
Cloud Native Runtimes for
VMware Tanzu 1.0

Cloud Native Runtimes for VMware Tanzu 1.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Cloud Native Runtimes for Tanzu Overview 7

Scaling 7

Development 8

Deployment 8

Event-Driven Apps 8

Cloud Native Runtimes for Tanzu Release Notes 9

v1.0.3 9

Resolved Issues 9

Components 9

v1.0.2 9

Resolved Issues 9

v1.0.1 10

Resolved Issues 10

v1.0.0 10

Breaking Changes 10

New Features 10

Known Issues 11

Components 11

v0.2.0 12

Features 12

Known Issues 12

Components 12

Installing Cloud Native Runtimes for Tanzu 13

Prerequisites 13

Create a Kubernetes Cluster 15

Download Cloud Native Runtimes 15

Use Image Relocation with Cloud Native Runtimes 16

Prerequisites 16

Relocate Image to Private Registry 16

Install Cloud Native Runtimes 17

Install on Tanzu Kubernetes Grid 17

Install on TKGI 18

Install on Tanzu Mission Control 18

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 3

Install on vSphere 18

Install on Kubernetes Cloud Platforms 18

Install on a Local Kubernetes Cluster Provider 19

Set Up External DNS 19

Installing Cloud Native Runtimes for Tanzu with an Existing Contour
Installation

21

About Using Contour with Cloud Native Runtimes 21

Prerequisites 21

Identify Your Contour Version 22

Install Cloud Native Runtimes on a Cluster with Your Existing Contour Instances 22

Integrating RabbitMQ with Cloud Native Runtimes for Tanzu 24

About the RabbitMQ Operators 24

Install RabbitMQ Cluster Kubernetes Operator v1.8.2 24

Install RabbitMQ Messaging Topology Kubernetes Operator v1.2.1 25

Next Steps 26

Verifying Your Installation 27

Verify with a Private Registry 27

Verify Installation of Knative Serving, Knative Eventing, and TriggerMesh SAWS 27

Preparing to Create a Service 27

Verifying Knative Serving 28

About Verifying Knative Serving 28

Prerequisites 28

Test Knative Serving 28

Delete the Example Knative Service 30

Verify Knative Eventing 30

About Verifying Knative Eventing 30

Prerequisites 30

Prepare the RabbitMQ Environment 31

Verify Knative Eventing 32

Delete the Eventing Resources 33

Verifying TriggerMesh SAWS 34

Prerequisites 34

Verify TriggerMesh SAWS 34

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 4

Developing Locally on Kind 37

Prerequisites 37

Configure Your Local Kind Cluster 37

Install Cloud Native Runtimes Locally 38

Test Your CoreDNS 38

Set the Host Machine DNS 38

Set on MacOS 38

Set on Linux 39

Set on Windows 39

Reset the Host Machine DNS 39

Reset on MacOS 39

Reset on Linux 39

Reset on Windows 40

Enabling Automatic TLS Certificate Provisioning for Cloud Native
Runtimes for Tanzu

41

Prerequisites 41

Enable Auto TLS Using an HTTP01 Challenge 41

Enable Auto TLS Using a DNS01 Challenge 43

Configuring Observability for Cloud Native Runtimes for Tanzu 46

Logging 46

Configure Logging with Fluent Bit 46

Forward Logs to vRealize 47

Metrics 47

Tracing 48

Configuring Tracing 48

Forwarding Trace Data to a Data Visualization Tool 48

Sending Trace Data to an Observability Platform 49

Use Wavefront Dashboards 49

Import Wavefront Dashboards 50

Import Dashboards with the Wavefront API 50

Import with the Ruby Wavefront CLI 50

Configuring Cloud Native Runtimes for Tanzu with Avi Vantage 52

Integrate Avi Vantage with Cloud Native Runtimes 52

About Routing with Avi Vantage and Cloud Native Runtimes 53

Configuring Cloud Native Runtimes for Tanzu with Tanzu Service Mesh 55

Run Cloud Native Runtimes on a Cluster Attached to Tanzu Service Mesh 55

Next Steps 56

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 5

Troubleshooting Cloud Native Runtimes for Tanzu 57

Cannot connect to app on AWS 57

Symptom 57

Solution 57

minikube Pods Fail to Start 57

Symptom 57

Solution 57

Knative Services never become ready when using AutoTLS 57

Symptom 58

Solution 58

Installation fails with kapp-controller v0.16 58

Symptom 58

Solution 58

Installation fails to reconcile app/cloud-native-runtimes 59

Symptom 59

Explanation 59

Solution 59

Example 1: The Cloud Provider does not support the creation of Service
type LoadBalancer

59

Example 2: The webhook deployment failed 60

Cloud Native Runtimes Installation Fails with Existing Contour Installation 61

Symptom 61

Solution 61

Upgrading Cloud Native Runtimes for Tanzu 62

Upgrade from Beta to GA 62

Uninstalling Cloud Native Runtimes for Tanzu 63

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 6

Cloud Native Runtimes for Tanzu Overview

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on

Knative and runs on a single Kubernetes cluster. For information about Knative, see the Knative

documentation. Cloud Native Runtimes capabilities are included in VMware Tanzu Advanced Edition

and VMware Tanzu Application Platform. For information about Tanzu Advanced Edition, see

Overview of Tanzu Advanced Edition. For information about Tanzu Application Platform, see About

Tanzu Application Platform.

Cloud Native Runtimes is compatible with clusters from the following Kubernetes platform providers:

VMware Tanzu Kubernetes Grid. See VMware Tanzu Kubernetes Grid documentation.

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI). See VMware Tanzu Kubernetes

Grid Integrated Edition documentation.

vSphere 7.0 with Tanzu. See VMware vSphere 7.0 Release Notes.

Amazon Elastic Kubernetes Service (EKS). See Amazon Elastic Kubernetes Service in the

AWS documentation.

Azure Kubernetes Service (AKS). See Azure Kubernetes Service in the Azure

documentation.

Google Kubernetes Engine (GKE). See Google Kubernetes Engine in the Google Cloud

documentation.

Cloud Native Runtimes supports:

Scale-to-zero

Scale-from-zero

Event-triggered workloads

You can integrate Cloud Native Runtimes with the following products:

Tanzu Observability by Wavefront. See Configuring Observability for Cloud Native Runtimes

for Tanzu.

Tanzu Build Service. See Tanzu Build Service documentation.

Avi Vantage. See Configuring Cloud Native Runtimes for Tanzu with Avi Vantage.

RabbitMQ. See Integrating RabbitMQ with Cloud Native Runtimes for Tanzu.

Tanzu Service Mesh. See Configuring Cloud Native Runtimes for Tanzu with Tanzu Service

Mesh.

Scaling

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 7

https://knative.dev/docs/
https://docs.vmware.com/en/VMware-Tanzu/services/tanzu-adv-deploy-config/GUID-components.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-overview.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://docs.pivotal.io/tkgi/index.html
https://docs.vmware.com/en/VMware-vSphere/7.0/rn/vsphere-esxi-vcenter-server-7-vsphere-with-tanzu-release-notes.html
https://docs.aws.amazon.com/eks/index.html
https://docs.microsoft.com/en-us/azure/aks/
https://cloud.google.com/kubernetes-engine/docs
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html

With Cloud Native Runtimes, you can scale the number of pods up and down based on the incoming

request rate. Pods can be configured to scale to zero when the containers are not processing

requests. Pods can be configured to automatically start when a new request arrives. Cloud Native

Runtimes supports bounded concurrency, letting you limit how many requests a pod can process at

the same time. Adaptive scaling lets you compute according to the amount of traffic in order to

conserve server resources.

Development

With Cloud Native Runtimes, you can use a developer abstraction on top of Kubernetes, letting you

develop without managing servers and updating workloads. Knative includes abstractions like the

Service developer abstraction that manages several Kubernetes serving and deploying concepts.

Administrators can create a unified developer experience across cloud platforms with a shared

Knative foundation.

Deployment

Cloud Native Runtimes lets developers use blue/green or canary deployment methods, and built in

traffic splitting. Traffic splitting lets you control how changes to your app are rolled out to a set

percentage of users. These features provide the ability to control how features are rolled out

incrementally to users.

Event-Driven Apps

Cloud Native Runtimes supports event-driven apps by using Knative. You can use event triggers to

scale your app-based on demand. For example, you can configure an event source to send an

event notification to a broker when a file is uploaded to a storage bucket, store that event, forward

that event to matching triggers, and then run image recognition on that video file. You can use many

different kinds of events and event sources. Using the Knative framework makes many external

integrations and microservices available.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 8

Cloud Native Runtimes for Tanzu Release
Notes

This topic contains release notes for Cloud Native Runtimes for Tanzu v1.0.

v1.0.3

Release Date: October 25, 2021

Resolved Issues

This release has the following fixes:

Kubernetes 1.22 compatibility issues

Components

Cloud Native Runtimes v1.0.3 updates the following component versions:

Release Details

Version v1.0.3

Release date October 25, 2021

Component Version

Knative Eventing 0.23.5

Knative Discovery 0.23.0

Knative Eventing RabbitMQ Integration 0.23.2

Knative cert-manager Integration 0.23.0

Knative Serving Contour Integration 0.23.1

VMware Tanzu Sources for Knative 0.23.1

TriggerMesh Sources from Amazon Web Services (SAWS) 1.6.0

vSphere Event Sources 0.23.0

v1.0.2

Release Date: August 30, 2021

Resolved Issues

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 9

This release has the following fixes:

ConfigMap changes now persist in the following namespaces:

knative-sources

triggermesh

contour-external

contour-internal

Use Cloud Native Runtimes together with a private registry and an existing Contour:

Cloud Native Runtimes is v1.0.1 and earlier was not compatible with using private registry and

an existing Contour.

rabbitmq-controller-manager-token secrets: rabbitmq-controller-manager-token secrets

are now created only once.

v1.0.1

Release Date: July 30, 2021

Resolved Issues

This release has the following fixes:

Fixes Installation fails with image relocation on a private registry.

v1.0.0

Release Date: July 21, 2021

Breaking Changes

Breaking changes in this release:

Cloud Native Runtimes v1.0.0 installation requires kapp-controller v0.17.0 or later: Before

installing v1.0.0, install kapp-controller v0.17.0 or later on your Kubernetes cluster.

If you previously installed Cloud Native Runtimes v0.2.0 or later, uninstall that earlier

version before you install v1.0.0: See Upgrading Cloud Native Runtimes.

Cloud Native Runtimes v1.0.0 depends on Kubernetes v1.18 or later.

New Features

New features in this release:

(Beta) Eventing integration for RabbitMQ: Knative Eventing Brokers can use RabbitMQ for

better performance and reliability. The eventing integration for RabbitMQ is in beta. VMware

does not recommend using the eventing integration for RabbitMQ in a production

environment.

TriggerMesh Sources for Amazon Web Services: Knative Events can be sourced from AWS

S3, SQS, and other parts of the AWS platform.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 10

Avi Vantage for Cloud Native Runtimes: You can configure Cloud Native Runtimes to

integrate with Avi Vantage.

Tanzu Service Mesh: You can use this workaround use Tanzu Service Mesh with Cloud

Native Runtimes. See Configuring Cloud Native Runtimes with Tanzu Service Mesh.

Known Issues

This release has the following issues:

Cloud Native Runtimes installation fails on Calico CNI in vSphere 7.0 with Tanzu

environments: If your installation fails, use the Antrea CNI. For information about the Antrea

CNI, see About Upgrading from the Flannel CNI to the Antrea CNI in the Tanzu Kubernetes

Grid Integrated Edition documentation.

Some patches of Tanzu Kubernetes Grid install an incompatible version of kapp-

controller: On some Kubernetes versions and cloud providers, Tanzu Kubernetes Grid v1.3.1

installs kapp-controller v0.16.0, which is incompatible with Cloud Native Runtimes. For more

information, see Installation fails with kapp-controller v0.16 in Troubleshooting.

 Installation fails with image relocation on a private registry: Your installation fails with

image relocation and you see a Failed to pull image error message when you use a

private registry.

The recommended versions of RabbitMQ Cluster Operator, cert-manager, and RabbitMQ

Messaging Topology Operator have been updated to ensure compatibility with Kubernetes

v1.22.0+. The recommended versions are now:

RabbitMQ Cluster Kubernetes Operator v1.8.2

cert-manager v1.5.3

RabbitMQ Messaging Topology Kubernetes Operator v1.2.1

Components

Cloud Native Runtimes v1.0.0 uses the following component versions:

Release Details

Version v1.0

Release date July 21, 2021

Component Version

Knative Eventing 0.23.1

Knative Discovery 0.23.1

Knative Eventing RabbitMQ Integration 0.23.0

Knative cert-manager Integration 0.23.0

Knative Serving Contour Integration 0.23.0

VMware Tanzu Sources for Knative 0.23.0

TriggerMesh Sources from Amazon Web Services (SAWS) 1.6.0

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 11

https://docs.pivotal.io/tkgi/1-10/understanding-upgrades.html#cni

vSphere Event Sources 0.23.0

v0.2.0

Release Date: March 31, 2021

Features

Features in this release:

Knative Serving: You can deploy serverless applications with autoscaling and URL access.

(Beta) Knative Eventing: You can connect Kubernetes workloads to event sources including

external integrations and other workloads. Knative Eventing features are in beta. VMware

does not recommend using the Knative eventing functionality in a production environment.

Known Issues

This release has the following issue:

Cloud Native Runtimes installation fails on Calico CNI in vSphere 7.0 with Tanzu

environments: If your installation fails, use the Antrea CNI. For information about the Antrea

CNI, see About Upgrading from the Flannel CNI to the Antrea CNI in the Tanzu Kubernetes

Grid Integrated Edition documentation.

Components

Cloud Native Runtimes v0.2.0 uses the following component versions:

Release Details

Version v0.2.0

Release date March 31, 2021

Component Version

Knative Serving 0.20.0

Knative Serving Contour Integration 0.20.0

Knative RabbitMQ Eventing 0.20.0

Knative Eventing 0.20.1

VMware Tanzu Sources for Knative 0.20.0

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 12

https://docs.pivotal.io/tkgi/1-10/understanding-upgrades.html#cni

Installing Cloud Native Runtimes for Tanzu

This topic describes how to install Cloud Native Runtimes for Tanzu. This includes installing the

serving and eventing services. You must install a Kubernetes cluster on a cloud platform provider,

install command line tools, configure your cluster, and download Cloud Native Runtimes before

installing. You install Cloud Native Runtimes on a Kubernetes cluster.

Prerequisites

The following prerequisites are required to install Cloud Native Runtimes:

Kubernetes v1.18 or later

For information about creating a compatible Kubernetes cluster, see Create a

Kubernetes Cluster. Cloud Native Runtimes is compatible with a Kubernetes cluster

on the following Kubernetes providers:

Tanzu Kubernetes Grid v1.3.1 and later

Tanzu Kubernetes Grid Integrated Edition (TKGI)

Tanzu Mission Control

vSphere 7.0 with Tanzu

Google Kubernetes Engine (GKE)

Note: GKE Autopilot is not supported.

Azure Kubernetes Service

Amazon Elastic Kubernetes Service

Docker Desktop

kind

minikube

Note: For a cluster with one node, set CPUs to at least 6, memory to at least 6.0 GB,

and disk storage to at least 30 GB. For a cluster with multiple nodes, set CPUs to at

least 2, memory to at least 4.0 GB, and disk storage to at least 20 GB for each node.

Your Cloud Provider must support the creation of Services of type LoadBalancer. The

exception is local installation, which does not require support for Service type

LoadBalancer.

For information about Service type LoadBalancer, see the Kubernetes

documentation and your cloud provider documentation. For more information about

Tanzu Kubernetes Grid support for Service type LoadBalancer, see Install VMware

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 13

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-mgmt-clusters-install-nsx-adv-lb.html#nsx-advanced-load-balancer-deployment-topology-0

NSX Advanced Load Balancer on a vSphere Distributed Switch.

Kapp-controller v0.17.0 or later. To download kapp-controller, see Install in the Carvel

documentation.

Note: Kapp-controller is pre-installed on Tanzu Kubernetes Grid v1.3.1 and later.

Command line tools. The following command line tools are required:

kubectl (v1.18 or later)

kapp (v0.34.0 or later)

ytt (v0.30.0 or later)

kbld (v0.28.0 or later)

kn

(Highly recommended for production environments) A domain name for your installation.

You use this domain name to set up the external DNS as described in Set Up External DNS

below.

(Optional) Use the Octant Plugin for Knative to view, manage, create, and delete Knative

resources within Octant. For information about installing Octant, see Octant Plugin for

Knative in GitHub.

If you are installing Cloud Native Runtimes on a cluster that is attached to Tanzu Service

Mesh, see Configuring Cloud Native Runtimes with Tanzu Service Mesh.

Pod Security Policy role bindings. If you have pod security policies (PSP) enabled on your

Kubernetes cluster, create one of the following role bindings on the Kubernetes cluster

where you install kapp-controller and Cloud Native Runtimes:

vSphere 7.0 with Tanzu:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: kapp-controller-psp-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: psp:vmware-system-restricted

subjects:

- kind: ServiceAccount

 name: kapp-controller-sa

 namespace: kapp-controller

Tanzu Kubernetes Grid Integrated Edition (TKGI)

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: kapp-controller-psp-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: psp:restricted

subjects:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 14

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-mgmt-clusters-install-nsx-adv-lb.html#nsx-advanced-load-balancer-deployment-topology-0
https://carvel.dev/kapp-controller/docs/latest/install/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://carvel.dev/kapp/
https://carvel.dev/ytt/
https://carvel.dev/kbld/
https://knative.dev/docs/client/install-kn/
https://github.com/vmware-tanzu/octant-plugin-for-knative

- kind: ServiceAccount

 name: kapp-controller-sa

 namespace: kapp-controller

Create a Kubernetes Cluster

To use Cloud Native Runtimes, you must have a Kubernetes cluster. See the following resources to

create and configure your Kubernetes cluster, depending on your platform provider. Cloud Native

Runtimes is compatible with a Kubernetes cluster on any of the following Kubernetes cloud platform

providers:

Tanzu Kubernetes Grid. For information about using clusters with Tanzu Kubernetes Grid,

see Connect to and Examine Tanzu Kubernetes Clusters.

Tanzu Kubernetes Grid Integrated Edition. For information about using clusters with TKGI,

see Managing Kubernetes Clusters and Workloads in the TKGI documentation.

Tanzu Mission Control. For information about using clusters with Tanzu Mission Control, see

Provision a Cluster in the Tanzu Mission Control documentation.

vSphere 7.0 with Tanzu. For information about using clusters for vSphere 7.0 with Tanzu,

see vSphere with Tanzu Configuration and Management in the VMware vSphere

documentation.

Google Kubernetes Engine. For information about using clusters with Google Kubernetes

Engine (GKE), see the Google Kubernetes Engine documentation.

Note: GKE Autopilot is not supported.

Azure Kubernetes Service. For information about using clusters with Azure Kubernetes

Service (AKS), see the Azure Kubernetes Service documentation.

Amazon Elastic Kubernetes Service. For information about using clusters with Amazon

Elastic Kubernetes Service (EKS), see Amazon EKS Clusters in the EKS documentation.

Docker Desktop. For information about using clusters with Docker Desktop, see the Docker

Desktop documentation.

kind. For information about using clusters with kind, see the kind documentation.

minikube. For information about using clusters with minikube, see the minikube

documentation.

Download Cloud Native Runtimes

To install Cloud Native Runtimes, you must first download the installation package from VMware

Tanzu Network.

To download Cloud Native Runtimes:

1. Log into VMware Tanzu Network.

2. Navigate to the Cloud Native Runtimes release page.

3. Download the cloud-native-runtimes-1.0.x.tgz archive.

4. Extract the contents of cloud-native-runtimes-1.0.x.tgz, for example:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 15

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-cluster-lifecycle-connect.html
https://docs.pivotal.io/tkgi/managing-clusters.html
https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-getstart/GUID-462FD2F4-7D7B-4979-8977-32D66BD8197F.html
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-152BE7D2-E227-4DAA-B527-557B564D9718.html
https://cloud.google.com/kubernetes-engine#section-5
https://azure.microsoft.com/en-us/services/kubernetes-service/#documentation
https://docs.aws.amazon.com/eks/latest/userguide/clusters.html
https://docs.docker.com/desktop/
https://kind.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/serverless

tar -xvf cloud-native-runtimes-1.0.0.tgz

Use Image Relocation with Cloud Native Runtimes

Follow this image relocation procedure if either of the following are true:

You do not have access to the VMware Harbor registry.

Your security policies require that you access images from a designated private registry.

If you are installing Cloud Native Runtimes using image relocation with a registry that does not have a

publicly-rooted certificate, you need to provision your cluster with a self-signed certificate. For

information about provisioning a cluster with a self-signed certificate, see How to Set Up a Harbor

Registry with Self-Signed Certificates for Tanzu Kubernetes Clusters.

Prerequisites

In addition to the prerequsites listed above, you need the following prerequisites:

imgpkg v0.13.0 or later. To download imgpkg, see the imgpkg website.

To use image relocation with a private registry, set the following environment variables:

cnr_registry__server. Where cnr_registry__server is the URI of the registry.

cnr_registry__username. Where cnr_registry__username is the username for the

registry.

cnr_registry__password. Where cnr_registry__password is the password to access

the registry.

Note: The environment variables include two underscore symbols (_).

Relocate Image to Private Registry

To relocate the Cloud Native Runtimes image to a private registry:

1. Download cloud-native-runtimes-1.0.x.lock file from the Cloud Native Runtimes release

page.

2. Log in to your registry through Docker or, for other authentication options, such as

environment variables, see the imgpkg documentation.

3. Push the bundle to a registry. Run:

imgpkg copy --lock cloud-native-runtimes-1.0.x.lock --to-repo LINK-TO-PRIVATE-R

EPO --lock-output LOCK-OUTPUT

Where:

LINK-TO-PRIVATE-REPO is the path to the private registry.

LOCK-OUTPUT is the name of your lock output file.

Note: If you do not have the certificates for your private registry, then add --registry-

verify-certs=false to the command and to the command in step 4.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 16

https://tanzu.vmware.com/content/blog/how-to-set-up-harbor-registry-self-signed-certificates-tanzu-kubernetes-clusters
https://carvel.dev/imgpkg/
https://network.tanzu.vmware.com/products/serverless
https://carvel.dev/imgpkg/docs/latest/auth

For example:

4. Pull your image. Run:

imgpkg pull --lock LOCK-OUTPUT -o ./cloud-native-runtimes

Where LOCK-OUTPUT is the name of your lock output file.

For example:

5. Navigate to the cloud-native-runtimes directory. Run:

cd cloud-native-runtimes

6. Mark the install.sh file as executable by updating the install script permission. Run:

chmod +x ./bin/install.sh

7. Follow the steps in Preparing to Create a Service to create a secret for your private registry.

Install Cloud Native Runtimes

Use one of the following procedures, depending on your platform, to install Cloud Native Runtimes.

To install, you target the cluster and run the installation script.

Note: If you see the following error message after you run the Cloud Native Runtimes installation

script, see Installing Cloud Native Runtimes with an Existing Contour Installation:

Could not proceed with installation. Refer to Cloud Native Runtimes documentation for

details on how to utilize an existing Contour installation. Another app owns the custom

resource definitions listed below.

Install on Tanzu Kubernetes Grid

To install Cloud Native Runtimes on Tanzu Kubernetes Grid:

1. Target the cluster you want to use. See Connect to Your New Cluster in the Tanzu

Kubernetes Grid documentation.

2. Verify that you are targeting the correct Kubernetes cluster. Run:

kubectl cluster-info

3. Run the installation script from the cloud-native-runtimes directory:

./bin/install.sh

Note: If the installation fails with a kapp: Error: message, see Installation fails with kapp-

 $ imgpkg copy –lock cloud-native-runtimes-1.0.0.lock –to-repo my.corp
.registry/cnr –lock-output ./relocated.lock –registry-verify-certs=fal
se

$ imgpkg pull –lock ./relocated.lock -o ./cloud-native-runtimes

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 17

https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-getstart/GUID-B770BD23-7D3A-4472-ADEB-991ED6ABE18C.html

controller v0.16 in Troubleshooting.

Install on TKGI

To install Cloud Native Runtimes on Tanzu Kubernetes Grid Integrated Edition:

1. Target the cluster you want to use. See Create a Kubernetes Cluster in the TKGI

documentation.

2. Verify that you are targeting the correct Kubernetes cluster. Run:

kubectl cluster-info

3. Run the installation script from the cloud-native-runtimes directory:

./bin/install.sh

Install on Tanzu Mission Control

To install Cloud Native Runtimes on Tanzu Mission Control:

1. Target the cluster you want to use. See Register Your Management Cluster in the Tanzu

Mission Control documentation.

2. Verify that you are targeting the correct Kubernetes cluster. Run:

kubectl cluster-info

3. Run the installation script from the cloud-native-runtimes directory:

./bin/install.sh

Install on vSphere

To install Cloud Native Runtimes on vSphere 7.0 with Tanzu:

1. Target the cluster you want to use. See Register Your Management Cluster with Tanzu

Mission Control in the VMware Tanzu Kubernetes Grid documentation.

2. Verify that you are targeting the correct Kubernetes cluster. Run:

kubectl cluster-info

3. Run the installation script from the cloud-native-runtimes directory:

cnr_provider=tkgs ./bin/install.sh

Install on Kubernetes Cloud Platforms

To install Cloud Native Runtimes on Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes

Service (AKS), or Google Kubernetes Engine (GKE):

1. Target the cluster you want to use:

For Elastic Kubernetes Service (EKS), see the Amazon documentation.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 18

https://docs.pivotal.io/tkgi/create-cluster.html#create
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-mgmt-clusters-register_tmc.html
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-FBB9722C-1BB4-4CF2-AB4C-A3ADB5FCC971.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html

For Azure Kubernetes Service (AKS), see the Azure documentation.

For Google Kubernetes Engine (GKE), see the Google documentation.

2. Verify that you are targeting the correct Kubernetes cluster. Run:

kubectl cluster-info

3. Run the installation script from the cloud-native-runtimes directory:

./bin/install.sh

Install on a Local Kubernetes Cluster Provider

To install Cloud Native Runtimes on Docker Desktop, kind, or minikube:

Note: To install on minikube, you need at least 4GB of available system RAM for all pods to start.

1. Target the cluster you want to use. See Docker Desktop for Mac user manual, kind User

Guide, or minikube start.

2. Verify that you are targeting the correct Kubernetes cluster. Run:

kubectl cluster-info

3. Run the installation script from the cloud-native-runtimes directory:

cnr_provider=local ./bin/install.sh

Set Up External DNS

Knative uses example.com as the default domain. After Cloud Native Runtimes is installed on your

cluster, you change the default domain to your custom domain.

Note: If you are setting up Cloud Native Runtimes for development or testing, you do not have to set

up an external DNS. However, if you want to access your workloads (apps) over the internet, then

you do need to set an external DNS.

To set up the custom domain and its external DNS record:

1. Set your custom domain by following the instructions Edit using kubectl or Apply from a file

in the Knative documentation.

When your workloads are created, Knative automatically creates URLs for each workload

based on this custom domain.

2. Get the address of the cluster load balancer:

kubectl get service envoy -n contour-external --output 'jsonpath={.status.loadB

alancer.ingress}'

If this command returns a URL instead of an IP address, then ping the URL to get the load

balancer IP address.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 19

https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://docs.docker.com/docker-for-mac/
https://kind.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/start/
https://knative.dev/docs/serving/using-a-custom-domain/#edit-using-kubectl
https://knative.dev/docs/serving/using-a-custom-domain/#apply-from-a-file

3. Create a wildcard DNS A record that assigns the custom domain to the load balancer IP.

Follow the instructions provided by your domain name registrar for creating records.

The record created looks like:

*.DOMAIN IN A TTL LOADBALANCER-IP

Where:

DOMAIN is the custom domain.

TTL is the time-to-live.

LOADBALANCER-IP is the load balancer IP.

For example:

*.mydomain.com IN A 3600 198.51.100.6

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 20

Installing Cloud Native Runtimes for Tanzu
with an Existing Contour Installation

This topic describes how to configure Cloud Native Runtimes for Tanzu with your existing Contour

instance. Cloud Native Runtimes uses Contour to manage internal and external access to the

services in a cluster.

If you see an error about an existing Contour installation when you run the install.sh script,

then follow the procedures on this page to install Cloud Native Runtimes.

About Using Contour with Cloud Native Runtimes

Cloud Native Runtimes needs two instances of Contour. By default, Cloud Native Runtimes deploys

an instance of Contour to the contour-external namespace and a second instance to the contour-

internal namespace. One instance exposes services outside the cluster, and the other is for

services that are private in your network.

The instructions on this page assume that, in your cluster, you have an existing Contour installation

that you manage. To install Cloud Native Runtimes, you must allow it to use your existing Contour

CustomResourceDefinitions.

If you already use a Contour instance to route requests from clients outside the cluster and you want

to share resources with Knative, then you can choose to use your Contour for external services.

Similarly, if you use a Contour instance to route requests from clients inside the cluster and want to

share resources with Knative, choose to use your Contour for internal services.

If you do not have or do not want to reuse Contour instances for services, then Cloud Native

Runtimes will create them.

Prerequisites

The following prerequisites are required to configure Cloud Native Runtimes with an existing Contour

installation:

Contour v1.14. To identify your cluster’s Contour version, see Identify Your Contour Version

below.

Contour CustomResourceDefinitions versions:

Resource Name Version

extensionservices.projectcontour.io v1alpha1

httpproxies.projectcontour.io v1

tlscertificatedelegations.projectcontour.io v1

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 21

Identify Your Contour Version

To identify your cluster’s Contour version:

1. Run:

export CONTOUR_NAMESPACE=contour-namespace

export CONTOUR_DEPLOYMENT=$(kubectl get deployment --namespace $CONTOUR_NAMESPA

CE --output name)

kubectl get $CONTOUR_DEPLOYMENT --namespace $CONTOUR_NAMESPACE --output jsonpat

h="{.spec.template.spec.containers[].image}"

kubectl get crds extensionservices.projectcontour.io --output jsonpath="{.statu

s.storedVersions}"

kubectl get crds httpproxies.projectcontour.io --output jsonpath="{.status.stor

edVersions}"

kubectl get crds tlscertificatedelegations.projectcontour.io --output jsonpath=

"{.status.storedVersions}"

Where CONTOUR-NAMESPACE is the namespace where Contour is installed on your Kubernetes

cluster.

Install Cloud Native Runtimes on a Cluster with Your Existing
Contour Instances

To install Cloud Native Runtimes on a cluster with an existing Contour instance, you customize the

installation script to reuse the CustomResourceDefinitions from your cluster. The variables that you

set depend on whether or not you want Cloud Native Runtimes to reuse your existing Contour

instance.

If you chose not to use your existing Contour installations, the script installs new instances of Contour

to the namespaces contour-external and/or contour-internal using your cluster’s

CustomResourceDefinitions.

Note: If your Contour instance is removed or configured incorrectly, apps running on Cloud Native

Runtimes will lose connectivity.

To install Cloud Native Runtimes on a cluster with existing Contour instances:

1. Decide if you want to reuse your Contour instance(s). See About Using Contour with Cloud

Native Runtimes above.

2. Run the appropriate install command given below:

Use your

Contour for

external

services?

Use your

Contour for

internal

services?

Run:

No No cnr_ingress__reuse_crds=true ./bin/install.sh

Yes No cnr_ingress__reuse_crds=true

cnr_ingress__external__namespace=EXTERNAL-CONTOUR

./bin/install.sh

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 22

Use your

Contour for

external

services?

Use your

Contour for

internal

services?

Run:

No Yes cnr_ingress__reuse_crds=true

cnr_ingress__internal__namespace=INTERNAL-CONTOUR

./bin/install.sh

Yes Yes cnr_ingress__reuse_crds=true

cnr_ingress__external__namespace=EXTERNAL-CONTOUR

cnr_ingress__internal__namespace=INTERNAL-CONTOUR

./bin/install.sh

Where EXTERNAL-CONTOUR and INTERNAL-CONTOUR are the namespaces where Contour is

installed on your Kubernetes cluster.

Make sure you type two underscore symbols (_) after ingress, external, and internal.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 23

Integrating RabbitMQ with Cloud Native
Runtimes for Tanzu

Cloud Native Runtimes for Tanzu supports using RabbitMQ as an event source to react to messages

sent to a RabbitMQ exchange or as an event broker to distribute events within your app. The

integration allows you to create:

A RabbitMQ broker: A Knative Eventing broker backed by RabbitMQ. This broker uses

RabbitMQ exchanges to store CloudEvents that are then routed from one component to

another.

A RabbitMQ source: An event source that translates external messages on a RabbitMQ

exchange to CloudEvents, which can then be used with Knative Serving or Knative Eventing

over HTTP.

About the RabbitMQ Operators

Before you can use or test RabbitMQ eventing on Cloud Native Runtimes, you need to install the

following products on your Kubernetes cluster:

RabbitMQ Cluster Kubernetes Operator v1.8.2. See Install RabbitMQ Cluster Kubernetes

Operator v1.8.2 below.

RabbitMQ Messaging Topology Kubernetes Operator v1.2.1. See Install RabbitMQ Messaging

Topology Kubernetes Operator v1.2.1 below.

cert-manager v1.5.3 and later. See Installation in the cert-manager documentation.

Install RabbitMQ Cluster Kubernetes Operator v1.8.2

The RabbitMQ Cluster Kubernetes Operator (cluster Operator) automates the lifecycle, creation,

upgrade, and shutdown, of RabbitMQ clusters on Kubernetes:

To install the cluster Operator:

1. Create the rabbitmq-system namespace on your Kubernetes cluster where Cloud Native

Runtimes is installed:

kubectl create namespace rabbitmq-system

2. Define the following role binding:

kubectl apply -f - << EOF

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 24

https://cert-manager.io/docs/installation/

 name: rabbitmq-cluster-operator-psp

 namespace: rabbitmq-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: ServiceAccount

 name: rabbitmq-cluster-operator

 namespace: rabbitmq-system

EOF

3. Install the RabbitMQ Cluster Kubernetes Operator v1.8.2 on your Kubernetes cluster where

Cloud Native Runtimes is installed:

kubectl apply -f https://github.com/rabbitmq/cluster-operator/releases/download

/v1.8.2/cluster-operator.yml

For general information about the RabbitMQ Cluster Kubernetes Operator, see

rabbitmq/cluster-operator in GitHub.

Install RabbitMQ Messaging Topology Kubernetes Operator
v1.2.1

The RabbitMQ Messaging Topology Kubernetes Operator (topology Operator) manages the

topologies, or exchange types, of RabbitMQ clusters provisioned by the cluster Operator.

There are two YAMLs for the RabbitMQ Messaging Topology Kubernetes Operator:

messaging-topology-operator-with-certmanager.yaml: Requires that you have cert-

manager v1.5.3 installed

messaging-topology-operator.yaml: Use if you want to generate and include your own

certificates

To install the topology Operator:

1. Read the README.md for the topology Operator in GitHub and decide which YAML to

install.

2. If you are installing the messaging-topology-operator-with-certmanager.yaml, then:

1. Create the cert-manager namespace on your Kubernetes cluster where Cloud Native

Runtimes is installed:

kubectl create namespace cert-manager

2. Define the following role binding:

kubectl apply -f - << EOF

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: cert-manager-psp

 namespace: cert-manager

roleRef:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 25

https://github.com/rabbitmq/cluster-operator
https://github.com/rabbitmq/messaging-topology-operator

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: ServiceAccount

 name: cert-manager

 namespace: cert-manager

- kind: ServiceAccount

 name: cert-manager-cainjector

 namespace: cert-manager

- kind: ServiceAccount

 name: cert-manager-webhook

 namespace: cert-manager

EOF

3. Define the following role binding:

kubectl apply -f - << EOF

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: rabbitmq-topology-psp

 namespace: rabbitmq-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: ServiceAccount

 name: messaging-topology-operator

 namespace: rabbitmq-system

EOF

4. Install the RabbitMQ Messaging Topology Operator v1.2.1 on your Kubernetes cluster where

Cloud Native Runtimes is installed.

For general information about the topology Operator v1.2.1, see the RabbitMQ Messaging

Topology Operator v1.2.1 Release Notes in GitHub.

Next Steps

After completing these installations, you can:

Verify your Knative Eventing installation using an example RabbitMQ broker. For instructions,

see Verify Knative Eventing.

Create a broker, producer, and a consumer to use RabbitMQ and Knative Eventing with your

own app.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 26

https://github.com/rabbitmq/messaging-topology-operator/releases/tag/v1.2.1

Verifying Your Installation

You can verify that your Cloud Native Runtimes for Tanzu installation was successful by testing

Knative Serving, Knative Eventing, and TriggerMesh Sources for Amazon Web Services (SAWS).

Verify with a Private Registry

To verify your installation with a private registry, follow the procedure in Preparing to Create a

Service to create a secret for your private registry before following the steps in the next section.

Verify Installation of Knative Serving, Knative Eventing, and
TriggerMesh SAWS

To verify the installation of Knative Serving, Knative Eventing, and Triggermesh SAWS:

1. Create a namespace and environment variable for the test. Run:

export WORKLOAD_NAMESPACE='cnr-demo'

kubectl create namespace ${WORKLOAD_NAMESPACE}

2. Verify installation of the components that you intend to use:

To test… Create… For instructions, see…

Knative Serving a test service. Verifying Knative Serving

Knative Eventing a broker, a producer, and a consumer. Verifying Knative Eventing

TriggerMesh SAWS an AWS source and trigger it. Verifying TriggerMesh SAWS

3. Delete the namespace that you created for the tests. Run:

kubectl delete namespaces ${WORKLOAD_NAMESPACE}

unset WORKLOAD_NAMESPACE

Preparing to Create a Service

This topic explains how to create private registry credentials to prepare for creating a service. If you

are using a private registry, you must add the same credentials you used for your private registry to

the service account you used to create Knative services.

Note: You must complete following steps for each namespace where you create services.

1. Create a secret for your private registry credentials. Run:

kubectl -n "${WORKLOAD_NS}" create secret docker-registry registry-credentials

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 27

\

--docker-server "$cnr_registry__server" \

--docker-username "$cnr_registry__username" \

--docker-password "$cnr_registry__password"

Where:

WORKLOAD_NS is the namespace where you want to create services.

$cnr_registry__server, $cnr_registry__username, and $cnr_registry__password

environment variables have the same values you used to install Cloud Native

Runtimes with a private registry. See Prerequisites in the Use Image Relocation with

Cloud Native Runtimes section.

2. Add the secret to your namespace’s default service account.

kubectl patch serviceaccount -n ${WORKLOAD_NS} default -p '{"imagePullSecrets":

 [{"name": "registry-credentials"}]}'

Verifying Knative Serving

This topic describes how to verify that Knative Serving was successfully installed.

About Verifying Knative Serving

To verify that Knative Serving was successfully installed, create an example Knative service and test

it.

The procedure below shows you how to create an example Knative service using the Cloud Native

Runtimes sample app, hello-yeti. This sample is custom built for Cloud Native Runtimes and is

stored in the VMware Harbor registry.

Note: If you do not have access to the Harbor registry, you can use the Hello World - Go sample

app in the Knative documentation.

Prerequisites

Before you verify Knative Serving, you must have created the cnr-demo namespace and variable.

See step 1 of Verifying Your Installation.

Test Knative Serving

To create an example Knative service and use it to test Knative Serving:

1. If you are verifying on Tanzu Mission Control or vSphere 7.0 with Tanzu, then create a role

binding in the cnr-demo namespace. Run:

kubectl apply -n "${WORKLOAD_NAMESPACE}" -f - << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: ${WORKLOAD_NAMESPACE}-psp

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 28

https://knative.dev/docs/serving/samples/hello-world/helloworld-go/

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: Group

 name: system:serviceaccounts:${WORKLOAD_NAMESPACE}

EOF

2. Deploy the sample app using the kn CLI. Run:

kn service create hello-yeti -n ${WORKLOAD_NAMESPACE} \

 --image projects.registry.vmware.com/tanzu_serverless/hello-yeti@sha256:17d64

0edc48776cfc604a14fbabf1b4f88443acc580052eef3a753751ee31652 --env TARGET='hello

-yeti'

If you are verifying on Tanzu Mission Control or vSphere 7.0 with Tanzu, then add --user

1001 to the command above to run it as a non-root user.

3. Run one of the following commands to retrieve the external address for your ingress,

depending on your IaaS:

IaaS: Tanzu Kubernetes Grid on AWS

Tanzu Mission Control on AWS

Amazon Elastic Kubernetes Service

Run:
export EXTERNAL_ADDRESS=$(kubectl get service envoy -n contour-external

\

–output ‘jsonpath={.status.loadBalancer.ingress[0].hostname}’)

IaaS: vSphere 7.0 on Tanzu

Tanzu Kubernetes Grid on vSphere/Azure/GCP

Tanzu Kubernetes Grid Integrated Edition

Tanzu Mission Control on vSphere

Azure Kubernetes Service

Google Kubernetes Engine

Run:
export EXTERNAL_ADDRESS=$(kubectl get service envoy -n contour-external

\

–output ‘jsonpath={.status.loadBalancer.ingress[0].ip}’)

IaaS: Local Kubernetes Cluster:

Docker desktop

Kind

Minikube

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 29

Run:
export EXTERNAL_ADDRESS=‘localhost:8080’

And, on another terminal, set up port forwarding. Run:

kubectl -n contour-external port-forward svc/envoy 8080:80

4. Connect to the app. Run:

curl -H "Host: hello-yeti.${WORKLOAD_NAMESPACE}.example.com" ${EXTERNAL_ADDRESS

}

If external DNS is correctly configured, you can also visit the URL in a web browser.

On success, you see a reply from our mascot, Carl the Yeti.

Delete the Example Knative Service

After verifying your serving installation, delete the example Knative service and unset the

environment variable:

1. Run:

kn service delete hello-yeti -n ${WORKLOAD_NAMESPACE}

unset EXTERNAL_ADDRESS

2. If you created port forwarding in step 4 above, then terminate that process.

Verify Knative Eventing

This topic describes how to verify that Knative Eventing was successfully installed.

Note: The Knative eventing functionality is in beta. VMware does not recommend using Knative

eventing functionality in a production environment.

About Verifying Knative Eventing

You can verify Knative Eventing by setting up a broker, creating a producer, and creating a

consumer. If your installation was successful, you can create a test eventing workflow and see that

the events appear in the logs.

You can use either an in-memory broker or a RabbitMQ broker to verify Knative Eventing:

RabbitMQ broker: Using a RabbitMQ broker to verify Knative Eventing is a scalable and

reliable way to verify your installation. Verifying with RabbitMQ uses methods similar to

production environments.

In-memory broker: Using an in-memory broker is a fast and lightweight way to verify that the

basic elements of Knative Eventing are installed. An in-memory broker is not meant for

production environments or for use with apps that you intend to take to production.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 30

Prerequisites

Before you verify Knative Eventing, you must:

Have created the cnr-demo namespace and variable. See step 1 of Verifying Your Installation.

Create the following role binding in the cnr-demo namespace. Run:

kubectl apply -f - << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: ${WORKLOAD_NAMESPACE}-psp

 namespace: ${WORKLOAD_NAMESPACE}

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: Group

 name: system:serviceaccounts:${WORKLOAD_NAMESPACE}

EOF

Prepare the RabbitMQ Environment

If you are using a RabbitMQ broker to verify Knative Eventing, follow the procedure in this section. If

you are verifying with the in-memory broker, skip to Verify Knative Eventing.

To prepare the RabbitMQ environment before verifying Knative Eventing:

1. Set up the RabbitMQ integration as described in Integrating RabbitMQ with Cloud Native

Runtimes for Tanzu.

2. On the Kubernetes cluster where Cloud Native Runtimes is installed, deploy a RabbitMQ

cluster using the RabbitMQ Cluster Operator by running:

kubectl apply -f - << EOF

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: my-rabbit

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 replicas: 1

 override:

 statefulSet:

 spec:

 template:

 spec:

 securityContext: {}

 containers: []

 initContainers:

 - name: setup-container

 securityContext:

 runAsUser: 999

 runAsGroup: 999

EOF

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 31

Note: The override section can be omitted if your cluster allows containers to run as root.

Verify Knative Eventing

To verify installation of Knative Eventing create and test a broker, procedure, and consumer in the

cnr-demo namespace:

1. Create a broker.

For the RabbitMQ broker. Run:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: default

 namespace: ${WORKLOAD_NAMESPACE}

 annotations:

 eventing.knative.dev/broker.class: RabbitMQBroker

spec:

 config:

 apiVersion: rabbitmq.com/v1beta1

 kind: RabbitmqCluster

 name: my-rabbit

 namespace: ${WORKLOAD_NAMESPACE}

EOF

For the in-memory broker. Run:

kubectl create -f - <<EOF

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: default

 namespace: ${WORKLOAD_NAMESPACE}

EOF

2. Create a consumer for the events. Run:

cat <<EOF | kubectl create -f -

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: event-display

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 template:

 spec:

 containers:

 - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event

_display

EOF

3. Create a trigger. Run:

kubectl apply -f - << EOF

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 32

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: event-display

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 broker: default

 subscriber:

 ref:

 apiVersion: serving.knative.dev/v1

 kind: Service

 name: event-display

 namespace: ${WORKLOAD_NAMESPACE}

EOF

4. Create a producer. Run:

cat <<EOF | kubectl create -f -

apiVersion: sources.knative.dev/v1

kind: PingSource

metadata:

 name: test-ping-source

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 schedule: "*/1 * * * *"

 data: '{"message": "Hello Eventing!"}'

 sink:

 ref:

 apiVersion: eventing.knative.dev/v1

 kind: Broker

 name: default

 namespace: ${WORKLOAD_NAMESPACE}

EOF

5. Verify that the event appears in your consumer logs. Run:

kubectl logs -l serving.knative.dev/service=event-display -c user-container -n

${WORKLOAD_NAMESPACE} --since=10m --tail=50

Delete the Eventing Resources

After verifying your serving installation, clean up by deleting the resources used for the test:

1. Delete the eventing resources:

kubectl delete pingsource/test-ping-source -n ${WORKLOAD_NAMESPACE}

kubectl delete trigger/event-display -n ${WORKLOAD_NAMESPACE}

kubectl delete kservice/event-display -n ${WORKLOAD_NAMESPACE}

kubectl delete broker/default -n ${WORKLOAD_NAMESPACE}

2. If you created a RabbitMQ cluster:

kubectl delete rabbitmqcluster/my-rabbit -n ${WORKLOAD_NAMESPACE}

3. Delete the role binding:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 33

kubectl delete rolebinding/${WORKLOAD_NAMESPACE}-psp -n ${WORKLOAD_NAMESPACE}

Verifying TriggerMesh SAWS

This topic describes how to verify that TriggerMesh Sources for Amazon Web Services (SAWS) was

installed successfully.

TriggerMesh SAWS allows you to consume events from your AWS services and send them to

workloads running in your cluster.

Cloud Native Runtimes for Tanzu includes an installation of the Triggermesh SAWS controller and

CRDs. You can find the controller in the triggermesh namespace.

For general information about TriggerMesh SAWS, see aws-event-sources in GitHub.

The procedure below shows you how to test TriggerMesh SAWS using the example of an event

source for Amazon CodeCommit. If you want to test using a different AWS service, see samples in

GitHub. The basic steps are the same, regardless of the AWS service you choose: create a broker,

trigger, and consumer and then test.

Prerequisites

Before you verify TriggerMesh SAWS with AWS CodeCommit, you must have:

An AWS service account

An AWS CodeCommit repository with push and pull access

Verify TriggerMesh SAWS

To verify TriggerMesh SAWS with AWS CodeCommit:

1. Create a broker:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: broker

 namespace: ${WORKLOAD_NAMESPACE}

EOF

2. Create a trigger:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: trigger

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 broker: broker

 subscriber:

 ref:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 34

https://github.com/triggermesh/aws-event-sources
https://github.com/triggermesh/aws-event-sources/tree/main/config/samples

 apiVersion: serving.knative.dev/v1

 kind: Service

 name: consumer

 namespace: ${WORKLOAD_NAMESPACE}

EOF

3. Create a consumer:

kubectl apply -f - << EOF

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: consumer

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 template:

 spec:

 containers:

 - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event

_display

EOF

4. Add an AWS service account secret:

Note: Kubernetes uses base64 encoding to store secrets. Convert your AWS keys to base64

before proceeding. For more information about base64 encoding, see Distribute Credentials

Securely Using Secrets in the Kubernetes documentation.

kubectl apply -f - << EOF

apiVersion: v1

data:

 aws_access_key_id: ID-BASE64

 aws_secret_access_key: KEY-BASE64

kind: Secret

metadata:

 name: awscreds

 namespace: ${WORKLOAD_NAMESPACE}

type: Opaque

EOF

Where:

ID-BASE64 is the AWS access key for your AWS service account encoded in base64.

KEY-BASE64 is your AWS access key for your AWS service account encoded in

base64.

5. Create the AWSCodeCommitSource:

kubectl apply -f - << EOF

apiVersion: sources.triggermesh.io/v1alpha1

kind: AWSCodeCommitSource

metadata:

 name: source

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 arn: ARN

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 35

https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/

 branch: BRANCH

 eventTypes:

 - push

 - pull_request

 credentials:

 accessKeyID:

 valueFromSecret:

 name: awscreds

 key: aws_access_key_id

 secretAccessKey:

 valueFromSecret:

 name: awscreds

 key: aws_secret_access_key

 sink:

 ref:

 apiVersion: eventing.knative.dev/v1

 kind: Broker

 name: broker

 namespace: ${WORKLOAD_NAMESPACE}

EOF

Where:

ARN is Amazon Resource Name (ARN) of your CodeCommit repository. For example,

arn:aws:codecommit:eu-central-1:123456789012:triggermeshtest.

BRANCH is the branch of your CodeCommit repository that you want the trigger to

watch. For example, main.

6. Create an event by pushing a commit to your CodeCommit repository.

7. Watch the consumer logs to see that the event appears after a minute:

kubectl logs -l serving.knative.dev/service=consumer -c user-container -n ${WOR

KLOAD_NAMESPACE} --since=10m --tail=50

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 36

Developing Locally on Kind

This topic explains how to configure Cloud Native Runtimes for Tanzu to develop locally on kind.

Developing locally on kind allows you to visit URLs generated by Knative for your services in a

browser, or use curl to view URLs.

Prerequisites

Before you follow the procedures below, you must have access to:

Docker Hub

The internet

Because this feature uses the CoreDNS container image hosted on Docker Hub, you need internet

access to pull the image.

Configure Your Local Kind Cluster

To develop locally with Cloud Native Runtimes on kind, you need to create a cluster with ports

mapped from your host machine to your kind cluster.

To create a cluster and map ports from your host machine to your kind cluster:

1. Create and save a file named kind-cluster.yaml that contains following code:

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

 - role: control-plane

 - role: worker

 extraPortMappings:

 - containerPort: 31443 # expose port 31443 of the node to port 80 on the hos

t for use later by Contour ingress (envoy)

 hostPort: 443

 - containerPort: 31080 # expose port 31080 of the node to port 80 on the hos

t for use later by Contour ingress (envoy)

 hostPort: 80

 - containerPort: 30053 # expose CoreDNS port to port 53 on the host machine

 hostPort: 53

 protocol: udp

 - containerPort: 30053 # expose CoreDNS port to port 53 on the host machine

 hostPort: 53

 protocol: tcp

2. Create a kind cluster. Run:

kind create cluster --config kind-cluster.yaml

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 37

Install Cloud Native Runtimes Locally

After you create a local cluster with kind, you can install Cloud Native Runtimes on that cluster with a

flag to enable local DNS. The install script and flag adds a CoreDNS deployment in the cloud-

native-runtimes namespace.

1. Ensure that your Kubernetes client targets your local kind cluster. Run:

kubectl cluster-info

If your Kubernetes client targets your local cluster, the return includes your local cluster

information.

2. From the cloud-native-runtimes directory, run the installation script:

cnr_provider=local cnr_local_dns__enable=true ./bin/install.sh

Note: Knative Serving routes use example.com as the default domain. See Setting up a custom

domain in the Knative documentation. If you want to use the Local DNS feature with your custom

domain, specify your custom domain in the install command: for example, cnr_provider=local

cnr_local_dns__enable=true cnr_local_dns__domain=mydomain.com.

Test Your CoreDNS

You can verify that your CoreDNS is configured correctly using Dig. For information about using Dig

DNS lookup, see Dig in the Google Admin Toolbox.

To use Dig to verify your CoreDNS:

1. Run:

dig test.YOUR-DOMAIN @127.0.0.1

Where YOUR-DOMAIN is the name of your domain.

If your CoreDNS is configured correctly, the return includes the IPv4 loopback address

127.0.0.1.

Set the Host Machine DNS

To use your CoreDNS to resolve queries, set your host machine to use the IPv4 loopback address

127.0.0.1 as the DNS server.

If you are using DHCP, disconnecting and reconnecting your network connection resets your

nameserver.

If your local cluster is deleted, your normal DNS queries continue working because you have other

DNS servers configured.

Set on MacOS

To set the host machine DNS on MacOS:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 38

https://knative.dev/docs/serving/using-a-custom-domain/
https://toolbox.googleapps.com/apps/dig/#A/

1. Create a directory called /etc/resolver, if the directory does not already exist.

2. Inside this directory, create a file with the same name as your domain. If you are using the

default domain, the filename is /etc/resolver/example.com.

3. Populate the file with the following nameserver to let your machine know to send any

requests for your domain to localhost: nameserver 127.0.0.1.

Set on Linux

To set the host machine DNS on Linux:

1. Add the following line to the top of your /etc/resolv.conf file:

nameserver 127.0.0.1

The nameserver entries are an ordered list, so anything not served by localhost continues

down the file to try other entries.

Note: Setting 127.0.0.1 as your primary DNS server can break nslookup on Linux, because it uses

only the primary DNS server.

Set on Windows

To set the host machine DNS on Windows:

1. Complete the steps under Change your DNS servers settings, and enter the IPv4 loopback

address 127.0.0.1 as the preferred DNS server. See Change your DNS servers settings in

the Google Public DNS documentation.

2. (Optional) Input another preferred DNS server as the alternate DNS server.

3. (Optional) You may need to disable IPv6 for the resolution to be successful.

Note: Setting 127.0.0.1 as your primary DNS server can break nslookup on Windows, because it

uses only the primary DNS server.

Reset the Host Machine DNS

You can reset the host machine DNS to another IPv4 loopback address using the procedure for your

operating system below.

Reset on MacOS

To reset the host machine DNS on MacOS:

1. Remove the /etc/resolver/YOUR-DOMAIN file.

Reset on Linux

To reset the host machine DNS on Linux:

1. Remove the following line from the top of your /etc/resolv.conf file:

nameserver 127.0.0.1

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 39

https://developers.google.com/speed/public-dns/docs/using#windows

Reset on Windows

To reset the host machine DNS on Windows:

1. Complete the steps under Change your DNS servers settings, and enter the IPv4 loopback

address as your original preferred DNS server address. See Change your DNS servers

settings in the Google Public DNS documentation.

2. (Optional) Enable IPv6 if you disabled it when you set the host machine DNS.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 40

https://developers.google.com/speed/public-dns/docs/using#windows

Enabling Automatic TLS Certificate
Provisioning for Cloud Native Runtimes for
Tanzu

You can configure Cloud Native Runtimes for Tanzu to automatically obtain and renew TLS

certificates for your workloads. Automatic TLS certificate provisioning allows you to secure your

clusters and domains without manually generating or renewing certificates. Automatic TLS certificate

provisioning reduces the manual certificate workload for admins and developers.

Cloud Native Runtimes supports both HTTP01 and DNS01 cert-manager challenge types. For more

information about cert-manager challenge types, see ACME in the cert-manager documentation.

VMware recommends using Let’s Encrypt as your certificate authority. However, you can integrate

Cloud Native Runtimes with any ACME compatible certificate authority.

Prerequisites

You can enable HTTPS with Automatic TLS certificate provisioning for Cloud Native Runtimes.

You need the following prerequisites to use secure HTTPS connections with automatic TLS

certificate provisioning:

A cluster configured to use a custom domain. See Setting Up a Custom Domain in the

Knative documentation.

A DNS provider configured with your domain name.

cert-manager version 1.0.0 or later. See Installing cert-manager for TLS certificates in the

Knative documentation.

HTTP01 challenges: An internet-reachable cluster.

DNS01 challenges: API access to set DNS records.

Enable Auto TLS Using an HTTP01 Challenge

You can use the HTTP01 challenge type to validate a domain with Cloud Native Runtimes. The HTTP01

challenge requires that your load balancer be reachable from the internet via HTTP.

Note: With the HTTP01 challenge type, you provision a certificate for each service.

To enable automatic TLS certificate provisioning using a HTTP01 challenge, do the following:

1. Create a cert-manager Issuer or ClusterIssuer for the HTTP01 challenge. See Issuer in the

cert-manager documentation. The following example creates a ClusterIssuer using the

Let’s Encrypt Certificate Authority. See Let’s Encrypt. To use a ClusterIssuer for the HTTP01

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 41

https://cert-manager.io/docs/configuration/acme/
https://knative.dev/docs/serving/using-a-custom-domain
https://knative.dev/docs/serving/installing-cert-manager/
https://cert-manager.io/docs/concepts/issuer/
https://letsencrypt.org/

challenge, run:

kubectl apply -f - <<EOF

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-http01-issuer

spec:

 acme:

 privateKeySecretRef:

 name: letsencrypt

 server: https://acme-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

EOF

2. To validate that your ClusterIssuer was created successfully, run:

kubectl get clusterissuer letsencrypt-http01-issuer --output yaml

3. Edit your config-certmanager ConfigMap in the knative-serving namespace to reference

the ClusterIssuer you created. Run:

kubectl edit configmap config-certmanager --namespace knative-serving

4. To define which ClusterIssuer will be used by Knative to issue certificates, add the following

issuerRef block under the data section of the config-certmanager ConfigMap:

...

data:

...

 issuerRef: |

 kind: ClusterIssuer

 name: letsencrypt-http01-issuer

5. To validate that your ConfigMap was updated successfully, run:

kubectl get configmap config-certmanager --namespace knative-serving --output j

sonpath="{.data.issuerRef}"

6. Edit the config-network ConfigMap in the knative-serving namespace to enable automatic

TLS certificate provisioning and specify how HTTP requests are handled. Run:

kubectl edit configmap config-network --namespace knative-serving

Note: For HTTP01 challenges, the httpProtocol field must be set to Enabled for the cluster to

accept HTTP01 challenge requests.

apiVersion: v1

kind: ConfigMap

metadata:

 name: config-network

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 42

 namespace: knative-serving

data:

 ...

 autoTLS: Enabled

 ...

 httpProtocol: Enabled

 ...

7. To validate that your ConfigMap was updated successfully, run:

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.autoTLS}"

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.httpProtocol}"

8. Verify that your automatic TLS certificate instance is configured correctly by deploying a

sample app. See Verify Auto TLS in the Knative documentation.

Enable Auto TLS Using a DNS01 Challenge

The DNS01 challenge validates that you control your domain’s DNS by accessing and updating your

domain’s TXT record. You need to provide a cert-manager with your DNS API credentials. For a list

of DNS01 providers supported for the ACME Issuer, see the cert-manager documentation.

To enable automatic TLS certificate provisioning using a DNS01 challenge, do the following:

1. Set up credentials for cert-manager to access your DNS records. For information about

setting up credentials for your ACME Issuer supported DNS provider, see Supported DNS01

providers in the cert-manager documentation. In the next step, you create an Issuer on

cert-manager with the configuration you set up.

2. Create a cert-manager Issuer or ClusterIssuer for DNS01 challenge on the cert-manager

Issuer you set up in the previous step. The following example uses Let’s Encrypt and Google

Cloud DNS. For information about other DNS providers supported by cert-manager, see the

cert-manager documentation. The Issuer assumes that your Kubernetes secret holds

credentials for the service account created. Run the following command to apply the

ClusterIssuer:

kubectl apply --filename - <<EOF

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-dns-issuer

spec:

 acme:

 server: https://acme-v02.api.letsencrypt.org/directory

 # This will register an issuer with LetsEncrypt.

 email: MY-EMAIL

 privateKeySecretRef:

Note

: You can provision certificates per service only.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 43

https://knative.dev/docs/serving/using-auto-tls/#verify-auto-tls
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers

 # Set privateKeySecretRef to any unused secret name.

 name: letsencrypt-dns-issuer

 solvers:

 - dns01:

 cloudDNS:

 project: $PROJECT_ID

 # Set this to the secret that we publish our service account key

 # in the previous step.

 serviceAccountSecretRef:

 name: cloud-dns-key

 key: key.json

EOF

Where MY-EMAIL is your email address.

3. To verify that your ClusterIssuer is created successfully, run:

kubectl get clusterissuer letsencrypt-dns-issuer --output yaml

4. Edit your config-certmanager ConfigMap in the knative-serving namespace to reference

the ClusterIssuer created in the previous step. Run:

kubectl edit configmap config-certmanager --namespace knative-serving

5. Add an issuerRef block under the data section of your ConfigMap. This defines the

ClusterIssuer Knative uses to issue certificates. Run:

...

data:

...

 issuerRef: |

 kind: ClusterIssuer

 name: letsencrypt-dns-issuer

6. To validate that your file was updated successfully, run:

kubectl get configmap config-certmanager --namespace knative-serving --output j

sonpath="{.data.issuerRef}"

7. To enable automatic TLS certificate provisioning and specify how HTTP requests are

handled, edit your config-network ConfigMap in the knative-serving namespace:

kubectl edit configmap config-network --namespace knative-serving

Note: When using the DNS01 challenge type, the httpProtocol field must be set to Enabled.

apiVersion: v1

kind: ConfigMap

metadata:

 name: config-network

 namespace: knative-serving

data:

 ...

 autoTLS: Enabled

 ...

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 44

 httpProtocol: Enabled

 ...

8. Validate that your file was updated successfully. Run:

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.autoTLS}"

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.httpProtocol}"

9. Verify that your automatic TLS certificate instance is functioning correctly by deploying a

sample app. See Verify Auto TLS in the Knative documentation.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 45

https://knative.dev/docs/serving/using-auto-tls/#verify-auto-tls

Configuring Observability for Cloud Native
Runtimes for Tanzu

You can set up integrations with third-party observability tools to use logging, metrics, and tracing

with Cloud Native Runtimes for Tanzu. These observability integrations allow you to monitor and

collect detailed metrics from your clusters on Cloud Native Runtimes. You can collect logs and

metrics for all workloads running on a cluster. This includes Cloud Native Runtimes components or

any apps running on Cloud Native Runtimes. The integrations in this topic are recommended by

VMware, however you can use any Kubernetes compatible logging, metrics, and tracing platforms to

monitor your cluster workload.

Logging

You can collect and forward logs for all workloads on a cluster, including Cloud Native Runtimes

components or any apps running on Cloud Native Runtimes. You can use any logging platform that

is compatible with Kubernetes to collect and forward logs for Cloud Native Runtimes workloads.

VMware recommends using Fluent Bit to collect logs and then forward logs to vRealize. The

following sections describe configuring logging for Cloud Native Runtimes with Fluent Bit and

vRealize as an example.

Configure Logging with Fluent Bit

You can use Fluent Bit to collect logs for all workloads on a cluster, including Cloud Native Runtimes

components or any apps running on Cloud Native Runtimes. For more information about using

Fluent Bit logs, see Fluent Bit Kubernetes Logging in the Fluent Bit documentation.

Fluent Bit lets you collect logs from Kubernetes containers, add Kubernetes metadata to these logs,

and forward logs to third-party log storage services. For more information about collecting logs, see

Logging in the Knative documentation.

If you are using Tanzu Mission Control (TMC), vSphere 7.0 with Tanzu, or Tanzu Kubernetes Cluster

to manage your cloud native environment, you must set up a role binding that grants required

permissions to Fluent Bit containers in order to configure logging with any integration. Then, you can

follow the instructions in the Fluent Bit documentation to complete the logging configuration. For

more information about configuring Fluent Bit logging, see Installation in the Fluent Bit

documentation.

To configure logging with Fluent Bit for your Cloud Native Runtimes environment:

1. VMware recommends that you add any integrations to the ConfigMap in both your Knative

Serving and Knative Eventing namespaces. Follow the logging configuration steps in the

Fluent Bit documentation to create the Namespace, ServiceAccount, Role, RoleBinding, and

ConfigMap. To view these steps, see Installation in the Fluent Bit documentation.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 46

https://docs.fluentbit.io/manual/installation/kubernetes
https://knative.dev/docs/install/collecting-logs/
https://docs.fluentbit.io/manual/installation/kubernetes#installation
https://docs.fluentbit.io/manual/installation/kubernetes#installation

2. If you are using TMC, vSphere with Tanzu, or Tanzu Kubernetes Cluster to manage your

cloud native environment, create a role binding in the Kubernetes namespace where your

integration will be deployed to grant permission for privileged Fluent Bit containers. For

information about creating a role binding on a Tanzu platform, see Add a Role Binding in the

TMC documentation. For information about viewing your Kubernetes namespaces, see

Viewing Namespaces in the Kubernetes documentation. Create the following role binding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: fluentbit-psp-rolebinding

 namespace: FLUENTBIT-NAMESPACE

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: PRIVILEGED-CLUSTERROLE

subjects:

- kind: ServiceAccount

 name: FLUENTBIT-SERVICEACCOUNT

 namespace: FLUENTBIT-NAMESPACE

Where:

FLUENTBIT-NAMESPACE is your Fluent Bit namespace.

PRIVILEGED-CLUSTERROLE is the name of your privileged cluster role.

FLUENTBIT-SERVICEACCOUNT is your Fluent Bit service account.

3. To verify that you have configured logging successfully, run the following to access logs

through your web browser:

kubectl port-forward --namespace logging service/log-collector 8080:80

For more information about accessing Fluent Bit logs, see Logging in the Knative

documentation.

Forward Logs to vRealize

After you configure log collection, you can forward logs to log management services. vRealize Log

Insight is one service you can use with Cloud Native Runtimes. vRealize Log Insight is a scalable log

management solution that provides log management, dashboards, analytics, and third-party

extensibility for infrastructure and apps. For more information about vRealize Log Insight, see the

VMware vRealize Log Insight Documentation.

To forward logs from your Cloud Native Runtimes environment to vRealize, you can use a new or

existing instance of Tanzu Kubernetes Cluster. For information about how to configure log

forwarding to vRealize from Tanzu Kubernetes Cluster, see the Configure Log forwarding from

VMware Tanzu Kubernetes Cluster to vRealize Log Insight Cloud blog.

Metrics

Cloud Native Runtimes integrates with Prometheus and Tanzu Observability by Wavefront to collect

metrics on components or apps. For more information about integrating with Prometheus, see

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 47

https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-using/GUID-DBC3FF6D-F206-4047-8F21-ED8154A7537D.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces
https://knative.dev/docs/install/collecting-logs/
https://docs.vmware.com/en/vRealize-Log-Insight/index.html
https://blogs.vmware.com/management/2020/06/configure-log-forwarding-from-vmware-tanzu-kubernetes-cluster-to-vrealize-log-insight-cloud.html

Overview in the Prometheus documentation and Kubernetes Integration in the Wavefront

documentation.

You can configure Prometheus endpoints on Cloud Native Runtimes components in order to be able

to collect metrics on your components or apps. For information on annotations required to collect

metrics on apps, see Per-Pod Prometheus Annotations in the WeaveWorks documentation.

You can use annotation based discovery with Prometheus to define which Kubernetes objects in

your Cloud Native Runtimes environment to add metadata and collect metrics in a more automated

way. For more information about using annotation based discovery, see Annotation based discovery

in GitHub.

You can then use the Wavefront Collector for Kubernetes collector to dynamically discover and

scrape pods with the prometheus.io/scrape annotation prefix. For information about the Kubernetes

collector, see Wavefront Collector for Kubernetes in GitHub.

Tracing

Tracing is a method for understanding the performance of specific code paths in apps as they handle

requests. You can configure tracing to collect performance metrics for your apps or Cloud Native

Runtimes components. You can trace which aspects of Cloud Native Runtimes and workloads

running on Cloud Native Runtimes are performing poorly.

Configuring Tracing

You can configure tracing for your apps on Cloud Native Runtimes. To do this, you configure tracing

for both Knative Serving and Eventing by editing the ConfigMap for your Knative namespace.

To configure tracing, do the following:

1. Configure the config-tracing ConfigMap in your Knative component namespace. VMware

recommends that you add any integrations to the ConfigMap in both your Serving and

Eventing namespaces. For information on how to enable request traces in each component,

see the following Knative documentation:

Serving. See Accessing request traces.

Eventing. See Accessing CloudEvent traces.

Forwarding Trace Data to a Data Visualization Tool

You can use the OpenTelemetry integration with Tanzu Observability by Wavefront to forward trace

data to Tanzu Observability by Wavefront. For information about forwarding trace data, see Sending

Metrics Data to Wavefront in the Wavefront documentation.

To configure to send trace data to Cloud Native Runtimes tracing with Tanzu Observability by

Wavefront and the OpenTelemetry integration, do the following:

Note

: All Cloud Native Runtimes related metrics are emitted with the prefix

tanzu.vmware.com/cloud-native-runtimes.*.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 48

https://prometheus.io/docs/introduction/overview/
https://docs.wavefront.com/kubernetes.html
https://www.weave.works/docs/cloud/latest/tasks/monitor/configuration-k8s/#per-pod-prometheus-annotations
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/6d1cf432d0ef2de4840e96c2b74950451b6bde2f/docs/discovery.md#annotation-based-discovery
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes
https://knative.dev/docs/serving/accessing-traces/
https://knative.dev/docs/eventing/accessing-traces/
https://docs.wavefront.com/opentelemetry.html#opentelemetry-integration

1. Use the following documentation to configure the OpenTelemetry Integration to send trace

data to with Cloud Native Runtimes. For more information about sending trace data with

OpenTelemetry, see OpenTelemetry Integration in the Wavefront documentation.

2. Deploy the Wavefront Proxy. For more information about wavefront proxies, see Deploy a

Wavefront Proxy in Kubernetes in the Wavefront documentation.

Use the following .yaml file to install the Wavefront proxy in your Kubernetes cluster:

wavefront.yaml.

Provide the URL of your Wavefront instance and a Wavefront token.

Uncomment the lines indicated in the yaml file to enable consumption of Zipkin

traces.

Sending Trace Data to an Observability Platform

You can send trace data to an observability and analytics platform to view and monitor your trace

data in dashboards.

One way to do this is to integrate Tanzu Observability by Wavefront with your Cloud Native Runtimes

environment. To view your trace data in Wavefront, you configure Cloud Native Runtimes to send

traces to the Wavefront proxy and then configure the Wavefront proxy to consume Zipkin spans.

For more information about using Zipkin for tracing, see the Zipkin documentation.

You can send trace data from Cloud Native Runtimes to Wavefront by using Zipkin as the backend

and defining the Zipkin endpoint as the Wavefront proxy URL listening over port 9411. You configure

Cloud Native Runtimes to send traces directly to the Wavefront proxy by editing the zipkin-

endpoint property in the ConfigMap to point to the Wavefront proxy URL. You can configure the

Wavefront proxy to consume Zipkin spans by listening to port 9411.

To send trace data to Tanzu Observability by Wavefront:

1. Edit the ConfigMap to enable the Zipkin tracing integration. VMware recommends that you

add any integrations to the ConfigMap in both your Serving and Eventing namespaces. Edit

the Knative config-tracing ConfigMap to set backend to zipkin and pass the Wavefront proxy

URL in the zipkin-endpoint field:

Kubectl edit configmap config-tracing —namespace knative-serving apiVersion: v1

kind: ConfigMap

metadata:

name: config-tracing

...

data:

backend: "zipkin"

zipkin-endpoint: "http://wavefront-proxy.default.svc.cluster.local:9411/api/v2/

spans" ...

Use Wavefront Dashboards

Cloud Native Runtimes provides two Wavefront dashboards in JSON format. You can use these

dashboard to monitor your apps and investigate performance issues. For information about

configuring dashboards, see Create and Customize Dashboards in the Wavefront documentation.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 49

https://docs.wavefront.com/opentelemetry.html#opentelemetry-integration
https://docs.wavefront.com/kubernetes.html#step-1-deploy-a-wavefront-proxy-in-kubernetes
https://github.com/wavefrontHQ/wavefront-kubernetes/blob/master/wavefront-proxy/wavefront.yaml
https://docs.wavefront.com/wavefront_api.html#generating-an-api-token
https://zipkin.io/
https://docs.wavefront.com/ui_dashboards.html

The following Wavefront dashboards are compatible with Cloud Native Runtimes: - Application

Operator Service View. See app-operator-service-view.json in the Cloud Native Runtimes

installation .tar file. - Application Operator Revision View. See app-operator-revision-view.json in

the Cloud Native Runtimes installation .tar file.

To import a dashboard JSON file, use one of the following methods: - Wavefront REST API -

Wavefront CLIs.

You must provide the URL of your Wavefront instance and a Wavefront token. For more information

about Wavefront tokens, see Generating an API Token in the Wavefront documentation.

Import Wavefront Dashboards

You can import the Wavefront dashboards using either the Wavefront API or the Ruby Wavefront

CLI. For more information about Wavefront dashboard, see Import Dashboards with the Wavefront

API or Import with a Ruby Wavefront CLI below.

Import Dashboards with the Wavefront API

To import a Wavefront dashboard with the Wavefront API, run:

curl -H "Content-Type: application/json" -H 'Authorization: Bearer <wavefront-token>'

\

 https://<wavefront-instance>.wavefront.com/api/v2/dashboard -d @observability/wave

front/app-operator-service-view.json

curl -H "Content-Type: application/json" -H 'Authorization: Bearer <wavefront-token>'

\

 https://<wavefront-instance>.wavefront.com/api/v2/dashboard -d @dashboards/wavefro

nt/app-operator-revision-view.json

After you run the import code, the Wavefront API creates two dashboards with the following names

and URLs:

Title: Cloud Native Runtimes App Operator - Service View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Service-

Level

Title: Cloud Native Runtimes App Operator - Revision View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Revision-

Level

Import with the Ruby Wavefront CLI

To import a Wavefront dashboard with the Ruby Wavefront CLI, run:

export WAVEFRONT_TOKEN=<wavefront-token>

export WAVEFRONT_ENDPOINT=<wavefront-instance>.wavefront.com

wf config envvars

wf dashboard import observability/wavefront/app-operator-service-view.json

wf dashboard import dashboards/wavefront/app-operator-revision-view.json

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 50

https://docs.wavefront.com/wavefront_api.html
https://github.com/snltd/wavefront-cli
https://docs.wavefront.com/wavefront_api.html#generating-an-api-token

After you run the import code, the Ruby Wavefront CLI creates two dashboards with a name and

URL.

The Service View of the Cloud Native Runtimes App Operator dashboard will have the following title

and URL:

Title: Cloud Native Runtimes App Operator - Service View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Service-

Level

The Revision View of the Cloud Native Runtimes App Operator dashboard will have the following title

and URL:

Title: Cloud Native Runtimes App Operator - Revision View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Revision-

Level

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 51

Configuring Cloud Native Runtimes for
Tanzu with Avi Vantage

You can configure Cloud Native Runtimes for Tanzu to integrate with Avi Vantage. Avi Vantage is a

multi-cloud platform that delivers features such as load balancing, security, and container ingress

services. The Avi Controller provides a control plane. Avi Service Engines provides a data plane. The

Avi Service Engines forward incoming traffic to your Kubernetes cluster’s Envoy pods, which are

created and managed by Contour.

For information about Avi Vantage, see Avi Documentation.

Integrate Avi Vantage with Cloud Native Runtimes

This procedure assumes that you have already installed Cloud Native Runtimes. See Installing Cloud

Native Runtimes. If you have not already installed Cloud Native Runtimes, you need to create a

cluster, run the install script, and set up Contour in addition to the steps below. For more information

about installing with Contour, see Installing Cloud Native Runtimes with an Existing Contour

Installation.

To configure Cloud Native Runtimes with Avi Vantage, do the following:

1. Deploy the Avi Controller on any Avi supported infrastructure providers. For a list of Avi

supported providers, see Avi Installation Guides. For more information about deploying an

Avi Controller, see Install Avi Kubernetes Operator in the Avi Vantage documentation.

2. Deploy the Avi Kubernetes Operator to your Kubernetes cluster where Cloud Native

Runtimes is hosted. See Install AKO for Kubernetes in the Avi Vantage documentation.

3. Connect to a test app and verify that it is reachable. Run:

"curl -H KNATIVE-SERVICE-DOMAIN" ENVOY-IP

Where:

KNATIVE-SERVICE-DOMAIN is the name of your domain.

ENVOY-IP is the IP address of your Envoy instance.

For more information about deploy a sample application and connect to the application, see

Test Knative Serving.

4. (Optional) Create a DNS record that will configure your KService URL to point to the Avi

Service Engines, and resolve to the external IP of the Envoy. You can create a DNS record

on any platform that supports DNS services. Refer to the documentation for your DNS

service platform for more information.

To get the KService URL, run:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 52

https://avinetworks.com/docs/
https://avinetworks.com/docs/20.1/installation-guides-landing-page/
https://avinetworks.com/docs/ako/1.2/ako-installation/
https://avinetworks.com/docs/ako/1.4/ako-installation/#install-ako-for-kubernetes

kn route describe APP-NAME | grep "URL"

To get Envoy’s external IP, follow step 3 in Test Knative Serving in Verifying your Serving

Installation.

About Routing with Avi Vantage and Cloud Native Runtimes

The following diagram shows how Avi Vantage integrates with Cloud Native Runtimes:

When Contour creates a Kubernetes LoadBalancer service for Envoy, the Avi Kubernetes Operator

(AKO) sees the new LoadBalancer service. Then Avi Controller creates a Virtual Service. For

information about LoadBalancer services, see Type LoadBalancer in the Kubernetes documentation.

For each Envoy service, Avi Controller creates a corresponding Virtual Service. See Virtual Services

in the Avi Vantage documentation.

After Avi Controller creates a Virtual Service, the Controller configures the Avi Service Engines to

forward traffic to the Envoy pods. The Envoy pods route traffic based on incoming requests,

including traffic splitting and path based routing.

The Avi Controller provides Envoy with an external IP address so that apps are reachable by the app

developer.

Note: Avi does not interact directly with any Cloud Native Runtimes resources. Avi Vantage forwards

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 53

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://avinetworks.com/docs/latest/architectural-overview/applications/virtual-services/

all incoming traffic to Envoy.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 54

Configuring Cloud Native Runtimes for
Tanzu with Tanzu Service Mesh

This topic describes the workaround for using Tanzu Service Mesh with Cloud Native Runtimes for

Tanzu. You cannot install Cloud Native Runtimes on a cluster that has Tanzu Service Mesh attached.

If you want to install Cloud Native Runtimes on a cluster where Tanzu Service Mesh is attached,

follow the procedure below.

This workaround describes how Tanzu Service Mesh can be configured to ignore the Cloud Native

Runtimes namespaces. This allows Contour to provide ingress routing for the Knative workloads,

while Tanzu Service Mesh continues to satisfy other connectivity concerns.

Note: Cloud Native Runtimes workloads are unable to use Tanzu Service Mesh features like Global

Namespace, Mutual Transport Layer Security authentication (mTLS), retries, and timeouts.

For information about Tanzu Service Mesh, see Tanzu Service Mesh Documentation.

Run Cloud Native Runtimes on a Cluster Attached to Tanzu
Service Mesh

This procedure assumes you have a cluster attached to Tanzu Service Mesh, and that you have not

yet installed Cloud Native Runtimes.

Note: If you installed Cloud Native Runtimes on a cluster that has Tanzu Service Mesh attached

before doing the procedure below, pods fail to start. To fix this problem, follow the procedure below

and then delete all pods in the excluded namespaces.

Configure Tanzu Service Mesh to ignore namespaces related to Cloud Native Runtimes:

1. Navigate to the Cluster Overview tab in the Tanzu Service Mesh UI.

2. On the cluster where you want to install Cloud Native Runtimes, click …, then select Edit

Cluster….

3. Create an Is Exactly rule for each of the following namespaces:

contour-external

contour-internal

knative-serving

knative-eventing

knative-sources

knative-discovery

triggermesh

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 55

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/index.html

vmware-sources

cloud-native-runtimes

rabbitmq-system

kapp-controller

The namespace or namespaces where you plan to run Knative workloads.

Next Steps

After configuring Tanzu Service Mesh, install Cloud Native Runtimes and verify your installation:

1. Install Cloud Native Runtimes. See Installing Cloud Native Runtimes.

2. Verify your installation. See Verifying Your Installation.

Note: You must create all Knative workloads in the namespace or namespaces where you plan to

run these Knative workloads. If you do not, your pods fail to start.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 56

Troubleshooting Cloud Native Runtimes for
Tanzu

This topic describes troubleshooting information for problems during Cloud Native Runtimes for

Tanzu installation or configuration.

Cannot connect to app on AWS

Symptom

On AWS, you see the following error when connecting to your app:

curl: (6) Could not resolve host: a***********************7.us-west-2.elb.amazonaws.co

m

Solution

Try connecting to your app again after 5 minutes. The AWS LoadBalancer name resolution takes

several minutes to propagate.

minikube Pods Fail to Start

Symptom

On minikube, you see the following error when installing Cloud Native Runtimes:

3:03:59PM: error: reconcile job/contour-certgen-v1.10.0 (batch/v1) namespace: contour-

internal

Pod watching error: Creating Pod watcher: Get "https://192.168.64.17:8443/api/v1/pods?

labelSelector=kapp.k14s.io%2Fapp%3D1618232545704878000&watch=true": dial tcp 192.168.6

4.17:8443: connect: connection refused

kapp: Error: waiting on reconcile job/contour-certgen-v1.10.0 (batch/v1) namespace: co

ntour-internal:

 Errored:

 Listing schema.GroupVersionResource{Group:"", Version:"v1", Resource:"pods"}, names

paced: true:

 Get "https://192.168.64.17:8443/api/v1/pods?labelSelector=kapp.k14s.io%2Fassociati

on%3Dv1.572a543d96e0723f858367fcf8c6af4e": unexpected EOF

Solution

Increase your available system RAM to at least 4 GB.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 57

Knative Services never become ready when using AutoTLS

Symptom

In the config-network ConfigMap, httpProtocol is set to either Redirected or Disabled, like the

example below:

apiVersion: v1

kind: ConfigMap

metadata:

 name: config-network

 namespace: knative-serving

data:

 ...

 autoTLS: Enabled

 httpProtocol: Redirected # OR Disabled

 ...

When you create a Knative service, the service does not become ready.

$ kubectl get ksvc helloworld

NAME URL LATESTCREATED LATESTRE

ADY READY REASON

helloworld https://helloworld.default.example.com helloworld-jfnzt-1 helloworld-

jfnzt-1 Unknown EndpointsNotReady

Solution

This is a known issue in 1.0.x versions of Cloud Native Runtimes. Set httpProtocol to Enabled so

that AutoTLS to works properly, like the example below:

apiVersion: v1

kind: ConfigMap

metadata:

 name: config-network

 namespace: knative-serving

data:

 ...

 autoTLS: Enabled

 httpProtocol: Enabled

 ...

Installation fails with kapp-controller v0.16

Symptom

When installing Cloud Native Runtimes, you see the following error:

kapp: Error: waiting on reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1

) namespace: cloud-native-runtimes:

 Finished unsuccessfully (Reconcile failed: (message: Fetching (0): Unsupported way

to fetch templates))

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 58

Solution

Install kapp-controller v0.17.0 or later on your cluster. Cloud Native Runtimes requires kapp-

controller support for imgpkgBundle fetcher, which was introduced in kapp-controller v0.17.0.

On some Kubernetes versions and cloud providers, Tanzu Kubernetes Grid v1.3.1 installs kapp-

controller v0.16.0, which is incompatible with Cloud Native Runtimes. For more information about

Tanzu Kubernetes Grid kapp-controller versions, see the TKG Release Notes.

Installation fails to reconcile app/cloud-native-runtimes

Symptom

When installing Cloud Native Runtimes, you see one of the following errors:

11:41:16AM: ongoing: reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1) n

amespace: cloud-native-runtime

11:41:16AM: ^ Waiting for generation 1 to be observed

kapp: Error: Timed out waiting after 15m0s

Or,

3:15:34PM: ^ Reconciling

3:16:09PM: fail: reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1) names

pace: cloud-native-runtimes

3:16:09PM: ^ Reconcile failed: (message: Deploying: Error (see .status.usefulErrorMe

ssage for details))

kapp: Error: waiting on reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1

) namespace: cloud-native-runtimes:

 Finished unsuccessfully (Reconcile failed: (message: Deploying: Error (see .status.

usefulErrorMessage for details)))

Explanation

The cloud-native-runtimes deployment app installs the subcomponents of Cloud Native Runtimes.

Error messages about reconciling indicate that one or more subcomponents have failed to install.

Solution

Use the following procedure to examine logs:

1. Get the logs from the cloud-native-runtimes app by running:

kubectl get app/cloud-native-runtimes -n cloud-native-runtimes -o jsonpath="{.s

tatus.deploy.stdout}"

Note: If the command does not return log messages, then kapp-controller is not installed or

is not running correctly.

2. Review the output for subcomponent deployments that have failed or are still ongoing. See

the examples below for suggestions on resolving common problems.

Example 1: The Cloud Provider does not support the creation of Service type

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 59

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3.1/rn/VMware-Tanzu-Kubernetes-Grid-131-Release-Notes.html#component-versions

LoadBalancer

Follow these steps to identify and resolve the problem of the cloud provider not supporting services

of type LoadBalancer:

1. Search the log output for Load balancer, for example by running:

kubectl -n cloud-native-runtimes get app cloud-native-runtimes -ojsonpath="{.st

atus.deploy.stdout}" | grep "Load balancer" -C 1

2. If the output looks similar to the following, ensure that your cloud provider supports services

of type LoadBalancer. For more information, see Prerequisites.

6:30:22PM: ongoing: reconcile service/envoy (v1) namespace: contour-external

6:30:22PM: ^ Load balancer ingress is empty

6:30:29PM: ---- waiting on 1 changes [322/323 done] ----

Example 2: The webhook deployment failed

Follow these steps to identify and resolve the problem of the webhook deployment failing in the

vmware-sources namespace:

1. Review the logs for output similar to the following:

10:51:58PM: ok: reconcile customresourcedefinition/httpproxies.projectcontour.i

o (apiextensions.k8s.io/v1) cluster

10:51:58PM: fail: reconcile deployment/webhook (apps/v1) namespace: vmware-sour

ces

10:51:58PM: ^ Deployment is not progressing: ProgressDeadlineExceeded (message

: ReplicaSet "webhook-6f5d979b7d" has timed out progressing.)

2. Run kubectl get pods to find the name of the pod:

kubectl get pods --show-labels -n NAMESPACE

Where NAMESPACE is the namespace associated with the reconcile error, for example,

vmware-sources.

For example,

$ kubectl get pods --show-labels -n vmware-sources

NAME READY STATUS RESTARTS AGE LABELS

webhook-6f5d979b7d-cxr9k 0/1 Pending 0 44h app=webhook,kapp.

k14s.io/app=1626302357703846007,kapp.k14s.io/association=v1.9621e0a793b4e925077

dd557acedbcfe,pod-template-hash=6f5d979b7d,role=webhook,sources.tanzu.vmware.co

m/release=v0.23.0

3. Run kubectl logs and kubectl describe:

kubectl logs PODNAME -n NAMESPACE

kubectl describe pod PODNAME -n NAMESPACE

Where:

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 60

PODNAME is found in the output of step 3, for example webhook-6f5d979b7d-cxr9k.

NAMESPACE is the namespace associated with the reconcile error, for example,

vmware-sources.

For example:

$ kubectl logs webhook-6f5d979b7d-cxr9k -n vmware-sources

$ kubectl describe pod webhook-6f5d979b7d-cxr9k -n vmware-sources

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedScheduling 80s (x14 over 14m) default-scheduler 0/1 nodes are

 available: 1 Insufficient cpu.

4. Review the output from the kubectl logs and kubectl describe commands and take further

action.

For this example of the webhook deployment, the output indicates that the scheduler does

not have enough CPU to run the pod. In this case, the solution is to add nodes or CPU cores

to the cluster. If you are using Tanzu Mission Control (TMC), increase the number of workers

in the node pool to three or more through the TMC UI. See Edit a Node Pool, in the TMC

documentation.

Cloud Native Runtimes Installation Fails with Existing Contour
Installation

Symptom

You see the following error message when you run the install script:

Could not proceed with installation. Refer to Cloud Native Runtimes documentation for

details on how to utilize an existing Contour installation. Another app owns the custo

m resource definitions listed below.

Solution

Follow the procedure in Install Cloud Native Runtimes on a Cluster with Your Existing Contour

Instances to resolve the issue.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 61

https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-using/GUID-53D4E904-3FFE-464A-8814-13942E03232A.html

Upgrading Cloud Native Runtimes for Tanzu

This topic describes how to upgrade Cloud Native Runtimes for Tanzu to the latest version.

There is no formal upgrade path from the beta version of Cloud Native Runtimes to a general

availability (GA) release. To upgrade from beta to Cloud Native Runtimes v1.x, you need to uninstall

the old release and install the latest, as outlined below.

Upgrade from Beta to GA

To upgrade Cloud Native Runtimes from v0.2 to v1.0 or later:

1. Uninstall. See Uninstalling Cloud Native Runtimes.

2. Install. See Installing Cloud Native Runtimes.

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 62

Uninstalling Cloud Native Runtimes for
Tanzu

This topic describes how to uninstall Cloud Native Runtimes for Tanzu.

To uninstall Cloud Native Runtimes

1. Run:

kapp delete -a cloud-native-runtimes -n cloud-native-runtimes

kubectl delete ns cloud-native-runtimes

Cloud Native Runtimes for VMware Tanzu 1.0

VMware, Inc 63

	Cloud Native Runtimes for Tanzu Overview
	Scaling
	Development
	Deployment
	Event-Driven Apps

	Cloud Native Runtimes for Tanzu Release Notes
	v1.0.3
	Resolved Issues
	Components

	v1.0.2
	Resolved Issues

	v1.0.1
	Resolved Issues

	v1.0.0
	Breaking Changes
	New Features
	Known Issues
	Components

	v0.2.0
	Features
	Known Issues
	Components

	Installing Cloud Native Runtimes for Tanzu
	Prerequisites
	Create a Kubernetes Cluster
	Download Cloud Native Runtimes
	Use Image Relocation with Cloud Native Runtimes
	Prerequisites
	Relocate Image to Private Registry

	Install Cloud Native Runtimes
	Install on Tanzu Kubernetes Grid
	Install on TKGI
	Install on Tanzu Mission Control
	Install on vSphere
	Install on Kubernetes Cloud Platforms
	Install on a Local Kubernetes Cluster Provider

	Set Up External DNS

	Installing Cloud Native Runtimes for Tanzu with an Existing Contour Installation
	About Using Contour with Cloud Native Runtimes
	Prerequisites
	Identify Your Contour Version
	Install Cloud Native Runtimes on a Cluster with Your Existing Contour Instances

	Integrating RabbitMQ with Cloud Native Runtimes for Tanzu
	About the RabbitMQ Operators
	Install RabbitMQ Cluster Kubernetes Operator v1.8.2
	Install RabbitMQ Messaging Topology Kubernetes Operator v1.2.1
	Next Steps

	Verifying Your Installation
	Verify with a Private Registry
	Verify Installation of Knative Serving, Knative Eventing, and TriggerMesh SAWS

	Preparing to Create a Service
	Verifying Knative Serving
	About Verifying Knative Serving
	Prerequisites
	Test Knative Serving
	Delete the Example Knative Service

	Verify Knative Eventing
	About Verifying Knative Eventing
	Prerequisites
	Prepare the RabbitMQ Environment
	Verify Knative Eventing
	Delete the Eventing Resources

	Verifying TriggerMesh SAWS
	Prerequisites
	Verify TriggerMesh SAWS

	Developing Locally on Kind
	Prerequisites
	Configure Your Local Kind Cluster
	Install Cloud Native Runtimes Locally
	Test Your CoreDNS
	Set the Host Machine DNS
	Set on MacOS
	Set on Linux
	Set on Windows

	Reset the Host Machine DNS
	Reset on MacOS
	Reset on Linux
	Reset on Windows

	Enabling Automatic TLS Certificate Provisioning for Cloud Native Runtimes for Tanzu
	Prerequisites
	Enable Auto TLS Using an HTTP01 Challenge
	Enable Auto TLS Using a DNS01 Challenge

	Configuring Observability for Cloud Native Runtimes for Tanzu
	Logging
	Configure Logging with Fluent Bit
	Forward Logs to vRealize

	Metrics
	Tracing
	Configuring Tracing
	Forwarding Trace Data to a Data Visualization Tool
	Sending Trace Data to an Observability Platform

	Use Wavefront Dashboards
	Import Wavefront Dashboards
	Import Dashboards with the Wavefront API
	Import with the Ruby Wavefront CLI

	Configuring Cloud Native Runtimes for Tanzu with Avi Vantage
	Integrate Avi Vantage with Cloud Native Runtimes
	About Routing with Avi Vantage and Cloud Native Runtimes

	Configuring Cloud Native Runtimes for Tanzu with Tanzu Service Mesh
	Run Cloud Native Runtimes on a Cluster Attached to Tanzu Service Mesh
	Next Steps

	Troubleshooting Cloud Native Runtimes for Tanzu
	Cannot connect to app on AWS
	Symptom
	Solution

	minikube Pods Fail to Start
	Symptom
	Solution

	Knative Services never become ready when using AutoTLS
	Symptom
	Solution

	Installation fails with kapp-controller v0.16
	Symptom
	Solution

	Installation fails to reconcile app/cloud-native-runtimes
	Symptom
	Explanation
	Solution
	Example 1: The Cloud Provider does not support the creation of Service type LoadBalancer
	Example 2: The webhook deployment failed

	Cloud Native Runtimes Installation Fails with Existing Contour Installation
	Symptom
	Solution

	Upgrading Cloud Native Runtimes for Tanzu
	Upgrade from Beta to GA

	Uninstalling Cloud Native Runtimes for Tanzu

