
Cloud Native Runtimes for
VMware Tanzu 2.3

Cloud Native Runtimes for VMware Tanzu 2.3



You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its

subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies. Copyright and trademark

information.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 2

https://docs.vmware.com/copyright-trademark.html


Contents

Cloud Native Runtimes Overview 8

Overview 8

Warnings 9

Cloud Native Runtimes Release Notes 10

v2.3.6 10

Change Log 10

Components 10

v2.3.4 10

Components 10

v2.3.2 11

Resolved Issues 11

Components 11

v2.3.1 11

Breaking Changes 11

New Features 11

Resolved Issues 12

Known Issues 12

Components 12

Integrations you can use with Cloud Native Runtimes 13

Cloud Native Runtimes integrations 13

Install Cloud Native Runtimes 14

Prerequisites 14

Install 14

Administrator Guide for Cloud Native Runtimes 18

Configure your External DNS with Cloud Native Runtimes 18

Overview 18

Configure custom domain 18

Configure Knative Service Domain Template 19

Securing Your Web Workloads in Cloud Native Runtimes 20

Prerequisites 20

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 3



Overview of Cloud Native Runtimes TLS Configurations 20

Default TLS configuration in Cloud Native Runtimes 20

Custom TLS configuration in Cloud Native Runtimes 21

Replace the shared ingress issuer at the Tanzu Application Platform’s level 21

Designate another ingress issuer for your workloads in Cloud Native
Runtimes only

21

Provide an existing TLS certificate for your workloads in Cloud Native
Runtimes

22

Resources on custom TLS configuration for Cloud Native Runtimes: 22

Configure Cloud Native Runtimes to use a custom Issuer or ClusterIssuer 22

Configure a custom issuer 22

Configure Cloud Native Runtimes to use the custom issuer 23

Verify the issuance of certificates 23

Use wildcard certificates with Cloud Native Runtimes 24

Configure an issuer for wildcard certificates 24

Configure Cloud Native Runtimes to use wildcard certificates 25

Verify the issuance of wildcard certificates 26

Use your existing TLS Certificate for Cloud Native Runtimes 26

Overview 26

Prerequisites 27

Deactivate HTTP-to-HTTPS redirection 28

Opt out from an ingress issuer and deactivate automatic TLS feature 28

Deactivate TLS 29

Installing Cloud Native Runtimes with your Existing Contour Installation 29

About Using Contour with Cloud Native Runtimes 29

Prerequisites 30

Identify Your Contour Version 30

Install Cloud Native Runtimes on a Cluster with Your Existing Contour Instances 30

Configuring Eventing with RabbitMQ for Cloud Native Runtimes 31

Overview 31

Install VMware Tanzu RabbitMQ for Kubernetes 31

Next Steps 31

Configuring Observability for Cloud Native Runtimes 32

Overview 32

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 4



Logging 32

Configure Logging with Fluent Bit 32

Forward Logs to vRealize 33

Metrics 33

Tracing 34

Configuring Tracing 34

Forwarding Trace Data to an Observability Platform or Data Visualization Tool 34

Sending Trace Data to VMware Aria Operations for Applications 35

Configuring Cloud Native Runtimes with Avi Vantage 37

Overview 37

Integrate Avi Vantage with Cloud Native Runtimes 37

About Routing with Avi Vantage and Cloud Native Runtimes 38

Configuring Cloud Native Runtimes with Tanzu Service Mesh 39

Overview 39

Run Cloud Native Runtimes on a Cluster Attached to Tanzu Service Mesh 39

Next Steps 40

Customizing Cloud Native Runtimes 40

Customizing Cloud Native Runtimes 40

Troubleshooting Cloud Native Runtimes 41

Updates fail with error annotation value is immutable 41

Symptom 41

Explanation 42

Solution 42

Cannot connect to app on AWS 43

Symptom 43

Solution 44

minikube Pods Fail to Start 44

Symptom 44

Solution 44

Pulling an image with imgpkg overwrites the cloud-native-runtimes directory 44

Symptom 44

Solution 44

Installation fails to reconcile app/cloud-native-runtimes 44

Symptom 44

Explanation 45

Solution 45

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 5



Example 1: The Cloud Provider does not support the creation of Service
type LoadBalancer

45

Example 2: The webhook deployment failed 46

Cloud Native Runtimes Installation Fails with Existing Contour Installation 47

Symptom 47

Solution 47

Knative Service Fails to Come up Due to Invalid HTTPPRoxy 47

Symptom 47

Solution 48

When using auto-tls, Knative Service Fails with CertificateNotReady. 48

Symptom 48

Explanation 48

Solution 49

Option 1: Change the domain_template 49

Option 2: Shorten the names of Knative Services or Namespaces 49

Verifying Your Installation 50

Prerequisites 50

Verify Installation of Knative Serving, Knative Eventing, and TriggerMesh SAWS 51

Verifying Knative Serving for Cloud Native Runtimes 51

About Verifying Knative Serving 51

Prerequisites 52

Test Knative Serving 52

Delete the Example Knative Service 54

Verify Knative Eventing with Cloud Native Runtimes 54

About Verifying Knative Eventing 54

Prerequisites 54

Prepare the RabbitMQ Environment 55

Verify Knative Eventing 56

Setup RabbitMQ Broker as the default in the cluster (optional) 58

Setup RabbitMQ Broker as the default in a namespace (optional) 59

Delete the Eventing Resources 61

Verifying TriggerMesh SAWS for Cloud Native Runtimes 62

Overview 62

Prerequisites 62

Verify TriggerMesh SAWS 62

Upgrading Cloud Native Runtimes 65

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 6



Prerequisites 65

Upgrade Cloud Native Runtimes 65

Uninstalling Cloud Native Runtimes 66

Overview 66

Uninstall 66

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 7



Cloud Native Runtimes Overview

This topic gives you an overview of Cloud Native Runtimes, commonly known as CNRs.

Overview

Cloud Native Runtimes is enterprise supported Knative, with the Carvel tools suite for deployment

and Contour for networking. Cloud Native Runtimes offers everything Knative does and some extras

that make it ideal for cloud native application development. Cloud Native Runtimes gives developers

environmental simplicity and administrators deployment control and it works on any single

Kubernetes cluster running Kubernetes v1.25 and later.

Cloud Native Runtimes utilizes Knative’s main features of Serving and Eventing to provide:

Automatic pod scaling.

Traffic splitting by code release version.

Event-triggered workloads.

Cloud Native Runtimes simplifies the Developer experience.

Kubernetes Developers need to know: Cloud Native Runtimes Developers need to know:

Pods Pods

Deployment & Rollout Progress Knative Service

Service (networking model)

Ingress

Labels and selectors

Cloud Native Runtimes increases Administrator control and support.

Administrators can:

Manage infrastructure costs with request driven autoscaling

Test deployments with traffic splitting by code version

Use Carvel command tools to simplify deployment

Note

Starting with the v2.4 release, Cloud Native Runtimes has moved to the Tanzu

Application Platform v1.7 and later documentation.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 8

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html


Administrators can:

Receive Enterprise Support when they need it

Cloud Native Runtimes works well with these use cases:

Batch Jobs Processing

AI/ML

Application or Network Monitoring

IOT

Event driven and serverless application architectures

For more information on the software that makes Cloud Native Runtimes see:

Knative Documentation Home - Knative

Carvel Tools Suite Documentation Carvel - Home

Contour Networking Documentation Contour

Warnings

Eventing in Tanzu Application Platform is deprecated and marked for removal in Tanzu Application

Platform v1.7.0.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 9

https://knative.dev/docs/
https://carvel.dev/
https://projectcontour.io/


Cloud Native Runtimes Release Notes

This topic contains release notes for Cloud Native Runtimes for Tanzu v2.3, commonly known as

CNRs.

v2.3.6

Release Date: December 12, 2023

Change Log

Rebuilt binaries using GoLang 1.20.11

Components

Cloud Native Runtimes v2.3.6 uses the following component versions:

Release Details

Version 2.3.6

Release date December 12, 2023

Component Version

Knative Serving 1.10.6

Knative cert-manager Integration 1.10.4

Knative Serving Contour Integration 1.10.3

v2.3.4

Release Date: November 14, 2023

Components

Cloud Native Runtimes v2.3.4 uses the following component versions:

Release Details

Note

Starting with the v2.4 release, Cloud Native Runtimes has moved to the Tanzu

Application Platform v1.7 and later documentation.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 10

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html


Version 2.3.4

Release date November 14, 2023

Component Version

Knative Serving 1.10.6

Knative cert-manager Integration 1.10.4

Knative Serving Contour Integration 1.10.3

v2.3.2

Release Date: October 10, 2023

Resolved Issues

This release has the following fixes:

When running on a cluster v1.25 or higher that enforces Pod Security Standards, Knative

components now include the appropriate SecurityContext settings to comply with the

restricted level.

Components

Cloud Native Runtimes v2.3.2 uses the following component versions:

Release Details

Version 2.3.2

Release date October 10, 2023

Component Version

Knative Serving 1.10.2

Knative cert-manager Integration 1.10.1

Knative Serving Contour Integration 1.10.0

v2.3.1

Release Date: 27 Jul 2023

Breaking Changes

This release has the following breaking changes:

provider config option: The deprecation of the provider configuration option is announced

in the release notes of Cloud Native Runtimes 2.0. As part of this release, the option is

removed completely.

New Features

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 11

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.0/tanzu-cloud-native-runtimes/GUID-release-notes.html


This release has the following new features:

New default_external_scheme config option:

Configures default-external-scheme on Knative’s config-network ConfigMap with

default scheme to use for Knative Service URLs. Supported values are either http or

https. You aannot set with the default_tls_secret option.

Resolved Issues

This release has the following fixes:

New toggle feature for how to make ConfigMap updates

For some ConfigMaps in Cloud Native Runtimes, such as config-features, the option to update using

an overlay was not taking effect. This issue is fixed. With this version, the legacy behavior remains

the same, but VMware introduces a configuration to opt-in into updating ConfigMaps using overlays

in Cloud Native Runtimes, as it is for all Tanzu Application Platform components. To configure this

option, edit your cnr-values.yaml file to change the following configuration:

allow_manual_configmap_update: false.

In a future planned release of Cloud Native Runtimes, false will be the default configuration.

VMware plans to release Cloud Native Runtimes without the option to switch and false will be the

permanent behavior.

Known Issues

This release has the following known issues:

Knative Serving: Certain app name, namespace, and domain combinations produce Knative

Services with status CertificateNotReady. See Troubleshooting.

Components

Cloud Native Runtimes v2.3.1 uses the following component versions:

Release Details

Version 2.3.1

Release date 27 Jul 2023

Component Version

Knative Serving 1.10.2

Knative cert-manager Integration 1.10.1

Knative Serving Contour Integration 1.10.0

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 12



Integrations you can use with Cloud Native
Runtimes

This topic tells you the supported integrations for Cloud Native Runtimes. For more information

regarding these integrations, see the Cloud Native Runtimes Administrator Guide.

Cloud Native Runtimes integrations

Cloud Native Runtimes integration Version Documentation

VMware Tanzu Observability Supported Configuring Observability for Cloud Native Runtimes

Avi Vantage Supported Configuring Cloud Native Runtimes with Avi Vantage

Rabbit MQ Supported Configuring Cloud Native Runtimes with RabbitMQ

Tanzu Service Mesh Supported Configuring Cloud Native Runtimes with Tanzu Service Mesh

For tools and software compatibility, please refer to Tanzu Application Platform’s requirements.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 13

https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/prerequisites.html#kubernetes-cluster-requirements-3


Install Cloud Native Runtimes

This document describes how you can install Cloud Native Runtimes, commonly known as CNRs,

from the Tanzu Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Cloud Native Runtimes. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Cloud Native Runtimes:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Contour is installed in the cluster. Contour can be installed from the Tanzu Application

package repository. If you have have an existing Contour installation, see Installing Cloud

Native Runtimes with an Existing Contour Installation.

By default, Tanzu Application Platform installs and uses a self-signed certificate authority for

issuing TLS certificates to components by using ingress issuer. For more information, see

Ingress Certificates. To successfully install Cloud Native Runtimes, shared.ingress_domain or

cnrs.domain_name property is required to be set when ingress_issuer property is set. For

example:

shared:

ingress_domain: "foo.bar.com"

or

cnrs:

domain_name: "foo.bar.com"

If the domain name is not available or desired, domain name can be set to any valid value as

long as no process is relying on the domain name resolving to the envoy IP. (Not

recommended for production environments) Another alternative to bypass setting domain

name is to disable auto-TLS. For more information, see Disabling Automatic TLS Certificate

Provisioning.

Install

To install Cloud Native Runtimes:

1. List version information for the package by running:

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 14

https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/install-online-profile.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/prerequisites.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/contour-install.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/security-and-compliance-tls-and-certificates-ingress-about.html


tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

For example:

tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

  NAME                   VERSION  RELEASED-AT

  cnrs.tanzu.vmware.com  2.3.1    2023-06-05 19:00:00 -0500 -05

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get cnrs.tanzu.vmware.com/2.3.1 --values-schema -

n tap-install

For example:

tanzu package available get cnrs.tanzu.vmware.com/2.3.1 --values-schema -

n tap-install

KEY                            DEFAULT                               TYPE

     DESCRIPTION                                                         

              

domain_config                  <nil>                                 <nil

>    Optional. Overrides the Knative Serving "config-domain" ConfigMap, a

llowing you to map Knative Services to specific domains. Must be valid YA

ML and conform to the "config-domain" specification.

namespace_selector                                                   stri

ng   Specifies a LabelSelector which determines which namespaces should h

ave a wildcard certificate provisioned. Set this property only if the Clu

ster issuer is type DNS-01 challenge.

pdb.enable                     true                                  <nil

>    Optional. Set to true to enable a PodDisruptionBudget for the Knativ

e Serving activator and webhook deployments.

domain_name                                                          stri

ng   Optional. Default domain name for Knative Services.

ingress.external.namespace     tanzu-system-ingress                  stri

ng   Required. Specify a namespace where an existing Contour is installed

 on your cluster. CNRs will use this Contour instance for external servic

es.

ingress.internal.namespace     tanzu-system-ingress                  stri

ng   Required. Specify a namespace where an existing Contour is installed

 on your cluster. CNRs will use this Contour instance for internal servic

es.

lite.enable                    false                                 <nil

>    Optional. Set to "true" to enable lite mode. Reduces CPU and Memory 

resource requests for all cnrs Deployments, Daemonsets, and StatefulSets 

by half. Not recommended for production.

domain_template                {{.Name}}.{{.Namespace}}.{{.Domain}}  stri

ng   Optional. Specifies the golang text template string to use when cons

tructing the DNS name for a Knative Service.

kubernetes_distribution        <nil>                                 <nil

>    Optional. Type of K8s infrastructure being used. Supported Values: o

penshift

kubernetes_version             0.0.0                                 <nil

>    Optional. Version of K8s infrastructure being used. Supported Values

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 15



: valid Kubernetes major.minor.patch versions

allow_manual_configmap_update  true                                  bool

ean  Specifies how updates to some CNRs ConfigMaps can be made. Set to Tr

ue, CNRs allows updates to those ConfigMaps to be made only manually. Set

 to False, updates to those CNRs ConfigMaps can be made only using overla

ys. Supported Values: True, False.

ca_cert_data                                                         stri

ng   Optional. PEM Encoded certificate data to trust TLS connections with

 a private CA.

default_external_scheme        <nil>                                 stri

ng   Optional. Specifies the default scheme to use for Knative Service UR

Ls, regardless of other TLS configurations. Supports either http or https

. Cannot be set along with default_tls_secret

default_tls_secret                                                   stri

ng   Optional. Specify a fallback TLS Certificate for use by Knative Serv

ices if autoTLS is disabled. Will set default exterenal scheme for Knativ

e Service URLs to "https". Requires either "domain_name" or "domain_confi

g" to be set and cannot be set along with "default_external_scheme".

https_redirection              true                                  bool

ean  CNRs ingress will send a 301 redirect for all http connections, aski

ng the clients to use HTTPS

ingress_issuer                                                       stri

ng   Cluster issuer to be used in CNRs. To use this property the domain_n

ame or domain_config must be set. Under the hood, when this property is s

et auto-tls is Enabled.

2. Create a cnr-values.yaml file by using the following sample as a guide to configure

Cloud Native Runtimes:

Note: For most installations, you can leave the cnr-values.yaml empty, and use the

default values.

---

# Configures the domain that Knative Services will use

domain_name: "mydomain.com"

Configuration Notes: * If you are running on a single-node cluster, such as

minikube, set the lite.enable: true option to lower CPU and memory requests for

resources. In case you also want to deactivate pod disruption budgets on Knative

Serving and high availability is not indispensable in your development environment,

you can set pbd.enable to false.

Cloud Native Runtimes reuses the existing tanzu-system-ingress Contour

installation for external and internal access when installed in the light or full

profile. If you want to use a separate Contour installation for system-internal

traffic, set cnrs.ingress.internal.namespace to the namespace of your

separate Contour installation.

If you install Cloud Native Runtimes with the default value of true for the

allow_manual_configmap_update configuration, you will only be able to

update some ConfigMaps (Ex: config-features manually. If you would like to

update all ConfigMaps using overlays, please change this value to false. In a

future release, false will be the default configuration. At some point after

that, Cloud Native Runtimes will be released without the option to switch and

false will be the permanent behavior.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 16



3. Install the package by running:

tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 2.3.1 -

n tap-install --values-file cnr-values.yaml --poll-timeout 30m

For example:

tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 2.3.1 -

n tap-install -values-file cnr-values.yaml --poll-timeout 30m

| Installing package 'cnrs.tanzu.vmware.com'

| Getting package metadata for 'cnrs.tanzu.vmware.com'

| Creating service account 'cloud-native-runtimes-tap-install-sa'

| Creating cluster admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Creating cluster role binding 'cloud-native-runtimes-tap-install-cluster-role

binding'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'cloud-native-runtimes' in namespace 'tap-install'

4. Verify the package install by running:

tanzu package installed get cloud-native-runtimes -n tap-install

For example:

tanzu package installed get cloud-native-runtimes -n tap-install

Retrieving installation details for cloud-native-runtimes...

NAME:                    cloud-native-runtimes

PACKAGE-NAME:            cnrs.tanzu.vmware.com

PACKAGE-VERSION:         2.3.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 17



Administrator Guide for Cloud Native
Runtimes

The next several pages show you how to use, troubleshoot, integrate, upgrade and uninstall Cloud

Native Runtimes, commonly known as CNRs.

Configure your External DNS with Cloud Native Runtimes

This topic describes how you can configure your external DNS with Cloud Native Runtimes,

commonly known as CNRs.

Overview

Knative uses svc.cluster.local as the default domain.

Note: If you are setting up Cloud Native Runtimes for development or testing, you do not have to set

up an external DNS. However, if you want to access your workloads (apps) over the internet, then

you do need to set up a custom domain and an external DNS.

Configure custom domain

To set up the custom domain and its external DNS record:

1. Configure your custom domain:

When your workloads are created, Knative will automatically create URLs for each workload

based on the configuration in the domain ConfigMap.

To set a default custom domain, edit your cnr-values.yml file to contain the following:

---

domain_name: "mydomain.com"

This will modify the Knative domain ConfigMap to use domain_name as the default

domain.

Note: domain_name must be a valid DNS subdomain.

Advanced: To overwrite the domain ConfigMap entirely, edit your cnr-values.yml file

to contain your desired config-domain options, similar to the following:

---

domain_config: |

 ---

 mydomain.com: |

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 18



 mydomain.org: |

    selector:

       app: nonprofit

This will replace the body of the Knative domain ConfigMap with domain_config. This

will allow you to configure multiple custom domains, and configure a custom domain

for a service depending on its labels.

See Changing the default domain for more information about the structure of the

domain ConfigMap.

Note: domain_config must be valid YAML and a valid domain ConfigMap.

Note: You can only use one of domain_config or domain_name at a time. You may not use

both.

2. Get the address of the cluster load balancer:

kubectl get service envoy -n EXTERNAL-CONTOUR-NS --output 'jsonpath={.status.lo

adBalancer.ingress}'

Where EXTERNAL-CONTOUR-NS is the namespace where a Contour serving external traffic is

installed. If Cloud Native Runtimes was installed as part of a Tanzu Application Profile, this

value will likely be tanzu-system-ingress.

If this command returns a URL instead of an IP address, then ping the URL to get the load

balancer IP address.

3. Create a wildcard DNS A record that assigns the custom domain to the load balancer IP.

Follow the instructions provided by your domain name registrar for creating records.

The record created looks like:

*.DOMAIN IN A TTL LOADBALANCER-IP

Where:

DOMAIN is the custom domain.

TTL is the time-to-live.

LOADBALANCER-IP is the load balancer IP.

For example:

If you chose to configure multiple custom domains above, you will need to create a wildcard

DNS record for each domain.

Configure Knative Service Domain Template

Knative uses domain template which specifies the golang text template string to use when

constructing the Knative service’s DNS name. The default value is {{.Name}}.{{.Namespace}}.

{{.Domain}}. Valid variables defined in the template include Name, Namespace, Domain, Labels,

*.mydomain.com IN A 3600 198.51.100.6

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 19

https://knative.dev/docs/serving/using-a-custom-domain/#changing-the-default-domain


and Annotations.

To configure domain template for the created Knative Services, edit your cnr-values.yml file to

contain the following:

---

domain_template: "{{.Name}}-{{.Namespace}}.{{.Domain}}"

This will modify the Knative domain-template ConfigMap to use domain_template as the default

domain template.

Changing this value might be necessary when the extra levels in the domain name generated are

problematic for wildcard certificates that only support a single level of domain name added to the

certificate’s domain. In those cases you might consider using a value of {{.Name}}-{{.Namespace}}.

{{.Domain}}, or removing the Namespace entirely from the template.

When choosing a new value, be thoughtful of the potential for conflicts, such as when users the use

of characters like - in their service or namespace names.

{{.Annotations}} or {{.Labels}} can be used for any customization in the go template if needed.

It is strongly recommended to keep namespace part of the template to avoid domain name clashes:

eg. {{.Name}}-{{.Namespace}}.{{ index .Annotations "sub"}}.{{.Domain}} and you have an

annotation {"sub":"foo"}, then the generated template would be {Name}-{Namespace}.foo.

{Domain}.

Securing Your Web Workloads in Cloud Native Runtimes

This topic give you an overview of securing HTTP connections using TLS certificates in Cloud Native

Runtimes, commonly known as CNRs, for VMware Tanzu Application Platform and helps you

configure TLS (Transport Layer Security).

Prerequisites

Ensure that you have the Tanzu Application Platform, Cloud Native Runtimes for VMware Tanzu,

Contour, and cert-manager installed.

Overview of Cloud Native Runtimes TLS Configurations

This section describes default configuration, custom configuration, obtaining and renewing TLS

certificates with Cloud Native Runtimes.

Default TLS configuration in Cloud Native Runtimes

When installing Tanzu Application Platform by using profiles, the cert-manager package is utilized to

facilitate the acquisition, management and renewal of TLS certificates.

Cloud Native Runtimes automatically acquire TLS certificates for workloads through the shared

ingress issuer integrated into the Tanzu Application Platform. The ingress issuer is specified by the

shared.ingress_issuer configuration value in Tanzu Application Platform, and it refers to a cert-

manager.io/v1/ClusterIssuer.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 20

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/about-package-profiles.html#installation-profiles-in-tanzu-application-platform-v16-1
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/cert-manager-about.html


By default, the ingress issuer is self-signed and has limitations. For more information about the

shared ingress issuer, see the Tanzu Application Platform documentation below:

Ingress certificates

Shared ingress issuer

The following TLS features are included in Cloud Native Runtimes by default:

Auto-TLS

Cloud Native Runtimes has the Auto-TLS feature enabled by default. It uses the cert-

manager package to automate the process of certificate issuance and management. Auto-

TLS takes care of requesting, renewing, and configuring TLS certificates for each domain

that you configure in your Cloud Native Runtimes settings.

Automatic HTTPS Redirection

By default, Cloud Native Runtimes automatically redirects HTTP traffic to HTTPS for secured

services. This ensures that all communication with your applications is encrypted and

providing a secure experience for your users.

One certificate per hostname

Cloud Native Runtimes issues a unique certificate for each hostname associated with a

Knative Service.

Custom TLS configuration in Cloud Native Runtimes

While the default ingress issuer is suitable for testing and evaluation purposes, VMware highly

recommends replacing it with your own issuer for production environments.

There are a few ways to customize TLS configuration in Cloud Native Runtimes:

Replace the shared ingress issuer at the Tanzu Application Platform’s level

You have the flexibility to replace Tanzu Application Platform’s default ingress issuer with any other

certificate authority that is compliant with cert-manager ClusterIssuer. For more information on

how to replace the default ingress issuer, see Replacing the default ingress issuer documentation.

Cloud Native Runtimes will utilize the issuer specified by shared.ingress_issuer configuration value

to issue certificates for your workload automatically.

Designate another ingress issuer for your workloads in Cloud Native Runtimes only

You can have a shared ingress issuer at the Tanzu Application Platform’s level and also designate

another issuer to be used by Cloud Native Runtimes to issue TLS certificates for your workloads. This

allows you to customize TLS settings for Cloud Native Runtimes while maintaining a global

configuration for other components.

You can designate an ingress issuer for Cloud Native Runtimes by specifying cnrs.ingress_issuer

configuration value. The ingress/TLS configuration for Cloud Native Runtimes takes precedence

over the shared ingress issuer.

If you wish to designate another ingress issuer for your workloads, navigate to Configure Cloud

Native Runtimes to use a custom Issuer or ClusterIssuer for details.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 21

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/security-and-compliance-tls-and-certificates-ingress-about.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/security-and-compliance-tls-and-certificates-ingress-issuer.html
https://cert-manager.io/docs/configuration/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/security-and-compliance-tls-and-certificates-ingress-issuer.html#replacing-the-default-ingress-issuer-4


Provide an existing TLS certificate for your workloads in Cloud Native Runtimes

If you manually generated a TLS certificate and wish to provide it to Cloud Native Runtimes instead

of using an ingress issuer, you can follow the instructions in Use your existing TLS Certificate for

Cloud Native Runtimes.

Resources on custom TLS configuration for Cloud Native Runtimes:

Configure Cloud Native Runtimes to use a custom Issuer or ClusterIssuer

Use wildcard certificates with Cloud Native Runtimes

Use your existing TLS Certificate for Cloud Native Runtimes

Deactivate HTTP-to-HTTPS redirection

Opt out from any ingress issuer and deactivate automatic TLS feature

Configure Cloud Native Runtimes to use a custom Issuer or
ClusterIssuer

The ability to opt out of the shared ingress issuer and use a custom Issuer or ClusterIssuer for Cloud

Native Runtimes provides greater flexibility, security, isolation, and integration with existing

infrastructure, allowing you to tailor the TLS configurations to your specific needs and requirements.

We will explain in the following example how to opt out of the shared ingress issuer and use Let’s

Encrypt with the HTTP01 challenge type. The HTTP01 challenge requires that your load balancer be

reachable from the internet by using HTTP. With the HTTP01 challenge type, a certificate is

provisioned for each service.

To configure Cloud Native Runtimes to use a custom Issuer or ClusterIssuer with the HTTP01

challenge, follow these steps:

Configure a custom issuer

You have the flexibility to replace Tanzu Application Platform’s default ingress issuer with any other

certificate authority that is compliant with cert-manager ClusterIssuer. For more information on

how to replace the default ingress issuer, see Replacing the default ingress issuer documentation.

1. Create a custom Issuer or ClusterIssuer with the Certificate Authority (CA) that you want and

configurations. Here’s an example YAML configuration for a custom ClusterIssuer using Let’s

Encrypt with the HTTP01 challenge:

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-http01-issuer

spec:

  acme:

     email: YOUR-EMAIL

     server: https://acme-v02.api.letsencrypt.org/directory

     privateKeySecretRef:

       name: letsencrypt-http01-issuer-account-key

     solvers:

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 22

https://cert-manager.io/docs/configuration/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/security-and-compliance-tls-and-certificates-ingress-issuer.html#replacing-the-default-ingress-issuer-4


       - http01:

           ingress:

             class: contour

Where YOUR-EMAIL is your email address.

Make sure to specify the ingress class you are using in your Tanzu Application Platform

cluster, which is contour.

2. Save the configuration above in a file called issuer-letsencrypt-http01.yaml.

3. Apply the Issuer or ClusterIssuer configuration to your cluster:

kubectl apply -f issuer-letsencrypt-http01.yaml

Configure Cloud Native Runtimes to use the custom issuer

1. Configure Cloud Native Runtimes to use the custom Issuer or ClusterIssuer for issuing

certificates by updating your tap-values.yaml file with the following snippet of yaml.

cnrs:

   ingress_issuer: "letsencrypt-http01-issuer"

2. Update Tanzu Application Platform

To update the Tanzu Application Platform installation with the changes to the values file, run:

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --

values-file tap-values.yaml -n tap-install

Verify the issuance of certificates

Verify that your ClusterIssuer was created and properly issuing certificates:

kubectl get clusterissuer letsencrypt-http01-issuer

You can confirm the status of the certificate by running the command below. You should see the

certificate in a Ready state.

kubectl get certificate -n DEVELOPER-NAMESPACE

Additionally, you can access your workload using the domain you specified with curl or a web

browser, and verify that it is using a TLS certificate issued by the custom Issuer or ClusterIssuer.

Note

If you want to test this feature, you might want to set spec.acme.server to

https://acme-staging-v02.api.letsencrypt.org/directory. This is the staging

url, which generates self-signed certs. It is useful for testing without worrying

about hitting quotas for your actual domain.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 23



tanzu apps workload get WORKLOAD-NAME --namespace DEVELOPER-NAMESPACE

kubectl get ksvc WORKLOAD-NAME -n DEVELOPER-NAMESPACE -o jsonpath='{.status.url}'

For details on how to troubleshoot failures related to the certificate, visit cert-manager’s

Troubleshooting guide.

Use wildcard certificates with Cloud Native Runtimes

This section describes how to configure, use and verify wildcard certificates with Cloud Native

Runtimes.

Cloud Native Runtimes utilizes the cert-manager package by default to automate the process of

obtaining, managing, and renewing TLS certificates for your services.

Cert-manager is a Kubernetes-native component that works with different certificate authorities

(CAs) like Let’s Encrypt and others, to manage certificates within your Kubernetes cluster. As part of

Tanzu Application Platform predefined profile installation, cert-manager package is deployed to the

cluster.

Configure an issuer for wildcard certificates

Any other cert-manager.io/v1/ClusterIssuer can replace Tanzu Application Platform’s default

ingress issuer. This topic uses Let’s Encrypt as an example of how to set up a custom ingress issuer

that issues wildcard certificates.

The Let’s Encrypt documentation states that the DNS01 challenge is required to validate wildcard

domains. This topic provides instructions for configuring Cloud Native Runtimes to use wildcard

certificates with the DNS01 challenge only.

1. Create a cert-manager custom Issuer or ClusterIssuer for the DNS01 challenge.

You must create a custom Issuer or ClusterIssuer with the DNS01 solver configured for your

specific DNS provider. Visit cert-manager’s documentation on Supported DNS01 providers

for instructions on configuring cert-manager for all the supported DNS providers.

The following example uses Let’s Encrypt and Google Cloud DNS:

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-dns-wildcard

spec:

  acme:

    server: https://acme-v02.api.letsencrypt.org/directory

    # This will register an issuer with LetsEncrypt.

    email: YOUR-EMAIL

    privateKeySecretRef:

      # Set privateKeySecretRef to any unused secret name.

      name: letsencrypt-dns-wildcard-account-key

    solvers:

    - dns01:

        cloudDNS:

          # Set this to your GCP project id

          project: PROJECT_ID

          # This is the secret used to access the service account

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 24

https://cert-manager.io/docs/troubleshooting
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers


          serviceAccountSecretRef:

            name: cloud-dns-key

            key: key.json

Where YOUR-EMAIL is the email associated with your DNS provider.

Where PROJECT_ID is the ID of the GCP project.

2. Save the configuration above in a file called issuer-wildcard.yaml.

When using cert-manager to obtain wildcard certificates, you typically must provide

credentials, especially when using the DNS01 challenge. The DNS01 challenge requires cert-

manager to create and delete DNS records for domain validation during the certificate

issuance process. To perform these actions, cert-manager needs access to your DNS

provider’s API, which requires authentication using API keys, access tokens, or other

credentials. See Supported DNS01 providers in the cert-manager documentation.

3. Apply the file you saved in the previous section to your cluster:

kubectl apply -f issuer-wildcard.yaml`

Configure Cloud Native Runtimes to use wildcard certificates

To use wildcard certificates:

1. Configure Cloud Native Runtimes to use the custom Issuer or ClusterIssuer and indicate in

which namespaces to create wildcard certificates

You achieve this by add the snippet below to your tap-values.yaml file.

cnrs:

  ingress_issuer: "letsencrypt-dns-wildcard"

  namespace_selector:

    matchExpressions:

    - key: apps.tanzu.vmware.com/tap-ns

      operator: Exists

This configuration tells Cloud Native Runtimes which custom Issuer or ClusterIssuer is used

for issuing the wildcard certificate. When a Knative Service is created or updated with this

Note

If you want to test this feature, you might want to set spec.acme.server to

https://acme-staging-v02.api.letsencrypt.org/directory. This is the staging

url, which generates self-signed certs. It is useful for testing without worrying

about hitting quotas for your actual domain.

Note

If no value is passed to cnrs.namespace_selector, only per service

certificates are generated instead of wildcard certificates.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 25

https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers


configuration, Cloud Native Runtimes requests and uses the wildcard certificate from the

specified custom Issuer or ClusterIssuer.

In Cloud Native Runtimes, the per-namespace certificate manager operates by using the

namespace labels to verify which namespaces require a certificate to be generated. This

example specifies that only namespaces labeled with apps.tanzu.vmware.com/tap-ns have

corresponding wildcard certificates created for them.

If you are using the suggested namespace selector, label your developer namespace with

apps.tanzu.vmware.com/tap-ns. You can so by running the following command:

kubectl label namespace DEV-NAMESPACE "apps.tanzu.vmware.com/tap-ns"

To remove a label from a namespace, run the following command:

kubectl label namespace DEV-NAMESPACE "apps.tanzu.vmware.com/tap-ns"- --overwri

te

2. Update Tanzu Application Platform.

To update the Tanzu Application Platform installation with the changes to the values file, run:

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --

values-file tap-values.yaml -n tap-install

Verify the issuance of wildcard certificates

Verify that your ClusterIssuer was created and properly issuing certificates:

kubectl get clusterissuer letsencrypt-dns-wildcard

You can confirm the status of the certificate by running the command below. You should see the

certificate in a Ready state.

kubectl get certificate -n DEVELOPER-NAMESPACE

Additionally, you can access your workload using the domain you specified with curl or a web

browser, and verify that it is using a TLS certificate issued by the custom Issuer or ClusterIssuer.

tanzu apps workload get WORKLOAD-NAME --namespace DEVELOPER-NAMESPACE

kubectl get ksvc WORKLOAD-NAME -n DEVELOPER-NAMESPACE -o jsonpath='{.status.url}'

For details on how to troubleshoot failures related to the certificate, visit cert-manager’s

Troubleshooting guide.

Use your existing TLS Certificate for Cloud Native Runtimes

This topic tells you how to use your existing TLS Certificate for Cloud Native Runtimes, commonly

known as CNRs.

Overview

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 26

https://cert-manager.io/docs/troubleshooting


Configure secure HTTPS connections to enable your web workloads and routes to terminate

external TLS connections using an existing certificate.

Prerequisites

In order to configure TLS for Cloud Native Runtimes, you must first configure a Service Domain. For

more information, see Configuring External DNS with Cloud Native Runtimes.

To configure your TLS certificate for the created Knative Services, follow the steps:

Create a Kubernetes Secret to hold your TLS Certificate

kubectl create -n DEVELOPER-NAMESPACE secret tls SECRET_NAME \

  --key key.pem \

  --cert cert.pem

Create a delegation. To do so, create a tlscertdelegation.yaml file with following contents

  apiVersion: projectcontour.io/v1

  kind: TLSCertificateDelegation

  metadata:

    name: default-delegation

    namespace: DEVELOPER-NAMESPACE

  spec:

    delegations:

      - secretName: SECRET_NAME

        targetNamespaces:

          - "DEVELOPER-NAMESPACE"

Where SECRET_NAME is the name of the Kubernetes secret you created in the step above.

Apply the above yaml file by running below command:

kubectl apply -f tlscertdelegation.yaml

Include the following configuration in your tap-values.yml file under Cloud Native Runtimes

section and redeploy:

cnrs:

Note

It is important to note that you have the flexibility to provide your own TLS certificate

to Cloud Native Runtimes instead of relying on the shared ingress issuer for your

Knative workloads. To utilize the feature explained in this document, you must

configure Cloud Native Runtimes to bypass the cert-manager certificate issuer. For

instance, if you have set cnrs.default_tls_secret in your tap-values.yaml file, you

should set the cnrs.ingress_issuer configuration to an empty value. For detailed

instructions on how to opt out and deactivate the automatic TLS feature, please refer

to the documentation: Opt out from any ingress issuer and deactivate automatic TLS

feature.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 27



    default_tls_secret: "DEVELOPER-NAMESPACE/SECRET_NAME"

Where SECRET_NAME is the name of the Kubernetes secret you created in the previous step.

Where DEVELOPER-NAMESPACE is the name of the namespace where the secret was created in

the previous step.

Update Tanzu Application Platform

To update the Tanzu Application Platform installation with the changes to the values file, run:

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --

values-file tap-values.yaml -n tap-install

This will modify the Knative config-contour ConfigMap to use default_tls_secret as the

default TLS certificate.

Your web workloads’ URLs will use the scheme https by default when this secret is

provided.

Deactivate HTTP-to-HTTPS redirection

When you designate an ingress issuer for your workloads by setting either the

shared.ingress_issuer or cnrs.ingress_issuer configuration value, in your tap-values.yaml file,

the auto-TLS feature is enabled in Cloud Native Runtimes. When the auto-TLS is enabled, Cloud

Native Runtimes will automatically redirect traffic from HTTP to HTTPS. However, there may be

situations where you want to opt out this behavior and continue serving content over HTTP. If this

applies to your case, you must turn off the HTTPS redirection feature.

To deactivate HTTP-to-HTTPS redirection in Cloud Native Runtimes, you must modify your

configuration values file and follow the steps below:

1. Configure Cloud Native Runtimes to deactivate https redirection

cnrs:

   https_redirection: false

2. Update your Tanzu Application Platform installation

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --

values-file tap-values.yaml -n tap-install

3. Verify that the HTTP-to-HTTPS redirection is deactivated by accessing your workload using

the HTTP protocol. You should be able to access the service without being redirected to

HTTPS. Use a web browser or a tool like curl to test the behavior:

curl -I http://your-workload.your-domain.com

The response should show an HTTP status code without redirection to HTTPS.

Opt out from an ingress issuer and deactivate automatic TLS
feature

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 28



This topic tells you how to opt out from an ingress issuer and deactivate automatic TLS feature for

Cloud Native Runtimes, commonly known as CNRs.

Deactivate TLS

You can deactivate automatic TLS certificate provisioning in Cloud Native Runtimes by setting the

ingress_issuer property to an empty string as follows:

cnrs:

    ingress_issuer: ""

Make sure to update your Tanzu Application Platform installation accordingly after following the step

mentioned above.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values-

file tap-values.yaml -n tap-install

Installing Cloud Native Runtimes with your Existing Contour
Installation

This topic describes how you can configure Cloud Native Runtimes, commonly known as CNRs, with

your existing Contour instance. Cloud Native Runtimes uses Contour to manage internal and external

access to the services in a cluster.

About Using Contour with Cloud Native Runtimes

The instructions on this page assume that you have an existing Contour installation on your cluster.

Follow the instructions on this page if:

You have installed Contour as part of Tanzu Application Platform and wish to configure Cloud

Native Runtimes to use it.

You see an error about an existing Contour installation when you install the Cloud

Native Runtimes package.

Cloud Native Runtimes needs two instances of Contour: one instance for exposing services outside

the cluster, and another instance for services that are private in your network. If installed as part of a

Tanzu Application Platform profile, by default Cloud Native Runtimes will use the Contour instance

installed in the namespace tanzu-system-ingress for both internal and external traffic.

If you already use a Contour instance to route requests from clients outside and inside the cluster,

you may use your own Contour if it matches the Contour version used by Tanzu Application’s

Platform.

You may use the same single instance of Contour for both internal and external traffic. However, this

will cause internal and external traffic will be handled the same way. For example, if the Contour

instance is configured to be accessible from clients outside the cluster, then any internal traffic will

also be accessible from outside the cluster. Note that currently Tanzu Application Platform only

supports using a single Contour instance for both internal and external traffic.

In all of the above cases, Cloud Native Runtimes will use the Tanzu Application Platform’s Contour

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 29

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/cert-manager-install.html


CustomResourceDefinitions.

Prerequisites

The following prerequisites are required to configure Cloud Native Runtimes with an existing Contour

installation:

Contour version v1.22.0 (Contour version that is installed as part of Tanzu Application

Platform). To identify your cluster’s Contour version, see Identify Your Contour Version

below.

Contour CustomResourceDefinitions versions:

Resource Name Version

contourdeployments.projectcontour.io v1alpha1

contourconfigurations.projectcontour.io v1alpha1

extensionservices.projectcontour.io v1alpha1

httpproxies.projectcontour.io v1

tlscertificatedelegations.projectcontour.io v1

Identify Your Contour Version

To identify your cluster’s Contour version, run:

export CONTOUR_NAMESPACE=CONTOUR-NAMESPACE

export CONTOUR_DEPLOYMENT=$(kubectl get deployment --namespace $CONTOUR_NAMESPACE --ou

tput name)

kubectl get $CONTOUR_DEPLOYMENT --namespace $CONTOUR_NAMESPACE --output jsonpath="{.sp

ec.template.spec.containers[].image}"

kubectl get crds extensionservices.projectcontour.io --output jsonpath="{.status.store

dVersions}"

kubectl get crds httpproxies.projectcontour.io --output jsonpath="{.status.storedVersi

ons}"

kubectl get crds tlscertificatedelegations.projectcontour.io --output jsonpath="{.stat

us.storedVersions}"

Where CONTOUR-NAMESPACE is the namespace where Contour is installed on your Kubernetes cluster.

Install Cloud Native Runtimes on a Cluster with Your Existing
Contour Instances

To install Cloud Native Runtimes on a cluster with an existing Contour instance, you can add values

to your cnr-values.yml file so that Cloud Native Runtimes will use your Contour instance.

An example of a cnr-values.yml file where you wish Cloud Native Runtimes to use the Contour

version in a different namespace would look like this:

---

ingress:

  external:

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 30



    namespace: "tanzu-system-ingress"

  internal:

    namespace: "tanzu-system-ingress"

Note: If your Contour instance is removed or configured incorrectly, apps running on Cloud Native

Runtimes will lose connectivity.

Configuring Eventing with RabbitMQ for Cloud Native
Runtimes

This topic tells you how to use RabbitMQ as an event source to react to messages sent to a

RabbitMQ exchange or as an event broker to distribute events within your app for Cloud Native

Runtimes, commonly known as CNRs.

Overview

The integration allows you to create:

A RabbitMQ broker: A Knative Eventing broker backed by RabbitMQ. This broker uses

RabbitMQ exchanges to store CloudEvents that are then routed from one component to

another.

A RabbitMQ source: An event source that translates external messages on a RabbitMQ

exchange to CloudEvents, which can then be used with Knative Serving or Knative Eventing

over HTTP.

Install VMware Tanzu RabbitMQ for Kubernetes

Before you can use or test RabbitMQ eventing on Cloud Native Runtimes, you need to install

VMWare Tanzu RabbitMQ for Kubernetes . Follow below steps to complete the installation:

1. Accept End User License Agreement

2. Prerequisites: This step installs kapp-controller and secretgen-controller. Skip this step if

kapp-controller and secretgen-controller are already installed on your cluster.

3. Prepare for the Installation

Provide imagePullSecrets

Install the PackageRepository

Create a Service Account

Install Cert-Manager: Skip this step if cert-manager is already installed on your

cluster.

4. Install the Tanzu RabbitMQ Package: This step will install the Tanzu RabbitMQ Cluster

Operator, Message Topology Operator, and Standby Replication Operator on your cluster.

Next Steps

After completing these installations, you can:

Verify your Knative Eventing installation using an example RabbitMQ broker. For instructions,

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 31

https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#accept-the-end-user-license-agreements
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#prerequisites-before-you-install-vmware-rabbitmq-for-kubernetes
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#provide-imagepullsecrets
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#install-the-vmware-rabbitmq-packagerepository
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#create-a-serviceaccount
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#install-cert-manager
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/1/rmq/installation.html#install-the-vmware-rabbitmq-package


see Verify Knative Eventing.

Bring your own RabbitMQ Cluster you can plug in an existing RabbitMQ instance and start

using it with the Tanzu and Knative Eventing resources.

Create a broker, producer, and a consumer to use RabbitMQ and Knative Eventing with your

own app.

Configuring Observability for Cloud Native Runtimes

This topic tells you how to configure observability for Cloud Native Runtimes, commonly known as

CNRs.

Overview

You can set up integrations with third-party observability tools to use logging, metrics, and tracing

with Cloud Native Runtimes. These observability integrations allow you to monitor and collect

detailed metrics from your clusters on Cloud Native Runtimes. You can collect logs and metrics for all

workloads running on a cluster. This includes Cloud Native Runtimes components or any apps

running on Cloud Native Runtimes. The integrations in this topic are recommended by VMware,

however you can use any Kubernetes compatible logging, metrics, and tracing platforms to monitor

your cluster workload.

Logging

You can collect and forward logs for all workloads on a cluster, including Cloud Native Runtimes

components or any apps running on Cloud Native Runtimes. You can use any logging platform that

is compatible with Kubernetes to collect and forward logs for Cloud Native Runtimes workloads.

VMware recommends using Fluent Bit to collect logs and then forward logs to vRealize. The

following sections describe configuring logging for Cloud Native Runtimes with Fluent Bit and

vRealize as an example.

Configure Logging with Fluent Bit

You can use Fluent Bit to collect logs for all workloads on a cluster, including Cloud Native Runtimes

components or any apps running on Cloud Native Runtimes. For more information about using

Fluent Bit logs, see Fluent Bit Kubernetes Logging.

Fluent Bit lets you collect logs from Kubernetes containers, add Kubernetes metadata to these logs,

and forward logs to third-party log storage services. For more information about collecting logs, see

Logging in the Knative documentation.

If you are using Tanzu Mission Control (TMC), vSphere 7.0 with Tanzu, or Tanzu Kubernetes Cluster

to manage your cloud native environment, you must set up a role binding that grants required

permissions to Fluent Bit containers in order to configure logging with any integration. Then, you can

follow the instructions in the Fluent Bit documentation to complete the logging configuration. For

more information about configuring Fluent Bit logging, see Installation in the Fluent Bit

documentation.

To configure logging with Fluent Bit for your Cloud Native Runtimes environment:

1. VMware recommends that you add any integrations to the ConfigMap in both your Knative

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 32

#rabbitmq-external-cluster
https://docs.fluentbit.io/manual/installation/kubernetes
https://knative.dev/docs/install/collecting-logs/
https://docs.fluentbit.io/manual/installation/kubernetes#installation


Serving and Knative Eventing namespaces. Follow the logging configuration steps in the

Fluent Bit documentation to create the Namespace, ServiceAccount, Role, RoleBinding, and

ConfigMap. To view these steps, see Installation in the Fluent Bit documentation.

2. If you are using TMC, vSphere with Tanzu, or Tanzu Kubernetes Cluster to manage your

cloud native environment, create a role binding in the Kubernetes namespace where your

integration will be deployed to grant permission for privileged Fluent Bit containers. For

information about creating a role binding on a Tanzu platform, see Add a Role Binding. For

information about viewing your Kubernetes namespaces, see Viewing Namespaces. Create

the following role binding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: fluentbit-psp-rolebinding

  namespace: FLUENTBIT-NAMESPACE

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name:  PRIVILEGED-CLUSTERROLE

subjects:

- kind: ServiceAccount

  name: FLUENTBIT-SERVICEACCOUNT

  namespace: FLUENTBIT-NAMESPACE

Where:

FLUENTBIT-NAMESPACE is your Fluent Bit namespace.

PRIVILEGED-CLUSTERROLE is the name of your privileged cluster role.

FLUENTBIT-SERVICEACCOUNT is your Fluent Bit service account.

3. To verify that you have configured logging successfully, run the following to access logs

through your web browser:

kubectl port-forward --namespace logging service/log-collector 8080:80

For more information about accessing Fluent Bit logs, see Logging in the Knative

documentation.

Forward Logs to vRealize

After you configure log collection, you can forward logs to log management services. vRealize Log

Insight is one service you can use with Cloud Native Runtimes. vRealize Log Insight is a scalable log

management solution that provides log management, dashboards, analytics, and third-party

extensibility for infrastructure and apps. For more information about vRealize Log Insight, see the

VMware vRealize Log Insight Documentation.

To forward logs from your Cloud Native Runtimes environment to vRealize, you can use a new or

existing instance of Tanzu Kubernetes Cluster. For information about how to configure log

forwarding to vRealize from Tanzu Kubernetes Cluster, see the Configure Log forwarding from

VMware Tanzu Kubernetes Cluster to vRealize Log Insight Cloud blog.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 33

https://docs.fluentbit.io/manual/installation/kubernetes#installation
https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-using/GUID-DBC3FF6D-F206-4047-8F21-ED8154A7537D.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces
https://knative.dev/docs/install/collecting-logs/
https://docs.vmware.com/en/vRealize-Log-Insight/index.html
https://blogs.vmware.com/management/2020/06/configure-log-forwarding-from-vmware-tanzu-kubernetes-cluster-to-vrealize-log-insight-cloud.html


Metrics

Cloud Native Runtimes integrates with Prometheus and VMware Aria Operations for Applications

(formerly known as Tanzu Observability by Wavefront) to collect metrics on components or apps. For

more information about integrating with Prometheus, see Overview in the Prometheus

documentation and Kubernetes Integration in the Wavefront documentation.

You can configure Prometheus endpoints on Cloud Native Runtimes components in order to be able

to collect metrics on your components or apps. For information about configuring this, see the

Prometheus documentation.

You can use annotation based discovery with Prometheus to define which Kubernetes objects in

your Cloud Native Runtimes environment to add metadata and collect metrics in a more automated

way. For more information about using annotation based discovery, see Annotation based discovery

in GitHub.

You can then use the Wavefront Collector for Kubernetes collector to dynamically discover and

scrape pods with the prometheus.io/scrape annotation prefix. For information about the Kubernetes

collector, see Wavefront Collector for Kubernetes in GitHub.

Tracing

Tracing is a method for understanding the performance of specific code paths in apps as they handle

requests. You can configure tracing to collect performance metrics for your apps or Cloud Native

Runtimes components. You can trace which aspects of Cloud Native Runtimes and workloads

running on Cloud Native Runtimes are performing poorly.

Configuring Tracing

You can configure tracing for your applications on Cloud Native Runtimes. To do this, you configure

tracing for both Knative Serving and Eventing by editing the ConfigMap config-tracing for your

Knative namespaces.

VMware recommends that you add any integrations in both your Serving and Eventing namespaces.

For information on how to enable request traces in each component, see the following Knative

documentation:

Serving. See Accessing request traces.

Eventing. See Accessing CloudEvent traces.

Forwarding Trace Data to an Observability Platform or Data
Visualization Tool

You can use the OpenTelemetry integration to forward trace data to a data visualization tool that can

ingest data in Zipkin format. For more information about using Zipkin for tracing, see the Zipkin

Note

All Cloud Native Runtimes related metrics are emitted with the prefix

tanzu.vmware.com/cloud-native-runtimes.*.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 34

https://prometheus.io/docs/introduction/overview/
https://docs.wavefront.com/kubernetes.html
https://prometheus.io/docs/introduction/overview/
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/6d1cf432d0ef2de4840e96c2b74950451b6bde2f/docs/discovery.md#annotation-based-discovery
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes
https://knative.dev/docs/serving/accessing-traces/
https://knative.dev/docs/eventing/accessing-traces/
https://zipkin.io/


documentation.

VMWare recommends integration with VMware Aria Operations for Applications (formerly known as

Tanzu Observability by Wavefront). For information about forwarding trace data, see Send

OpenTelemetry Data to Tanzu Observability.

Sending Trace Data to VMware Aria Operations for Applications

You can send trace data to an observability and analytics platform such as VMware Aria Operations

for Applications to view and monitor your trace data in dashboards. VMware Aria Operations for

Applications offers several deployment options. During development, a single proxy is often

sufficient for all data sources. See Proxy Deployment Options for more information on other

deployment options.

Follow the steps below to configure Cloud Native Runtimes to send traces to the Wavefront proxy

and then, configure the Wavefront proxy to consume Zipkin spans.

1. Deploy the Wavefront Proxy. For more information about Wavefront proxies, see Install and

Manage Wavefront Proxies.

2. Configure the namespace where the Wavefront Proxy was deployed with proper credentials

to its image registry.

The example below utilizes the Namespace Provisioner package to automatically configure

namespaces labeled with: apps.tanzu.vmware.com/tap-ns.

export WF_NAMESPACE=default

kubectl label namespace ${WF_NAMESPACE} apps.tanzu.vmware.com/tap-ns=""

export WF_REGISTRY_HOSTNAME=projects.registry.vmware.com

export WF_REGISTRY_USERNAME=<your-password>

export WF_REGISTRY_PASSWORD=<your-username>

tanzu secret registry add registry-credentials \

 --username ${WF_REGISTRY_USERNAME} --password ${WF_REGISTRY_PASSWORD} \

 --server ${WF_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

Where: WF_NAMESPACE is the namespace where you deployed the Wavefront Proxy.

WF_REGISTRY_HOSTNAME is the image registry where the Wavefront Proxy image is located.

WF_REGISTRY_USERNAME is your username to access the image registry to pull the Wavefront

Proxy image. WF_REGISTRY_PASSWORD is your password to access the image registry to pull the

Wavefront Proxy image.

For more information on how to set up developer namespaces, see Provision developer

Namespace.

3. Configure the Wavefront Proxy to allow Zipkin/Istio traces.

You can uncomment the lines indicated in the yaml file for the Wavefront Deployment to

enable consumption of Zipkin traces. You should edit the Wavefront Deployment to set the

WAVEFRONT_PROXY_ARGS environment variable to the value --traceZipkinListenerPorts 9411.

Also, edit the Wavefront Deployment to expose the containerPort 9411.

4. Confirm that the Wavefront Proxy is running and working.

First, check if pods are running. For further information on how to test a proxy, see Test a

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 35

https://docs.wavefront.com/opentelemetry_overview.html
https://docs.wavefront.com/proxies.html#proxy-deployment-options
https://docs.wavefront.com/proxies_installing.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/namespace-provisioner-provision-developer-ns.html
https://docs.wavefront.com/proxies_installing.html#test-a-proxy


Proxy.

kubectl get pods -n ${WF_NAMESPACE}

Where: WF_NAMESPACE is the namespace where you deployed the Wavefront Proxy.

5. Edit the Serving ConfigMap config-tracing to enable the Zipkin tracing integration.

You can configure Cloud Native Runtimes to send traces to the Wavefront proxy by editing

the zipkin-endpoint property in the ConfigMap to point to the Wavefront proxy URL. You

can configure the Wavefront proxy to consume Zipkin spans by listening to port 9411.

The snippet below is an example of a Kubernetes secret containing a ytt overlay with the

suggested changes to the ConfigMap config-tracing.

apiVersion: v1

kind: Secret

metadata:

 name: cnrs-patch

stringData:

 patch.yaml: |

   #@ load("@ytt:overlay", "overlay")

   #@overlay/match by=overlay.subset({"kind":"ConfigMap","metadata":{"name":"co

nfig-tracing","namespace":"knative-serving"}})

   ---

   data:

     #@overlay/match missing_ok=True

     backend: "zipkin"

     #@overlay/match missing_ok=True

     zipkin-endpoint: "http://wavefront-proxy.default.svc.cluster.local:9411/ap

i/v2/spans"

Once you follow the steps in the Customizing Cloud Native Runtimes documentation to

configure your installation to use the above overlay, you can check the ConfigMap on the

cluster to confirm that the changes were applied.

kubectl get configmap config-tracing --namespace knative-serving --output yaml

The ConfigMap should then look like this:

apiVersion: v1

kind: ConfigMap

metadata:

name: config-tracing

data:

Note

There are two ways of editing a Knative ConfigMap on Cloud Native

Runtimes. Depending on your installation, you may be able to edit the

ConfigMap directly on the cluster or via overlays. Check the following

documentation on how to edit ConfigMaps using overlays: Configuring Cloud

Native Runtimes

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 36

https://docs.wavefront.com/proxies_installing.html#test-a-proxy


_example: |

   ...

backend: "zipkin"

zipkin-endpoint: "http://wavefront-proxy.default.svc.cluster.local:9411/api/v2/

spans"

Other resources:

OpenTelemetry Integration

Wavefront Proxies

Deploy a Wavefront Proxy in Kubernetes (Manual Install)

Managing API Tokens on Wavefront

Configuring Cloud Native Runtimes with Avi Vantage

This topic tells you how to configure Cloud Native Runtimes, commonly known as CNRs, with Avi

Vantage.

Overview

You can configure Cloud Native Runtimes to integrate with Avi Vantage. Avi Vantage is a multi-cloud

platform that delivers features such as load balancing, security, and container ingress services. The

Avi Controller provides a control plane while the Avi Service Engines provide a data plane. Once set

up, the Avi Service Engines forward incoming traffic to your Kubernetes cluster’s Envoy pods, which

are created and managed by Contour.

For information about Avi Vantage, see Avi Documentation.

Integrate Avi Vantage with Cloud Native Runtimes

This procedure assumes that you have already installed Cloud Native Runtimes.

If you have not already installed Cloud Native Runtimes, see Installing Cloud Native Runtimes. If you

already have a Contour installation on your cluster, see Installing Cloud Native Runtimes with an

Existing Contour Installation.

To configure Cloud Native Runtimes with Avi Vantage, do the following:

1. Deploy the Avi Controller on any Avi supported infrastructure providers. For a list of Avi

supported providers, see Avi Installation Guides. For more information about deploying an

Avi Controller, see Install Avi Kubernetes Operator in the Avi Vantage documentation.

2. Deploy the Avi Kubernetes Operator to your Kubernetes cluster where Cloud Native

Runtimes is hosted. See Install AKO for Kubernetes in the Avi Vantage documentation.

3. Connect to a test app and verify that it is reachable. Run:

"curl -H KNATIVE-SERVICE-DOMAIN" ENVOY-IP

Where:

KNATIVE-SERVICE-DOMAIN is the name of your domain.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 37

https://docs.wavefront.com/opentelemetry.html#opentelemetry-integration
https://docs.wavefront.com/proxies.html#proxy-deployment-options
https://docs.wavefront.com/kubernetes.html#kubernetes-manual-install
https://docs.wavefront.com/wavefront_api.html#managing-api-tokens
https://avinetworks.com/docs/
https://avinetworks.com/docs/20.1/installation-guides-landing-page/
https://avinetworks.com/docs/ako/1.2/ako-installation/
https://avinetworks.com/docs/ako/1.4/ako-installation/#install-ako-for-kubernetes


ENVOY-IP is the IP address of your Envoy instance.

For more information about deploy a sample application and connect to the application, see

Test Knative Serving.

4. (Optional) Create a DNS record that will configure your KService URL to point to the Avi

Service Engines, and resolve to the external IP of the Envoy. You can create a DNS record

on any platform that supports DNS services. Refer to the documentation for your DNS

service platform for more information.

To get the KService URL, run:

kn route describe APP-NAME | grep "URL"

To get Envoy’s external IP, follow step 3 in Test Knative Serving in Verifying your Serving

Installation.

About Routing with Avi Vantage and Cloud Native Runtimes

The following diagram shows how Avi Vantage integrates with Cloud Native Runtimes:

When Contour creates a Kubernetes LoadBalancer service for Envoy, the Avi Kubernetes Operator

(AKO) sees the new LoadBalancer service. Then Avi Controller creates a Virtual Service. For

information about LoadBalancer services, see Type LoadBalancer in the Kubernetes documentation.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 38

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer


For each Envoy service, Avi Controller creates a corresponding Virtual Service. See Virtual Services

in the Avi Vantage documentation.

After Avi Controller creates a Virtual Service, the Controller configures the Avi Service Engines to

forward traffic to the Envoy pods. The Envoy pods route traffic based on incoming requests,

including traffic splitting and path based routing.

The Avi Controller provides Envoy with an external IP address so that apps are reachable by the app

developer.

Note: Avi does not interact directly with any Cloud Native Runtimes resources. Avi Vantage forwards

all incoming traffic to Envoy.

Configuring Cloud Native Runtimes with Tanzu Service Mesh

This topic tells you how to configure Cloud Native Runtimes, commonly known as CNRs, with Tanzu

Service Mesh.

Overview

You cannot install Cloud Native Runtimes on a cluster that has Tanzu Service Mesh attached.

This workaround describes how Tanzu Service Mesh can be configured to ignore the Cloud Native

Runtimes. This allows Contour to provide ingress routing for the Knative workloads, while Tanzu

Service Mesh continues to satisfy other connectivity concerns.

Note: Cloud Native Runtimes workloads are unable to use Tanzu Service Mesh features like Global

Namespace, Mutual Transport Layer Security authentication (mTLS), retries, and timeouts.

For information about Tanzu Service Mesh, see Tanzu Service Mesh Documentation.

Run Cloud Native Runtimes on a Cluster Attached to Tanzu
Service Mesh

This procedure assumes you have a cluster attached to Tanzu Service Mesh, and that you have not

yet installed Cloud Native Runtimes.

Note: If you installed Cloud Native Runtimes on a cluster that has Tanzu Service Mesh attached

before doing the procedure below, pods fail to start. To fix this problem, follow the procedure below

and then delete all pods in the excluded namespaces.

Configure Tanzu Service Mesh to ignore namespaces related to Cloud Native Runtimes:

1. Navigate to the Cluster Overview tab in the Tanzu Service Mesh UI.

2. On the cluster where you want to install Cloud Native Runtimes, click …, then select Edit

Cluster….

3. Create an Is Exactly rule for each of the following namespaces:

CONTOUR-NS

knative-serving

knative-eventing

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 39

https://avinetworks.com/docs/latest/architectural-overview/applications/virtual-services/
https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/index.html


knative-sources

triggermesh

vmware-sources

tap-install

rabbitmq-system

kapp-controller

The namespace or namespaces where you plan to run Knative workloads.

Where CONTOUR-NS is the namespace(s) where Contour is installed on your cluster. If

Cloud Native Runtimes was installed as part of a Tanzu Application Profile, this value will likely

be tanzu-system-ingress.

Next Steps

After configuring Tanzu Service Mesh, install Cloud Native Runtimes and verify your installation:

1. Install Cloud Native Runtimes. See Installing Cloud Native Runtimes.

2. Verify your installation. See Verifying Your Installation.

Note: You must create all Knative workloads in the namespace or namespaces where you plan to

run these Knative workloads. If you do not, your pods fail to start.

Customizing Cloud Native Runtimes

There are many package configuration options exposed through data values that allows you to

customize your Cloud Native Runtimes installation.

The following command yields all the configuration options available in a given Cloud Native

Runtimes package version.

export CNR_VERSION=2.3.1

tanzu package available get cnrs.tanzu.vmware.com/${CNR_VERSION} --values-schema -n ta

p-install

Customizing Cloud Native Runtimes

Besides utilizing the out-of-the-box options to configure your package, you can use ytt overlays to

further customize your installation. See Customize your package installation for instructions on how to

customize any Tanzu Platform Application package.

This section will provide an example on how to update the Knative ConfigMap config-logging to

override the logging level of the Knative Serving controller to debug.

1. Create a Kubernetes secret containing the ytt overlay by applying the configuration below to

your cluster.

kubectl apply -n tap-install -f - << EOF

apiVersion: v1

kind: Secret

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 40

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/customize-package-installation.html


metadata:

 name: cnrs-patch

stringData:

 patch.yaml: |

   #@ load("@ytt:overlay", "overlay")

   #@overlay/match by=overlay.subset({"kind":"ConfigMap","metadata":{"name":"co

nfig-logging","namespace":"knative-serving"}})

   ---

   data:

     #@overlay/match missing_ok=True

     loglevel.controller: "debug"

EOF

To learn more about the Carvel tool ytt and how to write overlays, see their official

documentation.

2. Update your tap-values.yaml file to add the snippet below.

The section below informs the Tanzu Application Platform about the secret name where the

overlay is stored and also, to apply the overlay to the cnrs package.

package_overlays:

- name: cnrs

  secrets:

  - name: cnrs-patch

Tip: You can retrieve your tap-values.yaml file by running the command below.

kubectl get secret tap-tap-install-values -n tap-install -ojsonpath="{.data.tap

-values\.yaml}" | base64 -d

3. Update the Tanzu Application Platform installation.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --

values-file tap-values.yaml -n tap-install

4. Confirm your changes were applied to the corresponding ConfigMap.

By running the command below, you can check if your changes were applied to the

ConfigMap config-logging by ensuring loglevel.controller is set to debug.

kubectl get configmap config-logging -n knative-serving -oyaml

Troubleshooting Cloud Native Runtimes

This topic tells you how to troubleshoot Cloud Native Runtimes, commonly known as CNRs,

installation or configuration.

Updates fail with error annotation value is immutable

Symptom

After upgrading to Tanzu Application Platform v1.6.4 or later, if you attempt to update a web

workload created in Tanzu Application Platform v1.6.3 or earlier you see the following error:

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 41

https://carvel.dev/ytt/


API server says: admission webhook "validation.webhook.serving.knative.dev" denied the

 request: validation failed: annotation value is immutable: metadata.annotations.servi

ng.knative.dev/creator (reason: BadRequest)

Explanation

Kapp controller, which is the orchestrator underneath workloads, deploys resources exactly as

requested. However, Knative adds annotations to Knative Services to track the creator and last

modified time of a resource. This conflict between kapp controller and Knative is a known issue and

expected behavior that is mitigated by a kapp configuration that the supply chain defines and uses at

deploy time. The kapp config specifies that the annotations Knative adds must not be modified

during updates.

As of Tanzu Application Platform v1.6.4, the kapp configuration moved from the delivery supply

chain to the build supply chain. When a web workload is being updated, the delivery supply chain no

longer provides the kapp configuration, which causes the validation error. Although the kapp

configuration exists on v1.6.4 in a different part of the supply chain, existing deliverables are not

rebuilt to include it.

Solution

To workaround this issue:

1. Deploy the following overlay as a secret to your Tanzu Application Platform installation

namespace. In the following example, Tanzu Application Platform is installed to the tap-

install namespace:

apiVersion: v1

kind: Secret

metadata:

  name: old-deliverables-patch

  namespace: tap-install #! namespace where tap is installed

stringData:

  app-deploy-overlay.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@ def kapp_config_replace(left, right):

    #@ return left + "\n" + right

    #@ end

    #@overlay/match by=overlay.subset({"kind": "ClusterDeploymentTemplate", "me

tadata": {"name": "app-deploy"}})

    ---

    spec:

      #@overlay/replace via=kapp_config_replace

      ytt: |

        #@ load("@ytt:overlay", "overlay")

        #@ load("@ytt:yaml", "yaml")

        #@ def kapp_config_temp():

        apiVersion: kapp.k14s.io/v1alpha1

      kind: Config

      rebaseRules:

        - path: [metadata, annotations, serving.knative.dev/creator]

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 42



          type: copy

          sources: [new, existing]

          resourceMatchers: &matchers

            - apiVersionKindMatcher: {apiVersion: serving.knative.dev/v1, kind:

 Service}

        - path: [metadata, annotations, serving.knative.dev/lastModifier]

          type: copy

          sources: [new, existing]

          resourceMatchers: *matchers

      waitRules:

        - resourceMatchers:        - resourceMatchers:

          - apiVersionKindMatcher:

              apiVersion: serving.knative.dev/v1

              kind: Service

          conditionMatchers:

            - type: Ready

              status: "True"

              success: true

            - type: Ready

              status: "False"

              failure: true

      ownershipLabelRules:

        - path: [ spec, template, metadata, labels ]

          resourceMatchers:

            - apiVersionKindMatcher: { apiVersion: serving.knative.dev/v1, kind

: Service }

      #@ end

      #@overlay/match by=overlay.subset({"apiVersion": "kappctrl.k14s.io/v1alph

a1", "kind": "App", "metadata": { "name": data.values.deliverable.metadata.name

}})

      ---

      spec:

        fetch:

          #@overlay/append

          - inline:

              paths:

                overlay-config.yml: #@ yaml.encode(kapp_config_temp())

2. If you installed Tanzu Application Platform using a profile, apply the overlay to the ootb-

templates package by following the instructions in Customize a package that was installed by

using a profile.

After you complete the steps, updates to the application will deploy.

Cannot connect to app on AWS

Symptom

On AWS, you see the following error when connecting to your app:

Note

VMware plans to include a fix in future releases.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 43

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/customize-package-installation.hbs.md#customize-a-package-that-was-installed-by-using-a-profile-1


curl: (6) Could not resolve host: a***********************7.us-west-2.elb.amazonaws.co

m

Solution

Try connecting to your app again after 5 minutes. The AWS LoadBalancer name resolution takes

several minutes to propagate.

minikube Pods Fail to Start

Symptom

On minikube, you see the following error when installing Cloud Native Runtimes:

3:03:59PM: error: reconcile job/contour-certgen-v1.10.0 (batch/v1) namespace: contour-

internal

Pod watching error: Creating Pod watcher: Get "https://192.168.64.17:8443/api/v1/pods?

labelSelector=kapp.k14s.io%2Fapp%3D1618232545704878000&watch=true": dial tcp 192.168.6

4.17:8443: connect: connection refused

kapp: Error: waiting on reconcile job/contour-certgen-v1.10.0 (batch/v1) namespace: CO

NTOUR-NS:

  Errored:

   Listing schema.GroupVersionResource{Group:"", Version:"v1", Resource:"pods"}, names

paced: true:

    Get "https://192.168.64.17:8443/api/v1/pods?labelSelector=kapp.k14s.io%2Fassociati

on%3Dv1.572a543d96e0723f858367fcf8c6af4e": unexpected EOF

Where CONTOUR-NS is the namespace where Contour is installed on your cluster. If Cloud Native

Runtimes was installed as part of a Tanzu Application Profile, this value will likely be tanzu-system-

ingress.

Solution

Increase your available system RAM to at least 4 GB.

Pulling an image with imgpkg overwrites the cloud-native-
runtimes directory

Symptom

When relocating an image to a private registry and later pulling that image with imgpkg pull --lock

LOCK-OUTPUT -o ./cloud-native-runtimes, the contents of the cloud-native-runtimes are

overwritten.

Solution

Upgrade the imgpkg version to v0.13.0 or later.

Installation fails to reconcile app/cloud-native-runtimes

Symptom

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 44



When installing Cloud Native Runtimes, you see one of the following errors:

11:41:16AM: ongoing: reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1) n

amespace: cloud-native-runtime

11:41:16AM:  ^ Waiting for generation 1 to be observed

kapp: Error: Timed out waiting after 15m0s

Or,

3:15:34PM:  ^ Reconciling

3:16:09PM: fail: reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1) names

pace: cloud-native-runtimes

3:16:09PM:  ^ Reconcile failed:  (message: Deploying: Error (see .status.usefulErrorMe

ssage for details))

kapp: Error: waiting on reconcile app/cloud-native-runtimes (kappctrl.k14s.io/v1alpha1

) namespace: cloud-native-runtimes:

  Finished unsuccessfully (Reconcile failed:  (message: Deploying: Error (see .status.

usefulErrorMessage for details)))

Explanation

The cloud-native-runtimes deployment app installs the subcomponents of Cloud Native Runtimes.

Error messages about reconciling indicate that one or more subcomponents have failed to install.

Solution

Use the following procedure to examine logs:

1. Get the logs from the cloud-native-runtimes app by running:

kubectl get app/cloud-native-runtimes -n cloud-native-runtimes -o jsonpath="{.s

tatus.deploy.stdout}"

Note: If the command does not return log messages, then kapp-controller is not installed or

is not running correctly.

2. Review the output for sub component deployments that have failed or are still ongoing. See

the examples below for suggestions on resolving common problems.

Example 1: The Cloud Provider does not support the creation of Service type

LoadBalancer

Follow these steps to identify and resolve the problem of the cloud provider not supporting services

of type LoadBalancer:

1. Search the log output for Load balancer, for example by running:

kubectl -n cloud-native-runtimes get app cloud-native-runtimes -ojsonpath="{.st

atus.deploy.stdout}" | grep "Load balancer" -C 1

2. If the output looks similar to the following, ensure that your cloud provider supports services

of type LoadBalancer. For more information, see Prerequisites.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 45

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/tap-gui-accessing-tap-gui.html#access-with-the-loadbalancer-method-default-0


6:30:22PM: ongoing: reconcile service/envoy (v1) namespace: CONTOUR-NS

6:30:22PM:  ^ Load balancer ingress is empty

6:30:29PM: ---- waiting on 1 changes [322/323 done] ----

Where CONTOUR-NS is the namespace where Contour is installed on your cluster. If Cloud

Native Runtimes was installed as part of a Tanzu Application Profile, this value will likely be

tanzu-system-ingress.

Example 2: The webhook deployment failed

Follow these steps to identify and resolve the problem of the webhook deployment failing in the

vmware-sources namespace:

1. Review the logs for output similar to the following:

10:51:58PM: ok: reconcile customresourcedefinition/httpproxies.projectcontour.i

o (apiextensions.k8s.io/v1) cluster

10:51:58PM: fail: reconcile deployment/webhook (apps/v1) namespace: vmware-sour

ces

10:51:58PM:  ^ Deployment is not progressing: ProgressDeadlineExceeded (message

: ReplicaSet "webhook-6f5d979b7d" has timed out progressing.)

2. Run kubectl get pods to find the name of the pod:

kubectl get pods --show-labels -n NAMESPACE

Where NAMESPACE is the namespace associated with the reconcile error, for example,

vmware-sources.

For example,

$ kubectl get pods --show-labels -n vmware-sources

NAME                       READY   STATUS    RESTARTS   AGE   LABELS

webhook-6f5d979b7d-cxr9k   0/1     Pending   0          44h   app=webhook,kapp.

k14s.io/app=1626302357703846007,kapp.k14s.io/association=v1.9621e0a793b4e925077

dd557acedbcfe,pod-template-hash=6f5d979b7d,role=webhook,sources.tanzu.vmware.co

m/release=v0.23.0

3. Run kubectl logs and kubectl describe:

kubectl logs PODNAME -n NAMESPACE

kubectl describe pod PODNAME -n NAMESPACE

Where:

PODNAME is found in the output of step 3, for example webhook-6f5d979b7d-cxr9k.

NAMESPACE is the namespace associated with the reconcile error, for example,

vmware-sources.

For example:

$ kubectl logs webhook-6f5d979b7d-cxr9k -n vmware-sources

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 46



$ kubectl describe pod webhook-6f5d979b7d-cxr9k  -n vmware-sources

Events:

Type     Reason            Age                 From               Message

----     ------            ----                ----               -------

Warning  FailedScheduling  80s (x14 over 14m)  default-scheduler  0/1 nodes are

 available: 1 Insufficient cpu.

4. Review the output from the kubectl logs and kubectl describe commands and take further

action.

For this example of the webhook deployment, the output indicates that the scheduler does

not have enough CPU to run the pod. In this case, the solution is to add nodes or CPU cores

to the cluster. If you are using Tanzu Mission Control (TMC), increase the number of workers

in the node pool to three or more through the TMC UI. See Edit a Node Pool, in the TMC

documentation.

Cloud Native Runtimes Installation Fails with Existing Contour
Installation

Symptom

You see the following error message when you run the install script:

Could not proceed with installation. Refer to Cloud Native Runtimes documentation for 

details on how to utilize an existing Contour installation. Another app owns the custo

m resource definitions listed below.

Solution

Follow the procedure in Install Cloud Native Runtimes on a Cluster with Your Existing Contour

Instances to resolve the issue.

Knative Service Fails to Come up Due to Invalid HTTPPRoxy

Symptom

When creating a Knative Service, it does not reach ready status. The corresponding Route resource

has the status Ready=Unknown with Reason=EndpointsNotReady. When you check the logs for the net-

contour-controller, you see an error like this:

{"severity":"ERROR","timestamp":"2022-12-08T16:27:08.320604183Z","logger":"net-contour

-controller","caller":"ingress/reconciler.go:313","message":"Returned an error","commi

t":"041f9e3","knative.dev/controller":"knative.dev.net-contour.pkg.reconciler.contour.

Reconciler","knative.dev/kind":"networking.internal.knative.dev.Ingress","knative.dev/

traceid":"9d615387-f552-449c-a8cd-04c69dd1849e","knative.dev/key":"cody/foo-java","tar

getMethod":"ReconcileKind","error":"HTTPProxy.projectcontour.io \"foo-java-contour-5f5

49ae3e6f584a5f33d069a0650c0d8foo-java.cody.\" is invalid: metadata.name: Invalid value

: \"foo-java-contour-5f549ae3e6f584a5f33d069a0650c0d8foo-java.cody.\": a lowercase RFC

 1123 subdomain must consist of lower case alphanumeric characters, '-' or '.', and mu

st start and end with an alphanumeric character (e.g. 'example.com', regex used for va

lidation is '[a-z0-9]([-a-z0-9]*[a-z0-9])?(\\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*')","stac

ktrace":"knative.dev/networking/pkg/client/injection/reconciler/networking/v1alpha1/in

gress.(*reconcilerImpl).Reconcile\n\tknative.dev/networking@v0.0.0-20221012062251-58f3

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 47

https://docs.vmware.com/en/VMware-Tanzu-Mission-Control/services/tanzumc-using/GUID-53D4E904-3FFE-464A-8814-13942E03232A.html


e6239b4f/pkg/client/injection/reconciler/networking/v1alpha1/ingress/reconciler.go:313

\nknative.dev/pkg/controller.(*Impl).processNextWorkItem\n\tknative.dev/pkg@v0.0.0-202

21011175852-714b7630a836/controller/controller.go:542\nknative.dev/pkg/controller.(*Im

pl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20221011175852-714b7630a836/controller/

controller.go:491"}

Solution

Due to a known upstream Knative issue, certain combinations of Name + Namespace + Domain yield

invalid names for HTTPProxy resources due to the way the name is hashed and trimmed to fit the

size requirement. It can end up with non-alphanumeric characters at the end of the name.

Resolving this will be unique to each Knative service. It will likely involve renaming your app to be

shorter so that after the hash + trim procedure, the name gets cut to end on an alphanumeric

character.

For example, foo-java.cody.iterate.tanzu-azure-lab.winterfell.fun gets hashed and trimmed

into foo-java-contour-5f549ae3e6f584a5f33d069a0650c0d8foo-java.cody., leaving an invalid . at

the end.

However, changing the app name to foo-jav will result in foo-jav-contour-<some different

hash>foo-jav.cody.it, which is a valid name.

When using auto-tls, Knative Service Fails with
CertificateNotReady.

Symptom

When creating a Knative Service, it does not reach ready status. The Knative Service has the status

CertificateNotReady. When you check the status of the kcert resource that belongs to the Knative

Service you see a message like this:

kubectl -n your-namespace get kcert route-76e387a2-cc35-4580-b2f1-bf7561371891 -ojsonp

ath='{.status}'

Output:

{

  "conditions":[

  {

    "lastTransitionTime":"2023-06-05T11:26:53Z",

    "message":"error creating Certmanager Certificate: cannot create valid length Comm

onName: (where-for-dinner.medium.longevityaks253.tapalong.cloudfocused.in) still longe

r than 63 characters, cannot shorten",

    "reason":"CommonName Too Long",

    "status":"False",

    "type":"Ready"

  }],

  "observedGeneration":1}

Explanation

Due to a restriction imposed by cert-manager, CNs cannot be longer than 64 bytes. For more

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 48

https://github.com/knative/pkg/issues/2659


information, see this cert-manager issue in GitHub. For Knative using cert-manager, this means that

the FQDN for a Knative Service, usually comprised of <ksvc name>.<namespace>.<domain> but

configurable using domain_template in Cloud Native Runtimes, must not exceed 64 bytes.

Recent improvements to Knative have been able to catch this in some cases. When <ksvc name>.

<namespace> is longer than 25 characters, Knative will attempt to hash that value, and create a new

common name in the form of <hash>.<domain>. However, if <ksvc name>.<namespace> is less than 25

characters long, it will not attempt to hash.

Knative is limited to a 25 character hash to preserve uniqueness in CommonNames. It also cannot

shorten the domain portion, because that will break DNS resolution when performing HTTP01

Challenges.

As a result, this catches some cases, but not all. It is possible that your <domain> portion is still too

long.

There is an issue in Knative Serving community that aims to solve this.

Solution

The quickest way to avoid this is to disable TLS. See Cloud Native Runtimes docs on disabling auto tls

for more details.

If you wish to continue using TLS, there are a few ways to resolve this on your own, though each

comes with its own risks and limitations.

Option 1: Change the domain_template

Changing the domain_template alters how Knative will create FQDNs for Knative Services. See Cloud

Native Runtimes instructions on configuring External DNS.

You can use this option to shorten the template, either by shortening one of the fields:

{{.Name}}.{{slice .Namespace 0 3}}.{{.Domain}}

Note: Knative was not designed with shortening the name or namespace in mind. Due to a quirk in

Knative’s domain template validation, you can only slice up to a max of 3 characters.

Or by removing a field altogether:

{{.Name}}.{{.Domain}}

Warning: Removing the namespace from the domain_template makes it possible for Knative to

create non-unique FQDNs for Knative Services across different namespaces. It will require manual

care in naming Knative Services to make sure FQDNs remain unique.

Option 2: Shorten the names of Knative Services or Namespaces

Another option is to shorten the names of your Knative Services and/or Namespaces, if you have

that ability. This will also require some manual calculation to make sure that the shortened Name,

Namespace, and domain (including .s) come out to less that 64 bytes.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 49

https://github.com/cert-manager/cert-manager/issues/1462
https://github.com/knative-sandbox/net-certmanager/issues/550
#configure-knative-service-domain-template


Verifying Your Installation

This topic tells you how to verify your Cloud Native Runtimes, commonly known as CNRs, installation.

You can verify that your Cloud Native Runtimes installation was successful by testing Knative Serving,

Knative Eventing, and TriggerMesh Sources for Amazon Web Services (SAWS).

Prerequisites

1. Create a namespace and environment variable where you want to create Knative services.

Run:

Note: This step covers configuring a namespace to run Knative services. If you rely on a

SupplyChain to deploy Knative services into your cluster, skip this step because namespace

configuration is covered in Set up developer namespaces to use installed packages.

Otherwise, you must complete the following steps for each namespace where you create

Knative services.

export WORKLOAD_NAMESPACE='cnr-demo'

kubectl create namespace ${WORKLOAD_NAMESPACE}

2. Configure a namespace to use Cloud Native Runtimes. If during the Tanzu Application

Platform installation you relocated images to another registry, you must grant service

accounts that run Knative services using Cloud Native Runtimes access to the image pull

secrets. This includes the default service account in a namespace, which is created

automatically but not associated with any image pull secrets. Without these credentials,

attempts to start a service fail with a timeout and the pods report that they are unable to pull

the queue-proxy image.

1. Create an image pull secret in the namespace Knative services will run and fill it from

the tap-registry secret mentioned in Add the Tanzu Application Platform package

repository. Run the following commands to create an empty secret and annotate it as

a target of the secretgen controller:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjso

n={} --type=kubernetes.io/dockerconfigjson -n ${WORKLOAD_NAMESPACE}

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secre

t="" -n ${WORKLOAD_NAMESPACE}

2. After you create a pull-secret secret in the same namespace as the service

account, run the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "

pull-secret"}]}' -n ${WORKLOAD_NAMESPACE}

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 50

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.6/tap/install-online-set-up-namespaces.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/install-intro.html


3. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default -n ${WORKLOAD_NAMESPACE}

For example:

kubectl describe sa default -n cnr-demo

Name:                default

Namespace:           cnr-demo

Labels:              <none>

Annotations:         <none>

Image pull secrets:  pull-secret

Mountable secrets:   default-token-xh6p4

Tokens:              default-token-xh6p4

Events:              <none>

The service account has access to the pull-secret image pull secret.

Verify that STATUS is Reconcile succeeded.

Verify Installation of Knative Serving, Knative Eventing, and
TriggerMesh SAWS

To verify the installation of Knative Serving, Knative Eventing, and Triggermesh SAWS:

1. Create a namespace and environment variable for the test. Run:

export WORKLOAD_NAMESPACE='cnr-demo'

kubectl create namespace ${WORKLOAD_NAMESPACE}

2. Verify installation of the components that you intend to use:

To test… Create… For instructions, see…

Knative Serving a test service Verifying Knative Serving

Knative Eventing a broker, a producer, and a consumer Verifying Knative Eventing

TriggerMesh SAWS an AWS source and trigger it Verifying TriggerMesh SAWS

3. Delete the namespace that you created for the demo. Run:

kubectl delete namespaces ${WORKLOAD_NAMESPACE}

unset WORKLOAD_NAMESPACE

Verifying Knative Serving for Cloud Native Runtimes

This topic tells you how to verify that Knative Serving was successfully installed for Cloud Native

Runtimes, commonly known as CNRs.

About Verifying Knative Serving

To verify that Knative Serving was successfully installed, create an example Knative service and test

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 51



it.

The procedure below shows you how to create an example Knative service using the Cloud Native

Runtimes sample app, hello-yeti. This sample is custom built for Cloud Native Runtimes and is

stored in the VMware Harbor registry.

Note: If you do not have access to the Harbor registry, you can use the Hello World - Go sample

app in the Knative documentation.

Prerequisites

Before you verify Knative Serving, you must have a namespace where you want to deploy Knative

services. This namespace will be referred as ${WORKLOAD_NAMESPACE} in this tutorial. See step 1 of

Verifying Your Installation for more information.

Test Knative Serving

To create an example Knative service and use it to test Knative Serving:

1. If you are verifying on Tanzu Mission Control or vSphere 7.0 with Tanzu, then create a role

binding in the ${WORKLOAD_NAMESPACE} namespace. Run:

kubectl apply -n "${WORKLOAD_NAMESPACE}" -f - << EOF

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: ${WORKLOAD_NAMESPACE}-psp

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: cnr-restricted

subjects:

- kind: Group

  name: system:serviceaccounts:${WORKLOAD_NAMESPACE}

EOF

2. Deploy the sample app using the kn CLI. Run:

kn service create hello-yeti -n ${WORKLOAD_NAMESPACE} \

  --image projects.registry.vmware.com/tanzu_serverless/hello-yeti@sha256:17d64

0edc48776cfc604a14fbabf1b4f88443acc580052eef3a753751ee31652 --env TARGET='hello

-yeti'

If you are verifying on Tanzu Mission Control or vSphere 7.0 with Tanzu, then add --user

1001 to the command above to run it as a non-root user.

3. Run one of the following commands to retrieve the external address for your ingress,

depending on your IaaS:

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 52

https://knative.dev/docs/serving/samples/hello-world/helloworld-go/


Ia

aS

:

Tanzu Kubernetes Grid on AWS

Tanzu Mission Control on AWS

Amazon Elastic Kubernetes Service

R

un

:

export EXTERNAL_ADDRESS=$(kubectl get service envoy -n tanzu-system-ingress -ojsonpath="

{.status.loadBalancer.ingress[0].hostname}")

Iaa

S:
vSphere 7.0 on Tanzu

Tanzu Kubernetes Grid on vSphere/Azure/GCP

Tanzu Kubernetes Grid Integrated Edition

Tanzu Mission Control on vSphere

Azure Kubernetes Service

Google Kubernetes Engine

Ru

n:

export EXTERNAL_ADDRESS=$(kubectl get service envoy -n tanzu-system-ingress -ojsonpath="

{.status.loadBalancer.ingress[0].ip}")

IaaS: Docker desktop

Minikube

Run: export EXTERNAL_ADDRESS='localhost:8080'

And set up port-forwarding in a separate terminal:

kubectl -n tanzu-system-ingress port-forward svc/envoy 8080:80

4. Connect to the app. Check the URL for the knative service.

Run:

kn service list -n ${WORKLOAD_NAMESPACE}

The result is something like this:

NAME           URL                                                          LAT

EST               AGE   CONDITIONS   READY   REASON

hello-yeti     https://hello-yeti.${WORKLOAD_NAMESPACE}.svc.cluster.local   hel

lo-yeti-00001     6s    3 OK / 3     True

Now, take the host name from the URL and set it in an env variable KSERVICE_HOSTNAME like

so:

export KSERVICE_HOSTNAME="hello-yeti.${WORKLOAD_NAMESPACE}.svc.cluster.local"

Then, connect to the app:

curl https://${KSERVICE_HOSTNAME} -k --resolve ${KSERVICE_HOSTNAME}:443:${EXTER

NAL_ADDRESS}

Note: If you have configured DNS locally via /etc/hosts or externally, the --resolve flag can

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 53



be omitted, or you can use a web browser.

On success, you see a reply from our mascot, Carl the Yeti.

Delete the Example Knative Service

After verifying your serving installation, delete the example Knative service and unset the

environment variable:

1. Run:

kn service delete hello-yeti -n ${WORKLOAD_NAMESPACE}

unset EXTERNAL_ADDRESS

unset KSERVICE_HOSTNAME

2. If you created port forwarding in step 3 above, then terminate that process.

Verify Knative Eventing with Cloud Native Runtimes

Eventing in Tanzu Application Platform is deprecated and marked for removal in Tanzu Application

Platform v1.7.0.

This topic tells you how to verify that Knative Eventing was successfully installed with Cloud Native

Runtimes, commonly known as CNRs.

About Verifying Knative Eventing

You can verify Knative Eventing by setting up a broker, creating a producer, and creating a

consumer. If your installation was successful, you can create a test eventing workflow and see that

the events appear in the logs.

You can use either an in-memory broker or a RabbitMQ broker to verify Knative Eventing:

RabbitMQ broker: Using a RabbitMQ broker to verify Knative Eventing is a scalable and

reliable way to verify your installation. Verifying with RabbitMQ uses methods similar to

production environments.

In-memory broker: Using an in-memory broker is a fast and lightweight way to verify that the

basic elements of Knative Eventing are installed. An in-memory broker is not meant for

production environments or for use with apps that you intend to take to production.

Prerequisites

Before you verify Knative Eventing, you must:

Have a namespace where you want to deploy your Knative resources. This namespace will

be referred as ${WORKLOAD_NAMESPACE} in this tutorial. See step 1 of Verifying Your Installation

for more information.

Create the following role binding in the ${WORKLOAD_NAMESPACE} namespace. Run:

cat <<EOF | kubectl apply -f -

apiVersion: rbac.authorization.k8s.io/v1

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 54



kind: RoleBinding

metadata:

  name: ${WORKLOAD_NAMESPACE}-psp

  namespace: ${WORKLOAD_NAMESPACE}

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: eventing-restricted

subjects:

- kind: Group

  name: system:serviceaccounts:${WORKLOAD_NAMESPACE}

EOF

Prepare the RabbitMQ Environment

If you are using a RabbitMQ broker to verify Knative Eventing, follow the procedure in this section. If

you are verifying with the in-memory broker, skip to Verify Knative Eventing.

To prepare the RabbitMQ environment before verifying Knative Eventing:

1. Set up the RabbitMQ integration as described in Configuring Eventing with RabbitMQ.

2. On the Kubernetes cluster where Eventing is installed, deploy a RabbitMQ cluster using the

RabbitMQ Cluster Operator by running:

cat <<EOF | kubectl apply -f -

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

  name: my-rabbitmq

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  replicas: 1

  override:

    statefulSet:

      spec:

        template:

          spec:

            securityContext: {}

            containers:

            - name: rabbitmq

              env:

               - name: ERL_MAX_PORTS

                 value: "4096"

            initContainers:

            - name: setup-container

              securityContext:

                runAsUser: 999

                runAsGroup: 999

EOF

Note: The override section can be omitted if your cluster allows containers to run as root.

3. Create a RabbitmqBrokerConfig

cat <<EOF | kubectl apply -f -

apiVersion: eventing.knative.dev/v1alpha1

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 55



kind: RabbitmqBrokerConfig

metadata:

   name: default-config

   namespace: ${WORKLOAD_NAMESPACE}

spec:

  rabbitmqClusterReference:

     name: my-rabbitmq

     namespace: ${WORKLOAD_NAMESPACE}

  queueType: quorum

EOF

Verify Knative Eventing

To verify installation of Knative Eventing create and test a broker, procedure, and consumer in the

${WORKLOAD_NAMESPACE} namespace:

1. Create a broker.

For the RabbitMQ broker. Run:

cat <<EOF | kubectl apply -f -

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

  name: default

  namespace: ${WORKLOAD_NAMESPACE}

  annotations:

    eventing.knative.dev/broker.class: RabbitMQBroker

spec:

  config:

    apiVersion: eventing.knative.dev/v1alpha1

    kind: RabbitmqBrokerConfig

    name: default-config

    namespace: ${WORKLOAD_NAMESPACE}

EOF

For the in-memory broker. Run:

cat <<EOF | kubectl create -f -

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

  name: default

  namespace: ${WORKLOAD_NAMESPACE}

EOF

2. Create a consumer for the events. Run:

cat <<EOF | kubectl create -f -

---

apiVersion: apps/v1

kind: Deployment

metadata:

  labels:

    app: event-display

  name: event-display

  namespace: ${WORKLOAD_NAMESPACE}

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 56



spec:

  replicas: 1

  selector:

    matchLabels:

      app: event-display

  template:

    metadata:

      labels:

        app: event-display

    spec:

      containers:

        - name: user-container

          image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event

_display

          ports:

          - containerPort: 8080

            name: user-port

            protocol: TCP

---

apiVersion: v1

kind: Service

metadata:

  labels:

    app: event-display

  name: event-display-service

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  ports:

    - port: 80

      protocol: TCP

      targetPort: 8080

  selector:

    app: event-display

EOF

3. Create a trigger. Run:

cat <<EOF | kubectl apply -f -

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

  name: event-display

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  broker: default

  subscriber:

    ref:

     apiVersion: v1

     kind: Service

     name: event-display-service

     namespace: ${WORKLOAD_NAMESPACE}

EOF

4. Create a producer. This will send a message every minute. Run:

cat <<EOF | kubectl create -f -

apiVersion: sources.knative.dev/v1

kind: PingSource

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 57



metadata:

  name: test-ping-source

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  schedule: "*/1 * * * *"

  data: '{"message": "Hello Eventing!"}'

  sink:

    ref:

      apiVersion: eventing.knative.dev/v1

      kind: Broker

      name: default

      namespace: ${WORKLOAD_NAMESPACE}

EOF

5. Verify that the event appears in your consumer logs. Run:

kubectl logs deploy/event-display -n ${WORKLOAD_NAMESPACE} --since=10m --tail=5

0 -f

Setup RabbitMQ Broker as the default in the cluster
(optional)

Eventing provides a config-br-defaults ConfigMap that contains the configuration setting that

govern default Broker creation.

This example configuration will set RabbitMQ as the default broker on the cluster:

apiVersion: v1

kind: ConfigMap

metadata:

  name: config-br-defaults

  namespace: knative-eventing

  labels:

    eventing.knative.dev/release: devel

data:

  default-br-config: |

    clusterDefault:

      brokerClass: RabbitMQBroker

      apiVersion: eventing.knative.dev/v1alpha1

      kind: RabbitmqBrokerConfig

      name: default-config

      namespace: ${WORKLOAD_NAMESPACE} # This should be the name of your namespace.

      delivery:

        retry: 3

        backoffDelay: PT0.2S

        backoffPolicy: exponential

To achieve this you can:

1. Run:

kubectl patch -n knative-eventing cm config-br-defaults --type merge --patch '{

"data": {"default-br-config": "clusterDefault:\n      brokerClass: RabbitMQBrok

er\n      apiVersion: eventing.knative.dev/v1alpha1\n      kind: RabbitmqBroker

Config\n      name: default-config\n      namespace: '"${WORKLOAD_NAMESPACE}"'\

n      delivery:\n        retry: 3\n        backoffDelay: PT0.2S\n        backo

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 58



ffPolicy: exponential\n"}}'

2. Check that the ConfigMap looks as intended.

kubectl get -n knative-eventing cm config-br-defaults -oyaml

3. Now, to create a RabbitMQ broker you can run:

cat <<EOF | kubectl create -f -

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: broker-using-defaults

 namespace: ${WORKLOAD_NAMESPACE}

EOF

Eventing will automatically set the brokerClass to RabbitMQBroker and it will set up the

spec.config to RabbitmqBrokerConfig with name default-config.

Setup RabbitMQ Broker as the default in a namespace
(optional)

You can also use the config-br-defaults ConfigMap to set up the default broker configuration for a

given namespace.

Let us suppose you want to have the MTChannelBroker as the default for the cluster and the

RabbitMQ Broker as the default for your workload namespace.

To do this, we want that our config-br-defaults ConfigMap looks like this:

apiVersion: v1

kind: ConfigMap

metadata:

  name: config-br-defaults

  namespace: knative-eventing

  labels:

    eventing.knative.dev/release: devel

data:

  default-br-config: |

     clusterDefault:

       brokerClass: MTChannelBasedBroker

       apiVersion: v1

       kind: ConfigMap

       name: config-br-default-channel

       namespace: knative-eventing

       delivery:

         retry: 10

         backoffDelay: PT0.2S

         backoffPolicy: exponential

     namespaceDefaults:

       ${WORKLOAD_NAMESPACE}: # This should be the name of your namespace.

         brokerClass: RabbitMQBroker

         apiVersion: eventing.knative.dev/v1alpha1

         kind: RabbitmqBrokerConfig

         name: default-config

         namespace: ${WORKLOAD_NAMESPACE} # This should be the name of your namespace.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 59



         delivery:

           retry: 3

           backoffDelay: PT0.2S

           backoffPolicy: exponential

To achieve this you can:

1. Run:

kubectl patch -n knative-eventing cm config-br-defaults --type merge --patch '{

"data": {"default-br-config": "clusterDefault:\n  brokerClass: MTChannelBasedBr

oker\n  apiVersion: v1\n  kind: ConfigMap\n  name: config-br-default-channel\n 

 namespace: knative-eventing\n  delivery:\n    retry: 10\n    backoffDelay: PT0

.2S\n    backoffPolicy: exponential\nnamespaceDefaults:\n  '"${WORKLOAD_NAMESPA

CE}"':\n    brokerClass: RabbitMQBroker\n    apiVersion: eventing.knative.dev/v

1alpha1\n    kind: RabbitmqBrokerConfig\n    name: default-config\n    namespac

e: '"${WORKLOAD_NAMESPACE}"'\n    delivery:\n      retry: 3\n      backoffDelay

: PT0.2S\n      backoffPolicy: exponential\n"}}'

2. Check that the ConfigMap looks as intended.

kubectl get -n knative-eventing cm config-br-defaults -o yaml

3. With this configuration when you create a Broker in the default namespace it will be a

MTChannelBasedBroker.

cat <<EOF | kubectl create -f -

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: broker-in-default-ns

 namespace: default

EOF

4. Check the type of this broker like so:

kubectl get -n default broker broker-in-default-ns -o yaml

It will show something like this:

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 annotations:

   eventing.knative.dev/broker.class: MTChannelBasedBroker

 name: broker-in-default-ns

 namespace: default

spec:

 config:

   apiVersion: v1

   kind: ConfigMap

   name: config-br-default-channel

   namespace: knative-eventing

 delivery:

   backoffDelay: PT0.2S

   backoffPolicy: exponential

   retry: 10

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 60



Notice the eventing.knative.dev/broker.class: MTChannelBasedBroker annotation.

5. Now try to create a Broker in the ${WORKLOAD_NAMESPACE}.

cat <<EOF | kubectl create -f -

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 name: broker-in-workload-ns

 namespace: ${WORKLOAD_NAMESPACE}

EOF

6. Check the type of this broker like so:

kubectl get -n ${WORKLOAD_NAMESPACE} broker broker-in-workload-ns -o yaml

It will show something like this:

apiVersion: eventing.knative.dev/v1

kind: Broker

metadata:

 annotations:

   eventing.knative.dev/broker.class: RabbitMQBroker

 name: broker-in-workload-ns

 namespace: ${WORKLOAD_NAMESPACE}

spec:

 config:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: RabbitmqBrokerConfig

   name: default-config

   namespace: ${WORKLOAD_NAMESPACE}

 delivery:

   backoffDelay: PT0.2S

   backoffPolicy: exponential

   retry: 3

Notice the eventing.knative.dev/broker.class: RabbitMQBroker annotation.

Delete the Eventing Resources

After verifying your Eventing installation, clean up by deleting the resources used for the test:

1. Delete the eventing resources:

kubectl delete pingsource/test-ping-source -n ${WORKLOAD_NAMESPACE}

kubectl delete trigger/event-display -n ${WORKLOAD_NAMESPACE}

kubectl delete service/event-display-service -n ${WORKLOAD_NAMESPACE}

kubectl delete deploy/event-display -n ${WORKLOAD_NAMESPACE}

kubectl delete broker/default -n ${WORKLOAD_NAMESPACE}

2. If you followed Setup RabbitMQ Broker as the default in the cluster (optional), delete the

broker like so:

kubectl delete broker/broker-using-defaults -n ${WORKLOAD_NAMESPACE}

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 61



3. If you followed Setup RabbitMQ Broker as the default in a namespace (optional), delete the

brokers like so:

kubectl delete broker/broker-in-default-ns -n default

kubectl delete broker/broker-in-workload-ns -n ${WORKLOAD_NAMESPACE}

4. If you created a RabbitMQ cluster:

kubectl delete rabbitmqbrokerconfig/default-config -n ${WORKLOAD_NAMESPACE}

kubectl delete rabbitmqcluster/my-rabbitmq -n ${WORKLOAD_NAMESPACE}

5. Delete the role binding:

kubectl delete rolebinding/${WORKLOAD_NAMESPACE}-psp -n ${WORKLOAD_NAMESPACE}

Verifying TriggerMesh SAWS for Cloud Native Runtimes

This topic tells you how to verify that TriggerMesh Sources for Amazon Web Services (SAWS) was

installed successfully for Cloud Native Runtimes, commonly known as CNRs.

Overview

TriggerMesh SAWS allows you to consume events from your AWS services and send them to

workloads running in your cluster.

Cloud Native Runtimes includes an installation of the Triggermesh SAWS controller and CRDs. You

can find the controller in the triggermesh namespace.

For general information about TriggerMesh SAWS, see TriggerMesh in GitHub.

The procedure below shows you how to test TriggerMesh SAWS using the example of an event

source for Amazon CodeCommit.

Prerequisites

Before you verify TriggerMesh SAWS with AWS CodeCommit, you must have:

An AWS service account

An AWS CodeCommit repository with push and pull access

Have a namespace where you want to deploy Knative services. This namespace will be

referred as ${WORKLOAD_NAMESPACE} in this tutorial. See step 1 of Verifying Your Installation for

more information.

Verify TriggerMesh SAWS

To verify TriggerMesh SAWS with AWS CodeCommit:

1. Create a broker:

kubectl apply -f - << EOF

apiVersion: eventing.knative.dev/v1

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 62

https://github.com/triggermesh/triggermesh


kind: Broker

metadata:

  name: broker

  namespace: ${WORKLOAD_NAMESPACE}

EOF

2. Create a trigger:

kubectl apply -f - << EOF

---

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

  name: trigger

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  broker: broker

  subscriber:

    ref:

     apiVersion: serving.knative.dev/v1

     kind: Service

     name: consumer

     namespace: ${WORKLOAD_NAMESPACE}

EOF

3. Create a consumer:

kubectl apply -f - << EOF

---

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

  name: consumer

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  template:

    spec:

      containers:

        - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event

_display

EOF

4. Add an AWS service account secret:

kubectl -n ${WORKLOAD_NAMESPACE} create secret generic awscreds \

--from-literal=aws_access_key_id=${AWS_ACCESS_KEY_ID} \

--from-literal=aws_secret_access_key=${AWS_SECRET_ACCESS_KEY}

Where:

AWS_ACCESS_KEY_ID is the AWS access key ID for your AWS service account.

AWS_SECRET_ACCESS_KEY is your AWS access key for your AWS service account.

5. Create the AWSCodeCommitSource:

kubectl apply -f - << EOF

apiVersion: sources.triggermesh.io/v1alpha1

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 63



kind: AWSCodeCommitSource

metadata:

  name: source

  namespace: ${WORKLOAD_NAMESPACE}

spec:

  arn: ARN

  branch: BRANCH

  eventTypes:

    - push

    - pull_request

  credentials:

    accessKeyID:

      valueFromSecret:

        name: awscreds

        key: aws_access_key_id

    secretAccessKey:

      valueFromSecret:

        name: awscreds

        key: aws_secret_access_key

  sink:

    ref:

      apiVersion: eventing.knative.dev/v1

      kind: Broker

      name: broker

      namespace: ${WORKLOAD_NAMESPACE}

EOF

Where:

ARN is Amazon Resource Name (ARN) of your CodeCommit repository. For example,

arn:aws:codecommit:eu-central-1:123456789012:triggermeshtest.

BRANCH is the branch of your CodeCommit repository that you want the trigger to

watch. For example, main.

6. Patch the awscodecommitsource-adapter service account to pull images from the private

registry using the tap-registry secret, created during the TAP installation. Note that the

awscodecommitsource-adapter service account was created on the previous step during the

creation of AWSCodeCommitSource.

kubectl patch serviceaccount -n ${WORKLOAD_NAMESPACE} awscodecommitsource-adapt

er -p '{"imagePullSecrets": [{"name": "tap-registry"}]}'

Note: It may be necessary to delete the current awscodecommitsource-source Pod so a new

pod is created with the new imagePullSecrets.

7. Create an event by pushing a commit to your CodeCommit repository.

8. Watch the consumer logs to see that the event appears after a minute:

kubectl logs -l serving.knative.dev/service=consumer -c user-container -n ${WOR

KLOAD_NAMESPACE} --since=10m --tail=50

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 64



Upgrading Cloud Native Runtimes

This topic tells you how to upgrade Cloud Native Runtimes for Tanzu to the latest version.

New versions of Cloud Native Runtimes are available from the Tanzu Application Platform package

repository, and can be upgraded to as part of upgrading Tanzu Application Platform as a whole.

Prerequisites

The following prerequisites are required to upgrade Cloud Native Runtimes:

An updated Tanzu Application Platform package repository with the version of Cloud Native

Runtimes you wish to upgrade to. For more information, see the documentation on adding a

new package repository.

Upgrade Cloud Native Runtimes

To upgrade the Cloud Native Runtimes PackageInstall specifically, run:

tanzu package installed update cloud-native-runtimes -p cnrs.tanzu.vmware.com -v CNR-V

ERSION --values-file cnr-values.yaml -n tap-install

Where CNR-VERSION is the latest version of Cloud Native Runtimes available as part of the new Tanzu

Application Platform package repository.

Note

If you previously installed Cloud Native Runtimes v1.3 or prior and, you wish to

upgrade to the latest version, you must first upgrade to Cloud Native Runtimes

v2.0.1. You can do so by following the Upgrade from a previous version to Cloud

Native Runtimes v2.0.1 instructions.

If you have previously installed Cloud Native Runtimes v1.3 or an earlier version and

wish to upgrade to the latest version, please be aware that the Tanzu Application

Platform now includes a shared ingress issuer by default. If you are currently using a

single certificate (for example, if you have set cnrs.default_tls_secret in your tap-

values.yaml file) and want to opt out of the default shared ingress issuer, it is

important to deactivate it. To learn how to opt out and deactivate the automatic TLS

feature, please refer to the documentation: Opt out from any ingress issuer and

deactivate automatic TLS feature.

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 65

https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/upgrading.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/upgrading.html#add-new-package-repository-1
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.0/tanzu-cloud-native-runtimes/GUID-upgrade.html#upgrade-from-a-previous-version-to-cloud-native-runtimes-v201-1


Uninstalling Cloud Native Runtimes

This topic tells you how to uninstall Cloud Native Runtimes.

Overview

Cloud Native Runtimes is part of the Tanzu Application Platform package repository. For information

on uninstalling the entire Tanzu Application Platform package repository, see the Tanzu Application

Platform uninstall documentation.

Uninstall

To uninstall Cloud Native Runtimes specifically:

1. Delete the installed package:

tanzu package installed delete cloud-native-runtimes --namespace tap-install

Cloud Native Runtimes for VMware Tanzu 2.3

VMware by Broadcom 66

https://docs.vmware.com/en/Tanzu-Application-Platform/1.6/tap/uninstall.html

	Cloud Native Runtimes Overview
	Overview
	Warnings

	Cloud Native Runtimes Release Notes
	v2.3.6
	Change Log
	Components

	v2.3.4
	Components

	v2.3.2
	Resolved Issues
	Components

	v2.3.1
	Breaking Changes
	New Features
	Resolved Issues
	Known Issues
	Components


	Integrations you can use with Cloud Native Runtimes
	Cloud Native Runtimes integrations

	Install Cloud Native Runtimes
	Prerequisites
	Install

	Administrator Guide for Cloud Native Runtimes
	Configure your External DNS with Cloud Native Runtimes
	Overview
	Configure custom domain
	Configure Knative Service Domain Template

	Securing Your Web Workloads in Cloud Native Runtimes
	Prerequisites
	Overview of Cloud Native Runtimes TLS Configurations
	Default TLS configuration in Cloud Native Runtimes
	Custom TLS configuration in Cloud Native Runtimes
	Replace the shared ingress issuer at the Tanzu Application Platform’s level
	Designate another ingress issuer for your workloads in Cloud Native Runtimes only
	Provide an existing TLS certificate for your workloads in Cloud Native Runtimes

	Resources on custom TLS configuration for Cloud Native Runtimes:


	Configure Cloud Native Runtimes to use a custom Issuer or ClusterIssuer
	Configure a custom issuer
	Configure Cloud Native Runtimes to use the custom issuer
	Verify the issuance of certificates

	Use wildcard certificates with Cloud Native Runtimes
	Configure an issuer for wildcard certificates
	Configure Cloud Native Runtimes to use wildcard certificates
	Verify the issuance of wildcard certificates

	Use your existing TLS Certificate for Cloud Native Runtimes
	Overview
	Prerequisites

	Deactivate HTTP-to-HTTPS redirection
	Opt out from an ingress issuer and deactivate automatic TLS feature
	Deactivate TLS

	Installing Cloud Native Runtimes with your Existing Contour Installation
	About Using Contour with Cloud Native Runtimes
	Prerequisites
	Identify Your Contour Version
	Install Cloud Native Runtimes on a Cluster with Your Existing Contour Instances

	Configuring Eventing with RabbitMQ for Cloud Native Runtimes
	Overview
	Install VMware Tanzu RabbitMQ for Kubernetes
	Next Steps

	Configuring Observability for Cloud Native Runtimes
	Overview
	Logging
	Configure Logging with Fluent Bit
	Forward Logs to vRealize

	Metrics
	Tracing
	Configuring Tracing
	Forwarding Trace Data to an Observability Platform or Data Visualization Tool
	Sending Trace Data to VMware Aria Operations for Applications


	Configuring Cloud Native Runtimes with Avi Vantage
	Overview
	Integrate Avi Vantage with Cloud Native Runtimes
	About Routing with Avi Vantage and Cloud Native Runtimes

	Configuring Cloud Native Runtimes with Tanzu Service Mesh
	Overview
	Run Cloud Native Runtimes on a Cluster Attached to Tanzu Service Mesh
	Next Steps

	Customizing Cloud Native Runtimes
	Customizing Cloud Native Runtimes

	Troubleshooting Cloud Native Runtimes
	Updates fail with error annotation value is immutable
	Symptom
	Explanation
	Solution

	Cannot connect to app on AWS
	Symptom
	Solution

	minikube Pods Fail to Start
	Symptom
	Solution

	Pulling an image with imgpkg overwrites the cloud-native-runtimes directory
	Symptom
	Solution

	Installation fails to reconcile app/cloud-native-runtimes
	Symptom
	Explanation
	Solution
	Example 1: The Cloud Provider does not support the creation of Service type LoadBalancer
	Example 2: The webhook deployment failed


	Cloud Native Runtimes Installation Fails with Existing Contour Installation
	Symptom
	Solution

	Knative Service Fails to Come up Due to Invalid HTTPPRoxy
	Symptom
	Solution

	When using auto-tls, Knative Service Fails with CertificateNotReady.
	Symptom
	Explanation
	Solution
	Option 1: Change the domain_template
	Option 2: Shorten the names of Knative Services or Namespaces



	Verifying Your Installation
	Prerequisites
	Verify Installation of Knative Serving, Knative Eventing, and TriggerMesh SAWS

	Verifying Knative Serving for Cloud Native Runtimes
	About Verifying Knative Serving
	Prerequisites
	Test Knative Serving
	Delete the Example Knative Service

	Verify Knative Eventing with Cloud Native Runtimes
	About Verifying Knative Eventing
	Prerequisites
	Prepare the RabbitMQ Environment
	Verify Knative Eventing
	Setup RabbitMQ Broker as the default in the cluster (optional)
	Setup RabbitMQ Broker as the default in a namespace (optional)
	Delete the Eventing Resources

	Verifying TriggerMesh SAWS for Cloud Native Runtimes
	Overview
	Prerequisites
	Verify TriggerMesh SAWS

	Upgrading Cloud Native Runtimes
	Prerequisites
	Upgrade Cloud Native Runtimes

	Uninstalling Cloud Native Runtimes
	Overview
	Uninstall


