
Application Live View v1.0
Documentation

Application Live View for VMware Tanzu 1.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Application Live View v1.0 Documentation

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Application Live View for VMware Tanzu 6

Value Proposition 6

Intended Audience 6

Supported Application Platforms 6

Multi-Cloud Compatibility 6

Deployment 6

Architecture 7

Component Overview 7

Design flow 8

Installing Application Live View 9

Prerequisites 9

Verify the Kubernetes Cluster configuration 9

Application Live View installation bundle 9

Download the Application Live View installation bundle 9

Install the Application Live View installation bundle 10

Deploy the Application Live View installation bundle 10

Verify the Application Live View components 10

Install the Application Live View Conventions installation bundle 11

Install the Application Live View Conventions installation bundle 11

Deploy the Application Live View Conventions installation bundle 11

Verify the Application Live View Convention component 11

Uninstalling Application Live View for VMware Tanzu 13

Configuring an Application 14

Convention Server 14

Role of Application Live View Convention Server 14

Verify the applied labels and annotations 15

Enabling Spring Boot Applications for App Live View 16

Configuring Application Actuator Endpoints 17

Application Live View v1.0 Documentation

VMware, Inc 3

Configuring Application for Connector 19

Configuring Developer Workload in TAP 20

Deploy the Workload 20

Verify the propagation of the label through the Supply Chain 20

Scaling Knative Applications in TAP 22

Configuring Developer Workload in TAP 22

Deploy the Workload 23

Verify the propagation of the annotation through the Supply Chain 23

Product Features 25

Details page 25

Health page 25

Environment page 25

Log Levels Page 27

Threads Page 27

Memory Page 28

Request Mappings Page 29

HTTP Requests Page 30

Caches Page 31

Configuration Properties Page 31

Conditions Page 32

Scheduled Tasks Page 32

Beans Page 33

Metrics Page 33

Actuator Page 34

Supporting Polyglot Applications 35

Troubleshooting 36

Release Notes 39

v1.0.3 release 39

Features 39

v1.0.2 release 39

Features 39

Known issues 39

v1.0.1 release 39

Features 39

Known issues 39

Application Live View v1.0 Documentation

VMware, Inc 4

v1.0.0 beta release 39

Features 40

Known issues 40

v0.3.0 beta release 40

Features 40

Known issues 40

v0.2.0 beta release 40

Features 40

Known issues 41

v0.1.0 beta release 41

Known issues 41

Application Live View v1.0 Documentation

VMware, Inc 5

Application Live View for VMware Tanzu

Note: Starting with the v1.2 release, you can find the Application Live View documentation in the

Tanzu Application Platform documentation.

Application Live View is a lightweight insights and troubleshooting tool that helps application

developers and application operators to look inside running applications. It is based on the concept

of Spring Boot Actuators.

The fundamental idea is that the application provides information from inside the running processes

via endpoints (in our case, HTTP endpoints). Application Live View uses those endpoints to get the

data from the application and to interact with it.

Value Proposition

Application Live View is a diagnostic tool for developers to manage and drill into run-time

characteristics of containerized applications. In addition, it provides a Kubernetes-native feel for

developers to easily manage their applications in a Kubernetes environment.

Intended Audience

This information is intended for developers and operators to visualize actuator information of their

running applications on Application Live View for VMware Tanzu. This information is written for

developers to monitor and troubleshoot applications in development, staging, and production

environments. This information is also intended for application operators to deploy and administer

containerized applications in a K8s environment.

Supported Application Platforms

Application Live View can be extended to support multiple application platforms, including, but not

limited to, Spring Boot and Steeltoe. Developers can use plugins to integrate their existing polyglot

applications.

Multi-Cloud Compatibility

Using Tanzu platform, Application Live View can be integrated to monitor applications running across

on-premises, public clouds, and edge. The platform provides a centralized view to manage

applications across cloud environments, thus accelerating developer productivity and reducing time-

to-market.

Deployment

There are two modes of deployment on registering applications with the Application Live View

running on K8s cluster:

Connector: A component responsible for discovering multiple applications running on K8s

cluster

Sidecar: A proxy component that is started alongside a single application (inside the same

pod) running on K8s cluster

Application Live View v1.0 Documentation

VMware, Inc 6

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html

Architecture

This topic describes the architectural view of Application Live View and its components. This system

can be deployed on a Kubernetes stack and can monitor containerized applications on hosted cloud

platforms or on-premises.

Component Overview

Application Live View includes the following components as shown in the diagram above:

Application Live View Server

Application Live View Server is the central server component that contains a list of registered

applications. It is responsible for proxying the request to fetch the actuator information

related to the application.

Application Live View Connector

Application Live View Connector is the component responsible for discovering the

application pods running on the Kubernetes cluster and register the instances to the

Application Live View Server for it to be observed. The Application Live View Connector is

also responsible for proxying the actuator queries to the application pods running in the

Kubernetes cluster.

Application Live View Connector can be deployed in 2 modes:

Cluster access: Application Live View Connector can be deployed as Kubernetes

DaemonSet to discover applications across all the namespaces running in a worker

node of a Kubernetes cluster. This is the default mode of Application Live View

Connector.

Namespace scoped: Application Live View Connector can be deployed as Kubernetes

Deployment to discover applications running within a namespace across worker

nodes of Kubernetes cluster.

Sidecar

The Sidecar is run alongside the running application and is responsible for registering the

application to Application Live View backend. Each application has a sidecar associated with

Application Live View v1.0 Documentation

VMware, Inc 7

it which proxies the actuator endpoint data of the application to the Application Live View

Server.

Application Live View CRD Controller

Application Live View Custom Resource Definition Controller defines custom resources that

return a list of registered application instances in Application Live View. It also returns metric

metadata (cpu, memory) associated with the instance. The Kubernetes API server handles

the storage of custom resource using etcd.

Application Live View Convention Webhook

This component provides a webhook handler for the Tanzu Convention Controller. The

webhook handler is registered with Tanzu Convention Controller. What it does is detect

supply-chain workloads running a Spring Boot. Such workloads are annoted automatically to

enable monitoring by Application Live View.

Design flow

As illustrated in the architecture diagram, the App Live View namespace contains all the Application

Live View components and the Apps namespace contains all the applications to be registered with

Application Live View Server.

The applications run by the user are registered with Application Live View Server via Application

Live View Connector or Sidecar.

Application Live View Connector which is a lean model uses specific labels to discover applications

across cluster or namespace. Application Live View Connector talks to K8 API server asking for

events for pod creation and termination and then filters out the events to find pod of interest

(through labels). Once identified, then Application Live View connector will register those filtered

application instances with Application Live View server. Application Live View server will proxy the

call to the connector for querying actuator endpoint information.

In contrast, the Sidecar shares the pod alongside a single application and registers the application

with Application Live View Server. Application Live View server will proxy the call to the sidecar for

querying actuator endpoint information.

The Application Live View CRD Controller fetches the list of application instances registered with

Application Live View Server and registers them as custom resources with Kubernetes API server.

The Application Live View CRD Controller listens to events from the Application Live View server

and creates/updates/deletes custom resources in Kubernetes server.

The Application Live View Server fetches the actuator data of the application by proxying the

request to Application Live View Connector or Sidecar via RSocket connection. The Application Live

View CRD Controller fetches events from Application Live View Server via HTTP connection.

Application Live View v1.0 Documentation

VMware, Inc 8

https://network.pivotal.io/products/tanzu-convention-service/

Installing Application Live View

This topic describes how to install Application Live View for VMware Tanzu. You must install a

Kubernetes cluster on a cloud platform provider, install command line tools, configure your cluster,

and download Application Live View before installing. You install Application Live View on a

Kubernetes cluster.

Application Live View installs two packages for full and dev profiles:

Application Live View Package (run.appliveview.tanzu.vmware.com): This contains

Application Live View Backend and Connector components

Application Live View Conventions Package (build.appliveview.tanzu.vmware.com): This

contains Application Live View Convention Service only

Prerequisites

The following prerequisites are required to install Application Live View:

Kubernetes v1.20 or later

secretgen-controller v0.5.0+

Cert Manager v1.5.3 installed in cluster

Tanzu Convention Controller installed in cluster

Kapp-controller v0.24.0 or later To download kapp-controller, see the Install in the Carvel

documentation.

Command line tools. The following command line tools are required:

kubectl (v1.17 or later)

kapp (v0.37.0 or later)

ytt (v0.34.0 or later)

imgpkg (v0.14.0 or later)

kbld (v0.30.0 or later)

Tanzu Cli should be installed and package plugin enabled

The steps for new users are:

1. Create a Tanzu Network account to download Tanzu Application Platform packages.

2. Visit our Application Live View for VMware Tanzu product page on Tanzu Network while

logged in and confirm that you can see Release 1.0.2. If prompted, also accept the EULA.

To access the Application Live View UI, see Install Tanzu Application Platform GUI.

Verify the Kubernetes Cluster configuration

Run the following commands to verify the cluster configuration:

kubectl config current-context

kubectl cluster-info

Application Live View installation bundle

Perform the following procedures to install the Application Live View installation bundle.

Application Live View v1.0 Documentation

VMware, Inc 9

https://github.com/vmware-tanzu/carvel-secretgen-controller
https://cert-manager.io/docs/installation/
https://carvel.dev/kapp-controller/docs/latest/install/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://carvel.dev/kapp/
https://carvel.dev/ytt/
https://carvel.dev/imgpkg/
https://carvel.dev/kbld/
https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/app-live-view
https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-install-components.html#install-tap-gui

Download the Application Live View installation bundle

Note: If you have not accepted the EULA for the Application Live View release you are about to

install, then you should log in to the Tanzu Network and then go to App Live View for VMware Tanzu

product page. On the page for the latest release there should be a EULA to accept, unless you

already have accepted it.

You need to provide pull secrets for Tanzu Network as follows:

kubectl apply -f- << EOF

apiVersion: v1

kind: Secret

metadata:

 name: reg-creds

type: kubernetes.io/dockerconfigjson # needs to be this type

stringData:

 .dockerconfigjson: |

 {

 "auths": {

 "registry.tanzu.vmware.com": {

 "username": "${TANZUNET_USER?:Required}",

 "password": "${TANZUNET_PASSWORD?:Required}",

 "auth": ""

 }

 }

 }

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

 name: reg-creds

 namespace: secretgen

spec:

 toNamespaces:

 - "*" # star means export is available for all namespaces

EOF

Run the following command and provide your username and password at the prompts:

docker login registry.tanzu.vmware.com

Install the Application Live View installation bundle

Now, pull the Application Live View installation bundle:

imgpkg pull -b registry.tanzu.vmware.com/app-live-view/application-live-view-install-b

undle:1.0.2 \

 -o /tmp/application-live-view-install-bundle

Deploy the Application Live View installation bundle

Use the following command to deploy the bundle:

ytt -f /tmp/application-live-view-install-bundle/config -f /tmp/application-live-view-

install-bundle/values.yaml \

| kbld -f /tmp/application-live-view-install-bundle/.imgpkg/images.yml -f- \

| kapp deploy -y -a application-live-view -f-

Verify the Application Live View components

Note

: The Application Live View components (backend and connector) are deployed in

app-live-view namespace by default.

Application Live View v1.0 Documentation

VMware, Inc 10

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/app-live-view

1. List the resources deployed in the app-live-view namespace:

kubectl get -n app-live-view service,deploy,pod

You should see something like this:

NAME TYPE CLUSTER-IP EXTERNAL-IP P

ORT(S) AGE

service/application-live-view-5112 ClusterIP 10.96.24.252 <none> 8

0/TCP 2m56s

service/application-live-view-7000 ClusterIP 10.96.204.81 <none> 7

000/TCP 2m56s

NAME READY UP-TO-DATE AVAILABLE

 AGE

deployment.apps/application-live-view-server 1/1 1 1

 2m56s

NAME READY STATUS RESTARTS

 AGE

pod/application-live-view-connector-8tb6w 1/1 Running 0

 2m56s

pod/application-live-view-server-567c978986-45kz2 1/1 Running 0

 2m56s

Install the Application Live View Conventions installation
bundle

Perform the following procedures to install the Application Live View Conventions installation bundle.

Install the Application Live View Conventions installation bundle

Now, pull the Application Live View Conventions installation bundle:

imgpkg pull -b registry.tanzu.vmware.com/app-live-view/application-live-view-conventio

ns-bundle:1.0.2 \

 -o /tmp/application-live-view-conventions

Deploy the Application Live View Conventions installation bundle

Use the following command to deploy the bundle:

ytt -f /tmp/application-live-view-conventions/config -f /tmp/application-live-view-con

ventions/values.yaml \

| kbld -f /tmp/application-live-view-conventions/.imgpkg/images.yml -f- \

| kapp deploy -y -a application-live-view-conventions -f-

Note: The Application Live View Convention server is deployed in alv-convention namespace by

default.

Verify the Application Live View Convention component

1. List the resources deployed in the alv-convention namespace:

kubectl get -n alv-convention service,deploy,pod

2. Verify that the output is similar to this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

 AGE

service/appliveview-webhook ClusterIP 10.96.25.27 <none> 443/TCP

 11m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/appliveview-webhook 1/1 1 1 11m

Application Live View v1.0 Documentation

VMware, Inc 11

NAME READY STATUS RESTARTS AGE

pod/appliveview-webhook-5ff9759b6b-9pnkb 1/1 Running 0 11m

You can also enter your registry credentials as arguments to the ytt command without entering

credentials in values.yaml. Add registry.username and registry.password arguments with your

credentials as shown below:

ytt -f /tmp/application-live-view-install-bundle/config -f /tmp/application-live-view-

install-bundle/values.yaml -v registry.server='registry.tanzu.vmware.com' -v registry.

username='your username' -v registry.password='your password' \

| kbld -f /tmp/application-live-view-install-bundle/.imgpkg/images.yml -f- \

| kapp deploy -y -a application-live-view -f-

Application Live View is a component of Tanzu Application Platform. For how to install Tanzu

Application Platform, see the Tanzu Application Platform documentation. The Application Live View

UI plugin is part of Tanzu Application Platform GUI. To access the Application Live View UI, see the

Application Live View in Tanzu Application Platform GUI documentation.

Application Live View v1.0 Documentation

VMware, Inc 12

https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-install-intro.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-tap-gui-plugins-app-live-view.html

Uninstalling Application Live View for
VMware Tanzu

This topic describes how to uninstall Application Live View for VMware Tanzu..

To uninstall the Application Live View and Application Live View Convention Server, run:

kapp list -A ## Lists all the applications

kapp delete -n app-live-view -a application-live-view

kapp delete -n alv-convention -a application-live-view-conventions

kubectl delete ns app-live-view

kubectl delete ns alv-convention

Application Live View v1.0 Documentation

VMware, Inc 13

Configuring an Application

This topic describes configuring an application from a developer perspective.

1. Convention Server

2. Spring Boot Enablement

3. Configuring Application Actuator Endpoints

4. Configuring Application for Connector

5. Scaling Applications or Knative Services

Convention Server

Application Live View Convention Server provides a Webhook handler for Convention Service for

VMware Tanzu

Role of Application Live View Convention Server

The Application Live View Webhook works in conjunction with core Convention Service. It enhances

Tanzu PodIntents with metadata such as labels, annotations or application properties. This metadata

allows the Application Live View Connector to discover application instances to register with

Application Live View Server.

The Webhook handler recognizes PodIntents for running Spring Boot apps and adds the following

metadata labels and environment properties:

tanzu.app.live.view (Enables the connector to observe application pod)

tanzu.app.live.view.application.name (Identifies the application name to be used by

Application Live View)

tanzu.app.live.view.application.flavours (Exposes the framework of the application)

management.endpoints.web.exposure.include (Exposes actuator endpoints of the

application)

management.endpoint.health.show-details (Show the health details)

Description of metadata labels are listed below:

Metadata Default Type Description

tanzu.app.live.

view

true Label On deployment of a Workload in TAP, this label is set to true as default across

the supply chain

tanzu.app.live.

view.applicatio

n.name

spring-

boot-

app

Label On deployment of a Workload in TAP, this label is set to spring-boot-app if

the container image metadata doesn’t contain app name, otherwise the label

is set to the app name from container image metadata

tanzu.app.live.

view.applicatio

n.flavours

spring-

boot

Label On deployment of a Workload in TAP, this label is set to spring-boot as

default across the supply chain

management.endp

oints.web.expos

ure.include

* Enviro

nment

Proper

ty

The user provided environment property takes precedence over default value

set by Application Live View Convention Server

Application Live View v1.0 Documentation

VMware, Inc 14

https://network.pivotal.io/products/tanzu-convention-service/

Metadata Default Type Description

management.endp

oint.health.sho

w-details

always Enviro

nment

Proper

ty

The user provided environment property takes precedence over default value

set by Application Live View Convention Server

On deployment of a Workload from a TAP perspective, the above labels can be overriden in the

Workload yaml. However, if the users intend to override

management.endpoints.web.exposure.include or management.endpoint.health.show-details, the

environment properties can be overriden in application.properties or application.yml in the Spring

Boot Application before deploying the Workload in TAP. The environment properties updated by

the users in their application would take precedence over the defaults set by Application Live View

Convention Server.

Verify the applied labels and annotations

Assuming the name of the deployed Workload is ‘tanzu-java-web-app’, we can verify the applied

labels and annotations using the command below:

kubectl get podintents.conventions.apps.tanzu.vmware.com tanzu-java-web-app -oyaml

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 creationTimestamp: "2021-11-10T10:19:38Z"

 generation: 1

 labels:

 app.kubernetes.io/component: intent

 app.kubernetes.io/part-of: tanzu-java-web-appweb

 carto.run/cluster-supply-chain-name: source-to-url

 carto.run/cluster-template-name: convention-template

 carto.run/resource-name: config-provider

 carto.run/template-kind: ClusterConfigTemplate

 carto.run/workload-name: tanzu-java-web-app

 carto.run/workload-namespace: default

 name: tanzu-java-web-app

 namespace: default

 ownerReferences:

 - apiVersion: carto.run/v1alpha1

 blockOwnerDeletion: true

 controller: true

 kind: Workload

 name: tanzu-java-web-app

 uid: 998ab107-c232-4dcf-a4b2-1d499b7709c6

 resourceVersion: "4502417"

 uid: 92c65a88-5beb-4405-b659-3b78834df125

spec:

 serviceAccountName: service-account

 template:

 metadata:

 annotations:

 developer.conventions/target-containers: workload

 labels:

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: tanzu-java-web-appweb

 carto.run/workload-name: tanzu-java-web-app

 spec:

 containers:

 - image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-java-web-app@sha

256:db323d46a03e54948e844e7a7fced7d42b737c90b1c3a3a9bb775de9bce92c30

 name: workload

 resources: {}

 securityContext:

 runAsUser: 1000

 serviceAccountName: service-account

status:

Application Live View v1.0 Documentation

VMware, Inc 15

 conditions:

 - lastTransitionTime: "2021-11-10T10:19:46Z"

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "2021-11-10T10:19:46Z"

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.5.4

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 appliveview-sample/app-live-view-connector

 appliveview-sample/app-live-view-appflavours

 appliveview-sample/app-live-view-systemproperties

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-graceful-shutdown

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 developer.conventions/target-containers: workload

 labels:

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: tanzu-java-web-appweb

 carto.run/workload-name: tanzu-java-web-app

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 tanzu.app.live.view: "true"

 tanzu.app.live.view.application.flavours: spring-boot

 tanzu.app.live.view.application.name: demo

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dmanagement.endpoint.health.show-details="always" -Dmanagement.endpo

ints.web.base-path="/actuator"

 -Dmanagement.endpoints.web.exposure.include="*" -Dmanagement.server.port="

8080"

 -Dserver.port="8080" -Dserver.shutdown.grace-period="24s"

 image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-java-web-app@sha

256:db323d46a03e54948e844e7a7fced7d42b737c90b1c3a3a9bb775de9bce92c30

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

 securityContext:

 runAsUser: 1000

 serviceAccountName: service-account

status.metadata.template.spec.containers.env.value shows the list of applied environment

properties by Application Live View Convention Server.

status.metadata.template.labels shows the list of applied labels by Application Live View

Convention Server.

status.metadata.template.annotations shows the list of applied annotations by Application Live

View Convention Server.

Enabling Spring Boot Applications for App Live View

This topic describes how to configure a Spring Boot Application to be observed by App Live View

within TAP.

In order for App Live View to interact with a Spring Boot Application within TAP, the only

requirement is that the user needs to add the spring-boot-starter-actuator module dependency

as shown below:

Add the maven dependency in pom.xml as below:

<dependency>

Application Live View v1.0 Documentation

VMware, Inc 16

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

The App Live View Convention Server takes care of setting the runtime environment properties

management.endpoints.web.exposure.include and management.endpoint.health.show-details onto

the PodSpec to expose all the actuator endpoints and detailed health information. Therefore, the

user doesn’t need to add these properties manually in application.properties or application.yml.

Configuring Application Actuator Endpoints

This topic describes how to configure the actuator endpoints for an application. By default, the

actuator endpoint for an application is exposed on “/actuator”.

The table below describes the actuator configuration scenarios and the associated labels to be used

(this assumes that the application runs on port 8080):

management.server.base-

path
management.server.port

management.endpoints.web.base-

path
server.servlet.context.path Comments

Connector

Configuration

Sidecar

Configuration

None None None None Actuators

endpoints

available

at

localhost:8

080/actua

tor

tanzu.app.live

.view.applicat

ion.actuator.p

ath=actuator,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8080

app.live.view.

sidecar.applic

ation-

actuator-

path=actuator

,

app.live.view.

sidecar.applic

ation-

actuator-

port=8080

/path 8082 / None Actuator

endpoints

available

at

localhost:8

082/path

tanzu.app.live

.view.applicat

ion.actuator.p

ath=path,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=path,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

/path 8082 /manage/actuator None Actuator

endpoints

available

at

localhost:8

082/path/

manage/a

ctuator

tanzu.app.live

.view.applicat

ion.actuator.p

ath=path/ma

nage/actuator

,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=path/m

anage/actuat

or,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

None None / None Actuators

are

deactivate

d to avoid

conflicts

None None

Application Live View v1.0 Documentation

VMware, Inc 17

management.server.base-

path
management.server.port

management.endpoints.web.base-

path
server.servlet.context.path Comments

Connector

Configuration

Sidecar

Configuration

None None /manage None Actuator

endpoints

available

at

/manage

tanzu.app.live

.view.applicat

ion.actuator.p

ath=manage,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8080

app.live.view.

sidecar.applic

ation-

actuator-

path=manage

,

app.live.view.

sidecar.applic

ation-

actuator-

port=8080

/path 8082 None None Actuator

endpoints

available

at

localhost:8

082/path/

actuator

tanzu.app.live

.view.applicat

ion.actuator.p

ath=path/act

uator,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=path/ac

tuator,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

/ 8082 None None Actuator

endpoints

available

at

localhost:8

082/actua

tor

tanzu.app.live

.view.applicat

ion.actuator.p

ath=actuator,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=actuator

,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

None None None /api Actuator

endpoints

available

at

localhost:8

080/api/a

ctuator

tanzu.app.live

.view.applicat

ion.actuator.p

ath=api/actua

tor,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8080

app.live.view.

sidecar.applic

ation-

actuator-

path=api/actu

ator,

app.live.view.

sidecar.applic

ation-

actuator-

port=8080

/path 8082 None /api Actuator

endpoints

available

at

localhost:8

082/path/

actuator

tanzu.app.live

.view.applicat

ion.actuator.p

ath=path/act

uator,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=path/ac

tuator,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

/path 8082 /manage /api Actuator

endpoints

available

at

localhost:8

082/path/

manage

tanzu.app.live

.view.applicat

ion.actuator.p

ath=path/ma

nage,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=path/m

anage,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

Application Live View v1.0 Documentation

VMware, Inc 18

management.server.base-

path
management.server.port

management.endpoints.web.base-

path
server.servlet.context.path Comments

Connector

Configuration

Sidecar

Configuration

/path None /manage /api Actuator

endpoints

available

at

localhost:8

080/api/

manage

tanzu.app.live

.view.applicat

ion.actuator.p

ath=api/mana

ge,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8080

app.live.view.

sidecar.applic

ation-

actuator-

path=api/man

age,

app.live.view.

sidecar.applic

ation-

actuator-

port=8080

/path None / /api Actuators

are

deactivate

d to avoid

conflicts

None None

/path 8082 / /api Actuator

endpoints

available

at

localhost:8

082/path

tanzu.app.live

.view.applicat

ion.actuator.p

ath=path,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8082

app.live.view.

sidecar.applic

ation-

actuator-

path=path,

app.live.view.

sidecar.applic

ation-

actuator-

port=8082

None None /manage /api Actuator

endpoints

available

at

localhost:8

080/api/

manage

tanzu.app.live

.view.applicat

ion.actuator.p

ath=api/mana

ge,

tanzu.app.live

.view.applicat

ion.actuator.p

ort=8080

app.live.view.

sidecar.applic

ation-

actuator-

path=api/man

age,

app.live.view.

sidecar.applic

ation-

actuator-

port=8080

Configuring Application for Connector

This topic describes how to configure an application from a developer perspective.

The connector component is responsible for discovering the application and registering it with

Application Live View. The connector is deployed in the same namespace as the application. Labels

are required to be added to the application PodSpec for the application to be discovered by the

connector.

Below are the mandatory labels that are applied on the PodSpec by the Application Live View

Convention Server by default:

tanzu.app.live.view="true"

tanzu.app.live.view.application.name="<app-name>"

The above app-name in tanzu.app.live.view.application.name is set to the Application Name from

the image metadata if found, otherwise the Application Name is set to spring-boot-app.

Exclusive list of connector labels available are listed below:

Label Name Mandatory Type Default Significance

tanzu.app.live.view true Boolean None toggle to deactivate / activate

pod discovery

tanzu.app.live.view.application.name true String None application name

Application Live View v1.0 Documentation

VMware, Inc 19

Label Name Mandatory Type Default Significance

tanzu.app.live.view.application.port false Integer 8080 application port

tanzu.app.live.view.application.path false String / application context path

tanzu.app.live.view.application.actuat

or.port

false Integer 8080 application actuator port

tanzu.app.live.view.application.actuat

or.path

false String /actuat

or

actuator context path

tanzu.app.live.view.application.protoc

ol

false http / https http protocol scheme

tanzu.app.live.view.application.actuat

or.health.port

false Integer 8080 health endpoint port

tanzu.app.live.view.application.flavour

s

false comma

separated string

spring-

boot

application flavours

The user can add new optional connector labels in the application Workload or override the existing

mandatory labels such as tanzu.app.live.view and tanzu.app.live.view.application.name. If you

wish to have you application not observed by Application Live View, you can override the existing

label tanzu.app.live.view = "false".

Configuring Developer Workload in TAP

Below is an example of a Spring PetClinic workload that overrides the connector label to

tanzu.app.live.view: "false"

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: spring-petclinic

 namespace: default

 labels:

 tanzu.app.live.view: "false"

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

 annotations:

 autoscaling.knative.dev/minScale: "1"

spec:

 source:

 git:

 ref:

 branch: main

 url: https://github.com/kdvolder/spring-petclinic

Deploy the Workload

kapp -y deploy -n default -a workloads -f workloads.yaml

Verify the propagation of the label through the Supply Chain

Verify if the Workload build is successful (make sure SUCCEEDED is set to True):

kubectl get builds

NAME IMAGE

 SUCCEEDED

spring-petclinic-build-1 dev.registry.tanzu.vmware.com/app-live-view/test/spring-p

etclinic-default@sha256:9db2a8a8e77e9215239431fd8afe3f2ecdf09cce8afac565dad7b5f0c5ac0c

df True

Application Live View v1.0 Documentation

VMware, Inc 20

Check the PodIntent of your workload (status.template.metadata.labels shows the newly

added label propagated through the Supply Chain):

kubectl get podintents.conventions.apps.tanzu.vmware.com spring-petclinic -oyaml

status:

 conditions:

 - lastTransitionTime: "2021-12-03T15:14:33Z"

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "2021-12-03T15:14:33Z"

 status: "True"

 type: Ready

 observedGeneration: 3

 template:

 metadata:

 annotations:

 autoscaling.knative.dev/minScale: "1"

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.5.6

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 appliveview-sample/app-live-view-connector

 appliveview-sample/app-live-view-appflavours

 appliveview-sample/app-live-view-systemproperties

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-graceful-shutdown

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 spring-boot-convention/service-intent-mysql

 developer.conventions/target-containers: workload

 kapp.k14s.io/identity: v1;default/carto.run/Workload/spring-petclinic;carto.ru

n/v1alpha1

 kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workload","

metadata":{"annotations":{"autoscaling.knative.dev/minScale":"2"},"labels":{"app.kuber

netes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/workload-type":"web","ka

pp.k14s.io/app":"1638455805474051000","kapp.k14s.io/association":"v1.5a9384bd7b93ca74e

f494c4dec2caa4b","tanzu.app.live.view":"false"},"name":"spring-petclinic","namespace":

"default"},"spec":{"source":{"git":{"ref":{"branch":"main"},"url":"https://github.com/

ksankaranara-vmw/spring-petclinic"}}}}'

 kapp.k14s.io/original-diff-md5: 58e0494c51d30eb3494f7c9198986bb9

 services.conventions.apps.tanzu.vmware.com/mysql: mysql-connector-java/8.0.27

 labels:

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

 carto.run/workload-name: spring-petclinic

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 kapp.k14s.io/app: "1638455805474051000"

 kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

 services.conventions.apps.tanzu.vmware.com/mysql: workload

 tanzu.app.live.view: "false"

 tanzu.app.live.view.application.flavours: spring-boot

 tanzu.app.live.view.application.name: petclinic

Check the ConfigMap created for the Application (metadata.labels shows the newly added

label propagated through the Supply Chain)

kubectl describe configmap spring-petclinic

Name: spring-petclinic

Namespace: default

Labels: carto.run/cluster-supply-chain-name=source-to-url

 carto.run/cluster-template-name=config-template

 carto.run/resource-name=app-config

 carto.run/template-kind=ClusterConfigTemplate

 carto.run/workload-name=spring-petclinic

 carto.run/workload-namespace=default

Annotations: <none>

Data

====

delivery.yml:

Application Live View v1.0 Documentation

VMware, Inc 21

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: spring-petclinic

 labels:

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

 kapp.k14s.io/app: "1638455805474051000"

 kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

 tanzu.app.live.view: "false"

 app.kubernetes.io/component: run

 carto.run/workload-name: spring-petclinic

Check the running Knative application pod (labels shows the newly added label on the

Knative application pod)

kubectl get pods -o yaml spring-petclinic-00002-deployment-77dbb85c65-cf7rn | grep lab

els

 kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workload","meta

data":{"annotations":{"autoscaling.knative.dev/minScale":"1"},"labels":{"app.kubernete

s.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/workload-type":"web","kapp.k

14s.io/app":"1638455805474051000","kapp.k14s.io/association":"v1.5a9384bd7b93ca74ef494

c4dec2caa4b","tanzu.app.live.view":"false"},"name":"spring-petclinic","namespace":"def

ault"},"spec":{"source":{"git":{"ref":{"branch":"main"},"url":"https://github.com/ksan

karanara-vmw/spring-petclinic"}}}}'

The connector labels can be added or overriden in the Workload of your Knative application.

Scaling Knative Applications in TAP

This topic describes the working of App Live View when scaling Knative applications or developer

workloads in Tanzu Application Platform.

Application Live View is focused on monitoring applications for a given live window and does not

apply to any of the applications that are scaled down to zero. The intended behavior for Knative

applications is to keep track of revisions so we can rollback easily, but also scale all of the unused

revision instances down to 0 to keep the resource consumption low.

We can configure the Knative application to set autoscaling.knative.dev/minScale to 1 so that App

Live View can still observe the instance of the application. This will make sure we have atleast 1

instance of the latest revision while still scaling down the older instances down.

We can configure any application in TAP using Workload resource. To scale a Knative application,

the user needs to add an annotation autoscaling.knative.dev/minScale in the Workload and set to

a desired value. In order for App Live View to observe an application and have atleast 1 instance of

the latest revision, make sure to set the autoscaling.knative.dev/minScale = "1".

The annotations or labels in the Workload get propagated through the TAP supply chain as below:

Workload -> PodIntent -> ConfigMap -> Push Config to repository/registry -> git-

repository/imagerepository picks the Config from repository/registry -> kapp-ctrl deploys and

knative runs the config -> final pod running on the Kubernetes cluster

Configuring Developer Workload in TAP

Below is an example Workload that adds the annotation autoscaling.knative.dev/minScale = "1"

to set the minimum scale for spring-petclinic application:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: spring-petclinic

 namespace: default

 labels:

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

 annotations:

 autoscaling.knative.dev/minScale: "1"

Application Live View v1.0 Documentation

VMware, Inc 22

spec:

 source:

 git:

 ref:

 branch: main

 url: https://github.com/kdvolder/spring-petclinic

Deploy the Workload

kapp -y deploy -n default -a workloads -f workloads.yaml

Verify the propagation of the annotation through the Supply
Chain

Verify if the Workload build is successful (make sure SUCCEEDED is set to True):

kubectl get builds

NAME IMAGE

 SUCCEEDED

spring-petclinic-build-1 dev.registry.tanzu.vmware.com/app-live-view/test/spring-p

etclinic-default@sha256:9db2a8a8e77e9215239431fd8afe3f2ecdf09cce8afac565dad7b5f0c5ac0c

df True

Check the PodIntent of your workload (status.template.metadata.annotations shows the

newly added annotation propagated through the Supply Chain):

kubectl get podintents.conventions.apps.tanzu.vmware.com spring-petclinic -oyaml

status:

 conditions:

 - lastTransitionTime: "2021-12-03T15:14:33Z"

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "2021-12-03T15:14:33Z"

 status: "True"

 type: Ready

 observedGeneration: 3

 template:

 metadata:

 annotations:

 autoscaling.knative.dev/minScale: "1"

Check the ConfigMap created for the Application (spec.template.metadata.annotations

shows the newly added annotation propagated through the Supply Chain)

kubectl describe configmap spring-petclinic

Name: spring-petclinic

Namespace: default

Labels: carto.run/cluster-supply-chain-name=source-to-url

 carto.run/cluster-template-name=config-template

 carto.run/resource-name=app-config

 carto.run/template-kind=ClusterConfigTemplate

 carto.run/workload-name=spring-petclinic

 carto.run/workload-namespace=default

Annotations: <none>

Data

====

delivery.yml:

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

Application Live View v1.0 Documentation

VMware, Inc 23

 name: spring-petclinic

 labels:

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

 kapp.k14s.io/app: "1638455805474051000"

 kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

 tanzu.app.live.view: "false"

 app.kubernetes.io/component: run

 carto.run/workload-name: spring-petclinic

spec:

 template:

 metadata:

 annotations:

 autoscaling.knative.dev/minScale: "1"

Check the running Knative application pod (annotations shows the newly added annotation

on the Knative application pod)

kubectl get pods -o yaml spring-petclinic-00002-deployment-77dbb85c65-cf7rn | grep ann

otations

 annotations:

 kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workload","meta

data":{"annotations":{"autoscaling.knative.dev/minScale":"1"},"labels":{"app.kubernete

s.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/workload-type":"web","kapp.k

14s.io/app":"1638455805474051000","kapp.k14s.io/association":"v1.5a9384bd7b93ca74ef494

c4dec2caa4b","tanzu.app.live.view":"false"},"name":"spring-petclinic","namespace":"def

ault"},"spec":{"source":{"git":{"ref":{"branch":"main"},"url":"https://github.com/ksan

karanara-vmw/spring-petclinic"}}}}'

Your Knative application is now set to a minimum scale of 1 so that Application Live View can

observe the instance of the application.

Application Live View v1.0 Documentation

VMware, Inc 24

Product Features

This topic explains the Application Live View UI features.

The Application Live View encompasses a sophisticated UI that provides visual insights into running

applications by inspecting the application actuator information. The actuator data from the application

serves as the source of truth. Application Live View provides a live view of the data from inside of

the application only. Application Live View does not store any of the applications data for further

analysis or historical views. This easy-to-use interface provides ways to troubleshoot, learn, and

maintain an overview of certain aspects of the applications. It gives certain level of control to the

users to change some parameters such as log levels, environment properties of running applications.

Application Live View UI includes the following pages and views:

Details page

This is the default page loaded in the Live View section. This page gives a tabular overview

containing the application name, instance id, location, actuator location, health endpoint, direct

actuator access, framework , version, new patch version, new major version, build version. The user

can navigate between Information Categories by selecting from the drop-down menu on the top

right corner of the page.

Health page

To navigate to the health page, the user should select the Health option from the Information

Category dropdown. The health page provides detailed information about the health of the

application. It lists all the components that make up the health of the application like readiness,

liveness and disk space. It displays the status, details associated with each of the components.

Environment page

To navigate to the Environment page, the user should select the Environment option from the

Information Category dropdown. The Environment page contains details of the applications’

environment. It contains properties including, but not limited to, system properties, environment

Application Live View v1.0 Documentation

VMware, Inc 25

variables, and configuration properties (like application.properties) in a Spring Boot application.

The page includes the following features:

The UI has search feature that allows the user to search for a property or values.

Each property has a search icon at the right corner which helps the user quickly see all the

occurrences of a specific property key without manually typing in the search field. Clicking on

this button trims down the page to that property name.

The Refresh Scope button on the top right corner of the page is used to probe the

application to refresh all the environment properties.

The user can modify existing property by clicking on the override button in the row and

editing the value. Once the value is saved, the user can see the updated property in the

Applied overrides section at the top of the page.

The Reset button is used to reset the environment property to the original state.

The overridden environment variables in the Applied Overrides section can be edited or

removed.

The Applied Overrides section also allows the user to add new environment properties to the

application.

NOTE: The management.endpoint.env.post.enabled=true has to be set in the application config

properties of the application as well as a corresponding, editable Environment has to be present in

the (here Spring Boot) application.

Application Live View v1.0 Documentation

VMware, Inc 26

Log Levels Page

To navigate to the Log Levels page, the user should select the Log Levels option from the

Information Category dropdown. The log levels page provides access to the application’s loggers

and the configuration of their levels. The log levels such as INFO, DEBUG, TRACE can be

configured real-time by the user from the UI. The user can search for a package and modify its

respective log level. The user has the ability to configure the log levels at a specific class and

package. They can turn off all the log levels by modifying the log level of root logger to OFF. The

toggle Changes Only displays the changed log levels. The search feature allows the user to search by

logger name. The Reset button resets the log levels to the original state. The Reset All button on top

right corner of the page resets all the loggers to default state.

Threads Page

To navigate to the Threads page, the user should select the Threads option from the Information

Category dropdown. This page displays all details related to JVM threads and running processes of

the application. This tracks live threads and daemon threads real-time. It is a snapshot of different

thread states. Navigating to a thread state displays all the information about a particular thread and its

stack trace. The search feature allows the user to search for threads by thread ID or state. The

refresh icon refreshes to the latest state of the threads. The user can view more thread details by

clicking on the Thread ID. The page also has a feature to download thread dump for analysis

Application Live View v1.0 Documentation

VMware, Inc 27

purposes.

Memory Page

To navigate to the Memory page, the user should select the Memory option from the Information

Category dropdown. * The memory page highlights the memory usage inside of the JVM. It displays

a graphical representation of the different memory regions within heap and non-heap memory.

Please note that this visualizes data from inside of the JVM (in case of Spring Boot apps running on a

JVM) and therefore provides memory insights into the application in contrast to “outside” information

on the k8s pod level. * The real-time graphs displays a stacked overview of the different spaces in

memory along with the total memory used and total memory size. The page contains graphs to

display the GC pauses and GC events. The Heap Dump button on top right corner allows the user to

download heap dump data.

Application Live View v1.0 Documentation

VMware, Inc 28

Please keep in mind that this graphical visualization happens in real-time and shows real-time data

only. As mentioned at the top, the Application Live View features do not store any information. That

means the graphs visualize the data over time only for as long as you stay on that page.

Request Mappings Page

To navigate to the Request Mappings page, the user should select the Request Mappings option from

the Information Category dropdown. This page provides information about the application’s request

mappings. For each of the mapping, it displays the request handler method. The user can view more

details of the request mapping such as header metadata of the application, i.e produces, consumes

and HTTP method by clicking on the mapping. The search feature allows the user to search on the

request mapping or the method. The toggle /actuator/** Request Mappings displays the actuator

related mappings of the application.

NOTE: When application actuator endpoint is exposed on management.server.port, the application

does not return any actuator request mappings data in the context. In this case, a message is

displayed when the actuator toggle is activated.

Application Live View v1.0 Documentation

VMware, Inc 29

HTTP Requests Page

To navigate to the HTTP Requests page, the user should select the HTTP Requests option from the

Information Category dropdown. The HTTP Requests page provides information about HTTP

request-response exchanges to the application. The graph visualizes the requests per second

indicating the response status of all the requests. The user can filter on the response statuses which

include info, success, redirects, client-errors, server-errors. The trace data is captured in detail in a

tabular format with metrics such as timestamp, method, path, status, content-type, length, time. The

search feature on the table filters the traces based on the search field value. The user can view more

details of the request such as method, headers, response of the application by clicking on the

timestamp. The refresh icon above the graph loads the latest traces of the application. The toggle

‘/actuator/**’ on the top right corner of the page displays the actuator related traces of the

application.

Note: When the application actuator endpoint is exposed on management.server.port, no actuator

HTTP Traces data is returned for the application. In this case, a message is displayed when the

actuator toggle is activated.

Application Live View v1.0 Documentation

VMware, Inc 30

Caches Page

To navigate to the Caches page, the user should select the Caches option from the Information

Category dropdown. The Caches page provides access to the application’s caches. It gives the

details of the cache managers associated with the application including the fully qualified name of the

native cache. The search feature in the Caches Page allows the user to search for a specific

cache/cache manager. The user has the ability to evict individual caches by clicking on the Evict

button, which results in clearing of cache. All the caches can be evicted completely by clicking on

Evict All button. If there are no cache managers for the application, a message is displayed No cache

managers available for the application.

Configuration Properties Page

To navigate to the Configuration Properties page, the user should select the Configuration

Properties option from the Information Category dropdown. The configuration properties page

provides information about the configuration properties of the application. In case of Spring Boot, it

displays application’s @ConfigurationProperties beans. It gives a snapshot of all the beans and their

associated configuration properties. The search feature allows the user to look up for property’s

key/value or the bean name.

Application Live View v1.0 Documentation

VMware, Inc 31

Conditions Page

To navigate to the Conditions page, the user should select the Conditions option from the

Information Category dropdown. The conditions evaluation report provides information about the

evaluation of conditions on configuration and auto-configuration classes. In case of Spring Boot, this

gives the user a clear view of all the beans configured in the application. When the user clicks on the

bean name, the conditions and the reason for the conditional match is displayed. In case of not

configured beans, it shows both the matched and unmatched conditions of the bean if any. In

addition to this, it also displays names of unconditional auto configuration classes if any. The user can

filter out on the beans and the conditions using the search feature.

Scheduled Tasks Page

To navigate to the Scheduled Tasks page, the user should select the Scheduled Tasks option from

the Information Category dropdown. The scheduled tasks page provides information about the

application’s scheduled tasks. It includes cron tasks, fixed delay tasks and fixed rate tasks, custom

tasks and the properties associated with them. The user can search for a particular property or a task

in the search bar to retrieve the task or property details.

Application Live View v1.0 Documentation

VMware, Inc 32

Beans Page

To navigate to the Beans page, the user should select the Beans option from the Information

Category dropdown. The beans page provides information about a list of all application beans and its

dependencies. It displays the information about the bean type, dependencies and its resource. The

user can search by the bean name or its corresponding fields.

Metrics Page

To navigate to the Metrics page, the user should select the Metrics option from the Information

Category dropdown. The metrics page provides access to application metrics information. The user

can choose from the list of various metrics available for the application such as jvm.memory.used,

jvm.memory.max, http.server.request, etc. Once the metric is chosen, the user can view the

associated tags. The user can choose the value of each of the tags based on filtering criteria. On

clicking Add Metric button, the metric is added to the page, which is refreshed every 5 seconds by

default. The user can pause the auto refresh feature by deactivating the Auto Refresh toggle. The

user can also refresh the metrics manually by clicking Refresh All. The format of the metric value

can be changed according to the user’s needs. They can delete a particular metric by clicking on the

minus symbol in the same row.

Application Live View v1.0 Documentation

VMware, Inc 33

Actuator Page

To navigate to the Actuator page, the user should select the Actuator option from the Information

Category dropdown. The actuator page provides a tree view of the actuator data. The user can

choose from a list of actuator endpoints and parse through the raw actuator data.

Application Live View v1.0 Documentation

VMware, Inc 34

Supporting Polyglot Applications

Application Live View supports Spring Boot and Steeltoe applications at the moment.

Support for more application types is planned.

Application Live View v1.0 Documentation

VMware, Inc 35

Troubleshooting

My app does not show up in Application Live View UI. Why?

The connector component is responsible for discovering the application and registering it with

Application Live View. 1. The app in question needs to be a Spring Boot Application.

1. Make sure an instance of a connector is residing in the namespace of your application.

kubectl get pods -n <your namespace> | grep connector

2. Make sure the actuator endpoints are enabled for your application:

management.endpoints.web.exposure.include: "*"

3. Make sure the below labels are included in your app deployment yaml

tanzu.app.live.view="true"

tanzu.app.live.view.application.name="<app-name>"

4. Make sure the convention service workload yaml does not contain property

management.endpoints.web.exposure.include overrides

My app shows up in Application Live View UI, but the ‘Health’ page does not show details of

health. Why?

The information exposed by the health endpoint depends on the

management.endpoint.health.show-details property and this should be set to ‘always’ as below:

management.endpoint.health.show-details: "always"

My app is not visible in Application Live View UI, even though the actuator endpoints are

enabled. Why?

1. Check the port on which actuator endpoints are configured. By default, they are enabled on

the application port. If they are configured on a port different from the application port, make

sure to set the labels in your application deployment yaml:

tanzu.app.live.view.application.port: "<application port>"

tanzu.app.live.view.application.actuator.port: "<actuator port>"

2. Check the path on which the application and actuator endpoints are configured. If they are

configured on a different paths, make sure to set the labels in your application deployment

yaml:

tanzu.app.live.view.application.path: "<application path>"

tanzu.app.live.view.application.actuator.path: "<actuator path>"

How do I verify whether the labels in my workload yaml are working fine?

1. Verify the application live view convention webhook is running properly using kubectl get

pods -n app-live-view | grep webhook

2. Verify the conventions controller is running properly using kubectl get pods -n

conventions-system

3. Run kubectl get podintents.conventions.apps.tanzu.vmware.com <your workload name>

-oyaml to check if the conventions are applied properly to the PodSpec. If everything works

correctly, the status will contain a transformed template that includes the labels added as part

of your workload yaml.

For example:

Application Live View v1.0 Documentation

VMware, Inc 36

status:

conditions:

- lastTransitionTime: "2021-10-26T11:26:35Z"

 status: "True"

 type: ConventionsApplied

- lastTransitionTime: "2021-10-26T11:26:35Z"

 status: "True"

 type: Ready

observedGeneration: 1

template:

 metadata:

 annotations:

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 appliveview-sample/app-live-view-connector

 appliveview-sample/app-live-view-appflavours

 appliveview-sample/app-live-view-systemproperties

 labels:

 tanzu.app.live.view: "true"

 tanzu.app.live.view.application.flavours: spring-boot

 tanzu.app.live.view.application.name: petclinic

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dmanagement.endpoint.health.show-details=always -Dmanagement.en

dpoints.web.exposure.include=*

 image: index.docker.io/kdvolder/alv-spring-petclinic:latest@sha256:1aa7bd22

8137471ea38ce36cbf5ffcd629eabeb8ce047f5533b7b9176ff51f98

 name: workload

 resources: {}

I see stale information in App Live View, i.e. I find my app in the UI but it is actually an old

instance that no longer exists while the new instance doesn’t show up yet

Check the App Live View connector pod logs to see if the connector is sending updates to the

backend. Also, as a workaround, try deleting the connector pod so it gets recreated.

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

In TAP GUI, I see No live information for pod with id error sometimes

This could happen because of stale information in App Live View, i.e. it is actually an old instance

that no longer exists while the new instance doesn’t show up yet. The workaround is to delete the

connector pod so it gets recreated.

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

Can I override the labels set by the Application Live View Convention Service for the Workload

deployment in TAP?

No, the labels tanzu.app.live.view, tanzu.app.live.view.application.flavours and

tanzu.app.live.view.application.name cannot be overriden and the defaults set by the Application

Live View Convention Server would be used. However, if the users intend to override

management.endpoints.web.exposure.include or management.endpoint.health.show-details, the

environment properties can be overriden in application.properties or application.yml in the Spring

Boot Application before deploying the Workload in TAP. The environment properties updated by

the users in their application would take precedence over the defaults set by Application Live View

Convention Server.

My app has management.endpoints.web.base-path and management.server.port set. How to

configure the actuator labels?

If the custom actuator context path is configured like below (for example):

management.endpoints.web.base-path=/manage

management.server.port=8085

The connector can be configured like below:

Application Live View v1.0 Documentation

VMware, Inc 37

tanzu.app.live.view.application.actuator.path=/manage (manage is the custom actuator

 path set on the application)

tanzu.app.live.view.application.actuator.port=8085 (8085 is the custom management se

rver port set on the application)

The sidecar can be configured like below:

app.live.view.sidecar.application-actuator-path=/manage (manage is the custom actuato

r path set on the application)

app.live.view.sidecar.application-actuator-port=8085 (8085 is the custom management s

erver port set on the application)

My app has actuator endpoints exposed at root (/) and the UI does not show any information

Application Live View will not be able to display the application details when the application is

exposing the actuator endpoint on root (/) . This is due to conflict in the actuator context path and

application default context path.

I’m not able to override the actuator path in the labels as part of the Workload deployment.

What do I do?

The changes to add/override labels/annotations in the Workload are in progress. The changes from

the Workload need to be propagated up through the supply chain in order for the PodIntent to see

the new changes.

Application Live View v1.0 Documentation

VMware, Inc 38

Release Notes

This topic contains release notes for Application Live View for VMware Tanzu Release v1.0.

v1.0.3 release

Release Date: March 31, 2022

Features

New features and changes in this release:

Components

Updated Spring Framework to 5.3.18 to address CVE-2022-22965

Updated Jackson-BOM to 2.13.2.2022032 to address CVE-2020-36518

v1.0.2 release

Release Date: February 8, 2022

Features

New features and changes in this release:

Components

Includes changes to the App Live View connector to handle stream reset exceptions

Updated pod security policies for App Live View Components

Increased requests and limits for App Live View Connector to fix pod restarts

Updated Spring Boot 2.5.7 to 2.5.8

CVE vulnerability fix - to update protobuf-java to 3.19.2 in connector

Known issues

None

v1.0.1 release

Release Date: December 17, 2021

Features

New features and changes in this release:

Components

Includes changes to the App Live View Convention Service to be compatible with change in

sBOM location and format

Updated the log4j versions for the App Live View components to 2.16.0

Known issues

None

v1.0.0 beta release

Application Live View v1.0 Documentation

VMware, Inc 39

Release Date: November 29, 2021

Features

New features and changes in this release:

Packages

Application Live View installs two TAP packages for full and dev profiles in this release. Application

Live View Package (run.appliveview.tanzu.vmware.com) contains Application Live View Backend

and Connector components. Application Live View Conventions Package

(build.appliveview.tanzu.vmware.com) contains Application Live View Convention Service only.

Components

Includes changes to the App Live View connector to fall back to annotations if labels are not

present or set to invalid value

Removed server.service_type in values.yml

Removed CRD controller

Removed UI : The UI has been removed and rewritten to be part of the TAP GUI that is

provided with the Tanzu Application Platform.

Known issues

None

v0.3.0 beta release

Release Date: October 25, 2021

Features

New features and changes in this release:

Components

Created namespace app-live-view as part of package installation. Removed

server_namespace in values.yaml.

Changed the service_type in values.yaml to Cluster IP as default value (instead of

LoadBalancer)

Includes the native version of App Live View Connector

App Live View backend service is exposed on port 80 so that the user can directly enter the

service URL without specifying the port.

Known issues

None

v0.2.0 beta release

Release Date: September 27, 2021

Features

New features and changes in this release:

Components

Created namespace app-live-view as part of package installation. Removed

server_namespace in values.yaml.

Changed the service_type in values.yaml to Cluster IP as default value (instead of

LoadBalancer)

Application Live View v1.0 Documentation

VMware, Inc 40

Includes the native version of App Live View Connector

App Live View backend service is exposed on port 80 so that the user can directly enter the

service URL without specifying the port.

Certificate appliveview-webhook-cert is configured to be in app-live-view namespace so the

PodIntent runs without errors for a Workload.

Known issues

None

v0.1.0 beta release

Release Date: September 1, 2021

Initial release

Known issues

The certificate ‘appliveview-webhook-cert’ is found missing in app-live-view namespace and hence

the PodIntent fails on the workload as below:

Message: failed to authenticate: unable to find valid certificaterequest

s for certificate "app-live-view/appliveview-webhook-cert"

Reason: CABundleResolutionFailed

Status: False

Type: ConventionsApplied

Application Live View v1.0 Documentation

VMware, Inc 41

	Application Live View for VMware Tanzu
	Value Proposition
	Intended Audience
	Supported Application Platforms
	Multi-Cloud Compatibility
	Deployment

	Architecture
	Component Overview
	Design flow

	Installing Application Live View
	Prerequisites
	Verify the Kubernetes Cluster configuration
	Application Live View installation bundle
	Download the Application Live View installation bundle
	Install the Application Live View installation bundle
	Deploy the Application Live View installation bundle
	Verify the Application Live View components

	Install the Application Live View Conventions installation bundle
	Install the Application Live View Conventions installation bundle
	Deploy the Application Live View Conventions installation bundle
	Verify the Application Live View Convention component

	Uninstalling Application Live View for VMware Tanzu
	Configuring an Application
	Convention Server
	Role of Application Live View Convention Server

	Verify the applied labels and annotations
	Enabling Spring Boot Applications for App Live View
	Configuring Application Actuator Endpoints
	Configuring Application for Connector
	Configuring Developer Workload in TAP
	Deploy the Workload
	Verify the propagation of the label through the Supply Chain

	Scaling Knative Applications in TAP
	Configuring Developer Workload in TAP
	Deploy the Workload
	Verify the propagation of the annotation through the Supply Chain

	Product Features
	Details page
	Health page
	Environment page
	Log Levels Page
	Threads Page
	Memory Page
	Request Mappings Page
	HTTP Requests Page
	Caches Page
	Configuration Properties Page
	Conditions Page
	Scheduled Tasks Page
	Beans Page
	Metrics Page
	Actuator Page

	Supporting Polyglot Applications
	Troubleshooting
	Release Notes
	v1.0.3 release
	Features

	v1.0.2 release
	Features
	Known issues

	v1.0.1 release
	Features
	Known issues

	v1.0.0 beta release
	Features
	Known issues

	v0.3.0 beta release
	Features
	Known issues

	v0.2.0 beta release
	Features
	Known issues

	v0.1.0 beta release
	Known issues

