
Application Service
Adapter for VMware
Tanzu Application
Platform v1.0

Application Service Adapter for VMware Tanzu Application
Platform 1.0

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its

subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies. Copyright and trademark

information.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 2

https://docs.vmware.com/copyright-trademark.html

Contents

Application Service Adapter for VMware Tanzu Application Platform 10
Application Service Adapter Overview 10

Notice of telemetry collection for Application Service Adapter 11

Release notes for Application Service Adapter 12
v1.0.4 Release 12

Changelog 12

v1.0.3 Release 12

Changelog 12

v1.0.2 Release 12

Security fixes 12

v1.0.1 Release 12

Resolved issues 12

Components 13

Known Issues 13

v1.0.0 Release 13

Features 13

Application management 13

Application routes and domains 14

Application logs 14

Application tasks 15

Service management 15

User authentication and authorization 15

System installation 15

Org and space management 16

System security 16

Supply Chain Choreographer integration (experimental) 16

Components 17

Known Issues 17

Application Service Adapter reference architecture 18

Tanzu Application Platform installation 18

Adapter system requirements 18

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 3

Application workload requirements 19

Prerequisites to install Application Service Adapter 20
Kubernetes cluster and container image registry 20

Required installation tools 20

Required components 20

Required components for experimental Cartographer integration 21

Recommended components 22

Installing Application Service Adapter 23
Install the package repository 23

Configure the installation settings 24

Opting out of telemetry reporting 30

(Optional) Configure a Registry With a Custom Certificate Authority 31

(Optional) Configure the Experimental Cartographer Integration 31

Install Application Service Adapter 31

Configure DNS for Application Service Adapter 32

Log in with a system admin user 33

Install Application Service Adapter to air-gapped environments 34
Relocate images to a registry (air-gapped) 34

Install the package repository 35

Get started with Application Service Adapter 37
Create orgs and spaces 37

Deploy a sample app 37

Route to an app 37

Create and bind to a user-provided service instance 38

Use Application Service Adapter to push the spring-music app 38
Prerequisites 38

Clone and prepare the application locally 39

Push the app without persistent storage 39

Create a database service for persistent storage 42

Bind the database to the application 44

Administering Application Service Adapter 46

Disaster recovery with Application Service Adapter 46

Disaster recovery overview 46

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 4

State storage 46

Application Service Adapter installation resources 46

Application Service Adapter Cloud Foundry API resources 47

Application source code 47

Runnable application artifacts 47

Backup and restore 48

Failover and redundancy with Application Service Adapter 48
Cloud Foundry-compatible API 48

Controllers and webhooks 48

Applications 48

Rotate Application Service Adapter certificates 49
Rotating ingress certificates 49

Rotating internal certificates 50

System logs and metrics for Application Service Adapter 50
Gathering system logs 50

Querying performance metrics 51

Scale Application Service Adapter 51
Notes on system performance 52

Scaling the Application Service Adapter controller managers 52

Vertical scaling 52

Horizontal scaling 52

Scaling the Application Service Adapter API 53

Upgrade Application Service Adapter 53
Prerequisites 53

Update the new package repository 54

Upgrade Application Service Adapter 54

Verify the upgrade 54

Uninstall Application Service Adapter 56

Learn more about Application Service Adapter 57

Application Service Adapter Architecture 57
Overview 57

High-level architecture 57

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 5

Components 58

Experimental Cartographer integration 59

Authentication and authorization 59

Organization and space management 59

Building (staging) applications 60

Note on blobstores 61

Services 61

Routing 61

App logging and metrics 62

User authentication with Application Service Adapter 62

Background 63

Architecture 63

Application Service Adapter reference documentation 65

Application Service Adapter environment variables 65
Environment variables overview 65

View environment variables 65

App-specific system variables 66

CF_INSTANCE_GUID 67

CF_INSTANCE_INDEX 67

CF_INSTANCE_INTERNAL_IP 67

CF_INSTANCE_IP 67

HOME 67

PORT 67

PWD 67

VCAP_APP_HOST 67

VCAP_APP_PORT 68

VCAP_SERVICES 68

Buildpacks used by Application Service Adapter 69
Differences between the buildpack systems 69

System buildpack comparison 70

Binary buildpack 70

Go buildpack 71

Java buildpack 71

.NET Core buildpack 71

NGINX buildpack 71

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 6

Node.js buildpack 71

PHP buildpack 71

Python buildpack 71

Ruby buildpack 71

Staticfile buildpack 71

cf CLI commands supported by Application Service Adapter 71

Getting started 72

cf push 72

Supported manifest configuration 73

Supported app-level configuration 73

Supported process-level configuration 74

Supported route-level configuration 74

App operations 74

Org and space operations 76

Org operations 76

Space operations 76

Route and domain operations 76

Route operations 76

Domain operations 77

Service operations 77

Metadata operations 78

Troubleshoot Application Service Adapter 78

Generic troubleshooting techniques 78

Application Service Adapter logs 78

Deployments 79

Tanzu Application Platform logs 79

Deployments 80

CFApp Logs 80

Kubernetes System Events 80

System Object Types 80

Installed Object Types 81

CFOrg/CFSpace Object Types 81

Image Build Object Types (Default Builder/Runner) 82

Run App Object Types (Default Builder/Runner) 82

Image Build Object Types (Cartographer Builder/Runner) 83

Run App Object Types (Cartographer Builder/Runner) 84

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 7

Run Task Object Types 85

Common Failure Scenarios 86

Organization not found when creating an Org. 86

Symptom 86

Possible Causes 86

Troubleshooting Steps/Potential Solutions 86

Pushing an app fails to build an image 86

Symptom 86

Possible causes 86

Troubleshooting Steps/Potential Solutions 87

Pushing an app fails to upload an image to the image registry 87

Symptom 87

Possible Causes 87

Troubleshooting Steps/Potential Solutions 87

Pushing an app fails to start 87

Symptom 87

Possible Causes 87

Troubleshooting Steps/Potential Solutions 88

Deployed apps fail to become routable 88

Symptom 88

Possible Causes 88

Troubleshooting Steps/Potential Solutions 88

OpenShift Failure Scenarios 88

OpenShift Setting 88

Installing the Application Service Adapter on a non-OpenShift Kubernetes distribution

fails
89

Symptom 89

Possible Causes 89

Troubleshooting Steps/Potential Solutions 89

Installing the Application Service Adapter on an OpenShift Kubernetes distribution fails 89

Symptom 89

Possible Causes 89

Troubleshooting Steps/Potential Solutions 89

Pushing an app on an OpenShift cluster fails to start 90

Symptom 90

Possible Causes 90

Troubleshooting Steps/Potential Solutions 90

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 8

Cartographer Failure Scenarios 90

Cartographer setting 90

Pushing an app fails to start 90

Symptom 90

Possible Causes 90

Troubleshooting Steps/Potential Solutions 90

User management with Application Service Adapter 91
AWS IAM user management for EKS 91

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 9

Application Service Adapter for VMware
Tanzu Application Platform

Application Service Adapter provides compatibility with CF client interfaces while running on top of
K8s and integrating with Tanzu Application Platform. Learn more in this topic.

With Application Service Adapter, development teams using Tanzu Application Service for VMs
tooling, such as the Cloud Foundry command-line interface (cf CLI) and other clients of the Cloud
Foundry API (CAPI), can maintain their familiar workflows while their platform teams transition their
infrastructure and deployments to Kubernetes.

For more information, see:

Cloud Foundry

Tanzu Application Service for VMs

Tanzu Application Platform

Application Service Adapter Overview

The following diagram shows a high-level architecture of Application Service Adapter with user
flows:

Application Service Adapter is distributed as a Carvel package for platform teams to configure and
install to a Kubernetes cluster with the Tanzu CLI tool. The key user personas of Application Service

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 10

https://www.cloudfoundry.org/
https://tanzu.vmware.com/application-service
https://tanzu.vmware.com/application-platform
https://carvel.dev/

Adapter remain the same as the user personas of Tanzu Application Serivce: the platform operator
and the app developer.

Platform teams create Cloud Foundry orgs and spaces in the installation, which the Application
Service Adapter backs with separate Kubernetes namespaces. Application developers then use
these orgs and spaces to organize their apps as they do today with Tanzu Application Service for
VMs.

Application developers log in to their Application Service Adapter installation with credentials for
the underlying Kubernetes cluster, but then use the cf CLI and CAPI to push apps and to map
routes to them.

Application Service Adapter integrates with an existing installation of Tanzu Build Service
component of Tanzu Application Platform to build container images for app code deployed to the
platform. It also integrates with Contour to realize ingress routes to running apps.

To learn about Kubernetes cluster requirements and to plan your installation, see Reference
architecture.

To install Application Service Adapter and its dependencies, go to Installing prerequisites.

Notice of telemetry collection for Application Service
Adapter
Application Service Adapter for VMware Tanzu Application Platform participates in the VMware
Customer Experience Improvement Program (CEIP). As part of CEIP, VMware collects technical
information about your organization’s use of VMware products and services in association with your
organization’s VMware license keys. For information about CEIP, see the Trust & Assurance
Center. You may join or leave CEIP at any time. The CEIP Standard Participation Level provides
VMware with information to improve its products and services, identify and fix problems, and advise
you on how to best deploy and use VMware products. For example, this information can enable a
proactive product deployment discussion with your VMware account team or VMware support
team to help resolve your issues. This information cannot directly identify any individual.

You must acknowledge that you have read the VMware CEIP policy before you can proceed with
the installation. For more information, see Configure the installation settings in Installing Application
Service Adapter. To opt out of telemetry participation after installation, see Opting out of telemetry
reporting in Installing Application Service Adapter.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 11

https://carvel.dev/
https://tanzu.vmware.com/build-service
https://projectcontour.io/
https://www.vmware.com/solutions/trustvmware/ceip.html

Release notes for Application Service
Adapter

You can view the release notes for v1.0.0 through v1.0.4 of Application Service Adapter for
VMware Tanzu Application Platform on this page.

v1.0.4 Release

Release date: July 18, 2023

Changelog

Updated package versions and associated dependencies.

v1.0.3 Release

Release date: June 7, 2023

Changelog

Updated package versions and associated dependencies.

v1.0.2 Release
Release date: February 8, 2023

Security fixes

System components in this release have been rebuilt with Go 1.19.5 to fix CVE-2022-41717
and CVE-2022-41720.

v1.0.1 Release

Release date: December 13, 2022

Resolved issues

Application instance pods now have the CF_INSTANCE_GUID, CF_INSTANCE_INTERNAL_IP,
CF_INSTANCE_IP, or POD_NAME environment variables set when Application Service Adapter is
configured to use the experimental integration with the Supply Chain Choreographer.

The output of cf logs no longer contains blank log lines interleaved with the log content
from the appplication instances.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 12

https://nvd.nist.gov/vuln/detail/CVE-2022-41717
https://nvd.nist.gov/vuln/detail/CVE-2022-41720

The values schema published in the Tanzu package for Application Service Adapter now
matches the values that the package installation recognizes.

Components

This release contains the following components:

cartographer-builder-runner @ 9ae3d6c

Korifi @ v0.3.0

tas-adapter-telemetry-controller @ 0a2e7ba

Known Issues

If you push an application with a specific buildpack set with the buildpacks property in the
application manifest or with the -b flag, that application will fail to build with an error that
only autodetection of buildpacks is supported. As a workaround, set buildpacks: ~ in the
application manifest or -b null on cf push to reset the app to use buildpack autodetection.
If you only remove the field from the manifest or the flag from the cf push command, the
app will continue to fail to build.

If you change the application code so that the build process generates a different start
command for the app, the app's start command is not updated, and the app may fail to start
correctly. As a workaround, you can manually override the start command with the command
property in the application manifest or with the -c flag on cf push.

The organization manager role does not have permissions to create Cloud Foundry spaces.
As a workaround, instead use the Cloud Foundry admin role to create spaces in
organizations.

v1.0.0 Release
Release date: November 10, 2022

Features

Application management

Application developers can use cf push to create, build, and run applications from source
code.

Application developers can use cf stop to stop an application without deleting it.

Application developers can use cf start to start a stopped application.

Application developers can use cf restart to restart an application.

Application developers can use cf restage to restage an application.

Application developers can use cf delete to delete an application.

Application developers can use cf apps to list the applications in a Cloud Foundry space.

Application developers can use cf app to describe an application, including the status and
CPU and memory usage metrics for its instances.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 13

https://github.com/cloudfoundry/korifi/tree/v0.3.0

Application developers can use cf buildpacks to list the system buildpacks.

Application developers can use cf get-health-check to get the health-check type of an
application's process types.

Application developers can use cf set-health-check to set the health-check type of an
application's process types.

Application processes with a route mapped to them have a port-based health-check by
default.

Application developers can use cf env to list the environment variables on an application.

Application developers can use cf set-env to set an environment variable on an
application.

Application developers can use cf unset-env to remove an environment variable on an
application.

Application environment variables are included in the environment variables set during the
application build process.

Application developers can use cf set-label to set a label on an application.

Application developers can use cf unset-label to unset a label on an application.

Application developers can use cf labels to read labels on an application.

Application developers can use CF API endpoints to read, set, and unset annotations on an
application.

Applications have a default memory limit of 1024M.

Application routes and domains

Application developers can use cf create-route to create a route.

Application developers can use cf delete-route to delete a route.

Application developers can use cf map-route to map a route from an application.

Application developers can use cf unmap-route to unmap a route from an application.

Application developers can use cf domains to list the shared domains available for routes.

Applications receive a HTTP route on cf push unless opting out with the --no-route flag.

Application developers can obtain a randomly generated route for their app using the --
random-route flag on cf push or the random-route key in the application manifest.

Application Service Adapter validates that domains do not overlap.

Application Service Adapter validates that each route has a non-empty hostname and has a
fully qualified domain name that is a valid DNS name.

Application Service Adapter validates that paths of routes are well-formed and less than 128
characters in length.

Application logs

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 14

Application developers can see application staging logs during cf push.

Application developers can use cf logs to stream logs from running applications.

Application developers can use cf logs --recent to retrieve recent build and runtime logs
for applications.

Application tasks

Application developers can use cf run-task to run a one-off task for an application.

Application developers can use cf tasks to list the one-off tasks for an application.

Application developers can use cf terminate-task to cancel a running one-off task for an
application.

Service management

Application developers can use cf create-user-provided-service to create a user-
provided service instance.

Application developers can use cf services to list the user-provided service instances in
the current CF space.

Application developers can use cf service to describe a user-provided service instance.

Application developers can use cf delete-service to delete a user-provided service
instance.

Application developers can use cf bind-service to bind a user-provided service instance to
an application. After the app is restarted or restaged, the contains the credentials for the
bound service.

Application Service Adapter presents service credentials to bound applications both in the
application's VCAP_SERVICES environment variable as filesystem projections under the
service binding root directory.

Application developers can use cf unbind-service to unbind a user-provided service
instance from an application.

User authentication and authorization

Application developers can use cf login to log into the Application Service Adapter with
authentication information from their local kubeconfig file.

The Application Service Adapter enforces authorization rules for API resources. A user must
have an admin role or a Space Developer role to push apps and map routes.

System installation

System operators can use the tanzu CLI to install Application Service Adapter as a Tanzu
package.

System operators can configure the Application Service Adapter system to trust container
registries that have certificates signed by private certificate authorities.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 15

https://github.com/servicebinding/spec#workload-projection

System operators can set replica counts and resource limits for each Application Service
Adapter system component.

System operators can set the expiry duration beyond which users of the Application Service
Adapter API are notified to use shorter-lived certificates for authentication.

System operators must specify a domain to use as the default shared domain for application
routes.

System operators can change the default shared domain for application routes after an
initial installation.

System operators can specify the name of the kpack ClusterBuilder to use to build
application images, defaulting to default.

System operators can configure Application Service Adapter to work with Kubernetes
authentication proxies such as Pinniped.

System operators can configure the certificate/private key pairs for the Application Service
Adapter API and app ingress TLS using Kubernetes secrets instead of certificate and key
contents.

System operators can opt out of telemetry collection by creating a particular ConfigMap in
the underlying Kubernetes cluster, identical to the one used to opt out of telemetry
collection for Tanzu Application Platform.

Org and space management

System operators can use cf create-org to create a Cloud Foundry org.

System operators can use cf create-space to create a Cloud Foundry space.

System operators can also create CFOrg and CFSpace custom resources in the Kubernetes
API to create orgs and spaces.

System operators can use cf delete-space to delete a Cloud Foundry space.

System operators can use cf delete-org to delete a Cloud Foundry org.

System operators can use cf set-label to set a label on an org or a space.

System operators can use cf unset-label to unset a label on an org or a space.

System operators can use cf labels to read labels on an org or a space.

System operators can use CF API endpoints to read, set, and unset annotations on an org
or a space.

System security

App traffic runs over HTTPS instead of HTTP, with the terminating TLS certificate and
private key specified at installation time.

Supply Chain Choreographer integration (experimental)

EXPERIMENTAL: Platform operators can configure the Application Service Adapter system
to build and run applications using the Workload resource from Tanzu Application Platform.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 16

Note that this configuration is experimental and applies system-wide.

Components

This release contains the following components:

cartographer-builder-runner @ 9ae3d6c

Korifi @ v0.3.0

tas-adapter-telemetry-controller @ 0a2e7ba

Known Issues

If you push an application with a specific buildpack set with the buildpacks property in the
application manifest or with the -b flag, that application will fail to build with an error that
only autodetection of buildpacks is supported. As a workaround, set buildpacks: ~ in the
application manifest or -b null on cf push to reset the app to use buildpack autodetection.
If you only remove the field from the manifest or the flag from the cf push command, the
app will continue to fail to build.

When deleting CF spaces or uninstalling Application Service Adapter, the underlying
Kubernetes namespaces may not be deleted due to an issue with
ServiceBindingProjection resource cleanup. As a workaround, you can manually remove
the finalizers from the ServiceBindingProjections to allow namespace deletion to
complete.

If you change the application code so that the build process generates a different start
command for the app, the app's start command is not updated, and the app may fail to start
correctly. As a workaround, you can manually override the start command with the command
property in the application manifest or with the -c flag on cf push.

Application instance pods do not have the CF_INSTANCE_GUID, CF_INSTANCE_INTERNAL_IP,
CF_INSTANCE_IP, or POD_NAME environment variables set when Application Service Adapter is
configured to use the experimental integration with the Supply Chain Choreographer.

The output of cf logs contains blank log lines interleaved with the log content from the
appplication instances.

The organization manager role does not have permissions to create Cloud Foundry spaces.
As a workaround, instead use the Cloud Foundry admin role to create spaces in
organizations.

The values schema published in the Tanzu package for Application Service Adapter does
not precisely match the values that the package installation recognizes. The published
schema contained obsolete parameters for scaling the kube_rbac_proxy component and for
enabling telemetry collection and omitted the api_ingress.port parameter.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 17

https://github.com/cloudfoundry/korifi/tree/v0.3.0

Application Service Adapter reference
architecture

The Application Service Adapter architecture described here gives you a path to create a
production deployment of Application Service Adapter.

Your use case may warrant a different architecture, but the design decisions described here
exemplify the main design issues in planning your Application Service Adapter environment.
Understanding these decisions can help provide a rationale for any necessary deviation from this
architecture.

Tanzu Application Platform installation

Adapter system requirements

Application workload requirements

Tanzu Application Platform installation

Application Service Adapter is installed on top of the Tanzu Application Platform, and uses Tanzu
Application Platform components to build and deploy workloads. Because both "build" and "run"
steps are executed on the same cluster, you must install the required Tanzu Application Platform
packages to a single cluster before installing the Application Service Adapter. This type of
installation maps most closely to the "iterate cluster" described in the Tanzu Application Platform
reference architecture.

Some packages included in an "iterate cluster" installation are optional when preparing a cluster for
Application Service Adapter. Required packages are as follows:

buildservice.tanzu.vmware.com

cert-manager.tanzu.vmware.com

contour.tanzu.vmware.com

service-bindings.labs.vmware.com

tap.tanzu.vmware.com

tap-telemetry.tanzu.vmware.com

If you plan to enable the experimental Cartographer integration in the Application Service Adapter,
the following packages are also required:

tekton.tanzu.vmware.com

cartographer.tanzu.vmware.com

ootb-templates.tanzu.vmware.com

controller.source.apps.tanzu.vmware.com

Adapter system requirements

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 18

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap-reference-architecture/GUID-reference-designs-tap-architecture-planning.html#iterate-cluster-requirements-10

Application Service Adapter installs a Cloud Foundry API server and a set of controller runtime
components on top of the base Tanzu Application Platform installation. Although these
components consume cluster resources, the recommended minimum sizing for a Tanzu Application
Platform "iterate cluster" are sufficient to accommodate Application Service Adapter system
components running with modest load.

Specifically, VMware recommends the following for an "iterate cluster":

LoadBalancer for ingress controller (2 external IP addresses).

Default storage class.

At least 16 GB available memory that is allocatable across clusters, with at least 8 GB per
node.

Logging is enabled and targets the desired application logging platform.

Monitoring is enabled and targets the desired application observability platform.

Spread across three AZs for high availability.

Application workload requirements

Because cf pushed applications run as pods on the same cluster as the Application Service Adapter
itself, plan the capacity of your cluster to accommodate those applications.

Planning capacity for application workloads depends on the applications you plan to deploy and
how they are scaled. Default memory, CPU, and disk allocations for each application instance are as
follows:

limits:

 ephemeral-storage: 1Gi

 memory: 1Gi

requests:

 cpu: 100m

 ephemeral-storage: 1Gi

 memory: 1Gi

Planning total capacity on your cluster requires understanding the size of your planned applications,
and then adding up those resources to ensure that you have sufficient resources on your cluster.

Note

With increased API traffic or deployed object counts, Application Service Adapter
components might need to be scaled as described in the scaling topic and might
require additional cluster resources.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 19

Prerequisites to install Application Service
Adapter

To install Application Service Adapter, you need to first complete the prerequisites listed here.

Application Service Adapter requires using Cloud Foundry command-line interface (cf CLI) v8.1.0 or
later. VMware recommends using v8.5.0 or later. For more information, see the cf CLI repository
on GitHub.

Kubernetes cluster and container image registry

To install the Application Service Adapter, you need:

Admin access to a Kubernetes cluster that meets the same requirements as the version of
Tanzu Application Platform you have installed, either v1.2, v1.3, or v1.4. See Kubernetes
cluster requirements under Prerequisites.

As of Tanzu Application Platform v1.3, Kubernetes v1.22, v1.23, or v1.24 is required.
There are additional requirements for some implementations. For example, Amazon
Elastic Kubernetes Service (EKS) requires containerd as the Container Runtime
Interface (CRI) among with other requirements.

A container image registry. See VMware Tanzu Network and container image registry
requirements in Prerequisites. The Application Service Adapter does not support Amazon's
Elastic Container Registry (ECR).

Required installation tools

The following tools must be installed in the workstation environment in which you intend to
perform the installation:

The Kubernetes CLI (kubectl) v1.22 or v1.23.

Tanzu CLI and its plug-ins. See Install or update the Tanzu CLI and plugins in Accepting
Tanzu Application Platform EULAs and installing Tanzu CLI.

After you install the Tanzu CLI, run tanzu plugin list to verify that the required package and
secret plug-ins are installed. To install these plug-ins, run:

tanzu plugin install --local cli package

tanzu plugin install --local cli secret

Required components

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 20

https://github.com/cloudfoundry/cli
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.4/tap/prerequisites.html#kubernetes-cluster-requirements-3
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-prerequisites.html#vmware-tanzu-network-and-container-image-registry-requirements-0
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-install-tanzu-cli.html#install-or-update-the-tanzu-cli-and-plugins-3

The following dependencies must be installed to the target Kubernetes cluster before installing
Application Service Adapter. If you completed an installation of the full profile or the iterate
profile of Tanzu Application Platform v1.2 in your target Kubernetes cluster, these dependencies
are already present.

Cluster Essentials. See Deploying Cluster Essentials v1.3.

cert-manager v1.5.3 or later for managing internal certificates.

If you installed Tanzu Application Platform v1.3 with a profile, this package is
installed.

If you installed Tanzu Application Platform v1.3 without using a profile, see Install
cert-manager in Install cert-manager, Contour.

Contour v1.18.2 or later for ingress control.

If you installed Tanzu Application Platform v1.3 with a profile, this package is
installed.

If you installed Tanzu Application Platform v1.3 without using a profile, see Install
Contour in Install cert-manager, Contour.

Service Bindings v0.7.2 or later.

If you installed Tanzu Application Platform v1.3 with the full, iterate, or run profile,
this package is installed.

If you installed Tanzu Application Platform v1.3 without using a profile, see Install
Service Bindings.

Tanzu Build Service v1.6.1 or later for building images.

If you installed Tanzu Application Platform v1.3 with the full, iterate, or build
profile, this package is installed.

If you installed Tanzu Application Platform v1.3 without using a profile, see Installing
Tanzu Build Service.

Required components for experimental Cartographer
integration

Note

If you are operating a Tanzu Kubernetes Grid cluster, the Cluster Essentials
are already installed.

Note

You must configure Contour's ingress to provision a LoadBalancer. See the
default configuration in Install your Tanzu Application Platform profile in
Installing Tanzu Application Platform Package and Profiles.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 21

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.3/cluster-essentials/GUID-deploy.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-cert-mgr-contour-fcd-install-cert-mgr.html#install-certmanager-1
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-cert-mgr-contour-fcd-install-cert-mgr.html#install-contour-2
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-service-bindings-install-service-bindings.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-tanzu-build-service-install-tbs.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/install-online-profile.html#install-your-tanzu-application-platform-profile-2

The following dependencies are required to be installed to the target Kubernetes cluster to opt
into using the experimental Cartographer integration. If you installed Tanzu Application Platform
v1.3 with the full, iterate, or build profile, these dependencies are already present.

Out of the Box Templates v0.8.1 or later.

If you installed Tanzu Application Platform v1.3 without using a profile, see Install
Out of the Box Templates.

Supply Chain Choreographer v0.4.0 or later.

If you installed Tanzu Application Platform v1.2 without using a profile, see Install
Supply Chain Choreographer.

Source Controller v0.4.1 or later.

If you installed Tanzu Application Platform v1.2 without using a profile, see Install
Source Controller.

Tekton v0.33.5 or later.

If you installed Tanzu Application Platform v1.2 without using a profile, see Install
Tekton.

Recommended components

VMware recommends installing the following dependencies to the target Kubernetes cluster.

Kubernetes Metrics Server v0.4.0 or later for app instance resource metrics.

After you installed these prerequisites, proceed to Installing Application Service Adapter.

Note

Many Kubernetes distributions automatically come with the Metrics Server
installed. If the API resources in your target cluster include the PodMetrics
Kind in the metrics.k8s.io API group, the Metrics Server is already present.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 22

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-scc-install-ootb-templates.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-scc-install-scc.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-source-controller-install-source-controller.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-tekton-install-tekton.html
https://github.com/kubernetes-sigs/metrics-server/

Installing Application Service Adapter

You can install and configure Application Service Adapter for VMware Tanzu Application Platform
by following the steps in this topic.

After you complete the steps in Installing Prerequisites, set the Kubernetes context to the cluster
where you installed kpack and Contour.

Install the package repository

To install Application Service Adapter:

1. Set up environment variables for the installation:

export TAS_ADAPTER_VERSION=VERSION-NUMBER

Where VERSION-NUMBER is the version of Application Service Adapter you want to install. For
example, 1.0.0.

2. Verify that the tap-install namespace exists in your cluster.

kubectl get ns tap-install

The output lists the status of the tap-install namespace:

NAME STATUS AGE

tap-install Active 2d

3. Create a registry secret to store your VMware Tanzu Network credentials in the tap-
install namespace. These are required so that the Kubernetes cluster can pull images for
the Application Service Adapter system from the VMware Tanzu Network registry.

tanzu secret registry add tanzunet-tas-adapter-registry \

 --username "TANZU-NET-USERNAME" \

 --password "TANZU-NET-PASSWORD" \

 --server registry.tanzu.vmware.com \

 --export-to-all-namespaces \

 --yes \

 --namespace tap-install

Where:

TANZU-NET-USERNAME is your user name on VMware Tanzu Network.

TANZU-NET-PASSWORD the password for your user name on VMware Tanzu Network.

4. Add the Application Service Adapter package repository to the cluster.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 23

tanzu package repository add tas-adapter-repository \

 --url registry.tanzu.vmware.com/app-service-adapter/tas-adapter-package-rep

o:${TAS_ADAPTER_VERSION} \

 --namespace tap-install

5. Verify that the package repository contains the Application Service Adapter package.

tanzu package available list \

 --namespace tap-install

The output includes the Application Service Adapter package:

NAME DISPLAY-NAME SHOR

T-DESCRIPTION LATEST-VERSION

...

application-service-adapter.tanzu.vmware.com Application Service Adapter Appl

ication Service Adapter for VMware Tanzu® Application Platform 1.0.0
...

6. List the installation settings for the application-service-adapter package.

tanzu package available get application-service-adapter.tanzu.vmware.com/${TAS_

ADAPTER_VERSION} --values-schema --namespace tap-install

It should output a list of settings similar to:

| Retrieving package details for application-service-adapter.tanzu.vmware.com/

1.0.0...

 KEY DEFAULT TYPE DESCRIPTION

 api_auth_proxy.ca_cert.data string TLS CA certificate of your clus

ter's auth proxy

 api_auth_proxy.host string FQDN of your cluster's auth pro

xy

 api_ingress.fqdn string FQDN used to access the CF API

 api_ingress.tls.secret_name string Name of the secret containing t

he TLS certificate for the CF API (PEM format)

 api_ingress.tls.namespace string Namespace containing the CF API

TLS secret

 app_ingress.default_domain string Default application domain

 app_ingress.tls.secret_name string Name of the secret containing t

he TLS certificate for the default application domain (PEM format)

 app_ingress.tls.namespace string Namespace containing the defaul

t application domain TLS secret

 app_registry.path.droplets string Container registry repository w

here staged, runnable app images (Droplets) will be stored

 app_registry.path.packages string Container registry repository w

here uploaded app source code (Packages) will be stored

 kpack_clusterbuilder_name default string Name of the kpack cluster builde

r to use for staging

 ...

Configure the installation settings

To configure the installation settings:

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 24

1. If you do not already have a secret containing a certificate and private key pair for HTTPS
ingress to the Application Service Adapter API:

If you have a certificate and private key pair, create a secret containing them:

kubectl create namespace API-TLS-SECRET-NAMESPACE

kubectl create secret tls API-TLS-SECRET-NAME \

 --cert=tls.crt \

 --key=tls.key \

 --namespace API-TLS-SECRET-NAMESPACE

If you do not have a certificate and private key pair, you can use cert-manager to
generate a secret containing a self-signed certificate in the cert-manager
documentation:

kubectl apply -f - <<EOF

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

 name: selfsigned-issuer

 namespace: API-TLS-SECRET-NAMESPACE

spec:

 selfSigned: {}

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: api-selfsigned-certificate

 namespace: API-TLS-SECRET-NAMESPACE

spec:

 commonName: API-FQDN

 dnsNames:

 - API-FQDN

 issuerRef:

 name: selfsigned-issuer

 privateKey:

 algorithm: RSA

 secretName: API-TLS-SECRET-NAME

 usages:

 - server auth

 - client auth

EOF

2. If you do not already have a secret containing a wildcard certificate and private key pair for
HTTPS application ingress:

If you have a wildcard certificate and private key pair, create a secret containing
them:

kubectl create namespace APP-TLS-SECRET-NAMESPACE

kubectl create secret tls APP-TLS-SECRET-NAME \

 --cert=tls.crt \

 --key=tls.key \

 --namespace APP-TLS-SECRET-NAMESPACE

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 25

https://cert-manager.io/docs/usage/certificate/#creating-certificate-resources

If you do not have a wildcard certificate and private key pair, you can use cert-
manager to generate a Secret containing a self-signed wildcard certificate in the
cert-manager documentation:

kubectl apply -f - <<EOF

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

 name: selfsigned-issuer

 namespace: APP-TLS-SECRET-NAMESPACE

spec:

 selfSigned: {}

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: app-domain-selfsigned-certificate

 namespace: APP-TLS-SECRET-NAMESPACE

spec:

 commonName: *.DEFAULT-APP-DOMAIN

 dnsNames:

 - *.DEFAULT-APP-DOMAIN

 issuerRef:

 name: selfsigned-issuer

 privateKey:

 algorithm: RSA

 secretName: APP-TLS-SECRET-NAME

 usages:

 - server auth

 - client auth

EOF

3. If you do not already have a secret containing the host name, user name, and password for
your application image registry, create one:

kubectl create namespace APP-REGISTRY-CREDENTIALS-SECRET-NAMESPACE

kubectl create secret docker-registry APP-REGISTRY-CREDENTIALS-SECRET-NAME \

 --docker-server=APP-REGISTRY-SERVER \

 --docker-username=APP-REGISTRY-USERNAME \

 --docker-password=$(cat /path/to/APP-REGISTRY-PASSWORD) \

 --namespace APP-REGISTRY-CREDENTIALS-SECRET-NAMESPACE

Where:

APP-REGISTRY-SERVER is the address of the registry used for app packages and
droplets. This value is the same as the server name in a dockerconfigjson
Kubernetes secret. For example:

Harbor has the form my-harbor.io.

Docker Hub the form https://index.docker.io/v1/.

Google Container Registry has the form gcr.io.

4. Create a SecretExport to allow Application Service Adapter to copy the application image
registry credentials secret into the cf namespace.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 26

https://cert-manager.io/docs/usage/certificate/#creating-certificate-resources

kubectl apply -f - <<EOF

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

 name: APP-REGISTRY-CREDENTIALS-SECRET-NAME

 namespace: APP-REGISTRY-CREDENTIALS-SECRET-NAMESPACE

spec:

 toNamespace: cf

EOF

5. Create a tas-adapter-values.yaml file with the installation settings that you want, following
the schema specified for the package.

The following values are required:

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not

set to the boolean value true. Not a string.

api_ingress:

 fqdn: "API-FQDN"

 tls:

 secret_name: API-TLS-SECRET-NAME

 namespace: API-TLS-SECRET-NAMESPACE

app_ingress:

 default_domain: "DEFAULT-APP-DOMAIN"

 tls:

 secret_name: APP-TLS-SECRET-NAME

 namespace: APP-TLS-SECRET-NAMESPACE

app_registry:

 credentials:

 secret_name: "APP-REGISTRY-CREDENTIALS-SECRET-NAME"

 namespace: "APP-REGISTRY-CREDENTIALS-SECRET-NAMESPACE"

 hostname: "APP-REGISTRY-HOSTNAME"

 path:

 droplets: "APP-REGISTRY-PATH-DROPLETS"

 packages: "APP-REGISTRY-PATH-PACKAGES"

Where:

API-FQDN is the fully qualified domain name (FQDN) that you want to use for the
Application Service Adapter API. Example: api.example.com

API-TLS-SECRET-NAME is the kubernetes.io/tls secret containing the PEM-encoded
public certificate for the Application Service Adapter API.

API-TLS-SECRET-NAMESPACE is the namespace containing the API TLS secret.

DEFAULT-APP-DOMAIN is the domain that you want to use for automatically configured
application routes. Example: apps.example.com.

APP-TLS-SECRET-NAME is the kubernetes.io/tls secret containing the PEM-encoded
public certificate for applications deployed using the Application Service Adapter.

APP-TLS-SECRET-NAMESPACE is the namespace containing the application TLS secret.

APP-REGISTRY-CREDENTIALS-SECRET-NAME is the kubernetes.io/dockerconfigjson
secret containing the host, user name, and password for the application image
registry.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 27

APP-REGISTRY-CREDENTIALS-SECRET-NAMESPACE is the namespace containing the
application image registry secret.

APP-REGISTRY-HOSTNAME is the host name of the registry used for app packages and
droplets. For example:

Harbor has the form hostname: "my-harbor.io"

Docker Hub has the form hostname: "index.docker.io"

Google Container Registry has the form hostname: "gcr.io"

APP-REGISTRY-PATH-DROPLETS is the path to the directory or project in the app
registry where Application Service Adapter uploads droplets, such as runnable
application images. This value does not include the registry host name itself.
Examples:

Harbor has the form droplets: "project-name/my-repo-name"

Docker Hub has the form droplets: "my-dockerhub-username"

Google Container Registry has the form droplets: "project-id/my-repo-
name"

APP-REGISTRY-PATH-PACKAGES is the is the path to the directory or project in the app
registry where Application Service Adapter uploads packages, such as application
source code. This value does not include the registry host name itself. Examples:

Harbor has the form packages: "project-name/my-repo-name"

Docker Hub has the form packages: "my-dockerhub-username"

Google Container Registry has the form packages: "project-id/my-repo-
name"

The following values are optional but recommended:

admin:

 users:

 - "ADMIN-USERNAME"

 ...

Where:

ADMIN-USERNAME is the name of an existing user in the Kubernetes cluster to whom
to grant system admin privileges. You can specify as many users as you want, one
per line. These names are identifiers for Kubernetes user accounts, not Kubernetes
service accounts.

For Amazon EKS, see the AWS IAM user management for EKS section of
the User Management topic for information on additional required cluster
configuration to map AWS IAM users and roles to Kubernetes roles.

For clusters configured to use authentication proxies such as Pinniped, you
can authenticate to the cluster and use the output of cf curl /whoami to
see the user account name to provide.

Note

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 28

https://pinniped.dev/

See additional optional values in the following example. For more information on optional
values, see the Tanzu CLI output.

api_auth_proxy:

 ca_cert:

 data: |

 API-AUTH-PROXY-TLS-CRT

 host: "API-AUTH-PROXY-FQDN"

api_ingress:

 port: "API-PORT"

app_registry:

 ca_cert:

 data: |

 PEM-ENCODED-CERTIFICATE-CONTENTS

experimental_use_cartographer: FALSE-OR-TRUE-VALUE

kpack_clusterbuilder_name: "KPACK-CLUSTER-BUILDER-NAME"

scaling:

 korifi_api:

 limits:

 cpu: "API-CPU-LIMIT"

 memory: "API-MEMORY-LIMIT"

 requests:

 cpu: "API-CPU-REQUEST"

 memory: "API-MEMORY-REQUEST"

 replicas: API-REPLICA-COUNT

 korifi_controllers:

 ... #! scaling keys are the same as above

 korifi_job_task_runner:

 ... #! scaling keys are the same as above

 korifi_kpack_image_builder:

 ... #! scaling keys are the same as above

 korifi_statefulset_runner:

 ... #! scaling keys are the same as above

 cartographer_builder_runner:

 ... #! scaling keys are the same as above

 telemetry_informer:

 ... #! scaling keys are the same as above

shared:

 kubernetes_distribution: KUBERNETES-DISTRIBUTION

telemetry:

 heartbeat_interval: TELEMETRY-HEARTBEAT-INTERVAL

user_certificate_expiration_warning_duration: "USER-CERT-EXPIRY-WARNING-DURATIO

N"

These user names are the ones that Kubernetes recognizes as user
identifiers in the subject section of its RBAC resources, such as
RoleBindings, and may differ from the names of the user entries in your
local Kubeconfig file. If you are not certain of this user name, you can leave
this entry empty for the initial installation. After completing the installation
and logging in with the cf CLI, use the cf curl /whoami command to
confirm the user name and then update the installation with the correct
name value. For more information about user subject names in Kubernetes,
see the Referring to subjects section of Using RBAC Authorization and the
Authenticating topic in the Kubernetes project documentation.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 29

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-subjects
https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Where:

API-AUTH-PROXY-TLS-CRT is the CA certificate from the authentication proxy running
along side your Kubernetes cluster.

API-AUTH-PROXY-FQDN is the FQDN for the authentication proxy running along side
your Kubernetes cluster.

API-PORT is the port number which clients should use to connect to the Application
Service Adapter API, and which the API will include in URLs that direct back to
itself. When set to 0 or left unset, no port is included in those URLs, and clients
should connect to port 443, the standard port for HTTPS traffic.

PEM-ENCODED-CERTIFICATE-CONTENTS is a PEM encoded multiline string containing
the certificate authority (CA) certificate.

The value must be inserted into your values file as a YAML multiline string
with a block scalar literal.

KPACK-CLUSTER-BUILDER-NAME is the name of the kpack cluster builder to use for
staging. Tanzu Build Service provides two cluster builders named base and default.
To create your own builder, see Managing Builders in the Tanzu Build Service
documentation, and update this setting with the corresponding builder name.

USER-CERT-EXPIRY-WARNING-DURATION is the recommended duration beyond which
user are warned to use short-lived certificates for authentication. Default is 168
hours.

API-CPU-LIMIT is the CPU resource limit for the pods that you want in the specified
deployment. Default is 1 CPU.

API-MEMORY-LIMIT is the memory resource limit that you want for the pods in the
specified deployment. Default is 1000Mi.

API-CPU-REQUEST is the CPU resource request that you want for the pods in the
specified deployment. Default is 50m.

API-MEMORY-REQUEST is the memory resource request that you want for the pods in
the specified deployment. Default is 100Mi.

API-REPLICA-COUNT is the number of replicas that you want for the specified
deployment. Default is 1.

KUBERNETES-DISTRIBUTION is the name of the Kubernetes distribution. Defaults to "".

Set "openshift" as the value when installing on an OpenShift environment.

Leave it unset for all other distributions.

TELEMETRY-HEARTBEAT-INTERVAL is how often telemetry data is sent to VMware.
Default is every 24 hours.

The requests and limits text boxes map directly to the resource requests and limits text
boxes on the Kubernetes containers for these system components. For more information,
see Resource requests and limits of Pod and container in the Kubernetes documentation.

Opting out of telemetry reporting

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 30

https://docs.vmware.com/en/Tanzu-Build-Service/1.3/vmware-tanzu-build-service/GUID-managing-builders.html
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-requests-and-limits-of-pod-and-container

By default, when you install Application Service Adapter, you opt into telemetry collection. To
deactivate telemetry collection, complete the following instructions:

1. Ensure that your Kubernetes context is pointing to the cluster where Application Service
Adapter is installed.

2. Run the following kubectl command:

kubectl apply -f - <<EOF

apiVersion: v1

kind: Namespace

metadata:

 name: vmware-system-telemetry

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: vmware-system-telemetry

 name: vmware-telemetry-cluster-ceip

data:

 level: disabled

EOF

Your Application Service Adapter deployment no longer emits telemetry, and you are opted out of
the VMware Customer Experience Improvement Program.

(Optional) Configure a Registry With a Custom Certificate Authority

Your Kubernetes cluster nodes and the Tanzu Build Service component of Tanzu Application
Platform must also both be configured to trust this Certificate Authority for the registry.

To configure Application Service Adapter to trust a registry that has a custom or self-signed
certificate authority:

1. Set the value of the app_registry_credentials.ca_cert_data property in the tas-adapter-
values.yaml file with the PEM encoded certificate for the registry's Certificate Authority.

(Optional) Configure the Experimental Cartographer Integration

Opting into the experimental Cartographer integration requires a larger set of Tanzu Application
Platform packages to be installed. See Required components for experimental Cartographer
integration in Install Prerequisites.

To configure the experimental Cartographer integration:

1. Set the value of the experimental_use_cartographer property in the `tas-adapter-
values.yaml file.

Install Application Service Adapter

To install Application Service Adapter:

1. Install Application Service Adapter to the cluster.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 31

tanzu package install tas-adapter \

 -p application-service-adapter.tanzu.vmware.com \

 --version "${TAS_ADAPTER_VERSION}" \

 --values-file tas-adapter-values.yaml \

 --namespace tap-install

2. Verify that the package install was successful.

tanzu package installed get tas-adapter \

 --namespace tap-install

The following is an example output:

| Retrieving installation details for tas-adapter...

NAME: tas-adapter

PACKAGE-NAME: application-service-adapter.tanzu.vmware.com

PACKAGE-VERSION: 1.0.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Configure DNS for Application Service Adapter
To configure DNS for Application Service Adapter:

1. Determine the external IP address to use for ingress to your cluster. This step varies
depending on the IaaS used to provision your cluster.

For clusters that support LoadBalancer services, you can obtain the external IP address of
the LoadBalancer Service that is associated with Contour's Envoy proxy. The Namespace
for this service is typically either tanzu-system-ingress or projectcontour depending on
how Contour was installed.

kubectl -n tanzu-system-ingress get service envoy -ojsonpath='{.status.loadBala

ncer.ingress[*].ip}'

2. Create an A record in your DNS zone that resolves the configured API FQDN to the
external IP address from step 1. This step varies depending on your DNS provider.

Note

If you are using a cluster deployed on AWS, your LoadBalancer has a DNS
name instead of an IP address.

Note

If you are using a cluster deployed on AWS, create a CNAME record that
resolves to the DNS name of the load balancer instead of an A record.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 32

3. Create a wildcard A record in your DNS zone that resolves all sub-domains of the
configured application domain to the external IP address from step 1. This step varies
depending on your DNS provider.

4. Verify that the Contour HTTPProxy for the API endpoint is valid.

kubectl -n tas-adapter-system get httpproxy korifi-api-proxy

The following is an example output:

NAME FQDN TLS SECRET STATUS STATUS DESCRIP

TION

korifi-api-proxy API-FQDN korifi-api-ingress-cert valid Valid HTTPProx

y

Log in with a system admin user
After you install the Cloud Foundry command-line interface (cf CLI), log in to Application Service
Adapter with one of the system admin users you configured in the admin.users value:

1. Target the cf CLI at the API endpoint.

cf api API-FQDN --skip-ssl-validation

Where API-FQDN is the fully qualified domain name (FQDN) for the Application Service
Adapter API.

2. Log in with the cf CLI.

cf login

The cf CLI detects the user authentication entries in your local Kubeconfig file and presents
them for you to select one interactively. Select an entry corresponding to one of the users
you configured in the list in the admin.users value.

3. Use the cf curl command to verify the subject name of the logged-in user.

cf curl /whoami

The output looks like the following:

{"name":"my_user@example.com","kind":"User"}

The value of the name text box in the response is the subject name of the user, and matches
the name configured in admin.users.

Note

If you configured the Application Service Adapter with a globally trusted
certificate during installation, you can omit the --skip-ssl-validation flag.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 33

The kind text box in the output must have the value User. If it is some other value, such as
ServiceAccount, log in to the Application Service Adapter with an account for a user in the
Kubernetes cluster.

To test Application Service Adapter, continue to Getting Started.

Install Application Service Adapter to air-gapped
environments
You can install Application Service Adapter to a K8s cluster and registry that is air-gapped from
outside traffic. This topic has the steps you need to take.

For instructions on how to install prerequisites in air-gapped environments, see:

Tanzu Application Platform

Tanzu Build Service

Relocate images to a registry (air-gapped)
This procedure relocates images from VMware Tanzu Network registry to an internal container
image registry that is available to the air-gapped environment through a local machine. The local
machine must have access to the air-gapped environment.

1. Set up environment variables for the installation:

export TAS_ADAPTER_VERSION=VERSION-NUMBER

Where VERSION-NUMBER is the version of Application Service Adapter you want to install. For
example, 1.0.0.

2. Log in to VMware Tanzu Network registry with your VMware Tanzu Network credentials:

 docker login registry.tanzu.vmware.com

3. Copy the Application Service Adapter bundle to a tarball with the Carvel imgpkg tool by
running:

 imgpkg copy -b registry.tanzu.vmware.com/app-service-adapter/tas-adapter-packa

ge-repo:${TAS_ADAPTER_VERSION} --to-tar tas-adapter-package-repo.tar

4. Move the tarball file tas-adapter-package-repo.tar to the local machine that has access to
the air-gapped environment.

5. Log in to the internal image registry from the local machine:

 docker login INTERNAL-REGISTRY

Where INTERNAL-REGISTRY is the name of your internal image registry.

6. Unpackage the images from the tarball to the internal registry:

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 34

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/install-offline-intro.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-installing-no-kapp.html#installation-to-air-gapped-environment
https://carvel.dev/imgpkg/

 imgpkg copy --tar tas-adapter-package-repo.tar --to-repo=INTERNAL-REGISTRY /ta

s-adapter-package-repo

Install the package repository

After the images are relocated:

1. Verify that the tap-install namespace exists in your cluster.

kubectl get ns tap-install

The output lists the status of the tap-install namespace:

NAME STATUS AGE

tap-install Active 2d

2. Create a registry secret to store your registry credentials in the tap-install namespace.
These are required so that the Kubernetes cluster can pull images for the Application
Service Adapter system from the internal registry.

tanzu secret registry add internal-tas-adapter-registry \

 --username INTERNAL-REGISTRY-USERNAME \

 --password INTERNAL-REGISTRY-PASSWORD \

 --server INTERNAL-REGISTRY \

 --export-to-all-namespaces \

 --yes \

 --namespace tap-install

Where INTERNAL-REGISTRY-USERNAME and INTERNAL-REGISTRY-PASSWORD are your credentials
for INTERNAL-REGISTRY.

3. Add the Application Service Adapter package repository to the cluster.

tanzu package repository add tas-adapter-repository \

 --url <INTERNAL-REGISTRY>/tas-adapter-package-repo:${TAS_ADAPTER_VERSION} \

 --namespace tap-install

4. Verify that the package repository contains the Application Service Adapter package.

tanzu package available list \

 --namespace tap-install

The output includes the Application Service Adapter package:

NAME DISPLAY-NAME SHOR

T-DESCRIPTION LATEST-VERSION

...

application-service-adapter.tanzu.vmware.com Application Service Adapter Appl

ication Service Adapter for VMware Tanzu Application Platform 1.0.0

...

5. List the installation settings for the application-service-adapter package.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 35

tanzu package available get application-service-adapter.tanzu.vmware.com/${TAS_

ADAPTER_VERSION} --values-schema --namespace tap-install

It should output a list of settings similar to:

| Retrieving package details for application-service-adapter.tanzu.vmware.com/

1.0.0...

 KEY DEFAULT TYPE DESCRIPTION

 api_auth_proxy.ca_cert.data string TLS CA certificate of your clus

ter's auth proxy

 api_auth_proxy.host string FQDN of your cluster's auth pro

xy

 api_ingress.fqdn string FQDN used to access the CF API

 api_ingress.tls.crt string TLS certificate for the CF API

(PEM format)

 api_ingress.tls.key string TLS private key for the CF API

(PEM format)

 app_ingress.default_domain string Default application domain

 app_ingress.tls.crt string TLS certificate for the default

application domain (PEM format)

 app_ingress.tls.key string TLS private key for the default

application domain (PEM format)

 app_registry.path.droplets string Container registry repository w

here staged, runnable app images (Droplets) will be stored

 app_registry.path.packages string Container registry repository w

here uploaded app source code (Packages) will be stored

 kpack_clusterbuilder_name default string Name of the kpack cluster build

er to use for staging

 ...

For installation and configuring instructions, see the install guide.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 36

Get started with Application Service
Adapter

This get-started walkthrough gives you hands-on experience of Application Service Adapter:
creating an org and space, deploying an app, and more.

Create orgs and spaces

You can use cf create-org and cf create-space the same way that you do with Tanzu Application
Service for VMs. Under the hood, these commands create a Kubernetes namespace for each org
and each space and propagate required resources into the namespace.

To create orgs and spaces:

1. Create the Cloud Foundry org and space.

cf create-org ORG-NAME

cf target -o ORG-NAME

cf create-space SPACE-NAME

cf target -s SPACE-NAME

Where:

ORG-NAME is the name of the org you want to create.

SPACE-NAME is the name of the space you want to create.

2. (Optional) Assign the SpaceDeveloper role to other users in the Kubernetes cluster.

cf set-space-role USER-NAME ORG-NAME SPACE-NAME SpaceDeveloper

Where USER-NAME is the name of another user in the Kubernetes cluster.

Deploy a sample app
Use the cf CLI to deploy a sample app to the Application Service Adapter installation.

cf push APP-NAME

Where APP-NAME is the name of your app.

Route to an app

Applications automatically receive a default HTTP route unless pushed with the --no-route flag.
This default route uses the name of the app as the route host name. To configure additional routes

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 37

for the app that you pushed, use the cf CLI to map a route to your app.

cf map-route APP-NAME apps.example.com --hostname my-app

Create and bind to a user-provided service instance

Service credentials are provided to apps through user-provided service instances. See User-
Provided Service Instances in the Cloud Foundry documentation.

To create and bind user-provided service instances, do the following:

1. Create a user-provided service instance containing the credentials necessary for accessing
your service:

cf create-user-provided-service SERVICE-INSTANCE-NAME -p '{"credential-name":

"credential-value"}'

Where SERVICE-INSTANCE-NAME is the name of your service instance.

2. Bind the service instance to your app:

cf bind-service APP-NAME SERVICE-INSTANCE-NAME

3. Restart (or restage if a buildpack relies on the service) the app to make the service
credentials available:

cf restart APP-NAME

User-provided service instance credentials is provided to the app and staging tasks in two ways to
support both existing TAS applications and next-generation frameworks, such as Spring Cloud
Bindings:

As part of the traditional Cloud Foundry VCAP_SERVICES environment variable

As volume mounted secrets in accordance with the Service Bindings for Kubernetes
specification

This workload projection handles the Service Bindings Package from Tanzu
Application Platform

Use Application Service Adapter to push the spring-music
app

This how-to uses Application Service Adapter to push the spring-music app and bind it to a
MySQL-compatible database represented as a CF service instance.

See spring-music sample Java application.

Prerequisites

You must have a Java version between 8 and 17 installed to your local workstation.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 38

https://docs.cloudfoundry.org/devguide/services/user-provided.html
https://github.com/spring-cloud/spring-cloud-bindings
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
https://servicebinding.io/spec/core/1.0.0/#workload-projection
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-service-bindings-install-service-bindings.html
https://github.com/cloudfoundry-samples/spring-music

Clone and prepare the application locally

1. From the command line, clone the spring-music sample application Git repository to a
directory on your local workstation:

git clone https://github.com/cloudfoundry-samples/spring-music

2. Change into the root directory of the cloned repository:

cd spring-music

3. Build a runnable Spring Boot JAR file for the application:

./gradlew clean assemble

Push the app without persistent storage

Ensure you are logged into the Application Service Adapter environment you intend to use and
that you have targeted the desired Cloud Foundry org and space. You can use cf target to verify
this context.

1. Use the cf CLI to push the application to your Application Service Adapter environment:

cf push

You should see output similar to the following:

Pushing app spring-music to org o / space s as cf-admin...

Applying manifest file /Users/tanzu/workspace/spring-music/manifest.yml...

Updating with these attributes...

 applications:

 - name: spring-music

 path: /Users/tanzu/workspace/spring-music/build/libs/spring-music-1.0.jar

 memory: 1G

 random-route: true

 env:

 JBP_CONFIG_SPRING_AUTO_RECONFIGURATION: '{enabled: false}'

 SPRING_PROFILES_ACTIVE: http2

Manifest applied

Packaging files to upload...

Uploading files...

 52.64 MiB / 52.64 MiB [==] 100.00% 31s

Waiting for API to complete processing files...

Staging app and tracing logs...

 Build reason(s): CONFIG

...

Waiting for app spring-music to start...

Instances starting...

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 39

name: spring-music

requested state: started

routes: spring-music-stellar-sitatunga-cz.apps.example.com

last uploaded: Tue 08 Nov 16:24:36 PST 2022

stack: io.buildpacks.stacks.bionic

buildpacks:

type: web

sidecars:

instances: 1/1

memory usage: 1024M

start command: java "org.springframework.boot.loader.JarLauncher"

 state since cpu memory disk logging det

ails

#0 running 2022-11-09T00:25:33Z 0.0% 0 of 0 0 of 0 0/s of 0/s

type: executable-jar

sidecars:

instances: 0/0

memory usage: 1024M

start command: java "org.springframework.boot.loader.JarLauncher"

There are no running instances of this process.

type: task

sidecars:

instances: 0/0

memory usage: 1024M

start command: java "org.springframework.boot.loader.JarLauncher"

There are no running instances of this process.

2. The manifest for the spring-music application assigns it a random route by default, which is
present in the routes field of the cf push output. Navigate to the route URL in your
browser and verify that it serves requests correctly. You should see a webpage similar to
the following:

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 40

3. Make a few changes to the music catalog: use the gear icon on each entry to modify or
delete some of the albums, and use the "add an album" link at the top of the page to add
some albums.

4. Restart the spring-music application:

cf restart spring-music

The application is unavailable for a short period of time while it restarts.

5. After it has finished restarting, refresh your browser window and observe that your
modifications have not been preserved.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 41

Create a database service for persistent storage

1. Create a separate namespace to run a containerized MySQL database:

kubectl create namespace service-instances

2. Create a Kubernetes Deployment of a MySQL-compatible database in this namespace,
along with a Kubernetes Service that exposes it inside the cluster and a Kubernetes Secret
with credentials:

kubectl apply -n service-instances -f - <<EOF

apiVersion: v1

kind: Secret

metadata:

 name: spring-music-db

type: servicebinding.io/mysql

stringData:

 type: mysql

 provider: mariadb

 host: spring-music-db.service-instances.svc

 port: "3306"

 database: default

 # demo credentials

Caution

The following instructions provide an easy way to create a MySQL database on the
same Kubernetes cluster as the Application Service Adapter installation, but this
database deployment is not suitable for production use. If you require a production-
grade database on Kubernetes, consider using VMware Tanzu SQL with MySQL for
Kubernetes or VMware Tanzu SQL with Postgres for Kubernetes.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 42

https://docs.vmware.com/en/VMware-Tanzu-SQL-with-MySQL-for-Kubernetes/1.2/tanzu-mysql-k8s/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-SQL-with-Postgres-for-Kubernetes/index.html

 username: user

 password: pass

apiVersion: v1

kind: Service

metadata:

 name: spring-music-db

spec:

 ports:

 - port: 3306

 selector:

 app: spring-music-db

apiVersion: apps/v1

kind: Deployment

metadata:

 name: spring-music-db

 labels:

 app: spring-music-db

spec:

 selector:

 matchLabels:

 app: spring-music-db

 template:

 metadata:

 labels:

 app: spring-music-db

 spec:

 # no persistance configured, the database will be reset when the pod term

inates

 containers:

 - image: mariadb:10.5

 name: mysql

 env:

 - name: MYSQL_USER

 valueFrom:

 secretKeyRef:

 name: spring-music-db

 key: username

 - name: MYSQL_PASSWORD

 valueFrom:

 secretKeyRef:

 name: spring-music-db

 key: password

 - name: MYSQL_DATABASE

 valueFrom:

 secretKeyRef:

 name: spring-music-db

 key: database

 - name: MYSQL_ROOT_PASSWORD

 value: root

 ports:

 - containerPort: 3306

 name: mysql

 livenessProbe:

 tcpSocket:

 port: mysql

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 43

 readinessProbe:

 tcpSocket:

 port: mysql

 startupProbe:

 tcpSocket:

 port: mysql

EOF

3. Verify that the Deployment for the database is ready:

kubectl get deploy -n service-instances spring-music-db

You should see output similar to the following:

NAME READY UP-TO-DATE AVAILABLE AGE

spring-music-db 1/1 1 1 4m

If the READY column does not display 1/1, wait a few moments and inspect the Deployment
again.

Bind the database to the application
1. Create a user-provided service instance in the Cloud Foundry space containing the JSON-

formatted contents of the spring-music-db Secret:

MYSQL_CRED_JSON=$(kubectl -n service-instances get secret spring-music-db -ojso

n | jq '.data | map_values(@base64d)')

cf create-user-provided-service spring-music-db -p "$MYSQL_CRED_JSON"

2. Bind the service instance to the spring-music application:

cf bind-service spring-music spring-music-db

3. Restage the application:

cf restage spring-music

4. After the application finishes restaging and restarting, refresh the browser window with the
spring-music application and click on the app information icon in the upper right corner. It
should indicate that the application is bound to the spring-music-db service:

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 44

5. Make modifications to the album catalog again:

6. Restart the spring-music application again:

cf restart spring-music

7. Refresh the browser window and observe that the changes you made now persist through
application restarts.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 45

Administering Application Service Adapter

You can learn all about administering Application Service Adapter for VMware Tanzu Application
Platform here:

Disaster recovery

Failover and redundancy

Rotating certificates

System logs and metrics

Scaling Application Service Adapter

Disaster recovery with Application Service Adapter

You have a number of options for disaster recovery with Application Service Adapter. This topic
describes your disaster recovery options.

Disaster recovery overview

You have a range of approaches for ensuring you can recover your Application Service Adapter
deployment, apps, and data in case of a disaster. These approaches fall into two categories:

1. Backing up cluster and container image registry state and restoring from backups.

2. Re-creating the data in the deployment by automating the creation of state. This is
achieved using scripted CI automation of the cf CLI and applying declarative Application
Service Adapter resources to the cluster.

This topic focuses on the first approach by outlying where Application Service Adapter stores state
and suggestions for backing up.

State storage

In contrast to TAS for VMs, Application Service Adapter has no dedicated databases or blobstore.
Instead, state is stored in two places:

1. As Kubernetes custom resources in the Kubernetes API. These custom resources are
persisted in the cluster's etcd datastore.

2. As container images in an OCI compatible registry, such as a self-hosted Harbor,
DockerHub, or an IaaS provided registry.

To help illustrate this, consider the following scenarios.

Application Service Adapter installation resources

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 46

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://etcd.io/

TAS operators are familiar with backing up their Ops Manager and BOSH Director databases to
safeguard their installation configuration. For Application Service Adapter this works differently.
Application Service Adapter is installed using the tanzu package install command. This causes
the creation of a variety of Carvel package installation resources and ConfigMaps on the cluster
which are managed by kapp-controller. These installation resources are stored in the Kubernetes
API as custom resources which are ultimately stored in etcd.

Application Service Adapter Cloud Foundry API resources

TAS for VMs stores CF API state and application configuration across a number of databases, with
the majority of it held within the Cloud Controller API's CCDB database. Application Service
Adapter does not maintain its own datastore for this purpose, but instead represents all Cloud
Foundry resources as Kubernetes custom resources. These custom resources are managed by the
Kubernetes API and stored in etcd.

Application source code

Application Service Adapter converts application source code into single-layer OCI images which
are stored in the registry specified at installation.

Runnable application artifacts

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 47

https://carvel.dev/

TAS for VMs operators can be familiar with the concept of droplets, or TAR files representing
staged apps that are ready to run on the platform. Application Service Adapter, using Tanzu Build
Service, produces runnable container images instead of TAS-style droplets which are stored in the
registry specified at installation.

Backup and restore

VMware recommends that operators take frequent backups of both the Kubernetes cluster's etcd
and the registry using open source tools such as Velero or the native backup function provided by
their infrastructure platform.

Failover and redundancy with Application Service Adapter

This topic covers failover characteristics and redundancy of Application Service Adapter
components and applications pushed with Application Service Adapter.

For instructions to edit the scaling characteristics of your Application Service Adapter installation,
see Scaling Application Service Adapter.

Cloud Foundry-compatible API

Application Service Adapter deploys two replicas of a v3 Cloud Foundry-compatible API (Korifi API)
that clients communicate with. This API is stateless and is horizontally scaled for increased
availability and performance. See Scaling the Application Service Adapter API.

Controllers and webhooks

Application Service Adapter deploys multiple components known as controllers to the cluster. For
more information about controllers, see the Kubernetes documentation. These components watch
and update state on the cluster in what is known as a "control loop," and over time, they ensure
that the state in the cluster is consistent. Additionally, these components run admission webhooks
that validate and update Application Service Adapter resources. For more information about
dynamic admission control and admission webhooks, see the Kubernetes documentation.

Application Service Adapter controllers are effectively singletons. They have leader election turned
on by default so only a single controller instance is active at a time. All instances can serve the
webhooks. They are scaled horizontally for faster failover and for higher-availability of the
webhooks. In the event that a controller fails, it is automatically restarted by the platform.
Application Service Adapter controllers are idempotent and the newly restarted instance carries on
where the failed one left off.

Applications

The failover characteristics and redundancy recommendations for applications that are pushed with
the adapter depend on the application itself. However, there are some common recommendations
that are provided for all applications.

1. Ensure that all applications have at least two instances by using cf scale to scale up the
application or by declaring multiple instances in the app's manifest. A single-instance

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 48

https://velero.io/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

application incurs downtime during cluster upgrades and maintenance. When an application
is configured to run with two or more instances, the Kubernetes pod scheduler attempts to
balance the instances across nodes and minimize downtime. Additionally, Application
Service Adapter creates a PodDisruptionBudget for multi-instance applications that sets the
minimum available instances for an app to be 50% of the total instances needed to maintain
availability during these events. For more information about Protecting an Application with
a PodDisruptionBudget, see the Kubernetes documentation.

2. Ensure that all applications have the appropriate health checks configured to accurately
verify the readiness and liveness of your apps. For more information about app health
checks, see the Cloud Foundry documentation.

Application Service Adapter represents Cloud Foundry app health checks using
startupProbes and livenessProbes on the underlying pods running the application. By
default, a port health check is set to verify whether the app can accept TCP connections,
but you can configure more advanced http health checks to better detect readiness of the
application.

Rotate Application Service Adapter certificates

You may need to manually rotate your Application Service Adapter system certificates. This topic
tells you how.

Rotating ingress certificates

1. Set up environment variables for the installation:

export TAS_ADAPTER_VERSION=VERSION-NUMBER

Where VERSION-NUMBER is the version of Application Service Adapter you want to install. For
example, 1.0.0.

2. Update your tas-adapter-values.yaml file with new API and App Ingress TLS certificates,
such as crt and key.

The following values are updated:

api_ingress:

 tls:

 secret_name: NEW-API-TLS-SECRET-NAME

 namespace: NEW-API-TLS-SECRET-NAMESPACE

app_ingress:

 tls:

 secret_name: NEW-APP-TLS-SECRET-NAME

 namespace: NEW-APP-TLS-SECRET-NAMESPACE

Where:

Note

Certificate rotation does not result in downtime.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 49

https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://docs.cloudfoundry.org/devguide/deploy-apps/healthchecks.html

NEW-API-TLS-SECRET-NAME is the kubernetes.io/tls secret containing the PEM-
encoded public certificate for the Application Service Adapter API.

NEW-API-TLS-SECRET-NAMESPACE is namespace containing the Application Service
Adapter API secret.

NEW-APP-TLS-SECRET-NAME is the kubernetes.io/tls secret containing the PEM-
encoded public certificate for applications deployed using the Application Service
Adapter.

NEW-APP-TLS-SECRET-NAMESPACE is the namespace containing the Application Service
Adapter applications secret.

3. Install the Application Service Adapter to the cluster by running:

tanzu package install tas-adapter \

 -p application-service-adapter.tanzu.vmware.com \

 --version "${TAS_ADAPTER_VERSION}" \

 --values-file tas-adapter-values.yaml \

 --namespace tap-install

4. Verify that the package install was successful. Run:

tanzu package installed get tas-adapter \

 --namespace tap-install

The following is an example output:

| Retrieving installation details for tas-adapter...

NAME: tas-adapter

PACKAGE-NAME: application-service-adapter.tanzu.vmware.com

PACKAGE-VERSION: 1.0.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Rotating internal certificates

Internal certificates are managed by Certificate Manager with a self-signed Certificate Authority.
The default Certificate Manager configuration provides certificates that are valid for 90 days.
Certificates are renewed 30 days before expiry. For more information, see the cert-manager
documentation.

System logs and metrics for Application Service Adapter

You can access Application Service Adapter system component logs and query metrics by following
the steps in this topic.

Gathering system logs

Querying performance metrics

Gathering system logs

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 50

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

Logs for Application Service Adapter system components flow through standard Kubernetes
logging channels. You can retrieve them by using the tooling of your choice. For ad-hoc log
retrieval, VMware recommends the kapp logs command in the kapp cli as the most convenient
method to gather the logs from pods in one or more deployments. See the Carvel documentation.

To fetch recent logs from all components of an Application Service Adapter installation:

kapp logs --app tas-adapter.app -n tap-install

To fetch recent logs from a specific deployment:

kapp logs --app tas-adapter.app -n tap-install --pod-name DEPLOYMENT-NAME%

Where DEPLOYMENT-NAME is the name of the Kubernetes Deployment, for example, korifi-api-
deployment.

To stream logs instead of fetching the most recent logs, add the --follow flag to the earlier kapp
logs commands. For additional details and options, see the kapp logs --help help text.

Querying performance metrics
All of the controller-managers deployed by Application Service Adapter provide standard
Prometheus performance metrics generated by the Kubernetes controller-runtime library. For
more information, see the Kubebuilder documentation.

Application Service Adapter controller managers are deployed with annotations that makes them
discoverable by a Prometheus server deployed to the same cluster.

After you have Prometheus deployed, you can query any of the available metrics. See Default
Exported Metrics References in the Kubebuilder documentation. In particular, queries for
workqueue_depth or workqueue_queue_duration_seconds can help to indicate when a controller
manager is resource constrained and must be scaled up.

To query the queue depth for the CFApp controller:

workqueue_depth{name="cfapp"}

To list the queue depths for all Application Service Adapter controllers:

workqueue_depth{namespace="tas-adapter-system"}

To query the average queue time for CFApp objects before reconciliation:

workqueue_queue_duration_seconds_sum{name="cfapp"}/workqueue_queue_duration_seconds_co

unt

Scale Application Service Adapter
Application Service Adapter gives you options for scaling components for performance or
availability. Read this topic for scaling guidance.

Notes on system performance

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 51

https://carvel.dev/kapp/docs/latest/install/
https://book.kubebuilder.io/reference/metrics-reference.html
https://book.kubebuilder.io/reference/metrics-reference.html

Scaling the Application Service Adapter controller managers

Scaling the Application Service Adapter API

Notes on system performance

The Application Service Adapter runs on a Kubernetes cluster and makes extensive use of the
Kubernetes API to store and manage resources. For these reasons, the performance of the
Application Service Adapter is very dependent on the underlying Kubernetes control plane. If you
observe slow performance or timeouts when using the Application Service Adapter, a good first
step is to ensure that the control plane for your Kubernetes cluster is properly resourced.

For managed clusters that come from a public-cloud IaaS, you generally won't have direct control
over how the control plane is provisioned, so you won't be able to scale up control place resources.
If you are managing your own Kubernetes clusters, you must ensure you have provisioned
adequate capacity for the apiserver and etcd components. See the Kubernetes documentation as
a starting place for understanding production cluster concerns.

Scaling the Application Service Adapter controller
managers

Vertical scaling

The Application Service Adapter deploys a set of controller managers responsible for reconciling
various custom resources into running pods on your Kubernetes cluster. If these controller
managers are resource constrained, scaling them up vertically may improve performance. In
particular, controller managers maintain an in-memory informer cache of the events that they are
responsible for tracking, so it is common for controller managers on busy systems with many
objects to require more memory.

Controller manager deployments in the tas-adapter-system namespace are:

cartographer-builder-runner-controller-manager

korifi-controllers-controller-manager

korifi-job-task-runner-controller-manager

korifi-kpack-build-controller-manager

korifi-statefulset-runner-controller-manager

To determine whether your controller managers face CPU or memory pressure, you can check the
Prometheus metrics for your controllers as described in the metrics topic.

You can also inspect the running pods for these deployments using the kubectl top command.

If you determine that one or more of your controller managers is resource constrained, you can
increase the available resources by setting the optional scaling parameters as described in the
configure installation settings instructions, and then re-running the install step.

Horizontal scaling

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 52

https://kubernetes.io/docs/setup/production-environment/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#top

As described in the failover and redundancy topic, controller managers use leader election to
designate a single active instance, so horizontal scaling is not an effective strategy to improve
performance of a slow controller. Since the same deployments also serve webhook requests, you
may choose to add horizontal scale to improve webhook performance. You may also choose to
scale your deployments to improve controller availability. Multi-instance deployments allow rolling
deployments so that controllers and webhooks don't become unresponsive during upgrades.
Horizontal scaling can be achieved by using the replicas scaling configuration.

Scaling the Application Service Adapter API

If you have confirmed that the Kubernetes control plane and the controller managers both have
sufficient resources, but you are still observing slow response times or timeouts from the Cloud
Foundry API, scaling up the korifi-api-deployment in the tas-adapter-system namespace may
help.

Unlike the controller managers, requests to the pods in this deployment are load balanced, so
either horizontal or vertical scaling should improve performance. By default, korifi-api-deployment
runs with two replicas, so it should already maintain availability during upgrades unless it is scaled
down.

Similar to the controller managers, both vertical (memory and CPU) and horizontal (replicas) scaling
can be achieved by changing the installation settings, and then re-running the install step.

Upgrade Application Service Adapter

This topic gives you the steps to upgrade Application Service Adapter for VMware Tanzu
Application Platform.

You can perform a fresh installation of the Application Service Adapter by following the instructions
in Installing Application Service Adapter.

When upgrading to a new major or minor version of Application Service Adapter, please see that
versions' documentation for version-specific configuration and upgrade instructions.

You can find new patch versions of Application Service Adapter on the TanzuNet product page
directly, or sign up to receive email alerts when the product is updated.

Note: Upgrades are not currently supported if you have enabled the experimental Cartographer
integration. Existing application workloads will not behave correctly after upgrading from v1.0 to
v1.1.

Prerequisites

Before you upgrade Application Service Adapter:

Verify that you meet all the prerequisites of the target Tanzu Application Service Adapter
for TAP version. If the target Tanzu Application version does not support your existing
Kubernetes version, VMware recommends upgrading to a supported version before
proceeding with the upgrade.

Install or update the Tanzu CLI and plugins

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 53

https://network.pivotal.io/products/app-service-adapter
https://network.tanzu.vmware.com/docs/faq#alerts
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install-tanzu-cli.html#install-or-update-the-tanzu-cli-and-plugins-3

For information about installing or updating the Tanzu CLI and plug-ins, see Install or
update the Tanzu CLI and plugins.

Verify all packages are reconciled by running tanzu package installed list -A.

It is strongly recommended to upgrade the Tanzu Application Platform version to the latest
patch version of the currently installed major-minor (for example, 1.2).

Update the new package repository

Follow these steps to update the new package repository:

1. Add the target version of the Application Service Adapter package repository:

tanzu package repository add tas-adapter-repository \

 --url registry.tanzu.vmware.com/app-service-adapter/tas-adapter-package-rep

o:${TAS_ADAPTER_VERSION} \

 --namespace tap-install

2. Verify you have added the new package repository by running:

tanzu package available list \

 --namespace tap-install

Upgrade Application Service Adapter
To upgrade, run:

tanzu package installed update tas-adapter \

 -p application-service-adapter.tanzu.vmware.com \

 --version "${TAS_ADAPTER_VERSION}" \

 --values-file tas-adapter-values.yaml \

 --namespace tap-install

Where TAS_ADAPTER_VERSION is the target revision of Application Service Adapter you are migrating
to.

Verify the upgrade

To verify the versions of packages after the upgrade, run:

tanzu package installed list --namespace tap-install

Your output should be similar, but probably not identical, to the following example output:

Important

Run the following command in the directory where the tas-adapter-values.yaml
file resides.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 54

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install-tanzu-cli.html#install-or-update-the-tanzu-cli-and-plugins-3
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-upgrading.html

 Retrieving installed packages...

 NAME PACKAGE-NAME PACKAGE-VER

SION STATUS

 api-auto-registration apis.apps.tanzu.vmware.com 0.1.1

Reconcile succeeded

 appsso sso.apps.tanzu.vmware.com 2.0.0

Reconcile succeeded

 buildservice buildservice.tanzu.vmware.com 1.7.2

Reconcile succeeded

 cartographer cartographer.tanzu.vmware.com 0.5.3

Reconcile succeeded

 cert-manager cert-manager.tanzu.vmware.com 1.7.2+tap.1

Reconcile succeeded

 contour contour.tanzu.vmware.com 1.22.0+tap.

4 Reconcile succeeded

 eventing eventing.tanzu.vmware.com 2.0.1

Reconcile succeeded

 ootb-templates ootb-templates.tanzu.vmware.com 0.10.2

Reconcile succeeded

 policy-controller policy.apps.tanzu.vmware.com 1.1.2

Reconcile succeeded

 service-bindings service-bindings.labs.vmware.com 0.8.0

Reconcile succeeded

 source-controller controller.source.apps.tanzu.vmware.com 0.5.0

Reconcile succeeded

 tap tap.tanzu.vmware.com 1.3.0

Reconcile succeeded

 tap-telemetry tap-telemetry.tanzu.vmware.com 0.3.1

Reconcile succeeded

 application-service-adapter application-service-adapter.tanzu.vmware.com 1.0.1

Reconcile succeeded

 tekton-pipelines tekton.tanzu.vmware.com 0.39.0+tap.

2 Reconcile succeeded

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 55

Uninstall Application Service Adapter

This topic gives you the steps to uninstall Application Service Adapter for VMware Tanzu
Application Platform.

To uninstall Application Service Adapter:

1. Uninstall the Application Service Adapter package from your cluster.

tanzu package installed delete tas-adapter \

 --namespace tap-install

2. Remove the repository from your cluster.

tanzu package repository delete tas-adapter-repository \

 --namespace tap-install

3. Delete the image pull secret.

tanzu secret registry delete tanzunet-tas-adapter-registry \

 --namespace tap-install

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 56

Learn more about Application Service
Adapter

You can learn more about Application Service Adapter for VMware Tanzu Application Platform in
the topics listed here:

Technical architecture

User authentication

Application Service Adapter Architecture

You can read about the technical architecture of Application Service Adapter and its subsystems in
this topic.

Overview

High-level architecture

Experimental Cartographer integration

Authentication and authorization

Organization and Space management

Building (staging) applications

Services

Routing

App Logging and Metrics

Overview

Application Service Adapter implements a subset of the v3 Cloud Foundry APIs in order to support
common Cloud Foundry developer workflows. Application Service Adapter is installed directly onto
a Kubernetes cluster than has Tanzu Application Platform (TAP) installed and provides a CF API
translation layer that converts CF API calls into underlying and Kubernetes resources. In addition to
this API, Application Service Adapter also provides a set of Kubernetes custom resources,
controllers, and admission webhooks.

High-level architecture

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 57

https://v3-apidocs.cloudfoundry.org/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Components

Application Service Adapter includes components from the open source Cloud Foundry Korifi
project as well as a number of proprietary components for deeper integration with Tanzu
Application Platform.

The Korifi components are primarily tasked with implementing the Cloud Foundry data model and
APIs. They are:

Korifi CRDs: A set of Kubernetes custom resources under the korifi.cloudfoundry.org API
Group that implement the core V3 Cloud Foundry resources. These custom resources
replicate the Cloud Foundry data model and are used to store persistent state for the CF
API translation layer. These resources serve as an extension point for further
interoperability and are accessible to Kubernetes users using existing Kubernetes tooling
(e.g. the kubectl CLI).

Korifi API deployment: A Golang implementation of a core set of V3 Cloud Foundry APIs
that is backed by the Korifi CRDs. Existing Cloud Foundry API clients (such as the cf CLI)
can target the Korifi API and continue to use their existing CF developer workflows.

Korifi Controllers deployment: A set of Kubernetes controllers that implement CF
subsystems by orchestrating and reconciling the Korifi CRDs into consolidated intermediate
resources that contain the information necessary to build and run an application. This
deployment also runs admission webhooks that validate and normalize Korifi resources.

Application Service Adapter converts these intermediate resources using its default builder/runner
controller implementations into TAP and Kubernetes resources such as Tanzu Build Service (kpack)
Images for building applications and Kubernetes StatefulSets for running them. These intermediate
resources and default implementations are:

BuildWorkload resource: A custom resource that serves as an interface to the underlying
build system used for staging applications. This resource contains all the information needed
to stage an app, and controller implementations communicate back via its status. The
kpack-image-builder component is the default implementation for application staging that
uses Tanzu Build Service and Tanzu Buildpacks. When the experimental Cartographer
integration is activated, this resource is reconciled by the cartographer-builder-runner

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 58

https://tanzu.vmware.com/build-service
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html

component. For more details on the application building process, see the build (staging)
applications section below.

AppWorkload resource: A custom resource that serves as an interface to the underlying
runtime. This resource contains all the information needed to run an app, and controller
implementations communicate back via its status. The statefulset-runner component is
the default implementation that runs apps using Kubernetes StatefulSets. StatefulSets
allow Application Service Adapter to support Cloud Foundry features such as the
CF_INSTANCE_INDEX (an ordered numeric index for each container) environment variable and
APIs. When the experimental Cartographer integration is activated, this resource is
reconciled by the cartographer-builder-runner component.

TaskWorkload resource: A custom resource that serves as an interface to the underlying
runtime. This resource contains all the information needed to run a Cloud Foundry task, and
controller implementations communicate back via its status. The job-task-runner
component is the default implementation that runs tasks via Kubernetes Jobs.

Experimental Cartographer integration

Application Service Adapter includes an (optional) experimental builder and runner implementation
(cartographer-builder-runner) that utilizes TAP's Cartographer Supply Chains to manage the build
and run stages of the application lifecycle.

Authentication and authorization

Application Service Adapter does not include its own user management or permission system and
instead uses the user's Kubernetes credentials to interact directly with the Kubernetes API. Cloud
Foundry roles are implemented using Kubernetes RBAC resources and users can be assigned to
these roles using the existing cf CLI role assignment commands. Internally this is represented as
namespace-scoped RoleBindings to ClusterRoles that represent common CF roles such as
SpaceDeveloper.

For more details, see the dedicated [User Authentication Overview] docs.

Organization and space management

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 59

https://tanzu.vmware.com/build-service
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Cloud Foundry has a tiered tenancy system consisting of the cluster or "foundation" level,
organization level, and space level. A Cloud Foundry installation will contain one or more
organizations which will themselves contain one or more spaces. CF roles typically allow for
read/write access in these various areas. For example, a "CF Admin" user can make shared
domains for the entire CF installation as well as interact with apps within an individual space, while a
"Space Developer" user will typically be able to view certain resources within their org as well as
push apps within their assigned space.

Application Service Adapter models CF organizations and spaces using Kubernetes Namespaces.
There is a root "cf" namespace that can contain multiple CFOrg custom resources. These initiate the
creation of namespaces for each org which themselves will contain CFSpace resources that point to
additional namespaces for each space. This maps closely to the CF tenancy model in terms of app
isolation and user permissions on Kubernetes. All organization-scoped CF resources live within the
corresponding "organization namespace" and space-scoped CF resources (apps, routes, builds,
etc.) live within the relevant "space namespace." Kubernetes RBAC resources are made in the
each namespace to control access. For example, an Org Manager has a RoleBinding to the
"OrgManager" ClusterRole in each namespace they manage. Likewise, Space Developers have a
RoleBinding to the "SpaceDeveloper" ClusterRole in the space namespaces.

Building (staging) applications

Application Service Adapter uses Tanzu Build Service and Tanzu Buildpacks to build applications.

Application source code is packaged and transmitted by CF clients to the Korifi API where it is
converted into a single-layer container image, or "source image", that can be used by Tanzu Build
Service. When CF clients create a Cloud Foundry Build through the Korifi API this is translated into
a "BuildWorkload" custom resource by Korifi. By default, Application Service Adapter will use its
kpack-image-builder controller to translate this "BuildWorkload" directly into Tanzu Build Service
resources and a "build Pod" will be scheduled to build the app using Tanzu Buildpacks. Tanzu
Buildpacks are Cloud Native Buildpacks and can be thought of as an evolution of the Cloud Foundry
buildpacks that Cloud Foundry operators may be familiar with. They differ mainly in that there are a

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 60

https://tanzu.vmware.com/build-service
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://buildpacks.io/
https://docs.cloudfoundry.org/buildpacks/

few configuration differences and that they produce OCI container images instead of Cloud
Foundry droplets.

Note on blobstores

Operators of Tanzu Application Service may be familiar with the platform's "blobstore," or object
storage for application source code and staged droplets. Application Service Adapter does not rely
on a blobstore and instead uses the image registry that is configured at installation time for storing
source code and runnable app images.

Services

Application Service Adapter has support for user-provided service instances through the
CFServiceInstance and CFServiceBinding custom resources. These resources primarily exist to
power the CF APIs and store additional state that isn't relevant downstream. They also implement
the ProvisionedService "duck type" from the Service Binding for Kubernetes specification which
allow them to interoperate directly with other projects in the service bindings ecosystem (e.g.
kpack, ServiceBinding reconcilers, etc.).

Application developers can provide service credentials through user-provided service instances and
Application Service Adapter will store them in Kubernetes Secrets. It then aggregates them into a
single "VCAP_SERVICES" secret that is provided to app containers as the VCAP_SERVICES
environment variable to maintain compatibility with existing Cloud Foundry-aware applications and
frameworks.

Additionally, Application Service Adapter integrates with the TAP Service Bindings reconciler
through the ServiceBinding resource to volume mount these credentials on to workload Pods. This
enables apps to use updated frameworks, such as Spring Cloud Bindings, that are aware of this
form of credential projection.

Routing

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 61

https://buildpacks.io/
https://docs.cloudfoundry.org/buildpacks/
https://docs.cloudfoundry.org/devguide/services/user-provided.html
https://servicebinding.io/
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
https://servicebinding.io/spec/core/1.0.0/#service-binding
https://github.com/spring-cloud/spring-cloud-bindings

Application Service Adapter uses the Tanzu Application Platform installation's Contour to
implement ingress routing for both the Korifi API and app workloads. The CFRoute custom resource
backs the relevant Cloud Foundry route management APIs and is converted by the Korifi
Controllers component into Contour HTTPProxy and Kubernetes Service resources. A validating
admission webhook applies validation rules to the routes (e.g. no duplicate routes, route has a valid
CFDomain, etc).

App logging and metrics

Application Service Adapter supports best-effort access to the latest logs and metrics for apps
through the "cf app", "cf logs", and "cf push" cf CLI commands. The Korifi API implements the
relevant Cloud Foundry APIs for querying these resources and translates the request into requests
to the Kubernetes metrics-server (for Pod cpu/memory metrics) and the Kubernetes Pod log API
(application/staging logs).

For longer term storage and more reliable access to logs and metrics, we suggest following these
recommendations around app observability and exporting logs and metrics to an external service
such as VMware Aria Operations for Applications.

User authentication with Application Service Adapter
In this topic, learn how Application Service Adapter authenticates and authorizes users by using the
Kubernetes API server.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 62

https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/#read-log-pod-v1-core
https://tanzu.vmware.com/developer/guides/app-observability/
https://tanzu.vmware.com/aria-operations-for-applications

Background

Traditionally, the cf CLI authenticates with the Cloud Foundry User Account and Authentication
(UAA) server, which acts as an OAuth2 provider. In this model, the Cloud Foundry API server
validates the user's token and authorizes user actions based on its own set of user role
assignments.

The Application Service Adapter takes a different approach to user authentication and
authorization. Instead of requiring UAA as a separate account and authentication service, the
Application Service Adapter delegates this responsibility to the Kubernetes API server. The cf CLI
now recognizes when it targets a Kubernetes-backed CAPI server such as the Application Service
Adapter, uses user information from the local kubeconfig file to authenticate with the underlying
Kubernetes API, and extracts the user token or client certificate or key pair from the authentication
response. When it makes a request to the CAPI server, it then sends that credential in the
Authorization header. The Cloud Foundry API server uses that credential to perform requests on
behalf of the end user and retains it in memory only for the duration of the user's API request.

The Application Service Adapter relies on core Kubernetes role-based access control (RBAC)
resources such as ClusterRole and RoleBinding to configure user authorization rules. Platform
operators can create these RBAC resources either using the Cloud Foundry role API endpoints or
directly in the Kubernetes API.

Architecture

The Application Service Adapter API requires that users connect to it using HTTPS because the
Authorization header contains the user’s authentication token or client certificate or key pair. The
API translates the CAPI request into Kubernetes API requests using the provided credentials.

Note

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 63

https://docs.cloudfoundry.org/concepts/architecture/uaa.html
https://kubernetes.io/docs/reference/access-authn-authz/authentication/

VMware recommends using short-lived tokens or certificates to authenticate with the Application
Service Adapter. The Application Service Adapter warns users if their certificate is still valid in one
week.

The user is authenticated through their Kubernetes token or client certificate or key
for each request to the Adapter's API. There is no persistent session data stored
between requests.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 64

Application Service Adapter reference
documentation

You can view all the Application Service Adapter reference documentation here:

Application Service Adapter environment variables

Buildpacks used by Application Service Adapter

cf CLI commands supported by Application Service Adapter

Troubleshoot Application Service Adapter

User management

Application Service Adapter environment variables

Application Service Adapter sets environment variables when it builds and runs an application.
Here's what you should know about environment variables.

Environment variables overview

Environment variables are the means by which Application Service Adapter communicates with a
deployed app about its environment.

For information about setting your own app-specific environment variables, see the Environment
Variable section of the Deploying with App Manifests topic.

View environment variables

Using the Cloud Foundry Command Line Interface (cf CLI), you can run the cf env command to
view the Application Service Adapter environment variables for your app. The cf env command
displays the following environment variables:

The user-provided variables set using the cf set-env command

For more information about the cf env command, see env in the cf CLI documentation. For more
information about the cf set-env command, see set-env in the cf CLI documentation.

The following example demonstrates the environment variables cf env displays:

$ cf env my-app

Getting env variables for app my-app in org my-org / space my-space as

admin...

No system-provided env variables have been set

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 65

https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.html#env-block
http://cli.cloudfoundry.org/en-US/cf/env.html
http://cli.cloudfoundry.org/en-US/cf/set-env.html

App-specific system variables

This section describes the environment variables that Application Service Adapter makes available
to your app container. Some of these variables are the same across instances of a single app, and
some vary from instance to instance.

You can access environment variables programmatically, including variables defined by the
buildpack.

The table below lists the app-specific system environment variables available to your app container.
See App-Specific System Variables in TAS for VMs Environment Variables for more information on
each environment variable.

Environment Variable Running Staging

CF_INSTANCE_ADDR

CF_INSTANCE_GUID x

CF_INSTANCE_INDEX x

CF_INSTANCE_INTERNAL_IP x

CF_INSTANCE_IP x

CF_INSTANCE_PORT

CF_INSTANCE_PORTS

CF_STACK

DATABASE_URL

HOME x

INSTANCE_GUID

INSTANCE_INDEX

LANG

MEMORY_LIMIT

PATH x

PORT x

PWD x

TMPDIR

User-Provided:

MY_DRAIN: http://drain.example.com

MY_ENV_VARIABLE: 100

No running env variables have been set

No staging env variables have been set

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 66

https://docs.pivotal.io/application-service/3-0/devguide/deploy-apps/environment-variable.html#app-system-env

Environment Variable Running Staging

USER

VCAP_APP_HOST x

VCAP_APP_PORT x

VCAP_APPLICATION

VCAP_SERVICES x

CF_INSTANCE_GUID

The UUID of the app instance.

For example: CF_INSTANCE_GUID=41653aa4-3a3a-486a-4431-ef258b39f042

CF_INSTANCE_INDEX

The index number of the app instance.

For example: CF_INSTANCE_INDEX=0

CF_INSTANCE_INTERNAL_IP

The internal IP address of the container running the app instance.

For example: CF_INSTANCE_INTERNAL_IP=5.6.7.8

CF_INSTANCE_IP

The external IP address of the host running the app instance.

For example: CF_INSTANCE_IP=1.2.3.4

HOME

The root folder for the deployed app.

For example: HOME=/home/cnb

PORT

The port on which the app should listen for requests. Application Service Adapter allocates a port
dynamically for each instance of the app, so code that obtains or uses the app port should refer to it
using the PORT environment variable.

For example: PORT=8080

PWD
The present working directory where the buildpack that processed the app ran.

For example: PWD=/workspace

VCAP_APP_HOST

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 67

Deprecated. Always set to 0.0.0.0.

VCAP_APP_PORT

Deprecated name for the PORT variable.

VCAP_SERVICES

Application Service Adapter has support for user-provided service instances and adds their binding
details to the VCAP_SERVICES environment variable. For more information, see User-Provided
Service Instances in the Cloud Foundry documentation.

Application Service Adapter returns the results as a JSON document that contains an object for
each service for which one or more instances are bound to the app. The service object contains a
child object for each instance of the service that is bound to the app.

The table below defines the attributes that describe a bound service. The key for each service in
the JSON document is the same as the value of the label attribute.

Attribute Description

binding_guid The GUID of the service binding.

binding_name The name assigned to the service binding by the user.

instance_guid The GUID of the service instance.

instance_name The name assigned to the service instance by the user.

name The binding_name, if it exists. Otherwise, the instance_name.

label The name of the service offering.

tags An array of strings an app can use to identify a service instance.

credentials A JSON object containing the service-specific credentials needed to access the service instance.

syslog_drain_url Not supported.

volume_mounts Not supported.

The following example shows the value of the VCAP_SERVICES environment variable for bound
instances of user-provided service instances.

VCAP_SERVICES=

{

 "user-provided": [

 {

 "binding_guid": "65ec345e-4f19-4499-ae70-a32b55c7f1cf",

Note

Application Service Adapter does not support managed services, so the label for a
user-provided service instance is always user-provided. VMware recommends that
apps find connection details through the user-settable tags field when parsing
VCAP_SERVICES.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 68

https://docs.cloudfoundry.org/devguide/services/user-provided.html

 "binding_name": null,

 "credentials": {

 "hostname": "ca6efe83-8a9b-4395-98d0-124145d4e97a.mysql.service.internal",

 "jdbcUrl": "jdbc:mysql://ca6efe83-8a9b-4395-98d0-124145d4e97a.mysql.service.in

ternal:3306/service_instance_db?user=441123dedf5d4b7ab988d7fae43bc452&password=P4$$W0R

D&useSSL=false",

 "name": "service_instance_db",

 "password": "P4$$W0RD",

 "port": "3306",

 "type": "user-provided",

 "uri": "mysql://441123dedf5d4b7ab988d7fae43bc452:P4$$W0RD@ca6efe83-8a9b-4395-9

8d0-124145d4e97a.mysql.service.internal:3306/service_instance_db?reconnect=true",

 "username": "441123dedf5d4b7ab988d7fae43bc452"

 },

 "instance_guid": "0622de7e-2437-4a39-8048-a7df324c35df",

 "instance_name": "mysql",

 "label": "user-provided",

 "name": "mysql",

 "syslog_drain_url": null,

 "tags": [

 "p.mysql",

 "mysql",

 "database"

],

 "volume_mounts": []

 },

 {

 "binding_guid": "be7aba4d-a465-4e9d-9c01-9ce9861e68e7",

 "binding_name": "custom-binding-name",

 "credentials": {

 "some-credential": "some-value",

 "type": "user-provided"

 },

 "instance_guid": "f97f96d7-62f2-43db-866a-175f5a8e95bc",

 "instance_name": "custom-user-provided-service",

 "label": "user-provided",

 "name": "custom-binding-name",

 "syslog_drain_url": null,

 "tags": [

 "user-defined",

 "arbitrary",

 "tags"

],

 "volume_mounts": []

 }

]

}

Buildpacks used by Application Service Adapter

Application Service Adapter uses different buildpacks than TAS for VMs, which you need to know
when moving applications between the two platforms. This topic describes the differences
between the two buildpack systems.

Differences between the buildpack systems

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 69

Application platforms such as TAS for VMs and Tanzu Application Platform use buildpacks to
transform application source code and other assets into a self-contained artifact, such as a Cloud
Foundry droplet or an Open Container Initiative container image. The platform then deploys this
artifact to run instances of the application.

TAS for VMs uses Cloud Foundry buildpacks and provides a collection of system buildpacks that
process many common languages and frameworks for cloud-native web applications. For more
information about Cloud Foundry buildpacks, see How Buildpacks Work in the TAS for VMs
documentation.

Tanzu Application Platform instead uses Tanzu Buildpacks, which implement the later Cloud Native
Buildpack specification to process application source code. For more information about Cloud
Native Buildpacks, see the Cloud Native Buildpacks project website.

An installation of Tanzu Application Platform provides a default collection of Tanzu Buildpacks, and
Application Service Adapter uses this same set of Tanzu Buildpacks to stage Cloud Foundry
applications. Although this collection of Tanzu Buildpacks processes many of the same application
languages and frameworks that the TAS for VMs system buildpacks do, there are some differences
in the set of languages it can process, as well as differences in how certain buildpacks detect
application code or accept configuration parameters.

System buildpack comparison

TAS for VMs provides the following system buildpacks for Linux-based applications:

Binary buildpack

Go buildpack

Java buildpack

.NET Core buildpack

NGINX buildpack

Node.js buildpack

PHP buildpack

Python buildpack

R buildpack

Ruby buildpack

Staticfile buildpack

For many applications using these buildpacks on TAS for VMs, the suite of Tanzu Buildpacks
contains a cloud-native buildpack that can process its language, frameworks, and build
configuration. Tanzu Buildpacks are not currently available for R applications, although community-
based solutions might be available.

Binary buildpack

Applications that use the binary buildpack in TAS for VMs should use the Tanzu Procfile Buildpack
with Application Service Adapter. Applications must include a Procfile that defines the process
types and their start commands if they do not already.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 70

https://docs.pivotal.io/application-service/buildpacks/understand-buildpacks.html
https://buildpacks.io/
https://docs.pivotal.io/application-service/buildpacks/binary/index.html
https://docs.pivotal.io/application-service/buildpacks/go/index.html
https://docs.pivotal.io/application-service/buildpacks/java/index.html
https://docs.pivotal.io/application-service/buildpacks/dotnet-core/index.html
https://docs.pivotal.io/application-service/buildpacks/nginx/index.html
https://docs.pivotal.io/application-service/buildpacks/node/index.html
https://docs.pivotal.io/application-service/buildpacks/php/index.html
https://docs.pivotal.io/application-service/buildpacks/python/index.html
https://docs.pivotal.io/application-service/buildpacks/r/index.html
https://docs.pivotal.io/application-service/buildpacks/ruby/index.html
https://docs.pivotal.io/application-service/buildpacks/staticfile/index.html
https://docs.pivotal.io/application-service/buildpacks/binary/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-procfile-procfile-buildpack.html

Go buildpack

Applications that use the Go buildpack in TAS for VMs should use the Tanzu Go Buildpack with
Application Service Adapter.

Java buildpack

Applications that use the Java buildpack in TAS for VMs should use the Tanzu Java Buildpack or the
Tanzu Java Native Image Buildpack with Application Service Adapter.

.NET Core buildpack

Applications that use the .NET Core buildpack in TAS for VMs should use the Tanzu .NET Core
Buildpack with Application Service Adapter. For more information about migrating an application to
use this buildpack, see Migrating to the Tanzu .NET Core Buildpack in the Tanzu Buildpacks
documentation.

NGINX buildpack

Applications that use the NGINX buildpack in TAS for VMs should use the Tanzu NGINX Buildpack
with Application Service Adapter.

Node.js buildpack

Applications that use the Node.js buildpack in TAS for VMs should use the Tanzu Node.js Buildpack
with Application Service Adapter. For more information about migrating an application to use this
buildpack, see Migrating to the Tanzu Node.js Buildpack in the Tanzu Buildpacks documentation.

PHP buildpack

Applications that use the PHP buildpack in TAS for VMs should use the Tanzu PHP Buildpack with
Application Service Adapter. For more information about migrating an application to use this
buildpack, see Migrating to the Tanzu PHP Buildpack in the Tanzu Buildpacks documentation.

Python buildpack

Applications that use the Python buildpack in TAS for VMs should use the Tanzu Python Buildpack
with Application Service Adapter.

Ruby buildpack

Applications that use the Ruby buildpack in TAS for VMs should use the Tanzu Ruby Buildpack with
Application Service Adapter.

Staticfile buildpack

Applications that use the Staticfile buildpack in TAS for VMs should use the Tanzu Web Servers
Buildpack with Application Service Adapter.

cf CLI commands supported by Application Service
Adapter

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 71

https://docs.pivotal.io/application-service/buildpacks/go/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-go-go-buildpack.html
https://docs.pivotal.io/application-service/buildpacks/java/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-java-java-buildpack.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-java-native-image-java-native-image-buildpack.html
https://docs.pivotal.io/application-service/buildpacks/dotnet-core/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-dotnet-core-dotnet-core-buildpack.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-nodejs-nodejs-migration.html
https://docs.pivotal.io/application-service/buildpacks/nginx/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-nginx-nginx-buildpack.html
https://docs.pivotal.io/application-service/buildpacks/nodejs/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-nodejs-nodejs-buildpack.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-nodejs-nodejs-migration.html
https://docs.pivotal.io/application-service/buildpacks/php/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-php-php-buildpack.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-php-php-migration.html
https://docs.pivotal.io/application-service/buildpacks/python/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-python-python-buildpack.html
https://docs.pivotal.io/application-service/buildpacks/ruby/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-ruby-ruby-buildpack.html
https://docs.pivotal.io/application-service/buildpacks/staticfile/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-web-servers-web-servers-buildpack.html

In this topic, you can learn about the Cloud Foundry command-line interface (cf CLI) commands
and options that are supported by Application Service Adapter.

Application Service Adapter supports the following cf CLI commands by providing a subset of the
endpoints the v3 CF API through its API server.

Getting started

Command Supported? Notes

cf login Y Using the --sso flag is not supported.

cf logout Y

cf target Y

cf passwd N

cf api Y

cf auth Y Use the name of a user authentication info entry from the local Kubeconfig file as the
username argument. The password field is ignored.

cf push

Application Service Adapter supports the basic use of cf push APP-NAME, where APP-NAME is the
name of your app.

Flag Supported? Notes

--app-start-

timeout, -t

Y

--buildpack, -

b

N Automatic buildpack detection is supported. Omit the flag or set to null or
default.
User-specified buildpacks are not supported.

--disk, -k Y

--docker-

image, -o

N

--docker-

username

N

--droplet N

--endpoint N

--health-

check-type, -u

Y

--instances, -

i

Y

--manifest, -f Y Some manifest configurations described in App Manifest Attribute Reference are
supported. See the Supported manifest configuration section.

--memory, -m Y

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 72

https://v3-apidocs.cloudfoundry.org/
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.html

Flag Supported? Notes

--no-manifest Y

--no-route Y

--no-start Y

--no-wait N

--path, -p Y

--random-route Y

--stack, -s N

--start-

command, -c

Y

--strategy N

--task Y

--var Y

--vars-file Y

Supported manifest configuration

The Application Service Adapter supports a subset of the Cloud Foundry manifest schema. For
more information, see The manifest schema in the Cloud Foundry API documentation.

Supported app-level configuration

Attribute Supported? Notes

buildpacks N

command Y

default-route Y

disk_quota Y

docker N

env Y

health-check-http-endpoint Y

health-check-invocation-timeout Y

health-check-type N

instances Y

memory Y

metadata N

no-route Y

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 73

https://v3-apidocs.cloudfoundry.org/version/3.112.0/index.html#the-manifest-schema

Attribute Supported? Notes

path N

processes Y See the Supported process-level configuration section.

random-route Y

routes Y See the Supported route-level configuration section.

services N

sidecars N

stack N

timeout Y

Supported process-level configuration

Attribute Supported? Notes

type Y

command Y

disk_quota Y

docker N

health-check-http-endpoint Y

health-check-invocation-timeout Y

health-check-type Y

instances Y

memory Y

timeout Y

Supported route-level configuration

Attribute Supported? Notes

route Y

protocol N Only http1 routes are supported.

App operations

Command Supported? Notes

cf apps Y The default usage of cf apps is supported.
Using --labels to filter apps is not supported.

cf app Y

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 74

Command Supported? Notes

cf create-app Y

cf scale Y

cf delete Y

cf rename N

cf cancel-deployment N

cf start Y

cf stop Y

cf restart Y

cf stage-package Y

cf restage Y Using --strategy flag is not supported.

cf restart-app-

instance

N

cf run-task Y Only the -c parameter is supported.

cf tasks Y

cf terminate-task Y

cf packages Y

cf create-package Y

cf droplets N

cf set-droplet Y

cf download-droplet N

cf events N

cf logs Y

cf env Y Fetching system-provided, running, and staging environment variables are
not supported.

cf set-env Y

cf unset-env Y

cf stacks N

cf stack N

cf copy-source N

cf create-app-

manifest

N

cf get-health-check Y

cf set-health-check Y

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 75

Command Supported? Notes

cf enable-ssh N

cf disable-ssh N

cf ssh-enabled N

cf ssh N

Org and space operations

This section describes the org and space operations that Application Service Adapter supports.

Org operations

Command Supported? Notes

cf orgs Y

cf org Y Using the --guid flag to retrieve the GUID of the org is supported.
Using the command without the --guid flag is not supported.

cf create-org Y

cf delete-org Y

cf rename-org N

Space operations

Command Supported? Notes

cf spaces Y

cf space Y Using the --guid flag to retrieve the GUID of the space is supported.
Using the command without the --guid flag is not supported.

cf create-space Y

cf delete-space Y

cf rename-space N

cf apply-manifest Y

cf allow-space-ssh N

cf disallow-space-ssh N

cf space-ssh-allowed N

Route and domain operations
This section describes the route and domain operations that Application Service Adapter supports.

Route operations

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 76

Command Supported? Notes

cf routes Y

cf route Y

cf create-route Y

cf check-route N

cf map-route Y

cf unmap-route Y

cf delete-route Y

cf delete-orphaned-routes N

Domain operations

Command Supported? Notes

cf domains Y

cf create-private-domain N

cf delete-private-domain N

cf create-shared-domain N

cf delete-shared-domain N

cf router-groups N

Service operations

This section describes the service operations that Application Service Adapter supports.

Command Supported? Notes

cf marketplace N

cf services Y

cf service Y

cf create-service N

cf update-service N

cf upgrade-service N

cf delete-service Y

cf rename-service N

cf create-service-key N

cf bind-service Y

cf unbind-service Y

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 77

Command Supported? Notes

cf delete-service-key N

cf bind-route-service N

cf unbind-route-service N

cf create-user-provided-service Y

cf update-user-provided-service N

cf share-service N

cf unshare-service N

Metadata operations

This section describes the metadata operations that Application Service Adapter supports.

Command Supported? Notes

cf labels Y The app, org, and space resources are supported.

cf set-label Y The app, org, and space resources are supported.

cf unset-label Y The app, org, and space resources are supported.

Troubleshoot Application Service Adapter

Here you'll find generic techniques for diagnosing Application Service Adapter system health and
troubleshooting steps in common failure scenarios.

Generic troubleshooting techniques

This section contains generic techniques that can be used to gather information about the status of
the Application Service Adapter to aid in troubleshooting. We recommend keeping up to date with
the latest version of the Application Service Adapter to get access to the latest bug fixes and
stability improvements.

Application Service Adapter logs

There are several Application Service Adapter deployments whose logs can be queried to gather
information on failures that occurred within the system.

To fetch recent logs from all components of an Application Service Adapter installation:

```bash

kapp logs --app tas-adapter.app -n tap-install

```

To fetch recent logs from a specific deployment:

```bash

kapp logs --app tas-adapter.app -n tap-install --pod-name DEPLOYMENT-NAME%

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 78



```

Where DEPLOYMENT-NAME is the name of the Kubernetes Deployment (e.g.

"korifi-api-deployment").

To stream logs instead of fetching the most recent logs, add the --follow flag to the above kapp
logs commands. For additional details and options, refer to the kapp logs --help help text.

Deployments

The following is a brief description of the specific Application Service Adapter deployments and
what their main responsibilities are to help isolate which logs to query when troubleshooting.

1. The korifi-api-deployment Deployment is tasked with responding to API requests sent to
the Application Service Adapter. Logs for failures related to the image registry may also
show up in this Deployment's logs.

2. The korifi-controllers-controller-manager Deployment is tasked with processing
commands for the Application Service Adapter. This Deployment's logs is an excellent
starting point when debugging failures as it is where most commands flow through before
being processed by more specific components (The exception being API commands that fail
before getting to the controller manager).

3. The tas-adapter-telemetry-informer Deployment is tasked with handling all outgoing
telemetry.

4. The korifi-kpack-build-controller-manager Deployment is tasked with building Images
when using the default builder/runner flow.

5. The korifi-statefulset-runner-controller-manager Deployment is tasked with
generating StatefulSets for apps when using the default builder/runner flow.

6. The korifi-job-task-runner-controller-manager Deployment is tasked with handling all
task related functionality.

7. The cartographer-builder-runner-controller-manager Deployment is tasked with creating
Cartographer Workloads for apps when using the experimental Cartographer builder/runner
flow.

Tanzu Application Platform logs

While not directly part of the Application Service Adapter, there are several Tanzu Application
Platform deployments that are utilized by the Application Service Adapter and can also provide
further debug information on failures that occur.

To fetch recent logs from a given Tanzu Application Platform application:

```bash

kapp logs --app APP-NAME -n tap-install

```

Where APP-NAME is the name of the Tanzu Application Platform application. For example,

"buildservice.app".

To stream logs instead of fetching the most recent logs, add the --follow flag to the above kapp
logs command. For additional details and options, refer to the kapp logs --help help text.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 79

Deployments

The following is a brief description of the specific Tanzu Application Platform deployments used by
the Application Service Adapter and what their main responsibilities are to help determine which
logs to query when troubleshooting.

1. The buildservice.app application is tasked with processing any Tanzu Build Service (kpack)
commands. If any failures in the build image process occurs in Tanzu Build Service itself, this
application's logs can provide further information.

2. The contour.app application is tasked with creating an ingress into the system. If a failure to
connect to the Application Service Adapter or an Application occurs, this application's logs
can provide further information.

3. The cartographer.app application is tasked with processing Cartographer
ClusterSupplyChains when using the experimental Cartographer builder/runner flow. If a
failure to create an Image, Build, ConfigMap, or StatefulSet occurs, this application's logs
can provide further information.

CFApp Logs

For CFApps that have been staged, the cf logs command can be used to get more information in
the event of run failures:

cf logs <CFApp name>

Kubernetes System Events

Kubernetes system events can provide debug information in cases where system restrictions
prevent objects from being created. These events may be caused by insufficient resources or
evicted pods, for example. The logs for the system can be queried with the following command:

kubectl get events -A

System Object Types

There are system objects created/used by Application Service Adapter that can be useful in
debugging failures. Describing the objects can show error messages in their status fields. Whether
objects are present can also be useful in determining where in the command process failures have
occurred and which logs should be queried for more information.

For example, if an object in the image build chain is missing, the component in the "Created By"
column can be queried for logs to see if any useful error messages are present. If no useful logs are
found there, identify the previous object in the image build chain and check the logs of the
component listed in the "Reconciled By" column to see if there are any error messages.

Instructions for querying logs can be found for Application Service Adapter and Tanzu Application
Platform.

Some Kubernetes objects exist within a CFOrg or CFSpace namespace. To find the corresponding
namespace of a CFOrg or CFSpace, you can run:

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 80

cf org --guid <CFOrg name>

cf space --guid <CFSpace name>

Installed Object Types

Kind Component
Namespace
or Scope

Notes

ClusterB
uilder

kpack Cluster ClusterBuilders are Tanzu Build Service (kpack) components installed by
Tanzu Application Platform that are used to build images. If they are not
present, image builds may not complete successfully.

Deploy
ment

kubernetes tas-

adapter-

system

All of the Application Service Adapter Deployment's Ready counts should
be listed as 1/1 except for korifi-api-deployment which should be 2/2.
Should this not be the case, the system is not functioning correctly and the
status/events fields of the inoperable Deployment should be analyzed. This
issue can sometimes be related to RBAC.

ClusterR
ole

kubernetes Cluster ClusterRoles are created to manage system privileges at the cluster scope.

ClusterR
oleBindi
ng

kubernetes Cluster ClusterRoleBindings are created to manage system privileges at the cluster
scope.

Service
Account

kubernetes cf ServiceAccounts are created to manage CF permissions. Some
ServiceAccounts are designed to be propagated to CFOrg/CFSpace
namespaces. These objects will be designated with the
cloudfoundry.org/propagate-service-account: "true" annotation.

RoleBin
ding

kubernetes cf RoleBindings are created to manage CF permissions. Some RoleBindings
are designed to be propagated to CFOrg/CFSpace namespaces. These
objects will be designated with the cloudfoundry.org/propagate-cf-
role: "true" annotation.

Security
Context
Constrai
nt

openshift Cluster SecurityContextConstraints are specific to OpenShift and are used to grant
required permissions to Application Service Adapter components in that
environment. These CRDs do not exist in non-OpenShift environments. An
associated ClusterRole, ClusterRoleBinding, and RoleBinding will also be
installed if the kubernetes_distribution shared setting is set to openshift.

ClusterS
upplyCh
ain

Cartograph
er

Cluster When using the experimental Cartographer builder/runner flow, a
ClusterSupplyChain is created during Application Service Adapter
installation at the cluster scope. This is what the cartographer-ctrl uses to
creates the Image, Build, ConfigMap, and StatefulSets in the builder/runner
flow.

CFOrg/CFSpace Object Types

Kind Component
Namespace
or Scope

Created By Reconciled By Notes

CFOr
g

CF cf korifi-

api-

deployment

korifi-

controllers-

controller-

manager

CFOrg resources are created by the cf
create-org command. A corresponding
namespace should also be created by the
korifi-controllers-controller-

manager.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 81

Kind Component
Namespace
or Scope

Created By Reconciled By Notes

CFSp
ace

CF CFOrg
Namespace

korifi-

api-

deployment

korifi-

controllers-

controller-

manager

CFSpace resources are created by the cf
create-space command. A corresponding
namespace should also be created by the
korifi-controllers-controller-

manager.

Image Build Object Types (Default Builder/Runner)

All image build object types are located within the targeted CFSpace Namespace.

Kind Component Created By Reconciled By Notes

CFAp
p

Cloud
Foundry

korifi-

api-

deployment

korifi-

controllers-

controller-

manager

The 1st object in the image build chain that's created when
you run the cf push command. The CFApp resource
represents the application.

CFPa
ckage

Cloud
Foundry

korifi-

api-

deployment

korifi-

controllers-

controller-

manager

The 2nd object in the image build chain that's created when
you run the cf push command. The CFPackage resource
contains a reference to the uploaded app source code.

CFBui
ld

Cloud
Foundry

korifi-

api-

deployment

korifi-

controllers-

controller-

manager

The 3rd object in the image build chain that's created when
you run the cf push command. The CFBuild resource initiates
the build and eventually contains a reference to the runnable
app image.

Build
Workl
oad

Cloud
Foundry

korifi-

controller

s-

controller

-manager

korifi-

controllers-

controller-

manager

The 4th object in the image build chain that's created when
you run the cf push command. The BuildWorkload is an
intermediate resource that contains information about the
build.

Imag
e

kpack korifi-

controller

s-

controller

-manager

buildservice-

ctrl

The 5th object in the image build chain that's created when
you run the cf push command. The full object path for image
objects are kpack.io/v1alpha2/images. This may need to be
specified when querying in certain environments like
OpenShift since there are other resources with the same
name. The image is a kpack resource that provides
configuration to build and maintains a docker image utilizing
Cloud Native Buildpacks.

Build kpack buildservi

ce-ctrl

NA The 6th object in the image build chain that's created when
you run the cf push command. The full object path for build
objects are kpack.io/v1alpha2/builds. This may need to be
specified when querying in certain environments like
OpenShift since there are other resources with the same
name. The build is a kpack resource that schedules and runs a
single Cloud Native Buildpacks build. The build object
spawns a build pod.

Run App Object Types (Default Builder/Runner)

All run app object types are located within the targeted CFSpace Namespace.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 82

Kind Component Created By Reconciled By Notes

CFPro
cess

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

The 1st object in the app run chain that's created when
you run the cf push command. The CFProcess
resource represents a single process.

AppW
orkloa
d

Cloud
Foundry

korifi-

controllers-

controller-

manager

korifi-

controllers-

controller-

manager

The 2nd object in the app run chain that's created
when you run the cf push command. The
AppWorkload is an intermediate resource that
contains information about the application/process.

Statef
ulSet

Kubernetes korifi-

controllers-

controller-

manager

NA The 3rd object in the app run chain that's created when
you run the cf push command. The StatefulSet is a
Kubernetes resource that represents a single process
for an application. There must be a StatefulSet for each
CFProcess.

Replic
aSet

Kubernetes Kubernetes NA The 4th object in the app run chain that's created when
you run the cf push command. The ReplicaSet is
created by Kubernetes to maintain a stable set of
replica pods for the StatefulSet.

Pod Kubernetes Kubernetes NA The app process pods are last in the app run chain and
Kubernetes creates them based on the ReplicaSet. The
number of pods are based on the ReplicaSet replicas
parameter.

CFRou
te

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

CFRoutes are created to reach running apps. They can
be created as part of the cf push command if a default
or random route is specified, defined in a manifest, or
as part of the cf create-route command.

HTTPP
roxy

contour korifi-

controllers-

controller-

manager

NA The HTTPProxy is a Contour resource created by the
korifi-controllers-controller-manager to reach
running apps.

Image Build Object Types (Cartographer Builder/Runner)

All image build object types are located within the targeted CFSpace Namespace.

Kind Component Created By Reconciled By Notes

CFAp
p

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

The 1st object in the image build chain that's created when
you run the cf push command. The CFApp resource
represents the application.

CFPa
ckage

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

The 2nd object in the image build chain that's created when
you run the cf push command. The CFPackage resource
contains a reference to the uploaded app source code.

CFBui
ld

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

The 3rd object in the image build chain that's created when
the cf push command is run. The CFBuild resource initiates
the build and eventually contains a reference to the
runnable app image.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 83

Kind Component Created By Reconciled By Notes

Build
Workl
oad

Cloud
Foundry

korifi-

controllers

-

controller-

manager

cartographer-

builder-

runner-

controller-

manager

The 4th object in the image build chain that's created when
you run the cf push command. The BuildWorkload is an
intermediate resource that contains information about the
build.

Workl
oad

Cartographe
r

cartographe

r-builder-

runner-

controller-

manager

cartographer-

ctrl

The 5th object in the image build chain that's created when
you run the cf push command. The workload is a
Cartographer resource that contains information used by
the buildservice-ctrl in conjunction with the
SupplyChain to create an image and later a ConfigMap
containing the StatefulSet definition.

Imag
e

kpack cartographe

r-ctrl

buildservice-

ctrl

The 6th object in the image build chain that's created when
you run the cf push command. The full object path for
image objects are kpack.io/v1alpha2/images. This may
need to be specified when querying in certain environments
like OpenShift since there are other resources with the same
name. The image is a kpack resource that provides
configuration to build and maintain a docker image utilizing
Cloud Native Buildpacks.

Build kpack buildservic

e-ctrl

NA The 7th object in the image build chain that's created when
you run the cf push command. The full object path for
build objects are kpack.io/v1alpha2/builds. This may need
to be specified when querying in certain environments like
OpenShift since there are other resources with the same
name. The build is a kpack resource that schedules and runs
a single Cloud Native Buildpacks build. The build object
spawns a build pod.

Run App Object Types (Cartographer Builder/Runner)

All run app object types are located within the targeted CFSpace Namespace.

Kind Component Created By Reconciled By Notes

CFPro
cess

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

The 1st object in the app run chain that's created when you
run the cf push command. The CFProcess resource
represents a single process.

App
Workl
oad

Cloud
Foundry

korifi-

controllers

-

controller-

manager

cartographer-

builder-runner-

controller-

manager

The 2nd object in the app run chain that's created when
you run the cf push command. The AppWorkload is an
intermediate resource that contains information about the
application/process. cartographer-builder-runner-
controller-manager edits the Cartographer workload
created during the image build process with the
information from the AppWorkload.

PodIn
tent

Cartographe
r

App
Operator

conventions-

controller-

manager

An optional object in the app run chain. Convention
Service enables app operators to consistently apply
desired runtime configurations to fleets of workloads.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 84

Kind Component Created By Reconciled By Notes

Confi
gMap

Kubernetes cartographe

r-ctrl

NA The 3rd object in the app run chain that's created when you
run the cf push command. A Kubernetes ConfigMap
resource containing the StatefulSet definition is created
that cartographer-ctrl uses to spawns a StatefulSet by
means of kapp.

Statef
ulSet

Kubernetes cartographe

r-ctrl

NA The 4th object in the app run chain that's created when you
run the cf push command. The StatefulSet is a Kubernetes
resource that represents a single process for an
application. There should be a StatefulSet for each
CFProcess.

Replic
aSet

Kubernetes Kubernetes NA The 5th object in the app run chain that's created when you
run the cf push command. Kubernetes creates the
ReplicaSet to maintain a stable set of replica pods for the
StatefulSet.

Pod Kubernetes Kubernetes NA The app process pods are last in the app run chain and
Kubernetes creates them based on the ReplicaSet. The
number of pods are based on the ReplicaSet replicas
parameter.

CFRo
ute

Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

CFRoutes are created to be able to reach running apps.
They can be created as part of the cf push command if a
default or random route is specified, defined in a manifest,
or as part of the cf create-route command.

HTTP
Proxy

contour korifi-

controllers

-

controller-

manager

NA The HTTPProxy is a Contour resource that is created by the
korifi-controllers-controller-manager to reach
running apps.

Run Task Object Types

All run task object types are located within the targeted CFSpace Namespace.

Kind Component Created By Reconciled By Notes

CFTask Cloud
Foundry

korifi-api-

deployment

korifi-

controllers-

controller-

manager

The 1st object in the run task chain that's created
when you run the cf run-task command.

TaskW
orkloa
d

Cloud
Foundry

korifi-

controllers-

controller-

manager

korifi-

controllers-

controller-

manager

The 2nd object in the run task chain that's
created when you run the cf run-task
command.

Job Kubernetes korifi-

controllers-

controller-

manager

NA The 3rd object in the run task chain that's
created when you run the cf run-task
command.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 85

Kind Component Created By Reconciled By Notes

Pod Kubernetes Kubernetes NA The running job pods are last in the run task
chain, and Kubernetes creates them based on
the job. The job pod completes when its
command is run.

Common Failure Scenarios

This section contains common failure scenarios and describes the appropriate troubleshooting
techniques that can be used to gather further information and solve the issue.

Organization not found when creating an Org.

Symptom

When I run cf create org my-org, the following error message is returned:

Organization 'my-org' not found

Possible Causes

The user creating the CFOrg is not bound to the korifi-controllers-admin ClusterRole.

Troubleshooting Steps/Potential Solutions

1. Verify the user in the cf create org command output.

Creating org my-org as cf-admin...

1. Verify that there is a RoleBinding in the cf namespace binding the korifi-controllers-
admin ClusterRole to the given user and that it has the cloudfoundry.org/propagate-cf-
role: "true" annotation.

2. If that RoleBinding does not exist, either switch to a user that is bound to the korifi-
controllers-admin ClusterRole or create a RoleBinding as a cluster admin.

Pushing an app fails to build an image

Symptom

When I run cf push, the CF CLI does not respond with a built image.

Possible causes

1. ClusterBuilder is not ready.

2. A failure occurred in one of the Tanzu Application Platform or Application Service Adapter
components.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 86

Troubleshooting Steps/Potential Solutions

1. Check the status of the ClusterBuilders by running kubectl get clusterbuilder. The Ready
column should show True.

2. If the ClusterBuilder's Ready state is not True, run kubectl describe clusterbuilder and
check the status section for more information.

3. Walk through the list of image build object types and check if any objects are missing. For
any missing objects, check the logs of the Tanzu Application Platform or Application Service
Adapter component listed in the "Created By" column to see if there are any error
messages.

4. If the component listed in the "Created By" column does not have any helpful error
messages, identify the previous object in the image build chain and check the logs of the
component listed in the "Reconciled By" column to see if there are any error messages.

Pushing an app fails to upload an image to the image registry

Symptom

When I run cf push, the following output/error message is returned:

 Unexpected Response

 Response Code: 500

 Code: 0, Title: , Detail: {"errors":[{"detail":"An unknown error occurred.","titl

e":"UnknownError","code":10001}]}

Possible Causes

The image registry is unavailable/unauthorized.

Troubleshooting Steps/Potential Solutions

1. Check the korifi-api-deployment logs for registry related failures like failed to upload
image.

2. Determine the cause of the upload failure like connection refused, credentials failed,
certificate untrusted, etc.

3. Check the image registry settings provided to the Application Service Adapter installation
related to the failure and reinstall Application Service Adapter with the correct image
registry settings.

Pushing an app fails to start

Symptom

When I run cf push, my app stages correctly, but fails to start or become healthy.

Possible Causes

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 87

1. There is an issue with the application's code.

2. The Kubernetes cluster cannot schedule the application.

3. The Application Service Adapter cannot turn the app into a StatefulSet.

Troubleshooting Steps/Potential Solutions

1. To debug the application's code, check the application logs

2. To debug applications that fail to be scheduled, check the Kubernetes System Logs and the
StatefulSet status in the CFSpace namespace.

3. Walk through the list of run app object types and check if any objects are missing. For any
missing objects, check the logs of the Tanzu Application Platform or Application Service
Adapter component listed in the "Created By" column to see if there are any error
messages.

4. If the component listed in the "Created By" column does not have any helpful error
messages, identify the previous object in the run app chain and check the logs of the
component listed in the "Reconciled By" column to see if there are any error messages.

Deployed apps fail to become routable

Symptom

When I run cf push, my app stages and runs, but fails to be routable.

Possible Causes

1. There is an issue with the Application Service Adapter Deployments

2. There is an issue with the cluster's routing.

Troubleshooting Steps/Potential Solutions

1. Check the logs for the korifi-controllers-controller-manager and see if there is any
additional information.

2. Check the status of the CFRoute corresponding to the app's route in the CFSpace
namespace and see if there are any error messages.

3. Check the status of the HTTPProxy corresponding to the app's route in the CFSpace
namespace and see if there are any error messages.

OpenShift Failure Scenarios

This section contains common failure scenarios specific to operation on the OpenShift platform and
describes the appropriate troubleshooting techniques that can be used to gather further
information and solve the issue.

OpenShift Setting

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 88

The OpenShift installation setting for Application Service Adapter can be set in the tas-adapter-
values.yml as described here.

Installing the Application Service Adapter on a non-OpenShift
Kubernetes distribution fails

Symptom

When I install the Application Service Adapter on a non-OpenShift cluster, I get the following error
message:

kapp: Error: Expected to find kind 'security.openshift.io/v1/SecurityContextConstraint

s', but did not:

- Kubernetes API server did not have matching apiVersion + kind

- No matching CRD was found in given configuration

Possible Causes

The OpenShift setting is enabled.

Troubleshooting Steps/Potential Solutions

Creating the SecurityContextConstraint will fail on a non-OpenShift cluster because the
SecurityContextConstraint CRD is only present on OpenShift. Reinstall Application Service Adapter
with the OpenShift setting turned off.

Installing the Application Service Adapter on an OpenShift
Kubernetes distribution fails

Symptom

When I install the Application Service Adapter on an OpenShift cluster, I get the following error
message:

1:41:32PM: ^ Retryable error: Creating resource cfdomain/apps.openshift-aro.k8s-dev.r

elint.rocks (korifi.cloudfoundry.org/v1alpha1) namespace: cf: API server says: Interna

l error occurred: failed calling webhook "vcfdomain.korifi.cloudfoundry.org": failed t

o call webhook: Post "https://korifi-controllers-webhook-service.tas-adapter-system.sv

c:443/validate-korifi-cloudfoundry-org-v1alpha1-cfdomain?timeout=10s": no endpoints av

ailable for service "korifi-controllers-webhook-service" (reason: InternalError)

Possible Causes

The OpenShift setting is not enabled.

Troubleshooting Steps/Potential Solutions

Without the SecurityContextConstraint/ClusterRole/ClusterRoleBinding/RoleBinding, the
Application Service Adapter deployments will not be able to deploy Pods.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 89

1. Query the Application Service Adapter Deployments and check if their Ready counts are
listed as 0/0.

2. Reinstall Application Service Adapter with the OpenShift setting enabled.

Pushing an app on an OpenShift cluster fails to start

Symptom

When I run cf push on an OpenShift cluster, my app stages correctly, but fails to start or become
healthy.

Possible Causes

The ServiceAccount being used by the StatefulSets does not have permission to create pods.

Troubleshooting Steps/Potential Solutions

1. Query the StatefulSet and check if their Ready counts are listed as 0/0.

2. Verify that the ServiceAccount field is set to korifi-app.

3. Verify that there is a RoleBinding in the CFSpace namespace that links system:tas-
adapter:scc:tas-adapter-scc to korifi-app.

4. If any of those objects are not present, reinstall Application Service Adapter with the
OpenShift setting enabled.

Cartographer Failure Scenarios
This section contains common failure scenarios specific to the use of the experimental optional
Cartographer feature and describes the appropriate troubleshooting techniques that can be used to
gather further information and solve the issue.

Cartographer setting

The experimental Cartographer installation setting for Application Service Adapter can be set in the
tas-adapter-values.yaml, as described in Install Application Service Adapter.

Pushing an app fails to start

Symptom

When I run cf push, my app stages correctly, but fails to start or become healthy.

Possible Causes

There is a failure in the cartographer-builder-runner-controller-manager, the SupplyChain, or the
cartographer-ctrl.

Troubleshooting Steps/Potential Solutions

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 90

1. Check the status of the Workload and see if there are any error messages.

2. Check the status of the BuildWorkload and see if there are any error messages.

3. Check the status of the AppWorkload and see if there are any error messages.

4. Check the logs for the cartographer-builder-runner-controller-manager and see if there
is any additional information.

5. Verify that there is a cluster-scoped SupplyChain present.

6. Check the logs for the cartographer-ctrl and see if there is any additional information.

User management with Application Service Adapter

Application Service Adapter allows you to manage users. This topic tells you how.

Application Service Adapter users are user identifiers that Kubernetes recognizes in the subject
section of its role-based access control (RBAC) resources, such as RoleBindings. For more
information about user subject names in Kubernetes, see the Referring to subjects section of Using
RBAC Authorization and the Authenticating topic in the Kubernetes project documentation.

Users can be assigned Cloud Foundry roles using the role management commands of the cf CLI or
by directly creating RoleBinding resources through the Kubernetes API.

AWS IAM user management for EKS

To configure an AWS IAM user for an Elastic Kubernetes Service (EKS) cluster, you must configure
the aws-auth ConfigMap on the EKS cluster to map IAM resources by ARN to the cluster. Follow
the AWS IAM user and role access documentation for more information.

Note

The AWS documentation recommends using eksctl to edit the ConfigMap.

Application Service Adapter for VMware Tanzu Application Platform v1.0

VMware by Broadcom 91

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-subjects
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://docs.cloudfoundry.org/adminguide/cli-user-management.html#orgs-spaces
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

	Contents
	Application Service Adapter for VMware Tanzu Application Platform
	Application Service Adapter Overview
	Notice of telemetry collection for Application Service Adapter

	Release notes for Application Service Adapter
	v1.0.4 Release
	Changelog

	v1.0.3 Release
	Changelog

	v1.0.2 Release
	Security fixes

	v1.0.1 Release
	Resolved issues
	Components
	Known Issues

	v1.0.0 Release
	Features
	Application management
	Application routes and domains
	Application logs
	Application tasks
	Service management
	User authentication and authorization
	System installation
	Org and space management
	System security
	Supply Chain Choreographer integration (experimental)

	Components
	Known Issues

	Application Service Adapter reference architecture
	Tanzu Application Platform installation
	Adapter system requirements
	Application workload requirements

	Prerequisites to install Application Service Adapter
	Kubernetes cluster and container image registry
	Required installation tools
	Required components
	Required components for experimental Cartographer integration
	Recommended components

	Installing Application Service Adapter
	Install the package repository
	Configure the installation settings
	Opting out of telemetry reporting
	(Optional) Configure a Registry With a Custom Certificate Authority
	(Optional) Configure the Experimental Cartographer Integration

	Install Application Service Adapter
	Configure DNS for Application Service Adapter
	Log in with a system admin user

	Install Application Service Adapter to air-gapped environments
	Relocate images to a registry (air-gapped)
	Install the package repository

	Get started with Application Service Adapter
	Create orgs and spaces
	Deploy a sample app
	Route to an app
	Create and bind to a user-provided service instance

	Use Application Service Adapter to push the spring-music app
	Prerequisites
	Clone and prepare the application locally
	Push the app without persistent storage
	Create a database service for persistent storage
	Bind the database to the application

	Administering Application Service Adapter
	Disaster recovery with Application Service Adapter
	Disaster recovery overview
	State storage
	Application Service Adapter installation resources
	Application Service Adapter Cloud Foundry API resources
	Application source code
	Runnable application artifacts

	Backup and restore

	Failover and redundancy with Application Service Adapter
	Cloud Foundry-compatible API
	Controllers and webhooks
	Applications

	Rotate Application Service Adapter certificates
	Rotating ingress certificates
	Rotating internal certificates

	System logs and metrics for Application Service Adapter
	Gathering system logs
	Querying performance metrics

	Scale Application Service Adapter
	Notes on system performance
	Scaling the Application Service Adapter controller managers
	Vertical scaling
	Horizontal scaling

	Scaling the Application Service Adapter API

	Upgrade Application Service Adapter
	Prerequisites
	Update the new package repository
	Upgrade Application Service Adapter
	Verify the upgrade

	Uninstall Application Service Adapter
	Learn more about Application Service Adapter
	Application Service Adapter Architecture
	Overview
	High-level architecture
	Components

	Experimental Cartographer integration
	Authentication and authorization
	Organization and space management
	Building (staging) applications
	Note on blobstores

	Services
	Routing
	App logging and metrics

	User authentication with Application Service Adapter
	Background
	Architecture

	Application Service Adapter reference documentation
	Application Service Adapter environment variables
	Environment variables overview
	View environment variables
	App-specific system variables
	CF_INSTANCE_GUID
	CF_INSTANCE_INDEX
	CF_INSTANCE_INTERNAL_IP
	CF_INSTANCE_IP
	HOME
	PORT
	PWD
	VCAP_APP_HOST
	VCAP_APP_PORT
	VCAP_SERVICES

	Buildpacks used by Application Service Adapter
	Differences between the buildpack systems
	System buildpack comparison
	Binary buildpack
	Go buildpack
	Java buildpack
	.NET Core buildpack
	NGINX buildpack
	Node.js buildpack
	PHP buildpack
	Python buildpack
	Ruby buildpack
	Staticfile buildpack

	cf CLI commands supported by Application Service Adapter
	Getting started
	cf push
	Supported manifest configuration
	Supported app-level configuration
	Supported process-level configuration
	Supported route-level configuration

	App operations
	Org and space operations
	Org operations
	Space operations

	Route and domain operations
	Route operations
	Domain operations

	Service operations
	Metadata operations

	Troubleshoot Application Service Adapter
	Generic troubleshooting techniques
	Application Service Adapter logs
	Deployments

	Tanzu Application Platform logs
	Deployments

	CFApp Logs
	Kubernetes System Events
	System Object Types
	Installed Object Types
	CFOrg/CFSpace Object Types
	Image Build Object Types (Default Builder/Runner)
	Run App Object Types (Default Builder/Runner)
	Image Build Object Types (Cartographer Builder/Runner)
	Run App Object Types (Cartographer Builder/Runner)
	Run Task Object Types

	Common Failure Scenarios
	Organization not found when creating an Org.
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	Pushing an app fails to build an image
	Symptom
	Possible causes
	Troubleshooting Steps/Potential Solutions

	Pushing an app fails to upload an image to the image registry
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	Pushing an app fails to start
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	Deployed apps fail to become routable
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	OpenShift Failure Scenarios
	OpenShift Setting
	Installing the Application Service Adapter on a non-OpenShift Kubernetes distribution fails
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	Installing the Application Service Adapter on an OpenShift Kubernetes distribution fails
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	Pushing an app on an OpenShift cluster fails to start
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	Cartographer Failure Scenarios
	Cartographer setting
	Pushing an app fails to start
	Symptom
	Possible Causes
	Troubleshooting Steps/Potential Solutions

	User management with Application Service Adapter
	AWS IAM user management for EKS

