt.

Die virtuelle Maschine kann weiterhin manuell eingeschaltet oder mit vMotion verschoben werden, aber nicht automatisch von vCenter Server.

Unzureichende Kapazität des Hosts für die virtuelle Maschine

Dieser Fehler triff auf, wenn der Host nicht genügend CPU- oder Arbeitsspeicherkapazität zur Ausführung der virtuellen Maschine hat.

Host nicht im richtigen Zustand

Dieser Fehler tritt auf, wenn der Host in den Wartungs- oder Standby-Modus versetzt wird, was für die Ausführung der DRS-Aktion erforderlich ist.

Um diesen Fehler zu beheben, ziehen Sie die Anforderung zum Versetzen des Hosts in den Standby- oder Wartungsmodus zurück.

Host hat zu wenige physische CPUs für die virtuelle Maschine

Dieser Fehler triff auf, wenn die Host-Hardware über zu wenige CPUs (Hyper-Threads) verfügt, um die virtuellen CPUs der virtuellen Maschine unterstützen zu können.

Unzureichende Kapazität des Hosts für alle CPUs der virtuellen Maschinen

Dieser Fehler tritt auf, wenn der Host nicht genügend CPU-Kapazität zum Ausführen der virtuellen Maschine hat.

Virtuelle Maschine ist in vMotion

Dieser Fehler tritt auf, wenn DRS eine virtuelle Maschine nicht verschieben kann, weil sie sich in vMotion befindet.

Kein aktiver Host im Cluster

Dieser Fehler tritt auf, wenn der Cluster, in den die virtuelle Maschine verschoben wird, keine gültigen Hosts enthält, die verbunden sind und sich in einem wartungsfreien Zustand befinden. Dies kann beispielsweise dann auftreten, wenn alle Hosts getrennt sind oder sich im Wartungsmodus befinden.

Unzureichende Ressourcen

Dieser Fehler tritt auf, wenn es einen Konflikt zwischen einem versuchten Vorgang und einer Ressourcenkonfigurationsrichtlinie gibt.

Dieser Fehler kann beispielsweise dann auftreten, wenn ein Einschaltvorgang mehr Arbeitsspeicher reserviert, als im Ressourcenpool zugeteilt wurde.

Versuchen Sie, den Vorgang erneut auszuführen, nachdem Sie die Ressourcen angepasst haben, um mehr Arbeitsspeicher zu ermöglichen.

Unzureichende Ressourcen zum Erfüllen des für HA konfigurierten Failover-Levels

Dieser Fehler triff auf, wenn der geplante DRS-Vorgang gegen die HA-Konfiguration der für einen Failover reservierten CPU- oder Arbeitsspeicherressourcen verstößt oder über unzureichende Ressourcen verfügt.

Dieser Fehler wird in folgenden Fällen gemeldet:

- Der Host wird angefordert, in den Wartungs- oder Standby-Modus zu wechseln.
- Beim Einschalten verstößt die virtuelle Maschine gegen das Failover.

Kein kompatibler Host mit fester Affinität

Es steht kein Host für die virtuelle Maschine zur Verfügung, der ihren obligatorischen VM/Host-DRS-Affinitäts- oder Anti-Affinitätsregeln genügt.

Kein kompatibler Host mit weicher Affinität

Es steht kein Host für die virtuelle Maschine zur Verfügung, der ihren bevorzugten VM/Host-DRS-Affinitäts- oder Anti-Affinitätsregeln genügt.

Korrekturen von Verstößen gegen weiche Regeln nicht zulässig

Der DRS-Migrationsschwellenwert ist auf obligatorisch eingestellt.

Hiermit wird die Generierung von DRS-Aktionen zum Korrigieren von nicht obligatorischen VM/ Host-DRS-Affinitätsregeln nicht erlaubt.

Auswirkungen der Korrekturen von Verstößen gegen weiche Regeln

Das Korrigieren der nicht obligatorischen VM/Host-DRS-Affinitätsregel erfolgt nicht, weil dies die Leistung beeinträchtigt.

DRS-Fehlerbehebungsinformationen

Hier werden Probleme im Zusammenhang mit vSphere[®] Distributed Resource Scheduler (DRS) für bestimmte Kategorien beschrieben: Cluster, Host und virtuelle Maschinen.

Hinweis In diesem Kapitel kann sich "Arbeitsspeicher" auf den physischen oder den persistenten Arbeitsspeicher beziehen.

Lesen Sie als Nächstes die folgenden Themen:

- Cluster-Probleme
- Hostprobleme
- Probleme mit virtuellen Maschinen

Cluster-Probleme

Clusterprobleme können dazu führen, dass DRS nicht optimal ausgeführt wird oder keine Fehler meldet.

Lasten-Ungleichgewicht im Cluster

Ein Cluster hat ein Lasten-Ungleichgewicht bei Ressourcen.

Problem

Aufgrund von ungleichen Ressourcenanforderungen von virtuellen Maschinen und unterschiedlichen Kapazitäten von Hosts kann ein Cluster möglicherweise das Gleichgewicht verlieren.

Ursache

Folgende Ursachen sind möglich, warum in einem Cluster ein Lasten-Ungleichgewicht auftritt:

Der Migrationsschwellenwert ist zu hoch.

Ein höherer Schwellenwert macht es wahrscheinlicher, dass im Cluster ein Lasten-Ungleichgewicht auftritt.

- Die VM/VM- oder VM/Host-DRS-Regeln verhindern das Verschieben der virtuellen Maschinen.
- DRS ist für eine oder mehrere virtuelle Maschinen deaktiviert.

- Ein Gerät, das auf einer oder mehreren virtuellen Maschinen gemountet ist, sorgt dafür, dass DRS die virtuelle Maschine nicht verschieben kann, um die Last auszugleichen.
- Die virtuellen Maschinen sind nicht mit dem Host kompatibel, auf den DRS sie verschieben würde. Dies bedeutet, dass mindestens einer der Hosts im Cluster für die virtuellen Maschinen, die migriert würden, nicht kompatibel ist. Wenn beispielsweise die CPU von Host A nicht vMotion-kompatibel mit der CPU von Host B ist, wird Host A inkompatibel für eingeschaltete virtuelle Maschinen, die auf Host B ausgeführt werden.
- Es würde die Leistung der virtuellen Maschine eher beeinträchtigen, wenn sie verschoben würde. Es wäre besser, sie dort auszuführen, wo sie sich gerade befindet. Dies könnte auftreten, wenn die Last instabil ist oder die Kosten der Migration im Vergleich zu dem Nutzen, der aus dem Verschieben der virtuellen Maschine gezogen wird, zu hoch sind.
- vMotion ist für die Hosts im Cluster nicht aktiviert oder eingerichtet.

Lösung

Beheben Sie das Problem, das das Lasten-Ungleichgewicht verursacht.

Cluster ist gelb

Der Cluster ist gelb, da ein Mangel an Ressourcen vorliegt.

Problem

Falls der Cluster nicht über ausreichende Ressourcen verfügt, um die Reservierungsanforderungen aller Ressourcenpools und virtuellen Maschinen, jedoch denen aller ausgeführten virtuellen Maschinen zu entsprechen, wird DRS weiterhin ausgeführt und der Cluster gelb gekennzeichnet.

Ursache

Ein Cluster kann gelb werden, wenn die Host-Ressourcen aus dem Cluster entfernt werden (beispielsweise, wenn ein Host ausfällt).

Lösung

Fügen Sie dem Cluster Host-Ressourcen hinzu oder reduzieren Sie die Ressourcenpoolreservierungen.

Cluster ist rot aufgrund eines inkonsistenten Ressourcenpools

Ein DRS-Cluster wird rot dargestellt, wenn er ungültig ist. Er wird möglicherweise rot dargestellt, weil der Ressourcenpoolstruktur intern nicht konsistent ist.

Problem

Wenn der Ressourcenpoolbaum des Clusters nicht intern konsistent ist (wenn beispielsweise die Summe der Reservierungen der untergeordneten Objekte die nicht erweiterbare Reservierung des übergeordneten Pools übersteigt), verfügt der Cluster nicht über ausreichende Ressourcen, um den Reservierungen aller laufenden virtuellen Maschinen zu genügen, was dazu führt, dass der Cluster rot dargestellt wird.

Ursache

Dieses Problem kann auftreten, wenn vCenter Server nicht verfügbar ist oder wenn Ressourcenpooleinstellungen geändert werden, wenn sich eine virtuelle Maschine im Zustand "Failover" befindet.

Lösung

Machen Sie die zugewiesenen Änderungen rückgängig oder überarbeiten Sie die Ressourcenpooleinstellungen anderweitig.

Cluster ist rot, weil ein Verstoß gegen die Failover-Kapazität vorliegt

Ein DRS-Cluster wird rot dargestellt, wenn er ungültig ist. Er wird möglicherweise rot, weil ein Verstoß gegen die Failover-Kapazität vorliegt.

Problem

Bei einem Hostausfall versucht der Cluster auf andere virtuelle Maschinen zurückzugreifen (Failover). Es ist jedoch nicht gewährleistet, dass die Ressourcen ausreichen, um dies im Falle aller virtuellen Maschinen zu ermöglichen, die die Failover-Anforderungen erfüllen.

Ursache

Falls ein für HA aktivierter Cluster so viele Ressourcen verliert, dass er seine Failover-Anforderungen nicht mehr erfüllen kann, wird eine Meldung angezeigt und der Clusterstatus in "Rot" geändert.

Lösung

Überprüfen Sie die Liste der Konfigurationsprobleme im gelben Feld oben auf der Cluster-Seite "Übersicht" und beheben Sie die Ursache des Problems.

Es werden keine Hosts ausgeschaltet, wenn die gesamte Cluster-Last niedrig ist

Hosts werden nicht ausgeschaltet, wenn die gesamte Clusterlast niedrig ist.

Problem

Hosts werden nicht ausgeschaltet, wenn die gesamte Cluster-Last niedrig ist, da zusätzliche Kapazität für HA-Failover-Reservierungen benötigt wird.

Ursache

Hosts werden möglicherweise aus den folgenden Gründen nicht ausgeschaltet:

- Die erweiterten Optionseinstellungen f
 ür MinPoweredOn {Cpu|Memory}Capacity m
 üssen erf
 üllt werden.
- Virtuelle Maschinen können wegen ihrer Ressourcenreservierungen, ihrer VM/Host-DRS-Regeln, ihrer VM/VM-DRS-Regeln, der Tatsache, dass sie nicht DRS-aktiviert sind, oder ihrer Inkompatibilität mit Hosts, die über verfügbare Kapazitäten verfügen, nicht auf weniger Hosts konsolidiert werden.
- Lasten sind instabil.
- Für den DRS-Migrationsschwellenwert ist die höchste Einstellung festgelegt und er lässt nur obligatorische Verschiebungen zu.
- vMotion kann nicht ausgeführt werden, da es nicht konfiguriert ist.
- DPM ist deaktiviert auf den Hosts, die möglicherweise ausgeschaltet sind.
- Hosts sind f
 ür das Verschieben von virtuellen Maschinen auf einen anderen Host nicht kompatibel.
- Der Host besitzt keine Wake-on-LAN-, IPMI- oder iLO-Technologie. Eines davon ist erforderlich, damit DPM einen Host in den Standby-Modus versetzen kann.

Lösung

Beheben Sie das Problem, das das Ausschalten der Hosts verhindert, wenn die gesamte Clusterlast niedrig ist.

Es werden Hosts ausgeschaltet, wenn die gesamte Cluster-Last hoch ist

Hosts werden ausgeschaltet, wenn die gesamte Cluster-Last hoch ist.

Problem

DRS hat festgestellt, dass virtuelle Maschinen auf weniger Hosts ausgeführt werden können, ohne die Leistung des Hosts oder der VM zu beeinträchtigen. DRS darf die virtuellen Maschinen, die auf den stark verwendeten Hosts ausgeführt werden, nicht auf die Hosts verschieben, die planmäßig ausgeschaltet werden.

Ursache

Die gesamte Clusterlast ist zu hoch.

Lösung

Reduzieren Sie die Cluster-Last.

DRS führt selten oder nie vMotion-Migrationen durch

DRS führt selten oder nie vMotion-Migrationen durch.

Problem

DRS führt keine vMotion-Migrationen durch.

Ursache

DRS führt nie vMotion-Migrationen durch, wenn im Cluster mindestens eines der folgenden Probleme besteht.

- DRS ist im Cluster deaktiviert.
- Die Hosts haben keinen gemeinsam genutzten Speicher.
- Die Hosts im Cluster enthalten kein vMotion-Netzwerk.
- DRS befindet sich im manuellen Modus und niemand hat die Migration genehmigt.

DRS führt nur selten eine vMotion-Migration durch, wenn im Cluster mindestens eines der folgenden Probleme besteht:

- Die Lasten sind instabil und/oder der vMotion-Vorgang benötigt viel Zeit. Eine Verschiebung ist nicht angebracht.
- DRS migriert virtuelle Maschinen selten oder nie.
- Der DRS-Migrationsschwellenwert ist zu hoch eingestellt.

DRS verschiebt virtuelle Maschinen aus folgenden Gründen:

- Entfernen eines Hosts, f
 ür den ein Benutzer das Versetzen in den Wartungs- oder Standby-Modus angefordert hat.
- VM/Host-DRS-Regeln oder VM/VM-DRS-Regeln.
- Verstöße gegen Reservierungen.
- Lasten-Ungleichgewicht.
- Energieverwaltung.

Lösung

Beheben Sie die Probleme, die verhindern, dass DRS vMotion-Migrationen durchführt.

Hostprobleme

Hostprobleme können dazu führen, dass DRS nicht wie erwartet ausgeführt wird.

DRS empfiehlt, dass der Host eingeschaltet wird, um die Kapazität zu erhöhen, wenn die gesamte Cluster-Last niedrig ist

Der Host muss eingeschaltet werden, um dem Cluster mehr Kapazität bereitzustellen oder Hosts auszuhelfen, die überlastet sind.

Problem

DRS empfiehlt, dass der Host eingeschaltet wird, um die Kapazität zu erhöhen, obwohl die gesamte Cluster-Last niedrig ist.

Ursache

Die Empfehlung könnte aus folgenden Gründen erfolgt sein:

- Bei dem Cluster handelt es sich um einen DRS-HA-Cluster. Weitere eingeschaltete Hosts sind erforderlich, um die Failover-Fähigkeit zu erhöhen.
- Einige Hosts sind überlastet und virtuelle Maschinen auf eingeschalteten Hosts können auf Hosts im Standby-Modus verschoben werden, um die Last auszugleichen.
- Die Kapazität wird benötigt, um die erweiterten MinPoweredOn{Cpu|Memory}Capacity-Optionen zu erfüllen.

Lösung

Schalten Sie den Host ein.

Die gesamte Cluster-Last ist hoch

Die gesamte Clusterlast ist hoch.

Problem

Wenn die gesamte Cluster-Last hoch ist, schaltet DRS den Host nicht ein.

Ursache

Folgende Ursachen können dazu führen, dass DRS den Host nicht einschaltet:

- VM/VM-DRS-Regeln oder VM/Host-DRS-Regeln verhindern, dass die virtuelle Maschine auf den Host verschoben wird.
- Virtuelle Maschinen sind ihren aktuellen Hosts fest zugeordnet. Infolgedessen kann DRS diese virtuellen Maschinen nicht auf Hosts im Standby-Modus verschieben, um die Last auszugleichen.
- DRS oder DPM befindet sich im manuellen Modus und die Empfehlungen wurden nicht angewendet.
- Keine virtuellen Maschinen auf stark verwendeten Hosts werden auf diesen Host verschoben.
- DPM ist auf dem Host deaktiviert, weil ein Benutzer dies so eingestellt hat oder der Host zuvor den Standby-Modus nicht verlassen hat.

Lösung

Beheben Sie das Problem, das DRS daran hindert, den Host einzuschalten.

Die gesamte Cluster-Last ist niedrig

Die gesamte Clusterlast ist niedrig.

Problem

Wenn die gesamte Cluster-Last niedrig ist, schaltet DRS den Host nicht aus.

Ursache

Folgende Ursachen können dazu führen, dass DRS den Host nicht abschaltet:

- DPM (Distributed Power Management) ermittelte Hosts, die besser zum Ausschalten geeignet sind.
- vSphere HA benötigt zusätzliche Kapazität für ein Failover.
- Die Last ist nicht niedrig genug, um das Ausschalten des Hosts auszulösen.
- DPM nimmt an, dass die Last zunehmen wird.
- DPM ist auf dem Host nicht aktiviert.
- Der DPM-Schwellenwert ist zu hoch eingestellt.
- Obwohl DPM auf dem Host aktiviert ist, gibt es auf dem Host kein geeignetes Einschaltverfahren.
- DRS kann den Host nicht entfernen.
- Für den DRS-Migrationsschwellenwert ist die höchste Einstellung festgelegt und es werden nur obligatorische Verschiebungen durchgeführt.

Lösung

Beheben Sie das Problem, das DRS daran hindert, den Host herunterzufahren.

DRS entfernt einen Host nicht, der in den Wartungs- oder Standby-Modus wechseln soll

DRS entfernt einen Host nicht, der in den Wartungs- oder Standby-Modus wechseln soll.

Problem

Wenn Sie versuchen, einen Host in den Wartungs- oder Standby-Modus zu versetzen, entfernt DRS den Host nicht wie erwartet.

Ursache

vSphere HA ist aktiviert und eine Entfernung des Hosts würde gegen die HA-Failover-Kapazität verstoßen.

Lösung

Dazu gibt es keine Lösung. Falls möglich, deaktivieren Sie vSphere HA, bevor Sie versuchen, den Host in den Wartungs- oder Standby-Modus zu versetzen.

DRS verschiebt keine virtuellen Maschinen auf einen Host

DRS verschiebt keine virtuellen Maschinen auf einen Host.

Problem

DRS empfiehlt nicht die Migration einer virtuellen Maschine zu einem Host, der einem DRSaktivierten Cluster hinzugefügt wurde.

Ursache

Nach dem Hinzufügen eines Hosts zu einem DRS-aktivierten Cluster werden die auf dem Host bereitgestellten virtuellen Maschinen Teil des Clusters. DRS kann die Migration einiger virtueller Maschinen auf diesen gerade zum Clusters hinzugefügten Host empfehlen. Tritt dies nicht ein, gibt es möglicherweise Probleme mit vMotion, der Hostkompatibilität oder den Affinitätsregeln. Die folgenden Ursachen sind möglich:

- vMotion ist auf diesem Host nicht konfiguriert oder aktiviert.
- Die virtuellen Maschinen auf anderen Hosts sind nicht mit diesem Host kompatibel.
- Der Host verfügt für keine der virtuellen Maschinen über ausreichend Ressourcen.
- Das Verschieben einer virtuellen Maschine auf diesen Host würde gegen eine VM/VM-DRS-Regel oder eine VM/Host-DRS-Regel verstoßen.
- Dieser Host ist für die HA-Failover-Kapazität reserviert.
- Auf der virtuellen Maschine ist ein Gerät gemountet.
- Der vMotion-Schwellenwert ist zu hoch.
- DRS ist f
 ür die virtuellen Maschinen deaktiviert. Daher konnte die virtuelle Maschine nicht auf den Zielhost verschoben werden.

Lösung

Beheben Sie das Problem, das verhindert, dass DRS virtuelle Maschinen auf einen Host verschiebt.

DRS verschiebt keine virtuellen Maschinen von einem Host

DRS verschiebt keine virtuellen Maschinen von einem Host.

Problem

Virtuelle Maschinen werden von diesem Host nicht verschoben.

Ursache

Dies ist möglicherweise auf Problemen mit vMotion, DRS oder der Hostkompatibilität zurückzuführen. Die folgenden Ursachen sind möglich:

- vMotion ist auf diesem Host nicht konfiguriert oder aktiviert.
- DRS ist für die virtuellen Maschinen auf diesem Host deaktiviert.
- Die virtuellen Maschinen auf diesem Host sind nicht mit anderen Hosts kompatibel.
- Die anderen Hosts verfügen für keine der virtuellen Maschinen dieses Hosts über ausreichende Ressourcen.
- Das Verschieben einer virtuellen Maschine von diesem Host würde gegen eine VM/VM-DRS-Regel oder eine VM/Host-DRS-Regel verstoßen.
- DRS ist für eine oder mehrere virtuelle Maschinen auf dem Host deaktiviert.
- Auf der virtuellen Maschine ist ein Gerät gemountet.

Lösung

Beheben Sie die Probleme, die verhindern, dass DRS virtuelle Maschinen vom Host verschiebt.

Probleme mit virtuellen Maschinen

Probleme mit virtuellen Maschinen können dazu führen, dass DRS nicht wie erwartet ausgeführt wird.

Unzureichende CPU- oder Arbeitsspeicherressourcen

Die virtuelle Maschine erhält nicht genug CPU- oder Arbeitsspeicherressourcen.

Problem

In einigen Fällen ist der Bedarf der virtuellen Maschine größer als deren Ressourcenberechtigung. Wenn dies geschieht, erhält die virtuelle Maschine nicht genug CPU- oder Arbeitsspeicherressourcen.

Ursache

In den folgenden Abschnitten werden die Faktoren beschrieben, die die Berechtigung für eine virtuelle Maschine beeinflussen.

Cluster ist gelb oder rot

Wenn der Cluster den Zustand "Gelb" oder "Rot" hat, reicht die Kapazität nicht aus, um die für alle virtuellen Maschinen und Ressourcenpools konfigurierten Ressourcenreservierungen zu erfüllen. Die betreffende virtuelle Maschine ist möglicherweise diejenige, die ihre Reservierung nicht erhält. Prüfen Sie den Status des Clusters (rot oder gelb) und lösen Sie die Situation.

Ressourcengrenzwert ist zu restriktiv

Für die virtuelle Maschine oder deren übergeordneten Ressourcenpools wurde ein Ressourcengrenzwert konfiguriert, der zu restriktiv ist. Prüfen Sie, ob der Bedarf so groß wie die konfigurierten Grenzwerte oder größer ist.

Cluster ist überlastet

Der Cluster, auf dem die virtuelle Maschine ausgeführt wird, verfügt möglicherweise nicht über genügend Ressourcen. Der Anteilswert der virtuellen Maschine könnte auch so eingestellt sein, dass andere virtuelle Maschinen proportional mehr Ressourcen gewährt bekommen. Um zu ermitteln, ob der Bedarf größer als die Kapazität ist, prüfen Sie die Clusterstatistik.

Host ist überlastet

Um zu ermitteln, ob die Ressourcen des Hosts überbucht sind, prüfen Sie die Hoststatistik. Falls sie überbucht sind, analysieren Sie, warum DRS keine der virtuellen Maschinen, die auf dem Host ausgeführt werden, auf andere Hosts verschiebt. Dieser Zustand kann folgende Ursachen haben:

- Die VM/VM-DRS-Regeln und die VM/Host-DRS-Regeln verlangen die aktuelle Zuordnung zwischen virtueller Maschine und Host. Falls solche Regeln im Cluster konfiguriert sind, ziehen Sie in Betracht, einige davon zu deaktivieren. Führen Sie anschließend DRS aus und prüfen Sie, ob der Zustand korrigiert wurde.
- DRS kann weder diese virtuelle Maschine noch genügend andere virtuelle Maschinen auf andere Hosts verschieben, um Kapazität frei zu machen. DRS verschiebt eine virtuelle Maschine nicht, wenn einer der folgenden Gründe vorliegt:
 - DRS ist für diese virtuelle Maschine deaktiviert.
 - Auf der virtuellen Maschine ist ein Hostgerät gemountet.
 - Eine der Ressourcenreservierungen der virtuellen Maschine ist so gro
 ß, dass die virtuelle Maschine auf keinem anderen Host des Clusters ausgef
 ührt werden kann.
 - Die virtuelle Maschine ist mit keinem anderen Host des Clusters kompatibel.

Prüfen Sie, ob eine dieser Bedingungen auf die virtuelle Maschine zutrifft. Falls keine zutrifft, könnten die Bedingungen auf andere virtuelle Maschinen des Clusters zutreffen. Wenn dies der Fall ist, kann DRS den Cluster nicht ausgleichen, um die Anforderungen der virtuellen Maschine zu erfüllen.

- Verringern Sie den DRS-Migrationsschwellenwert und pr
 üfen Sie, ob das Problem gelöst ist.
- Erhöhen Sie die Reservierung der virtuellen Maschine.

Lösung

Beheben Sie das Problem, das die Ursache dafür ist, dass die virtuelle Maschine nicht genug CPUoder Arbeitsspeicherressourcen erhält.

Verstoß gegen eine VM/VM-DRS-Regel oder eine VM/Host-DRS-Regel

DRS-Regeln legen fest, auf welchen Hosts eine virtuelle Maschine sich befinden oder nicht befinden soll, oder welche virtuellen Maschinen sich am selben Host befinden sollen oder sich nicht am selben Host befinden dürfen.

Problem

Es wird gegen eine VM/VM- oder VM/Host-DRS-Regel verstoßen.

Ursache

VM/VM-DRS-Regeln legen fest, dass ausgewählte virtuelle Maschinen auf demselben Host (Affinität) oder auf unterschiedlichen Hosts (Anti-Affinität) platziert werden sollen. VM/Host-DRS-Regeln legen fest, dass ausgewählte virtuelle Maschinen auf angegebenen Hosts platziert (Affinität) oder nicht platziert (Anti-Affinität) werden sollen.

Wenn gegen eine VM/VM- oder VM/Host-DRS-Regel verstoßen wird, kann der Grund dafür sein, dass DRS einige oder alle der in der Regel aufgeführten virtuellen Maschinen nicht verschieben kann. Die Reservierung der virtuellen Maschine oder anderer in der Affinitätsregel aufgeführter virtueller Maschinen bzw. deren übergeordneter Ressourcenpools verhindert möglicherweise, dass DRS alle virtuellen Maschinen auf demselben Host zuweisen kann.

Lösung

- Prüfen Sie im Fenster "DRS-Fehler", ob Fehler im Zusammenhang mit Affinitätsregeln aufgetreten sind.
- Berechnen Sie die Summe der Reservierungen aller virtuellen Maschinen in der Affinitätsregel.
 Falls dieser Wert die verfügbare Kapazität auf einem der Hosts übersteigt, kann die Regel nicht eingehalten werden.
- Berechnen Sie die Summe der Reservierungen ihrer übergeordneten Ressourcenpools. Falls dieser Wert die verfügbare Kapazität auf einem der Hosts übersteigt, kann die Regel nicht eingehalten werden, sofern die Ressourcen von einem einzelnen Host bezogen werden.

Einschalten der virtuellen Maschine fehlgeschlagen

Eine Fehlermeldung wird angezeigt, dass das Einschalten der virtuellen Maschine fehlgeschlagen ist.

Problem

Das Einschalten der virtuellen Maschine ist fehlgeschlagen.

Ursache

Das Einschalten der virtuellen Maschine kann aufgrund von unzureichenden Ressourcen fehlgeschlagen sein, oder weil es keine kompatiblen Hosts gibt, die sie aufnehmen können.

Lösung

Falls ein Cluster nicht über ausreichende Ressourcen verfügt, um eine einzelne virtuelle Maschine oder bei einem Gruppeneinschaltvorgang eine der virtuellen Maschinen einzuschalten, vergleichen Sie die von der virtuellen Maschine benötigten Ressourcen mit den im Cluster oder im übergeordneten Ressourcenpool verfügbaren Ressourcen. Reduzieren Sie, falls nötig, die Reservierungen der virtuellen Maschine, die eingeschaltet werden soll, reduzieren Sie die Reservierungen ihrer gleichrangigen virtuellen Maschinen oder erhöhen Sie die Ressourcen, die im Cluster bzw. dessen übergeordneten Ressourcenpool verfügbar sind.

DRS verschiebt die virtuelle Maschine nicht

DRS verschiebt die virtuelle Maschine nicht, wenn sie eingeschaltet wird, obwohl die Ressourcen auf dem Host unzureichend sind.

Problem

Wenn Sie eine virtuelle Maschine einschalten, migriert DRS sie nicht wie erwartet, wenn auf dem Host, bei dem die virtuelle Maschine registriert ist, nicht ausreichend Ressourcen vorhanden sind.

Ursache

Die folgenden Ursachen sind möglich, wenn DRS die virtuelle Maschine nicht verschiebt.

- DRS ist auf der virtuellen Maschine deaktiviert.
- Auf der virtuellen Maschine ist ein Gerät gemountet.
- Die virtuelle Maschine ist mit keinem anderen Host kompatibel.
- Für die virtuelle Maschine verfügt kein anderer Host über genügend physische CPUs oder Kapazitäten für jede CPU.
- Kein anderer Host verfügt über genügend CPU- oder Arbeitsspeicherressourcen, um die Reservierungen und die Arbeitsspeicheranforderung dieser virtuellen Maschine zu erfüllen.
- Eine Verschiebung der virtuellen Maschine würde gegen eine Affinitäts- oder Anti-Affinitätsregel verstoßen.
- Die DRS-Automatisierungsebene der virtuellen Maschine ist auf manuell eingestellt und der Benutzer genehmigt die Migrationsempfehlung nicht.
- DRS verschiebt keine virtuellen Maschinen, bei denen Fault Tolerance aktiviert ist.

Lösung

Beheben Sie das Problem, das verhindert, dass DRS die virtuelle Maschine verschiebt.