
Cloud Native Runtimes for
VMware Tanzu 1.3

Cloud Native Runtimes for VMware Tanzu 1.3

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Cloud Native Runtimes Overview 7

Overview 7

Cloud Native Runtimes release notes 9

v1.3.0 9

New features 9

Resolved issues 9

Known issues 9

Components 9

Integrations you can use with Cloud Native Runtimes 11

CNR Integrations 11

Install Cloud Native Runtimes 12

Prerequisites 12

Install 12

Administrator Guide for Cloud Native Runtimes 15

Configure your External DNS with Cloud Native Runtimes 15

Overview 15

Configure custom domain 15

Configure Knative Service Domain Template 16

Use your existing TLS Certificate for Cloud Native Runtimes 17

Prerequisites 17

Installing Cloud Native Runtimes with your Existing Contour Installation 18

About Using Contour with Cloud Native Runtimes 18

Prerequisites 19

Identify Your Contour Version 19

Install Cloud Native Runtimes on a Cluster with Your Existing Contour Instances 20

Securing Your Web Workloads in Cloud Native Runtimes 20

Overview 21

Prerequisites 21

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 3

Enable Auto TLS Using an HTTP01 Challenge 21

Enable Auto TLS Using a DNS01 Challenge 23

Configuring Eventing with RabbitMQ for Cloud Native Runtimes 24

Overview 25

About the RabbitMQ Operators 25

Install RabbitMQ Cluster Kubernetes Operator v1.8.2 25

Install RabbitMQ Messaging Topology Kubernetes Operator v1.2.1 26

Next Steps 27

Configuring Observability for Cloud Native Runtimes 27

Overview 27

Logging 28

Configure Logging with Fluent Bit 28

Forward Logs to vRealize 29

Metrics 29

Tracing 30

Configuring Tracing 30

Forwarding Trace Data to a Data Visualization Tool 30

Sending Trace Data to an Observability Platform 30

Use Wavefront Dashboards 31

Import Wavefront Dashboards 31

Import Dashboards with the Wavefront API 31

Import with the Ruby Wavefront CLI 32

Configuring Cloud Native Runtimes with Avi Vantage 32

Overview 33

Integrate Avi Vantage with Cloud Native Runtimes 33

About Routing with Avi Vantage and Cloud Native Runtimes 33

Configuring Cloud Native Runtimes with Tanzu Service Mesh 34

Overview 35

Run Cloud Native Runtimes on a Cluster Attached to Tanzu Service Mesh 35

Next Steps 36

Troubleshooting Cloud Native Runtimes 36

Cannot connect to app on AWS 36

Symptom 36

Solution 36

minikube Pods Fail to Start 36

Symptom 36

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 4

Solution 37

Pulling an image with imgpkg overwrites the cloud-native-runtimes directory 37

Symptom 37

Solution 37

Installation fails to reconcile app/cloud-native-runtimes 37

Symptom 37

Explanation 37

Solution 37

Example 1: The Cloud Provider does not support the creation of Service
type LoadBalancer

38

Example 2: The webhook deployment failed 38

Cloud Native Runtimes Installation Fails with Existing Contour Installation 39

Symptom 39

Solution 39

Verifying Your Installation 41

Prerequisites 41

Verify Installation of Knative Serving, Knative Eventing, and TriggerMesh SAWS 42

Verifying Knative Serving for Cloud Native Runtimes 42

About Verifying Knative Serving 42

Prerequisites 43

Test Knative Serving 43

Delete the Example Knative Service 44

Verify Knative Eventing 44

About Verifying Knative Eventing 45

Prerequisites 45

Prepare the RabbitMQ Environment 45

Verify Knative Eventing 46

Delete the Eventing Resources 48

Verifying TriggerMesh SAWS for Cloud Native Runtimes 48

Overview 48

Prerequisites 48

Verify TriggerMesh SAWS 49

Upgrading Cloud Native Runtimes 52

Prerequisites 52

Upgrade Cloud Native Runtimes 52

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 5

Uninstalling Cloud Native Runtimes 53

Overview 53

Uninstall 53

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 6

Cloud Native Runtimes Overview

This topic gives you an overview of Cloud Native Runtimes, commonly known as CNR.

Overview

Cloud Native Runtimes (CNR) is enterprise supported Knative, with the Carvel tools suite for

deployment and Contour for networking. CNR offers everything Knative does and some extras that

make it ideal for cloud native application development. Cloud Native Runtimes gives developers

environmental simplicity and administrators deployment control. Cloud Native Runtimes works on

any single Kubernetes cluster running Kubernetes v1.21 and later.

CNR utilizes Knative’s main features of Serving and Eventing to provide:

Automatic pod scaling.

Traffic splitting by code release version.

Event-triggered workloads.

Cloud Native Runtimes simplifies the Developer experience.

Kubernetes Developers need to know: Cloud Native Runtimes Developers need to know:

Pods Pods

Deployment & Rollout Progress Knative Service

Service (networking model)

Ingress

Labels and selectors

Cloud Native Runtimes increases Administrator control and support.

Administrators can:

Manage infrastructure costs with request driven autoscaling.

Test deployments with traffic splitting by code version

Use Carvel command tools to simplify deployment.

Enterprise Support when you need it.

Cloud Native Runtimes works well with these use cases:

Batch Jobs Processing

AI/ML

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 7

Application or Network Monitoring

IOT

Event driven and serverless application architectures.

For more information on the software that makes Cloud Native Runtimes see:

Knative Documentation Home - Knative

Carvel Tools Suite Documentation Carvel - Home

Contour Networking Documentation Contour

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 8

https://knative.dev/docs/
https://carvel.dev/
https://projectcontour.io/

Cloud Native Runtimes release notes

This topic contains release notes for Cloud Native Runtimes (CNR) for Tanzu v1.3.

v1.3.0

Release Date: July 12, 2022

New features

New features in this release:

Documentation: The Cloud Native Runtimes documentation is refactored to align with Tanzu

Application Platform.

Removed config option local_dns: The config options for local_dns were removed. They

were added when CNR was a standalone offering, but now that Cloud Native Runtimes is part

of Tanzu Application Platform, the config options don’t work as intended.

Knative 1.3: See Knative Release Notes for serving and eventing.

Contour 1.19.1 Included as part of new Knative version

Golang Bump: Built with Golang 1.17.11.

Resolved issues

This release has the following fixes:

The rabbitmq-controller-manager pod is no longer repeatedly restarted.

Kapp-controller updates default_tls_secret in the config-contour ConfigMap when

needed.

The lite config option in the Cloud Native Runtimes package definition is now on by default

when the provider config value is set to “local”.

Known issues

This release has the following issues:

Cloud Native Runtimes fails to install when configured with reuse_crds:true and no internal

and/or external Contour namespace provided on a cluster with Contour installed at a version

other than 1.19.1. Tanzu Application Platform 1.2.0 includes Contour 1.18.2. Therefore, it is

succeptible to this issue when configured as described. See Installing Cloud Native Runtimes

with an Existing Contour Installation for more details.

Components

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 9

https://github.com/knative/serving/releases/tag/knative-v1.3.2
https://github.com/knative/eventing/releases/tag/knative-v1.3.2
https://github.com/knative-sandbox/net-contour/tree/knative-v1.3.0/config/contour
https://go.dev/doc/devel/release#go1.17.minor
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.3/tanzu-cloud-native-runtimes/GUID-contour.html

Cloud Native Runtimes v1.3.0 uses the following component versions:

Release Details

Version v1.3.0

Release date July 12, 2022

Component Version

Knative Serving 1.3.2

Knative Eventing 1.3.2

Knative Eventing RabbitMQ Integration 1.3.1

Knative cert-manager Integration 1.3.0

Knative Serving Contour Integration 1.3.0

VMware Tanzu Sources for Knative 1.3.0

TriggerMesh Sources from Amazon Web Services (SAWS) 1.6.0

vSphere Event Sources 1.3.0

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 10

Integrations you can use with Cloud Native
Runtimes

This topic tells you the supported integrations for Cloud Native Runtimes. For more information

regarding these integrations, see the CNR Administrator Guide.

CNR Integrations

CNR Integration Version Documentation

VMware Tanzu Observability Supported Configuring Observability for CNR

Avi Vantage Supported Configuring CNR with Avi Vantage

Rabbit MQ Supported Configuring CNR with RabbitMQ

Tanzu Service Mesh Supported Configuring CNR with Tanzu Service Mesh

For tools and software compatibility, please refer to Tanzu Application Platform’s requirements.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 11

https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-prerequisites.html#kubernetes-cluster-requirements-3

Install Cloud Native Runtimes

This document describes how you can install Cloud Native Runtimes, commonly known as CNR, from

the Tanzu Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Cloud Native Runtimes. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Cloud Native Runtimes:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Contour is installed in the cluster. Contour can be installed from the Tanzu Application

package repository. If you have have an existing Contour installation, see Installing Cloud

Native Runtimes with an Existing Contour Installation.

Install

To install Cloud Native Runtimes:

1. List version information for the package by running:

tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for cnrs.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 cnrs.tanzu.vmware.com 1.3.0 2022-07-12 00:00:00 -0800 PST

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get cnrs.tanzu.vmware.com/1.3.0 --values-schema -

n tap-install

For example:

$ tanzu package available get cnrs.tanzu.vmware.com/1.3.0 --values-schema

 -n tap-install

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 12

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install-online-profile.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-prerequisites.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-cert-mgr-contour-fcd-install-cert-mgr.html#install-contour-2
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.3/tanzu-cloud-native-runtimes/GUID-contour.html?hWord=N4IghgNiBcIC5gA4AIDGB7AdndBXATiAL5A

 Retrieving package details for cnrs.tanzu.vmware.com/1.3.0...

 KEY DEFAULT TYPE DESCRIPTION

 nodeport.enable false boole

an Optional: Set to "true" to change envoy Service in contour-external f

rom Type LoadBalancer to Type NodePort. On by default when "provider" is

set to "local".

 provider <nil> strin

g Optional: Kubernetes cluster provider. To be specified if deploying C

NR on TKGs or on a local Kubernetes cluster provider.

 default_tls_secret <nil> strin

g Optional: Overrides the config-contour configmap in namespace knative

-serving.

 domain_template {{.Name}}.{{.Namespace}}.{{.Domain}} strin

g Optional: specifies the golang text template string to use when const

ructing the Knative service's DNS name.

 lite.enable false boole

an Optional: Not recommended for production. Set to "true" to reduce CPU

 and Memory resource requests for all CNR Deployments, Daemonsets, and St

atefulsets by half. On by default when "provider" is set to "local".

 pdb.enable true boole

an Optional: Set to true to enable Pod Disruption Budget. If provider lo

cal is set to "local", the PDB will be disabled automatically.

 domain_config <nil> objec

t Optional: Overrides the config-domain configmap in namespace knative-

serving. Must be valid YAML.

 domain_name <nil> strin

g Optional: Default domain name for Knative Services.

 ingress.external.namespace <nil> strin

g Optional: Only valid if a Contour instance already present in the clu

ster. Specify a namespace where an existing Contour is installed on your

cluster (for external services) if you want CNR to use your Contour insta

nce.

 ingress.internal.namespace <nil> strin

g Optional: Only valid if a Contour instance already present in the clu

ster. Specify a namespace where an existing Contour is installed on your

cluster (for internal services) if you want CNR to use your Contour insta

nce.

 ingress.reuse_crds false boole

an Optional: Only valid if a Contour instance already present in the clu

ster. Set to "true" if you want CNR to re-use the cluster's existing Cont

our CRDs.

2. Create a cnr-values.yaml file by using the following sample as a guide to configure

Cloud Native Runtimes:

Note: For most installations, you can leave the cnr-values.yaml empty, and use the

default values.

Configures the domain that Knative Services will use

domain_name: "mydomain.com"

Configuration Notes: * If you are running on a single-node cluster, such as

minikube, set the provider: local option. This option reduces resource

requirements by using a NodePort service instead of a LoadBalancer and reduces

the number of replicas.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 13

If you are running on TKGs, set the provider: tkgs option. This option

applies TKGs specific configurations.

Cloud Native Runtimes reuses the existing tanzu-system-ingress Contour

installation for external and internal access when installed in the light or full

profile. If you want to use a separate Contour installation for system-internal

traffic, set cnrs.ingress.internal.namespace to the empty string ("").

If you are running on a multinode cluster, do not set provider.

If your environment already has Contour installed, the installed Contour might

conflict with the Cloud Native Runtimes installation. For information about

how to prevent conflicts, see Installing Cloud Native Runtimes with an Existing

Contour Installation. Specify values for ingress.reuse_crds,

ingress.external.namespace, and ingress.internal.namespace in the cnr-

values.yaml file.

3. Install the package by running:

tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 1.3.0 -

n tap-install -f cnr-values.yaml --poll-timeout 30m

For example:

$ tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 1.3.0

 -n tap-install -f cnr-values.yaml --poll-timeout 30m

- Installing package 'cnrs.tanzu.vmware.com'

| Getting package metadata for 'cnrs.tanzu.vmware.com'

| Creating service account 'cloud-native-runtimes-tap-install-sa'

| Creating cluster admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Creating cluster role binding 'cloud-native-runtimes-tap-install-cluster-role

binding'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'cloud-native-runtimes' in namespace 'tap-install'

4. Verify the package install by running:

tanzu package installed get cloud-native-runtimes -n tap-install

For example:

tanzu package installed get cloud-native-runtimes -n tap-install

| Retrieving installation details for cc...

NAME: cloud-native-runtimes

PACKAGE-NAME: cnrs.tanzu.vmware.com

PACKAGE-VERSION: 1.3.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 14

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.3/tanzu-cloud-native-runtimes/GUID-contour.html

Administrator Guide for Cloud Native
Runtimes

The next several pages show you how to use, troubleshoot, integrate, upgrade and uninstall CNR.

Configure your External DNS with Cloud Native Runtimes

This topic describes how you can configure your external DNS with Cloud Native Runtimes,

commonly known as CNR.

Overview

Knative uses example.com as the default domain.

Note: If you are setting up Cloud Native Runtimes for development or testing, you do not have to set

up an external DNS. However, if you want to access your workloads (apps) over the internet, then

you do need to set up a custom domain and an external DNS.

Configure custom domain

To set up the custom domain and its external DNS record:

1. Configure your custom domain:

When your workloads are created, Knative will automatically create URLs for each workload

based on the configuration in the domain ConfigMap.

To set a default custom domain, edit your cnr-values.yml file to contain the following:

domain_name: "mydomain.com"

This will modify the Knative domain ConfigMap to use domain_name as the default

domain.

Note: domain_name must be a valid DNS subdomain.

Advanced: To overwrite the domain ConfigMap entirely, edit your cnr-values.yml file

to contain your desired config-domain options, similar to the following:

domain_config: |

 mydomain.com: |

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 15

 mydomain.org: |

 selector:

 app: nonprofit

This will replace the body of the Knative domain ConfigMap with domain_config. This

will allow you to configure multiple custom domains, and configure a custom domain

for a service depending on its labels.

See Changing the default domain for more information about the structure of the

domain ConfigMap.

Note: domain_config must be valid YAML and a valid domain ConfigMap.

Note: You can only use one of domain_config or domain_name at a time. You may not use

both.

2. Get the address of the cluster load balancer:

kubectl get service envoy -n EXTERNAL-CONTOUR-NS --output 'jsonpath={.status.lo

adBalancer.ingress}'

Where EXTERNAL-CONTOUR-NS is the namespace where a Contour serving external traffic is

installed. If Cloud Native Runtimes was installed as part of a Tanzu Application Profile, this

value will likely be tanzu-system-ingress.

If this command returns a URL instead of an IP address, then ping the URL to get the load

balancer IP address.

3. Create a wildcard DNS A record that assigns the custom domain to the load balancer IP.

Follow the instructions provided by your domain name registrar for creating records.

The record created looks like:

*.DOMAIN IN A TTL LOADBALANCER-IP

Where:

DOMAIN is the custom domain.

TTL is the time-to-live.

LOADBALANCER-IP is the load balancer IP.

For example:

If you chose to configure multiple custom domains above, you will need to create a wildcard

DNS record for each domain.

Configure Knative Service Domain Template

Knative uses domain template which specifies the golang text template string to use when

constructing the Knative service’s DNS name. The default value is {{.Name}}.{{.Namespace}}.

{{.Domain}}. Valid variables defined in the template include Name, Namespace, Domain, Labels,

*.mydomain.com IN A 3600 198.51.100.6

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 16

https://knative.dev/docs/serving/using-a-custom-domain/#changing-the-default-domain

and Annotations.

To configure domain template for the created Knative Services, edit your cnr-values.yml file to

contain the following:

domain_template: "{{.Name}}-{{.Namespace}}.{{.Domain}}"

This will modify the Knative domain-template ConfigMap to use domain_template as the default

domain template.

Changing this value might be necessary when the extra levels in the domain name generated are

problematic for wildcard certificates that only support a single level of domain name added to the

certificate’s domain. In those cases you might consider using a value of {{.Name}}-{{.Namespace}}.

{{.Domain}}, or removing the Namespace entirely from the template.

When choosing a new value, be thoughtful of the potential for conflicts, such as when users the use

of characters like - in their service or namespace names.

{{.Annotations}} or {{.Labels}} can be used for any customization in the go template if needed.

It is strongly recommended to keep namespace part of the template to avoid domain name clashes:

eg. {{.Name}}-{{.Namespace}}.{{ index .Annotations "sub"}}.{{.Domain}} and you have an

annotation {"sub":"foo"}, then the generated template would be {Name}-{Namespace}.foo.

{Domain}.

Use your existing TLS Certificate for Cloud Native Runtimes

This topic tells you how to use your existing TLS Certificate for Cloud Native Runtimes, commonly

known as CNR.

Prerequisites

In order to configure TLS for Cloud Native Runtimes, you must first configure a Service Domain. For

more information, see Configuring External DNS with CNR.

To configure your TLS certificate for the created Knative Services, follow the steps:

Create a Kubernetes Secret to hold your TLS Certificate

kubectl create -n <Enter developer namespace here> secret tls <Enter TLS_NAME name her

e> \

 --key key.pem \

 --cert cert.pem

Create a delegation. To do so, create a “tlscertdelegation.yaml” file with following contents

 apiVersion: projectcontour.io/v1

 kind: TLSCertificateDelegation

 metadata:

 name: default-delegation

 namespace: <Enter developer namespace here>

 spec:

 delegations:

 - secretName: <Enter the above TLS_NAME here>

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 17

 targetNamespaces:

 - "<Enter developer namespace here>"

Apply the above yaml file by running

 k apply -f tlscertdelegation.yaml

Include the following config in your tap-values.yml file and redeploy:

default_tls_secret: "<Enter developer namespace here>/<Enter the above TLS_NAME here>"

To redeploy run -

tanzu package installed update tap -p tap.tanzu.vmware.com --values-file "tap-values.y

ml" -n tap-install

This will modify the Knative default_tls_secret ConfigMap to use default_tls_secret as the

default tls certificate

Installing Cloud Native Runtimes with your Existing Contour
Installation

This topic describes how you can configure Cloud Native Runtimes, commonly known as CNR, with

your existing Contour instance. Cloud Native Runtimes uses Contour to manage internal and external

access to the services in a cluster.

About Using Contour with Cloud Native Runtimes

The instructions on this page assume that you have an existing Contour installation on your cluster.

Follow the instructions on this page if:

You have installed Contour as part of TAP and wish to configure Cloud Native Runtimes to

use it.

You see an error about an existing Contour installation when you install the Cloud

Native Runtimes package, then follow the procedures on this page to install Cloud Native

Runtimes.

Cloud Native Runtimes needs two instances of Contour: one instance for exposing services outside

the cluster, and another instance for services that are private in your network. If installed as part of a

Tanzu Application Platform profile, by default Cloud Native Runtimes will use the Contour installed in

the namespace tanzu-system-ingress for both internal and external traffic. If no Contour

namespaces are provided, Cloud Native Runtimes deploys an instance of Contour to the contour-

external namespace and a second instance to the contour-internal namespace.

If you already use a Contour instance to route requests from clients outside the cluster, you can use

that instance in place of Cloud Native Runtimes’ default contour-external instance. Similarly, if you

already use a Contour instance to route requests from clients inside the cluster, you can use that

instance in place of Cloud Native Runtimes’ default contour-internal instance.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 18

You may use the same single instance of Contour for both internal and external traffic. However, this

will cause internal and external traffic will be handled the same way. For example, if the Contour

instance is configured to be accessible from clients outside the cluster, then any internal traffic will

also be accessible from outside the cluster.

Note: Cloud Native Runtimes configuration options that affect the Contour installed, like the nodeport

option, will not apply on your existing Contour instances.

If you do not want to reuse Contour instances for services, then Cloud Native Runtimes will create

them.

In all of the above cases, you must allow Cloud Native Runtimes to reuse the existing Contour

CustomResourceDefinitions.

Prerequisites

The following prerequisites are required to configure Cloud Native Runtimes with an existing Contour

installation:

Contour v1.19 (recommended) or v1.18. To identify your cluster’s Contour version, see

Identify Your Contour Version below.

Contour CustomResourceDefinitions versions:

Resource Name Version

extensionservices.projectcontour.io v1alpha1

httpproxies.projectcontour.io v1

tlscertificatedelegations.projectcontour.io v1

contourconfigurations.projectcontour.io (v1.19 only) v1alpha1

contourdeployments.projectcontour.io (v1.19 only) v1alpha1

Note: As of CNR 1.3, not all configurations are possible if the existing Contour version is v1.18.

Tanzu Application Platform 1.2 includes Cloud Native Runtimes 1.3, but provides Contour 1.18.

Therefore, using TAP provided Contour is not supported in all configurations.

See table below for details.

Identify Your Contour Version

To identify your cluster’s Contour version, run:

export CONTOUR_NAMESPACE=CONTOUR-NAMESPACE

export CONTOUR_DEPLOYMENT=$(kubectl get deployment --namespace $CONTOUR_NAMESPACE --ou

tput name)

kubectl get $CONTOUR_DEPLOYMENT --namespace $CONTOUR_NAMESPACE --output jsonpath="{.sp

ec.template.spec.containers[].image}"

kubectl get crds extensionservices.projectcontour.io --output jsonpath="{.status.store

dVersions}"

kubectl get crds httpproxies.projectcontour.io --output jsonpath="{.status.storedVersi

ons}"

kubectl get crds tlscertificatedelegations.projectcontour.io --output jsonpath="{.stat

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 19

us.storedVersions}"

Where CONTOUR-NAMESPACE is the namespace where Contour is installed on your Kubernetes cluster.

Install Cloud Native Runtimes on a Cluster with Your Existing
Contour Instances

To install Cloud Native Runtimes on a cluster with an existing Contour instance, you can add values

to your cnr-values.yml file so that the existing Contour CustomResourceDefinitions from your

cluster are reused. Refer to the table below for information on which config options to set.

Use your

Contour for

external

services?

Use your

Contour for

internal

services?

Values for ingress config block:

Valid with

existing

Contour

1.18

Valid with

existing

Contour

1.19

No No ingress.reuse_crds=true No Yes

Yes No ingress.reuse_crds=true

ingress.external.namespace=EXTERNAL-CONTOUR-NS

No Yes

No Yes ingress.reuse_crds=true

ingress.internal.namespace=INTERNAL-CONTOUR-NS

No Yes

Yes Yes ingress.reuse_crds=true

ingress.external.namespace=EXTERNAL-CONTOUR-NS

ingress.internal.namespace=INTERNAL-CONTOUR-NS

Yes Yes

Where EXTERNAL-CONTOUR-NS and INTERNAL-CONTOUR-NS are the namespaces where Contour is

installed on your Kubernetes cluster.

Note that in the cases where ingress.reuse_crds is true, and a value isn’t provided for

ingress.external, ingress.internal, or both, the install will create new instances of Contour to the

namespaces contour-external and/or contour-internal using your cluster’s

CustomResourceDefinitions.

Note: If your Contour instance is removed or configured incorrectly, apps running on Cloud Native

Runtimes will lose connectivity.

An example of a cnr-values.yml file where you wish to reuse an existing Contour instance for

external traffic would look like this:

ingress:

 reuse_crds: true

 external:

 namespace: my-existing-contour-namespace

Securing Your Web Workloads in Cloud Native Runtimes

This topic give you an overview of securing HTTP connections using TLS certificates in Cloud Native

Runtimes, commonly known as CNR, for VMware Tanzu Application Platform and helps you

configure TLS (Transport Layer Security).

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 20

Overview

Cloud Native Runtimes supports both HTTP01 and DNS01 cert-manager challenge types. For more

information about cert-manager challenge types, see ACME in the cert-manager documentation.

VMware recommends using Let’s Encrypt as your certificate authority. However, you can integrate

Cloud Native Runtimes with any ACME compatible certificate authority.

Prerequisites

You can enable HTTPS with Automatic TLS certificate provisioning for Cloud Native Runtimes.

You need the following prerequisites to use secure HTTPS connections with automatic TLS

certificate provisioning:

A cluster configured to use a custom domain. See Setting Up a Custom Domain in the

Knative documentation.

A DNS provider configured with your domain name.

cert-manager version 1.0.0 or later. See Installing cert-manager for TLS certificates in the

Knative documentation.

HTTP01 challenges: An internet-reachable cluster.

DNS01 challenges: API access to set DNS records.

Enable Auto TLS Using an HTTP01 Challenge

You can use the HTTP01 challenge type to validate a domain with Cloud Native Runtimes. The HTTP01

challenge requires that your load balancer be reachable from the internet via HTTP.

Note: With the HTTP01 challenge type, you provision a certificate for each service.

To enable automatic TLS certificate provisioning using a HTTP01 challenge, do the following:

1. Create a cert-manager Issuer or ClusterIssuer for the HTTP01 challenge. See Issuer in the

cert-manager documentation. The following example creates a ClusterIssuer using the

Let’s Encrypt Certificate Authority. See Let’s Encrypt. To use a ClusterIssuer for the HTTP01

challenge, run:

kubectl apply -f - <<EOF

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-http01-issuer

spec:

 acme:

 privateKeySecretRef:

 name: letsencrypt

 server: https://acme-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

EOF

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 21

https://cert-manager.io/docs/configuration/acme/
https://knative.dev/docs/serving/using-a-custom-domain
https://knative.dev/docs/serving/installing-cert-manager/
https://cert-manager.io/docs/concepts/issuer/
https://letsencrypt.org/

2. To validate that your ClusterIssuer was created successfully, run:

kubectl get clusterissuer letsencrypt-http01-issuer --output yaml

3. Edit your config-certmanager ConfigMap in the knative-serving namespace to reference

the ClusterIssuer you created. Run:

kubectl edit configmap config-certmanager --namespace knative-serving

4. To define which ClusterIssuer will be used by Knative to issue certificates, add the following

issuerRef block under the data section of the config-certmanager ConfigMap:

...

data:

...

 issuerRef: |

 kind: ClusterIssuer

 name: letsencrypt-http01-issuer

5. To validate that your ConfigMap was updated successfully, run:

kubectl get configmap config-certmanager --namespace knative-serving --output j

sonpath="{.data.issuerRef}"

6. Edit the config-network ConfigMap in the knative-serving namespace to enable automatic

TLS certificate provisioning and specify how HTTP requests are handled. Run:

kubectl edit configmap config-network --namespace knative-serving

Note: For HTTP01 challenges, the httpProtocol field must be set to Enabled for the cluster to

accept HTTP01 challenge requests.

apiVersion: v1

kind: ConfigMap

metadata:

 name: config-network

 namespace: knative-serving

data:

 ...

 autoTLS: Enabled

 ...

 httpProtocol: Enabled

 ...

7. To validate that your ConfigMap was updated successfully, run:

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.autoTLS}"

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.httpProtocol}"

8. Verify that your automatic TLS certificate instance is configured correctly by deploying a

sample app. See Verify Auto TLS in the Knative documentation.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 22

https://knative.dev/docs/serving/using-auto-tls/#verify-auto-tls

Enable Auto TLS Using a DNS01 Challenge

The DNS01 challenge validates that you control your domain’s DNS by accessing and updating your

domain’s TXT record. You need to provide a cert-manager with your DNS API credentials. For a list

of DNS01 providers supported for the ACME Issuer, see the cert-manager documentation.

To enable automatic TLS certificate provisioning using a DNS01 challenge, do the following:

1. Set up credentials for cert-manager to access your DNS records. For information about

setting up credentials for your ACME Issuer supported DNS provider, see Supported DNS01

providers in the cert-manager documentation. In the next step, you create an Issuer on

cert-manager with the configuration you set up.

2. Create a cert-manager Issuer or ClusterIssuer for DNS01 challenge on the cert-manager

Issuer you set up in the previous step. The following example uses Let’s Encrypt and Google

Cloud DNS. For information about other DNS providers supported by cert-manager, see the

cert-manager documentation. The Issuer assumes that your Kubernetes secret holds

credentials for the service account created. Run the following command to apply the

ClusterIssuer:

kubectl apply --filename - <<EOF

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-dns-issuer

spec:

 acme:

 server: https://acme-v02.api.letsencrypt.org/directory

 # This will register an issuer with LetsEncrypt.

 email: MY-EMAIL

 privateKeySecretRef:

 # Set privateKeySecretRef to any unused secret name.

 name: letsencrypt-dns-issuer

 solvers:

 - dns01:

 cloudDNS:

 project: $PROJECT_ID

 # Set this to the secret that we publish our service account key

 # in the previous step.

 serviceAccountSecretRef:

 name: cloud-dns-key

 key: key.json

EOF

Where MY-EMAIL is your email address.

3. To verify that your ClusterIssuer is created successfully, run:

kubectl get clusterissuer letsencrypt-dns-issuer --output yaml

Note

: You can provision certificates per service only.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 23

https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers

4. Edit your config-certmanager ConfigMap in the knative-serving namespace to reference

the ClusterIssuer created in the previous step. Run:

kubectl edit configmap config-certmanager --namespace knative-serving

5. Add an issuerRef block under the data section of your ConfigMap. This defines the

ClusterIssuer Knative uses to issue certificates. Run:

...

data:

...

 issuerRef: |

 kind: ClusterIssuer

 name: letsencrypt-dns-issuer

6. To validate that your file was updated successfully, run:

kubectl get configmap config-certmanager --namespace knative-serving --output j

sonpath="{.data.issuerRef}"

7. To enable automatic TLS certificate provisioning and specify how HTTP requests are

handled, edit your config-network ConfigMap in the knative-serving namespace:

kubectl edit configmap config-network --namespace knative-serving

Note: When using the DNS01 challenge type, the httpProtocol field must be set to Enabled.

apiVersion: v1

kind: ConfigMap

metadata:

 name: config-network

 namespace: knative-serving

data:

 ...

 autoTLS: Enabled

 ...

 httpProtocol: Enabled

 ...

8. Validate that your file was updated successfully. Run:

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.autoTLS}"

kubectl get configmap config-network --namespace knative-serving --output jsonp

ath="{.data.httpProtocol}"

9. Verify that your automatic TLS certificate instance is functioning correctly by deploying a

sample app. See Verify Auto TLS in the Knative documentation.

Configuring Eventing with RabbitMQ for Cloud Native
Runtimes

This topic tells you how to use RabbitMQ as an event source to react to messages sent to a

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 24

https://knative.dev/docs/serving/using-auto-tls/#verify-auto-tls

RabbitMQ exchange or as an event broker to distribute events within your app for Cloud Native

Runtimes, commonly known as CNR.

Overview

The integration allows you to create:

A RabbitMQ broker: A Knative Eventing broker backed by RabbitMQ. This broker uses

RabbitMQ exchanges to store CloudEvents that are then routed from one component to

another.

A RabbitMQ source: An event source that translates external messages on a RabbitMQ

exchange to CloudEvents, which can then be used with Knative Serving or Knative Eventing

over HTTP.

About the RabbitMQ Operators

Before you can use or test RabbitMQ eventing on Cloud Native Runtimes, you need to install the

following products on your Kubernetes cluster:

RabbitMQ Cluster Kubernetes Operator v1.8.2. See Install RabbitMQ Cluster Kubernetes

Operator v1.8.2 below.

RabbitMQ Messaging Topology Kubernetes Operator v1.2.1. See Install RabbitMQ Messaging

Topology Kubernetes Operator v1.2.1 below.

cert-manager v1.5.3 and later. See Installation in the cert-manager documentation.

Install RabbitMQ Cluster Kubernetes Operator v1.8.2

The RabbitMQ Cluster Kubernetes Operator (cluster Operator) automates the lifecycle, creation,

upgrade, and shutdown, of RabbitMQ clusters on Kubernetes:

To install the cluster Operator:

1. Create the rabbitmq-system namespace on your Kubernetes cluster where Cloud Native

Runtimes is installed:

kubectl create namespace rabbitmq-system

2. Define the following role binding:

kubectl apply -f - << EOF

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: rabbitmq-cluster-operator-psp

 namespace: rabbitmq-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: ServiceAccount

 name: rabbitmq-cluster-operator

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 25

https://cert-manager.io/docs/installation/

 namespace: rabbitmq-system

EOF

3. Install the RabbitMQ Cluster Kubernetes Operator v1.8.2 on your Kubernetes cluster where

Cloud Native Runtimes is installed:

kubectl apply -f https://github.com/rabbitmq/cluster-operator/releases/download

/v1.8.2/cluster-operator.yml

For general information about the RabbitMQ Cluster Kubernetes Operator, see

rabbitmq/cluster-operator in GitHub.

Install RabbitMQ Messaging Topology Kubernetes Operator
v1.2.1

The RabbitMQ Messaging Topology Kubernetes Operator (topology Operator) manages the

topologies, or exchange types, of RabbitMQ clusters provisioned by the cluster Operator.

There are two YAMLs for the RabbitMQ Messaging Topology Kubernetes Operator:

messaging-topology-operator-with-certmanager.yaml: Requires that you have cert-

manager v1.5.3 installed

messaging-topology-operator.yaml: Use if you want to generate and include your own

certificates

To install the topology Operator:

1. Read the README.md for the topology Operator in GitHub and decide which YAML to

install.

2. If you are installing the messaging-topology-operator-with-certmanager.yaml, then:

1. Create the cert-manager namespace on your Kubernetes cluster where Cloud Native

Runtimes is installed:

kubectl create namespace cert-manager

2. Define the following role binding:

kubectl apply -f - << EOF

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: cert-manager-psp

 namespace: cert-manager

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: ServiceAccount

 name: cert-manager

 namespace: cert-manager

- kind: ServiceAccount

 name: cert-manager-cainjector

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 26

https://github.com/rabbitmq/cluster-operator
https://github.com/rabbitmq/messaging-topology-operator

 namespace: cert-manager

- kind: ServiceAccount

 name: cert-manager-webhook

 namespace: cert-manager

EOF

3. Define the following role binding:

kubectl apply -f - << EOF

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: rabbitmq-topology-psp

 namespace: rabbitmq-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: ServiceAccount

 name: messaging-topology-operator

 namespace: rabbitmq-system

EOF

4. Install the RabbitMQ Messaging Topology Operator v1.2.1 on your Kubernetes cluster where

Cloud Native Runtimes is installed.

For general information about the topology Operator v1.2.1, see the RabbitMQ Messaging

Topology Operator v1.2.1 Release Notes in GitHub.

Next Steps

After completing these installations, you can:

Verify your Knative Eventing installation using an example RabbitMQ broker. For instructions,

see Verify Knative Eventing.

Create a broker, producer, and a consumer to use RabbitMQ and Knative Eventing with your

own app.

Configuring Observability for Cloud Native Runtimes

This topic tells you how to configure observability for Cloud Native Runtimes, commonly known as

CNR.

Overview

You can set up integrations with third-party observability tools to use logging, metrics, and tracing

with Cloud Native Runtimes for Tanzu. These observability integrations allow you to monitor and

collect detailed metrics from your clusters on Cloud Native Runtimes. You can collect logs and

metrics for all workloads running on a cluster. This includes Cloud Native Runtimes components or

any apps running on Cloud Native Runtimes. The integrations in this topic are recommended by

VMware, however you can use any Kubernetes compatible logging, metrics, and tracing platforms to

monitor your cluster workload.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 27

https://github.com/rabbitmq/messaging-topology-operator/releases/tag/v1.2.1

Logging

You can collect and forward logs for all workloads on a cluster, including Cloud Native Runtimes

components or any apps running on Cloud Native Runtimes. You can use any logging platform that

is compatible with Kubernetes to collect and forward logs for Cloud Native Runtimes workloads.

VMware recommends using Fluent Bit to collect logs and then forward logs to vRealize. The

following sections describe configuring logging for Cloud Native Runtimes with Fluent Bit and

vRealize as an example.

Configure Logging with Fluent Bit

You can use Fluent Bit to collect logs for all workloads on a cluster, including Cloud Native Runtimes

components or any apps running on Cloud Native Runtimes. For more information about using

Fluent Bit logs, see Fluent Bit Kubernetes Logging in the Fluent Bit documentation.

Fluent Bit lets you collect logs from Kubernetes containers, add Kubernetes metadata to these logs,

and forward logs to third-party log storage services. For more information about collecting logs, see

Logging in the Knative documentation.

If you are using Tanzu Mission Control (TMC), vSphere 7.0 with Tanzu, or Tanzu Kubernetes Cluster

to manage your cloud native environment, you must set up a role binding that grants required

permissions to Fluent Bit containers in order to configure logging with any integration. Then, you can

follow the instructions in the Fluent Bit documentation to complete the logging configuration. For

more information about configuring Fluent Bit logging, see Installation in the Fluent Bit

documentation.

To configure logging with Fluent Bit for your Cloud Native Runtimes environment:

1. VMware recommends that you add any integrations to the ConfigMap in both your Knative

Serving and Knative Eventing namespaces. Follow the logging configuration steps in the

Fluent Bit documentation to create the Namespace, ServiceAccount, Role, RoleBinding, and

ConfigMap. To view these steps, see Installation in the Fluent Bit documentation.

2. If you are using TMC, vSphere with Tanzu, or Tanzu Kubernetes Cluster to manage your

cloud native environment, create a role binding in the Kubernetes namespace where your

integration will be deployed to grant permission for privileged Fluent Bit containers. For

information about creating a role binding on a Tanzu platform, see Add a Role Binding in the

TMC documentation. For information about viewing your Kubernetes namespaces, see

Viewing Namespaces in the Kubernetes documentation. Create the following role binding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: fluentbit-psp-rolebinding

 namespace: FLUENTBIT-NAMESPACE

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: PRIVILEGED-CLUSTERROLE

subjects:

- kind: ServiceAccount

 name: FLUENTBIT-SERVICEACCOUNT

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 28

https://docs.fluentbit.io/manual/installation/kubernetes
https://knative.dev/docs/install/collecting-logs/
https://docs.fluentbit.io/manual/installation/kubernetes#installation
https://docs.fluentbit.io/manual/installation/kubernetes#installation
https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-using/GUID-DBC3FF6D-F206-4047-8F21-ED8154A7537D.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces

 namespace: FLUENTBIT-NAMESPACE

Where:

FLUENTBIT-NAMESPACE is your Fluent Bit namespace.

PRIVILEGED-CLUSTERROLE is the name of your privileged cluster role.

FLUENTBIT-SERVICEACCOUNT is your Fluent Bit service account.

3. To verify that you have configured logging successfully, run the following to access logs

through your web browser:

kubectl port-forward --namespace logging service/log-collector 8080:80

For more information about accessing Fluent Bit logs, see Logging in the Knative

documentation.

Forward Logs to vRealize

After you configure log collection, you can forward logs to log management services. vRealize Log

Insight is one service you can use with Cloud Native Runtimes. vRealize Log Insight is a scalable log

management solution that provides log management, dashboards, analytics, and third-party

extensibility for infrastructure and apps. For more information about vRealize Log Insight, see the

VMware vRealize Log Insight Documentation.

To forward logs from your Cloud Native Runtimes environment to vRealize, you can use a new or

existing instance of Tanzu Kubernetes Cluster. For information about how to configure log

forwarding to vRealize from Tanzu Kubernetes Cluster, see the Configure Log forwarding from

VMware Tanzu Kubernetes Cluster to vRealize Log Insight Cloud blog.

Metrics

Cloud Native Runtimes integrates with Prometheus and Tanzu Observability by Wavefront to collect

metrics on components or apps. For more information about integrating with Prometheus, see

Overview in the Prometheus documentation and Kubernetes Integration in the Wavefront

documentation.

You can configure Prometheus endpoints on Cloud Native Runtimes components in order to be able

to collect metrics on your components or apps. For information on annotations required to collect

metrics on apps, see Per-Pod Prometheus Annotations in the WeaveWorks documentation.

You can use annotation based discovery with Prometheus to define which Kubernetes objects in

your Cloud Native Runtimes environment to add metadata and collect metrics in a more automated

way. For more information about using annotation based discovery, see Annotation based discovery

in GitHub.

You can then use the Wavefront Collector for Kubernetes collector to dynamically discover and

scrape pods with the prometheus.io/scrape annotation prefix. For information about the Kubernetes

collector, see Wavefront Collector for Kubernetes in GitHub.

Note

: All Cloud Native Runtimes related metrics are emitted with the prefix

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 29

https://knative.dev/docs/install/collecting-logs/
https://docs.vmware.com/en/vRealize-Log-Insight/index.html
https://blogs.vmware.com/management/2020/06/configure-log-forwarding-from-vmware-tanzu-kubernetes-cluster-to-vrealize-log-insight-cloud.html
https://prometheus.io/docs/introduction/overview/
https://docs.wavefront.com/kubernetes.html
https://www.weave.works/docs/cloud/latest/tasks/monitor/configuration-k8s/#per-pod-prometheus-annotations
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/6d1cf432d0ef2de4840e96c2b74950451b6bde2f/docs/discovery.md#annotation-based-discovery
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes

Tracing

Tracing is a method for understanding the performance of specific code paths in apps as they handle

requests. You can configure tracing to collect performance metrics for your apps or Cloud Native

Runtimes components. You can trace which aspects of Cloud Native Runtimes and workloads

running on Cloud Native Runtimes are performing poorly.

Configuring Tracing

You can configure tracing for your apps on Cloud Native Runtimes. To do this, you configure tracing

for both Knative Serving and Eventing by editing the ConfigMap for your Knative namespace.

To configure tracing, do the following:

1. Configure the config-tracing ConfigMap in your Knative component namespace. VMware

recommends that you add any integrations to the ConfigMap in both your Serving and

Eventing namespaces. For information on how to enable request traces in each component,

see the following Knative documentation:

Serving. See Accessing request traces.

Eventing. See Accessing CloudEvent traces.

Forwarding Trace Data to a Data Visualization Tool

You can use the OpenTelemetry integration with Tanzu Observability by Wavefront to forward trace

data to Tanzu Observability by Wavefront. For information about forwarding trace data, see Sending

Metrics Data to Wavefront in the Wavefront documentation.

To configure to send trace data to Cloud Native Runtimes tracing with Tanzu Observability by

Wavefront and the OpenTelemetry integration, do the following:

1. Use the following documentation to configure the OpenTelemetry Integration to send trace

data to with Cloud Native Runtimes. For more information about sending trace data with

OpenTelemetry, see OpenTelemetry Integration in the Wavefront documentation.

2. Deploy the Wavefront Proxy. For more information about wavefront proxies, see Deploy a

Wavefront Proxy in Kubernetes in the Wavefront documentation.

Use the following .yaml file to install the Wavefront proxy in your Kubernetes cluster:

wavefront.yaml.

Provide the URL of your Wavefront instance and a Wavefront token.

Uncomment the lines indicated in the yaml file to enable consumption of Zipkin

traces.

Sending Trace Data to an Observability Platform

You can send trace data to an observability and analytics platform to view and monitor your trace

data in dashboards.

One way to do this is to integrate Tanzu Observability by Wavefront with your Cloud Native Runtimes

tanzu.vmware.com/cloud-native-runtimes.*.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 30

https://knative.dev/docs/serving/accessing-traces/
https://knative.dev/docs/eventing/accessing-traces/
https://docs.wavefront.com/opentelemetry.html#opentelemetry-integration
https://docs.wavefront.com/opentelemetry.html#opentelemetry-integration
https://docs.wavefront.com/kubernetes.html#step-1-deploy-a-wavefront-proxy-in-kubernetes
https://github.com/wavefrontHQ/wavefront-kubernetes/blob/master/wavefront-proxy/wavefront.yaml
https://docs.wavefront.com/wavefront_api.html#generating-an-api-token

environment. To view your trace data in Wavefront, you configure Cloud Native Runtimes to send

traces to the Wavefront proxy and then configure the Wavefront proxy to consume Zipkin spans.

For more information about using Zipkin for tracing, see the Zipkin documentation.

You can send trace data from Cloud Native Runtimes to Wavefront by using Zipkin as the backend

and defining the Zipkin endpoint as the Wavefront proxy URL listening over port 9411. You configure

Cloud Native Runtimes to send traces directly to the Wavefront proxy by editing the zipkin-

endpoint property in the ConfigMap to point to the Wavefront proxy URL. You can configure the

Wavefront proxy to consume Zipkin spans by listening to port 9411.

To send trace data to Tanzu Observability by Wavefront:

1. Edit the ConfigMap to enable the Zipkin tracing integration. VMware recommends that you

add any integrations to the ConfigMap in both your Serving and Eventing namespaces. Edit

the Knative config-tracing ConfigMap to set backend to zipkin and pass the Wavefront proxy

URL in the zipkin-endpoint field:

Kubectl edit configmap config-tracing —namespace knative-serving apiVersion: v1

kind: ConfigMap

metadata:

name: config-tracing

...

data:

backend: "zipkin"

zipkin-endpoint: "http://wavefront-proxy.default.svc.cluster.local:9411/api/v2/

spans" ...

Use Wavefront Dashboards

Cloud Native Runtimes provides two Wavefront dashboards in JSON format. You can use these

dashboard to monitor your apps and investigate performance issues. For information about

configuring dashboards, see Create and Customize Dashboards in the Wavefront documentation.

The following Wavefront dashboards are compatible with Cloud Native Runtimes: - Application

Operator Service View. See app-operator-service-view.json in the Cloud Native Runtimes

installation .tar file. - Application Operator Revision View. See app-operator-revision-view.json in

the Cloud Native Runtimes installation .tar file.

To import a dashboard JSON file, use one of the following methods: - Wavefront REST API -

Wavefront CLIs.

You must provide the URL of your Wavefront instance and a Wavefront token. For more information

about Wavefront tokens, see Generating an API Token in the Wavefront documentation.

Import Wavefront Dashboards

You can import the Wavefront dashboards using either the Wavefront API or the Ruby Wavefront

CLI. For more information about Wavefront dashboard, see Import Dashboards with the Wavefront

API or Import with a Ruby Wavefront CLI below.

Import Dashboards with the Wavefront API

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 31

https://zipkin.io/
https://docs.wavefront.com/ui_dashboards.html
https://docs.wavefront.com/wavefront_api.html
https://github.com/snltd/wavefront-cli
https://docs.wavefront.com/wavefront_api.html#generating-an-api-token

To import a Wavefront dashboard with the Wavefront API, run:

curl -H "Content-Type: application/json" -H 'Authorization: Bearer <wavefront-token>'

\

 https://<wavefront-instance>.wavefront.com/api/v2/dashboard -d @observability/wave

front/app-operator-service-view.json

curl -H "Content-Type: application/json" -H 'Authorization: Bearer <wavefront-token>'

\

 https://<wavefront-instance>.wavefront.com/api/v2/dashboard -d @dashboards/wavefro

nt/app-operator-revision-view.json

After you run the import code, the Wavefront API creates two dashboards with the following names

and URLs:

Title: Cloud Native Runtimes App Operator - Service View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Service-

Level

Title: Cloud Native Runtimes App Operator - Revision View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Revision-

Level

Import with the Ruby Wavefront CLI

To import a Wavefront dashboard with the Ruby Wavefront CLI, run:

export WAVEFRONT_TOKEN=<wavefront-token>

export WAVEFRONT_ENDPOINT=<wavefront-instance>.wavefront.com

wf config envvars

wf dashboard import observability/wavefront/app-operator-service-view.json

wf dashboard import dashboards/wavefront/app-operator-revision-view.json

After you run the import code, the Ruby Wavefront CLI creates two dashboards with a name and

URL.

The Service View of the Cloud Native Runtimes App Operator dashboard will have the following title

and URL:

Title: Cloud Native Runtimes App Operator - Service View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Service-

Level

The Revision View of the Cloud Native Runtimes App Operator dashboard will have the following title

and URL:

Title: Cloud Native Runtimes App Operator - Revision View

URL: https://<wavefront-instance>.wavefront.com/dashboards/App-Operator-Revision-

Level

Configuring Cloud Native Runtimes with Avi Vantage

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 32

This topic tells you how to configure Cloud Native Runtimes, commonly known as CNR, with Avi

Vantage.

Overview

You can configure Cloud Native Runtimes to integrate with Avi Vantage. Avi Vantage is a multi-cloud

platform that delivers features such as load balancing, security, and container ingress services. The

Avi Controller provides a control plane. Avi Service Engines provides a data plane. The Avi Service

Engines forward incoming traffic to your Kubernetes cluster’s Envoy pods, which are created and

managed by Contour.

For information about Avi Vantage, see Avi Documentation.

Integrate Avi Vantage with Cloud Native Runtimes

This procedure assumes that you have already installed Cloud Native Runtimes.

If you have not already installed Cloud Native Runtimes, see Installing Cloud Native Runtimes. If you

already have a Contour installation on your cluster, see Installing Cloud Native Runtimes with an

Existing Contour Installation.

To configure Cloud Native Runtimes with Avi Vantage, do the following:

1. Deploy the Avi Controller on any Avi supported infrastructure providers. For a list of Avi

supported providers, see Avi Installation Guides. For more information about deploying an

Avi Controller, see Install Avi Kubernetes Operator in the Avi Vantage documentation.

2. Deploy the Avi Kubernetes Operator to your Kubernetes cluster where Cloud Native

Runtimes is hosted. See Install AKO for Kubernetes in the Avi Vantage documentation.

3. Connect to a test app and verify that it is reachable. Run:

"curl -H KNATIVE-SERVICE-DOMAIN" ENVOY-IP

Where:

KNATIVE-SERVICE-DOMAIN is the name of your domain.

ENVOY-IP is the IP address of your Envoy instance.

For more information about deploy a sample application and connect to the application, see

Test Knative Serving.

4. (Optional) Create a DNS record that will configure your KService URL to point to the Avi

Service Engines, and resolve to the external IP of the Envoy. You can create a DNS record

on any platform that supports DNS services. Refer to the documentation for your DNS

service platform for more information.

To get the KService URL, run:

kn route describe APP-NAME | grep "URL"

To get Envoy’s external IP, follow step 3 in Test Knative Serving in Verifying your Serving

Installation.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 33

https://avinetworks.com/docs/
https://avinetworks.com/docs/20.1/installation-guides-landing-page/
https://avinetworks.com/docs/ako/1.2/ako-installation/
https://avinetworks.com/docs/ako/1.4/ako-installation/#install-ako-for-kubernetes

About Routing with Avi Vantage and Cloud Native Runtimes

The following diagram shows how Avi Vantage integrates with Cloud Native Runtimes:

When Contour creates a Kubernetes LoadBalancer service for Envoy, the Avi Kubernetes Operator

(AKO) sees the new LoadBalancer service. Then Avi Controller creates a Virtual Service. For

information about LoadBalancer services, see Type LoadBalancer in the Kubernetes documentation.

For each Envoy service, Avi Controller creates a corresponding Virtual Service. See Virtual Services

in the Avi Vantage documentation.

After Avi Controller creates a Virtual Service, the Controller configures the Avi Service Engines to

forward traffic to the Envoy pods. The Envoy pods route traffic based on incoming requests,

including traffic splitting and path based routing.

The Avi Controller provides Envoy with an external IP address so that apps are reachable by the app

developer.

Note: Avi does not interact directly with any Cloud Native Runtimes resources. Avi Vantage forwards

all incoming traffic to Envoy.

Configuring Cloud Native Runtimes with Tanzu Service Mesh

This topic tells you how to configure Cloud Native Runtimes, commonly known as CNR, with Tanzu

Service Mesh.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 34

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://avinetworks.com/docs/latest/architectural-overview/applications/virtual-services/

Overview

You cannot install Cloud Native Runtimes on a cluster that has Tanzu Service Mesh attached.

This workaround describes how Tanzu Service Mesh can be configured to ignore the Cloud Native

Runtimes. This allows Contour to provide ingress routing for the Knative workloads, while Tanzu

Service Mesh continues to satisfy other connectivity concerns.

Note: Cloud Native Runtimes workloads are unable to use Tanzu Service Mesh features like Global

Namespace, Mutual Transport Layer Security authentication (mTLS), retries, and timeouts.

For information about Tanzu Service Mesh, see Tanzu Service Mesh Documentation.

Run Cloud Native Runtimes on a Cluster Attached to Tanzu
Service Mesh

This procedure assumes you have a cluster attached to Tanzu Service Mesh, and that you have not

yet installed Cloud Native Runtimes.

Note: If you installed Cloud Native Runtimes on a cluster that has Tanzu Service Mesh attached

before doing the procedure below, pods fail to start. To fix this problem, follow the procedure below

and then delete all pods in the excluded namespaces.

Configure Tanzu Service Mesh to ignore namespaces related to Cloud Native Runtimes:

1. Navigate to the Cluster Overview tab in the Tanzu Service Mesh UI.

2. On the cluster where you want to install Cloud Native Runtimes, click …, then select Edit

Cluster….

3. Create an Is Exactly rule for each of the following namespaces:

CONTOUR-NS

knative-serving

knative-eventing

knative-sources

knative-discovery

triggermesh

vmware-sources

cloud-native-runtimes

rabbitmq-system

kapp-controller

The namespace or namespaces where you plan to run Knative workloads.

Where CONTOUR-NS is the namespace(s) where Contour is installed on your cluster. If

Cloud Native Runtimes was installed as part of a Tanzu Application Profile, this value will likely

be tanzu-system-ingress.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 35

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/index.html

Next Steps

After configuring Tanzu Service Mesh, install Cloud Native Runtimes and verify your installation:

1. Install Cloud Native Runtimes. See Installing Cloud Native Runtimes.

2. Verify your installation. See Verifying Your Installation.

Note: You must create all Knative workloads in the namespace or namespaces where you plan to

run these Knative workloads. If you do not, your pods fail to start.

Troubleshooting Cloud Native Runtimes

This topic tells you how to troubleshoot Cloud Native Runtimes, commonly known as CNR,

installation or configuration.

Cannot connect to app on AWS

Symptom

On AWS, you see the following error when connecting to your app:

curl: (6) Could not resolve host: a***********************7.us-west-2.elb.amazonaws.co

m

Solution

Try connecting to your app again after 5 minutes. The AWS LoadBalancer name resolution takes

several minutes to propagate.

minikube Pods Fail to Start

Symptom

On minikube, you see the following error when installing Cloud Native Runtimes:

3:03:59PM: error: reconcile job/contour-certgen-v1.10.0 (batch/v1) namespace: contour-

internal

Pod watching error: Creating Pod watcher: Get "https://192.168.64.17:8443/api/v1/pods?

labelSelector=kapp.k14s.io%2Fapp%3D1618232545704878000&watch=true": dial tcp 192.168.6

4.17:8443: connect: connection refused

kapp: Error: waiting on reconcile job/contour-certgen-v1.10.0 (batch/v1) namespace: CO

NTOUR-NS:

 Errored:

 Listing schema.GroupVersionResource{Group:"", Version:"v1", Resource:"pods"}, names

paced: true:

 Get "https://192.168.64.17:8443/api/v1/pods?labelSelector=kapp.k14s.io%2Fassociati

on%3Dv1.572a543d96e0723f858367fcf8c6af4e": unexpected EOF

Where CONTOUR-NS is the namespace where Contour is installed on your cluster. If Cloud Native

Runtimes was installed as part of a Tanzu Application Profile, this value will likely be tanzu-system-

ingress.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 36

Solution

Increase your available system RAM to at least 4 GB.

Pulling an image with imgpkg overwrites the cloud-native-
runtimes directory

Symptom

When relocating an image to a private registry and later pulling that image with imgpkg pull --lock

LOCK-OUTPUT -o ./cloud-native-runtimes, the contents of the cloud-native-runtimes are

overwritten.

Solution

Upgrade the imgpkg version to v0.13.0 or later.

Installation fails to reconcile app/cloud-native-runtimes

Symptom

When installing Cloud Native Runtimes, you see one of the following errors:

11:41:16AM: ongoing: reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1) n

amespace: cloud-native-runtime

11:41:16AM: ^ Waiting for generation 1 to be observed

kapp: Error: Timed out waiting after 15m0s

Or,

3:15:34PM: ^ Reconciling

3:16:09PM: fail: reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1) names

pace: cloud-native-runtimes

3:16:09PM: ^ Reconcile failed: (message: Deploying: Error (see .status.usefulErrorMe

ssage for details))

kapp: Error: waiting on reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1

) namespace: cloud-native-runtimes:

 Finished unsuccessfully (Reconcile failed: (message: Deploying: Error (see .status.

usefulErrorMessage for details)))

Explanation

The cloud-native-runtimes deployment app installs the subcomponents of Cloud Native Runtimes.

Error messages about reconciling indicate that one or more subcomponents have failed to install.

Solution

Use the following procedure to examine logs:

1. Get the logs from the cloud-native-runtimes app by running:

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 37

kubectl get app/cloud-native-runtimes -n cloud-native-runtimes -o jsonpath="{.s

tatus.deploy.stdout}"

Note: If the command does not return log messages, then kapp-controller is not installed or

is not running correctly.

2. Review the output for subcomponent deployments that have failed or are still ongoing. See

the examples below for suggestions on resolving common problems.

Example 1: The Cloud Provider does not support the creation of Service type

LoadBalancer

Follow these steps to identify and resolve the problem of the cloud provider not supporting services

of type LoadBalancer:

1. Search the log output for Load balancer, for example by running:

kubectl -n cloud-native-runtimes get app cloud-native-runtimes -ojsonpath="{.st

atus.deploy.stdout}" | grep "Load balancer" -C 1

2. If the output looks similar to the following, ensure that your cloud provider supports services

of type LoadBalancer. For more information, see Prerequisites.

6:30:22PM: ongoing: reconcile service/envoy (v1) namespace: CONTOUR-NS

6:30:22PM: ^ Load balancer ingress is empty

6:30:29PM: ---- waiting on 1 changes [322/323 done] ----

Where CONTOUR-NS is the namespace where Contour is installed on your cluster. If Cloud

Native Runtimes was installed as part of a Tanzu Application Profile, this value will likely be

tanzu-system-ingress.

Example 2: The webhook deployment failed

Follow these steps to identify and resolve the problem of the webhook deployment failing in the

vmware-sources namespace:

1. Review the logs for output similar to the following:

10:51:58PM: ok: reconcile customresourcedefinition/httpproxies.projectcontour.i

o (apiextensions.k8s.io/v1) cluster

10:51:58PM: fail: reconcile deployment/webhook (apps/v1) namespace: vmware-sour

ces

10:51:58PM: ^ Deployment is not progressing: ProgressDeadlineExceeded (message

: ReplicaSet "webhook-6f5d979b7d" has timed out progressing.)

2. Run kubectl get pods to find the name of the pod:

kubectl get pods --show-labels -n NAMESPACE

Where NAMESPACE is the namespace associated with the reconcile error, for example,

vmware-sources.

For example,

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 38

https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-tap-gui-accessing-tap-gui.html#loadbalancer-method-0

$ kubectl get pods --show-labels -n vmware-sources

NAME READY STATUS RESTARTS AGE LABELS

webhook-6f5d979b7d-cxr9k 0/1 Pending 0 44h app=webhook,kapp.

k14s.io/app=1626302357703846007,kapp.k14s.io/association=v1.9621e0a793b4e925077

dd557acedbcfe,pod-template-hash=6f5d979b7d,role=webhook,sources.tanzu.vmware.co

m/release=v0.23.0

3. Run kubectl logs and kubectl describe:

kubectl logs PODNAME -n NAMESPACE

kubectl describe pod PODNAME -n NAMESPACE

Where:

PODNAME is found in the output of step 3, for example webhook-6f5d979b7d-cxr9k.

NAMESPACE is the namespace associated with the reconcile error, for example,

vmware-sources.

For example:

$ kubectl logs webhook-6f5d979b7d-cxr9k -n vmware-sources

$ kubectl describe pod webhook-6f5d979b7d-cxr9k -n vmware-sources

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedScheduling 80s (x14 over 14m) default-scheduler 0/1 nodes are

 available: 1 Insufficient cpu.

4. Review the output from the kubectl logs and kubectl describe commands and take further

action.

For this example of the webhook deployment, the output indicates that the scheduler does

not have enough CPU to run the pod. In this case, the solution is to add nodes or CPU cores

to the cluster. If you are using Tanzu Mission Control (TMC), increase the number of workers

in the node pool to three or more through the TMC UI. See Edit a Node Pool, in the TMC

documentation.

Cloud Native Runtimes Installation Fails with Existing Contour
Installation

Symptom

You see the following error message when you run the install script:

Could not proceed with installation. Refer to Cloud Native Runtimes documentation for

details on how to utilize an existing Contour installation. Another app owns the custo

m resource definitions listed below.

Solution

Follow the procedure in Install Cloud Native Runtimes on a Cluster with Your Existing Contour

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 39

https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-using/GUID-53D4E904-3FFE-464A-8814-13942E03232A.html

Instances to resolve the issue.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 40

Verifying Your Installation

This topic tells you how to verify your Cloud Native Runtimes, commonly known as CNR, installation.

You can verify that your Cloud Native Runtimes installation was successful by testing Knative Serving,

Knative Eventing, and TriggerMesh Sources for Amazon Web Services (SAWS).

Prerequisites

1. Create a namespace and environment variable where you want to create Knative services.

Run:

Note: This step covers configuring a namespace to run Knative services. If you rely on a

SupplyChain to deploy Knative services into your cluster, skip this step because namespace

configuration is covered in Set up developer namespaces to use installed packages.

Otherwise, you must complete the following steps for each namespace where you create

Knative services.

export WORKLOAD_NAMESPACE='cnr-demo'

kubectl create namespace ${WORKLOAD_NAMESPACE}

2. Configure a namespace to use Cloud Native Runtimes. If during the TAP installation you

relocated images to another registry, you must grant service accounts that run Knative

services using Cloud Native Runtimes access to the image pull secrets. This includes the

default service account in a namespace, which is created automatically but not associated

with any image pull secrets. Without these credentials, attempts to start a service fail with a

timeout and the pods report that they are unable to pull the queue-proxy image.

1. Create an image pull secret in the namespace Knative services will run and fill it from

the tap-registry secret mentioned in Add the Tanzu Application Platform package

repository. Run the following commands to create an empty secret and annotate it as

a target of the secretgen controller:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjso

n={} --type=kubernetes.io/dockerconfigjson -n ${WORKLOAD_NAMESPACE}

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secre

t="" -n ${WORKLOAD_NAMESPACE}

2. After you create a pull-secret secret in the same namespace as the service

account, run the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "

pull-secret"}]}' -n ${WORKLOAD_NAMESPACE}

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 41

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install-online-components.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-install-online-profile.html

3. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default -n ${WORKLOAD_NAMESPACE}

For example:

kubectl describe sa default -n cnr-demo

Name: default

Namespace: cnr-demo

Labels: <none>

Annotations: <none>

Image pull secrets: pull-secret

Mountable secrets: default-token-xh6p4

Tokens: default-token-xh6p4

Events: <none>

The service account has access to the pull-secret image pull secret.

Verify that STATUS is Reconcile succeeded.

Verify Installation of Knative Serving, Knative Eventing, and
TriggerMesh SAWS

To verify the installation of Knative Serving, Knative Eventing, and Triggermesh SAWS:

1. Create a namespace and environment variable for the test. Run:

export WORKLOAD_NAMESPACE='cnr-demo'

kubectl create namespace ${WORKLOAD_NAMESPACE}

2. Verify installation of the components that you intend to use:

To test… Create… For instructions, see…

Knative Serving a test service Verifying Knative Serving

Knative Eventing a broker, a producer, and a consumer Verifying Knative Eventing

TriggerMesh SAWS an AWS source and trigger it Verifying TriggerMesh SAWS

3. Delete the namespace that you created for the demo. Run:

kubectl delete namespaces ${WORKLOAD_NAMESPACE}

unset WORKLOAD_NAMESPACE

Verifying Knative Serving for Cloud Native Runtimes

This topic tells you how to verify that Knative Serving was successfully installed for Cloud Native

Runtimes, commonly known as CNR.

About Verifying Knative Serving

To verify that Knative Serving was successfully installed, create an example Knative service and test

it.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 42

The procedure below shows you how to create an example Knative service using the Cloud Native

Runtimes sample app, hello-yeti. This sample is custom built for Cloud Native Runtimes and is

stored in the VMware Harbor registry.

Note: If you do not have access to the Harbor registry, you can use the Hello World - Go sample

app in the Knative documentation.

Prerequisites

Before you verify Knative Serving, you must have a namespace where you want to deploy Knative

services. This namespace will be referred as ${WORKLOAD_NAMESPACE} in this tutorial. See step 1 of

Verifying Your Installation for more information.

Test Knative Serving

To create an example Knative service and use it to test Knative Serving:

1. If you are verifying on Tanzu Mission Control or vSphere 7.0 with Tanzu, then create a role

binding in the ${WORKLOAD_NAMESPACE} namespace. Run:

kubectl apply -n "${WORKLOAD_NAMESPACE}" -f - << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: ${WORKLOAD_NAMESPACE}-psp

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: Group

 name: system:serviceaccounts:${WORKLOAD_NAMESPACE}

EOF

2. Deploy the sample app using the kn CLI. Run:

kn service create hello-yeti -n ${WORKLOAD_NAMESPACE} \

 --image projects.registry.vmware.com/tanzu_serverless/hello-yeti@sha256:17d64

0edc48776cfc604a14fbabf1b4f88443acc580052eef3a753751ee31652 --env TARGET='hello

-yeti'

If you are verifying on Tanzu Mission Control or vSphere 7.0 with Tanzu, then add --user

1001 to the command above to run it as a non-root user.

3. Run one of the following commands to retrieve the external address for your ingress,

depending on your IaaS:

IaaS

:
Tanzu Kubernetes Grid on AWS

Tanzu Mission Control on AWS

Amazon Elastic Kubernetes Service

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 43

https://knative.dev/docs/serving/samples/hello-world/helloworld-go/

Run

:
export EXTERNAL_ADDRESS=$(kubectl get service envoy -n tanzu-system-ingre

ss \

–output ‘jsonpath={.status.loadBalancer.ingress[0].hostname}’)

IaaS

:
vSphere 7.0 on Tanzu

Tanzu Kubernetes Grid on vSphere/Azure/GCP

Tanzu Kubernetes Grid Integrated Edition

Tanzu Mission Control on vSphere

Azure Kubernetes Service

Google Kubernetes Engine

Run

:
export EXTERNAL_ADDRESS=$(kubectl get service envoy -n tanzu-system-ingre

ss \

–output ‘jsonpath={.status.loadBalancer.ingress[0].ip}’)

IaaS: Local Kubernetes Cluster:

Docker desktop

Minikube

Run:
export EXTERNAL_ADDRESS=‘localhost:8080’

And, on another terminal, set up port forwarding. Run:

kubectl -n tanzu-system-ingress port-forward svc/envoy 8080:80

4. Connect to the app. Run:

curl -H "Host: hello-yeti.${WORKLOAD_NAMESPACE}.example.com" ${EXTERNAL_ADDRESS

}

If external DNS is correctly configured, you can also visit the URL in a web browser.

On success, you see a reply from our mascot, Carl the Yeti.

Delete the Example Knative Service

After verifying your serving installation, delete the example Knative service and unset the

environment variable:

1. Run:

kn service delete hello-yeti -n ${WORKLOAD_NAMESPACE}

unset EXTERNAL_ADDRESS

2. If you created port forwarding in step 4 above, then terminate that process.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 44

Verify Knative Eventing

This topic tells you how to verify that Knative Eventing was successfully installed with Cloud Native

Runtimes, commonly known as CNR.

Note: The Knative eventing functionality is in beta. VMware does not recommend using Knative

eventing functionality in a production environment.

About Verifying Knative Eventing

You can verify Knative Eventing by setting up a broker, creating a producer, and creating a

consumer. If your installation was successful, you can create a test eventing workflow and see that

the events appear in the logs.

You can use either an in-memory broker or a RabbitMQ broker to verify Knative Eventing:

RabbitMQ broker: Using a RabbitMQ broker to verify Knative Eventing is a scalable and

reliable way to verify your installation. Verifying with RabbitMQ uses methods similar to

production environments.

In-memory broker: Using an in-memory broker is a fast and lightweight way to verify that the

basic elements of Knative Eventing are installed. An in-memory broker is not meant for

production environments or for use with apps that you intend to take to production.

Prerequisites

Before you verify Knative Eventing, you must:

Have a namespace where you want to deploy Knative services. This namespace will be

referred as ${WORKLOAD_NAMESPACE} in this tutorial. See step 1 of Verifying Your Installation for

more information.

Create the following role binding in the ${WORKLOAD_NAMESPACE} namespace. Run:

kubectl apply -f - << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: ${WORKLOAD_NAMESPACE}-psp

 namespace: ${WORKLOAD_NAMESPACE}

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cnr-restricted

subjects:

- kind: Group

 name: system:serviceaccounts:${WORKLOAD_NAMESPACE}

EOF

Prepare the RabbitMQ Environment

If you are using a RabbitMQ broker to verify Knative Eventing, follow the procedure in this section. If

you are verifying with the in-memory broker, skip to Verify Knative Eventing.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 45

To prepare the RabbitMQ environment before verifying Knative Eventing:

1. Set up the RabbitMQ integration as described in Integrating RabbitMQ with Cloud Native

Runtimes.

2. On the Kubernetes cluster where Cloud Native Runtimes is installed, deploy a RabbitMQ

cluster using the RabbitMQ Cluster Operator by running:

kubectl apply -f - << EOF

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: my-rabbit

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 replicas: 1

 override:

 statefulSet:

 spec:

 template:

 spec:

 securityContext: {}

 containers: []

 initContainers:

 - name: setup-container

 securityContext:

 runAsUser: 999

 runAsGroup: 999

EOF

Note: The override section can be omitted if your cluster allows containers to run as root.

Verify Knative Eventing

To verify installation of Knative Eventing create and test a broker, procedure, and consumer in the

${WORKLOAD_NAMESPACE} namespace:

1. Create a broker.

For the RabbitMQ broker. Run:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: default

 namespace: ${WORKLOAD_NAMESPACE}

 annotations:

 eventing.knative.dev/broker.class: RabbitMQBroker

spec:

 config:

 apiVersion: rabbitmq.com/v1beta1

 kind: RabbitmqCluster

 name: my-rabbit

 namespace: ${WORKLOAD_NAMESPACE}

EOF

For the in-memory broker. Run:

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 46

kubectl create -f - <<EOF

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: default

 namespace: ${WORKLOAD_NAMESPACE}

EOF

2. Create a consumer for the events. Run:

cat <<EOF | kubectl create -f -

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: event-display

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 template:

 spec:

 containers:

 - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event

_display

EOF

3. Create a trigger. Run:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: event-display

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 broker: default

 subscriber:

 ref:

 apiVersion: serving.knative.dev/v1

 kind: Service

 name: event-display

 namespace: ${WORKLOAD_NAMESPACE}

EOF

4. Create a producer. Run:

cat <<EOF | kubectl create -f -

apiVersion: sources.knative.dev/v1

kind: PingSource

metadata:

 name: test-ping-source

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 schedule: "*/1 * * * *"

 data: '{"message": "Hello Eventing!"}'

 sink:

 ref:

 apiVersion: eventing.knative.dev/v1

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 47

 kind: Broker

 name: default

 namespace: ${WORKLOAD_NAMESPACE}

EOF

5. Verify that the event appears in your consumer logs. Run:

kubectl logs -l serving.knative.dev/service=event-display -c user-container -n

${WORKLOAD_NAMESPACE} --since=10m --tail=50

Delete the Eventing Resources

After verifying your serving installation, clean up by deleting the resources used for the test:

1. Delete the eventing resources:

kubectl delete pingsource/test-ping-source -n ${WORKLOAD_NAMESPACE}

kubectl delete trigger/event-display -n ${WORKLOAD_NAMESPACE}

kubectl delete kservice/event-display -n ${WORKLOAD_NAMESPACE}

kubectl delete broker/default -n ${WORKLOAD_NAMESPACE}

2. If you created a RabbitMQ cluster:

kubectl delete rabbitmqcluster/my-rabbit -n ${WORKLOAD_NAMESPACE}

3. Delete the role binding:

kubectl delete rolebinding/${WORKLOAD_NAMESPACE}-psp -n ${WORKLOAD_NAMESPACE}

Verifying TriggerMesh SAWS for Cloud Native Runtimes

This topic tells you how to verify that TriggerMesh Sources for Amazon Web Services (SAWS) was

installed successfully for Cloud Native Runtimes, commonly known as CNR.

Overview

TriggerMesh SAWS allows you to consume events from your AWS services and send them to

workloads running in your cluster.

Cloud Native Runtimes includes an installation of the Triggermesh SAWS controller and CRDs. You

can find the controller in the triggermesh namespace.

For general information about TriggerMesh SAWS, see aws-event-sources in GitHub.

The procedure below shows you how to test TriggerMesh SAWS using the example of an event

source for Amazon CodeCommit. If you want to test using a different AWS service, see samples in

GitHub. The basic steps are the same, regardless of the AWS service you choose: create a broker,

trigger, and consumer and then test.

Prerequisites

Before you verify TriggerMesh SAWS with AWS CodeCommit, you must have:

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 48

https://github.com/triggermesh/aws-event-sources
https://github.com/triggermesh/aws-event-sources/tree/main/config/samples

An AWS service account

An AWS CodeCommit repository with push and pull access

Have a namespace where you want to deploy Knative services. This namespace will be

referred as ${WORKLOAD_NAMESPACE} in this tutorial. See step 1 of Verifying Your Installation for

more information.

Verify TriggerMesh SAWS

To verify TriggerMesh SAWS with AWS CodeCommit:

1. Create a broker:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: broker

 namespace: ${WORKLOAD_NAMESPACE}

EOF

2. Create a trigger:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: trigger

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 broker: broker

 subscriber:

 ref:

 apiVersion: serving.knative.dev/v1

 kind: Service

 name: consumer

 namespace: ${WORKLOAD_NAMESPACE}

EOF

3. Create a consumer:

kubectl apply -f - << EOF

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: consumer

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 template:

 spec:

 containers:

 - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event

_display

EOF

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 49

4. Add an AWS service account secret:

kubectl -n ${WORKLOAD_NAMESPACE} create secret generic awscreds \

--from-literal=aws_access_key_id=${AWS_ACCESS_KEY_ID} \

--from-literal=aws_secret_access_key=${AWS_SECRET_ACCESS_KEY}

Where:

AWS_ACCESS_KEY_ID is the AWS access key ID for your AWS service account.

AWS_SECRET_ACCESS_KEY is your AWS access key for your AWS service account.

5. Create the AWSCodeCommitSource:

kubectl apply -f - << EOF

apiVersion: sources.triggermesh.io/v1alpha1

kind: AWSCodeCommitSource

metadata:

 name: source

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 arn: ARN

 branch: BRANCH

 eventTypes:

 - push

 - pull_request

 credentials:

 accessKeyID:

 valueFromSecret:

 name: awscreds

 key: aws_access_key_id

 secretAccessKey:

 valueFromSecret:

 name: awscreds

 key: aws_secret_access_key

 sink:

 ref:

 apiVersion: eventing.knative.dev/v1

 kind: Broker

 name: broker

 namespace: ${WORKLOAD_NAMESPACE}

EOF

Where:

ARN is Amazon Resource Name (ARN) of your CodeCommit repository. For example,

arn:aws:codecommit:eu-central-1:123456789012:triggermeshtest.

BRANCH is the branch of your CodeCommit repository that you want the trigger to

watch. For example, main.

6. Patch the awscodecommitsource-adapter service account to pull images from the private

registry using the tap-registry secret, created during the TAP installation. Note that the

awscodecommitsource-adapter service account was created on the previous step during the

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 50

creation of AWSCodeCommitSource.

kubectl patch serviceaccount -n ${WORKLOAD_NAMESPACE} awscodecommitsource-adapt

er -p '{"imagePullSecrets": [{"name": "tap-registry"}]}'

Note: It may be necessary to delete the current awscodecommitsource-source Pod so a new

pod is created with the new imagePullSecrets.

7. Create an event by pushing a commit to your CodeCommit repository.

8. Watch the consumer logs to see that the event appears after a minute:

kubectl logs -l serving.knative.dev/service=consumer -c user-container -n ${WOR

KLOAD_NAMESPACE} --since=10m --tail=50

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 51

Upgrading Cloud Native Runtimes

This topic tells you how to upgrade Cloud Native Runtimes for Tanzu to the latest version.

New versions of Cloud Native Runtimes are available from the Tanzu Application Platform package

repository, and can be upgraded to as part of upgrading Tanzu Application Platform as a whole.

Prerequisites

The following prerequisites are required to upgrade Cloud Native Runtimes:

An updated Tanzu Application Platform package repository with the version of Cloud Native

Runtimes you wish to upgrade to. For more information, see the documentation on adding a

new package repository.

Upgrade Cloud Native Runtimes

To upgrade the Cloud Native Runtimes PackageInstall specifically, run:

tanzu package installed update cloud-native-runtimes -p cnrs.tanzu.vmware.com -v CNR-V

ERSION --values-file cnr-values.yaml -n tap-install

Where CNR-VERSION is the latest version of Cloud Native Runtimes available as part of the new Tanzu

Application Platform package repository.

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 52

https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-upgrading.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-upgrading.html#add-new-package-repository-1

Uninstalling Cloud Native Runtimes

This topic tells you how to uninstall Cloud Native Runtimes.

Overview

Cloud Native Runtimes is part of the Tanzu Application Platform package repository. For information

on uninstalling the entire Tanzu Application Platform package repository, see the Tanzu Application

Platform uninstall documentation.

Uninstall

To uninstall Cloud Native Runtimes specifically:

1. Delete the installed package:

tanzu package installed delete cloud-native-runtimes --namespace tap-install

Cloud Native Runtimes for VMware Tanzu 1.3

VMware, Inc 53

https://docs.vmware.com/en/Tanzu-Application-Platform/1.2/tap/GUID-uninstall.html

	Cloud Native Runtimes Overview
	Overview

	Cloud Native Runtimes release notes
	v1.3.0
	New features
	Resolved issues
	Known issues
	Components

	Integrations you can use with Cloud Native Runtimes
	CNR Integrations

	Install Cloud Native Runtimes
	Prerequisites
	Install

	Administrator Guide for Cloud Native Runtimes
	Configure your External DNS with Cloud Native Runtimes
	Overview
	Configure custom domain
	Configure Knative Service Domain Template

	Use your existing TLS Certificate for Cloud Native Runtimes
	Prerequisites

	Installing Cloud Native Runtimes with your Existing Contour Installation
	About Using Contour with Cloud Native Runtimes
	Prerequisites
	Identify Your Contour Version
	Install Cloud Native Runtimes on a Cluster with Your Existing Contour Instances

	Securing Your Web Workloads in Cloud Native Runtimes
	Overview
	Prerequisites
	Enable Auto TLS Using an HTTP01 Challenge
	Enable Auto TLS Using a DNS01 Challenge

	Configuring Eventing with RabbitMQ for Cloud Native Runtimes
	Overview
	About the RabbitMQ Operators
	Install RabbitMQ Cluster Kubernetes Operator v1.8.2
	Install RabbitMQ Messaging Topology Kubernetes Operator v1.2.1
	Next Steps

	Configuring Observability for Cloud Native Runtimes
	Overview
	Logging
	Configure Logging with Fluent Bit
	Forward Logs to vRealize

	Metrics
	Tracing
	Configuring Tracing
	Forwarding Trace Data to a Data Visualization Tool
	Sending Trace Data to an Observability Platform

	Use Wavefront Dashboards
	Import Wavefront Dashboards
	Import Dashboards with the Wavefront API
	Import with the Ruby Wavefront CLI

	Configuring Cloud Native Runtimes with Avi Vantage
	Overview
	Integrate Avi Vantage with Cloud Native Runtimes
	About Routing with Avi Vantage and Cloud Native Runtimes

	Configuring Cloud Native Runtimes with Tanzu Service Mesh
	Overview
	Run Cloud Native Runtimes on a Cluster Attached to Tanzu Service Mesh
	Next Steps

	Troubleshooting Cloud Native Runtimes
	Cannot connect to app on AWS
	Symptom
	Solution

	minikube Pods Fail to Start
	Symptom
	Solution

	Pulling an image with imgpkg overwrites the cloud-native-runtimes directory
	Symptom
	Solution

	Installation fails to reconcile app/cloud-native-runtimes
	Symptom
	Explanation
	Solution
	Example 1: The Cloud Provider does not support the creation of Service type LoadBalancer
	Example 2: The webhook deployment failed

	Cloud Native Runtimes Installation Fails with Existing Contour Installation
	Symptom
	Solution

	Verifying Your Installation
	Prerequisites
	Verify Installation of Knative Serving, Knative Eventing, and TriggerMesh SAWS

	Verifying Knative Serving for Cloud Native Runtimes
	About Verifying Knative Serving
	Prerequisites
	Test Knative Serving
	Delete the Example Knative Service

	Verify Knative Eventing
	About Verifying Knative Eventing
	Prerequisites
	Prepare the RabbitMQ Environment
	Verify Knative Eventing
	Delete the Eventing Resources

	Verifying TriggerMesh SAWS for Cloud Native Runtimes
	Overview
	Prerequisites
	Verify TriggerMesh SAWS

	Upgrading Cloud Native Runtimes
	Prerequisites
	Upgrade Cloud Native Runtimes

	Uninstalling Cloud Native Runtimes
	Overview
	Uninstall

