
Application Accelerator
for VMware Tanzu
Application Accelerator for VMware Tanzu 1.0



You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright 
©

 2022 VMware, Inc. All rights reserved. Copyright and trademark information.

Application Accelerator for VMware Tanzu

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html


Contents

1 Application Accelerator for VMware Tanzu v1.0 6
Application Accelerator overview 6

Architecture 6

How does Application Accelerator work? 7

Next steps 7

2 Application accelerator release notes 8
v 1.0.1 8

v 1.0.0 8

New features 8

v 0.5.1 9

New features 9

v 0.5.0 9

New features 9

v 0.4.0 9

New features 9

v 0.3.0 10

New Features 10

V 0.2.0 10

New features 10

Breaking changes 10

V 0.1.0 11

Known issues 11

3 Installing Application Accelerator for Tanzu Application Platform 12
Uninstalling Application Accelerator for Tanzu Application Platform 12

4 Creating accelerators 13
Prerequisites 13

Getting started 14

Using application.yaml 16

Publishing the new accelerator 17

Next steps 17

Creating an accelerator.yaml file 18

Accelerator 18

Engine 22

Transform Definition: A Gentle Introduction 24

Why 'Transforms'? 24

VMware, Inc. 3



Combining Transforms 25

Shortened notation 26

A Common Pattern with Merge Transforms 28

Conditional Transforms 29

Merge conflict 32

Conclusion 35

Transforms reference 35

Available transforms 35

See also 35

Combo transform 35

Include transform 38

Exclude transform 39

Merge transform 40

Chain transform 40

Let transform 40

ReplaceText transform 41

RewritePath transform 43

OpenRewriteRecipe transform 45

YTT transform 46

UseEncoding transform 47

UniquePath transform 48

Conflict resolution 49

SpEL Samples 50

Variables 50

Implicit Variables 50

Conditionals 51

Rewrite Path Concatenation 51

Regular Expressions 51

Accelerator Custom Resource Definition 52

API definitions 52

Excluding files 54

Non-public repositories 54

Examples 54

Example for a private Git repo 55

5 Engine Specification 58

6 Application Accelerator CLI 59
Server API connections for operators and developers 59

Installation 60

Commands 60

Application Accelerator for VMware Tanzu

VMware, Inc. 4



Accelerator commands 60

Apply 61

Create 61

Delete 63

Generate 63

Application Accelerator for VMware Tanzu

VMware, Inc. 5



Application Accelerator for
VMware Tanzu v1.0 1
This chapter includes the following topics:

n Application Accelerator overview

n Architecture

n Next steps

Application Accelerator overview

Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and
deploying them in a discoverable and repeatable way.

Enterprise Architects author and publish accelerator projects that provide developers and
operators in their organization ready-made, enterprise-conformant code and configurations.

Published accelerators projects are maintained in Git repositories. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator user interface(UI) enables you to discover available accelerators,
configure them, and generate new projects to download.

Architecture

The following diagram illustrates the Application Accelerator architecture.

VMware, Inc. 6



How does Application Accelerator work?

Application Accelerator allows you to generate new projects from files in Git repositories. An
accelerator.yaml file in the repository declares input options for the accelerator. This file also

contains instructions for processing the files when you generate a new project.

Accelerator custom resources (CRs) control which repositories appear in the Application
Accelerator UI. You can maintain CRs by using Kubernetes tools such as kubectl or by using
the Tanzu CLI accelerator commands. The Accelerator controller reconciles the CRs with a Flux2
Source Controller to fetch files from GitHub or GitLab.

The Application Accelerator UI gives you a searchable list of accelerators to choose from. After
you select an accelerator, the UI presents input fields for any input options.

Application Accelerator sends the input values to the Accelerator Engine for processing. The
Engine then returns the project in a ZIP file. You can open the project in your favorite integrated
development environment(IDE) to develop further.

Next steps

Learn more about:

n Chapter 4 Creating accelerators

Application Accelerator for VMware Tanzu

VMware, Inc. 7



Application accelerator release
notes 2
This documentation contains product features that are currently under development. Features
are subject to change, and must not be in contracts, purchase orders, or sales agreements
of any kind. This documentation represents no commitment from VMware to deliver these
features in any generally available product.

This chapter includes the following topics:

n v 1.0.1

n v 1.0.0

n v 0.5.1

n v 0.5.0

n v 0.4.0

n v 0.3.0

n V 0.2.0

n V 0.1.0

v 1.0.1

Release date: February 8, 2022

Note: Application Accelerator release notes are now included in the Tanzu Application
Platform Release notes.

v 1.0.0

Release date: January 11, 2022

New features

New features and resolved issues in this release:

n Upgrade log4j-api dependency to 2.16.0

n Disable the Exec Transform

VMware, Inc. 8

https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-release-notes.html


n Improve App Accelerator TAP GUI plug-in refresh cycle

n Fix Accelerator loading issues for TAP GUI plug-in

v 0.5.1

Release date: December 9, 2021

New features

New features in this release:

n Change the defaults: Changed server.service_type from ClusterIP to LoadBalancer

v 0.5.0

Release Date: November 19, 2021

New features

New features in this release:

n UI removed: The UI is removed and rewritten to be part of Tanzu Application Platform GUI
that is provided with the Tanzu Application Platform.

n Support ReplaceText based on regex: For more information, see Replace Text Syntax
Reference

n Change the defaults: Changed server.service_type from LoadBalancer to ClusterIP

n Use the default namespace of accelerator-system: The CLI plug-in now defaults to using the
accelerator-system for any commands targeting the accelerator resources.

v 0.4.0

Release Date: October 25, 2021

New features

New features in this release:

n Support for SourceImage: Allow Accelerators to use source code from an OCI image instead
of a Git repository. The CLI also adds a --local-path option for create command a push

command for pushing local directory content to an OCI image registry.

n Added helper functions for case conversions: For more information, see Replace Text Syntax
Reference.

Note: The following release notes are for v0.1.0, v0.2.0 and v0.3.0 also apply to the
v0.4.0 release.

Application Accelerator for VMware Tanzu

VMware, Inc. 9



v 0.3.0

Release Date: September 27, 2021

New Features

New features in this release:

n Application Accelerator CLI: For more information, see Chapter 6 Application Accelerator
CLI.

n Replace text with the contents of a file: For more information, see Replace Text Syntax
Reference.

V 0.2.0

Release Date: August 25, 2021

New features

New features in this release:

n multi-text inputType in accelerator options: For more information, see Accelerator options.

n dependsOn accelerator option property: For more information, see Accelerator options.

n interval specification: The interval specification in the Accelerator custom resource

configuration file controls the Git repository polling rate. For more information, see API
definitions.

n extraArgs property for YTT transform: For more information, see Using extraArgs.

n Changes to the REST API exposed by the UI server:

n GET /api/accelerators

n GET /api/accelerators/options?name={accelerator-name}

n POST /api/accelerators/zip?name={accelerator-name}

Breaking changes

Breaking changes in this release:

n New API group: Update existing accelerator custom resource configuration files to reflect
the new API group accelerator.apps.tanzu.vmware.com/v1alpha1. For more information, see

Accelerator Custom Resource Definition.

n Removal of #projectDescription: #projectDescription no longer exists. For existing

accelerators that depend on this previously automatic option, create an explicit text option
to prompt

Application Accelerator for VMware Tanzu

VMware, Inc. 10



V 0.1.0

Release date: July 20, 2021

Known issues

Known issues in this release:

n Lack of SSO: The App Accelerator User Interface is unauthenticated. Deployments must not
be exposed to the public Internet. VMware is investigating how best to provide SSO (single
sign-on) integration.

n I/O timeout: If you see an error such as the one following one, you must deactivate the Flux
network policy when installing the Flux Source Controller:

failed to extract metadata from archive
Get “http://source-controller.flux-system.svc.cluster.local./gitrepository/default/new-
accelerator-acc-bjp52/8e78c60837c69ea6350f9196b7eeaf5de7c14deb.tar.gz:
dial tcp 198.57.214.29:80: i/o timeout

For more information, see Chapter 3 Installing Application Accelerator for Tanzu Application
Platform.

Application Accelerator for VMware Tanzu

VMware, Inc. 11



Installing Application Accelerator
for Tanzu Application Platform 3
Application Accelerator is a component of VMware Tanzu Application Platform. For information
about installing Tanzu Application Platform, see the Tanzu Application Platform documentation.

You can navigate to and interact with the available Accelerator resources using |Tanzu Application
Platform GUI.

This chapter includes the following topics:

n Uninstalling Application Accelerator for Tanzu Application Platform

Uninstalling Application Accelerator for Tanzu Application
Platform

Application Accelerator is a component of Tanzu Application Platform. To uninstall Tanzu
Application Platform, see the Tanzu Application Platform documentation.

VMware, Inc. 12

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html


Creating accelerators 4
This topic describes how to create an accelerator in Tanzu Application Platform GUI. An
accelerator contains your enterprise-conformant code and configurations that developers can use
to create new projects that automatically follow the standards defined in your accelerators.

This chapter includes the following topics:

n Prerequisites

n Getting started

n Using application.yaml

n Publishing the new accelerator

n Next steps

n Creating an accelerator.yaml file

n Transform Definition: A Gentle Introduction

n Transforms reference

n SpEL Samples

n Variables

n Implicit Variables

n Conditionals

n Rewrite Path Concatenation

n Regular Expressions

n Accelerator Custom Resource Definition

Prerequisites

The following prerequisites are required to create an accelerator:

n Application Accelerator is installed. For information about installing Application Accelerator,
see Chapter 3 Installing Application Accelerator for Tanzu Application Platform

VMware, Inc. 13



n You can access Tanzu Application Platform GUI from a browser. For more information, see
the "Tanzu Application Platform GUI" section in the most recent release for Tanzu Application
Platform documentation

n kubectl v1.20 and later. The Kubernetes command line tool (kubectl) is installed and
authenticated with admin rights for your target cluster.

Getting started

You can use any Git repository to create an accelerator. You need the URL for the repository to
create an accelerator.

Use the following procedure to create an accelerator:

1 Select New Accelerator in the Application Accelerator web UI.

2 Fill in the new project form with the following information:

Field Description

Name Your accelerator name.

(Optional) Description A description of your accelerator.

K8s Resource Name A Kubernetes resource name.

Git Repository URL The Git repository URL you use to create an accelerator.

Git Branch The name of your Git branch.

(Optional) Icon URL URL of an image to be used as the icon for the accelerator.

Application Accelerator for VMware Tanzu

VMware, Inc. 14

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html


3 Click Generate Project and expand the ZIP file that contains accelerator files.

Application Accelerator for VMware Tanzu

VMware, Inc. 15



Using application.yaml

The accelerator ZIP file contains a file called new-accelerator.yaml. This file contains additional

information about the accelerator.

accelerator:
  displayName: Simple Accelerator
  description: Contains just a README
  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-tanzu-light.png
  tags:
  - simple
  - README

Copy this file as accelerator.yaml into the Git repository specified earlier for Git Repository URL.

This enables accelerator attributes to be rendered in Tanzu Application Platform GUI.

Application Accelerator for VMware Tanzu

VMware, Inc. 16



Publishing the new accelerator

The accelerator ZIP file contains a file called k8s-resource.yaml. This file contains the resource

manifest for the new accelerator.

1 Review the content of the k8s-resource.yaml file:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1
kind: Accelerator
metadata:
name: spring-petclinic
spec:
    git:
    url: https://github.com/sample-accelerators/spring-petclinic
    ref:
    branch: main

2 To apply the k8s-resource.yaml, run the following command in your terminal in the folder

directory where you expanded the ZIP file:

kubectl apply -f k8s-resource.yaml --namespace accelerator-system

3 Refresh Tanzu Application Platform GUI to reveal the newly published accelerator.

Note: It might take time for Tanzu Application Platform GUI to refresh the catalog
and add an entry for new accelerator.

Next steps

Learn how to:

n Write an Creating an accelerator.yaml file.

n Configure accelerators with Accelerator Custom Resource Definition.

Application Accelerator for VMware Tanzu

VMware, Inc. 17



n Manipulate files using Transform Definition: A Gentle Introduction.

n Use SpEL Samples.

Creating an accelerator.yaml file

This topic describes how to create an accelerator.yaml file. By including an accelerator.yaml file

in your Accelerator repository, you can declare input options that users fill in using a form in the
UI. Those option values control processing by the template engine before it returns the zipped
output files. For more information, see the Sample accelerator.

When there is no accelerator.yaml, the repository still works as an accelerator but the files are

passed unmodified to users.

accelerator.yaml has two top-level sections: accelerator and engine.

Accelerator

This section documents how an accelerator is presented to users in the web UI. For example:

accelerator:
  displayName: Hello Fun
  description: A simple Spring Cloud Function serverless app
  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.png
  tags:
  - java
  - spring

  options:
  - name: deploymentType
    inputType: select
    choices:
    - value: none
      text: Skip Kubernetes deployment
    - value: k8s-simple
      text: Kubernetes deployment and service
    - value: knative
      text: Knative service
    defaultValue: k8s-simple
    required: true

Accelerator metadata

These properties are in accelerator listings such as the web UI:

n displayName: A human-readable name.

n description: A more detailed description.

n iconUrl: A URL pointing to an icon image.

n tags: A list of tags used to filter accelerators.

Application Accelerator for VMware Tanzu

VMware, Inc. 18



Accelerator options

The list of options is passed to the UI to create input fields for each option.

The following option properties are used by both the UI and the engine.

n name:Each option must have a unique, camelCase name. The option value entered by a user is
made available as a SpEL Samples variable name. For example, #deploymentType.

n dataType:Data types that work with the UI are string, boolean, number and arrays of those, as

in [string], [number], etc. Most input types return a string, which is the default. Use Boolean

values with checkbox.

n defaultValue:This literal value pre-populates the option. Ensure its type matches the
dataType. For example, use ["text 1", "text 2"] for the dataType [string]. Options

without a defaultValue can trigger a processing error if the user doesn't provide a value for

that option.

The following option properties are for UI purposes only.

n label: A human-readable version of the name identifying the option.

n description: A tooltip to accompany the input.

n inputType:

n text: The default input type.

n textarea: Single text value with larger input that allows line breaks.

n checkbox: Ideal for Boolean values or multi-value selection from choices.

n select: Single-value selection from choices using a drop-down menu.

n radio: Alternative single-value selection from choices using buttons.

n choices:This is a list of predefined choices. Users can select from the list in the UI. Choices
are supported by checkbox, select, and radio. Each choice must have a text property for the

displayed text, and a value property for the value that the form returns for that choice. The list

is presented in the UI in the same order as it is declared in accelerator.yaml.

n required: true forces users to enter a value in the UI.

n dependsOn:This is a way to control visibility by specifying the name and optional value of

another input option. When the other option has a matching value, or any value if no value is

specified, then the option with dependsOn is visible. Otherwise, it is hidden. Ensure the value

matches the dataType of the dependsOn option. For example, a multi-value option such as a

checkbox uses [matched-value].

Examples

The screenshot and accelerator.yaml file snippet that follows demonstrates each inputType. You

can also see the sample demo-input-types on GitHub.

Application Accelerator for VMware Tanzu

VMware, Inc. 19

https://github.com/sample-accelerators/demo-input-types


accelerator:
  displayName: Demo Input Types
  description: "Accelerator with options for each inputType"
  iconUrl: https://raw.githubusercontent.com/sample-accelerators/icons/master/icon-tanzu-
light.png
  tags: ["demo", "options"]

  options:

  - name: text
    display: true
    defaultValue: Text value

  - name: toggle
    display: true
    dataType: boolean
    defaultValue: true

  - name: dependsOnToggle
    label: 'depends on toggle'
    description: Visibility depends on the value of the toggle option being true.
    dependsOn:
      name: toggle
    defaultValue: text value

Application Accelerator for VMware Tanzu

VMware, Inc. 20



  - name: textarea
    inputType: textarea
    display: true
    defaultValue: |
      Text line 1
      Text line 2

  - name: checkbox
    inputType: checkbox
    display: true
    dataType: [string]
    defaultValue:
      - value-2
    choices:
      - text: Checkbox choice 1
        value: value-1
      - text: Checkbox choice 2
        value: value-2
      - text: Checkbox choice 3
        value: value-3

  - name: dependsOnCheckbox
    label: 'depends on checkbox'
    description: Visibility depends on the checkbox option containing a checked value value-2.
    dependsOn:
      name: checkbox
      value: [value-2]
    defaultValue: text value

  - name: select
    inputType: select
    display: true
    defaultValue: value-2
    choices:
      - text: Select choice 1
        value: value-1
      - text: Select choice 2
        value: value-2
      - text: Select choice 3
        value: value-3

  - name: radio
    inputType: radio
    display: true
    defaultValue: value-2
    choices:
      - text: Radio choice 1
        value: value-1
      - text: Radio choice 2
        value: value-2
      - text: Radio choice 3
        value: value-3

Application Accelerator for VMware Tanzu

VMware, Inc. 21



engine:
  type: YTT

Engine

The engine section describes how to take the files from the accelerator root directory and
transform them into the contents of a generated project file.

The YAML notation here defines what is called a transform. A transform is a function on a set of
files. It uses a set of files as input. It produces a modified set of files as output derived from this
input.

Different types of transforms do different tasks:

n Filtering the set of files: that is, removing or keeping, only files that match certain criteria.

n Changing the contents of files. For example, replacing some strings in the files.

n Renaming or moving files: that is, changing the paths of the files.

The notation also provides the composition operators merge and chain, which enable you to create

more complex transforms by composing simpler transforms together.

The following is an example of what is possible. To learn the notation, see Transform Definition: A
Gentle Introduction.

Engine example

engine:
  include:
    ["**/*.md", "**/*.xml", "**/*.gradle", "**/*.java"]
  exclude:
    ["**/secret/**"]
  let:
    - name: includePoms
      expression:
        "#buildType == 'Maven'"
    - name: includeGradle
      expression: "#buildType == 'Gradle'"
  merge:
    - condition:
        "#includeGradle"
      include: ["*.gradle"]
    - condition: "#includePoms"
      include: ["pom.xml"]
    - include: ["**/*.java", "README.md"]
      chain:
        - type: ReplaceText
          substitutions:
            - text: "Hello World!"
              with: "#greeting"
  chain:
    - type: RewritePath
      regex: (.*)simpleboot(.*)
      rewriteTo: "#g1 + #packageName + #g2"

Application Accelerator for VMware Tanzu

VMware, Inc. 22



    - type: ReplaceText
      substitutions:
        - text: simpleboot
          with: "#packageName"
  onConflict:
    Fail

Engine notation descriptions

This section describes the notations in the preceding example.

engine is the 'global' transformation node. It produces the final set of files to be zipped and

returned from the accelerator. As input, it receives all the files from the accelerator repository
root. The properties in this node dictate how this set of files is transformed into a final set of files
zipped as the accelerator result.

engine.include filters the set of files, retaining only those matching a given list of path patterns.

This ensures that that the accelerator only detects files in the repository that match the list of
patterns.

engine.exclude further restricts which files are detected. The example ensures files in any

directory called secret are never detected.

engine.let defines additional variables and assigns them values. These derived symbols function

such as options, but instead of being supplied from a UI widget, they are computed by the
accelerator itself.

engine.merge executes each of its children in parallel. Each child receives a copy of the current set

of input files. These are files remaining after applying the include and exclude filters. Each of the

children therefore produces a set of files. All the files from all the children are then combined, as if
overlaid on top of each other in the same directory. If more than one child produces a file with the
same path, the transform resolves the conflict by dropping the file contents from the earlier child
and keeping the contents from the later child.

engine.merge.chain specifies additional transformations to apply to the set of files produced by

this child. In the example, ReplaceText is only applied to Java files and README.md.

engine.chain applies transformation to all files globally. The chain has a list of child

transformations. These transformations are applied after everything else in the same node. This is
the global node. The children in a chain are applied sequentially.

engine.onConflict specifies how conflict is handled when an operation, such as merging,

produces multiple files at the same path: - Fail raises an error when there is a conflict. - UseFirst
keeps the contents of the first file. - UseLast keeps the contents of the last file. - Append keeps

both by using cat <first-file> <second-file>.

Application Accelerator for VMware Tanzu

VMware, Inc. 23



Transform Definition: A Gentle Introduction

When the accelerator is executed via the Accelerator Engine, it produces a ZIP file containing a set
of files. The purpose of the engine section is to describe precisely how the contents of that ZIP file

is to be created.

accelerator:
   ...
engine:
  <transform-definition>

Why 'Transforms'?

The result of running an accelerator is produced somehow from the contents of the accelerator
itself. It is made up out of subsets of the files taken from the accelerator <root> directory (and its

subdirectories). The files can be copied verbatim or transformed in a number of ways before being
added to the result.

As such the yaml notation in the engine section defines a transformation that takes as input a set

of files (the stuff in the <root> directory of the accelerator) and produces as output another set of

files (the files to be put into the ZIP file).

Every transform has a type. Different types of transform have different behaviors and different

yaml properties that control precisely what they do.

Let's look at a simple example to make this clearer. A transform of type Include is a 'filter. It takes

as input a set of files and produces as output a subset of those files, retaining only those files
whose path matches any one of a given list of patterns.

So if our accelerator has something like this:

engine:
  type: Include
  patterns: ['**/*.java']

Then this accelerator produces a ZIP file containing all the .java files from the accelerator <root>
(or its subdirectories) but nothing else.

Transforms can also operate on the contents of a file (instead of just selecting it for inclusion).

For example:

type: ReplaceText
substitutions:
- text: hello-fun
  with: "#artifactId"

This transform looks for all occurrences of a string hello-fun in all its input files and replaces them

with an artifactId (which is the result of evaluating a SpEL expression).

Application Accelerator for VMware Tanzu

VMware, Inc. 24



Combining Transforms

It should be obvious from the above examples that transforms like ReplaceText and Include are

too 'primitive' to be useful just by themselves.

They are meant to be used as smaller building blocks to be composed into more complex
accelerators.

To combine transforms we provide two operators called Chain and Merge. These operators are

'recursive' in the sense that they compose a number of 'child' transforms to create a more complex
transform. This allows building up arbitrarily deep/complex trees of nested transform definitions.

Let's try to understand what each of these two operators does with an example; and then also try
to understand the typical way that they would be used together.

Chain

Since transforms are functions whose input and output are of the same type (a set of files), you
can take the ouptut of one function and feed it as input to another. This is what Chain does. In

mathematical terms, Chain is function composition.

For an example of when/why we might want to do that, consider the ReplaceText transform again.

Used by itself, it replaces text strings in all the accelerator input files. But what if we wanted to
apply this replacement only to a subset of the files? Then we can use an Include filter to select

only a subset of files of interest and chain that subset into ReplaceText. For example:

type: Chain
transformations:
- type: Include
  patterns: ['**/pom.xml']
- type: ReplaceText
  substitutions:
  - text: hello-fun
    with: "#artifactId"

Merge

Chaining Include into ReplaceText limits the scope of ReplaceText to a subset of the input files.

But unfortunately it also eliminates all the other files from the result. For example:

engine:
  type: Chain
  transformations:
  - type: Include
    patterns: ['**/pom.xml']
  - type: ReplaceText
    substitutions:
    - text: hello-fun
      with: "#artifactId"

The above accelerator produces a ZIP file that only contains pom.xml files and nothing else.

Application Accelerator for VMware Tanzu

VMware, Inc. 25



What if we also wanted to have other files in that ZIP? Maybe we want to include some Java files
as well (but we don't want to apply the same text replacement to them).

It may be tempting to write something like this:

engine:
  type: Chain
  transformations:
  - type: Include
    patterns: ['**/pom.xml']
  - type: ReplaceText
    ...
  - type: Include  
    patterns: ['**/*.java']

Unfortunately that doesn't work. The reason is that if we chain non-overlapping includes together
like this then the result will be an empty result set. The reason is that the first include retains
only pom.xml files. These files are fed to the next transform in the chain. The second include only

retains .java files, but since there are only pom.xml files left in the input at this point... the result is

an empty set.

This is where Merge comes in. A Merge takes the outputs of several transforms executed

independently on the same input sourceset and combines or 'merges' them together into a single
sourceset.

So for example:

engine:
  type: Merge
  sources:
  - type: Chain
    - type: Include
      patterns: ['**/pom.xml']
    - type: ReplaceText
      ...
  - type: Include
    patterns: ['**/*.java']

The above accelerator produces a result which includes both:

n the pom.xml files with some text replacements applied to them.

n verbatim copies of all the .java files.

Shortened notation

It gets cumbersome and verbose to combine transforms like Include, Exclude and ReplaceText
with explicit Chain and Merge operators. Also there is a 'natural' and very common composition

pattern to using them (i.e. select an interesting subset using includes/excludes; apply a chain of
additional transformations to the subset; then merge the result with other stuff produced by other
transforms).

Application Accelerator for VMware Tanzu

VMware, Inc. 26



That is why we provide a 'swiss army knife' transform (aka the Combo transform) that combines

'Include', 'Exclude', 'Merge' and 'Chain' together in a natural way. Here's an example / template of
what it looks like:

type: Combo
include: ['**/*.txt', '**/*.md']
exclude: ['**/secret/*']
merge:
- <transform-definition>
- ...
chain:
- <transform-definition>
- ...

Each of the properties in this Combo transform is optional (as long as you specify at least one).

Notice how each of the properties include, exclude, merge and chain corresponds to the name of

a type of transform (but spelled with lower case letters).

Intuitively if you specify only one of the properties the Combo transform behaves exactly the same

as if you used that type of transformation by itself.

So, for example:

merge: ...

Behaves the same as:

type: Merge
sources: ...

When you do specify multiple properties at the same time then the 'combo' transform composes
them together in a "logical way" using a combination of Merge and Chain under the hood.

So for example:

include: ['**/*.txt', '**.md']
chain:
- type: ReplaceText
  ...

Is the same as:

type: Chain
transformations:
- type: Include
  patterns: ['**/*.txt', '**.md']
- type: Chain
  trasformations:
  - type: ReplaceText
    ...

Application Accelerator for VMware Tanzu

VMware, Inc. 27



When you use all of the properties of Combo at once:

include: I
exclude: E
merge:
- S1
- S2
chain:
- T1
- T2

This is equivalent to:

type: Chain
transformations:
- type: Include
  patterns: I
- type: Exclude
  patterns: E
- type: Merge
  sources:
  - S1
  - S2
- T1
- T2

TODO: Add a boxes and arrows 'picture' of the above combo transform?

A Combo of one?

Note that you can use the Combo as a convenient shorthand for a single type of annotation (i.e.

while you can use it to combine multiple types, and while that is its main purpose; that doesn't
mean you have to). For example:

include: ["**/*.java"]

This is a Combo transform (remember: type: Combo is optional). But rather than combining multiple

types of transforms, it only defines the include property. This makes it behaves exactly the same

an Include transform:

type: Include
patterns: ["**/*.java"]

Therefore usually it is more convenient to use a Combo transform to denote a single Include,

Exclude, Chain or Merge transform as it is slightly shorter to write it as a Combo than writing it with

an explicit type: property.

A Common Pattern with Merge Transforms

It is a common and useful pattern to use merges with overlapping contents to apply a
transformation to a subset of files and then replace these changed files within a bigger context.

Application Accelerator for VMware Tanzu

VMware, Inc. 28



For example:

engine:
  merge:
  - include: ["**/*"]
  - include: ["**/pom.xml"]
    chain:
    - type: ReplaceText
        subsitutions: ...

The above accelerator will copy all files from acceleator <root> whilst applying some text

replacements only to pom.xml files (other files are copied verbatim). Let's understand exactly how

this works by picking it appart.

Transform A is applied to the files from accelerator <root>. It selects all files. Note that this also
includes pom.xml files.

Transform B is also applied to the files from accelerator <root> (remember that Merge passes the

same input independently to each of its child transforms). Transform B selects pom.xml files and

replaces some text in them.

So both Transform A and Transform B output pom.xml files. The fact that both result sets contain

the same file (and with different contents in them in this case) is a kind of conflict that has to
be resolved. By default, Combo follows a very simple rule to resolve such conlicts: just take the

contents from the last child. So essentially it behaves as if you overlaid both result sets one after
another into the same location, and the contents of the latter are overwriting any previous files
that were already placed there by the earlier.

In this example that means that, while both Transform A and Transform B produce contents for
pom.xml, the contents from Transform B 'wins' so you get the version of the pom.xml that has text

replacements applied to it (rather than the verbatim copy from Transform A).

Conditional Transforms

Every <transform-definition> can have a condition attribute.

  - condition: "#k8sConfig == 'k8s-resource-simple'"
    include: [ "kubernetes/app/*.yaml" ]
    chain:
      - type: ReplaceText
        substitutions:
         - text: hello-fun
           with: "#artifactId"

Application Accelerator for VMware Tanzu

VMware, Inc. 29



When a transform's condition is false then that particular transform is 'disabled'. What this means

is that it gets replaced with a transform that 'does nothing'. Now what that exactly means is
a little subtle because, perhaps surprisingly, 'doing nothing' actually means something different
depending on the context you are in.

n When in the context of a 'Merge' a disabled transform behaves like something that returns an
empty set. Intuition: a Merge adds stuff together using a kind of union; adding an empty set to
union essentially does nothing.

n When in the context of a 'Chain' however, a disabled transform behaves like the 'identity'
function instead (i.e. lambda (x) => x). Intuition: when you chain functions together a value

is passed through all functions in succession. Thus, each function in the chain gets the chance
to 'do something' by returning a different/modified value. So, if you are a function in a chain,
then to 'do nothing', means 'return the input you received unchanged as your output'.

If this all sounds a bit confusing, fortunately there is an easy 'rule of thumb' you can use to
understand and predict the effect a disabled transform will have in the context of your accelerator
definition.

The rule is this: if a transform's condition evaluates to false, then just pretend it isn't there. In
other words, your accelerator will behave the same as if you just deleted (or commented out) that
transform's yaml text entirely from the accelerator definition file.

Let's look at two different examples to illustrate both cases.

Conditional 'Merge' transform

Our first example has a conditional transform in a Merge context:

merge:
  - condition: "#k8sConfig == 'k8s-resource-simple'"
    include: [ "kubernetes/app/*.yaml" ]
    chain:
      ...
  - include: [ "pom.xml" ]
    chain:
      ...

If the condition of Transform A above is false it gets replaced with an 'empty set' because it is

being used in a Merge context. This has the same effect as if the whole of Transform A was deleted

or commented out:

merge:
  - include: [ "pom.xml" ]
    chain:
      ...

The result in this example is that if the condition is false, only pom.xml file will end up in the result.

Application Accelerator for VMware Tanzu

VMware, Inc. 30



Conditional 'Chain' transform

In our next example some conditional transforms are used in a Chain context:

merge:
- include: [ '**/*.json' ]
  chain:
  - type: ReplaceText
    condition: '#customizeJson'  
    substitutions: ...
  - type: JsonPrettyPrint
    condition: '#prettyJson'
    indent: '#jsonIndent'

Note: the JsonPrettyPrint transform type is purely 'hypothetical'. We could have such a

transform but we don't provide it at the moment.

In the above example both Transform A and Transform B are conditional and used in a Chain
context. Transform A is chained after the include transform. Whereas Transform B is chained

after Transform A. When either of these conditions is false, the corresponding transform will

behave like the identity function (whatever set of files it gets as input is exactly what it returns as
output).

You can see this behaves in accordance with our 'rule of thumb'. For example if Transform A's
condtion is false. Then it behaves just as if Transform A wasn't there: Transform A is chained

after include so it receives the include's result, returns it unchanged, and this is passed to

Transform B. So in orther words... the result of the include is passed as is to Transform B. This is

exactly what would also happen if Transform A wasn't there.

A small Gotcha with using Conditionals in Merge Transforms

As discussed above, it is a useful pattern to use merges with overlapping contents. But you have
to be careful using this in combination with conditional transforms.

Reconsider our earlier example:

engine:
  merge:
  - include: ["**/*"]
  - include: ["**/pom.xml"]
    chain:
    - type: ReplaceText
      subsitutions: ...

Now we add a little twist. Let's say we only wanted to include pom files if the user selects a
useMaven option.

We might be tempted to simply add a 'condition' to Transform B so as to disable it when that
option isn't selected:

engine:
  merge:

Application Accelerator for VMware Tanzu

VMware, Inc. 31



  - include: "**/*"
  - condition: '#useMaven'
    include: ["**/pom.xml"]
    chain:
    - type: ReplaceText
      subsitutions: ...

Sadly, this doesn't do what you might expect. The final result will still contain pom.xml files. To

understand why, remember the 'rule of thumb' for disabled transforms. The rule says that, if a
transform is disabled, we pretend it simply isn't there. So when #useMaven is false the example

reduces to:

engine:
  merge:
  - include: ["**/*"]

This accelerator simply copies all files from acceleator <root> including pom.xml.

There are several ways to avoid this pitfall. One is to make sure the pom.xml files are not included

in Transform A by explicitly excluding them:

  ...
  - include: ["**/*"]
    exclude: ["**/pom.xml"]
  ...

Another way is to apply the 'exclusion of pom.xml' conditionally in a Chain after the main

transform:

engine:
  merge:
  - include: ["**/*"]
  - include: ["**/pom.xml"]
    chain:
    - type: ReplaceText
        subsitutions: ...
  chain:
  - condition: '!#useMaven'
    exclude: ['**/pom.xml']

Merge conflict

A subtlety that needs explaining is that the representation of the 'Set of files' upon which
transforms operate is 'richer' than what can be physically stored on a typical file system. A key
difference is that our 'Set of Files' allows for multiple files with the same path to exist at the same
time. Of course, when files are initially read from a physical file system, or a ZIP file, this situation
does not arise. However, as transforms are applied to this input, it is possible to produce results
that have more than one file with the same path (and different contents).

Application Accelerator for VMware Tanzu

VMware, Inc. 32



We have in fact already seen some typical examples where this happens through a merge
operation. Recall this example:

merge:
- include: ["**/*"]
- include: ["**/pom.xml"]
  chain:
  - type: ReplaceText
    subsitutions: ...

The result of the above merge will have two files with path pom.xml (assuming there was a pom.xml
file in the input). Transform A produces a pom.xml that is a verbatim copy of the input file;

Transform B produces a modified copy with some text replaced in it.

It is not possible to have two files on disk with the same path. Therefore this conflict has to be
resolved before we can write the result to disk (or pack it into a ZIP file).

As the example shows, merges are likely to give rise to these conflicts. So it is somewhat intuitive
to call this a 'Merge conflict'. It is however important to understand these kinds of conlficts can
also arise from other operations such as, for example, RewritePath:

type: RewritePath
regex: '.*.md'
rewriteTo: "'docs/README.md'"

The above example will rename any .md file to docs/README.md. Assuming the input contains more

than one .md file, then the output will contain multiple files with path docs/README.md. Again we

have a conflict because we can only have one such file exist in a physical file system or ZIP file.

Resolving 'Merge' Conflicts

By default when a conflict arises the engine doesn't really do anything with it. Our internal
representation for Set of Files allows for multiple files with the same path. Thus, the engine

simply carries on manipulating the files as is. This isn't really a problem, until the files will need to
be materialized to disk (or ZIP file). If a conflict is still present at that time then an error will be
raised.

This means that if your accelerator produces these kinds of conflicts then they need to be
resolved before files can be materialized to disk. To this end we provide the UniquePath transform
transform. This transform allows specifying explicitly what should be done when more than one file
has the same path. For example:

chain:
- type: RewritePath
  regex: '.*.md'
  rewriteTo: "'docs/README.md'"
- type: UniquePath
  strategy: Append

Application Accelerator for VMware Tanzu

VMware, Inc. 33



The result of the above transform is that all .md files are gathered up and concatenated into a

single file at path docs/README.md. Other possible resolution strategies could be that you keep only

the contents of one of the files (see Conflict resolution).

Note that Combo transform transform also comes with some convenience support for conflict
resolution built in (it automatically selects the UseLast strategy if none is explicitly supplied.

This means that in practice you probably will rarely, if ever, need to explicitly specify a conflict
resolution strategy.

Understanding file ordering

As mentioned above, our 'Set of Files' represenation is richer than the files on a typical file system.
We already stated that it allows for multiple files with the same path. Another way in which it is
'richer' is that the files in the set are 'ordered' (i.e. a 'FileSet' is actually more like an ordered List
than like an unordered Set).

In most situations, the order of files in a 'FileSet' doesn't really matter. However in conflict
resolution it is actually significant. If we look at the RewritePath example again, you might ask

about the order the various .md files will be appended to eachother. This ordering is directly

determined by the order of the files in the input set.

That begs the question 'so what is that order?'. In general, when files are read from disk to create
a FileSet, we can not assume a specific order. Yes, the files will be read and processed in some

sequential order, but the actual order is not well-defined, it depends on implementation details of
the underlying file system. The accelerator engine therefore does not guarantee a specific order in
this case, it only guarantees that it preserves whatever ordering it gets from the file system, and
processes files in accordance with that order.

As an accelerator author you should probably avoid relying on the file order produced from
reading directly from a file system. Thus the RewritePath example above is something you

probably shouldn't do... unless you do not particularly care about the ordering of all the different
sections of the produced README.md file.

If, however, you do care and want to control the order explicitly, then you can make use of the
fact that Merge will process its children in order and reflect this order in the resulting output Set of

Files. For example:

chain:
  - merge:
      - include: ['README.md']
      - include: ['DEPLOYMENT.md']
        chain:
          - type: RewritePath
            rewriteTo: "'README.md'"
  - type: UniquePath
    strategy: Append

In this example we know without a doubt that README.md (from the first child of merge) comes

before DEPLOYMENT.md (from the second child of merge). So in this example we can control the

merge order directly (by changing the order of the merge children).

Application Accelerator for VMware Tanzu

VMware, Inc. 34



Conclusion

This concludes our 'Gentle' introduction. This introduction was focussed on an intuitive
understanding of the <transform-definition> notation, which is used to describe precisely how

the accelerator engine should generate new project content from the files in the accelerator root.

From here on you may want to move on to reading one of the following more detailed documents:

n An exhaustive Transforms reference of all built-in transform types,

n A sample, commented accelerator.yaml to learn from a concrete example.

Transforms reference

Available transforms

Here is a list of available transforms and a brief description of their uses. You can use:

n Combo transform as a shortcut notation for many common operations. It combines the
behaviors of many of the other transforms.

n Include transform to select files to operate on.

n Exclude transform to select files to operate on.

n Merge transform to work on subsets of inputs and to gather the results at the end.

n Chain transform to apply several transforms in sequence using function composition.

n Let transform to introduce new scoped variables to the model.

n ReplaceText transform to perform simple token replacement in text files.

n RewritePath transform to move files around using regular expression (regex) rules.

n OpenRewriteRecipe transform to apply Rewrite recipes, such as package rename.

n YTT transform to run the ytt tool on its input files and gather the result.

n UseEncoding transform to set the encoding to use when handling files as text.

n UniquePath transform to decide what to do when several files end up on the same path.

See also

n Conflict resolution

Combo transform

The Combo transform is the Swiss army knife of transforms. You might often use it without even

realizing it. Whenever you author a node in the transform tree without specifying type: x, you're

using Combo.

Combo combines the behaviors of Include transform, Exclude transform, Merge transform, Chain

transform, UniquePath transform, and even Let transform in a way that feels natural.

Application Accelerator for VMware Tanzu

VMware, Inc. 35

https://docs.openrewrite.org/


Syntax reference

Here is the full syntax of Combo:

type: Combo                  # This can be omitted, because Combo is the default transform 
type.
let:                        # See Let.
  - name: <string>
    expression: <SpEL expression>
  - name: <string>
    expression: <SpEL expression>
condition: <SpEL expression>
include: [<ant pattern>]    # See Include.
exclude: [<ant pattern>]    # See Exclude.
merge:                      # See Merge.
  - <m1-transform>
  - <m2-transform>
  - ...
chain:                     # See Chain.
  - <c1-transform>
  - <c2-transform>
  - ...
onConflict: <conflict resolution> # See UniquePath.

Behavior

A few things to know about properties of the Combo transform:

n They all have defaults.

n They are all optional.

n You must use at least one. An empty, unconfigured Combo, like such as any other transform,

serves no purpose.

When you configure the Combo transform with all properties, it behaves as follows:

1 Applies the include as if it were the first element of a Chain transform. The default value is

['**']; if not present, all files are retained.

2 Applies the exclude as if it were the second element of the chain. The default value is []; if not

present, no files are excluded. At this point of the chain, only files that match the include, but

are not excluded by the exclude, remain.

3 Feeds all those files as input to all transforms declared in the merge property, exactly as Merge

transform does. The result of that Merge, which is the third transform in the big chain, is

another set of files. If there are no elements in merge, the previous result is directly fed to the

next step.

4 The result of the merge step is prone to generate duplicate entries for the same path. So it's

implicitly forwarded to a UniquePath transform check, configured with the onConflict Conflict

resolution. The default policy is to retain files appearing later. The results of the transform that
appear later in the merge block "win" against results appearing earlier.

Application Accelerator for VMware Tanzu

VMware, Inc. 36



5 Passes that result as the input to the Chain transform defined by the chain property. Put

another way, the chain is prolonged with the elements defined in chain. If there are no

elements in chain, it's as if the previous result was used directly.

6 If the let property is defined in the Combo, the whole execution is wrapped inside a Let

transform that exposes its derived symbols.

To recap in pseudo code, a giant Combo behaves like this:

Let(symbols, in:
    Chain(
        include,
        exclude,
        Chain(Merge(<m1-transform>, <m2-transform>, ...), UniquePath(onConflict)),
        Chain(<c1-transform>, <c2-transform>, ...)
    )
)

You rarely use at any one time all the features that Combo offers. Yet Combo is a good way to author

other common building blocks without having to write their type: x in full.

For example, this:

include: ['**/*.txt']

is a perfectly valid way to achieve the same effect as this:

type: Include
patterns: ['**/*.txt']

Similarly, this:

chain:
  - type: T1
    ...
  - type: T2
    ...

is often preferred over the more verbose:

type: Chain
transformations:
  - type: T1
    ...
  - type: T2
    ...

Application Accelerator for VMware Tanzu

VMware, Inc. 37



As with other transforms, the order of declaration of properties has no impact. We've used a
convention that mimics the actual behavior for clarity, but the following applies T1 and T2 on
all .yaml files even though we VMware has placed the include section after the merge section.

merge:
  - type: T1
  - type: T2
include: ["*.yaml"]

In other words, Combo applies include filters before merge irrespective of the physical order of the

keys in YAML text. It's therefore a good practice to place the include key before the merge key.

This makes the accelerator definition more readable, but has no effect on its execution order.

Examples

The following are typical use cases for Combo.

To apply separate transformations to separate sets of files. For example, to all .yaml files and to

all .xml files:

merge:                   # This uses the Merge syntax in a first Combo.
  - include: ['*.yaml']      # This actually nests a second Combo inside the first.
    chain:
      - type: T1
      - type: T2
  - include: ['*.yaml']      # Here comes a third Combo, used as the 2nd child inside the 
first
    chain:
      - type: T3
      - type: T4

To apply T1 then T2 on all .yaml files that are not in any secret directory:

include: ['**/*.yaml']
exclude: ['**/secret/**']
chain:
  - type: T1
    ..
  - type: T2
    ..

Include transform

The Include transform retains files based on their path, letting in only those files whose path

matches at least one of the configured patterns. The contents of files, and any of their other

characteristics, are unaffected.

Include is a basic building block seldom used as is, which makes sense if composed inside a Chain

transform or a Merge transform. It is often more convenient to leverage the shorthand notation
offered by Combo transform.

Application Accelerator for VMware Tanzu

VMware, Inc. 38



Syntax reference

type: Include
patterns: [<ant pattern>]
condition: <SpEL expression>

Examples

type: Chain
transformations:
  - type: Include
    patterns: ["**/*.yaml"]
  - type: # At this point, only yaml files are affected

See also

n Exclude transform

n Combo transform

Exclude transform

The Exclude transform retains files based on their path, letting everything in except those files

whose path matches at least one of the configured patterns. The contents of files, and any of their

other characteristics, are unaffected.

Exclude is a basic building block seldom used as is, which makes sense if composed inside a Chain

transform or a Merge transform. It is often more convenient to leverage the shorthand notation
offered by Combo transform.

Syntax reference

type: Exclude
patterns: [<ant pattern>]
condition: <SpEL expression>

Examples

type: Chain
transformations:
  - type: Exclude
    patterns: ["**/secret/**"]
  - type: # At this point, no file matching **/secret/** is affected.

See also

n Include transform

n Combo transform

Application Accelerator for VMware Tanzu

VMware, Inc. 39



Merge transform

The Merge transform feeds a copy of its input to several other transforms, then merges the results

together using set union.

A Merge of T1, T2, and T3 applied to input I results in T1(I) ∪ T2(I) ∪ T3(I).

An empty merge produces nothing (∅).

Syntax reference

type: Merge
sources:
  - <transform>
  - <transform>
  - <transform>
  - ...
condition: <SpEL expression>

See also

n Combo transform is often used to express a Merge and other transformations in a shorthand

syntax.

Chain transform

The Chain transform uses function composition to produce its final output.

A chain of T1 then T2 then T3 first applies transform T1. It then applies T2 to the output of T1, and
finally applies T3 to the output of that. In other words, T3 o T2 o T1.

An empty chain acts as function identity.

Syntax reference

type: Chain
transformations:
  - <transform>
  - <transform>
  - <transform>
  - ...
condition: <SpEL expression>

Let transform

The Let transform wraps another transform, creating a new scope that extends the existing scope.

SpEL expressions inside the Let can access variables from both the existing scope and the new

scope.

Note: Variables defined by the Let should not shadow existing variables. If they do,

those existing variables won't be accessible.

Application Accelerator for VMware Tanzu

VMware, Inc. 40



Syntax reference

type: Let
symbols:
- name: <string>
  expression: <SpEL expression>
- ...
in: <transform> # <- new symbols are visible in here

Execution

The Let adds variables to the new scope by computation ofSpEL expressions.

engine:
  let:
  - name: <string>
    expression: <SpEL expression>
  - ...

Both a name and an expression must define each symbol where:

n name must be a camelCase string name. If a let symbol happens to have the same name as a

symbol already defined in the surrounding scope, then the local symbol shadows the symbol
from the surrounding scope. This makes the variable from the surrounding scope inaccessible
in the remainder of the Let but doesn't alter its original value.

n expression must be a valid SpEL expression expressed as a YAML string. Be careful when

using the # symbol for variable evaluation, because this is the comment marker in YAML. So

SpEL expressions in YAML should enclose strings in quotes or rely on block style.

Symbols defined in the Let are evaluated in the new scope in the order they are defined. This

means that symbols lower in the list can make use of the variables defined higher in the list but not
the other way around.

See also

n Combo transform provides a way to declare a Let scope as well as other transforms in a short

syntax.

ReplaceText transform

The ReplaceText transform allows replacing one or several text tokens in files as they are being

copied to their destination. The replacement values are the result of dynamic evaluation of SpEL
expressions.

This transform is text-oriented and it requires knowledge of how to interpret the stream of bytes
that make up the file contents into text. All files are assumed to use UTF-8 encoding by default, but

you can use the UseEncoding transform transform upfront to specify a different charset to use on
some files.

Application Accelerator for VMware Tanzu

VMware, Inc. 41

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://yaml.org/spec/1.2/spec.html#Block
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions


You can use ReplaceText transform in one of two ways:

n To replace several literal text tokens.

n To define the replacement behavior using a single regular expression, in which case the
replacement SpEL expression can leverage the regex capturing group syntax.

Syntax reference

Syntax reference for replacing several literal text tokens:

type: ReplaceText
substitutions:
  - text: STRING
    with: SPEL-EXPRESSION
  - text: STRING
    with: SPEL-EXPRESSION
  - ..
condition: SPEL-EXPRESSION

Syntax reference for defining the replacement behavior using a single regular expression:

Note: Regex is used to match the entire document. To match on a per line basis, enable
multi-line mode by including (?m) in the regex.

type: ReplaceText
regex:
  pattern: REGULAR-EXPRESSION
  with: SPEL-EXPRESSION
condition: SPEL-EXPRESSION

In both cases, the SpEL expression can use the special #files helper object. This enables the

replacement string to consist of the contents of an accelerator file.See the following example.

Another set of helper objects are functions of the form xxx2Yyyy() where xxx and yyy can take

the value camel, kebab, pascal, or snake. For example, camel2Snake() enables changing from

camelCase to snake_case.

Examples

Replacing the hardcoded string "hello-world-app" with the value of variable #artifactId in

all .md, .xml, and .yaml files.

include: ['**/*.md', '**/*.xml', '**/*.yaml']
chain:
  - type: ReplaceText
    substitutions:
      - text: "hello-world-app"
        with: "#artifactId"

Application Accelerator for VMware Tanzu

VMware, Inc. 42



Doing the same in the README-fr.md and README-de.md files, which are encoded using the

ISO-8859-1 charset:

include: ['README-fr.md', 'README-de.md']
chain:
  - type: UseEncoding
    encoding: 'ISO-8859-1'
  - type: ReplaceText
    substitutions:
      - text: "hello-world-app"
        with: "#artifactId"

Still the same initial idea, but making sure the value appears as kebab case, while the entered
#artifactId is using camel case:

include: ['**/*.md', '**/*.xml', '**/*.yaml']
chain:
  - type: ReplaceText
    substitutions:
      - text: "hello-world-app"
        with: "#camel2Kebab(#artifactId)"

Replacing the hardcoded string "REPLACE-ME" with the contents of file named after the value of the

#platform option in README.md:

include: ['README.md']
chain:
  - type: ReplaceText
    substitutions:
      - text: "REPLACE-ME"
        with: "#files.contentsOf('snippets/install-' + #platform + '.md')"

See also

n UseEncoding transform

RewritePath transform

The RewritePath transform allows you to change the name and path of files without affecting their

content.

Syntax reference

type: RewritePath
regex: <string>
rewriteTo: <SpEL expression>
matchOrFail: <boolean>

For each input file, RewritePath attempts to match its path by using the regular expression (regex)

defined by the regex property. If the regex matches, RewritePath changes the path of the file to

the evaluation result of rewriteTo.

Application Accelerator for VMware Tanzu

VMware, Inc. 43



rewriteTo is an expression that has access to the overall engine model and to variables defined

by capturing groups of the regular expression. Both named capturing groups (?<example>[a-
z]*) and regular index-based capturing groups are supported. g0 contains the whole match, g1
contains the first capturing group, and so on.

If the regex doesn't match, the behavior depends on the matchOrFail property:

n If set to false, which is the default, the file is left untouched.

n If set to true, an error occurs. This prevents misconfiguration if you expect all files coming in

to match the regex. For more information about typical interactions between RewritePath and

Chain + Include, see the following section, Interaction with Chain and Include.

The default value for regex is the following regular expression, which provides convenient access

to some named capturing groups:

^(?<folder>.*/)?(?<filename>([^/]+?|)(?=(?<ext>\.[^/.]*)?)$)

Using some/deep/nested/file.xml as an example, the preceding regular expression captures:

n folder: The full folder path the file is in. In this example, some/deep/nested/.

n filename: The full name of the file, including extension if present. In this example, file.xml.

n ext: The last dot and extension in the filename, if present. In this example, .xml.

The default value for rewriteTo is the expression #folder + #filename, which doesn't actually

rewrite paths.

Examples

The following moves all files from src/main/java to sub-module/src/main/java:

type: RewritePath
regex: src/main/java/(.*)
rewriteTo: "'sub-module/src/main/java' + #g1"   # 'sub-module/' + #g0 works too

The following flattens all files found inside the sub-path directory and its subdirectories, and puts

them into the flattened folder:

type: RewritePath
regex: sub-path/(.*/)*(?<filename>[^/]+)
rewriteTo: "'flattened' + #filename"   # 'flattened' + #g2 would work too

The following turns all paths into lowercase:

type: RewritePath
rewriteTo: "#g0.toLowerCase()" 

Application Accelerator for VMware Tanzu

VMware, Inc. 44



Interaction with Chain and Include

It's common to define pipelines that perform a Chain of transformations on a subset of files,

typically selected by Include/Exclude:

- include: "**/*.java"
- chain:
    - # do something here
    - # and then here

If one of the transformations in the chain is a RewritePath operation, chances are you want the

rewrite to apply to all files matched by the Include. For those typical configurations, you can set

the matchOrFail guard to true to make sure the regex you provide indeed matches all files coming

in.

See also

n UniquePath transform can be used to ensure rewritten paths don't clash with other files, or to
decide which path to select if they do.

OpenRewriteRecipe transform

The OpenRewriteRecipe transform allows you to apply any Open Rewrite Recipe to a set of files

and gather the results.

Note: Currently, only Java related recipes are supported. The engine leverages version
7.0.0 of Open Rewrite and parses Java files using the grammar for Java 11.

Syntax reference

type: OpenRewriteRecipe
recipe: <string>                  # Full qualified classname of the recipe
options:
  <string>: <SpEL expression>      # Keys and values depend on the class of the recipe
  <string>: <SpEL expression>      # Refer to the documentation of said recipe
  ...

Example

The following example applies the ChangePackage Recipe to a set of Java files in the com.acme
package and moves them to the value of #companyPkg. This is more powerful than using

RewritePath transform and ReplaceText transform, as it reads the syntax of files and correctly
deals with imports, fully vs. non-fully qualified names, and so on.

chain:
  - include: ["**/*.java"]
  - type: OpenRewriteRecipe
    recipe: org.openrewrite.java.ChangePackage
    options:
      oldFullyQualifiedPackageName: "'com.acme'"

Application Accelerator for VMware Tanzu

VMware, Inc. 45

https://docs.openrewrite.org/
https://docs.openrewrite.org/reference/recipes/java
https://docs.openrewrite.org/reference/recipes/java/changepackage


      newFullyQualifiedPackageName: "#companyPkg"
      recursive: true

YTT transform

The YTT transform invokes the YTT template engine as an external process.

Syntax reference

type: YTT
extraArgs: # optional
  - <SPEL-EXPRESSION-1>
  - <SPEL-EXPRESSION-2>
  - ...

The YTT transforms yaml notation does not require any parameters. When invoked without

parameters (the typical use case), then YTT transforms input is determined entirely by two things
only:

1 The input files fed into the transform.

2 The current values for options and derived symbols.

Execution

YTT is invoked as an external process with the following command line:

ytt -f <input-folder> \
    --data-values-file <symbols.json> \
    --output-files <output-folder> \
    <extra-args>

The <input-folder> is a temporary directory into which the input files are 'materialized' (i.e. the

set of files that is passed to the YTT transform as input, is written out into this directory to allow the
YTT process to read them).

The <symbols.json> file is a temporary JSON file which the current option values and derived

symbols are materialized in the form of a JSON map. This allows YTT templates in the <input-
folder> to make use of these symbols during processing.

The <output-folder> is a fresh temporary directory which is empty at the time of invocation. In a

typical scenario, upon completion, the output directory contains files generated by YTT.

The <extra-args> are additional command line arguments obtained by evaluating the SPEL

expressions from the extraArgs attribute.

When the ytt process completes with a 0 exit code, then this is considered as a 'successful'

execution and the contents of the output directory is then taken to be the result of the YTT
Transform.

When the ytt process completes with a non 0 exit code; the execution of the YTT transform is

considered to have failed and an exception is raised.

Application Accelerator for VMware Tanzu

VMware, Inc. 46

https://carvel.dev/ytt/


Examples

Basic invocation

When you want to execute ytt on the contents of the entire accelerator repository use the 'YTT'

transform as your only transform in the engine declaration.

accelerator:
  ...
engine:
  type: YTT

Note: To do anything beyond calling YTT then you will need to compose YTT into
your accelerator flow using merge or chain combinators. This is exactly the same as
composing any other type of transform.

For example, when you want to define some derived symbols as well as merge the results from
YTT with results from other parts of your accelerator transform, you may reference this example:

engine:
  let: # Define derived symbols visible to all transforms (including YTT)
  - name: theAnswer
    expression: "41 + 1"
  merge:
  - include: ["deploy/**.yml"] # select some yaml files to process with YTT
    chain: # Chain selected yaml files to YTT
      type: YTT
  - ... include/generate other stuff to be merged alongside yaml generated by YTT...

The preceding example uses a combination of Chain transform and Merge transform. You can use
either Merge or Chain or both to compose YTT into your accelerator flow. Which one you choose

depends on how you want to use YTT as part of your larger accelerator.

Using extraArgs

The extraArgs is used to pass additional command line arguments to YTT. This is used to add file

marks.

For example, the following runs YTT and renames foo/demo.yml file in its output to bar/demo.yml.

engine:
  type: YTT
  extraArgs: ["'--file-mark'",  "'foo/demo.yml:path=bar/demo.yml'"]

Note: The extraArgs attribute expects SPEL expressions. Take care to use proper

escaping of literal strings using double and single quotes (that is, `"'LITERAL-STRING'").

UseEncoding transform

When considering files in textual form (for example when doing ReplaceText transform), the
engine needs to decide which encoding to use.

Application Accelerator for VMware Tanzu

VMware, Inc. 47

https://carvel.dev/ytt/docs/latest/file-marks/#available-marks
https://carvel.dev/ytt/docs/latest/file-marks/#available-marks
https://en.wikipedia.org/wiki/Character_encoding


By default, UTF-8 is assumed. If any files need to be handled differently, use the UseEncoding
transform to annotate them with an explicit encoding.

Note: UseEncoding returns an error if you apply encoding to files that have already been

explicitly configured with a particular encoding.

Syntax reference

type: UseEncoding
encoding: <encoding>    # As recognized by the java java.nio.charset.Charset class
condition: <SpEL expression>

Supported encoding names include, for example, UTF-8, US-ASCII, and ISO-8859-1.

Example usage

UseEncoding is typically used as an upfront transform to, for example, ReplaceText transform in a

chain:

type: Chain   # Or using "Combo"
transformations:
  - type: UseEncoding
    encoding: ISO-8859-1
  - type: ReplaceText
    substitutions:
      - text: "hello"
        with: "#howToSayHello" 

See also

n ReplaceText transform

UniquePath transform

You can use the UniquePath transform to ensure there are no path conflicts between files

transformed. Frequently, you'll use this at the tail of a Chain transform.

Syntax reference

type: UniquePath
strategy: <conflict resolution>
condition: <SpEL expression>

Examples

The following example concatenates the file that was originally named DEPLOYMENT.md to the file

README.md:

chain:
  - merge:
      - include: ['README.md']
      - include: ['DEPLOYMENT.md']

Application Accelerator for VMware Tanzu

VMware, Inc. 48



        chain:
          - type: RewritePath
            rewriteTo: "'README.md'"
  - type: UniquePath
    strategy: Append

See also

n UniquePath uses a Conflict resolution strategy to decide what to do when several input files

use the same path.

n Combo transform implicitly embeds a UniquePath after the Merge transform defined by its

merge property.

Conflict resolution

This topic describes how to resolve conflicts that transforms might produce.

For instance, if you're using Merge transform (or Combo transform's merge syntax) or RewritePath

transform, a transform can produce several files at the same path. The engine then needs to take

an action: Should it keep the last file? Report an error? Concatenate the files together?

Such conflicts can arise for a number of reasons. You can avoid or resolve them by configuring
transforms with a conflict resolution. For example:

n Combo transform uses UseLast by default, but you can configure it to do otherwise.

n You can explicitly end a transform Chain transform with a UniquePath transform, which by
default uses Fail. This is customizable.

Syntax reference

type: Combo      # often omitted
merge:
  - <transform>
chain:
  - <transform>
  - ...
onConflict: <conflict resolution>  # defaults to 'UseLast'

type: Chain      # or implicitly using Combo
transformations:
  - <transform>
  - <transform>
  - type: UniquePath
    strategy: <conflict resolution>  # defaults to 'Fail'

Available strategies

The following values and behaviors are available:

n Fail: Stop processing on the first file that exhibits path conflicts.

Application Accelerator for VMware Tanzu

VMware, Inc. 49



n UseFirst: For each conflicting file, the file produced first (typically by a transform appearing

earlier in the YAML definition) is retained.

n UseLast: For each conflicting file, the file produced last (typically by a transform appearing

later in the YAML definition) is retained.

n Append: The conflicting versions of files are concatenated (as if using cat file1 file2 ...),

with files produced first appearing first.

See also

n Combo transform

n UniquePath transform

SpEL Samples

This document shows some common Spring Expression Language (SpEL) use cases for the
accelerator.yaml file.

Variables

All the values added as options in the accelerator section from the yaml file can be referenced as

variables in the engine section, you can access the value using the syntax #<option name> i.e.

options:
  - name: foo
    dataType: string
    inputType: text
...
engine:
  - include: ["some/file.txt"]
    chain:
    - type: ReplaceText
      substitutions:
      - text: bar
        with: "#foo"

This sample will replace every occurrence of the text bar in the file some/file.txt for the contents

of the foo option.

Implicit Variables

Some variables are automatically made available to the model by the engine. At the time of
writing, these are the following:

n artifactId is a built-in value which is derived from the projectName passed in from the UI with

spaces replaced by '_'. If that value is empty it will be set to app.

Application Accelerator for VMware Tanzu

VMware, Inc. 50

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions


n files is a helper object which currently exposes the contentsOf(<path>) method. You can

learn more about it in ReplaceText transform.

n camel2Kebab and other variations of the form xxx2Yyyy are a series of helper functions for

dealing with changing case of words. You can learn more about them ReplaceText transform.

Conditionals

You can use boolean options for conditional in your transformations.

options:
  - name: numbers
      inputType: select
      choices:
        first: First Option
        second: Second Option      
      defaultValue: first
...
engine:
  - include: ["some/file.txt"]
    condition: "#numbers == 'first'"
    chain:
    - type: ReplaceText
      substitutions:
      - text: bar
        with: "#foo"

This will replace the text only if the selected option is the first one.

Rewrite Path Concatenation

options:
  - name: renameTo
    dataType: string
    inputType: text
...
engine:
  - include: ["some/file.txt"]    
    chain:
    - type: RewritePath
      rewriteTo: "'somewhere/' + #renameTo + '.txt'"

Regular Expressions

Regular expressions let you use patterns to use as a matcher for strings, here is a small example of
what you can do with them.

options:
  - name: foo
    dataType: string

Application Accelerator for VMware Tanzu

VMware, Inc. 51



    inputType: text
    defaultValue: abcZ123
...
engine:
  - include: ["some/file.txt"]
    condition: "#foo matches '[a-z]+Z\\d+'"
    chain:
    - type: ReplaceText
      substitutions:
      - text: bar
        with: "#foo"

This example uses RegEx to match a string of letters that ends with a capital z and ends with any
number of digits. If this condition is fulfilled, the text wil be replaced in the file file.txt.

Accelerator Custom Resource Definition

The Accelerator custom resource definition (CRD) defines any accelerator resources that should

be made available to the Application Accelerator for VMware Tanzu system. It is a namespaced
CRD, meaning that any resources created will belong to a namespace and in order for the
resource to be available to the Application Accelerator system it must be created in the
namespace that the Application Acccelerator UI Server is configured to watch.

API definitions

The Accelerator CRD is defined with the following properties:

Property Value

Name Accelerator

Group accelerator.apps.tanzu.vmware.com

Version v1alpha1

ShortName acc

The Accelerator CRD spec defined in the AcceleratorSpec type has the following fields:

Field Description
Required/
Optional

displayName A short descriptive name used for an Accelerator. Optional (*)

description A longer description of an Accelerator. Optional (*)

iconUrl A URL for an image to represent the Accelerator in a UI. Optional (*)

tags An array of strings defining attributes of the Accelerator that can be
used in a search.

Optional (*)

git Defines the accelerator source Git repository. Optional (***)

Application Accelerator for VMware Tanzu

VMware, Inc. 52



Field Description
Required/
Optional

git.url The repository URL, can be a HTTP/S or SSH address. Optional (***)

git.ignore Overrides the set of excluded patterns in the .sourceignore format
(which is the same as .gitignore). If not provided, a default of .git/
will be used.

Optional (**)

git.interval The interval at which to check for repository updates. If not
provided it defaults to 10 min. Note: There is an additional refresh
interval (currently 10s) involved before accelerators may appear in
the UI. There could be a 10s delay before changes are reflected in
the UI.*

Optional (**)

git.ref Git reference to checkout and monitor for changes, defaults to
master branch.

Optional (**)

git.ref.branch The Git branch to checkout, defaults to master. Optional (**)

git.ref.commit The Git commit SHA to checkout, if specified tag filters will be
ignored.

Optional (**)

git.ref.semver The Git tag semver expression, takes precedence over tag. Optional (**)

git.ref.tag The Git tag to checkout, takes precedence over branch. Optional (**)

git.secretRef The secret name containing the Git credentials. For HTTPS
repositories the secret must contain username and password fields.
For SSH repositories the secret must contain identity, identity.pub
and known_hosts fields.

Optional (**)

source Defines the source image repository. Optional (***)

source.image Image is a reference to an image in a remote registry. Optional (***)

source.imagePullSecrets ImagePullSecrets contains the names of the Kubernetes Secrets
containing registry login information to resolve image metadata.

Optional

source.interval The interval at which to check for repository updates. Optional

source.serviceAccountName ServiceAccountName is the name of the Kubernetes ServiceAccount
used to authenticate the image pull if the service account has
attached pull secrets.

Optional

* Any optional fields marked with an asterisk (*) will be populated from a field of the same name
in the accelerator definition in the accelerator.yaml file if that is present in the Git repository for

the accelerator.

** Any fields marked with a double asterisk (**) are part of the Flux GitRepository CRD that is
documented in the Flux Source Controller Git Repositories documentation.

*** Any fields marked with a triple asterisk (***) are optional but one of git or source is required

to specify the repository to use. If git is specified the git.url is required and if source is specified

then source.image is required.

Application Accelerator for VMware Tanzu

VMware, Inc. 53

https://fluxcd.io/docs/components/source/gitrepositories/


Excluding files

The git.ignore field defaults to .git/ which is different from the defaults provided by the Flux

Source Controller GitRepository implementation. You can override this, and provide your own
exclusions. See the fluxcd/source-controller Excluding files documentation for additional details.

Non-public repositories

For Git repositories that aren't accessible anonymously we need to provide credentials in a
Secret. For HTTPS repositories the secret must contain username and password fields. For
SSH repositories the secret must contain identity, identity.pub and known_hosts fields. See the
fluxcd/source-controller HTTPS authentication and fluxcd/source-controller SSH authentication
documentation for additional details.

For Image repositories that aren't publicly available an image pull secret can be provided. See
Using imagePullSecrets.

Examples

A minimal example could look like the following manifest:

hello-fun.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1
kind: Accelerator
metadata:
  name: hello-fun
spec:
  git:
    url: https://github.com/sample-accelerators/hello-fun
    ref:
      branch: main

This minimal example creates an accelerator named hello-fun. The displayName, description,

iconUrl, and tags fields will be populated based on the content under the accelerator key in

the accelerator.yaml file that is found in the main branch of the Git repo at https://github.com/

sample-accelerators/hello-fun. That file could have this content:

accelerator.yaml

accelerator:
  displayName: Hello Fun
  description: A simple Spring Cloud Function serverless app
  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.png
  tags:
  - java
  - spring
  - cloud
  - function
  - serverless

...

Application Accelerator for VMware Tanzu

VMware, Inc. 54

https://github.com/fluxcd/source-controller/blob/v0.15.0/docs/spec/v1beta1/gitrepositories.md#excluding-files
https://github.com/fluxcd/source-controller/blob/v0.15.0/docs/spec/v1beta1/gitrepositories.md#https-authentication
https://github.com/fluxcd/source-controller/blob/v0.15.0/docs/spec/v1beta1/gitrepositories.md#ssh-authentication
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


We can also explicitly specify the displayName, description, iconUrl, and tags fields and this

would override any values provided in the accelerator's Git repository. The following example
explicitly sets thos fields plus the ignore field as well:

my-hello-fun.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1
kind: Accelerator
metadata:
  name: my-hello-fun
spec:
  displayName: My Hello Fun
  description: My own Spring Cloud Function serverless app
  iconUrl: https://github.com/simple-starters/icons/raw/master/icon-cloud.png
  tags:
    - spring
    - cloud
    - function
    - serverless
  git:
    ignore: ".git/, bin/"
    url: https://github.com/sample-accelerators/hello-fun
    ref:
      branch: test

Example for a private Git repo

To create an accelerator by using a private Git repo, first create a secret by using HTTP credentials
or SSH credentials.

Example using http credentials

Note: For better security, use an access token as the password.

kubectl create secret generic https-credentials \
    --from-literal=username=<user> \
    --from-literal=password=<password>

https-credentials.yaml

apiVersion: v1
kind: Secret
metadata:
  name: https-credentials
  namespace: default
type: Opaque
data:
  username: <BASE64>
  password: <BASE64>

After you have the secret file, you can create the accelerator by using the secret-ref property:

Application Accelerator for VMware Tanzu

VMware, Inc. 55



private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1
kind: Accelerator
metadata:
  name: private-acc
spec:
  displayName: private
  description: Accelerator using private repo
  git:
    url: <repository-URL>
    ref:
      branch: main
    secret-ref:
      name: https-credentials

Example using SSH credentials

ssh-keygen -q -N "" -f ./identity
ssh-keyscan github.com > ./known_hosts
kubectl create secret generic ssh-credentials \
    --from-file=./identity \
    --from-file=./identity.pub \
    --from-file=./known_hosts

This example assumes you don't have a key file already created. If you do, replace the values
using the following format:

--from-file=identity=<path to your identity file>

--from-file=identity.pub=<path to your identity.pub file>

--from-file=known_hosts=<path to your know_hosts file>

ssh-credentials.yaml

apiVersion: v1
kind: Secret
metadata:
  name: ssh-credentials
  namespace: default
type: Opaque
data:
  identity: <BASE64>
  identity.pub: <BASE64>
  known_hosts: <BASE64>

private-acc-ssh.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1
kind: Accelerator
metadata:
  name: private-acc
spec:

Application Accelerator for VMware Tanzu

VMware, Inc. 56



  displayName: private
  description: Accelerator using private repo
  git:
    url: <repository-URL>
    ref:
      branch: main
    secret-ref:
      name: ssh-credentials

Application Accelerator for VMware Tanzu

VMware, Inc. 57



Engine Specification 5
The following specifications describe the internal contracts between the engine and other
components that make up App Accelerator and may be of interest to authors and users:

n Options Specification

n Engine Specification

n HTTP Endpoint Specification

VMware, Inc. 58



Application Accelerator CLI 6
The Application Accelerator Command Line Interface (CLI) includes commands for developers and
operators to create and use accelerators.

This chapter includes the following topics:

n Server API connections for operators and developers

n Installation

n Commands

Server API connections for operators and developers

The Application Accelerator CLI must connect to a server for all provided commands except for
the help and version commands.

Operators typically use create, update, and delete commands for managing accelerators in a
Kubernetes context. These commands require a Kubernetes context where the operator is already
authenticated and is authorized to create and edit the accelerator resources. Operators can also
use the get and list commands by using the same authentication. For any of these commands, the
operator can specify the --context flag to access accelerators in a specific Kubernetes context.

Developers use the list, get, and generate commands for using accelerators available in an
Application Accelerator server. Developers use the --server-url to point to the Application

Accelerator server they want to use. The URL depends on the configuration settings for
Application Accelerator:

n For installations configured with a shared ingress, use https://accelerator.<domain> where

domain is provided in the values file for the accelerator configuration.

n For installations using a LoadBalancer, look up the External IP address by using:

kubectl get -n accelerator-system service/acc-server

Then use http://<External-IP> as the URL.

n For any other configuration, you can use port forwarding by using:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

VMware, Inc. 59



Then use http://localhost:8877 as the URL.

The developer can set an ACC_SERVER_URL environment variable to avoid having to provide the

same --server-url flag for every command. Simply run export ACC_SERVER_URL=<URL> for the

terminal session in use. If the developer explicitly specifies the --server-url flag, it overrides the

ACC_SERVER_URL environment variable if it is set.

Installation

The Application Accelerator CLI commands are part of the Tanzu CLI Accelerator Plug-in. This is
shipped as part of VMware Tanzu Application Platform and can be installed alongside other Tanzu
CLI plug-ins shipped with the platform. For information about installing the Tanzu CLI and bundled
plug-ins, see the Tanzu Application Platform documentation.

Commands

To view a list of commands, a description of commands, and help information, run:

tanzu accelerator  --help

Accelerator commands

Manage accelerators in a Kubernetes cluster.

Usage: tanzu accelerator [command]

  Where [command] is a compatible command.

Aliases:

accelerator

acc

Available Commands:

Command Description

apply Apply accelerator

create Create a new accelerator

delete Delete an accelerator

generate Generate project from accelerator

get Get accelerator info

list List accelerators

Application Accelerator for VMware Tanzu

VMware, Inc. 60

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html


Command Description

push Push local path to source image

update Update an accelerator

Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

-h, --help Help for accelerator

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

Use tanzu accelerator [command] --help for more information about a command.

Apply

Create or update accelerator resource by using the specified accelerator manifest file.

Usage: tanzu accelerator apply [flags]

  Where [flags] is one or more compatible flags.

Examples:

tanzu accelerator apply --filename <path-to-accelerator-manifest>

Flags:

Flag Description

-f, --filename string path of manifest file for the accelerator

-h, --help help for apply

-n, --namespace string namespace for accelerators; default is "accelerator-system"

Global Flags:

Flag Description

--context name name of the kubeconfig context to use; default is current-context defined by kubeconfig

--kubeconfig file kubeconfig file; default is $HOME/.kube/config

Create

Create a new accelerator resource with specified configuration.

Application Accelerator for VMware Tanzu

VMware, Inc. 61



Accelerator configuration options include:

n Git repository URL and branch/tag where accelerator code and metadata is defined

n Metadata like description, display-name, tags and icon-url

The Git repository option is required. Metadata options are optional and will override any values
for the same options specified in the accelerator metadata retrieved from the Git repository.

Usage: tanzu accelerator create [flags]

  Where [flags] is one or more compatible flags.

Examples:

tanzu accelerator create <accelerator-name> --git-repository <URL> --git-branch <branch>

Flags:

Flag Description

--description string Description of this accelerator

--display-name string Display name for the accelerator

--git-branch string Git repository branch to be used

--git-repository string Git repository URL for the accelerator

--git-tag string Git repository tag to be used

--git-branch string Git repository branch to be used

-h, --help Help for create

--icon-url string URL for icon to use with the accelerator

--interval string Interval for checking for updates to Git or image repository

--local-path string Path to the directory containing the source for the accelerator

-n, --namespace name Namespace for accelerators (default "accelerator-system")

--secret-ref string Name of secret containing credentials for private Git or image repository

--source-image string Name of the source image for the accelerator

--tags strings Tags that can be used to search for accelerators

Global Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

Application Accelerator for VMware Tanzu

VMware, Inc. 62



Delete

Delete the accelerator resource with the specified name.

Usage: tanzu accelerator delete [flags]

  Where [flags] is one or more compatible flags.

Examples:

tanzu accelerator delete <accelerator-name>

Flags:

Flag Description

-h, --help Help for delete

-n, --namespace name Namespace for accelerators (default "accelerator-system")

Global Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

Generate

Generate a project from an accelerator using provided options and download project artifacts as a
ZIP file.

Generation options are provided as a JSON string and should match the metadata options that
are specified for the accelerator used for the generation. The options can include "projectName"
which defaults to the name of the accelerator. This "projectName" will be used as the name of the
generated ZIP file.

You can see the available options by using the "tanzu accelerator list " command.

Here is an example of an options JSON string that specifies the "projectName" and an
"includeKubernetes" boolean flag:

  --options '{"projectName":"test", "includeKubernetes": true}'

You can also provide a file that specifies the JSON string using the --options-file flag.

The generate command needs access to the Application Accelerator server. You can specify the
--server-url flag or set an ACC_SERVER_URL environment variable. If you specify the --server-url
flag it will override the ACC_SERVER_URL environmnet variable if it is set.

Usage: tanzu accelerator generate [flags]

  Where [flags] is one or more compatible flags.

Application Accelerator for VMware Tanzu

VMware, Inc. 63



Examples:

tanzu accelerator generate <accelerator-name> --options '{"projectName":"test"}'

Flags:

Flag Description

-h, --help Help for generate

--options string Options JSON string

--options-file string Path to file containing options JSON string

--output-dir string Directory that the zip file will be written to

--server-url string The URL for the Application Accelerator server

Global Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

Get

Get accelerator info.

You can choose to get the accelerator from the Application Accelerator server using --server-url
flag or from a Kubernetes context using --from-context flag. The default is to get accelerators

from the Kubernetes context. To override this, you can set the ACC_SERVER_URL environment

variable with the URL for the Application Accelerator server you want to access.

Usage: tanzu accelerator get [flags]

  Where [flags] is one or more compatible flags.

Examples:

tanzu accelerator get <accelerator-name> --from-context

Flags:

Flag Description

--from-context Retrieve resources from current context defined in kubeconfig

-h, --help Help for get

-n, --namespace name Namespace for accelerators (default "accelerator-system")

--server-url string The URL for the Application Accelerator server

Application Accelerator for VMware Tanzu

VMware, Inc. 64



Global Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

List

List all accelerators.

You can choose to list the accelerators from the Application Accelerator server using --server-
url flag or from a Kubernetes context using --from-context flag. The default is to get accelerators

from the Kubernetes context. To override this, you can set the ACC_SERVER_URL environment

variable with the URL for the Application Acceleratior server you want to access.

Usage: tanzu accelerator list [flags]

  Where [flags] is one or more compatible flags.

Examples:

tanzu accelerator list

Flags:

Flag Description

--from-context Retrieve resources from current context defined in kubeconfig

-h, --help Help for list

-n, --namespace name Namespace for accelerators (default "accelerator-system")

--server-url string The URL for the Application Accelerator server

Global Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

Update

Udate an accelerator resource with the specified name using the specified configuration.

Accelerator configuration options include:

n Git repository URL and branch/tag where accelerator code and metadata is defined

n Metadata like description, display-name, tags and icon-url

Application Accelerator for VMware Tanzu

VMware, Inc. 65



The update command also provides a --reoncile flag that will force the accelerator to be

refreshed with any changes made to the associated Git repository.

Usage: tanzu accelerator update [flags]

  Where [flags] is one or more compatible flags.

Examples:

tanzu accelerator update <accelerator-name> --description "Lorem Ipsum"

Flags:

Flag Description

--description string Description of this accelerator

--display-name string Display name for the accelerator

--git-branch string Git repository branch to be used

--git-repository string Git repository URL for the accelerator

--git-tag string Git repository tag to be used

-h, --help Help for update

--icon-url string URL for icon to use with the accelerator

--interval string Interval for checking for updates to Git or image repository

-n, --namespace name Namespace for accelerators (default "accelerator-system")

--reconcile Trigger a reconciliation including the associated GitRepository resource

--secret-ref string Name of secret containing credentials for private Git or image repository

--source-image string Name of the source image for the accelerator

--tags strings Tags that can be used to search for accelerators

Global Flags:

Flag Description

--context name Name of the kubeconfig context to use (default is current-context defined by kubeconfig)

--kubeconfig file kubeconfig file (default is $HOME/.kube/config)

Application Accelerator for VMware Tanzu

VMware, Inc. 66


	Application Accelerator for VMware Tanzu
	Contents
	Application Accelerator for VMware Tanzu v1.0
	Application Accelerator overview
	Architecture
	How does Application Accelerator work?

	Next steps

	Application accelerator release notes
	v 1.0.1
	v 1.0.0
	New features

	v 0.5.1
	New features

	v 0.5.0
	New features

	v 0.4.0
	New features

	v 0.3.0
	New Features

	V 0.2.0
	New features
	Breaking changes

	V 0.1.0
	Known issues


	Installing Application Accelerator for Tanzu Application Platform
	Uninstalling Application Accelerator for Tanzu Application Platform

	Creating accelerators
	Prerequisites
	Getting started
	Using application.yaml
	Publishing the new accelerator
	Next steps
	Creating an accelerator.yaml file
	Accelerator
	Accelerator metadata
	Accelerator options
	Examples

	Engine
	Engine example
	Engine notation descriptions


	Transform Definition: A Gentle Introduction
	Why 'Transforms'?
	Combining Transforms
	Chain
	Merge

	Shortened notation
	A Combo of one?

	A Common Pattern with Merge Transforms
	Conditional Transforms
	Conditional 'Merge' transform
	Conditional 'Chain' transform
	A small Gotcha with using Conditionals in Merge Transforms

	Merge conflict
	Resolving 'Merge' Conflicts
	Understanding file ordering

	Conclusion

	Transforms reference
	Available transforms
	See also
	Combo transform
	Syntax reference
	Behavior
	Examples

	Include transform
	Syntax reference
	Examples
	See also

	Exclude transform
	Syntax reference
	Examples
	See also

	Merge transform
	Syntax reference
	See also

	Chain transform
	Syntax reference

	Let transform
	Syntax reference
	Execution
	See also

	ReplaceText transform
	Syntax reference
	Examples
	See also

	RewritePath transform
	Syntax reference
	Examples
	Interaction with Chain and Include
	See also

	OpenRewriteRecipe transform
	Syntax reference
	Example

	YTT transform
	Syntax reference
	Execution
	Examples
	Basic invocation
	Using extraArgs


	UseEncoding transform
	Syntax reference
	Example usage
	See also

	UniquePath transform
	Syntax reference
	Examples
	See also

	Conflict resolution
	Syntax reference
	Available strategies
	See also


	SpEL Samples
	Variables
	Implicit Variables
	Conditionals
	Rewrite Path Concatenation
	Regular Expressions
	Accelerator Custom Resource Definition
	API definitions
	Excluding files
	Non-public repositories
	Examples
	Example for a private Git repo
	Example using http credentials
	Example using SSH credentials



	Engine Specification
	Application Accelerator CLI
	Server API connections for operators and developers
	Installation
	Commands
	Accelerator commands
	Apply
	Create
	Delete
	Generate
	Get
	List
	Update





