
Application Single Sign-
On for VMware Tanzu v1.0

Application Single Sign-On for VMware Tanzu 1.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 2

https://docs.vmware.com/copyright-trademark.html

Contents

Application Single Sign-On for VMware Tanzu® (1.0.0) 7

Getting started 8

AppSSO Overview 8

Getting started 9

Provision an AuthServer 9
Provision an AuthServer 10

 The AuthServer spec, in detail 11

Metadata 11

Issuer URI 12

Token Signature 12

Identity providers 13

Expose your authorization server through HTTPProxy 13
Expose through HTTPProxy 13

Provision a client registration 14
Creating the ClientRegistration 14

Validating that the credentials are working 16

Deploy an application 16
Deploy a minimal application 16

 Deployment manifest explained 19

 Notes on OAuth2-Proxy 19

AppSSO for Platform Operators 20

Installing AppSSO on TAP 20

What’s inside 20

Prerequisites 20

Installation 20

Uninstalling AppSSO from TAP 21

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 3

RBAC 21

AppSSO for Service Operators 24

Annotation & labels 24

Labels 24

Allowing client namespaces 25

Unsafe configuration 25

Unsafe identity provider 25

Unsafe issuer URI 26

Issuer URI 26
Configure a Service for AuthServer 26

Enabling external access with TLS 27

Prerequisites 27

Guide 27

Further reading 29

Identity providers 29
OpenID Connect providers 30

Note for registering a client with the identity provider 31

LDAP (experimental) 31

SAML (experimental) 32

Note for registering a client with the identity provider 32

Internal users 33

Generating a bcrypt hash from a plain-text password 33

Restrictions 34

Token signature 34
Token signature 101 34

Token signature of an AuthServer 35

Creating keys 36

Using secretgen-controller 36

Using OpenSSL 37

Rotating keys 38

Revoking keys 39

References and further reading 40

Readiness 40

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 4

Client registration check 40

Prerequisites 41

Define and apply a test client 41

Get an access token 41

Scale 42

Authorization server audit logs 42

Authentication 42

Token flows 43

Troubleshooting 43
Why is my AuthServer not working? 43

Find all AuthServer-related Kubernetes resources 43

Logs of all AuthServers 43

Change propagation 44

My Service is not selecting the authorization server’s Deployment 44

Redirect URIs are redirecting to http instead of https with a non-internal identity provider 44

Known Limitations 44

Limited number of ClientRegistrations per AuthServer 44

AppSSO for App Operators 45

Register an app with AppSSO 45

Topics 45

Client registration 45

Workloads 46

Prerequisites 46

Configuring a Workload with AppSSO 46

Create and apply a ClientRegistration resource 46

Add a service resource claim to your Workload 47

Grant types 49
Topics 49

Client Credentials Grant Type 49

Authorization Code Grant Type 50

Securing your first Workload 52
Prerequisites 52

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 5

Getting started 52

Understanding the sample application 52

The sample application’s ClientRegistration 53

Understanding Workloads 54

Deploying the sample application as a Workload 54

Create workload namespace 54

Apply required TAP workload configurations 54

Apply the ClientRegistration 54

Create a ClientRegistration service resource claim for the workload 55

Deploy the workload 55

Cleaning up 57

Custom Resource Definitions 58

ClientRegistration 58

Spec 58

Status & conditions 59

Example 60

AuthServer 61
Spec 62

Status & conditions 64

RBAC 65

Example 66

Known Issues 69

Appendix 70

TAP developer namespace setup example 70
Installing the namespace configuration 70

Add container image registry credentials 70

Apply namespace configurations 70

Uninstalling namespace configurations 71

Developer namespace configuration ytt template 72

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 6

Application Single Sign-On for VMware
Tanzu® (1.0.0)

VMware Slack #app-sso

Learn more about us here

Application Single Sign-On for VMware Tanzu®, short AppSSO, provides APIs for curating and
consuming a “Single Sign-On as a service” offering on Tanzu Application Platform.

 Want to get started with AppSSO? Start with the Getting Started guide.

With AppSSO Service Operators can configure and deploy authorization servers. Application
Operators can then configure their Workloads with these authorization servers to provide Single
Sign-On to their end-users.

AppSSO allows to integrate authentication and authorization decisions early in the software
development and release lifecycle. It provides a seamless transition for workloads from
development to production when including Single Sign-On solutions in your software.

It’s easy to get started with AppSSO; deploy an authorization server with static test users.
Eventually, progress to multiple authorization servers of production-grade scale with token key
rotation, multiple upstream identity providers and client restrictions.

AppSSO’s authorization server is based off of Spring Authorization Server.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 7

https://vmware.slack.com/archives/C0244261R6V
https://via.vmware.com/sso
https://github.com/spring-projects/spring-authorization-server

Getting started

 This article assumes AppSSO is installed on your TAP cluster. To install AppSSO, refer to the
instructions in Install AppSSO.

In this section, you will:

1. Get an overview of AppSSO

2. Set up your first authorization server, and validate that it is running

3. Expose it over HTTP through an HTTPProxy, and validate it can be reached

4. Provision a ClientRegistration, and validate it is working

5. Deploy an application that uses the provisioned ClientRegistration to enable SSO

 Once you have completed the above steps, you can continue by securing a Workload.

AppSSO Overview

At the core of AppSSO is the concept of an Authorization Server, outlined by the AuthServer
custom resource. Service Operators create those resources to provision running Authorization
Servers, which are OpenID Connect Providers. They issue ID Tokens to Client applications, which
contain identity information about the End-User (such as email, first name, last name, etc).

When a Client application uses an AuthServer to authenticate an End-User, the typical steps are:

1. The End-User visits the Client application

2. The Client application redirects the End-User to the AuthServer, with an OAuth2 request

3. The End-User logs in with the AuthServer, usually using an external Identity Provider (e.g.
Google, Azure AD)

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 8

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#IDToken

1. Identity Providers are set up by Service Operators

2. AuthServers may use various protocols to obtain identity information about the
user, such as OpenID Connect, SAML or LDAP, which may involve additional
redirects

4. The AuthServer redirects the End-User to the Client application with an authorization code

5. The Client application exchanges with the AuthServer for an id_token

1. The Client application does not know how the identity information was obtained by
the AuthServer, it only gets identity information in the form of an ID Token.

ID Tokens are JSON Web Tokens containing standard Claims about the identity of the user (e.g.
name, email, etc) and about the token itself (e.g. “expires at”, “audience”, etc). Here is an example
of an id_token as issued by an Authorization Server:

{

 "iss": "https://appsso.example.com",

 "sub": "213435498y",

 "aud": "my-client",

 "nonce": "fkg0-90_mg",

 "exp": 1656929172,

 "iat": 1656928872,

 "name": "Jane Doe",

 "given_name": "Jane",

 "family_name": "Doe",

 "email": "jane.doe@example.com"

}

ID Tokens are signed by the AuthServer, using Token Signature Keys. Client applications may verify
their validity using the AuthServer’s public keys.

Getting started

 Move on to Provision your first AuthServer

Provision an AuthServer

 This article assumes AppSSO is installed on your TAP cluster. To install AppSSO, refer to the
instructions in Install AppSSO.

 AppSSO is installed automatically installed with the run, iterate, and full TAP profiles, no extra
steps required.

 To make sure AppSSO is installed on your cluster, you can run:

tanzu package installed list -A | grep "sso.apps.tanzu.vmware.com"

In this tutorial, you are going to:

1. Set up your first authorization server, in the default namespace

2. Ensure it is running, that users can log in

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 9

https://openid.net/specs/openid-connect-core-1_0.html#IDToken

Provision an AuthServer

First, deploy your first Authorization Server, along with a secret key for signing tokens.

 Note that we used spec.issuerURI = http://authserver.example.com, but you should customize
the URL to match the domain of your TAP cluster.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: my-authserver-example

 namespace: default

 labels:

 name: my-first-auth-server

 env: tutorial

 annotations:

 sso.apps.tanzu.vmware.com/allow-client-namespaces: "default"

 sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

 sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

 replicas: 1

 issuerURI: "http://authserver.example.com"

 tokenSignature:

 signAndVerifyKeyRef:

 name: "authserver-signing-key"

 identityProviders:

 - name: "internal"

 internalUnsafe:

 users:

 - username: "user"

 password: "$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8jWK"

 email: "user@example.com"

 roles:

 - "user"

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: authserver-signing-key

 namespace: default

spec:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 10

 secretTemplate:

 type: Opaque

 stringData:

 key.pem: $(privateKey)

 pub.pem: $(publicKey)

Validate that the auth-server runs, by checking the AuthServer resource’s status. Both the
IssuerURIReady and Ready conditions should be False, but all other conditions should be True. This
is because your AuthServer is not accessible yet.

kubectl get authservers my-authserver-example -n default -o yaml

If you want to check which conditions are not ready, you may use jq for example:

kubectl get authserver my-authserver-example -n default -o json | jq ".status.conditio

ns[] | select(.status != \"True\") | .type"

IssuerURIReady

Ready

Then, validate that the deployment is responding over HTTP by exposing it:

kubectl port-forward -n default deploy/my-authserver-example-auth-server 7777:8080

And navigating in your browser to http://localhost:7777. There you should see a login page. Log in
using username = user and password = password.

 Note that if you are using TKGm or TKGs, which have customizable in-cluster communication
CIDR ranges, there is a known issue regarding AppSSO making requests to external identity
providers with http rather than https.

 The AuthServer spec, in detail
Here is a detailed explanation of the AuthServer you have applied in the above section. This is
intended to give you an overview of the different configuration values that were passed in. It is not
intended to describe all the ins-and-outs, but there are links to related docs in each section.

Feel free to skip ahead.

Metadata

metadata:

 labels:

 name: my-first-auth-server

 env: tutorial

 annotations:

 sso.apps.tanzu.vmware.com/allow-client-namespaces: "default"

 sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

 sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

The metadata.labels uniquely identify the AuthServer. They are used as selectors by
ClientRegistrations, to declare from which authorization server a specific client obtains tokens
from.

The sso.apps.tanzu.vmware.com/allow-client-namespaces annotation restricts the namespaces in
which you can create a ClientRegistrations targeting this authorization server. In this case, the

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 11

http://localhost:7777/

authorization server will only pick up client registrations in the default namespace.

The sso.apps.tanzu.vmware.com/allow-unsafe-... annotations enable “development mode”
features, useful for testing. Those should not be used for production-grade authorization servers.

Lean more about Metadata.

Issuer URI

spec:

 issuerURI: "http://authserver.example.com"

This is the URL that the auth server will serve traffic from. The authorization server will issue tokens
containing this issuerURI, and clients will use it to validate that the token comes from a trusted
source.

Note: HTTP access is for getting-started development only! Learn more about a production ready
Issuer URI

Lean more about Issuer URI.

Token Signature

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

...

spec:

 tokenSignature:

 signAndVerifyKeyRef:

 name: "authserver-signing-key"

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: authserver-signing-key

 namespace: default

spec:

 secretTemplate:

 type: Opaque

 stringData:

 key.pem: $(privateKey)

 pub.pem: $(publicKey)

The token signing key is the private RSA key used to sign ID Tokens, using JSON Web Signatures,
and clients use the public key to verify the provenance and integrity of the ID tokens. The public
keys used for validating messages are published as JSON Web Keys at {issuerURI}/oauth2/jwks.
When using the port-forward declared in the section above, JWKs are available at
http://localhost:7777/oauth2/jwks.

The spec.tokenSignature.signAndVerifyKeyRef.name references a secret containing PEM-encoded
RSA keys, both key.pem and pub.pem. In this specific example, we are using Secretgen-Controller, a
TAP dependency, to generate the key for us.

Lean more about Token Signature.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 12

https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
http://localhost:7777/oauth2/jwks
https://github.com/vmware-tanzu/carvel-secretgen-controller

Identity providers

spec:

 identityProviders:

 - name: "internal"

 internalUnsafe:

 users:

 - username: "user"

 password: "$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8jWK"

 email: "user@example.com"

 roles:

 - "user"

AppSSO’s authorization server delegate login and user management to external identity providers
(IDP), such as Google, Azure Active Directory, Okta, etc. See diagram at the top of this page.

In this example, we use an internalUnsafe identity provider. As the name implies, it is not an
external IDP, but rather a list of hardcoded user/passwords. As the name also implies, this is not
considered safe for production. Here, we declared a user with username = user, and password =
password, stored as a BCrypt hash. For production setups, consider using OpenID Connect IDPs
instead.

The email and roles fields are optional for internal users. However, they will be useful when we
want to use SSO with a client application later in this guide.

Expose your authorization server through HTTPProxy

 This article assumes that you have completed the previous step in this Getting Started guide. If
not, please refer to instructions in Provision an AuthServer.

 This article assumes that you are using the TAP-provided Contour ingress. Please refer to
instructions in Tanzu Application Platform documentation.

In this tutorial, you are going to:

1. Expose your running authorization server through a Service + HTTPProxy

2. Ensure it is accessible from outside the cluster

Expose through HTTPProxy

Assuming you deployed an AuthServer called my-authserver-example in the default namespace,
expose it by creating a Service + HTTPProxy.

 Note that we used HTTPProxy.spec.virtualhost.fqdn = authserver.example.com, but you should
customize the URL to match the domain of your TAP cluster. The FQDN should match the
issuerURI that you declared in Provision an AuthServer.

apiVersion: v1

kind: Service

metadata:

 name: my-authserver-example

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 13

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install.html#configure-loadbalancer-for-contour-ingress-9

 namespace: default

spec:

 selector:

 app.kubernetes.io/part-of: my-authserver-example

 app.kubernetes.io/component: authorization-server

 ports:

 - port: 80

 targetPort: 8080

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

 name: my-authserver-example

 namespace: default

spec:

 virtualhost:

 fqdn: authserver.example.com

 routes:

 - conditions:

 - prefix: /

 services:

 - name: my-authserver-example

 port: 80

By applying the above resources, your authorization server should become accessible outside the
cluster, through http://authserver.example.com.

Provision a client registration

 This article assumes that you have completed the previous step in this Getting Started guide. If
not, please refer to instructions in Exposing the AuthServer through HTTPProxy.

In this tutorial, you are going to:

1. Obtain credentials for the Authorization Server you have provisioned in Provision your first
AuthServer

2. Do a basic check that the credentials are valid using client-credentials flow.

Creating the ClientRegistration

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 14

http://authserver.example.com/

Assuming you have deployed the AuthServer as described previously, you can create the following
client registration:

 Note that we used ClientRegistration.spec.redirectURIs[0] = test-app.example.com, but you
should customize the URL to match the domain of your TAP cluster. This will be the URL you use
to expose your test application in the next section.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: my-client-registration

 namespace: default

spec:

 authServerSelector:

 matchLabels:

 name: my-first-auth-server

 env: tutorial

 redirectURIs:

 - "http://test-app.example.com/oauth2/callback"

 requireUserConsent: false

 clientAuthenticationMethod: basic

 authorizationGrantTypes:

 - "client_credentials"

 - "authorization_code"

 scopes:

 - name: "openid"

 - name: "email"

 - name: "profile"

 - name: "roles"

 - name: "message.read"

The AuthServer should pick it up. There are two ways to validate this, either by looking at the
ClientRegistration .status field, or looking at the authserver itself.

Check the client registration

kubectl get clientregistration my-client-registration -n default -o yaml

Check the authserver

kubectl get authservers

NAME REPLICAS ISSUER URI CLIENTS TOKEN KE

YS

my-authserver-example 1 http://authserver.example.com 1 1

^

the AuthServer now has one client ^

AppSSO will create a secret containing the credentials that client applications will use, named after
the client registration. The type of the secret is servicebindings.io/oauth2. You can obtain the
values in the secret by running:

kubectl get secret my-client-registration -n default -o json | jq ".data | map_values

(@base64d)"

{

"authorization-grant-types": "client_credentials,authorization_code",

"client-authentication-method": "basic",

"client-id": "default_my-client-registration",

"client-secret": "PLACEHOLDER",

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 15

"issuer-uri": "http://authserver.example.com",

"provider": "appsso",

"scope": "openid,email,profile,roles,message.read",

"type": "oauth2"

}

Validating that the credentials are working

Before you deploy an app and make use of SSO, you can try the credentials from your machine to
try and obtain an access_token using the client_credentials grant. You need the client_id and
client_secret that were created as part of the client registration.

CLIENT_ID=$(kubectl get secret my-client-registration -n default -o jsonpath="{.data.c

lient-id}" | base64 -d)

CLIENT_SECRET=$(kubectl get secret my-client-registration -n default -o jsonpath="{.da

ta.client-secret}" | base64 -d)

ISSUER_URI=$(kubectl get secret my-client-registration -n default -o jsonpath="{.data.

issuer-uri}" | base64 -d)

curl -XPOST "$ISSUER_URI/oauth2/token?grant_type=client_credentials&scope=message.rea

d" -u "$CLIENT_ID:$CLIENT_SECRET"

You can decode the access_token using an online service, such as JWT.io.

To learn more about grant types, see Grant Types

Deploy an application

 This article assumes that you have completed the previous step in this Getting Started guide. If
not, please refer to instructions in Provision a client registration.

In this tutorial, you are going to:

1. Deploy a minimal Kubernetes application that uses the credentials created through the
ClientRegistration and be protected through SSO.

Deploy a minimal application
You are going to deploy a two-container pod, as a test application.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 16

https://jwt.io/

 Note that we used HTTPProxy.spec.virtualhost.fqdn = test-app.example.com, but you should
customize the URL to match the domain of your TAP cluster. This URL should match what was set
up in ClientRegistration.spec.redirectURIs[0] in the Previous section

apiVersion: apps/v1

kind: Deployment

metadata:

 name: test-application

 namespace: default

spec:

 replicas: 1

 selector:

 matchLabels:

 name: test-application

 template:

 metadata:

 labels:

 name: test-application

 spec:

 containers:

 - image: bitnami/oauth2-proxy:7.3.0

 name: proxy

 ports:

 - containerPort: 4180

 name: proxy-port

 protocol: TCP

 env:

 - name: ISSUER_URI

 valueFrom:

 secretKeyRef:

 name: my-client-registration

 key: issuer-uri

 - name: CLIENT_ID

 valueFrom:

 secretKeyRef:

 name: my-client-registration

 key: client-id

 - name: CLIENT_SECRET

 valueFrom:

 secretKeyRef:

 name: my-client-registration

 key: client-secret

 command: ["oauth2-proxy"]

 args:

 - --oidc-issuer-url=$(ISSUER_URI)

 - --client-id=$(CLIENT_ID)

 - --insecure-oidc-skip-issuer-verification=true

 - --client-secret=$(CLIENT_SECRET)

 - --cookie-secret=0000000000000000

 - --cookie-secure=false

 - --http-address=http://:4180

 - --provider=oidc

 - --scope=openid email profile roles

 - --email-domain=*

 - --insecure-oidc-allow-unverified-email=true

 - --oidc-groups-claim=roles

 - --upstream=http://127.0.0.1:8000

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 17

 - --redirect-url=http://test-app.example.com/oauth2/callback

 - --skip-provider-button=true

 - --pass-authorization-header=true

 - --prefer-email-to-user=true

 - image: python:3.9

 name: application

 resources:

 limits:

 cpu: 100m

 memory: 100Mi

 command: ["python"]

 args:

 - -c

 - |

 from http.server import HTTPServer, BaseHTTPRequestHandler

 import base64

 import json

 class Handler(BaseHTTPRequestHandler):

 def do_GET(self):

 if self.path == "/token":

 self.token()

 return

 else:

 self.greet()

 return

 def greet(self):

 username = self.headers.get("x-forwarded-user")

 self.send_response(200)

 self.send_header("Content-type", "text/html")

 self.end_headers()

 page = f"""

 <h1>It Works!</h1>

 <p>You are logged in as {username}</p>

 """

 self.wfile.write(page.encode("utf-8"))

 def token(self):

 token = self.headers.get("Authorization").split("Bearer ")[-1]

 payload = token.split(".")[1]

 decoded = base64.b64decode(bytes(payload, "utf-8") + b'==').deco

de("utf-8")

 self.send_response(200)

 self.send_header("Content-type", "application/json")

 self.end_headers()

 self.wfile.write(decoded.encode("utf-8"))

 server_address = ('', 8000)

 httpd = HTTPServer(server_address, Handler)

 httpd.serve_forever()

apiVersion: v1

kind: Service

metadata:

 name: test-application

 namespace: default

spec:

 ports:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 18

 - port: 80

 targetPort: 4180

 selector:

 name: test-application

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

 name: test-application

 namespace: default

spec:

 virtualhost:

 fqdn: test-app.example.com

 routes:

 - conditions:

 - prefix: /

 services:

 - name: test-application

 port: 80

Now you can navigate to http://test-app.example.com/. It may ask you to log into the AuthServer
you haven’t already. You can also navigate to http://test-app.example.com/token if you wish to
see the contents of the ID token.

 Deployment manifest explained

The application was deployed as a two-container pod: one for the app, and one for handling login.

The main container is called application, and runs a bare-bones Python HTTP server, that
reads from the Authorization header from incoming requests and returns the decoded
id_token.

The second container, called proxy, is a sidecar container, an “Ambassador”. It receives
traffic for the Pod, performs OpenID authentication using OAuth2 Proxy, and proxies
requests to the application with some added headers containing identity information.

Along with this deployment, there is a Service + HTTPProxy, to expose the application to the
outside world.

 Notes on OAuth2-Proxy

The setup of the above OAuth2 Proxy is minimal, and is not considered suitable for production use.
To configure it for production, please refer to the official documentation.

Note that OAuth2 Proxy requires some claims to be present in the id_token, notably the email
claim and the non-standard groups claim. The groups claim maps to AppSSO’s roles claim.
Therefore, for this proxy to work with AppSSO, users MUST have an e-mail defined, and at least
one entry in roles. If the proxy container logs an error stating Error redeeming code during
OAuth2 callback: could not get claim "groups" [...], make sure that the user has roles
provided in the identityProvider.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 19

http://test-app.example.com/
http://test-app.example.com/token
https://oauth2-proxy.github.io/oauth2-proxy/
https://oauth2-proxy.github.io/oauth2-proxy/

AppSSO for Platform Operators

Learn how to manage the AppSSO package installation and what it installs.

Installation

Uninstallation

Upgrades

RBAC

Installing AppSSO on TAP

What’s inside
The AppSSO package will install the following resources:

The appsso Namespace with a Deployment of the AppSSO operator and Services for
Webhooks

A ServiceAccount with RBAC outlined in detail here

AuthServer and ClientRegistration CRDs

Prerequisites

 If you are already running TAP with run, iterate, or full profiles, AppSSO is installed
automatically, and you may skip the instructions below.

Before installing AppSSO, please ensure you have Tanzu Application Platform v1.2.0 installed on
your Kubernetes cluster.

Installation
1. Learn more about the AppSSO package:

tanzu package available get sso.apps.tanzu.vmware.com --namespace tap-install

2. Install the AppSSO package:

tanzu package install appsso \

 --namespace tap-install \

 --package-name sso.apps.tanzu.vmware.com \

 --version 1.0.0

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 20

https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-intro.html

3. Confirm the package has reconciled successfully:

tanzu package installed get appsso --namespace tap-install

Uninstalling AppSSO from TAP

Uninstall the AppSSO package and repository following resource naming introduced in the
Installation section:

Delete the Package

tanzu package installed delete appsso \

 --yes --namespace tap-install

Delete the PackageRepository

tanzu package repository delete appsso-package-repository \

 --yes --namespace tap-install

Delete the TanzuNet credentials secret

tanzu secret registry delete appsso-registry --yes

RBAC
The AppSSO package aggregates the following permissions into TAP’s well-known roles:

app-operator

- apiGroups:

 - sso.apps.tanzu.vmware.com

resources:

 - clientregistrations

verbs:

 - "*"

app-viewer

- apiGroups:

 - sso.apps.tanzu.vmware.com

resources:

 - clientregistrations

verbs:

 - get

 - list

 - watch

For the purpose of managing the life cycle of AppSSO CRDs the AppSSO operator’s
ServiceAccount has a ClusterRole with the following permissions:

- apiGroups:

 - sso.apps.tanzu.vmware.com

 resources:

 - authservers

 verbs:

 - get

 - list

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 21

 - watch

- apiGroups:

 - sso.apps.tanzu.vmware.com

 resources:

 - authservers/status

 verbs:

 - patch

 - update

- apiGroups:

 - sso.apps.tanzu.vmware.com

 resources:

 - clientregistrations

 verbs:

 - get

 - list

 - watch

- apiGroups:

 - sso.apps.tanzu.vmware.com

 resources:

 - clientregistrations/status

 verbs:

 - patch

 - update

- apiGroups:

 - ""

 resources:

 - secrets

 - configmaps

 - services

 - serviceaccounts

 verbs:

 - "*"

- apiGroups:

 - apps

 resources:

 - deployments

 verbs:

 - "*"

- apiGroups:

 - rbac.authorization.k8s.io

 resources:

 - roles

 - rolebindings

 verbs:

 - "*"

- apiGroups:

 - cert-manager.io

 resources:

 - certificates

 - issuers

 verbs:

 - "*"

- apiGroups:

 - ""

 resources:

 - events

 verbs:

 - create

 - update

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 22

 - patch

- apiGroups:

 - coordination.k8s.io

 resources:

 - leases

 verbs:

 - create

 - get

 - update

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 23

AppSSO for Service Operators

AuthServer represents the request for an OIDC authorization server. It results in the deployment of
an authorization server backed by Redis over mTLS.

You can configure the labels with which clients can select an AuthServer, the namespaces it allows
clients from, its issuer URI, its token signature keys, identity providers and further details for its
deployment.

For the full available configuration, spec and status see the API reference.

The following sections outline the essential steps to configure a fully operational authorization
server.

Annotations & Labels

Issuer URI

Token signature

Identity providers

Readiness

Scale

Troubleshooting

Known limitation

Annotation & labels

An AuthServer is selectable by ClientRegistration through labels. The namespace an AuthServer
allows ClientRegistrations from is controlled with an annotation.

Labels

ClientRegistrations select an AuthServer with spec.authServerSelector. Therefore, an
AuthServer must have a set of labels that uniquely identifies it amongst all AuthServer. Clients won’t
be able to register if they match no or too many AuthServer.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 labels:

 env: dev

 ldap: True

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 24

 saml: True

...

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 labels:

 env: prod

 saml: True

...

Allowing client namespaces

AuthServer controls which namespace it allows ClientRegistrations with the annotation:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 annotations:

 sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

To allow ClientRegistrations from all or a restricted set of Namespaces this annotation must be
set. Its value is a comma-separated list of allowed Namespaces, e.g. "app-team-red,app-team-
green", or "*" if it should allow clients from all namespaces.

⚠ If the annotation is missing, no clients are allowed.

Unsafe configuration

AuthServer is designed to enforce secure and production-ready configuration. However,
sometimes it is necessary to opt-out of those constraints, e.g. when deploying AuthServer on an
iterate cluster.

 WARNING: Allowing unsafe is not recommended for production!

Unsafe identity provider

It’s not possible to use an InternalUnsafe identity provider, unless it’s explicitly allowed by
including the annotation sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider like so:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 annotations:

 sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

 identityProviders:

 - name: static-users

 internalUnsafe:

 # ...

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 25

If the annotation is not present and an InternalUnsafe identity provider is configured the
AuthServer will not apply.

Unsafe issuer URI

It’s not possible to use a plain HTTP issuer URI, unless it’s explicitly allowed by including the
annotation sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri like so:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 annotations:

 sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

spec:

 issuerURI: http://this.is.unsafe

If the annotation is not present and a plain HTTP issuer URI configured the AuthServer will not
apply.

Issuer URI
Before you can apply an AuthServer you need an issuer URI. This issuer URI is the entry point for its
clients and their end-users. It needs to be reachable by clients, end-users and the AppSSO
operator. Therefore, we need to configure a Service and a form of ingress for the AuthServer to
receive traffic.

It is essential to configure Ingress with HTTPS. An authorization server is a critical piece of your
security. Using plain HTTP is discouraged. Refer to External access with TLS section for more
details on securing traffic.

 This section benefits from your input. Please, share feedback in our Slack channel #app-sso.

Configure a Service for AuthServer
⚠ If you are deploying your Service with kapp make sure to set the annotation
kapp.k14s.io/disable-default-label-scoping-rules: "" to avoid that kapp amends
Service.spec.selector.

To create a Service for an AuthServer it must select the authorization server’s Deployment and
configure ports as follows:

apiVersion: v1

kind: Service

metadata:

 name: my-authserver # please, edit

 namespace: authservers # please, edit

 annotations:

 kapp.k14s.io/disable-default-label-scoping-rules: ""

spec:

 type: NodePort

 selector:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 26

https://vmware.slack.com/archives/C0244261R6V
https://carvel.dev/kapp/docs/latest/

 app.kubernetes.io/part-of: my-authserver # replace this with your AuthServer's nam

e

 app.kubernetes.io/component: authorization-server

 ports:

 - port: 80

 targetPort: 8080

Once you have configured ingress with HTTPS for this Service you should have an issuer URI you
can use for your Authserver:

spec:

 issuerURI: https://my-authserver.my-domain

Note: This issuerURI that you add to the Authserver config must be the same as Service’s Ingress
or LoadBalancer you configured.

If everything goes well, the IssuerURIReady condition in AuthServer.status.conditions will have
status: "True". If not, it will tell you why.

If you need to configure a plain HTTP issuer URI, see unsafe configuration

Enabling external access with TLS

This section will step you through the process of enabling TLS on your authorization server using
LetsEncrypt.

 The following guide should be used as an example of an approach you can take, and not
necessarily the only approach that may be feasible.

 The following guide has been verified using Amazon Elastic Kubernetes Service(EKS) and Google
Kubernetes Engine (GKE).

Prerequisites

You must have already created a Service resource for your authorization server.

This guide will be based on the following example prerequisite values (your values will differ):

TAP values contains the following fields:

shared.ingress_domain: example.com

contour.envoy.service.type: LoadBalancer

AuthServer custom resource contains the following:

.metadata.name: my-auth-server

.metadata.namespace: authservers

.spec.issuerUri: https://login.example.com <- this is the URL desired for this auth
server

Guide

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 27

Create a ClusterIssuer resource. This will be the Certificate issuer authority; in this case, the issuer
will be LetsEncrypt ‘staging’.

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: appsso-letsencrypt-staging

spec:

 acme:

 email: <SERVICE-OPERATOR-EMAIL-ADDRESS> # please, edit

 privateKeySecretRef:

 name: appsso-letsencrypt-staging # This will be auto-generated for you when

this resource is created

 server: https://acme-staging-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

Create a Certificate resource. This will be the TLS certificate that will be attached to the
authorization server subdomain.

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: appsso-my-authserver

 namespace: authservers

spec:

 commonName: login.example.com # Please, edit; this should be your Issuer URI, wit

hout https prefix

 dnsNames:

 - login.example.com # This should be your Issuer URI, without https pref

ix

 issuerRef:

 name: appsso-letsencrypt-staging # This is the name of the ClusterIssuer from abov

e

 kind: ClusterIssuer

 secretName: appsso-my-authserver # This secret will be created by this Certificat

e, just give it a good name

Wait for the Certificate to be issued:

kubectl get certificate appsso-my-authserver --namespace authservers -o wide --watch

It should eventually look like:

NAME READY SECRET ISSUER STA

TUS AGE

appsso-my-authserver True appsso-my-authserver appsso-letsencrypt-staging Cer

tificate is up to date and has not expired 45s

Create an HTTPProxy resource. This resource will map the Issuer URI subdomain to the
authorization server Service and apply a TLS certificate.

apiVersion: projectcontour.io/v1

kind: HTTPProxy

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 28

metadata:

 name: appsso-my-authserver

 namespace: authservers

spec:

 virtualhost:

 fqdn: login.example.com # This should be your Issuer URI, without https

prefix

 tls:

 secretName: appsso-my-authserver # This is the Secret that was created by the

Certificate

 routes:

 - conditions:

 - prefix: /

 services:

 - name: my-authserver # please, edit; this is the name of the Service from abo

ve

 port: 80

Wait until Status becomes valid:

kubectl get httpproxy appsso-my-authserver --namespace authservers --watch

Once reconciled, the authorization server should be available at: https://login.example.com

⚠ LetsEncrypt staging does not provide a trusted level certificate verification and so your browser
will not trust the certificate, however you may still continue using the authorization server for
testing purposes.

 Use LetsEncrypt production issuer to certify trusted certificates; be aware of API rate limits. To
use LetsEncrypt production, change the field .spec.acme.server to https://acme-
v02.api.letsencrypt.org/directory in your ClusterIssuer

Perform a readiness check, by querying the OpenID Connect discovery endpoint:

curl --insecure https://login.example.com/.well-known/openid-configuration

You should receive a 200 OK JSON response with authorization server information.

Further reading

This guide relies on the following sources:

Deploying HTTPS services with Contour and cert-manager

httpproxy Documentation

Identity providers
An AuthServer does not manage users internally. Instead, users log in through external identity
providers (IdPs). Currently, AuthServer supports OpenID Connect providers, as well a list of “static”
hard-coded users for development purposes. AuthServer also has limited, experimental support for
LDAP and SAML providers.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 29

https://letsencrypt.org/docs/rate-limits/
https://projectcontour.io/guides/cert-manager/
https://projectcontour.io/docs/v1.6.1/httpproxy/

Identity providers are configured under spec.identityProviders, learn more from the API
reference.

⚠ Changes to spec.identityProviders take some time to be effective as the operator will roll out a
new deployment of the authorization server.

End-users will be able to log in with these providers when they go to {spec.issuerURI} in their
browser.

Learn how to configure identity providers for an AuthServer:

OpenID Connect providers

LDAP (experimental)

SAML (experimental)

Internal, static user

Restrictions

OpenID Connect providers
To set up an OpenID Connect provider, provide the following information for your AuthServer:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

...

spec:

 identityProviders:

 - name: my-oidc-provider

 openID:

 # REQUIRED

 # The issuer identifier. If the provider supports OpenID Connect Discovery,

 # this value will be used to auto-configure the provider, by obtaining informa

tion

 # at https://issuer-uri/.well-known/openid-configuration

 issuerURI: https://openid.example.com

 # Obtained when registering a client with the provider, often through a web UI

 clientID: my-client-abcdef

 # Obtained when registering a client with the provider, often through a web UI

 clientSecretRef:

 name: my-openid-client-secret

 # The URI for performing an authorization request and obtaining an authorizati

on_code

 authorizationUri: https://example.com/oauth2/authorize

 # The URI for performing a token request, and obtaining a token

 tokenUri: https://example.com/oauth2/token

 # The JWKS endpoint for obtaining the JSON Web Keys, used to verify token sign

atures

 jwksUri: https://example.com/oauth2/jwks

 # Scopes used in the authorization request

 # MUST contain "openid". Other common OpenID values are "profile", "email".

 scopes:

 - "openid"

 - "other-scope"

 # OPTIONAL

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 30

 claimMappings:

 # The "my-oidc-provider-groups" claim from the ID token issued by "my-oidc-p

rovider"

 # will be mapped into the "roles" claim in tokens issued by AppSSO

 roles: my-oidc-provider-groups

 # ...

apiVersion: v1

kind: Secret

metadata:

 name: my-openid-client-secret

 # ...

stringData:

 clientSecret: very-secr3t

It is essential that openID.clientSecretRef is a Secret with the entry clientSecret.

You can define as many OpenID providers as you like.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and select my-oidc-
provider.

Note for registering a client with the identity provider

The AuthServer will set up redirect URIs based on the provider name in the configuration. For
example, for a provider with name: my-provider, the redirect URI will be
{spec.issuerURI}/login/oauth2/code/my-provider. The externally accessible user URI for the
AuthServer, including scheme and port is spec.issuerURI. If the AuthServer is accessible on
https://appsso.company.example.com:1234/, the redirect URI registered with the identity provider
should be https://appsso.company.example.com:1234/login/oauth2/code/my-provider.

LDAP (experimental)

WARNING: Support for LDAP providers is considered “experimental”.

At most one ldap identity provider can be configured.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

...

spec:

 identityProviders:

 - name: ldap

 ldap:

 server:

 scheme: ldap

 host: my-ldap.com

 port: 389

 base: ""

 bind:

 dn: uid=binduser,ou=Users,o=5d03d6ac6eed091436a8d664,dc=jumpcloud,dc=com

 passwordRef:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 31

 name: ldap-password

 user:

 searchFilter: uid={0}

 searchBase: ou=Users,o=5d03d6ac6eed091436a8d664,dc=jumpcloud,dc=com

 group:

 searchFilter: member={0}

 searchBase: ou=Users,o=5d03d6ac6eed091436a8d664,dc=jumpcloud,dc=com

 searchSubTree: true

 searchDepth: 10

 roleAttribute: cn

 # ...

apiVersion: v1

kind: Secret

metadata:

 name: ldap-password

 namespace: default

stringData:

 password: very-z3cret

It is essential that ldap.bind.passwordRef is a Secret with the entry password.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and select my-oidc-
provider.

SAML (experimental)

WARNING: Support for SAML providers is considered “experimental”.

For SAML providers only autoconfiguration through metadataURI is supported.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

...

spec:

 - name: my-saml-provider

 saml:

 metadataURI: https://saml.example.com/sso/saml/metadata # required

 claimMappings: # optional

 # Map SAML attributes into claims in id_tokens issued by AppSSO. The key

 # on the left represents the claim, the value on the right the attribute.

 # For example:

 # The "saml-groups" attribute from the assertion issued by "my-saml-provider"

 # will be mapped into the "roles" claim in id_tokens issued by AppSSO

 roles: saml-groups

 givenName: FirstName

 familyName: LastName

 emailAddress: email

Note for registering a client with the identity provider

The AuthServer will set up SSO and metadata URLs based on the provider name in the
configuration. For example, for a SAML provider with name: my-provider, the SSO URL will be
{spec.issuerURI}/login/saml2/sso/my-provider. The metadata URL will be

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 32

{spec.issuerURI}/saml2/service-provider-metadata/my-provider. spec.issuerURI is the
externally accessible issuer URI for an AuthServer, including scheme and port. If the AuthServer is
accessible on https://appsso.company.example.com:1234/, the SSO URL registered with the
identity provider should be https://appsso.company.example.com:1234/login/saml2/sso/my-
provider.

Internal users

 WARNING: InternalUnsafe considered unsafe, and not recommended for production!

During development, static users may be useful for testing purposes. At most one internalUnsafe
identity provider can be configured.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 annotations:

 sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

 # ...

spec:

 identityProviders:

 - name: test-users

 internalUnsafe:

 users:

 - username: ernie

 password: "$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8jWK" #

bcrypt-hashed "password"

 roles:

 - "silly"

 - username: bert

 password: "$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8jWK" #

bcrypt-hashed "password"

 roles:

 - "grumpy"

 # ...

InternalUnsafe needs to be explicitly allowed by setting the annotation
sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: "".

It is important that password is bcrypt-hashed (see below).

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and logging in as
ernie/password.

Generating a bcrypt hash from a plain-text password

There are multiple options for generating bcrypt hashes:

1. Use an online bcrypt generator

2. On Unix platforms, use htpasswd. Note, you may need to install it, for example on Ubuntu
by running apt install apache2-utils

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 33

https://bcrypt-generator.com/

htpasswd -bnBC 12 "" your-password-here | tr -d ':\n'

Restrictions

Each identity provider has a declared name. The following conditions apply:

the names must be unique

the names must not be blank

the names must follow Kubernetes’ DNS Subdomain Names guidelines

contain no more than 253 characters

contain only lowercase alphanumeric characters, ‘-’ or ‘.’

start with an alphanumeric character

end with an alphanumeric character

the names may not start with client or unknown

There can be at most one of each internalUnsafe and ldap.

Token signature

An AuthServer must have token signature keys configured to be able to mint tokens.

Learn about token signatures and how to manage keys of an AuthServer:

Token signature 101

Token signature in AppSSO

Creating keys

Rotating keys

Revoking keys

“Token signature key” or just “key” is AppSSO’s wording for a public/private key pair that is tasked
with signing and verifying JSON Web Tokens (JWTs). For more information, please refer to the
following resources:

JSON Web Token (JWT) spec

JSON Web Signature (JWS) spec

Token signature 101

Token signature keys are used by an AuthServer to sign JSON Web Tokens (JWTs) - producing a
JWS Signature and attaching it to the JOSE Header of a JWT. The client application later is able to
verify the JWT signature. A private key is used to sign a JWT, and a public key is used to verify the
signature of a signed JWT.

The sign-and-verify mechanism serves multiple security purposes:

Authenticity: signature verification ensures that the issuer of the JWT is from a source that
is advertised.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 34

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-subdomain-names
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/rfc/rfc7515.txt
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7515#section-4

Integrity: signature verification ensures that the JWT has not been altered in transit or
during its issued lifetime. Integrity is a foundational pillar of the CIA triad concept in
Information Security.

Non-repudiation: signature verification ensures that the authorization server that signed
the JWT cannot deny that they have signed it after its issuance (granted that the signing
key that signed the JWT is available).

Token signature of an AuthServer

An AuthServer receives its keys under spec.tokenSignature, e.g.:

spec:

 tokenSignature:

 signAndVerifyKeyRef:

 name: sample-token-signing-key

 extraVerifyKeyRefs:

 - name: sample-token-verification-key-1

 - name: sample-token-verification-key-2

There can only be one token signing key spec.tokenSignature.signAngVerifyKeyRef at any given
time, and arbitrarily many token verification keys spec.tokenSignature.extraVerifyKeyRefs. The
token signing key is used to sign and verify actively issued JWTs in circulation, whereas token
verification keys are used to verify issued JWTs signatures. Token verification keys are thought to
be previous token signing keys but have been rotated into verify only mode as a rotation
mechanism measure, and can potentially be slated for eviction at a predetermined time.

As per OAuth2 spec, AuthServer serves its public keys at {spec.issuerURI}/oauth2/jwks. For
example:

❯ curl -s authserver-sample.default/oauth2/jwks | jq

{

 "keys": [

 {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "sample-token-signing-key",

 "n": "0iCinir7sWKZE_3QXq4eTub_GU-lvdAKFI9dzDlwX7XZwwSERuzzQQ_Fs7i9djMl5bpv2ma_3Z

B-j2W9pR9ZIa3nqBI29AHqx2zmVQ8w-GxPDGRMkBdMOWNwyDQGIRlQnJFpXRoSQ5_viM9gYA56WthkDghrupGU

iB_zqGFYlgnz7sd4lC-thgEkDi9vY68DLIFdsXOQIXFqakyEIo43n_0vg6JRGQW1LU_32Ok6OgA3r6bYcE8VQh

JW3sE1qOSFcP0JrPA3YgmTNuDV6GoCLZeMxDdMDKdDcH5UgERLQe1qMMKwlMCeKamOWgo9eBvcFnWNR0I_MJV6

F14U1WbIcQ"

 },

 {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "sample-token-verification-key-1",

 "n": "wc7uOACU62Yu_zKT9YrI4v-_X3L47nbVlcByi4UTVhg8o001OkiYAPAEoDCEHnDg_54gTWxe3h

DRcOJrd72PkTAaxH8aFdikoyakRVG9NvAPbcfzvI8R8plepUbs1U7TPPDEDARm_fZX6QdVyz0CTSafrz-yktTA

DxJhYPgvFLeHq7g7RouB1szTWDCM1haoxKa4960_x9meghNn87z0uF3cAd7TM_k3capYnxNOUT5g1vjJ05Vk14

JUl4R294OpMXPCGcFuvu9auXeBqXyKxxTAnLkDdNrgtT0FJHwnh4RGnrNqjYZOwlRvGbzwQ7du97aU2-qgbKkJ

rWYZWcw2bQ"

 },

 {

 "kty": "RSA",

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 35

https://www.nccoe.nist.gov/publication/1800-25/VolA/index.html

 "e": "AQAB",

 "kid": "sample-token-verification-key-2",

 "n": "qELrLiaD-IVp_nthVn2EsLuShtU9ovyVIPkLVf47AqKogPV2frE_6Sv8k7Zim-SgDXfjLEg-UG

lQrb4KFm_WkaK2Uf6PCapiBnMi1Q5P8qC0WC5LT6XyPY1exCQbMrEsyd89oS0sKxgoc3Qv0XV24jGYiWQyJ7I0

Rub_QEldGM_dSlfbI-1Qt_U6Ll22OEc1D6P1A3MdDrgbur6N7ZemxlKI26-OAdlbNi0u-lFNj3Ss-pfTVi_fD2

hAajRRmc4tmHejQjH36M4F1NSW_gTbb6VX5EerVuDwSCCK0EuGvhcb1hg6kYEoO-qws54AQ0PywBXT5qksCMBm

mzjP6qO4Ow"

 }

]

}

⚠ Changes to spec.tokenSignature.signAngVerifyKeyRef have immediate effect.

As a service operator, you have control over which keys are used for certain purposes. Navigate to
the next few sections for more information.

Creating keys

You can deploy an AuthServer without spec.tokenSignature but it won’t be able to mint tokens.
Therefore, keys must be configured to make it fully operational. The following describe how to
create and apply a keys for an AuthServer.

An RSA key can be created multiple ways. Below are two recommended approaches – choose
one.

Using secretgen-controller

NOTE: This section assumes you have TAP running in your cluster, with secretgen-controller
installed.

An RSAKey CR allows for expedited creation of a Secret resource containing PEM-encoded public
and private keys required by an AuthServer.

1. Create an AuthServer with RSAKeys as follows:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

 signAndVerifyKeyRef:

 name: my-token-signing-key

 extraVerifyKeyRefs:

 - name: my-token-verification-key

 # ...

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: my-token-signing-key

 namespace: default

spec:

 secretTemplate:

 type: Opaque

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 36

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/rsa_key.md

 stringData:

 key.pem: $(privateKey)

 pub.pem: $(publicKey)

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: my-token-verification-key

 namespace: default

spec:

 secretTemplate:

 type: Opaque

 stringData:

 key.pem: $(privateKey)

 pub.pem: $(publicKey)

2. Observe the creation of an underlying Secrets. The name of the each Secret is the same as
the RSAKey names:

Verify Secret exists

kubectl get secret my-token-signing-key

View the base64-encoded keys

kubectl get secret my-token-signing-key -o jsonpath='{.data}'

You should be able to see two fields within the Secret resource: key.pem (private key) and
pub.pem (public key).

3. Verify that the AuthServer serves its keys

curl -s authserver-sample.default/oauth2/jwks | jq

If you encounter any issues with this approach, be sure to check out Carvel Secretgen Controller
documentation

Using OpenSSL

You can generate an RSA key yourself using OpenSSL. Here are the steps:

1. Generate a PEM-encoded RSA key pair

This guide references the freely published OpenSSL Cookbook and the approaches
mentioned therein around generating a public and private key pair.

Generate an 4096-bit RSA key

openssl genpkey -out privatekey.pem -algorithm RSA -pkeyopt rsa_keygen_bits:409

6

-> privatekey.pem

The resulting private key output is in the PKCS#8 format

Next, extract the public key

openssl pkey -in privatekey.pem -pubout -out publickey.pem

-> publickey.pem

The resulting public key output is in the PKCS#8 format

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 37

https://github.com/vmware-tanzu/carvel-secretgen-controller
https://www.feistyduck.com/library/openssl-cookbook/online/ch-openssl.html#openssl-key-generation

To view details of the private key

openssl pkey -in privatekey.pem -text -noout

More OpenSSL key generation examples here.

2. Create a Secret resource in sso4k8s namespace using key generated from previous step:

Base64 encode the key files

cat privatekey.pem | base64 > privatekey-base64.pem

cat publickey.pem | base64 > publickey-base64.pem

Create Secret resource

kubectl create secret generic my-key \

--from-file=key.pem=privatekey-base64.pem \

--from-file=pub.pem=publickey-base64.pem \

--namespace sso4k8s

3. Apply your AuthServer:

 apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

 kind: AuthServer

 metadata:

 name: authserver-sample

 namespace: default

 spec:

 tokenSignature:

 signAndVerifyKeyRef:

 name: my-key

 # ...

4. Verify that the AuthServer serves its keys

curl -s authserver-sample.default/oauth2/jwks | jq

Rotating keys

This section describes how to “rotate” token signature keys for an AuthServer.

The action of “rotating” means moving the active token signing key into the set of token
verification keys, generating a new cryptographic key, and assigning it to be the designated token
signing key.

Assuming that you have an AuthServer with token signature keys configured, rotate keys as
follows:

1. Generate a new token signing key first. See creating keys. Verify that the new Secret exists
before proceeding to the next step.

2. Edit AuthServer.spec.tokenSignature, append the existing
spec.tokenSignature.signAndVerifyKeyRef to spec.tokenSignature.extraVerifyKeys and
set your new key as spec.tokenSignature.signAndVerifyKeyRef.

For example:

Before

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 38

https://www.openssl.org/docs/man1.1.1/man1/openssl-genpkey.html

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

 signAndVerifyKeyRef:

 name: old-key

 extraVerifyKeys: []

 # ...

After

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

 signAndVerifyKeyRef:

 name: new-key

 extraVerifyKeys:

 - name: old-key

 # ...

Once you apply your changes, key rotation is effective immediately.

Moving the active token signing key to be a token verification key is an optional step – check out
the Revoking keys section for more.

Revoking keys

This section describes how to “revoke” token signature keys for an AuthServer.

The action of “revoking” a key means to entirely remove the key from circulation by an AuthServer,
whether it be a token signing key or a token verification key. This action might be needed if your
organization requires a complete key refresh where older keys are never retained. Another
scenario might be in the case of an emergency in which a key or a session has been compromised
and a complete revocation is warranted.

To revoke an existing key or keys, you may remove any references to the keys in the
spec.tokenSignature resource. By removing the reference to the key, the system shall no longer
acknowledge that the key is used for signing or verifying JWTs.

For example, if you have a token signing key and a few verification keys:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 39

 signAndVerifyKeyRef:

 name: key-3

 extraVerifyKeys:

 - name: key-2

 - name: key-1

 # ...

To revoke an existing verification key, remove it from the extraVerifyKeys list. In the example
above, you can remove “key-2” and “key-1” from the list; JWTs signed with those keys will no
longer be verifiable.

To revoke an existing token signing key, remove it from signAndVerifyKeyRef field. However, if you
remove an existing token signing key without a replacement key, the AuthServer will not be able to
issue access tokens until a valid token signing key is provided. In the example above, “key-3” would
be removed; the system will not be able to sign or verify JWTs.

References and further reading

JSON Web Token (JWT) - rfc7519 (ietf.org)

JSON Web Signature (JWS) - rfc7515 (ietf.org)

Readiness

Generally, AuthServer.status is a reliable source to judge an AuthServer’s readiness.

However, you are encouraged to verify your AuthServer with the following checks:

[] Ensure that there is at least one token signing key configured

curl -X GET {spec.issuerURI}/oauth2/jwks

The response body should yield at least one key in the list. If there are no keys, please apply
a token signing key

[] Ensure that OpenID discovery endpoint is available

curl -X GET {spec.issuerURI}/.well-known/openid-configuration

The response body should yield a valid JSON body containing information about the
AuthServer.

Client registration check
It is helpful to verify an AuthServer by executing a test run with a test ClientRegistration. This
check also ensures that app developers will also be able to register clients with the AuthServer
successfully.

Follow the steps below to ensure that your installation can:

1. Add a test client.

2. Get an access token.

3. Invalidate/remove the test client.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 40

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515

Prerequisites

Ensure that you have successfully applied a token signing key to your AuthServer before
proceeding.

Define and apply a test client

Apply a ClientRegistration to your cluster in a Namespace that the AuthServer should allow
clients from:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: test-client

 namespace: default

spec:

 authServerSelector:

 matchLabels:

 # appropriate labels for your `AuthServer`

 authorizationGrantTypes:

 - client_credentials

 clientAuthenticationMethod: basic

Check out the ClientRegistration API reference for more field definitions.

This defines a test ClientRegistration with the client_credentials OAuth grant type.

Apply the ClientRegistration:

kubectl apply -f appsso-test-client.yaml

Once the ClientRegistration is applied, inspects its status and verify it’s ready.

Get an access token

You should be able to get a token with the client credentials grant for example:

Get client id (`base64` command has to be available on the command line)

export APPSSO_TEST_CLIENT_ID=$(kubectl get secret test-client -n default -o jsonpath="

{.data['client-id']}" | base64 --decode)

Get client secret (`base64` command has to be available on the command line)

export APPSSO_TEST_CLIENT_SECRET=$(kubectl get secret test-client -n default -o jsonpa

th="{.data['client-secret']}" | base64 --decode)

Attempt to fetch access token

curl \

 --request POST \

 --location "{spec.issuerURI}/oauth2/token" \

 --header "Content-Type: application/x-www-form-urlencoded" \

 --header "Accept: application/json" \

 --data "grant_type=client_credentials" \

 --basic \

 --user $APPSSO_TEST_CLIENT_ID:$APPSSO_TEST_CLIENT_SECRET

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 41

You should see a response JSON containing populated field access_token. If so, the system is
working as expected, and client registration check is successful.

Make sure to delete the test ClientRegistration once you are done.

Scale

The number of authorization server replicas for an AuthServer can be specified under
spec.replicas.

Furthermore, AuthServer implements the scale subresource. That means you can scale it scale an
AuthServer with existing tooling. For example:

kubectl scale authserver authserver-sample --replicas=3

The resource of the authorization server and Redis Deployments can be configured under
spec.resources and spec.redisResources respectively. See the API reference for details.

Authorization server audit logs

AppSSO AuthServers do the following:

Handle user authentication

Issue id_token and access_token

Each audit event contains the following:

ts - date/time of the event

remoteIpAddress - the IP of the user-authentication or if not attainable, the IP of the last
proxy

Authentication

AuthServer produce the following authentication events:

AUTHENTICATION_SUCCESS

Trigger successful authentication

Data recorded Username, Provider ID, Provider Type (INTERNAL, OPENID, …)

AUTHENTICATION_LOGOUT

Trigger successful logout

Data recorded Username, Provider ID, Provider Type (INTERNAL, OPENID, …)

AUTHENTICATION_FAILURE

Trigger failed authentication using either internalUnsafe or ldap identity provider

Data recorded Username, Provider ID, Provider Type (INTERNAL or LDAP)

INVALID_UPSTREAM_PROVIDER_CONFIGURATION

Trigger some cases of failed authentication with an openId or saml identity provider

Data recorded Provider ID, Provider Type, error

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 42

Note usually followed by a human-readable help message, with "logger":
"appsso.help"

Token flows

AuthServer produce the following authorization_code and token events:

AUTHORIZATION_CODE_ISSUED

Trigger authorization_code grant type, successful call to /oauth2/authorize

Data recorded Username, Provider ID, Provider Type, Client ID, Scopes requested,
Redirect URI

AUTHORIZATION_CODE_REQUEST_REJECTED

Trigger authorization_code grant type, unsuccessful call to /oauth2/authorize, for
example invalid Client ID, invalid Redirect URI, …

Data recorded Error, Error Code (ex: invalid_scope), Client ID, Scopes requested
Redirect URI, Username (may be anonymousUser), Provider ID and Provider Type if
available

TOKEN_ISSUED

Trigger successful call to /oauth2/token

Data recorded Scopes, Client ID, Grant Type (authorization_code or
client_credentials), Username

TOKEN_REQUEST_REJECTED

Trigger unsuccessful call to /oauth2/token, for example invalid Client Secret

Data recorded Client ID, Scopes requested, Error

Troubleshooting

Why is my AuthServer not working?
Generally, AuthServer.status is designed to provide you with helpful feedback to debug a faulty
AuthServer.

Find all AuthServer-related Kubernetes resources
All AuthServer components can be identified with Kubernetes common labels , e.g.:

app.kubernetes.io/part-of: my-authserver

Logs of all AuthServers

With stern you can tail the logs of all AppSSO managed Pods inside your cluster with:

stern --all-namespaces --selector=app.kubernetes.io/managed-by=sso.apps.tanzu.vmware.c

om

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 43

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/#labels
https://github.com/stern/stern

Change propagation

When applying changes to an AuthServer, keep in mind that changes to issuer URI, IDP, server and
logging configuration take a moment to be effective as the operator will roll out the authorization
server Deployment.

My Service is not selecting the authorization server’s
Deployment

If you are deploying your Service with kapp make sure to set the annotation
kapp.k14s.io/disable-default-label-scoping-rules: "" to avoid that kapp amends
Service.spec.selector.

Redirect URIs are redirecting to http instead of https with a
non-internal identity provider
Follow this workaround, adding IP ranges for the AuthServer to trust.

Known Limitations
As of 1.0.0, the following are known product limitations to be aware of.

Limited number of ClientRegistrations per AuthServer

The number of ClientRegistration for an AuthServer is limited at ~2,000. This is a soft limitation,
and if you are attempting to apply more ClientRegistration resources than the limit, we cannot
guarantee those clients applied past the limit to be in working order. This is subject to change in
future product versions.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 44

https://carvel.dev/kapp/docs/latest/

AppSSO for App Operators

To secure a Workload with AppSSO you need a ClientRegistration with these ingredients:

A unique label selector for the AuthServer you want to register a client for

Remaining configuration of your OAuth2 client

Talk to your Service Operator to learn which AuthServers they are running and which labels you
should use. Once you have those labels, you can create a ClientRegistration as follows:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: my-client

 namespace: my-team

spec:

 authServerSelector:

 matchLabels: # for example

 env: staging

 ldap: True

 team: my-team

Continue with learning how to customize your ClientRegistration by securing a Workload with
SSO.

Learn more about grant types.

Register an app with AppSSO

Topics

Client registration

Workloads

Client registration

Applications/Clients must register with AppSSO to allow users to sign in with single sign on within a
Kubernetes cluster. This registration will result in the creation of a Kubernetes secret

To do this, apply a ClientRegistration to the appropriate Kubernetes cluster.

To confirm that the ClientRegistration was successfully processed, check the status:

kubectl describe clientregistrations.sso.apps.tanzu.vmware.com <client-name>

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 45

It is also possible, but not recommended, to register clients statically while deploying AppSSO.

Note: It is recommended to register clients dynamically after AppSSO has been deployed. When
registering a client statically, properties cannot be changed without triggering a rollout of AppSSO
itself.

Grant Types

Workloads
This guide will walk you through steps necessary to secure your deployed Workload with AppSSO.

Prerequisites

Before attempting to integrate your workload with AppSSO, please ensure that the following items
are addressed:

Tanzu Application Platform (TAP) v1.2.0 or above is available on your cluster.

Tanzu CLI v0.11.6 or above is available on your command line.

AppSSO package v1.0.0 or above is available on your cluster.

Configuring a Workload with AppSSO

AppSSO and your Workload need to establish a bidirectional relationship: AppSSO is aware of your
Workload and your Workload is aware of AppSSO. How does that work?

To make AppSSO aware of your Workload (i.e. that AppSSO should be responsible for
authentication and authorization duties), you have to create and apply a ClientRegistration
resource .

To make your Workload aware of AppSSO (i.e. that your application shall now rely on
AppSSO for authentication and authorization requests), you must specify a service resource
claim which produces the necessary credentials for your Workload to consume.

The following sections elaborate on both of the concepts in detail.

Create and apply a ClientRegistration resource

Define a ClientRegistration resource for your Workload. Here is an example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: my-workload-client-registration

 namespace: my-workload-namespace

spec:

 authServerSelector:

 matchLabels:

 # ask your Service Operator for labels to target an `AuthServer`

 authorizationGrantTypes:

 - client_credentials

 - authorization_code

 - refresh_token

 clientAuthenticationMethod: basic

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 46

 requireUserConsent: true

 redirectURIs:

 - "<MY_WORKLOAD_HOSTNAME>/redirect-back-uri"

 scopes:

 - name: openid

Once applied successfully, this resource will create the appropriate credentials for your Workload to
consume. More on this in the next section.

Please refer to the ClientRegistration custom resource documentation page for additional details on
schema and specification of the resource.

Add a service resource claim to your Workload

Once a ClientRegistration resource has been defined, you can now create a service resource claim
by using Tanzu CLI:

tanzu service claim create my-client-claim \

 --namespace my-workload-namespace \

 --resource-api-version sso.apps.tanzu.vmware.com/v1alpha1 \

 --resource-kind ClientRegistration \

 --resource-name my-workload-client-registration \

 --resource-namespace my-workload-namespace

Alternatively, you may create the claim as a ResourceClaim custom resource:

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

 name: my-client-claim

 namespace: my-workload-namespace

spec:

 ref:

 apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

 kind: ClientRegistration

 name: my-workload-client-registration

 namespace: my-workload-namespace

Observe the status of the service resource claim by running tanzu service claim list -n my-
workload-namespace -o wide:

NAMESPACE NAME READY REASON CLAIM REF

my-workload-namespace my-client-claim True services.apps.tanzu.vmware.com/

v1alpha1:ResourceClaim:my-client-claim

The created service resource claim is now referable within a Workload:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 labels:

 apps.tanzu.vmware.com/workload-type: web

 name: my-workload

 namespace: my-workload-namespace

spec:

 source:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 47

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-tanzu-services-plugin.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-service_resource_claims-terminology_and_apis.html#resourceclaim

 git:

 ref:

 branch: main

 url: ssh://git@github.com/my-company/my-workload.git

 serviceClaims:

 - name: my-client

 ref:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

 name: my-client-claim

Alternatively, you can refer to your ClientRegistration when deploying your workload with the
tanzu CLI. Like so

tanzu apps workload create my-workload \

 --service-ref "my-client=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:my-cl

ient-claim" \

 # ...

What this service claim reference binding does under the hood is ensures that your Workload’s Pod
is mounted with a volume containing the necessary credentials required by your application to
become aware of AppSSO. Learn more about Service Bindings.

The credentials provided by the service claim are:

Client ID - the identifier of your Workload that AppSSO is registered with. This is a unique
identifier.

Client Secret - secret string value used by AppSSO to verify your client during its
interactions. Keep this value secret.

Issuer URI - web address of AppSSO, and the primary location that your Workload will go
to when interacting with AppSSO.

Authorization Grant Types - list of desired OAuth 2 grant types that your wants to
support.

Client Authentication Method - method in which the client application requests an identity
or access token

Scopes - list of desired scopes that your application’s users will have access to.

The above credentials are mounted onto your Workload’s Pod(s) as individual files at the following
locations:

/bindings

 /<name-of-service-claim>

 /client-id

 /client-secret

 /issuer-uri

 /authorization-grant-types

 /client-authentication-method

 /scope

Taking our example from above, the location of credentials can be found at:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 48

https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-service-bindings-about.html

/bindings/my-client/{client-id,client-secret,issuer-uri,authorization-grant-types,clie

nt-authentication-method,scope}

Given these auto-generated values, your Workload is now able to load them at runtime and bind to
AppSSO at start-up time. Reading the values from the file system is left to the implementor as to
the approach taken.

Grant types

These are the grant types/flows for apps to get an access token on behalf of a user. If not included,
the default will be ['client_credentials']. They take effect by being included in the
authorizationGrantTypes property list in the Client Registration.

To register a client/application, apply the yaml with your specifications to your cluster kubectl
apply -f <path-to-your-yaml>.

Topics

Client Credentials Grant

Authorization Code Grant

Client Credentials Grant Type

This grant type allows an application to get an access token for resources about the client itself,
rather than a user.

Dynamic Client Registration (via ClientRegistration custom resource):

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: <your client name>

spec:

 authorizationGrantTypes:

 - client_credentials

 # ...

Ensure that you are able to retrieve a token through your setup

1. Apply your ClientRegistration

kubectl apply -f <path-to-the-clientregistration-yaml>

2. Verify your ClientRegistration was created

kubectl get clientregistrations

–> you should see a ClientRegistration with the name you provided

3. Verify your Secret was created

kubectl get secrets

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 49

–> you should see a Secret with that same name you provided for the ClientRegistration

4. Get the client secret and decode it

kubectl get secret <your-client-registration-name> -o jsonpath="{.data.client-s

ecret}" | base64 -d

5. Get the client id (or get it from your configuration)

kubectl get secret <your-client-registration-name> -o jsonpath="{.data.client-i

d}" | base64 -d

6. Request token

curl -X POST <AUTH-DOMAIN>/oauth2/token?grant_type=client_credentials -v -u "YO

UR_CLIENT_ID:DECODED_CLIENT_SECRET"

Authorization Code Grant Type

This grant type allows clients to exchange this code for access tokens.

Dynamic Client Registration (via ClientRegistration custom resource):

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: <your client name>

spec:

 authorizationGrantTypes:

 - authorization_code

 scopes:

 - openid

 # ...

Ensure that you are able to retrieve a token through your setup

Ensure there is an Identity Provider configured

1. Get your authserver’s label name

kubectl get authserver sso4k8s -o jsonpath="{.metadata.labels.name}"

2. Apply this sample ClientRegistration (read more about ClientRegistrations

The following is an example ClientRegistration that will work in this setup. The required
scopes are openid, email, profile, roles. The redirect URI here has been set to match
that of oauth2-proxy.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: oauth2-proxy-client

 namespace: <your-namespace>

spec:

 authServerSelector:

 matchLabels:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 50

 name: <your-authserver-label-name>

 authorizationGrantTypes:

 - client_credentials

 - authorization_code

 requireUserConsent: false

 redirectURIs:

 - http://127.0.0.1:4180/oauth2/callback

 scopes:

 - name: openid

 - name: email

 - name: profile

 - name: roles

kubectl apply -f <path-to-the-clientregistration-yaml>

3. Verify your ClientRegistration was created

kubectl get clientregistrations

–> you should see a ClientRegistration with the name you provided

4. Verify your Secret was created

kubectl get secrets

–> you should see a Secret with that same name you provided for the ClientRegistration

5. Get the client secret and decode it

CLIENT_SECRET=$(kubectl get secret <your-client-registration-name> -o jsonpath

="{.data.client-secret}" | base64 -d)

6. Get the client id (or get it from your configuration)

CLIENT_ID=$(kubectl get secret <your-client-registration-name> -o jsonpath="{.d

ata.client-id}" | base64 -d)

7. Get the issuer uri

ISSUER_URI=$(kubectl get secret <your-client-registration-name> -o jsonpath="{.

data.issuer-uri}" | base64 -d)

8. Use the oauth2-proxy to spin up a quick trial run of the configured Authserver and run it
with docker.

docker run -p 4180:4180 --name oauth2-proxy bitnami/oauth2-proxy:latest \

--oidc-issuer-url "$ISSUER_URI" \

--client-id "$CLIENT_ID" \

--insecure-oidc-skip-issuer-verification true \

--client-secret "$CLIENT_SECRET" \

--cookie-secret "0000000000000000" \

--http-address "http://:4180" \

--provider oidc \

--scope "openid email profile roles" \

--email-domain='*' \

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 51

https://oauth2-proxy.github.io/oauth2-proxy/

--insecure-oidc-allow-unverified-email true \

--upstream "static://202" \

--oidc-groups-claim "roles" \

--oidc-email-claim "sub" \

--redirect-url "http://127.0.0.1:4180/oauth2/callback"

Note: Ensure that your issuer url does not resolve to 127.0.0.1

9. Check your browser at 127.0.0.1:4180 to see if your configuration allows you to sign in.

You should see a message that says “Authenticated”.

Securing your first Workload

This tutorial will walk you through the steps to add an authentication mechanism to a sample Spring
Boot application using AppSSO service, running on Tanzu Application Platform (TAP).

Prerequisites

Before starting the tutorial, please ensure that the following items are addressed:

RECOMMENDED Familiarity with Workloads and AppSSO

Tanzu CLI v0.11.6 or above is available locally.

Tanzu Application Platform (TAP) v1.2.0 or above is available and fully reconciled in your
cluster.

Please ensure that you are using one of the following TAP Profiles

run (deploy-only) deploy the existing application from existing image and
existing GitOps manifest.

iterate Recommended (build,deploy) build application from scratch and
deploy from generated GitOps manifest.

full (build,deploy) ^^.

AppSSO package v1.0.0 or above is available and reconciled successfully on your cluster.

AppSSO has at least one identity provider configured.

Access to AppSSO Starter Java accelerator used in this tutorial.

Getting started

 Skip to step-by-step instructions if you are already familiar with the accelerator used in this
tutorial.

Understanding the sample application

In this tutorial, you will be working with a sample Servlet-based Spring Boot application that uses
Spring Security OAuth2 Client library .

You can find the source code for the application here. To follow along, be sure to Git clone the
repository onto your local environment.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 52

https://github.com/sample-accelerators/appsso-starter-java
https://docs.spring.io/spring-security/reference/servlet/oauth2/client/index.html
https://github.com/sample-accelerators/appsso-starter-java

The application, once launched, has two pages:

a publicly-accessible home page (/home), available to everyone.

a user home page (/authenticated/home), for signed-in users only.

The security configuration for the above is located at
com.vmware.tanzu.apps.sso.sampleworkload.config.WebSecurityConfig.

For more in-depth details about how apps are configured with Spring Security OAuth2 Client
library, be sure to check out the official Spring Boot and OAuth2 tutorial.

By default, there is no application properties file in our sample application and this is by design:
even the simplest application can be deployed with AppSSO, you can even go to start.spring.io and
download a Spring Boot app with Spring Security OAuth2 Client library, and you are good to go!
There is yet another reason for the absence of any properties files: a demonstration of Spring Cloud
Bindings in action, which removes the need for any OAuth related properties. Spring Cloud
Bindings will be introduced later in this tutorial.

The sample application’s ClientRegistration

A critical piece of integration with AppSSO is to create a ClientRegistration custom resource
definition. A ClientRegistration is a way for AppSSO to learn about the sample application. In the
sample application, you can find the definition file named client.yaml, at the root of the source
directory.

The ClientRegistration resource definition contains a few critical pieces in its specification:

authorizationGrantTypes is set to a list of one: authorization_code. Authorization Code
grant type is required for OpenID Connect authentication which we will be using in this
tutorial.

redirectURIs is set to a list of two URIs: a remote URI and a local URI (i.e. 127.0.0.1). The
remote URI will be the full URL to which AppSSO will redirect the user back upon
successful authentication. The local URI is only meant for debugging purposes and can be
ignored unless desired. The suffix of both URIs is important for Spring Security - it adheres
to the default redirect URI template .

scopes is set to a list of one scope, the openid scope. The openid scope is required by
OpenID Connect specification in order to issue identity tokens which designate a user as
‘signed in’.

For more details about ClientRegistration custom resource, see ClientRegistration CRD.

The client.yaml file is using ytt templating conventions. If you have the Tanzu Cluster Essentials
installed, you should already have ytt available on your command line. Later in the tutorial, we will
generate a final output ClientRegistration declaration that will look similar to the below:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: appsso-starter-java

 namespace: workloads

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 53

https://spring.io/guides/tutorials/spring-boot-oauth2/
https://start.spring.io/
https://github.com/spring-cloud/spring-cloud-bindings
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://docs.spring.io/spring-security/reference/servlet/oauth2/login/core.html#oauth2login-sample-redirect-uri
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://carvel.dev/ytt/
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/

spec:

 authServerSelector:

 matchLabels:

 # ask your Service Operator for labels to target an `AuthServer`

 clientAuthenticationMethod: basic

 authorizationGrantTypes:

 - authorization_code

 redirectURIs:

 - http://<app-url>/login/oauth2/code/<claim-name>

 - http://127.0.0.1:8080/login/oauth2/code/appsso-starter-java

 scopes:

 - name: openid

Understanding Workloads

To deploy the sample application onto a TAP cluster, we must first craft it as a Workload resource (
a Cartographer CRD). A Workload resource can be thought of as a manifest for a process you want
to execute on the cluster, and in this context, the type of workload is web - a web application. TAP
clusters provide the capability to apply Workload resources out of the box within the proper profiles,
as described in the prerequisites section.

To deploy a workload, it is best to work in a separate workload-specific namespace. Once created,
there are required TAP configurations that need to be applied before a Workload in a specific
namespace can be deployed properly.

Deploying the sample application as a Workload

To tie it all together and deploy the sample application, the following are the steps involved.

Create workload namespace

Create a workload namespace called workloads:

kubectl create namespace workloads

Apply required TAP workload configurations

Within the workloads namespace, apply TAP required developer namespaces as described.

 Follow along with TAP developer namespace setup example in the Appendix.

Apply the ClientRegistration

Apply the client.yaml definition file (described above)

⚠ Make sure to set auth_server_name field to the name of the AuthServer custom resource.

ytt \

 --file client.yaml \

 --data-value namespace=workloads \

 --data-value workload_name=appsso-starter-java \

 --data-value domain=127.0.0.1.nip.io \

 --data-value auth_server_name="" \

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 54

https://cartographer.sh/
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-components.html#setup
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-components.html#setup

 --data-value claim_name=appsso-starter-java | \

 kubectl apply -f-

A bit more detail on the above YTT data values:

namespace - the namespace in which the workload will run.

workload_name - the distinct name of the instance of the accelerator being deployed.

domain - the domain name under which the workload will be deployed. The workload
instance will use a subdomain to distinguish itself from other workloads. If working locally,
127.0.0.1.nip.io is the easiest approach to get a working DNS route on a local cluster.

auth_server_name - the name of the AuthServer resource that you have installed and
want to use with your Workload.

claim_name - the service resource claim name being assigned for this workload, this is the
binding between the workload and AppSSO. You may choose any reasonably descriptive
name for this, it will be used in the next step.

This command has generated a ClientRegistration definition and applied it to the cluster. To
check the status of the client registration, run:

kubectl get clientregistration appsso-starter-java --namespace workloads

You should see the ClientRegistration entry listed.

Create a ClientRegistration service resource claim for the workload

Using Tanzu Services plugin CLI, create a service resource claim for the workload:

⚠ Name of the claim must be the same as the value of claim_name from previous step.

⚠ Resource name must be the same name as the workload name.

tanzu services claims create appsso-starter-java \

 --namespace workloads \

 --resource-namespace workloads \

 --resource-name appsso-starter-java \

 --resource-kind ClientRegistration \

 --resource-api-version "sso.apps.tanzu.vmware.com/v1alpha1"

Once applied, you may check the status of the claim like so:

tanzu services claim list --namespace workloads

You should see appsso-starter-java claim with Ready status as True.

For more information about service claims, check out the Services Toolkit docs here .

Deploy the workload

The Tanzu CLI command to create a workload for the sample application should look like the
following:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 55

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-tanzu-services-plugin.html

⚠ You must have access to gitops-appsso-starter-java.git repository in Pivotal org. If you do
not have access, create your own empty repository with a single commit on it, then point
gitops_repository parameter to it. You must use ssh protocol if you are creating a private
repository.

When using 'iterate' or 'full' TAP profile(s) - build from source and deploy from ge

nerated GitOps manifest

tanzu apps workload create appsso-starter-java \

 --namespace workloads \

 --type web \

 --label app.kubernetes.io/part-of=appsso-starter-java \

 --service-ref "appsso-starter-java=services.apps.tanzu.vmware.com/v1alpha1:Resourc

eClaim:appsso-starter-java" \

 --git-repo ssh://git@github.com/sample-accelerators/appsso-starter-java.git \

 --git-branch main \

 --param gitops_repository=ssh://git@github.com/pivotal/gitops-appsso-starter-java.

git \

 --live-update \

 --yes

OR when using ‘run’ TAP profile - deploy workload via existing GitOps manifest

tanzu apps workload create appsso-starter-java \

 --namespace workloads \

 --type web \

 --label app.kubernetes.io/part-of=appsso-starter-java \

 --service-ref "appsso-starter-java=services.apps.tanzu.vmware.com/v1alpha1:Resourc

eClaim:appsso-starter-java" \

 --param gitops_repository=ssh://git@github.com/pivotal/gitops-appsso-starter-java.

git \

 --live-update \

 --yes

The above command creates a web Workload named ‘appsso-starter-java’ in the workloads
namespace. The sample applications’ source code repository is defined in the git-repo and git-
branch parameters. Workloads are usually built from scratch and later deployed – the mechanism
that allows a built artifact to be deployed is managed via GitOps approach, and so we specify a
GitOps specific repository for the workload specified with --param gitops_repository parameter.
From the previous step, we specify a ClientRegistration service resource claim via the service-
ref parameter. In doing so, we enable the Workload’s Pods to have the necessary AppSSO-
generated credentials available as a Service Binding. Learn more about how this works here.

It takes some minutes for the workload to become available as a URL.

To query the latest status of the Workload, run:

tanzu apps workload get appsso-starter-java --namespace workloads

⚠ You may see the status of the workload at first:

message: waiting to read value [.status.latestImage] from resource [image.kpack.io/appsso-
starter-java] in namespace [workloads]

reason: MissingValueAtPath

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 56

status: Unknown

This is NOT an error, this is normal operation of a pending workload. Watch the status for changes.

Follow the Workload logs:

tanzu apps workload tail appsso-starter-java --namespace workloads

Once the status of the workload reaches the Ready state, you may navigate to the URL provided,
which should look similar to:

http://appsso-starter-java.workloads.127.0.0.1.nip.io

Navigate to the URL in your favorite browser, and observe a large login button tailored for logging
with AppSSO.

Once you have explored the accelerator and its operation, head on to the next section for uninstall
instructions.

Cleaning up

You may delete the running accelerator by running the following:

Delete the sample application workload

tanzu apps workload delete appsso-starter-java --namespace workloads

Delete the service resource claim for the ClientRegistration

tanzu services claim delete appsso-starter-java --namespace workloads

Disconnect the accelerator from AppSSO

kubectl delete clientregistration appsso-starter-java --namespace workloads

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 57

Custom Resource Definitions

AuthServer

ClientRegistration

ClientRegistration

ClientRegistration is the request for client credentials for an AuthServer.

It implements the Service Bindings’ ProvisionedService. The credentials are returned as a Service
Bindings Secret.

A ClientRegistration needs to uniquely identify an AuthServer via spec.authServerSelector. If it
matches none, too many or a disallowed AuthServer it won’t get credentials. The other fields are
for the configuration of the client on the AuthServer.

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: ""

 namespace: ""

spec:

 authServerSelector: # required

 matchLabels: { }

 redirectURIs: # required

 - ""

 scopes: # optional

 - name: ""

 description: ""

 authorizationGrantTypes: # optional

 - client_credentials

 - authorization_code

 - refresh_token

 clientAuthenticationMethod: basic # or "post", optional

 requireUserConsent: false # optional

status:

 authServerRef:

 apiVersion: ""

 issuerURI: ""

 kind: ""

 name: ""

 namespace: ""

 binding:

 name: ""

 clientID: ""

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 58

https://servicebinding.io/spec/core/1.0.0/
https://servicebinding.io/spec/core/1.0.0/

 clientSecretHelp: ""

 conditions:

 - lastTransitionTime: ""

 message: ""

 reason: ""

 status: "True" # or "False"

 type: ""

 observedGeneration: 0

Alternatively, you can interactively discover the spec with:

kubectl explain clientregistrations.sso.apps.tanzu.vmware.com

Status & conditions

The .status subresource helps you to learn about your client credentials, the matched AuthServer
and to troubleshoot issues.

.status.authServerRef identifies the successfully matched AuthServer and its issuer URI.

.status.binding.name is the name of the Service Bindings Secret which contains the client
credentials.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

AuthServerResolved: Has the targeted AuthServer been resolved?

ClientSecretResolved: Has the client secret been resolved?

ServiceBindingSecretApplied: Has the Service Bindings Secret with the client credentials
been applied?

AuthServerConfigured: Has the resolved AuthServer been configured with the client?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

status:

 authServerRef:

 apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

 issuerURI: http://authserver-sample.default

 kind: AuthServer

 name: authserver-sample

 namespace: default

 binding:

 name: clientregistration-sample

 clientID: default_clientregistration-sample

 clientSecretHelp: 'Find your clientSecret: ''kubectl get secret clientregistration-s

ample --namespace default'''

 conditions:

 - lastTransitionTime: "2022-05-13T07:56:41Z"

 message: ""

 reason: Updated

 status: "True"

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 59

 type: AuthServerConfigured

 - lastTransitionTime: "2022-05-13T07:56:40Z"

 message: ""

 reason: Resolved

 status: "True"

 type: AuthServerResolved

 - lastTransitionTime: "2022-05-13T07:56:40Z"

 message: ""

 reason: ResolvedFromBindingSecret

 status: "True"

 type: ClientSecretResolved

 - lastTransitionTime: "2022-05-13T07:56:41Z"

 message: ""

 reason: Ready

 status: "True"

 type: Ready

 - lastTransitionTime: "2022-05-13T07:56:40Z"

 message: ""

 reason: Applied

 status: "True"

 type: ServiceBindingSecretApplied

 - lastTransitionTime: "2022-05-13T07:56:40Z"

 message: ""

 reason: Valid

 status: "True"

 type: Valid

 observedGeneration: 1

Example

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: my-client-registration

 namespace: app-team

spec:

 authServerSelector:

 matchLabels:

 for: app-team

 ldap: "true"

 redirectURIs:

 - "https://127.0.0.1:8080/authorized"

 - "https://my-application.com/authorized"

 requireUserConsent: false

 clientAuthenticationMethod: basic

 authorizationGrantTypes:

 - "client_credentials"

 - "refresh_token"

 scopes:

 - name: "openid"

 description: "To indicate that the application intends to use OIDC to verify the

user's identity"

 - name: "email"

 description: "The user's email"

 - name: "profile"

 description: "The user's profile information"

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 60

The client is being registered with the authorization server with the given specs. The resulting
client credentials are available in a Secret that’s owned by the ClientRegistration.

apiVersion: v1

kind: Secret

type: servicebinding.io/oauth2

data: # fields below are base64-decoded for display purposes only

 type: oauth2

 provider: appsso

 client-id: default_my_client_registration

 client-secret: c2VjcmV0 # auto-generated

 issuer-uri: https://appsso.example.com

 client-authentication-method: basic

 scope: openid,email,profile

 authorization-grant-types: client_credentials,refresh_token

AuthServer

AuthServer represents the request for an OIDC authorization server. It results in the deployment of
an authorization server backed by Redis over mTLS.

An AuthServer should have labels which allow to uniquely match it amongst others.
ClientRegistration selects an AuthServer by label selector and needs a unique match to be
successful.

To allow ClientRegistrations from all or a restricted set of Namespaces, the annotation
sso.apps.tanzu.vmware.com/allow-client-namespaces must be set. Its value is a comma-separated
list of allowed Namespaces, e.g. "app-team-red,app-team-green", or "*" if it should allow clients
from all namespaces. If the annotation is missing, no clients are allowed.

An AuthServer has a spec.issuerURI which is the entry point for clients and end-users. A form of
Ingress needs to be configured for this issuer URI.

Token signature keys are configured through spec.tokenSignature. If no keys are configured, no
tokens can be minted.

Identity providers are configured under spec.identityProviders. If there are none, end-users
won’t be able to log in.

The deployment can be further customized by configuring replicas, resources, http server and
logging properties.

An AuthServer reconciles into the following resources in its namespace:

AuthServer/my-authserver

├─Certificate/my-authserver-redis-client

├─Certificate/my-authserver-redis-server

├─Certificate/my-authserver-root

├─ConfigMap/my-authserver-ca-cert

├─Deployment/my-authserver-auth-server

├─Deployment/my-authserver-redis

├─Issuer/my-authserver-bootstrap

├─Issuer/my-authserver-root

├─Role/my-authserver-auth-server

├─RoleBinding/my-authserver-auth-server

├─Secret/my-authserver-auth-server-clients

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 61

├─Secret/my-authserver-auth-server-keys

├─Secret/my-authserver-auth-server-properties

├─Secret/my-authserver-redis-client-cert-keystore-password

├─Secret/my-authserver-registry-credentials

├─Service/my-authserver-redis

└─ServiceAccount/my-authserver-auth-server

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: ""

 namespace: ""

 labels: { } # required, must uniquely identify this AuthServer

 annotations:

 sso.apps.tanzu.vmware.com/allow-client-namespaces: "" # required, must be "*" or a

comma-separated list of allowed client namespaces

 sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: "" # optional

 sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: "" # optional

spec:

 issuerURI: "" # required

 tokenSignature: # optional

 signAndVerifyKeyRef:

 name: ""

 extraVerifyKeyRefs:

 - name: ""

 identityProviders: # optional

 # each must be one and only one of internalUnsafe, ldap, openID or saml

 - name: "" # must be unique

 internalUnsafe: # requires annotation `sso.apps.tanzu.vmware.com/allow-unsafe-id

entity-provider: ""`

 users:

 - username: ""

 password: ""

 givenName: ""

 familyName: ""

 email: ""

 emailVerified: false

 roles:

 - ""

 - name: "" # must be unique

 ldap:

 server:

 scheme: ""

 host: ""

 port: 0

 base: ""

 bind:

 dn: ""

 passwordRef:

 name: ldap-password

 user:

 searchFilter: ""

 searchBase: ""

 group:

 searchFilter: ""

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 62

 searchBase: ""

 searchSubTree: false

 searchDepth: 0

 roleAttribute: ""

 - name: "" # must be unique

 openID:

 issuerURI: ""

 clientID: ""

 clientSecretRef:

 name: ""

 scopes:

 - ""

 - name: "" # must be unique

 saml:

 metadataURI: ""

 claimMappings: { }

 replicas: 1 # optional, default 2

 logging: "" # optional, must be valid YAML

 server: "" # optional, must be valid YAML

 resources: # optional, default {requests: {cpu: "256m", memory: "300Mi"}, limits: {c

pu: "2", memory: "768Mi"}}

 requests:

 cpu: ""

 mem: ""

 limits:

 cpu: ""

 mem: ""

 redisResources: # optional, default {requests: {cpu: "50m", memory: "100Mi"}, limit

s: {cpu: "100m", memory: "256Mi"}}

 requests:

 cpu: ""

 mem: ""

 limits:

 cpu: ""

 mem: ""

status:

 observedGeneration: 0

 clientRegistrationCount: 1

 tokenSignatureKeyCount: 0

 deployments:

 authServer:

 LastParentGenerationWithRestart: 0

 configHash: ""

 image: ""

 replicas: 0

 redis:

 image: ""

 conditions:

 - lastTransitionTime:

 message: ""

 reason: ""

 status: "True" # or "False"

 type: ""

Alternatively, you can interactively discover the spec with:

kubectl explain authservers.sso.apps.tanzu.vmware.com

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 63

Status & conditions

The .status subresource helps you to learn the AuthServer’s readiness, resulting deployments,
attached clients and to troubleshoot issues.

.status.tokenSignatureKeyCount is the number of currently configured token signature keys.

.status.clientRegistrationCount is the number of currently registered clients.

.status.deployments.authServer describes the current authorization server deployment by listing
the running image, its replicas, the hash of the current configuration and the generation which has
last resulted in a restart.

.status.deployments.redis describes the current Redis deployment by listing its running image.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

ImagePullSecretApplied: Has the image pull secret been applied?

SignAndVerifyKeyResolved: Has the single sign-and-verify key been resolved?

ExtraVerifyKeysResolved: Have the single extra verify keys been resolved?

IdentityProvidersResolved: Has all identity provider configuration been resolved?

ConfigResolved: Has the complete configuration for the authorization server been resolved?

AuthServerConfigured: Has the complete configuration for the authorization server been
applied?

IssuerURIReady: Is the authorization server yet responding to {spec.issuerURI}/.well-
known/openid-configuration?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

status:

 observedGeneration: 1

 tokenSignatureKeyCount: 3

 clientRegistrationCount: 1

 deployments:

 authServer:

 LastParentGenerationWithRestart: 1

 configHash: "13146309071473757471"

 image: dev.registry.tanzu.vmware.com/sso-for-kubernetes/authserver@sha256:9c761d

d21bdd54cf8bf0de3cb23e04d75dcdedbbeee82bb78f6d3419c1c748ea

 replicas: 1

 redis:

 image: dev.registry.tanzu.vmware.com/sso-for-kubernetes/redis@sha256:3906dfa3d49

b340ffc85c05890ddca7e5a9c775344c9b9d3bacda9bb6efac191

 conditions:

 - lastTransitionTime: "2022-05-13T08:29:55Z"

 message: ""

 reason: KeysConfigSecretUpdated

 status: "True"

 type: AuthServerConfigured

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 64

 - lastTransitionTime: "2022-05-13T08:29:54Z"

 message: ""

 reason: Resolved

 status: "True"

 type: ConfigResolved

 - lastTransitionTime: "2022-05-13T08:29:54Z"

 message: ""

 reason: ExtraVerifyKeysResolved

 status: "True"

 type: ExtraVerifyKeysResolved

 - lastTransitionTime: "2022-05-13T08:29:54Z"

 message: ""

 reason: Resolved

 status: "True"

 type: IdentityProvidersResolved

 - lastTransitionTime: "2022-05-13T08:29:54Z"

 message: ""

 reason: ImagePullSecretApplied

 status: "True"

 type: ImagePullSecretApplied

 - lastTransitionTime: "2022-05-13T09:04:22Z"

 message: ""

 reason: Ready

 status: "True"

 type: IssuerURIReady

 - lastTransitionTime: "2022-05-13T09:04:22Z"

 message: ""

 reason: Ready

 status: "True"

 type: Ready

 - lastTransitionTime: "2022-05-13T08:29:54Z"

 message: ""

 reason: SignAndVerifyKeyResolved

 status: "True"

 type: SignAndVerifyKeyResolved

 - lastTransitionTime: "2022-05-13T08:29:54Z"

 message: ""

 reason: Valid

 status: "True"

 type: Valid

RBAC

The ServiceAccount of the authorization server has a Role with the following permissions:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

 resourceNames:

 - { name }-auth-server-keys

 - { name }-auth-server-clients

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 65

Example

This example requests an authorization server with the issuer URI http://authserver-
sample.default, two token signature keys and two identity providers. It also configures ingress as
you would on a local Kind cluster.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

 labels:

 name: authserver-sample

 sample: "true"

 annotations:

 sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

 sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

 sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

spec:

 replicas: 1

 issuerURI: http://authserver-sample.default

 tokenSignature:

 signAndVerifyKeyRef:

 name: sample-token-signing-key

 extraVerifyKeyRefs:

 - name: sample-token-verification-key

 identityProviders:

 - name: internal

 internalUnsafe:

 users:

 - username: test-user-1

 password: $2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8jWK #!

bcrypt-encoded "password"

 roles:

 - message.write

 - username: test-user-2

 password: $2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8jWK #!

bcrypt-encoded "password"

 roles:

 - message.read

 - name: okta

 openID:

 issuerURI: https://dev-xxxxxx.okta.com

 clientID: xxxxxxxxxxxxx

 clientSecretRef:

 name: okta-client-secret

 authorizationUri: https://dev-xxxxxx.okta.com/oauth2/v1/authorize

 tokenUri: https://dev-xxxxxx.okta.com/oauth2/v1/token

 jwksUri: https://dev-xxxxxx.okta.com/oauth2/v1/keys

 scopes:

 - openid

 claimMappings:

 roles: my_custom_okta_roles_claim

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 66

https://kind.sigs.k8s.io/

metadata:

 name: sample-token-signing-key

 namespace: default

spec:

 secretTemplate:

 type: Opaque

 stringData:

 key.pem: $(privateKey)

 pub.pem: $(publicKey)

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: sample-token-verification-key

 namespace: default

spec:

 secretTemplate:

 type: Opaque

 stringData:

 key.pem: $(privateKey)

 pub.pem: $(publicKey)

apiVersion: v1

kind: Secret

metadata:

 name: okta-client-secret

 namespace: default

stringData:

 clientSecret: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

apiVersion: v1

kind: Service

metadata:

 name: authserver-sample

 namespace: default

spec:

 selector:

 app.kubernetes.io/part-of: authserver-sample

 app.kubernetes.io/component: authorization-server

 ports:

 - port: 80

 targetPort: 8080

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

 name: authserver-sample

 namespace: default

spec:

 virtualhost:

 fqdn: authserver-sample.default

 routes:

 - conditions:

 - prefix: /

 services:

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 67

 - name: authserver-sample

 port: 80

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 68

Known Issues

AppSSO makes requests to external identity providers with http rather than https.

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 69

Appendix

TAP developer namespace setup example

TAP developer namespace setup example

 Applies to TAP v1.2.0

The following is an example setup of a TAP developer namespace (for use with Workloads) as per
TAP v1.2.0 guidelines. You may use this document as a reference guide to expedite the process of
creating the necessary space to deploy your workloads.

Installing the namespace configuration

Add container image registry credentials

The namespace in which your workloads will be applied to

export WORKLOADS_NAMESPACE="workloads"

The container image registry to which your workloads will be published to. This exam

ple uses Google Container Registry.

export CONTAINER_IMAGE_REGISTRY="https://gcr.io"

export CONTAINER_IMAGE_REGISTRY_USERNAME="<username>"

export CONTAINER_IMAGE_REGISTRY_PASSWORD="<password>"

Apply registry credentials for access to container image registry

tanzu secret registry add registry-credentials \

 --server "${CONTAINER_IMAGE_REGISTRY}" \

 --username "${CONTAINER_IMAGE_REGISTRY_USERNAME}" \

 --password "${CONTAINER_IMAGE_REGISTRY_PASSWORD}" \

 --namespace "${WORKLOADS_NAMESPACE}"

To verify secret creation, run:

tanzu secret registry list -n ${WORKLOADS_NAMESPACE}

Output will be similar to:

NAME REGISTRY EXPORTED AGE

registry-credentials https://gcr.io not exported 20s

Apply namespace configurations

 Save ytt-templated yaml configuration for workloads namespace here (found on this page below)
– select all and save to local filesystem. In the example below, the file is saved to the default

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 70

https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-components.html#setup

MacOS Downloads folder.

Apply the namespace configurations using kapp:

The namespace in which your workloads will be applied to

export WORKLOADS_NAMESPACE="workloads"

The Git repository hostname (without https prefix) where your workload source code l

ives. This example uses GitHub.

export GIT_REPOSITORY_HOSTNAME="github.com"

Private/public key pair that allows read/write access to GIT_REPOSITORY_HOSTNAME

export GIT_REPOSITORY_SSH_PRIVATE_KEY="<private-key-string>"

export GIT_REPOSITORY_SSH_PUBLIC_KEY="<public-key-string>"

Set known hosts string

export GIT_REPOSITORY_KNOWN_HOSTS="$(ssh-keyscan github.com)"

Deploy kapp as per namespace spec yaml

ytt \

 --data-value-file=git_repository_hostname=<(echo "${GIT_REPOSITORY_HOSTNAME}") \

 --data-value-file=ssh_private_key=<(echo "${GIT_REPOSITORY_SSH_PRIVATE_KEY}") \

 --data-value-file=ssh_public_key=<(echo "${GIT_REPOSITORY_SSH_PUBLIC_KEY}") \

 --data-value-file=known_hosts=<(echo "${GIT_REPOSITORY_KNOWN_HOSTS}") \

 --data-value=namespace="${WORKLOADS_NAMESPACE}" \

 --file ~/Downloads/tap-dev-ns-setup.yaml |

 kapp deploy \

 --namespace ${WORKLOADS_NAMESPACE} \

 --app workload-prerequisites \

 --wait \

 --wait-timeout=120s \

 --diff-changes \

 --yes \

 --file -

By deploying with kapp, you have the power to cleanly uninstall the configuration once you are
done with the demonstration or if there is an issue with the configuration.

 Your cluster is now ready to host Workloads.

Uninstalling namespace configurations

To uninstall the above configurations, run:

The namespace in which your workloads will be applied to

export WORKLOADS_NAMESPACE="workloads"

tanzu secret registry delete registry-credentials \

 --namespace "${WORKLOADS_NAMESPACE}" \

 --yes

kapp delete \

 --namespace ${WORKLOADS_NAMESPACE} \

 --app "workload-prerequisites" \

 --yes \

 --diff-changes

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 71

Developer namespace configuration ytt template

#@ load("@ytt:data", "data")

apiVersion: v1

kind: Namespace

metadata:

 name: #@ data.values.namespace

#! see: https://fluxcd.io/docs/components/source/gitrepositories/#ssh-authentication

apiVersion: v1

kind: Secret

metadata:

 name: git-ssh

 namespace: #@ data.values.namespace

 annotations:

 tekton.dev/git-0: #@ data.values.git_repository_hostname

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: #@ data.values.ssh_private_key

 identity: #@ data.values.ssh_private_key

 identity.pub: #@ data.values.ssh_public_key

 known_hosts: #@ data.values.known_hosts

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 namespace: #@ data.values.namespace

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 namespace: #@ data.values.namespace

 annotations:

 kapp.k14s.io/create-strategy: fallback-on-update

secrets:

 - name: git-ssh

 - name: registry-credentials

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-deliverable

 namespace: #@ data.values.namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: deliverable

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 72

subjects:

 - kind: ServiceAccount

 name: default

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

 namespace: #@ data.values.namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

subjects:

 - kind: ServiceAccount

 name: default

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

 namespace: #@ data.values.namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: "namespace-developers"

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: namespace-dev-permit-app-editor

 namespace: #@ data.values.namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: "namespace-developers"

 apiGroup: rbac.authorization.k8s.io

Application Single Sign-On for VMware Tanzu v1.0

VMware, Inc. 73

	Contents
	Application Single Sign-On for VMware Tanzu® (1.0.0)
	Getting started
	AppSSO Overview
	Getting started

	Provision an AuthServer
	Provision an AuthServer
	💡 The AuthServer spec, in detail
	Metadata
	Issuer URI
	Token Signature
	Identity providers

	Expose your authorization server through HTTPProxy
	Expose through HTTPProxy

	Provision a client registration
	Creating the ClientRegistration
	Validating that the credentials are working

	Deploy an application
	Deploy a minimal application
	💡 Deployment manifest explained
	💡 Notes on OAuth2-Proxy

	AppSSO for Platform Operators
	Installing AppSSO on TAP
	What’s inside
	Prerequisites
	Installation

	Uninstalling AppSSO from TAP
	RBAC
	AppSSO for Service Operators
	Annotation & labels
	Labels
	Allowing client namespaces
	Unsafe configuration
	Unsafe identity provider
	Unsafe issuer URI

	Issuer URI
	Configure a Service for AuthServer
	Enabling external access with TLS
	Prerequisites
	Guide
	Further reading

	Identity providers
	OpenID Connect providers
	Note for registering a client with the identity provider

	LDAP (experimental)
	SAML (experimental)
	Note for registering a client with the identity provider

	Internal users
	Generating a bcrypt hash from a plain-text password

	Restrictions

	Token signature
	Token signature 101
	Token signature of an AuthServer
	Creating keys
	Using secretgen-controller
	Using OpenSSL

	Rotating keys
	Revoking keys
	References and further reading

	Readiness
	Client registration check
	Prerequisites
	Define and apply a test client
	Get an access token

	Scale
	Authorization server audit logs
	Authentication
	Token flows

	Troubleshooting
	Why is my AuthServer not working?
	Find all AuthServer-related Kubernetes resources
	Logs of all AuthServers
	Change propagation
	My Service is not selecting the authorization server’s Deployment
	Redirect URIs are redirecting to http instead of https with a non-internal identity provider

	Known Limitations
	Limited number of ClientRegistrations per AuthServer

	AppSSO for App Operators
	Register an app with AppSSO
	Topics
	Client registration
	Workloads
	Prerequisites
	Configuring a Workload with AppSSO
	Create and apply a ClientRegistration resource
	Add a service resource claim to your Workload

	Grant types
	Topics
	Client Credentials Grant Type
	Authorization Code Grant Type

	Securing your first Workload
	Prerequisites
	Getting started
	Understanding the sample application
	The sample application’s ClientRegistration

	Understanding Workloads

	Deploying the sample application as a Workload
	Create workload namespace
	Apply required TAP workload configurations
	Apply the ClientRegistration
	Create a ClientRegistration service resource claim for the workload
	Deploy the workload

	Cleaning up

	Custom Resource Definitions
	ClientRegistration
	Spec
	Status & conditions
	Example

	AuthServer
	Spec
	Status & conditions
	RBAC
	Example

	Known Issues
	Appendix
	TAP developer namespace setup example
	Installing the namespace configuration
	Add container image registry credentials
	Apply namespace configurations

	Uninstalling namespace configurations
	Developer namespace configuration ytt template

