
On-Demand Services SDK
for VMware Tanzu v0.27

On-Demand Services SDK for VMware Tanzu 0.27

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

On-Demand Services SDK 12

On-Demand Services SDK 12

Overview 12

Product Snapshot 12

Key Features 12

Prerequisites for Deploying Brokers That Use ODB 13

On-Demand Services SDK Release Notes 13

v0.27.0 13

Features 14

Known Issues 14

Minimum Version Requirements 14

View Release Notes for Another Version 14

About On-Demand Brokers 14

Cloud Foundry Service Brokers and PCF Tiles 14

Cloud Foundry Service Brokers 15

PCF Tiles 15

On-Demand Services SDK and the On-Demand Broker 16

On-Demand Service Roles 17

Service Author 17

Tile Author 17

Operator 17

Service Network Requirement 18

Pivotal Cloud Foundry v2.0 and Earlier 18

Pivotal Cloud Foundry v2.1 and Later 18

Service Adapters 19

Get Started Using ODB 20

Operator Guide 20

Service and Tile Developer Guide 20

Operator Guide 21

Operating an On-Demand Broker 21

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 3

Operator Responsibilities 21

Configure Your BOSH Director 23

Software Requirements 23

Configure CA Certificates for TLS Communication 23

ODB to BOSH Director 23

ODB to Cloud Controller 24

Use BOSH Teams 25

Set Up Cloud Controller 26

Upload Required Releases 26

Write a Broker Manifest 27

Configure Your Broker 27

Starter Snippet for Your Broker 27

Configure Your Service Catalog and Plan Composition 29

Configure the Service Catalog 29

Compose Plans 30

Starter Snippet for the Service Catalog and Plans 31

(Optional) Access Manifest Secrets at Bind Time 34

(Optional) Enable Secure Binding 35

Requirements 35

Procedure for Enabling Secure Binding 35

How Credentials Are Stored on Runtime CredHub 36

(Optional) Enable Plan Schemas 36

(Optional) Register the Route to the Broker 37

(Optional) Set Service Instance Quotas 37

Procedure for Setting Service Instance Quotas 38

(Optional) Set Resource Quotas 38

Procedure for Setting Service Resource Quotas 39

(Optional) Configure Service Metrics 40

(Optional) Obtain BOSH DNS Addresses for Binding Creation and Deletion 40

Requirements 41

Procedure 41

Options for binding_with_dns 41

About Broker Startup Checks 42

About Broker Shutdown 42

Service Instance Lifecycle Errands 42

Enable Service Instance Lifecycle Errands 43

(Optional) Enable Co-located Errands 44

Broker and Service Management 45

Broker Management Errands 45

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 4

Register Broker 45

Add the Errand to the Manifest 45

Run the Errand 46

Delete All Service Instances 47

Add the Errand to the Manifest 47

Run the Errand 48

Deregister Broker 48

Add the Errand to the Manifest 48

Run the Errand 49

Delete All Service Instances and Deregister Broker 49

Add the Errand to the Manifest 49

Run the Errand 50

Orphan Deployments 51

Add the Errand to the Manifest 51

Run the Errand 51

Delete an Orphan Deployment 52

Recreate All Service Instances 52

Add the Errand to the Manifest 52

Run the Errand 53

Service Management 53

Update the Broker 53

Update the Service Offering 54

Disable Service Plans 54

Remove Service Plans 54

Upgrading 55

Update Add-Ons to Run with Xenial Stemcell 55

Upgrade the Broker 55

Upgrade the Service Offering 55

Upgrade All Service Instances 56

Service Instances API 58

General Request and Response 58

Filtered Request and Response 59

Configure the Broker to Use the Service Instances API 59

Security 60

BOSH API Endpoints 60

BOSH UAA Permissions 61

Unused BOSH permissions 61

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 5

PCF IPsec Add-On 61

CF API Endpoints 61

Cloud Foundry UAA Permissions 62

Unused Cloud Foundry permissions 63

Backup and Restore Considerations 64

On-Demand Service Broker 64

On-Demand Service Instances 64

Disaster Recovery 64

Data on Deployment Performance and Sizing 64

Set up 64

Test 65

Results 65

Notes 66

Troubleshooting On-Demand Services 66

Troubleshooting for BOSH Operators 66

Administer Service Instances 66

Logs and Metrics 66

Logs 66

Syslog Forwarding for Errand Logs 67

Metrics 67

Service-level Metrics 68

Plan-level Metrics 68

Secure Binding Credentials 68

Common Causes of Errors 69

Identify Deployments in BOSH 69

Identify Tasks in BOSH 69

Identify Issues When Connecting to BOSH or UAA 71

List Service Instances 71

List Orphan Deployments 71

Knowledge Base (Community) 72

File a Support Ticket 72

Troubleshooting for Ops Manager Operators 72

How to Retrieve a Service Instance GUID 72

Troubleshoot Errors 72

Troubleshoot Components 78

BOSH Problems 78

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 6

Large BOSH Queue 78

Configuration 78

Service Instances in Failing State 78

Authentication 78

UAA Changes 78

Networking 79

Validate Service Broker Connectivity to Service Instances 79

Validate App Access to Service Instance 79

Quotas 79

Plan Quota Issues 79

Global Quota Issues 80

Failing Jobs and Unhealthy Instances 80

Techniques for Troubleshooting 80

Parse a Cloud Foundry (CF) Error Message 80

Access Broker and Instance Logs and VMs 81

Access Broker Logs and VM(s) 81

Access Service Instance Logs and VMs 82

Run Service Broker Errands to Manage Brokers and Instances 82

Register Broker 83

Deregister Broker 83

Upgrade All Service Instances 83

Delete All Service Instances 84

Detect Orphaned Instances Service Instances 84

Get Admin Credentials for a Service Instance 86

Identify Apps using a Service Instance 87

View BOSH Resource Saturation and Scaling 88

Monitor Quota Saturation and Service Instance Count 88

Reinstall a Tile 88

Knowledge Base (Community) 89

File a Support Ticket 89

Service and Tile Developer Guide 90

Getting Started: ODB on a Local Development Environment 90

Prerequisites 90

Part 1: Set Up 90

Step 1: Prepare BOSH Lite 90

Step 2: Set Up the Kafka Example Service 91

Step 3: Set Up the Kafka Example Service Adapter 91

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 7

Step 4: Set Up ODB 91

Part 2: Create 92

Step 1: Create a BOSH Deployment 92

Step 2: Create a Service Broker on PCF Dev 95

Part 3: Verify and Use 96

Step 1: Verify Your BOSH Deployment and On-Demand Service 96

Step 2: Use Your On-Demand Service 97

Step 3: Read and Write to Your Service Instance 97

Creating a Service Release 97

Service Author Deliverables 97

Overview 98

Package an Initial Service Release 98

Use Job Links 98

Service Instance Lifecycle Errands 98

Include Service Instance Lifecycle Errands 99

Colocated Errands 99

Package the Final Service Release 100

Creating a Service Adapter 100

About Service Adapters 100

Subcommands in the Adapter Interface 100

Store Secrets on BOSH CredHub 101

About ODB-Managed Secrets 101

Migrate from Plaintext Secrets to ODB-Managed Secrets 102

Persist Secrets across Updates 103

Modify ODB-Managed Secrets 103

Detect When Secrets Are Modified 103

Inconsistent Secrets after a Failed Update 104

Binding Credentials 104

Static Credentials 104

Credentials Unique to Each Binding 105

Use an Agent 105

Enable ODB to Obtain BOSH DNS Addresses 105

Use Generic BOSH Configs with Service Instances 106

Handle Errors 107

Package a Service Adapter 107

On-Demand Services Golang SDK 108

Use the SDK 108

Interfaces 109

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 8

Helpers 110

Error Handling 111

BOSH Features 111

Creating an On-Demand Service Tile 111

Requirements 112

About Networks 112

Build a Tile for an On-Demand Service 112

Add Accessors 113

director 113

self 113

(Optional) cf 114

Add On-Demand Broker Lifecycle Errands 115

Upgrade All Service Instances Errand 115

(Optional) Allow Public IP Addresses for On-Demand Service Instance Groups 115

(Optional) Enable Floating Stemcells 116

(Optional) Allow Secure Binding 117

Service Adapter Interface Reference 118

Service Adapter Interface 118

generate-manifest 118

Input Parameters 119

SERVICE-DEPLOYMENT-JSON 119

PLAN-JSON 121

REQUEST-PARAMS-JSON 124

PREVIOUS-MANIFEST-YAML 124

PREVIOUS-PLAN-JSON 125

PREVIOUS-SECRETS-JSON 125

PREVIOUS-CONFIGS-JSON 126

Output 126

dashboard-url 127

Input Parameters 127

SERVICE-INSTANCE-ID 127

PLAN-JSON 127

MANIFEST-YAML 128

Output 129

create-binding 129

Input Parameters 129

BINDING-ID 130

BOSH-VMS-JSON 130

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 9

MANIFEST-YAML 130

REQUEST-PARAMS-JSON 130

MANIFEST-SECRETS-JSON 131

DNS-ADDRESSES-JSON 132

Output 132

delete-binding 133

Input Parameters 133

BINDING-ID 134

BOSH-VMS-JSON 134

MANIFEST-YAML 134

DELETE-PARAMS-JSON 134

MANIFEST-SECRETS-JSON 135

DNS-ADDRESSES-JSON 135

Output 135

generate-plan-schemas 135

Input Parameters 136

PLAN-JSON 136

Output 137

How On-Demand Services Process Commands 138

Register the Service Broker with Cloud Foundry 138

About Creating and Updating Service Instances 138

Create a Service Instance 139

Update a Service Instance 139

Update When There Are No Pending Changes 140

Update When There Are Pending Changes 141

Create or Update a Service Instance with Post-Deploy Errands 141

Recreate All Service Instances 142

About Upgrading Service Instances 143

Upgrade All Service Instances 143

Upgrade All Service Instances with External Service Instances API Configured 144

About Binding and Unbinding Service Instances 144

Bind a Service Instance 144

Unbind a Service Instance 145

About Deleting Service Instances 145

Delete a Service Instance 145

Delete a Service Instance with Pre-Delete Errands 146

Delete All Service Instances 147

Delete All Service Instances and Deregister Broker 148

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 10

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 11

On-Demand Services SDK

On-Demand Services SDK

This guide is for people who want to author service tiles for Pivotal Cloud Foundry (PCF) using the

on-demand services SDK, part of the Pivotal Cloud Foundry Services SDK.

Overview

PCF operators make software services such as databases available to developers by using the Ops

Manager Installation Dashboard to install service tiles.

On-demand services let you provision instances in a flexible way. The operator does not pre-allocate

a block of VMs for the instance pool, and they can specify an allowable range rather than fixed

settings for instance resource levels. When a developer creates an on-demand service instance,

they then provision it at creation time.

The on-demand services SDK provides a generic, on-demand broker (ODB). This simplifies broker

and tile authoring, and is the standard approach for both Pivotal internal services teams and Pivotal

partner independent software vendors (ISVs) to develop on-demand services for PCF. For more

information about service brokers and how the on-demand broker works within PCF, see About On-

Demand Brokers.

Product Snapshot

The following table provides version and version-support information about the on-demand services

SDK.

Element Details

Version 0.27.0

Release date April 4, 2019

Compatible Ops Manager version(s) 2.0 or later

Compatible Pivotal Application Service (PAS) version(s) 2.0 or later

IaaS support AWS, Azure, GCP, OpenStack, and vSphere

Key Features

The benefits of provisioning service instances with resources on-demand are:

Operators can scale resource consumption in line with need, without having to plan for pre-

provisioning.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 12

App developers get more control over resources and do not have to acquire them through

the operator.

The benefits of using ODB to develop on-demand services are:

ODB reduces the amount of code service developers have to write by abstracting away

functionality common to most single-tenant on-demand service brokers.

ODB uses BOSH to deploy service instances, so anything that is BOSH-deployable can

integrate with Cloud Foundry’s services Marketplace.

ODB uses the following BOSH features:

Dynamic IP management

Availability zones

Globally-defined resources (Cloud Config). This results in manifests that are portable across

BOSH Cloud Provider Interfaces (CPIs) and are substantially smaller than old-style manifests.

Links between deployed BOSH instances consuming information from other instances, for

example, IP addresses.

Prerequisites for Deploying Brokers That Use ODB

For information about minimum versions of Cloud Foundry and BOSH, see Software Requirements.

Create a pull request or raise an issue on the source for this page in GitHub

On-Demand Services SDK Release Notes

Page last updated:

For product versions and upgrade paths, see Upgrade Planner.

v0.27.0

Release Date: April 4, 2019

Breaking Change: The On Demand Services SDK has replaced

ServiceDeployment.Stemcell with ServiceDeployment.Stemcells. This change is to

support multiple stemcells for a service deployment.

For more information, see [BREAKING CHANGE] SDK now supports multi-stemcell

deployment in GitHub.

Breaking Change: To support bpm for the broker, you must include the bpm release

in the broker job.

Also, because bpm restricts access to the current job, you must also make the broker

signify to bpm that it needs access to the service adapter configuration.

To do so, specify the mount_paths to the service adapter within the broker job

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 13

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/index.html.md.erb
https://upgrade-planner.pivotal.io/
https://github.com/pivotal-cf/on-demand-services-sdk/commit/f88592e968ebb3a327d5689ed6772268a2c0fcfc

Features

New feature in this release:

The on-demand broker (ODB) now supports service instance deployments that use different

stemcells for different instance groups.

The broker binary now uses BOSH Process Manager (bpm) for better job isolation and

security. For more information about bpm, see bpm in the BOSH documentation.

Known Issues

This release has the following issues:

An issue with BOSH CredHub v1.9.11 and v2.1.5 causes an error after clicking Apply

Changes. These versions of CredHub are included in Ops Manager v2.2.21, v2.3.15, v2.4.9,

and v2.5.2.

To avoid this error, use CredHub v1.9.12 or later (included in Ops Manager v2.2.22 or later

and v2.3.16 or later) or CredHub v2.1.6 (included in Ops Manager v2.4.10 or later and v2.5.3

or later). For more information about this error, see Unable to Render Templates for Job

CredHub.

Contacting the BOSH Director links API many times in parallel can cause some requests to

fail during operations such as bind and unbind.

Minimum Version Requirements

The following are minimum version requirements for this release:

BOSH v266.12.0 or v267.6.0 and later

Cloud Foundry v238 and later

For Pivotal Cloud Foundry (PCF) version support, see Product Snapshot.

View Release Notes for Another Version

To view the release notes for another product version, select the version from the dropdown at the

top of this page.

Create a pull request or raise an issue on the source for this page in GitHub

About On-Demand Brokers

This topic provides information about on-demand brokers for people who want to create on-demand

service tiles for Pivotal Cloud Foundry (PCF).

Cloud Foundry Service Brokers and PCF Tiles

service_adapter configuration. For an example of this configuration, see Starter

Snippet for Your Broker.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 14

https://bosh.io/docs/bpm/bpm/
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/release-notes.html.md.erb

Service brokers let developers create service instances in their development spaces that they can

call from their code.

Cloud Foundry Service Brokers

Cloud Foundry Service Brokers provide an interface between the Cloud Controller and the add-on

software service that they represent. The service broker works by providing an API which the Cloud

Controller calls to create service instances, bind them to apps, and perform other operations. Cloud

Foundry service brokers are implemented as HTTP servers that conform to the Open Service Broker

API.

In addition to providing an API, a service broker publishes a service catalog that may include multiple

service plans, such as a free tier and a metered tier. Brokers register their service plans with the

Cloud Controller to populate the Marketplace, which developers access with cf marketplace or

through the Pivotal Cloud Foundry (PCF) Apps Manager.

PCF Tiles

On PCF, operators find services on Pivotal Network and install and configure them through a tile

interface in the Ops Manager Installation Dashboard to make them available to developers. Installing

a service tile creates a service broker, registers it with the Cloud Controller, and publishes the service

plans that the broker offers. Developers can then create service instances in their spaces and bind

them to their apps.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 15

http://docs.cloudfoundry.org/services/api.html
https://network.pivotal.io/

The central element behind a service tile is the service broker, but the tile software includes other

components that make the service easy for operators to install and maintain and easy for developers

to use. These components include configuration layouts, upgrade rules, lifecycle errands, and BOSH

manifests for deploying the service instances.

On-Demand Services SDK and the On-Demand Broker

The on-demand services SDK provides a generic on-demand broker (ODB) that answers API calls

from the Cloud Controller.

Service authors add service-specific functionality to the on-demand services SDK through an

executable called a Service Adapter. These components combine to create a BOSH deployment.

For more information about BOSH deployments, see What is a Deployment.

Tile authors customize the tile interface used by operators. The tile consumes the BOSH deployment

to generate a BOSH manifest for deploying on-demand instances of the service. The diagram below

illustrates this process.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 16

https://bosh.io/docs/deployment/

The on-demand services SDK imposes no constraints on the service authors’ ability to offer new

functionality or expose configuration options in their service plans, such as rate limiting and external

load balancers.

On-Demand Service Roles

There are several roles involved with creating and managing on-demand service tiles. These roles

can be separate or combined. This section provides a summary of the responsibilities for each role.

Service Author

Service authors write and maintain the service adapter. For more information about service author

responsibilities, see Service Author Deliverables.

Tile Author

Tile authors determine which configuration options to expose to Ops Manager operators, create the

tile, and publish it on Pivotal Network. For more information, see Creating an On-Demand Service

Tile.

Operator

Operators deploy and maintain the broker. They also manage access control for Cloud Foundry (CF)

developers. This documentation provides information for two types of operator, Ops Manager

operators and BOSH operators. These roles may be separate or combined. The following describes

each type of operator:

Ops Manager Operator: Uses the Ops Manager UI to configure plans and provide service

specific configurations. For more information about configuring a specific service, see the

Pivotal Documentation for the service.

BOSH Operator: Creates and modifies the on-demand service broker manifest to provide

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 17

https://docs.pivotal.io/

service specific configurations. For more information about operator responsibilities, see

Operator Responsibilities.

Service Network Requirement

When you deploy Pivotal Cloud Foundry, you must create a statically defined network to host the

component virtual machines that constitute the On-Demand Services SDK infrastructure.

Pivotal Cloud Foundry components, like the Cloud Controller and UAA, run on this infrastructure

network. On-demand Pivotal Cloud Foundry services may require that you host them on a network

that runs separately from this network. You can also deploy tiles on separate service networks to

meet your own security requirement.

Pivotal Cloud Foundry v2.0 and Earlier

In Pivotal Cloud Foundry v2.0 and earlier, cloud operators pre-provision service instances from Ops

Manager. For each service, Ops Manager allocates and recovers static IP addresses from a pre-

defined block of addresses.

To enable on-demand services in Pivotal Cloud Foundry v2.0 and earlier, operators must create a

service networks in BOSH Director and select the Service Network checkbox. Operators then can

select the service network to host on-demand service instances when they configure the tile for that

service.

Pivotal Cloud Foundry v2.1 and Later

Pivotal Cloud Foundry v2.1 and later include dynamic networking. In Pivotal Cloud Foundryv2.1 and

later, operators can use dynamic networking with asynchronous service provisioning to define

dynamically-provisioned service networks. For more information, see Default Network and Service

Network.

In Pivotal Cloud Foundry v2.1 and later, on-demand services are enabled by default on all networks.

Operators can create separate networks to host services in BOSH Director, but doing so is optional.

Operators select which network hosts on-demand service instances when they configure the tile for

that service.

Default Network and Service Network

On-demand services use BOSH to dynamically deploy VMs and create single-tenant service

instances in a dedicated network. On-demand services use the dynamically-provisioned service

network to host single-tenant worker VMs. These worker VMs run as service instances within

development spaces.

This on-demand architecture has the following advantages:

Developers can provision IaaS resources for their services instances when the instances are

created. This removes the need for operators to pre-provision a fixed amount of IaaS

resources when they deploy the service broker.

Service instances run on a dedicated VM and do not share VMs with unrelated processes.

This removes the “noisy neighbor” problem, where an app monopolizes resources on a

shared cluster.

Single-tenant services can support regulatory compliances where sensitive data must be

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 18

separated across different machines.

An on-demand service separates operations between the default network and the service network.

Shared service components, such as executive controllers and databases, Cloud Controller, UAA,

and other on-demand components, run on the default network. Worker pools deployed to specific

spaces run on the service network.

The diagram below shows worker VMs in an on-demand service instance running on a separate

services network, while other components run on the default network.

View a larger version of this image

Service Adapters

A service adapter is a binary that is called by the ODB for service-specific tasks. The diagram below

shows where responsibility lies for each aspect of the ODB workflow.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 19

#svc-sdk-odb-partials-images-odb-architecture.png

The service author can focus on building the BOSH release of their service and provide a service

adapter binary that manages manifest generation, schema generation, binding, and unbinding. The

ODB manages all interactions with Cloud Foundry and BOSH.

Thanks to BOSH v2, service authors can define resources globally (in Cloud Config). This makes

manifests portable across BOSH Cloud Provider Interfaces (CPIs) and lets them be substantially

smaller than old-style manifests. The ODB takes advantage of other BOSH v2 features as well,

including dynamic IP management, availability zones, and links through which deployed BOSH

instances can access IP addresses and other information from other instances.

Once an on-demand tile is authored and distributed, the operator installs and configures it the same

way they do with any other Pivotal products. In the process, they select which of the tile’s available

service plans to offer their developers.

Get Started Using ODB

This documentation provides information for operators and developers in the following sections.

Operator Guide

This section provides information about how to operate an on-demand broker for BOSH operators

and Ops Manager operators.

Service and Tile Developer Guide

This section provides information about creating on-demand services and tiles.

Create a pull request or raise an issue on the source for this page in GitHub

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 20

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/about.html.md.erb

Operator Guide

Operating an On-Demand Broker

This topic provides information about operating the on-demand broker for Pivotal Cloud Foundry

(PCF) Ops Manager operators and BOSH operators.

Operator Responsibilities

Operators are responsible for the following:

Requesting appropriate networking rules for on-demand service tiles. See Set Up

Networking below.

Configuring the BOSH Director. See Configure Your BOSH Director below.

Uploading the required releases for the broker deployment and service instance

deployments. See Upload Required Releases below.

Writing a broker manifest. See Write a Broker Manifest below.

Managing brokers and service plans. See Broker and Service Management.

Set Up Networking

Before deploying a service tile that uses the on-demand service broker (ODB), you must create

networking rules to enable components to communicate with ODB. For instructions for creating

networking rules, see the documentation for your IaaS.

The following table lists key components and their responsibilities in the on-demand architecture.

Key

Compone

nts

Component Responsibilities

BOSH

Director

Creates and updates service instances as instructed by ODB.

BOSH

Agent

Adds an agent on every VM that it deploys. The agent listens for instructions from the BOSH Director

and executes those instructions. The agent receives job specifications from the BOSH Director and uses

them to assign a role or job to the VM.

BOSH

UAA

Issues OAuth2 tokens for clients to use when they act on behalf of BOSH users.

Note: Pivotal recommends that you provide documentation when you make changes

to the manifest to inform other operators about the new configurations.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 21

Pivotal

Applicatio

n Service

Contains the apps that consume services.

ODB Instructs BOSH to create and update services. Connects to services to create bindings.

Deployed

service

instance

Runs the given service. For example, a deployed On-Demand Services SDK service instance runs the

Redis service.

Regardless of the specific network layout, you must ensure network rules are set up so that

connections are open as described in the table below.

This

comp

onent

⋯

Must

communica

te with⋯

Default TCP Port Commu

nication

directio

ns

Notes

ODB B

OS

H

Di

re

ct

or

B

OS

H

UA

A

25555

8443

One-

way

The default ports are not configurable.

ODB Deployed

service

instances

Specific to the service

(such as RabbitMQ for

PCF). May be one or more

ports.

One-

way

This connection is for administrative tasks. Avoid

opening general use, app-specific ports for this

connection.

ODB PAS 8443 One-

way

The default port is not configurable.

Erran

d VMs
PA

S

O

D

B

De

pl

oy

ed

Se

rvi

ce

Ins

ta

nc

es

8443

8080

Specific to the

service. May be

one or more

ports.

One-

way

The default port is not configurable.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 22

BOSH

Agent

BOSH

Director

4222 Two-

way

The BOSH Agent runs on every VM in the system,

including the BOSH Director VM. The BOSH Agent

initiates the connection with the BOSH Director.

The default port is not configurable.

Deplo

yed

apps

on

PAS

Deployed

service

instances

Specific to the service.

May be one or more ports.

One-

way

This connection is for general use, app-specific tasks.

Avoid opening administrative ports for this

connection.

PAS ODB 8080 One-

way

This port can be different for individual services. This

port can also be configurable by the operator if

allowed by the tile developer.

Configure Your BOSH Director

See the following topics for how to set up your BOSH Director:

Software Requirements

Configure CA Certificates for TLS Communication

BOSH Teams

Cloud Controller

Software Requirements

The On-Demand Broker requires the following:

BOSH Director v266.12.0 or v267.6.0 and later. To install the BOSH Director, see Quick Start

in the BOSH documentation.

cf-release v1.10.0 or later (PCF v2.0 or later).

Configure CA Certificates for TLS Communication

There are two kinds of communication in ODB that use transport layer security (TLS) and need to

validate certificates using a certificate authority (CA) certificate:

ODB to BOSH Director

ODB to Cloud Foundry API (Cloud Controller)

The CA certificates used to sign the BOSH and Cloud Controller certificates are often generated by

BOSH, CredHub, or a customer security team, and so are not publicly trusted certificates. This

means Pivotal might need to provide the CA certificates to ODB to perform the required validation.

ODB to BOSH Director

Notes:

ODB does not support BOSH Windows.

Service instance lifecycle errands require BOSH Director v261 on PCF v1.10

or later. For more information, see Service Instance Lifecycle Errands below.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 23

https://bosh.io/docs/quick-start/

In some rare cases where the BOSH Director is not installed through Ops Manager, BOSH can be

configured to be publicly accessible with a domain name and a TLS certificate issued by a public

certificate authority. In such a case, you can navigate to https://BOSH-DOMAIN-NAME:25555/info

in a browser and see a trusted certificate padlock in the browser address bar.

ODB can then be configured to use this address for BOSH and will not require a CA certificate to be

provided. The public CA certificate would already be present on the ODB VM.

By contrast, BOSH is usually only accessible on an internal network. It uses a certificate signed by an

internal CA. The CA certificate must be provided in the broker configuration so that ODB can

validate the BOSH Director’s certificate. ODB always validates BOSH TLS certificates.

You have two options for providing a CA certificate to ODB for validation of the BOSH certificate.

You can add the BOSH Director’s root certificate to the ODB manifest or you can use BOSH’s

trusted_certs feature to add a self-signed CA certificate to each VM that BOSH deploys.

To add the BOSH Director’s root certificate to the ODB manifest, edit the manifest as

below:

bosh:

 root_ca_cert: ROOT-CA-CERT

Where ROOT-CA-CERT is the root certificate authority (CA) certificate. This is the certificate

used when following the steps in Configuring SSL Certificates in the BOSH documentation.

For example:

Instance_groups:

 - Name: broker

 Jobs:

 - Name: broker

 Properties:

 bosh:

 root_ca_cert:

 -----BEGIN CERTIFICATE-----

 EXAMPLExxOFxxAxxCERTIFICATE

 ...

 -----END CERTIFICATE-----

 authentication:

 ...

To use BOSH’s trusted_certs feature to add a self-signed CA certificate to each VM that

BOSH deploys, follow the steps below.

1. Generate and use self-signed certificates for the BOSH Director and User Account

and Authentication (UAA) through the trusted_certs feature. For instructions, see

Configuring Trusted Certificates in the BOSH documentation.

2. Add trusted certificates to your BOSH Director. For instructions, see Configuring SSL

Certificates in the BOSH documentation.

ODB to Cloud Controller

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 24

https://bosh.io/docs/director-certs.html
https://bosh.io/docs/trusted-certs/#configure
https://bosh.io/docs/director-certs.html

Optionally, you can configure a separate root CA certificate that is used when ODB communicates

with the Cloud Foundry API (Cloud Controller). This is necessary if the Cloud Controller is configured

with a certificate not trusted by the broker.

For an example of how to add a separate root CA certificate to the manifest, see the line containing

CA-CERT-FOR-CLOUD-CONTROLLER in the manifest snippet in Starter Snippet for Your Broker below.

Use BOSH Teams

You can use BOSH teams to further control how BOSH operations are available to different clients.

For more information about BOSH teams, see Using BOSH Teams in the BOSH documentation.

To use BOSH teams to ensure that your on-demand service broker client can only modify

deployments it created, do the following:

1. Run the following UAA CLI (UAAC) command to create the client:

uaac client add CLIENT-ID \

 --secret CLIENT-SECRET \

 --authorized_grant_types "refresh_token password client_credentials" \

 --authorities "bosh.teams.TEAM-NAME.admin"

Where:

CLIENT-ID is your client ID.

CLIENT-SECRET is your client secret.

TEAM-NAME is the name of the team authorized to modify this deployment.

For example:

uaac client add admin \

 --secret 12345679 \

 --authorized_grant_types "refresh_token password client_credentials" \

 --authorities "bosh.teams.my-team.admin"

For more information about using the UAAC, see Creating and Managing Users with the

UAA CLI (UAAC).

2. Configure the broker’s BOSH authentication.

For example:

instance_groups:

 - name: broker

 ...

 jobs:

 - name: broker

 ...

 properties:

 ...

 bosh:

 url: DIRECTOR-URL

 root_ca_cert: CA-CERT-FOR-BOSH-DIRECTOR # optional, see SSL certifi

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 25

https://bosh.io/docs/director-bosh-teams/
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

cates

 authentication:

 uaa:

 client_id: BOSH-CLIENT-ID

 client_secret: BOSH-CLIENT-SECRET

Where the BOSH-CLIENT-ID and BOSH-CLIENT-SECRET are the CLIENT-ID and CLIENT-SECRET

you provided in step 1.

The broker can then only perform BOSH operations on deployments it has created. For a

more detailed manifest snippet, see Starter Snippet for Your Broker below.

For more information about securing how ODB uses BOSH, see Security.

Set Up Cloud Controller

ODB uses the Cloud Controller as a source of truth for service offerings, plans, and instances.

To reach the Cloud Controller, configure ODB with either client or user credentials in the broker

manifest. For more information, see Write a Broker Manifest below.

The following is an example broker manifest snippet for the client credentials:

authentication:

 ...

 client_credentials:

 client_id: UAA-CLIENT-ID

 secret: UAA-CLIENT-SECRET

The following is an example broker manifest snippet for the user credentials:

authentication:

 ...

 user_credentials:

 username: CF-ADMIN-USERNAME

 password: CF-ADMIN-PASSWORD

Upload Required Releases

Upload the following releases to your BOSH Director:

On Demand Service Broker (ODB)—Download ODB from Pivotal Network.

Your service adapter—Get the service adapter from the release author.

Your service release—Get the service release from the release author.

Note: The client or user must have the following permissions.

If using client credentials then, as of Cloud Foundry v238, the UAA client

must have the authority cloud_controller.admin.

If using user credentials then the user must be a member of the scim.read

and cloud_controller.admin groups.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 26

https://network.pivotal.io/products/on-demand-services-sdk/

BOSH Process Manager (BPM) release—Get the BPM release from BOSH releases in

GitHub. You might not need to do this if the BPM release is already uploaded.

To upload a release to your BOSH Director, do the following:

1. Run the following command.

bosh -e BOSH-DIRECTOR-NAME upload-release RELEASE-FILE-NAME.tgz

Example command for ODB:

$ bosh -e lite upload-release on-demand-service-broker-0.22.0.tgz

Example commands for service adapter or service release:

$ bosh -e lite upload-release my-service-release.tgz

$ bosh -e lite upload-release my-service-adapter.tgz

Write a Broker Manifest

There are two parts to writing your broker manifest. You must:

Configure Your Broker

Configure Your Service Catalog and Plan Composition

If you are unfamiliar with writing BOSH v2 manifests, see Deployment Config.

For example manifests, see the following:

For a Redis service—redis-example-service-adapter-release in GitHub.

For a Kafka service—kafka-example-service-adapter-release in GitHub.

Configure Your Broker

Your manifest must contain exactly one non-errand instance group that is co-located with both of

the following:

The broker job from on-demand-service-broker

Your service adapter job from your service adapter release

The broker is stateless and does not need a persistent disk. Its VM type can be small: a single CPU

and 1 GB of memory is sufficient in most cases.

Starter Snippet for Your Broker

Use the snippet below to help you to configure your broker. The snippet uses BOSH v2 syntax as

well as global cloud config and job-level properties.

For examples of complete broker manifests, see Write a Broker Manifest above.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 27

https://bosh.io/releases/github.com/cloudfoundry-incubator/bpm-release?all=1
http://bosh.io/docs/manifest-v2.html
https://github.com/pivotal-cf-experimental/redis-example-service-adapter-release/blob/master/docs/example-manifest.yml
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter-release/blob/master/docs/example-manifest.yml

addons:

 # Broker uses BPM to isolate co-located BOSH jobs from one another

 - name: bpm

 jobs:

 - name: bpm

 release: bpm

instance_groups:

 - name: NAME-OF-YOUR-CHOICE

 instances: 1

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks:

 - name: NETWORK

 jobs:

 - name: SERVICE-ADAPTER-JOB-NAME

 release: SERVICE-ADAPTER-RELEASE

 - name: broker

 release: on-demand-service-broker

 properties:

 # choose a port and basic authentication credentials for the broker:

 port: BROKER-PORT

 username: BROKER-USERNAME

 password: BROKER-PASSWORD

 # optional - defaults to false. This should not be set to true in production

.

 disable_ssl_cert_verification: TRUE|FALSE

 # optional - defaults to 60 seconds. This enables the broker to gracefully w

ait for any open requests to complete before shutting down.

 shutdown_timeout_in_seconds: 60

 # optional - defaults to false. This enables BOSH operational errors to be d

isplayed for the CF user.

 expose_operational_errors: TRUE|FALSE

 # optional - defaults to false. If set to true, plan schemas are included in

 the catalog, and the broker fails if the adapter does not implement generate-plan-sch

emas.

 enable_plan_schemas: TRUE|FALSE

 cf:

 url: CF-API-URL

 # optional - see the Configure CA Certificates section above:

 root_ca_cert: CA-CERT-FOR-CLOUD-CONTROLLER

 # either client_credentials or user_credentials, not both as shown:

 authentication:

 url: CF-UAA-URL

 client_credentials:

 # with cloud_controller.admin authority and client_credentials in the

authorized_grant_type:

 client_id: UAA-CLIENT-ID

 secret: UAA-CLIENT-SECRET

 user_credentials:

 # in the cloud_controller.admin and scim.read groups:

 username: CF-ADMIN-USERNAME

 password: CF-ADMIN-PASSWORD

 bosh:

 url: DIRECTOR-URL

 # optional - see the Configure CA Certificates section above:

WARNING: The disable_ssl_cert_verification option is dangerous and should be

set to false in production.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 28

 root_ca_cert: CA-CERT-FOR-BOSH-DIRECTOR

 # either basic or uaa, not both as shown, see

 authentication:

 basic:

 username: BOSH-USERNAME

 password: BOSH-PASSWORD

 uaa:

 client_id: BOSH-CLIENT-ID

 client_secret: BOSH-CLIENT-SECRET

 service_adapter:

 # optional - provided by the service author. Defaults to /var/vcap/package

s/odb-service-adapter/bin/service-adapter.

 path: PATH-TO-SERVICE-ADAPTER-BINARY

 # optional - Filesystem paths to be mounted for use by the service adapter

. These should include the paths to any config files.

 mount_paths: [PATH-TO-SERVICE-ADAPTER-CONFIG]

 # There are more broker properties that are discussed below

Configure Your Service Catalog and Plan Composition

Use the following sections as a guide to configure the service catalog and compose plans in the

properties section of broker job. For an example snippet, see the Starter Snippet for the Service

Catalog and Plans below.

Configure the Service Catalog

When configuring the service catalog, supply the following:

The release jobs specified by the service author:

Supply each release job exactly once.

You can include releases that provide many jobs, as long as each required job is

provided by exactly one release.

Stemcells:

These are used on each VM in the service deployments.

Use exact versions for releases and stemcells. The use of latest and floating

stemcells are not supported.

Cloud Foundry service metadata for the service offering:

This metadata is aggregated in the Marketplace and displayed in Apps Manager and

the cf CLI.

You can use other arbitrary field names as needed in addition to the Open Service

Broker API (OSBAPI) recommended fields. For information about the recommended

fields for service metadata, see the Open Service Broker API Profile.

Note: If you are using Xenial stemcells, you must update any BOSH add-ons

to support Xenial stemcells. For links to instructional topics about updating

see Update Add-ons to Run with Xenial Stemcell.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 29

https://docs.pivotal.io/pivotalcf/services/catalog-metadata.html#services-metadata

Compose Plans

Service authors do not define plans, but instead expose plan properties. Operators compose plans

consisting of combinations of these properties, along with IaaS resources and catalog metadata.

When composing plans, supply the following:

Cloud Foundry plan metadata for each plan:

You can use other arbitrary field names in addition to the OSBAPI recommended fields. For

information about the recommended fields for plan metadata, see the Open Service Broker

API Profile in GitHub.

Resource mapping:

For each plan, supply resource mapping for each instance group that service authors

specify.

The resource values must correspond to valid resource definitions in the BOSH

Director’s global cloud config.

Service authors might recommend resource configuration. For example, in single-

node Redis deployments, an instance count greater than one does not make sense.

Here, you can configure the deployment to span multiple availability zones (AZs). For

how to do this, see Availability Zones in the BOSH documentation.

Service authors might provide errands for the service release. You can add an

instance group of type errand by setting the lifecycle field. For an example, see

register-broker in the kafka-example-service-adapter-release in GitHub.

Values for plan properties:

Plan properties are key-value pairs defined by the service authors. For example,

including a boolean to enable disk persistence for Redis or a list of strings

representing RabbitMQ plugins to load.

The service author should document whether a plan property:

Is mandatory or optional

Precludes the use of another

Affects recommended instance group to resource mappings

You can also specify global properties at the service offering level, where they are

applied to every plan. If there is a conflict between global and plan-level properties,

the plan properties take precedence.

(Optional) Provide an update block for each plan

You might require plan-specific configuration for BOSH’s update instance

operation. ODB passes the plan-specific update block to the service adapter.

Plan-specific update blocks should have the same structure as the update block in a

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 30

https://github.com/openservicebrokerapi/servicebroker/blob/master/profile.md#plan-metadata-fields
https://bosh.io/docs/azs.html
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter-release/blob/cb1597979eddc4482d4511d4402a2b3cf9dcfa9e/docs/example-manifest.yml#L160-L176

BOSH manifest. See Update Block in the BOSH documentation.

The service author can define a default update block to be used when a plan-specific

update block is not provided, if the service adapter supports configuring update

blocks in the manifest.

(Optional) Maintenance Information

Maintenance information is used to uniquely describe the deployed version of a

service instance. It is made up of public and private key/value pairs defined at the

catalog and plan levels. It is displayed in the service catalog at plan level with plan-

level maintenance information aggregated into the catalog-level maintenance

information. The public information is exposed in the service catalog, while all the

private information is aggregated and hashed into a value representing those private

values.

Maintenance information which is common to all plans should be defined at the

service catalog level.

Plan-specific maintenance information should be defined at the plan level. Where a

key is redefined at the plan level, it overrides the service catalog level value.

Pivotal recommends using YAML anchors and references to avoid repeating

maintenance information values within the manifest. For instance, the stemcell

version can be anchors with the &stemcellVersion annotation, and then referenced

in the maintenance information with the *stemcellVersion tag.

Starter Snippet for the Service Catalog and Plans

Append the snippet below to the properties section of the broker job that you configured in

Configure Your Broker. Ensure that you provide the required information listed in Configure Your

Service Catalog and Plan Composition above.

For examples of complete broker manifests, see Write a Broker Manifest above.

service_deployment:

 releases:

 - name: SERVICE-RELEASE

 # exact release version:

 version: SERVICE-RELEASE-VERSION

 # service author specifies the list of jobs required:

 jobs: [RELEASE-JOBS-NEEDED-FOR-DEPLOYMENT-AND-LIFECYCLE-ERRANDS]

 # every instance group in the service deployment has the same stemcell:

 stemcells:

 - os: SERVICE-STEMCELL

 # exact stemcell version:

 version: &stemcellVersion SERVICE-STEMCELL-VERSION

service_catalog:

 id: CF-MARKETPLACE-ID

 service_name: CF-MARKETPLACE-SERVICE-OFFERING-NAME

 service_description: CF-MARKETPLACE-DESCRIPTION

 bindable: TRUE|FALSE

 # optional:

 plan_updatable: TRUE|FALSE

 # optional:

 tags: [TAGS]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 31

https://bosh.io/docs/manifest-v2.html#update

 # optional:

 requires: [REQUIRED-PERMISSIONS]

 # optional:

 dashboard_client:

 id: DASHBOARD-OAUTH-CLIENT-ID

 secret: DASHBOARD-OAUTH-CLIENT-SECRET

 redirect_uri: DASHBOARD-OAUTH-REDIRECT-URI

 # optional:

 metadata:

 display_name: DISPLAY-NAME

 image_url: IMAGE-URL

 long_description: LONG-DESCRIPTION

 provider_display_name: PROVIDER-DISPLAY-NAME

 documentation_url: DOCUMENTATION-URL

 support_url: SUPPORT-URL

 # optional - applied to every plan:

 global_properties: {}

 global_quotas: # optional

 # the maximum number of service instances across all plans:

 service_instance_limit: INSTANCE-LIMIT

 # optional - resource usage limits, determined by the 'cost' of each service insta

nce plan:

 resource_limits:

 ips: RESOURCE-LIMIT

 memory: RESOURCE-LIMIT

 # optional - applied to every plan.

 maintenance_info:

 # keys under public are visible in service catalog

 public:

 # reference to stemcellVersion anchor above

 stemcell_version: *stemcellVersion

 # arbitrary public maintenance_info

 kubernetes_version: 1.13

 # arbitrary public maintenance_info

 docker_version: 18.06.1

 # all keys under private are hashed to single SHA value in service catalog

 private:

 # example of private data that would require a service update to change

 log_aggregrator_mtls_cert: *YAML_ANCHOR_TO_MTLS_CERT

 plans:

 - name: CF-MARKETPLACE-PLAN-NAME

 # optional - used by the cf CLI to display whether this plan is "free" or "paid"

:

 free: TRUE|FALSE

 plan_id: CF-MARKETPLACE-PLAN-ID

 description: CF-MARKETPLACE-DESCRIPTION

 # optional - enable by default.

 cf_service_access: ENABLE|DISABLE|MANUAL

 # optional - if specified, this takes precedence over the bindable attribute of

 the service:

 bindable: TRUE|FALSE

 # optional:

 metadata:

 display_name: DISPLAY-NAME

 bullets: [BULLET1, BULLET2]

 costs:

 - amount:

 CURRENCY-CODE-STRING: CURRENCY-AMOUNT-FLOAT

 unit: FREQUENCY-OF-COST

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 32

 # optional – the 'cost' of each instance in terms of resource quotas:

 resource_costs:

 memory: AMOUNT-OF-RESOURCE-IN-THIS-PLAN

 # optional:

 quotas:

 # the maximum number of service instances for this plan:

 service_instance_limit: INSTANCE-LIMIT

 # optional - resource usage limits for this plan:

 resource_limits:

 memory: RESOURCE-LIMIT

 # resource mapping for the instance groups defined by the service author:

 instance_groups:

 - name: SERVICE-AUTHOR-PROVIDED-INSTANCE-GROUP-NAME

 vm_type: VM-TYPE

 # optional:

 vm_extensions: [VM-EXTENSIONS]

 instances: &instanceCount INSTANCE-COUNT

 networks: [NETWORK]

 azs: [AZ]

 # optional:

 persistent_disk_type: DISK

 # optional:

 - name: SERVICE-AUTHOR-PROVIDED-LIFECYCLE-ERRAND-NAME

 lifecycle: errand

 vm_type: VM-TYPE

 instances: INSTANCE-COUNT

 networks: [NETWORK]

 azs: [AZ]

 # valid property key-value pairs are defined by the service author:

 properties: {}

 # optional

 maintenance_info:

 # optional - keys merge with catalog level public maintenance_info keys

 public:

 # refers to anchor in instance group above

 instance_count: *instanceCount

 # optional

 private: {}

 # optional:

 update:

 # optional:

 canaries: 1

 # required:

 max_in_flight: 2

 # required:

 canary_watch_time: 1000-30000

 # required:

 update_watch_time: 1000-30000

 # optional:

 serial: true

 # optional:

 lifecycle_errands:

 # optional:

 post_deploy:

 - name: ERRAND-NAME

 # optional - for co-locating errand:

 instances: [INSTANCE-NAME, ...]

 - name: ANOTHER_ERRAND_NAME

 # optional:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 33

 pre_delete:

 - name: ERRAND-NAME

 # optional - for co-locating errand:

 instances: [INSTANCE-NAME, ...]

(Optional) Access Manifest Secrets at Bind Time

A service adapter might need to access secrets embedded in a service instance manifest when

processing a create binding request. For example, it might need credentials with sufficient privileges

to add a new user to a service instance. These credentials are in the service instance manifest. ODB

passes this manifest to the adapter in the create-binding call.

Secrets in the manifest can be:

BOSH variables

Literal BOSH CredHub references

Plain text

If you use BOSH variables or literal CredHub references in your manifest, do the following in the

ODB manifest so that the service adapter can access the secrets:

1. Set the enable_secure_manifests flag to true.

For example:

instance_groups:

 - name: broker

 ...

 jobs:

 - name: broker

 ...

 properties:

 ...

 enable_secure_manifests: true

 ...

2. Supply details for accessing the credentials stored in BOSH CredHub. Replace the

placeholder text below with your values for accessing CredHub:

instance_groups:

 - name: broker

 ...

 jobs:

 - name: broker

 ...

 properties:

 ...

 enable_secure_manifests: true

 bosh_credhub_api:

 url: https://BOSH-CREDHUB-ADDRESS:8844/

 root_ca_cert: BOSH-CREDHUB-CA-CERT

Note: This feature does not work if you have configured use_stdin to be false.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 34

 authentication:

 uaa:

 client_credentials:

 client_id: BOSH-CREDHUB-CLIENT-ID

 client_secret: BOSH-CREDHUB-CLIENT-SECRET

When the enable_secure_manifests flag is set to true, ODB queries BOSH and its CredHub instance

for secret values. ODB then generates a map of all manifest variable names and CredHub references

to secret values in the manifest. ODB passes this map to the service adapter’s create-binding call.

For an example of the JSON in the create-binding call, see the Service Adapter Interface

Reference documentation.

If ODB cannot resolve a particular secret, it logs the failure and omits the unresolved secret from the

passed secrets map. It is the responsibility of the adapter to handle missing secrets based on

whether they are required for binding creation.

(Optional) Enable Secure Binding

If you enable secure binding, binding credentials are stored securely in runtime CredHub. When

users create bindings or service keys, ODB passes a secure reference to the service credentials

through the network instead of in plaintext.

Requirements

To store service credentials in runtime CredHub, your deployment must meet the following

requirements:

It must be able to connect to runtime CredHub v1.6.x or later. This might be provided as part

of your Cloud Foundry deployment.

Your instance group must have access to the local DNS provider. This is because the address

for runtime CredHub is a local domain name.

Procedure for Enabling Secure Binding

To enable secure binding, do the following:

1. Set up a new runtime CredHub client in Cloud Foundry UAA with credhub.write and

credhub.read in its list of scopes. For how to do this, see Creating and Managing Users with

the UAA CLI (UAAC) in the Cloud Foundry documentation.

Note: ODB does not fail if it cannot resolve a secret.

Note: This feature does not work if you have configured use_stdin to be false.

Note: Pivotal recommends using BOSH DNS as a DNS provider. If you are using PCF

v2.4 or later, you cannot use consul as a DNS provider because consul server VMs

have been removed in Pivotal Application Service (PAS) v2.4.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 35

https://docs.cloudfoundry.org/uaa/uaa-user-management.html

2. Update the broker job in the ODB manifest to consume the runtime CredHub link.

For example:

instance_groups:

 - name: broker

 ...

 jobs:

 - name: broker

 consumes:

 credhub:

 from: credhub

 deployment: cf

3. Update the broker job in the ODB manifest to include the secure_binding_credentials

section. The CA certificate can be a reference to the certificate in the cf deployment or

inserted manually.

For example:

instance_groups:

 - name: broker

 ...

 jobs:

 - name: broker

 ...

 properties:

 ...

 secure_binding_credentials:

 enabled: true

 authentication:

 uaa:

 client_id: NEW-CREDHUB-CLIENT-ID

 client_secret: NEW-CREDHUB-CLIENT-SECRET

 ca_cert: ((cf.uaa.ca_cert))

Where NEW-CREDHUB-CLIENT-ID and NEW-CREDHUB-CLIENT-SECRET are the runtime CredHub

client credentials you created in step 1.

For a more detailed manifest snippet, see Starter Snippet for Your Broker above.

How Credentials Are Stored on Runtime CredHub

The credentials for a given service binding are stored with the following format:

/C/:SERVICE-GUID/:SERVICE-INSTANCE-GUID/:BINDING-GUID/CREDENTIALS

The plaintext credentials are stored in runtime CredHub under this key, and the key is available

under the VCAP_SERVICES environment variable for the app.

(Optional) Enable Plan Schemas

As of OSBAPI Spec v2.13 ODB supports enabling plan schemas. For more information, see OSBAPI

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 36

https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md#changes-since-v212

Spec v2.13 in GitHub.

When this feature is enabled, the broker validates incoming configuration parameters against a

schema during the provision, binding, and update of service instances. The broker produces an

error if the parameters do not conform.

To enable plan schemas, do the following:

1. Ensure that the service adapter implements the command generate-plan-schemas. When it

is not implemented, the broker fails to deploy. For more information about this command,

see generate-plan-schemas.

2. In the manifest, set the enable_plan_schemas flag to true as shown below. The default is

false.

 instance_groups:

 - name: broker

 ...

 jobs:

 - name: broker

 ...

 properties:

 ...

 enable_plan_schemas: true

For a more detailed manifest snippet, see Starter Snippet for Your Broker above.

(Optional) Register the Route to the Broker

You can register a route to the broker using the route_registrar job from the routing release. The

route_registrar job achieves the following:

Load balances multiple instances of ODB using the Cloud Foundry router

Allows access to ODB from the public internet

For more information, see route_registrar job.

To register the route, co-locate the route_registrar job with on-demand-service-broker:

1. Download the routing release. See cf-routing Release for more information about doing so.

2. Upload the routing release to your BOSH Director.

3. Add the route_registrar job to your deployment manifest and configure it with an HTTP

route. This creates a URI for your broker.

For how to configure the route_registrar job, see routing release in GitHub.

4. If you configure a route, set the broker_uri property in the register-broker errand.

(Optional) Set Service Instance Quotas

Note: You must use the same port for the broker and the route. The broker

defaults to 8080.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 37

https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md#changes-since-v212
http://bosh.io/jobs/route_registrar?source=github.com/cloudfoundry-incubator/cf-routing-release
http://bosh.io/releases/github.com/cloudfoundry-incubator/cf-routing-release?all=1
https://github.com/cloudfoundry/routing-release/blob/d59974071d97b9f1770dd170240bff2fe5ba1558/jobs/route_registrar/spec#L95-L100

Set service instance quotas to limit the number of service instances ODB can create. You can set

these quotas for service instances:

Global quotas – limit the number of service instances across all plans

Plan quotas – limit the number of service instances for a given plan

When creating a service instance, ODB checks the global service instance limit. If this limit has not

been reached, ODB checks the plan service instance limit.

Procedure for Setting Service Instance Quotas

To set service instance quotas, do the following in the manifest:

1. Add a quotas section for the type of quota you want to use.

For global quotas add global_quotas in the service catalog, as in the example

below:

service_catalog:

 ...

 global_quotas:

 service_instance_limit: INSTANCE-LIMIT

 ...

For plan quotas add quotas to the plans you want to limit, as in the example below:

service_catalog:

 ...

 plans:

 - name: CF-MARKETPLACE-PLAN-NAME

 quotas:

 service_instance_limit: INSTANCE-LIMIT

Where INSTANCE-LIMIT is the maximum number of service instances allowed.

For a more detailed manifest snippet, see the Starter Snippet for the Service Catalog and Plans

above.

(Optional) Set Resource Quotas

Set resource quotas to limit resources, such as memory or disk, more effectively when combining

plans that consume different amounts of resources. You can set these quotas for service resources:

Global resource quotas – limit how much of a certain resource is consumed across all plans.

ODB allows new instances to be created until their total resources reach the global quota.

Plan resource quotas – limit how much of a certain resource is consumed by a specific plan.

Note: These limits do not include orphaned deployments. See List Orphan

Deployments and Delete Orphaned Deployments for more information.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 38

When creating a service instance, ODB checks the global resource limit. If this limit has not been

reached, ODB checks the plan resource limit.

Procedure for Setting Service Resource Quotas

To set resource quotas, do the following in the manifest:

1. Add a quotas section for the type of quota you want to use by entering the following.

quotas:

 resource_limits:

 RESOURCE-NAME: RESOURCE-LIMIT

Where:

RESOURCE-NAME is a string defining the resource you want to limit.

RESOURCE-LIMIT is a value for the maximum allowed for each resource.

For example:

For global quotas add global_quotas in the service catalog, as in this example:

service_catalog:

 ...

 global_quotas:

 resource_limits:

 ips: 50

 memory: 150

For plan quotas add quotas in the plans you want to limit, as in this example:

service_catalog:

 ...

 plans:

 - name: my-plan

 quotas:

 resource_limits:

 memory: 25

2. Add resource_costs in each plan to define the amount of resources your plan allocates to

each service instance. The key is string-matched against keys in the global- and plan-level

resource quotas. See the example below.

resource_costs:

 RESOURCE-NAME: AMOUNT-OF-RESOURCE

Where:

RESOURCE-NAME is a string defining the resource you want to limit.

Note: These limits do not include orphaned deployments. See List Orphan

Deployments and Delete Orphaned Deployments for more information.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 39

AMOUNT-OF-RESOURCE is the amount of the resource allocated to each service instance

of this plan.

For example:

service_catalog:

 ...

 plans:

 - name: my-plan

 resource_costs:

 memory: 5

For a more detailed manifest snippet, see the Starter Snippet for the Service Catalog and Plans

above.

(Optional) Configure Service Metrics

The ODB BOSH release contains a metrics job that can be used to emit metrics when co-located

with the Pivotal Cloud Foundry Service Metrics SDK. To do this, you must include the Loggregator

release.

To download the Pivotal Cloud Foundry Service Metrics SDK, see Pivotal Network.

Add the following jobs to the broker instance group:

- name: service-metrics

 release: service-metrics

 properties:

 service_metrics:

 execution_interval_seconds: INTERVAL-BETWEEN-SUCCESSIVE-METRICS-COLLECTIONS

 origin: ORIGIN-TAG-FOR-METRICS

 monit_dependencies: [broker]

 snip....

 LOGGREGATOR-CONFIGURATION

 snip....

- name: service-metrics-adapter

 release: ODB-RELEASE

Where:

INTERVAL-BETWEEN-SUCCESSIVE-METRICS-COLLECTIONS is the interval in seconds between

successive metrics collections.

ORIGIN-TAG-FOR-METRICS is the origin tag for metrics.

LOGGREGATOR-CONFIGURATION is your Loggregator configuration. For example manifests, see

service-metrics-release in GitHub.

ODB-RELEASE is the on-demand broker release.

For an example of how the service metrics can be configured for an on-demand-broker

deployment, see the kafka-example-service-adapter-release manifest in GitHub.

Pivotal has tested this example configuration with Loggregator v58 and service-metrics v1.5.0.

For more information about service metrics, see Service Metrics for Pivotal Cloud Foundry.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 40

https://github.com/cloudfoundry/loggregator
https://network.pivotal.io/products/service-metrics-sdk/
https://github.com/pivotal-cf/service-metrics-release/blob/master/manifests
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter-release/blob/master/docs/example-manifest.yml#L106
http://docs.pivotal.io/service-metrics

(Optional) Obtain BOSH DNS Addresses for Binding Creation
and Deletion

You can configure ODB to retrieve BOSH DNS addresses for service instances. These addresses are

passed to the service adapter when you create or delete a binding.

Requirements

A service that has this feature enabled in the service adapter

For information for service authors about how to enable this feature for their on-demand

service, see Enable ODB to Obtain BOSH DNS Addresses.

BOSH Director v266.12 or v267.6 and later, available in Ops Manager v2.2.5 and later

Procedure

To enable ODB to obtain BOSH DNS addresses for binding creation and deletion, do the following:

1. In the manifest, configure the binding_with_dns property on plans that require DNS

addresses to create and delete bindings.

For more information about the properties to add, see Options for binding_with _dns below.

For example:

service_catalog:

 ...

 plans:

 ...

 - name: plan-requiring-dns-addresses

 ...

 binding_with_dns: # add this section

 - name: leader-address

 link_provider: example-link-1

 instance_group: leader-node

 - name: follower-address

 link_provider: example-link-2

 instance_group: follower-node

 properties:

 azs: [z1, z2]

 status: healthy

Each entry in binding_with_dns is converted to a BOSH DNS address that is passed to the

service adapter when you create a binding.

Options for binding_with_dns

The following table provides descriptions of the properties to add to the binding_with_dns section:

Property Description Mandatory/Optional

name An arbitrary identifier used to identify the address when

creating a binding

Mandatory

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 41

Property Description Mandatory/Optional

link_provider This is the exposed name of the link. You can find this in the

documentation for the service and under provides.name in

the release spec file.

You can override it in the deployment manifest by setting the

as property of the link.

Mandatory

instance_group This is the name of the instance group sharing the link. The

resultant DNS address resolves to IP addresses of this instance

group.

Mandatory

properties.azs This is a list of availability zone names. When this is provided,

the resultant DNS address resolves to IP addresses in these

zones.

Optional

properties.status This is a filter for link address status (healthy, unhealthy, all,

default). When this is provided, the resultant DNS address

resolves to IP addresses with this status.

Optional

About Broker Startup Checks

The ODB does the following startup checks:

It verifies that the CF and BOSH versions satisfy the minimum versions required. If your

service offering includes lifecycle errands, the minimum required version for BOSH is higher.

For more information, see Configure Your BOSH Director above.

If your system does not meet minimum requirements, you see an insufficient version error.

For example:

CF API error: Cloud Foundry API version is insufficient, ODB requires CF v238+.

It verifies that, for the service offering, no plan IDs have changed for plans that have existing

service instances. If there are instances, you see the following error:

You cannot change the plan_id of a plan that has existing service instances.

About Broker Shutdown

The broker tries to wait for any incomplete HTTPS requests to complete before shutting down. This

reduces the risk of leaving orphan deployments in the event that the BOSH Director does not

respond to the initial bosh deploy request.

You can determine how long the broker waits before being forced to shut down by using the

broker.shutdown_timeout property in the manifest. The default is 60 seconds. For more information,

see Write a Broker Manifest above.

Service Instance Lifecycle Errands

Note: This feature requires BOSH Director v261 or later.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 42

Service instance lifecycle errands allow additional short-lived jobs to run as part of service instance

deployment. A deployment is only considered successful if all lifecycle errands exit successfully.

The service adapter must offer the errands as part of the service instance deployment.

ODB supports the following lifecycle errands:

post_deploy runs after creating or updating a service instance. An example use case is

running a health check to ensure the service instance is functioning.

For more information about the workflow, see Create or Update Service Instance with Post-

Deploy Errands.

pre_delete runs before the deletion of a service instance. An example use case is cleaning

up data before a service shutdown. For more information about the workflow, see Delete a

Service Instance with Pre-Delete Errands.

Enable Service Instance Lifecycle Errands

Service instance lifecycle errands are configured on a per-plan basis. Lifecycle errands do not run if

you change a plan’s lifecycle errand configuration while an existing deployment is in progress.

To enable lifecycle errands, do the following steps.

1. Add each errand job in the following manifest places:

service_deployment

The plan’s lifecycle_errands configuration

The plan’s instance_groups

Below is an example manifest snippet that configures lifecycle errands for a plan:

service_deployment:

 releases:

 - name: SERVICE-RELEASE

 version: SERVICE-RELEASE-VERSION

 jobs:

 - SERVICE-RELEASE-JOB

 - POST-DEPLOY-ERRAND-JOB

 - PRE-DELETE-ERRAND-JOB

 - ANOTHER-POST-DEPLOY-ERRAND-JOB

service_catalog:

 plans:

 - name: CF-MARKETPLACE-PLAN-NAME

 lifecycle_errands:

 post_deploy:

 - name: POST-DEPLOY-ERRAND-JOB

 - name: ANOTHER-POST-DEPLOY-ERRAND-JOB

 disabled: true

 pre_delete:

 - name: PRE-DELETE-ERRAND-JOB

 instance_groups:

 - name: SERVICE-RELEASE-JOB

 ...

 - name: POST-DEPLOY-ERRAND-JOB

 lifecycle: errand

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 43

 vm_type: VM-TYPE

 instances: INSTANCE-COUNT

 networks: [NETWORK]

 azs: [AZ]

 - name: ANOTHER-POST-DEPLOY-ERRAND-JOB

 lifecycle: errand

 vm_type: VM-TYPE

 instances: INSTANCE-COUNT

 networks: [NETWORK]

 azs: [AZ]

 - name: PRE-DELETE-ERRAND-JOB

 lifecycle: errand

 vm_type: VM-TYPE

 instances: INSTANCE-COUNT

 networks: [NETWORK]

 azs: [AZ]

Where POST-DEPLOY-ERRAND-JOB is the errand job you want to add.

(Optional) Enable Co-located Errands

You can run both post-deploy and pre-delete errands as co-located errands. Co-located errands

run on an existing service instance group instead of a separate one. This avoids additional resource

allocation.

Like other lifecycle errands, co-located errands are deployed on a per-plan basis. Currently the ODB

supports colocating only the post-deploy or pre-delete errands.

For more information, see the Errands in the BOSH documentation.

To enable co-located errands for a plan, do the following steps.

1. Add each co-located errand job to the manifest as follows:

Add the errand in service_deployment.

Add the errand in the plan’s lifecycle_errands configuration.

Set the instances the errand should run on in the lifecycle_errands.

Below is an example manifest that includes a co-located post-deploy errand:

service_deployment:

 releases:

 - name: SERVICE-RELEASE

 version: SERVICE-RELEASE-VERSION

 jobs:

 - SERVICE-RELEASE-JOB

 - CO-LOCATED-POST-DEPLOY-ERRAND-JOB

service_catalog:

 plans:

 - name: CF-MARKETPLACE-PLAN-NAME

 lifecycle_errands:

 post_deploy:

 - name: CO-LOCATED-POST-DEPLOY-ERRAND-JOB

 instances:

Note: This feature requires BOSH Director v263 or later.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 44

https://bosh.io/docs/errands.html

 - SERVICE-RELEASE-JOB/0

 - name: NON-CO-LOCATED-POST-DEPLOY-ERRAND

 instance_groups:

 - name: NON-CO-LOCATED-POST-DEPLOY-ERRAND

 ...

 - name: SERVICE-RELEASE-JOB

 ...

Where CO-LOCATED-POST-DEPLOY-ERRAND-JOB is the co-located errand you want to run and

SERVICE-RELEASE-JOB/0 is the instances you want the errand to run on.

Create a pull request or raise an issue on the source for this page in GitHub

Broker and Service Management

This topic describes how to manage your broker and service plans.

Broker Management Errands

This section describes how to manage your broker with BOSH errands. You can run these errands

using the BOSH CLI.

Register Broker

The register-broker errand registers the broker with Cloud Foundry and enables access to plans in

the service catalog. Run this errand whenever the broker is re-deployed with new catalog metadata

to update the Cloud Foundry catalog.

Add the Errand to the Manifest

To add the register-broker errand to the manifest, do the following:

1. Add the following instance groups to your manifest:

- name: register-broker

 lifecycle: errand

 instances: 1

 jobs:

 - name: register-broker

 release: ODB-RELEASE-NAME

 properties:

 broker_name: BROKER-NAME

 broker_uri: BROKER-URI # optional, only required when a route has been

registered

 disable_ssl_cert_verification: TRUE|FALSE # defaults to false

 enable_service_access: TRUE|FALSE # defaults to true

 default_access_org: ORG-NAME # optional, defaults to system

 cf:

 api_url: CF-API-URL

 admin_username: CF-API-ADMIN-USERNAME

 admin_password: CF-API-ADMIN-PASSWORD

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [NETWORK]

 azs: [AZ]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 45

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/operating.html.md.erb

Optional. Add the cf_service_access property to the broker job:

- name: broker

 ...

 jobs:

 - name: broker

 ...

 properties:

 ...

 service_catalog:

 ...

 plans:

 - name: PLAN-NAME

 ...

 cf_service_access: ENABLE|DISABLE|MANUAL|ORG-RESTRICTED # optiona

l, defaults to enable

If the broker_uri property is set, you must register a route for your broker with Cloud

Foundry. See the Route Registration section for more details.

When enable_service_access: false is set, the errand does not change service

access for any plan.

When default_access_org is set, the errand enables access to that org for any plans

configured with cf_service_access: org-restricted.

(Optional) Use the cf_service_access property to enable access to individual plans.

Set the property on each plan in the broker job. The values accepted are the

following:

enable: the errand enables access for that plan. This is the default value.

disable: the errand disables access for that plan.

manual: the errand does not modify service access for this plan.

org-restricted: the errand enables access for this plan to the

default_access_org only.

Only Cloud Foundry admin users can see plans with disabled service access. Org

Managers and Space Managers cannot see these plans.

Run the Errand

To run the register-broker errand, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME run-errand register-broker

Where:

DEPLOYMENT-NAME is the name of your deployment.

For example:

$ bosh -d cf run-errand register-broker

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 46

Delete All Service Instances

The delete-all-service-instances errand deletes service instances of your broker’s service

offering in every org and space of Cloud Foundry. Because the errand uses the Cloud Controller

API, it only deletes instances the Cloud Controller knows about.

The errand does not delete orphan BOSH deployments, which do not correspond to a known

service instance. Orphan BOSH deployments should never happen, but in practice they do. Use the

orphan-deployments errand to identify them.

The errand does the following:

1. Unbinds all apps from the service instances.

2. Deletes all service instances sequentially. Each service instance deletion includes:

1. Running any pre-delete errands

2. Deleting the BOSH deployment of the service instance

3. Removing any ODB-managed secrets from CredHub

4. Checking for instance deletion failure, which results in the errand failing immediately

3. Determines whether any instances have been created while the errand was running. If new

instances are detected, the errand returns an error. In this case, Pivotal recommends

running the errand again.

Add the Errand to the Manifest

To add the delete-all-service-instances errand to the manifest, do the following:

1. Add the following instance group to your manifest:

- name: delete-all-service-instances

 lifecycle: errand

 instances: 1

 jobs:

 - name: delete-all-service-instances

 release: ODB-RELEASE-NAME

 properties:

 polling_interval_seconds: INTERVAL-IN-SECONDS # defaults to 60

 polling_initial_offset_seconds: OFFSET-IN-SECONDS # defaults to 5

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [{name: NETWORK}]

 azs: [AZ]

Where:

INTERVAL-IN-SECONDS: The interval in seconds before a service instance is deleted.

WARNING: Use extreme caution when running this errand. You should only use it

when you want to totally destroy all of the on-demand service instances from Cloud

Foundry.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 47

OFFSET-IN-SECONDS: The offset in seconds before polling Cloud Foundry to check if

the instance has been deleted.

Run the Errand

To run the delete-all-service-instances errand, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME run-errand \

delete-all-service-instances

Where:

DEPLOYMENT-NAME is the name of your deployment.

For example:

$ bosh -d cf run-errand \

delete-all-service-instances

Deregister Broker

The deregister-broker errand deregisters a broker from Cloud Foundry. It requires that there are

no existing service instances of your broker’s service offering. If you run this errand with service

instances remaining, it fails. Run the delete-all-service-instances-and-deregister-broker errand

to remove remaining service instances and deregistering the broker. See Delete All Service

Instances and Deregister Broker below.

Add the Errand to the Manifest

To add the deregister-broker errand to the manifest, do the following:

1. Add the following instance group to your manifest:

- name: deregister-broker

 lifecycle: errand

 instances: 1

 jobs:

 - name: deregister-broker

 release: ODB-RELEASE-NAME

 properties:

 broker_name: BROKER-NAME

Notes:

The polling_interval_seconds default is set to 60 seconds because

the Cloud Controller itself polls the on-demand broker every 60

seconds. Setting your polling interval to anything lower than 60

seconds does not speed up the errand.

The polling_initial_offset_seconds default is set to 5 seconds. In

systems with more load, consider increasing the polling offset.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 48

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [{name: SERVICE-NETWORK}]

 azs: [AZ]

Run the Errand

To run the deregister-broker errand, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME run-errand deregister-broker

Where:

DEPLOYMENT-NAME is the name of your deployment.

For example:

$ bosh -d cf run-errand deregister-broker

Delete All Service Instances and Deregister Broker

The delete-all-service-instances-and-deregister-broker errand performs a similar operation to

the errands delete-all-service-instances and deregister-broker.

This errand does the following:

1. Disables service access to the service offering for all orgs and spaces. The errand disables

service access to ensure that new instances cannot be provisioned during the lifetime of the

errand.

2. Unbinds all apps from the service instances.

3. Deletes all service instances sequentially. Each service instance deletion includes:

1. Running any pre-delete errands

2. Deleting the BOSH deployment of the service instance

3. Removing any ODB-managed secrets from CredHub

4. Checking for instance deletion failure, which results in the errand failing immediately

4. Determines whether any instances have been created while the errand was running. If new

instances are detected, the errand returns an error. In this case, Pivotal recommends

running the errand again.

5. Deregisters the broker from Cloud Foundry.

Add the Errand to the Manifest

WARNING: Use extreme caution when running this errand. You should only use it

when you want to destroy all of the on-demand service instances and deregister the

broker from Cloud Foundry.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 49

To add the delete-all-service-instances-and-deregister-broker errand to the manifest, do the

following:

1. Add the following instance group to your manifest:

- name: delete-all-service-instances-and-deregister-broker

 lifecycle: errand

 instances: 1

 jobs:

 - name: delete-all-service-instances-and-deregister-broker

 release: ODB-RELEASE-NAME

 properties:

 broker_name: BROKER-NAME

 polling_interval_seconds: INTERVAL-IN-SECONDS # defaults to 60

 polling_initial_offset_seconds: OFFSET-IN-SECONDS # defaults to 5

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [{name: NETWORK}]

 azs: [AZ]

Where:

INTERVAL-IN-SECONDS: The interval in seconds before a service instance is deleted.

OFFSET-IN-SECONDS: The offset in seconds before polling Cloud Foundry to check if

the instance has been deleted.

Run the Errand

To run the delete-all-service-instances-and-deregister-broker errand, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME run-errand \

delete-all-service-instances-and-deregister-broker

Where:

DEPLOYMENT-NAME is the name of your deployment.

For example:

$ bosh -d cf run-errand \

delete-all-service-instances-and-deregister-broker

Notes:

The polling_interval_seconds default is set to 60 seconds because

the Cloud Controller itself polls the on-demand broker every 60

seconds. Setting your polling interval to anything lower than 60

seconds does not speed up the errand.

The polling_initial_offset_seconds default is set to 5 seconds. In

systems with more load, consider increasing the polling offset.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 50

Orphan Deployments

The orphan-deployments errand lists service deployments that have no matching service instances in

Cloud Foundry and returns the list to the operator.

Add the Errand to the Manifest

To add the orphan-deployments errand to the manifest, do the following:

1. Add the following instance group to your manifest:

- name: orphan-deployments

 lifecycle: errand

 instances: 1

 jobs:

 - name: orphan-deployments

 release: ODB-RELEASE-NAME

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [{name: NETWORK}]

 azs: [AZ]

2. The orphan-deployments errand can be configured to use a Service Instances API. This

might be required if your broker is deployed without Cloud Foundry. For more information,

see Service Instances API.

Run the Errand

To run the orphan-deployments errand, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME run-errand orphan-deployments

Where:

DEPLOYMENT-NAME is the name of your deployment.

For example:

$ bosh -d cf run-errand orphan-deployments

2. See if orphan deployments are present. If orphan deployments are present, the errand

outputs a list that resembles the following:

Exit Code 10

Stdout [{"deployment_name":"service-instance_bebbcf14-14ef-4eae-8fbd-656d15

f2b4b5"}]

Stderr [orphan-deployments] 2019/04/03 14:56:02.489064 Orphan BOSH

Note: The deployment for a service instance is orphaned when the BOSH

deployment is still running but the service is no longer registered in Cloud Foundry.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 51

deployments detected with no corresponding service instance in the

platform. Before deleting any deployment it is recommended to verify the

service instance no longer exists in the platform and any data is safe to

delete

Delete an Orphan Deployment

To delete an orphan deployment, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME delete-deployment

Where:

DEPLOYMENT-NAME is the name of the orphaned deployment returned in the output of

the errand.

For example:

bosh -d service-instance_aoeu39fgn-8125-05h2-9023-9vbxf7676f3 \

delete-deployment

Recreate All Service Instances

The recreate-all-service-instances errand recreates all service instance VMs managed by a

broker. You might want use this errand when doing, for example, the following:

Rotating the Ops Manager root certificate authority (CA). For more information about rotating

CAs, see Rotate CAs and Leaf Certificates.

A full restore of the platform during disaster recovery or migration.

Add the Errand to the Manifest

To add the recreate-all-service-instances errand to the manifest, do the following:

WARNING: Deleting the BOSH deployment destroys the service instance. Any data

present is lost.

Note: ODB only supports the recreate-all-service-instances errand in the

following BOSH versions:

266.10.0–266.10.x

267.10.0–267.10.x

268.2.2–268.2.x

268.4.0 and later

Where x represents the latest version in that release line.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 52

https://docs.pivotal.io/pivotalcf/security/pcf-infrastructure/api-cert-rotation.html#rotate-ca

1. Add the following instance group to your manifest:

- name: recreate-all-service-instances

 lifecycle: errand

 instances: 1

 jobs:

 - name: recreate-all-service-instances

 release: ODB-RELEASE-NAME

 properties:

 polling_interval_seconds: POLLING-INTERVAL-IN-SECONDS # defaults to 60

 attempt_interval_seconds: ATTEMPT-INTERVAL-IN-SECONDS # defaults to 60

 attempt_limit: NUMBER-OF-ATTEMPTS # defaults to 5

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [{name: NETWORK}]

 azs: [AZ]

You can configure the behavior of this errand using following properties:

Property Description

polling_interval_seconds This controls the wait between checking the status of successfully

submitted BOSH recreate tasks.

attempt_interval_seconds When there are BOSH tasks in progress on the service instance to

recreate, the instance is put in a retry queue. This property controls

the pause between retries.

attempt_limit The number of times to check whether each instance is available to

be recreated. After an instance reaches the limit, the errand

terminates.

Run the Errand

To run the recreate-all-service-instances errand, do the following:

1. Run the command:

bosh -d DEPLOYMENT-NAME run-errand recreate-all-service-instances

Where:

DEPLOYMENT-NAME is the name of your deployment.

For example:

$ bosh -d cf run-errand recreate-all-service-instances

Service Management

This section describes how to update, disable, and remove service plans. For how to upgrade the

broker and service plans, see Upgrading.

Update the Broker

To modify the broker, do the following:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 53

1. Make any necessary changes to the core broker configuration in the broker manifest. For

more information about the core broker configuration, see Configure Your Broker.

2. Deploy the broker.

Update the Service Offering

To modify the service offering, do the following:

1. Change properties in the service_catalog of the broker manifest. For example, update the

service metadata.

2. Change properties in the service_deployment of the broker manifest. For example, update

the jobs used from a service release.

3. Deploy the broker.

4. Run the register-broker errand to update the Marketplace. For how to run the errand, see

Register Broker above.

5. Run the upgrade-all-service-instances errand to apply updated plans to existing service

instances. For how to run the errand, see Upgrade All Service Instances.

Disable Service Plans

To disable access to a service plan, do the following:

1. Run the following command:

cf disable-service-access SERVICE-NAME-FROM-CATALOG -p PLAN-NAME

Where:

SERVICE-NAME-FROM-CATALOG is the name of the service from the service catalog.

PLAN-NAME is the name of the plan you want to disable.

For example:

cf disable-service-access my-service -p small

Remove Service Plans

You can remove service plans if there are no instances using the plan.

To remove a plan, do the following:

1. Remove the service plan from the broker manifest.

WARNING: When Cloud Foundry registers the broker, do not change service_id or

plan_id for any plan.

Note: When a plan has the property cf_service_access: disable in the

service_catalog the Register Broker errand disables service access to that plan.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 54

2. Run the register-broker errand to update the Marketplace. For more information about this

errand, see Register Broker above.

Create a pull request or raise an issue on the source for this page in GitHub

Upgrading

This topic provides information about upgrading the on-demand broker, service offering, and service

instance to Pivotal Cloud Foundry (PCF) Ops Manager operators and BOSH operators.

For product versions and upgrade paths, see Upgrade Planner.

Update Add-Ons to Run with Xenial Stemcell

If you are using a Xenial stemcell for your deployment and you are using any of the following BOSH

add-ons, you must update the add-on definition to include the Xenial stemcell before you deploy

your service:

File Integrity Monitoring for PCF Add-on. For update instructions, see Updating FIM Add-on

for PCF to Run with Xenial Stemcells.

ClamAV for PCF Add-on. For update instructions, see Updating ClamAV Add-on for PCF to

Run with Xenial Stemcells.

IPsec for PCF Add-on. For update instructions, see Updating IPsec Add-on for PCF to Run

with Xenial Stemcells.

Upgrade the Broker

To upgrade the broker, do the following:

1. Download a new version of the on-demand service broker BOSH release from Pivotal

Network.

2. Upload the release to the BOSH Director by running:

bosh -e BOSH-DIRECTOR-NAME upload-release RELEASE-FILE-NAME.tgz

3. Make any necessary changes to the core broker configuration in the broker manifest. For

more information about the core broker configuration, see Configure Your Broker.

4. Deploy the broker by running:

bosh -e BOSH-DIRECTOR-NAME -d DEPLOYMENT-NAME deploy DEPLOYMENT-MANIFEST.yml

Upgrade the Service Offering

The service offering is made of the following:

WARNING: If any service instances remain on a plan that has been removed from

the catalog, the On-Demand Service Broker fails to start.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 55

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/management.html.md.erb
https://upgrade-planner.pivotal.io/
https://docs.pivotal.io/addon-fim/updating-for-xenial.html
https://docs.pivotal.io/addon-antivirus/1-4/updating-for-xenial.html
https://docs.pivotal.io/addon-ipsec/updating-for-xenial.html
https://network.pivotal.io/products/on-demand-services-sdk/

Service catalog

Service adapter BOSH release

Service BOSH releases

Service stemcells

To upgrade a service offering, do the following:

1. Make any changes to the service catalog in the broker manifest. For more information about

the service catalog, see the Starter Snippet.

2. Upload any new service BOSH releases to the BOSH Director by running:

bosh -e BOSH-DIRECTOR-NAME upload-release RELEASE-FILE-NAME.tgz

3. Make any changes to service releases in the broker manifest.

4. Upload any new service stemcells to the BOSH Director.

bosh -e BOSH-DIRECTOR-NAME upload-stemcell STEMCELL-LOCATION

Where STEMCELL-LOCATION is the path or URL of the stemcell.

5. Make any changes to the service stemcells in the service_deployment broker manifest.

6. Deploy the broker by running:

bosh -e BOSH-DIRECTOR-NAME -d DEPLOYMENT-NAME deploy DEPLOYMENT-MANIFEST.yml

New service instances are created using the latest service offering. To upgrade all existing instances,

you can run the upgrade-all-service-instances errand. See Upgrade All Service Instances below.

Upgrade All Service Instances

To upgrade all existing service instances after the service offering has been updated or upgraded,

do the following:

1. Add the following instance group to your broker manifest:

- name: upgrade-all-service-instances

 lifecycle: errand

 instances: 1

 jobs:

 - name: upgrade-all-service-instances

 release: ODB-RELEASE-NAME

 properties:

 canaries: NUMBER-OF-CANARIES # defaults to 0

 canary_selection_params:

 cf_org: ORG # specifying service instances to upgrade as canaries

Warning: Until a service instance has been upgraded, cf update-service operations

are blocked and an error is shown. For more information, see Cannot Update a

Service Instance.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 56

 cf_space: SPACE # specifying service instances to upgrade as canaries

 max_in_flight: NUMBER-OF-PARALLEL-UPGRADES # defaults to 1

 polling_interval_seconds: POLLING-INTERVAL-IN-SECONDS # defaults to 60

 attempt_interval_seconds: ATTEMPT-INTERVAL-IN-SECONDS # defaults to 60

 attempt_limit: NUMBER-OF-ATTEMPTS # defaults to 5

 vm_type: VM-TYPE

 stemcell: STEMCELL

 networks: [{name: NETWORK}]

 azs: [AZ]

The errand properties allow fine-tuning of the behavior of the upgrade job:

Property Description

max_in_flight Sets the limit for the number of upgrades occurring concurrently. The number

of simultaneous upgrades is limited by the number of available BOSH workers.

See workers in the Cloud Foundry BOSH documentation. Set the

max_in_flight value to lower than this limit to avoid over-saturating BOSH.

canaries Sets the number of canary instances to upgrade first. If all canary instances

upgrade, the remaining instances are upgraded. If a canary instance fails to

upgrade or the attempt_limit is reached, the upgrade fails. No further

instances are upgraded, and the errand exits with an error; however, all in-flight

upgrades can complete. Canary instances are upgraded in parallel, respecting

the max_in_flight value.

Note: Canary instances are selected in a non-deterministic way using all

available instances. If a selected instance is busy or was deleted, another

instance is selected. If all instances are busy, the errand retries, respecting the

attempt_limit and attempt_interval_seconds.

(Optional)

canary_selection_param

s

Use this to specify an org and a space that you want canaries to be sourced from

during an upgrade. If an org is specified, then a space must also be provided

and vice versa. If canaries is specified, the broker upgrades that number of

instances present in the org and space. If fewer instances are present than

specified, the broker upgrades as many instances as possible in that org and

space.

Note: If canary_selection_params are specified and no instances exist in that

org or space, no canaries are chosen. If other instances exist, the broker fails,

alerting you to chose different selection criteria. If canary_selection_params is

specified but empty, it is treated as if none was provided.

polling_interval_secon

ds

This controls the wait between checking the status of the successfully submitted

BOSH upgrade job. If service instances have in-progress BOSH operations,

upgrade requests are rejected and the errand queues those instances for a retry:

attempt_interval_seconds determines the time to wait between

retrying upgrades.

attempt_limit sets the number of times these instances are retried for

upgrade.

2. Deploy the broker manifest by running:

bosh -e BOSH-DIRECTOR-NAME -d DEPLOYMENT-NAME deploy DEPLOYMENT-MANIFEST.yml

3. Run the errand with the following command:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 57

https://bosh.io/jobs/director?source=github.com/cloudfoundry/bosh#p=director.workers

bosh -d DEPLOYMENT-NAME run-errand upgrade-all-service-instances

Service Instances API

The service instances API is used with an on-demand service broker without a connection to Cloud

Foundry. It consists of an HTTP endpoint that the orphan-deployments and upgrade-all-service-

instances errands can use to retrieve the list of instances known to the platform.

You can configure the API endpoint in the broker job.

General Request and Response

The API endpoint must handle the request below with the appropriate response.

Example Request:

curl -u BASIC-AUTH-USERNAME:BASIC-AUTH-PASSWORD \

-X GET \

http://SERVICE-INSTANCES-API-URL

Example Response:

HTTP/1.1 200 OK

Content-Type: application/json

[

 {"service_instance_id": GUID-1, "plan_id": "dedicated"},

 {"service_instance_id": GUID-2, "plan_id": "dedicated"},

 {"service_instance_id": GUID-3, "plan_id": "dedicated"},

 [...]

]

Note: The upgrade-all-service-instances errand triggers service instance lifecycle

errands configured for the broker. For more information, see Service Instance

Lifecycle Errands.

WARNING: The Service Instances API is an advanced feature. Configuring a Service

Instances API is not required, unless you are operating in very specific

circumstances, such as running an on-demand service broker with no connection to

Cloud Foundry.

You are required to provide an endpoint which satisfies the API requirements

detailed below and also guarantees that all service instances which need to be

upgraded are part of that response. If you configure an endpoint which does not

satisfy these criteria, some service instances may become unusable.

Note: The Service Instances API definition is at v0.1.0 and should be considered

subject to change.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 58

The Services Instances API returns other status codes such as 3xx, 4xx, or 5xx for non-successful

scenarios.

The plan IDs listed in the response must correspond to the plan IDs in each plan’s definition in the

ODB deployment manifest, not any other ID that may be assigned by the service controller.

Filtered Request and Response

The API endpoint must be able to provide a filtered response based on query parameters passed in

the request.

The canary_selection_params property defines how to filter the canary instances from of a set of

instances. If the on-demand service broker is configured to use canary_selection_params, The

Service Instances API must respond with a filtered list of service instances when the

canary_selection_params are passed as query parameters.

For example, if the canary_selection_params are configured as following:

canary_selection_params:

 cf_org: staging-org

 cf_space: staging-space

Then, the Service Instances API returns a filtered list of instances when cf_org and cf_space are

passed as query parameters in the request.

Example Request:

curl -u BASIC-AUTH-USERNAME:BASIC-AUTH-PASSWORD \

-X GET \

http://SERVICE-INSTANCES-API-URL?cf_org=staging-org&cf_space=staging-space

Example Response:

HTTP/1.1 200 OK

Content-Type: application/json

[

 {"service_instance_id": GUID-1, "plan_id": "dedicated"}

]

The instances in the filtered list are used as canary instances and upgraded before the rest. The

number of canaries taken from this list can be configured by specifying the canaries property in the

on-demand service broker manifest.

Configure the Broker to Use the Service Instances API

To configure the broker to use a Service Instance API provider for errands, update the broker’s

configuration in its deployment manifest to include the service_instances_api section:

- name: upgrade-all-service-instances

 ...

 jobs:

 - name: broker

 ...

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 59

 properties:

 ...

 # Add the following section:

 service_instances_api:

 # required:

 url: SERVICE-INSTANCES-API-URL

 # optional:

 root_ca_cert: ROOT-CA-CERT

 # optional - defaults to false:

 disable_ssl_cert_verification: TRUE|FALSE

 authentication:

 # required - currently the only supported authentication type:

 basic:

 username: USERNAME

 password: PASSWORD

 ...

Where SERVICE-INSTANCES-API-URL is the URL of the Service Instances API provider.

Create a pull request or raise an issue on the source for this page in GitHub

Security

This topic provides information about the API endpoints that the on-demand broker (ODB) accesses,

and the minimum UAA authorities and corresponding permissions required for the ODB to operate

correctly.

BOSH API Endpoints

ODB accesses the following BOSH API endpoints during the service instance lifecycle:

API endpoint Examples of usage in ODB

POST /deployments Create or update a service instance

POST /deployments/DEPLOYMENT-

NAME/errands/ERRAND-NAME/runs
Register or de-register the on-demand broker with the Cloud Controller

Run smoke tests

GET /deployments/DEPLOYMENT-

NAME

Passed as argument to the service adapter for generate-manifest and create-

binding

GET /deployments/DEPLOYMENT-

NAME/vms?format=full

Passed as argument to the service adapter for create-binding

DELETE

/deployments/DEPLOYMENT-NAME

Delete a service instance

GET /tasks/TASK-ID/output?

type=result
Check a task was successful (i.e. the exit code was zero)

Get list of VMs

GET /tasks/TASK-ID Poll the BOSH Director until a task finishes, e.g. create, update, or delete a

deployment

GET /tasks?

deployment=DEPLOYMENT-NAME

Determine the last operation status and message for a service instance, e.g.

‘create in progress’. Used when creating, updating, deleting service instances.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 60

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/upgrades.html.md.erb

For information about BOSH API endpoints, see Director HTTP API in the BOSH documentation.

BOSH UAA Permissions

The actions that ODB needs to be able to perform are:

Modify:

bosh deploy

bosh delete-deployment

bosh run-errand

Read only:

bosh deployments

bosh vms

bosh tasks

The minimum UAA authority required by the BOSH Director to perform these actions is

bosh.teams.TEAM-NAME.admin.

For information on how to set up and use BOSH teams, see Using BOSH Teams in the BOSH

documentation.

Unused BOSH permissions

The bosh.teams.TEAM-NAME.admin authority also allows the following actions, which currently are not

used by ODB:

bosh start/stop/recreate

bosh cck

bosh logs

bosh releases

bosh stemcells

PCF IPsec Add-On

Pivotal tested ODB with the IPsec Add-On for PCF and it appears to work. The tests excluded the

BOSH Director itself from IPsec ranges because the BOSH add-on cannot be applied to BOSH itself.

For how to install the IPsec Add-On for PCF, see Installing the IPsec Add-on for PCF.

CF API Endpoints

ODB accesses the following CF API endpoints during the service instance lifecycle:

Note: A team admin cannot view or update the Director’s cloud config, nor upload

releases or stemcells.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 61

https://bosh.io/docs/director-api-v1.html
https://bosh.io/docs/director-bosh-teams/
https://docs.pivotal.io/addon-ipsec/installing.html

API endpoint Examples of usage in ODB

GET /v2/info Identify CF API version to determine feature compatibility &

availability

GET /v2/services List all services to find our own service based on defined unique ID

rather than GUID

GET /v2/services/SERVICE-

GUID/service_plans

Find registered service plans for ODB service e.g. for calculating

plan quota usage

GET /v2/service_brokers Find service broker metadata by name during broker

deregistration

DELETE /v2/service_brokers/SERVICE-

BROKER-GUID

Delete ODB service broker during broker deregister errand

GET /v2/service_plans/SERVICE-PLAN-GUID Identify service plan when upgrading an instance to trigger any

lifecycle errands

PUT /v2/service_plans/SERVICE-PLAN-GUID Disable service access prior to service deletion

GET /v2/service_plans/SERVICE-PLAN-

GUID/service_instances

Find service instances for given plan when determining global

quota and running startup checks

GET /v2/service_instances/SERVICE-

INSTANCE-GUID

Determine service instance state to check an operation is not in

progress before triggering an upgrade

DELETE /v2/service_instances/SERVICE-

INSTANCE-GUID

Deleting a service instance during delete all service instances

errand

GET /v2/service_instances/SERVICE-

INSTANCE-GUID/service_bindings

Finding bindings for given service instance during delete all

service instances errand

GET /v2/service_instances/SERVICE-

INSTANCE-GUID/service_keys

Finding service keys for given service instance during delete all

service instances errand

DELETE /v2/apps/APP-

GUID/service_bindings/SERVICE-BINDING-

GUID

Unbinding a service instance during delete all service instances

errand

DELETE /v2/service_keys/SERVICE-KEY-GUID Deleting a service key during delete all service instances errand

For information about Cloud Foundry API endpoints, see the Cloud Foundry API documentation.

Cloud Foundry UAA Permissions

The actions that ODB needs to be able to perform are:

Modify:

cf enable-service-access

cf disable-service-access

cf create-service-broker

cf delete-service-broker

cf delete-service

cf unbind-service

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 62

https://apidocs.cloudfoundry.org/

cf delete-service-key

Read only:

cf api

cf marketplace

cf service-brokers

cf services

cf service

cf app

cf service-keys

The minimum UAA authority required by Cloud Foundry to perform these actions is

cloud_controller.admin. Admin is required as many operations are required to perform against all

of the on-demand service instances across a foundation, regardless of org and space.

Unused Cloud Foundry permissions

The Cloud Controller admin authority also allows the following actions, which currently are not used

by ODB:

cf push

cf delete

cf start

cf restart

cf restage

cf stop

cf create-service-key

cf create-user-provided-service

cf update-user-provided-service

cf run-task

cf logs

cf ssh

cf scale

cf events

Route and domain management

Space management

Org management

CLI plugin management

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 63

Create a pull request or raise an issue on the source for this page in GitHub

Backup and Restore Considerations

This topic provides information about which components of an on-demand service have state and

can be backed up.

On-Demand Service Broker

The on-demand service broker is stateless, so there is nothing to backup or restore.

On-Demand Service Instances

Service instances created by the on-demand service broker may have state that needs to be backed

up, for example, data services.

It is the responsibility of the service author to provide documentation for the operator to backup and

restore on-demand service instances. For a list of deliverables provided by the service author, see

Service Author Deliverables.

Disaster Recovery

The on-demand service broker fetches the state of service instances and their deployments from the

Cloud Foundry API and BOSH Director respectively. Therefore, to recover on-demand service

instances in a disaster both the Cloud Controller database and BOSH Director database must be

restored from a backup.

For how to backup and restore Pivotal Cloud Foundry (PCF) and BOSH, see Backing Up and

Restoring Pivotal Cloud Foundry.

Create a pull request or raise an issue on the source for this page in GitHub

Data on Deployment Performance and Sizing

This topic contains test data on on-demand service instances managed in a Pivotal Cloud Foundry

(PCF) environment.

Pivotal tested the on-demand broker (ODB) with 500 on-demand service instances using the

example Kafka on-demand tile. We recorded how long it took to create, upgrade all, and delete all,

with 50, 101, and 500 dedicated service instances. Setup and results are shown below.

Set up

Environment

IaaS Google Cloud Platform

PCF Operations Manager v1.9.7

PCF Elastic Runtime v1.9.13

Example Kafka On-Demand Tile v0.15.1

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 64

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/security.html.md.erb
http://docs.pivotal.io/pivotalcf/customizing/backup-restore/
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/backup.html.md.erb
https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile

BOSH Director Configuration

Workers 3

Dedicated status worker enabled

On-demand plan configuration

Zookeeper VM type small (1 CPU, 2GB RAM, 8GB Disk)

Kafka VM type small (1 CPU, 2GB RAM, 8GB Disk)

Test

1. Upload the example Kafka on-demand tile.

2. Configure the on-demand plan.

3. Apply changes to install the on-demand service, ensuring that Register On-Demand Broker

is checked.

4. Create N dedicated service instances using the cf CLI.

5. Make a change to the plan configuration.

6. Apply pending changes, ensuring that Upgrade All On-Demand Service Instances is

checked.

7. Delete the tile and apply changes, ensuring that Delete All On-Demand Service Instances is

checked.

Results

Durations presented in HH:MM:SS format.

Create 50 101 500

average create 00:01:02 00:01:03 00:01:02

total 00:51:28 01:45:40 08:33:37

Upgrade All 50 101 500

average upgarde 00:01:10 00:01:05 00:01:00

total 00:58:37 01:49:42 08:21:08

Delete All 50 101 500

average delete 00:05:09 00:05:04 0:05:00

total 04:17:38 08:31:10 41:38:26

These durations may vary for a number of reasons, for example:

Number of BOSH director workers

IaaS performance

Network latency

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 65

Service instance BOSH release(s)

Service instance deployment configuration

VM type of service instance

Activity of Elastic Runtime

Activity of BOSH Director

Notes

For create operations, the on-demand broker creates a BOSH deployment for each service instance.

By default, the BOSH Director in Operations Manager v1.9 has three workers with a dedicated status

worker, so only two workers are available to process deployment tasks. Therefore, only two service

instances can be created at the same time.

For upgrade all and delete all operations, Operations Manager runs a BOSH errand. This errand task

occupies a BOSH Director worker, leaving one worker available to upgrade, or delete deployments.

Create a pull request or raise an issue on the source for this page in GitHub

Troubleshooting On-Demand Services

Troubleshooting for BOSH Operators

This topic provides troubleshooting information for BOSH operators.

For more troubleshooting information, see Troubleshooting for Ops Manager Operators.

Administer Service Instances

Pivotal recommends that you use the BOSH CLI for administering the deployments created by the

on-demand broker (ODB); for example for checking VMs, ssh, viewing logs. For more information

on installing the BOSH CLI, see Install.

Pivotal discourages using the BOSH CLI to update or delete ODB service deployments as it causes

cf update-service and cf delete-service operations to fail while the BOSH operation is in

progress.

In addition, any changes you make to the deployment are reverted by cf update-service or by

running the upgrade-all-service-instances errand. All updates to the service instances must be

done using the upgrade-all-service-instances errand. For more information, see Upgrade All

Service Instances.

Logs and Metrics

Logs

The ODB writes logs to a log file and to syslog.

The broker log contains error messages and non-zero exit codes returned by the service adapter, as

well as the stdout and stderr streams of the adapter.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 66

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/faq.html.md.erb
https://bosh.io/docs/cli-v2/#install

The log file is located at /var/vcap/sys/log/broker/broker.log. In syslog, logging is written with the

tag on-demand-service-broker, under the facility user, with priority info.

If you want to forward syslog to a syslog aggregator, see Syslog Forwarding for Errand Logs below.

The ODB generates a UUID for each request and prefixes all the logs for that request, for example:

[on-demand-service-broker] [4d63080d-e038-45a3-85f9-93910f6b40b1] 2016/09/05 16:43:26.

123456 a valid UAA token was found in cache, will not obtain a new one

All ODB logs have a UTC timestamp.

Syslog Forwarding for Errand Logs

If you want to forward your errand logs to a syslog aggregator, Pivotal recommends colocating

syslog release with the errand job. For information, see the syslog release repository in GitHub.

Example manifest:

- name: delete-all-service-instances-and-deregister-broker

 lifecycle: errand

 ...

 jobs:

 - name: delete-all-service-instances-and-deregister-broker

 release: on-demand-service-broker

 ...

 - name: syslog_forwarder

 release: syslog

 properties:

 syslog:

 address: ((syslog.address))

 port: ((syslog.port))

 transport: udp

 forward_files: false

 custom_rule: |

 module(load="imfile" mode="polling")

 input(type="imfile"

 File="/var/vcap/sys/log/delete-all-service-instances-and-deregister-br

oker/errand.stdout.log"

 Tag="delete-all-service-instances-and-deregister-broker")

 input(type="imfile"

 File="/var/vcap/sys/log/delete-all-service-instances-and-deregister-br

oker/errand.stderr.log"

 Tag="delete-all-service-instances-and-deregister-broker")

Metrics

Note: The ODB’s HTTP server and start up logs are not prefixed with a request ID.

Note: The errand is configured to redirect stdout and stderr to

/var/vcap/sys/log/ERRAND_NAME/errand.stdout.log and

/var/vcap/sys/log/ERRAND_NAME/errand.stderr.log. When configuring your

errand, be careful to match the actual log file paths in the custom_rule section.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 67

https://github.com/cloudfoundry/syslog-release

If you have configured broker metrics, the broker emits metrics to the Loggregator Firehose. For

how to do the configuration, see Configure Service Metrics.

You can consume these metrics by using the CF CLI Firehose plugin. See the firehose-plugin

repository in GitHub.

Service-level Metrics

The broker emits a metric indicating the total number of instances across all plans. In addition, if

there is a global quota set for the service, a metric showing how much of that quota is remaining is

emitted. Service-level metrics use the format shown below.

origin:"BROKER-DEPLOYMENT-NAME" eventType:ValueMetric timestamp:TIMESTAMP deployment:"

BROKER-DEPLOYMENT-NAME" job:"broker" index:"BOSH-JOB-INDEX" ip:"IP" valueMetric:<name:

"/on-demand-broker/SERVICE-OFFERING-NAME/total_instances" value:INSTANCE-COUNT unit:"c

ount" >

origin:"BROKER-DEPLOYMENT-NAME" eventType:ValueMetric timestamp:TIMESTAMP deployment:"

BROKER-DEPLOYMENT-NAME" job:"broker" index:"BOSH-JOB-INDEX>" ip:"IP" valueMetric:<name

:"/on-demand-broker/SERVICE-OFFERING-NAME/quota_remaining" value:QUOTA-REMAINING unit:

"count" >

Plan-level Metrics

For each service plan, the metrics report the total number of instances for that plan. If there is a

quota set for the plan, the metrics also report how much of that quota is remaining. Plan-level

metrics are emitted in the following format.

origin:"BROKER-DEPLOYMENT-NAME" eventType:ValueMetric timestamp:TIMESTAMP deployment:"

BROKER-DEPLOYMENT-NAME" job:"broker" index:"BOSH-JOB-INDEX" ip:"IP" valueMetric:<name:

"/on-demand-broker/SERVICE-OFFERING-NAME/PLAN-NAME/total_instances" value:INSTANCE-COU

NT unit:"count" >

origin:"BROKER-DEPLOYMENT-NAME" eventType:ValueMetric timestamp:TIMESTAMP deployment:"

BROKER-DEPLOYMENT-NAME" job:"broker" index:"BOSH-JOB-INDEX" ip:"IP" valueMetric:<name:

"/on-demand-broker/SERVICE-OFFERING-NAME/PLAN-NAME/quota_remaining" value:QUOTA-REMAIN

ING unit:"count" >

If quota_remaining is 0 then you need to increase your plan quota in the BOSH manifest.

Secure Binding Credentials

If you have configured secure binding credentials, the broker stores credentials on runtime

CredHub. For more information, see Enable Secure Binding.

You can see and consume these credentials using the CredHub CLI. For more information, see the

credHub-cli repository in GitHub.

Note: The broker must be registered with a Cloud Foundry in order for metrics to be

successfully emitted. For how to register the broker, see Register Broker.

Note: Usually, CredHub is not accessible from outside the Cloud Foundry network.

Use the CredHub CLI from within the internal network, or connect using an

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 68

https://github.com/cloudfoundry/firehose-plugin
https://github.com/cloudfoundry-incubator/credhub-cli

In failure scenarios, such as when CredHub is down or when the CredHub client credentials are

wrong, the broker logs to the file at /var/vcap/sys/log/broker/broker.log where the root cause is

generally given. For more information, see Logs above.

Common Causes of Errors

The following are some reasons that you might get an error:

CredHub is down / wrong CredHub URL / cannot access URL

Wrong credentials to access CredHub

Problem with CA certs for CredHub or UAA

Binding credentials in an exotic format (the broker only accepts string and string map

credentials)

Identify Deployments in BOSH

There is a one-to-one mapping between the service instance ID from Cloud Foundry and the

deployment name in BOSH. The convention is that the BOSH deployment name is the service

instance ID prefixed by service-instance_. To identify the BOSH deployment for a service instance

you can do the following:

1. Determine the GUID of the service. Run the following command:

cf service --guid SERVICE-NAME

Where SERVICE-NAME is the name of your service.

For example:

$ cf service --guid my-service

Record the GUID in the output of the command.

2. Identify your deployment. Run bosh deployments and look for service-instance_GUID.

3. (Optional) Get current tasks for your deployment. Run the following command:

bosh tasks -d service-instance_GUID

Where GUID is the GUID for your service instance, which you retrieved above.

For example:

$ bosh tasks -d \

service-instance_30d4a67f-d220-4d06-9989-58a976b86b35

Identify Tasks in BOSH

appropriate tunnel.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 69

Most operations on the on demand service broker API are implemented by launching BOSH tasks. If

an operation fails, it may be useful to investigate the corresponding BOSH task. For more information

about BOSH tasks, see Tasks in the BOSH documentation.

To identify tasks in BOSH, do the following:

1. Determine the ID of the service for which an operation failed. Run the following command:

cf service --guid SERVICE-NAME

Where SERVICE-NAME is the name of your service.

For example:

$ cf service --guid my-service

Record the GUID in the output of the command.

2. SSH on to the service broker VM. Run the following command:

bosh -d BROKER-DEPLOYMENT-NAME ssh

Where BROKER-DEPLOYMENT-NAME is the name of your broker deployment.

For example:

$ bosh -d my-broker ssh

3. In the broker log, look for lines relating to the service, identified by the service ID. Lines

recording the starting and finishing of BOSH tasks also have the BOSH task ID:

on-demand-service-broker: [on-demand-service-broker] [4d63080d-e038-45a3-85f9-9

3910f6b40b1] 2016/04/13 09:01:50.793965 Bosh task id for Create instance 30d4a6

7f-d220-4d06-9989-58a976b86b35 was 11470

on-demand-service-broker: [on-demand-service-broker] [4d63080d-e038-45a3-85f9-9

3910f6b40b1] 2016/04/13 09:06:55.793976 task 11470 success creating deployment

for instance 30d4a67f-d220-4d06-9989-58a976b86b35: create deployment

on-demand-service-broker: [on-demand-service-broker] [8bf5c9f6-7acd-4ab4-9214-3

63a6f6bef79] 2016/04/13 09:16:20.795035 Bosh task id for Update instance 30d4a6

7f-d220-4d06-9989-58a976b86b35 was 11473

on-demand-service-broker: [on-demand-service-broker] [8bf5c9f6-7acd-4ab4-9214-3

63a6f6bef79] 2016/04/13 09:17:20.795181 task 11473 success updating deployment

for instance 30d4a67f-d220-4d06-9989-58a976b86b35: create deployment

on-demand-service-broker: [on-demand-service-broker] [af6fab15-c95e-438b-aa6b-b

c4329d4154f] 2016/04/13 09:17:52.803824 Bosh task id for Delete instance 30d4a6

7f-d220-4d06-9989-58a976b86b35 was 11474

on-demand-service-broker: [on-demand-service-broker] [af6fab15-c95e-438b-aa6b-b

c4329d4154f] 2016/04/13 09:19:56.803938 task 11474 success deleting deployment

for instance 30d4a67f-d220-4d06-9989-58a976b86b35: delete deployment service-in

stance_30d4a67f-d220-4d06-9989-58a976b86b35

4. Use the task ID to obtain the task log from BOSH, adding flags such as --debug or --cpi as

necessary. For example:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 70

https://bosh.io/docs/cli-v2/#task-mgmt

$ bosh task 11470

Identify Issues When Connecting to BOSH or UAA

The ODB interacts with the BOSH Director to provision and deprovision instances, and is

authenticated through the Director’s UAA. For an example configuration, see kafka-example-

service-adapter-release in GitHub.

If BOSH or UAA are configured incorrectly in the broker’s manifest, then error messages are

displayed in the broker’s log. These messages indicate whether the issue is caused by an

unreachable destination or bad credentials.

For example:

on-demand-service-broker: [on-demand-service-broker]

[575afbc1-b541-481d-9cde-b3d3e67e87bf] 2016/05/18 15:56:40.100579

Error authenticating (401): {"error":"unauthorized","error_description":

"Bad credentials"}, ensure that properties.BROKER-JOB.bosh.authentication.uaa is

correct and try again.

List Service Instances

ODB persists the list of ODB-deployed service instances and provides an endpoint to retrieve them.

This endpoint requires basic authentication.

During disaster recovery, you can use this endpoint to assess the situation.

Request:

GET http://USERNAME:PASSWORD@ON-DEMAND-BROKER-IP:8080/mgmt/service_instances

Response:

200 OK

Example JSON body:

 [

 {

 "instance_id": "4d19462c-33cf-11e6-91cc-685b3585cc4e",

 "plan_id": "60476620-33cf-11e6-a841-685b3585cc4e",

 "bosh_deployment_name": "service-instance_4d19462c-33cf-11e6-91cc-685b3585cc4e"

 },

 {

 "instance_id": "57014734-33cf-11e6-ba8d-685b3585cc4e",

 "plan_id": "60476620-33cf-11e6-a841-685b3585cc4e",

 "bosh_deployment_name": "service-instance_57014734-33cf-11e6-ba8d-685b3585cc4e"

 }

]

List Orphan Deployments

ODB provides an endpoint that compares the list of service instance deployments against the service

instances registered in Cloud Foundry. When called, the endpoint returns a list of orphaned

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 71

https://github.com/pivotal-cf-experimental/kafka-example-service-adapter-release/blob/778fa99ee08af2193fd8381279d73fcfb94cf662/docs/example-manifest.yml#L37-L47

deployments, if any are present.

This endpoint is exercised in the orphan-deployments errand. For information about this errand, see

Orphan Deployments. To call this endpoint without running the errand, use curl.

Request:

GET http://USERNAME:PASSWORD@ON-DEMAND-BROKER-IP:8080/mgmt/orphan_deployments

Response:

200 OK

Example JSON body:

[

 {

 "deployment_name": "service-instance_d482abd3-8051-48d2-8067-9ccdf02327f3"

 }

]

Knowledge Base (Community)

Find the answer to your question and browse product discussions and solutions by searching the

VMware Tanzu Knowledge Base.

File a Support Ticket

You can file a ticket with Support. Be sure to provide the error message from cf service YOUR-

SERVICE-INSTANCE.

To expedite troubleshooting, provide your service broker logs and your service instance logs. If your

cf service YOUR-SERVICE-INSTANCE output includes a task-id, provide the BOSH task output.

Create a pull request or raise an issue on the source for this page in GitHub

Troubleshooting for Ops Manager Operators

This topic provides information for operators about troubleshooting on-demand services.

How to Retrieve a Service Instance GUID

You need the GUID of your service instance to run some BOSH commands. To retrieve the GUID,

run the command:

cf service SERVICE-INSTANCE-NAME --guid

If you do not know the name of the service instance, run cf services to see a listing of all service

instances in the space. The service instances are listed in the name column.

Troubleshoot Errors

This section provides information about how to troubleshoot specific errors or error messages.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 72

https://community.pivotal.io/s/
https://support.pivotal.io/
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/troubleshooting-bosh.html.md.erb

Failed Installation

Cannot Create or Delete Service Instances

Broker Request Timeouts

Instance Does Not Exist

Cannot Bind to or Unbind from Service Instances

Cannot Connect to a Service Instance

Cannot Update a Service Instance

Upgrade All Service Instances Errand Fails

Missing Logs and Metrics

Unable to Render Templates for Job CredHub

Failed Installation

Symptom On-Demand Services SDK fails to install.

Cause Reasons for a failed installation include:

Certificate issues: The on-demand broker (ODB) requires valid certificates.

Deploy fails. This could be due to a variety of reasons.

Networking problems:

Cloud Foundry cannot reach the On-Demand Services SDK broker

Cloud Foundry cannot reach the service instances

The service network cannot access the BOSH director

The Register broker errand fails.

The smoke test errand fails.

Resource sizing issues: These occur when the resource sizes selected for a given

plan are less than On-Demand Services SDK requires to function.

Other service-specific issues.

Solution
To troubleshoot:

Certificate issues: Ensure that your certificates are valid and generate new ones if

necessary. To generate new certificates, contact Support.

Deploy fails: View the logs using Ops Manager to determine why the deploy is

failing.

Networking problems: For how to troubleshoot, see Networking problems.

Register broker errand fails: For how to troubleshoot, see Register broker errand.

Resource sizing issues: Check your resource configuration in Ops Manager and

ensure that the configuration matches that recommended by the service.

Cannot Create or Delete Service Instances

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 73

https://support.pivotal.io

Symptom If developers report errors such as:

Instance provisioning failed: There was a problem completing your r

equest. Please contact your operations team providing the following

 information: service: redis-acceptance, service-instance-guid: ae9

e232c-0bd5-4684-af27-1b08b0c70089, broker-request-id: 63da3a35-24aa

-4183-aec6-db8294506bac, task-id: 442, operation: create

Cause Reasons include:

Problems with the deployment manifest

Authentication errors

Network errors

Quota errors

Solution
To troubleshoot:

1. If the BOSH error shows a problem with the deployment manifest, open the

manifest in a text editor to inspect it.

2. To continue troubleshooting, Log in to BOSH and target the On-Demand Services

SDK instance using the instructions on parsing a Cloud Foundry error message.

3. Retrieve the BOSH task ID from the error message and run the following command:

bosh task TASK-ID

4. If you need more information, access the broker logs and use the broker-request-

id from the error message above to search the logs for more information. Check for:

Authentication errors

Network errors

Quota errors

Broker Request Timeouts

Symptom If developers report errors such as:

Server error, status code: 504, error code: 10001, message: The req

uest to the service broker timed out: https://BROKER-URL/v2/service

_instances/e34046d3-2379-40d0-a318-d54fc7a5b13f/service_bindings/aa

635a3b-ef6d-41c3-a23f-55752f3f651b

Cause Cloud Foundry might not be connected to the service broker, or there might be a large

number of queued tasks.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 74

https://docs.pivotal.io/pivotalcf/customizing/trouble-advanced.html#log-in

Solution
To troubleshoot:

1. Confirm that Cloud Foundry (CF) is connected to the service broker.

2. Check the BOSH queue size:

1. Log in to BOSH as an admin.

2. Run

bosh tasks

If there are a large number of queued tasks, the system may be under too much

load. BOSH is configured with two workers and one status worker, which might not

be sufficient resources for the level of load.

3. If the task queue is long, advise app developers to try again once the system is

under less load.

Instance Does Not Exist

Symptom If developers report errors such as:

Server error, status code: 502, error code: 10001, message: Service

 broker error: instance does not exist`

Cause The instance might have been deleted.

Solution
To troubleshoot:

1. Confirm that the On-Demand Services SDK instance exists in BOSH and obtain the

GUID CF by running:

cf service MY-INSTANCE --guid

2. Using the GUID obtained above, run:

bosh -d service-instance_GUID vms

If the BOSH deployment is not found, it has been deleted from BOSH. Contact Support for

further assistance.

Cannot Bind to or Unbind from Service Instances

Symptom If developers report errors such as:

Server error, status code: 502, error code: 10001, message: Service

 broker error: There was a problem completing your request. Please

contact your operations team providing the following information: s

ervice: example-service, service-instance-guid: 8d69de6c-88c6-4283-

b8bc-1c46103714e2, broker-request-id: 15f4f87e-200a-4b1a-b76c-1c4b6

597c2e1, operation: bind

Cause This might be due to authentication or network errors.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 75

Solution
To find out the exact issue with the binding process:

1. Access the service broker logs.

2. Search the logs for the broker-request-id string listed in the error message above.

3. Check for:

Authentication errors

Network errors

4. Contact Support for further assistance if you are unable to resolve the problem.

Cannot Connect to a Service Instance

Symptom Developers report that their app cannot use service instances that they have successfully

created and bound.

Cause The error might originate from the service or be network related.

Solution
To solve this issue, ask the user to send application logs that show the connection error. If

the error originates from the service, then follow On-Demand Services SDK-specific

instructions. If the issue appears to be network-related, then:

1. Check that application security groups are configured correctly. Access should be

configured for the service network that the tile is deployed to.

2. Ensure that the network the PAS tile is deployed to has network access to the

service network. You can find the network definition for this service network in the

BOSH Director tile.

3. In Ops Manager go into the service tile and see the service network that is

configured in the networks tab.

4. In Ops Manager go into the PAS tile and see the network it is assigned to. Make

sure that these networks can access each other.

Cannot Update a Service Instance

Symptom If developers report errors such as the following when trying to run cf-update-service:

 FAILED

 Server error, status code: 502, error code: 10001, message:

 Service broker error: Service cannot be updated at this time,

 please try again later or contact your operator for more inform

ation.

Cause Their service instance might not be running the latest service offering.

Solution Operators must run the upgrade-all-service-instances errand after upgrading to ensure all

existing service instances are upgraded to the latest service offering. See Upgrade All Service

Instances.

App developers cannot upgrade individual service instances to the latest service offering.

They cannot set parameters or change plan until you upgrade their service instances.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 76

https://docs.pivotal.io/application-service/operating/app-sec-groups.html

Upgrade All Service Instances Errand Fails

Symptom The upgrade-all-service-instances errand fails.

Cause There might be a problem with a particular instance.

Solution
To troubleshoot:

1. Look at the errand output in the Ops Manager log.

2. If an instance has failed to upgrade, debug and fix it before running the errand again

to prevent any failure issues from spreading to other on-demand instances.

3. After the Ops Manager log no longer lists the deployment as failing, re-run the

errand to upgrade the rest of the instances.

Missing Logs and Metrics

Symptom No logs are being emitted by the on-demand broker.

Cause Syslog might not be configured correctly, or you might have network access issues.

Solution
To troubleshoot:

1. Ensure you have configured syslog for the tile.

2. Check that your syslog forwarding address is correct in Ops Manager.

3. Ensure that you have network connectivity between the networks that the tile is

using and the syslog destination. If the destination is external, you need to use the

public ip VM extension feature available in your Ops Manager tile configuration

settings.

4. Verify that Loggregator is emitting metrics:

1. Install the cf log-stream plugin. For instructions, see the Log Stream CLI

Plugin GitHub repository.

2. Find the GUID for your service instance by running:

cf service SERVICE-INSTANCE --guid

3. Find logs from your service instance by running:

cf log-stream | grep "SERVICE-GUID"

4. If no metrics appear within five minutes, verify that the broker network has

access to the Loggregator system on all required ports.

5. If you are unable to resolve the issue, contact Support.

Unable to Render Templates for Job CredHub

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 77

https://docs.pivotal.io/svc-sdk/odb/tile.html#public-ip
https://github.com/cloudfoundry/log-stream-cli

Symptom You receive an error similar to the following:

Task 54 | 19:40:25 | Creating missing vms: credhub/03CCE517-F40D-42

C8-B758-606FC042A8D4 (0) (00:00:53)

 L Error: - Unable to render templates for job 'credhub

'. Errors are:

 - Failed to fetch variable '/opsmgr/cf-f0052ab642e7684aa41d/cre

dhub_key_encryption_passwords/0/key' with id '703CCE517-F40D-42C8-B

758-606FC042A8D4' from config server: Invalid JSON response

Cause This might be due to an issue with BOSH CredHub v1.9.11 and v2.1.5.

Solution
Use CredHub v1.9.12 or later (included in Ops Manager v2.2.22 or later and v2.3.16 or later)

or CredHub v2.1.6 (included in Ops Manager v2.4.10 or later and v2.5.3 or later).

Troubleshoot Components

This section provides information about troubleshooting on-demand broker components.

BOSH Problems

Large BOSH Queue

On-demand service brokers add tasks to the BOSH request queue, which can back up and cause

delay under heavy loads. An app developer who requests a new On-Demand Services SDK instance

sees create in progress in the Cloud Foundry Command Line Interface (cf CLI) until BOSH

processes the queued request.

Ops Manager currently deploys two BOSH workers to process its queue. Future versions of Ops

Manager will let users configure the number of BOSH workers.

Configuration

Service Instances in Failing State

The VM or Disk type that you configured in the plan page of the tile in Ops Manager might not be

large enough for the On-Demand Services SDK service instance to start. See tile-specific guidance

on resource requirements.

Authentication

UAA Changes

If you have rotated any UAA user credentials then you may see authentication issues in the service

broker logs.

To resolve this, redeploy the On-Demand Services SDK tile in Ops Manager. This provides the

broker with the latest configuration.

Note: You must ensure that any changes to UAA credentials are reflected in the Ops

Manager credentials tab of the Pivotal Application Service tile.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 78

Networking

Common issues with networking include:

Issue Solution

Latency when connecting to the On-Demand Services

SDK service instance to create or delete a binding.

Try again or improve network performance.

Firewall rules are blocking connections from the On-

Demand Services SDK service broker to the service

instance.

Open the On-Demand Services SDK tile in Ops Manager

and check the two networks configured in the Networks

pane. Ensure that these networks allow access to each

other.

Firewall rules are blocking connections from the service

network to the BOSH director network.

Ensure that service instances can access the Director so

that the BOSH agents can report in.

Apps cannot access the service network. Configure Cloud Foundry application security groups to

allow runtime access to the service network.

Problems accessing BOSH’s UAA or the BOSH director. Follow network troubleshooting and check that the

BOSH director is online

Validate Service Broker Connectivity to Service Instances

To validate connectivity, do the following:

1. View the BOSH deployment name for your service broker by running:

bosh deployments

2. SSH into the On-Demand Services SDK service broker by running:

bosh -d DEPLOYMENT-NAME ssh

3. If no BOSH task-id appears in the error message, look in the broker log using the broker-

request-id from the task.

Validate App Access to Service Instance

Use cf ssh to access to the app container, then try connecting to the On-Demand Services SDK

service instance using the binding included in the VCAP_SERVICES environment variable.

Quotas

Plan Quota Issues

If developers report errors such as:

Message: Service broker error: The quota for this service plan has been exceeded.

Please contact your Operator for help.

1. Check your current plan quota.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 79

2. Increase the plan quota.

3. Log in to Ops Manager.

4. Reconfigure the quota on the plan page.

5. Deploy the tile.

6. Find who is using the plan quota and take the appropriate action.

Global Quota Issues

If developers report errors such as:

Message: Service broker error: The quota for this service has been exceeded.

Please contact your Operator for help.

1. Check your current global quota.

2. Increase the global quota.

3. Log in to Ops Manager.

4. Reconfigure the quota on the on-demand settings page.

5. Deploy the tile.

6. Find out who is using the quota and take the appropriate action.

Failing Jobs and Unhealthy Instances

To determine whether there is an issue with the On-Demand Services SDK deployment:

1. Inspect the VMs by running:

bosh -d service-instance_GUID vms --vitals

2. For additional information, run:

bosh -d service-instance_GUID instances --ps --vitals

If the VM is failing, follow the service-specific information. Any unadvised corrective actions (such as

running BOSH restart on a VM) can cause issues in the service instance.

Techniques for Troubleshooting

This section provides general techniques for troubleshooting, which might include the following:

Interacting with the on-demand service broker

Interacting with on-demand service instance BOSH deployments

Performing general maintenance and housekeeping tasks

Parse a Cloud Foundry (CF) Error Message

Failed operations (create, update, bind, unbind, delete) result in an error message. You can retrieve

the error message later by running the cf CLI command cf service INSTANCE-NAME.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 80

$ cf service myservice

Service instance: myservice

Service: super-db

Bound apps:

Tags:

Plan: dedicated-vm

Description: Dedicated Instance

Documentation url:

Dashboard:

Last Operation

Status: create failed

Message: Instance provisioning failed: There was a problem completing your request.

 Please contact your operations team providing the following information:

 service: redis-acceptance,

 service-instance-guid: ae9e232c-0bd5-4684-af27-1b08b0c70089,

 broker-request-id: 63da3a35-24aa-4183-aec6-db8294506bac,

 task-id: 442,

 operation: create

Started: 2017-03-13T10:16:55Z

Updated: 2017-03-13T10:17:58Z

Use the information in the Message field to debug further. Provide this information to Support when

filing a ticket.

The task-id field maps to the BOSH task ID. For more information on a failed BOSH task, use the

bosh task TASK-ID.

The broker-request-guid maps to the portion of the On-Demand Broker log containing the failed

step. Access the broker log through your syslog aggregator, or access BOSH logs for the broker by

typing bosh logs broker 0. If you have more than one broker instance, repeat this process for each

instance.

Access Broker and Instance Logs and VMs

Before following the procedures below, log in to the cf CLI and the BOSH CLI.

Access Broker Logs and VM(s)

You can access logs using Ops Manager by clicking on the Logs tab in the tile and downloading the

broker logs.

To access logs using the BOSH CLI, do the following:

1. Identify the on-demand broker (ODB) deployment by running the following command:

bosh deployments

2. View VMs in the deployment by running the following command:

bosh -d DEPLOYMENT-NAME instances

3. SSH onto the VM by running the following command:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 81

https://docs.pivotal.io/pivotalcf/cf-cli/getting-started.html
https://docs.pivotal.io/pivotalcf/customizing/trouble-advanced.html#prepare
https://docs.pivotal.io/pivotalcf/customizing/troubleshooting.html#component_logs

bosh -d DEPLOYMENT-NAME ssh

4. Download the broker logs by running the following command:

bosh -d DEPLOYMENT-NAME logs

The archive generated by BOSH includes the following logs:

Log Name Description

broker.std

out.log

Requests to the on-demand broker and the actions the broker performs while orchestrating the request

(e.g. generating a manifest and calling BOSH). Start here when troubleshooting.

bpm.log Control script logs for starting and stopping the on-demand broker.

post-

start.stderr

.log

Errors that occur during post-start verification.

post-

start.stdou

t.log

Post-start verification.

drain.stder

r.log

Errors that occur while running the drain script.

Access Service Instance Logs and VMs

1. To target an individual service instance deployment, retrieve the GUID of your service

instance with the following cf CLI command:

cf service MY-SERVICE --guid

2. To view VMs in the deployment, run the following command:

bosh -d service-instance_GUID instances

3. To SSH into a VM, run the following command:

bosh -d service-instance_GUID ssh

4. To download the instance logs, run the following command:

bosh -d service-instance_GUID logs

Run Service Broker Errands to Manage Brokers and Instances

From the BOSH CLI, you can run service broker errands that manage the service brokers and

perform mass operations on the service instances that the brokers created. These service broker

errands include:

register-broker registers a broker with the Cloud Controller and lists it in the Marketplace.

deregister-broker deregisters a broker with the Cloud Controller and removes it from the

Marketplace.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 82

upgrade-all-service-instances upgrades existing instances of a service to its latest installed

version.

delete-all-service-instances deletes all instances of service.

orphan-deployments detects “orphan” instances that are running on BOSH but not

registered with the Cloud Controller.

To run an errand, run the following command:

bosh -d DEPLOYMENT-NAME run-errand ERRAND-NAME

For example:

bosh -d my-deployment run-errand deregister-broker

Register Broker

The register-broker errand does the following:

Registers the service broker with Cloud Controller.

Enables service access for any plans that are enabled on the tile.

Disables service access for any plans that are disabled on the tile.

Does nothing for any plans that are set to manual on the tile.

You should run this errand whenever the broker is re-deployed with new catalog metadata to update

the Marketplace.

Plans with disabled service access are only visible to admin Cloud Foundry users. Non-admin Cloud

Foundry users, including Org Managers and Space Managers, cannot see these plans.

Deregister Broker

This errand deregisters a broker from Cloud Foundry.

The errand does the following:

Deletes the service broker from Cloud Controller

Fails if there are any service instances, with or without bindings

Use the Delete All Service Instances errand to delete any existing service instances.

To run the errand, run the following command:

bosh -d DEPLOYMENT-NAME run-errand deregister-broker

Upgrade All Service Instances

The upgrade-all-service-instances errand does the following:

Collects all of the service instances that the on-demand broker has registered.

Issues an upgrade command and deploys the a new manifest to the on-demand broker for

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 83

each service instance.

Adds to a retry list any instances that have ongoing BOSH tasks at the time of upgrade.

Retries any instances in the retry list until all instances are upgraded.

When you make changes to the plan configuration, the errand upgrades all the On-Demand

Services SDK service instances to the latest version of the plan.

If any instance fails to upgrade, the errand fails immediately. This prevents systemic problems from

spreading to the rest of your service instances.

Delete All Service Instances

This errand uses the Cloud Controller API to delete all instances of your broker’s service offering in

every Cloud Foundry org and space. It only deletes instances the Cloud Controller knows about. It

does not delete orphan BOSH deployments.

The delete-all-service-instances errand does the following:

1. Unbinds all apps from the service instances.

2. Deletes all service instances sequentially. Each service instance deletion includes:

1. Running any pre-delete errands

2. Deleting the BOSH deployment of the service instance

3. Removing any ODB-managed secrets from BOSH CredHub

4. Checking for instance deletion failure, which results in the errand failing immediately

3. Determines whether any instances have been created while the errand was running. If new

instances are detected, the errand returns an error. In this case, VMware recommends

running the errand again.

To run the errand, run the following command:

bosh -d service-instance_GUID delete-deployment

Detect Orphaned Instances Service Instances

A service instance is defined as “orphaned” when the BOSH deployment for the instance is still

running, but the service is no longer registered in Cloud Foundry.

The orphan-deployments errand collates a list of service deployments that have no matching service

Note: Orphan BOSH deployments do not correspond to a known service instance.

While rare, orphan deployments can occur. Use the orphan-deployments errand to

identify them.

Warning: Use extreme caution when running this errand. You should only use it

when you want to totally destroy all of the on-demand service instances in an

environment.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 84

instances in Cloud Foundry and return the list to the operator. It is then up to the operator to remove

the orphaned BOSH deployments.

To run the errand, run the following command:

bosh -d DEPLOYMENT-NAME run-errand orphan-deployments

If orphan deployments exist—The errand script does the following:

Exit with exit code 10

Output a list of deployment names under a [stdout] header

Provide a detailed error message under a [stderr] header

For example:

[stdout]

[{"deployment_name":"service-instance_80e3c5a7-80be-49f0-8512-44840f3c4d1b"}]

[stderr]

Orphan BOSH deployments detected with no corresponding service instance in Cloud Found

ry. Before deleting any deployment it is recommended to verify the service instance no

 longer exists in Cloud Foundry and any data is safe to delete.

Errand 'orphan-deployments' completed with error (exit code 10)

These details will also be available through the BOSH /tasks/ API endpoint for use in scripting:

$ curl 'https://bosh-user:bosh-password@bosh-url:25555/tasks/task-id/output?type=resul

t' | jq .

{

 "exit_code": 10,

 "stdout": "[{"deployment_name":"service-instance_80e3c5a7-80be-49f0-8512-44840f3c4d1

b"}]\n",

 "stderr": "Orphan BOSH deployments detected with no corresponding service instance i

n Cloud Foundry. Before deleting any deployment it is recommended to verify the servic

e instance no longer exists in Cloud Foundry and any data is safe to delete.\n",

 "logs": {

 "blobstore_id": "d830c4bf-8086-4bc2-8c1d-54d3a3c6d88d"

 }

}

If no orphan deployments exist—The errand script does the following:

Exit with exit code 0

Stdout will be an empty list of deployments

Stderr will be None

[stdout]

[]

[stderr]

None

Errand 'orphan-deployments' completed successfully (exit code 0)

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 85

If the errand encounters an error during running—The errand script does the following:

Exit with exit 1

Stdout will be empty

Any error messages will be under stderr

To clean up orphaned instances, run the following command on each instance:

bosh delete-deployment service-instance_SERVICE-INSTANCE-GUID

Get Admin Credentials for a Service Instance

To retrieve the admin credentials for a service instance from BOSH CredHub:

1. Use the cf CLI to determine the GUID associated with the service instance for which you

want to retrieve credentials by running:

cf service SERVICE-INSTANCE-NAME --guid

For example:

$ cf service my-service-instance --guid

12345678-90ab-cdef-1234-567890abcdef

If you do not know the name of the service instance, you can list service instances in the

space with cf services.

2. Follow the steps in Gather Credential and IP Address Information and Log In to the Ops

Manager VM with SSH of Advanced Troubleshooting with the BOSH CLI to SSH into the Ops

Manager VM.

3. From the Ops Manager VM, log in to your BOSH Director with the BOSH CLI. See

Authenticate with the BOSH Director VM in Advanced Troubleshooting with the BOSH CLI.

4. Find the values for BOSH_CLIENT and BOSH_CLIENT_SECRET:

1. In the Ops Manager Installation Dashboard, click the BOSH Director tile.

2. Click the Credentials tab.

3. In the BOSH Director section, click the link to the BOSH Commandline Credentials .

4. Record the values for BOSH_CLIENT and BOSH_CLIENT_SECRET.

5. Set the API target of the CredHub CLI to your BOSH CredHub server by running:

credhub api https://BOSH-DIRECTOR-IP:8844 \

 --ca-cert=/var/tempest/workspaces/default/root_ca_certificate

Where BOSH-DIRECTOR-IP is the IP address of the BOSH Director VM.

WARNING: Running this command may leave IaaS resources in an unusable state.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 86

https://docs.pivotal.io/pivotalcf/customizing/trouble-advanced.html#gather
https://docs.pivotal.io/pivotalcf/customizing/trouble-advanced.html#ssh
https://docs.pivotal.io/pivotalcf/customizing/trouble-advanced.html#log-in

For example:

$ credhub api https://10.0.0.5:8844 \

 --ca-cert=/var/tempest/workspaces/default/root_ca_certificate

6. Log in to CredHub by running:

credhub login \

 --client-name=BOSH-CLIENT \

 --client-secret=BOSH-CLIENT-SECRET

For example:

$ credhub login \

 --client-name=credhub \

 --client-secret=abcdefghijklm123456789

7. Use the CredHub CLI to retrieve the credentials :

Retrieve the password for the admin user by running:

credhub get -n /p-bosh/service-instance_GUID/admin_password

In the output, the password appears under value. Record the password.

For example:

$ credhub get \

 -n /p-bosh/service-instance_70d30bb6-7f30-441a-a87c-05a5e4afff26/admin_

password

 id: d6e5bd10-3b60-4a1a-9e01-c76da688b847

 name: /p-bosh/service-instance_70d30bb6-7f30-441a-a87c-05a5e4afff26/adm

in_password

 type: password

 value: UMF2DXsqNPPlCNWMdVMcNv7RC3Wi10

 version_created_at: 2018-04-02T23:16:09Z

Identify Apps using a Service Instance

To identify which apps are using a specific service instance from the name of the BOSH deployment:

1. Take the deployment name and strip the service-instance_ leaving you with the GUID.

2. Log in to CF as an admin.

3. Obtain a list of all service bindings by running the following:

cf curl /v2/service_instances/GUID/service_bindings

4. The output from the above curl gives you a list of resources, with each item referencing a

service binding, which contains the APP-URL. To find the name, org, and space for the app,

run the following:

1. cf curl APP-URL and record the app name under entity.name.

2. cf curl SPACE-URL to obtain the space, using the entity.space_url from the above

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 87

curl. Record the space name under entity.name.

3. cf curl ORGANIZATION-URL to obtain the org, using the entity.organization_url

from the above curl. Record the organization name under entity.name.

View BOSH Resource Saturation and Scaling

To view usage statistics for any service, do the following:

1. Run the following command:

bosh -d DEPLOYMENT-NAME vms --vitals

2. To view process-level information, run:

bosh -d DEPLOYMENT-NAME instances --ps

Monitor Quota Saturation and Service Instance Count

Quota saturation and total number of service instances are available through ODB metrics emitted to

Loggregator. The metric names are shown below:

Metric Name Description

on-demand-broker/SERVICE-NAME-MARKETPLACE/quota_remaining global quota remaining for all instances across

all plans

on-demand-broker/SERVICE-NAME-MARKETPLACE/PLAN-

NAME/quota_remaining

quota remaining for a particular plan

on-demand-broker/SERVICE-NAME-MARKETPLACE/total_instances total instances created across all plans

on-demand-broker/SERVICE-NAME-MARKETPLACE/PLAN-

NAME/total_instances

total instances created for a given plan

Reinstall a Tile

To reinstall a tile in the same environment where it was previously uninstalled:

1. Ensure that the previous tile was correctly uninstalled as follows:

1. Log in as an admin by running:

cf login

2. Confirm that the Marketplace does not list On-Demand Services SDK by running:

Note: When running cf curl ensure that you query all pages, because the

responses are limited to a certain number of bindings per page. The default is 50. To

find the next page curl the value under next_url.

Note: Quota metrics are not emitted if no quota has been set.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 88

cf m

3. Log in to BOSH as an admin by running:

bosh log-in

4. Display your BOSH deployments to confirm that the output does not show the On-

Demand Services SDK deployment by running:

bosh deployments

5. Run the “delete-all-service-instances” errand to delete every instance of the

service.

6. Run the “deregister-broker” errand to delete the service broker.

7. Delete the service broker BOSH deployment by running:

bosh delete-deployment BROKER-DEPLOYMENT-NAME

8. Reinstall the tile.

Knowledge Base (Community)

Find the answer to your question and browse product discussions and solutions by searching the

VMware Tanzu Knowledge Base.

File a Support Ticket

You can file a ticket with Support. Be sure to provide the error message from cf service YOUR-

SERVICE-INSTANCE.

To expedite troubleshooting, provide your service broker logs and your service instance logs. If your

cf service YOUR-SERVICE-INSTANCE output includes a task-id, provide the BOSH task output.

Create a pull request or raise an issue on the source for this page in GitHub

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 89

https://community.pivotal.io/s/
https://support.pivotal.io/
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/troubleshooting.html.md.erb

Service and Tile Developer Guide

Getting Started: ODB on a Local Development Environment

This topic describes how to create and manage an on-demand service broker (ODB) on a local

development machine using Pivotal Cloud Foundry (PCF) Dev and BOSH Lite.

For more information about the components in this topic, see PCF Dev and BOSH-Lite.

Prerequisites

Before you set up and use ODB on your local machine, install and configure the following

components:

BOSH Lite v9000.131.0 or later. To install BOSH Lite, see Install in the BOSH Lite

documentation.

PCF Dev file pcfdev-v0.19.1-rc.46. To install PCF Dev, see Installing PCF Dev. Record the

PCF Dev domain for later. The default is local.pcfdev.io.

Part 1: Set Up

This section details how to prepare BOSH Lite and set up the Kafka example service, the Kakfa

example service adapter, and ODB.

Step 1: Prepare BOSH Lite

To prepare BOSH Lite, do the following:

1. Target your BOSH Lite installation.

bosh alias-env lite -e 192.168.50.4

2. Upload the BOSH Lite stemcell.

bosh -e lite upload-stemcell \

Note: The examples in this topic are based on Kafka open source messaging. See

the following sample code directories:

Kafka example service

Kafka example service adapter

Kafka example app

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 90

https://docs.pivotal.io/tiledev/environments.html#pcfdev
https://github.com/pivotal-cf-experimental/kafka-example-service-release
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter
https://github.com/pivotal-cf-experimental/kafka-example-app
http://bosh.io/docs/bosh-lite/#install
https://docs.pivotal.io/pcf-dev/#installing

https://bosh.io/d/stemcells/bosh-warden-boshlite-ubuntu-trusty-go_agent?v=3262.

2

Step 2: Set Up the Kafka Example Service

To set up the Kafka example service, do the following:

1. Clone the Kafka example service into your workspace.

git clone \

https://github.com/pivotal-cf-experimental/kafka-example-service-release.git

2. In the kafka-example-service-release directory, create and upload the Kafka example

service.

cd kafka-example-service-release

bosh create-release --name kafka-example-service

3. Upload the service to the BOSH director.

bosh -e lite upload-release

Step 3: Set Up the Kafka Example Service Adapter

To set up the Kafka example service adapter, do the following:

1. Clone the Kafka example service adapter.

git clone \

https://github.com/pivotal-cf-experimental/kafka-example-service-adapter-releas

e.git

2. Update service adapter dependencies.

cd kafka-example-service-adapter-release

git submodule update --init --recursive

3. Create the example service adapter.

bosh create-release --name kafka-example-service-adapter

4. Upload the example service adapter to the BOSH director.

bosh -e lite upload-release

Step 4: Set Up ODB

To set up ODB, do the following:

1. Download the on-demand service broker from Pivotal Network. To download, see Pivotal

Cloud Foundry On Demand Services SDK.

2. Upload the on-demand-service-broker release.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 91

https://network.pivotal.io/products/on-demand-services-sdk/

bosh -e lite upload-release on-demand-service-broker-X.Y.Z.tgz

Where:

X.Y.Z is the ODB release version.

For example:

$ bosh -e lite upload-release on-demand-service-broker-0.21.1.tgz

Part 2: Create

This section describes how to create a BOSH deployment and a service broker on PCF Dev.

Step 1: Create a BOSH Deployment

To create a BOSH Lite deployment, do the following:

1. Create a new directory in your workspace and a cloud_config.yml for the BOSH Lite

Director. For example:

vm_types:

- name: container

 cloud_properties: {}

networks:

- name: kafka

 type: manual

 subnets:

 - range: 10.244.1.0/24

 gateway: 10.244.1.1

 az: lite

 cloud_properties: {}

disk_types:

- name: ten

 disk_size: 10_000

 cloud_properties: {}

azs:

- name: lite

 cloud_properties: {}

compilation:

 workers: 2

 reuse_compilation_vms: true

 network: kafka

 az: lite

 cloud_properties: {}

2. Update the BOSH Lite cloud config using the deployment manifest.

bosh -e lite update-cloud-config cloud_config.yml

3. Record the URL and UUID of your BOSH Lite director.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 92

bosh environment

See the following example output:

$ bosh environment

Config

 /Users/pivotal/.bosh_config

Director

 Name Bosh Lite Director

 URL https://192.168.50.4:25555

 Version 1.3215.0 (00000000)

 User admin

 UUID 17a45148-1d00-43bc-af28-9882e5a6535a

 CPI warden_cpi

 dns disabled

 compiled_package_cache enabled (provider: local)

 snapshots disabled

4. Create a BOSH Lite deployment manifest in a file called deployment_manifest.yml using the

following as a base:

name: kafka-on-demand-broker

director_uuid: BOSH-LITE-UUID

releases:

- name: &broker-release on-demand-service-broker

 version: latest

- name: &service-adapter-release kafka-example-service-adapter

 version: latest

- name: &service-release kafka-example-service

 version: latest

stemcells:

- alias: trusty

 os: ubuntu-trusty

 version: STEMCELL-VERSION

instance_groups:

- name: broker

 instances: 1

 vm_type: container

 persistent_disk_type: ten

 stemcell: trusty

 azs: [lite]

 networks:

 - name: kafka

 jobs:

 - name: kafka-service-adapter

 release: *service-adapter-release

 - name: admin_tools

 release: *service-release

 - name: broker

 release: *broker-release

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 93

 properties:

 port: 8080

 username: broker # or replace with your own

 password: password # or replace with your own

 disable_ssl_cert_verification: true

 bosh:

 url: BOSH-LITE-URL

 authentication:

 basic:

 username: admin

 password: admin

 cf:

 url: https://api.PCF-DEV-DOMAIN

 authentication:

 url: https://uaa.PCF-DEV-DOMAIN

 user_credentials:

 username: admin

 password: admin

 service_adapter:

 path: /var/vcap/packages/odb-service-adapter/bin/service-adapter

 service_deployment:

 releases:

 - name: *service-release

 version: SERVICE-RELEASE-VERSION

 jobs: [kafka_server, zookeeper_server]

 stemcells:

 - os: ubuntu-trusty

 version: STEMCELL-VERSION

 service_catalog:

 id: D94A086D-203D-4966-A6F1-60A9E2300F72

 service_name: kafka-service-with-odb

 service_description: Kafka Service

 bindable: true

 plan_updatable: true

 tags: [kafka]

 plans:

 - name: small

 plan_id: 11789210-D743-4C65-9D38-C80B29F4D9C8

 description: A Kafka deployment with a single instance of each job an

d persistent disk

 instance_groups:

 - name: kafka_server

 vm_type: container

 instances: 1

 persistent_disk_type: ten

 azs: [lite]

 networks: [kafka]

 - name: zookeeper_server

 vm_type: container

 instances: 1

 persistent_disk_type: ten

 azs: [lite]

 networks: [kafka]

 properties:

 auto_create_topics: true

 default_replication_factor: 1

update:

 canaries: 1

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 94

 canary_watch_time: 30000-180000

 update_watch_time: 30000-180000

 max_in_flight: 4

Where:

BOSH-LITE-UUID is the UUID value you recorded in the BOSH environment step

above.

BOSH-LITE-URL is the URL value you recorded in the BOSH environment step above.

PCF-DEV-DOMAIN is the PCF Dev domain you recorded in the Prerequisites above.

5. Deploy the broker.

bosh -e lite -d kafka-on-demand-broker deployment_manifest.yml

6. Record the IP address of the deployed broker.

bosh -e lite -d kafka-on-demand-broker instances

See the following example output:

$ Using environment 'lite' as user 'admin' (openid, bosh.admin)

Task 54727. Done

Deployment 'redis-on-demand-broker-dev2'

Instance Process State AZ IPs

broker/84294753-84b9-4be1-a338-37c1f3e71919 running z1 10.244.1.2

1 instances

Succeeded

Step 2: Create a Service Broker on PCF Dev

To create a service broker on PCF Dev, do the following:

1. Create a service broker on PCF Dev and enable access to its service offering.

cf create-service-broker kafka-broker USERNAME PASSWORD http://BROKER-IP:8080

Where:

USERNAME and PASSWORD are the broker’s credentials set under properties in the

broker job.

BROKER-IP is the value obtained in the step above. See the last step in Create a BOSH

Deployment.

For example:

$ cf create-service-broker kafka-broker broker password http://10.244.1.2:8080

2. Enable access to the broker’s service plans.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 95

cf enable-service-access kafka-service-with-odb

3. View the broker-offered services in the Marketplace.

cf marketplace

See the following example output:

Getting services from Marketplace in org pcfdev-org / space pcfdev-space as adm

in...

OK

service plans description

kafka-service-with-odb small Kafka Service

p-mysql 512mb, 1gb MySQL databases on demand

p-rabbitmq standard RabbitMQ is a robust and scalable high-pe

rformance multi-protocol messaging broker.

p-redis shared-vm Redis service to provide a key-value stor

e

4. Create a service instance using the Kafka on-demand broker.

cf create-service kafka-service-with-odb small k1

Part 3: Verify and Use

To verify and use your on-demand service, do the following:

Step 1: Verify Your BOSH Deployment and On-Demand Service

1. Check the status of your service.

cf service k1

See the state change from create in progress to create succeeded.

2. Verify that the on-demand service is provisioned in the BOSH deployment

bosh -e lite deployments

See the following example output:

Name Release(s)

 Stemcell(s) Cloud Confi

g

kafka-on-demand-broker kafka-example-service-a

dapter/0+dev.2 bosh-warden-boshlite-ubuntu-trusty-go_agent/3262.2 latest

 on-demand-service-broke

r/0.2.0+dev.1

service-instance_2715262c-8564-4cd9-b629-0ae99e6aa4b9 kafka-example-service/0

+dev.2 bosh-warden-boshlite-ubuntu-trusty-go_agent/3262.2 latest

This example shows that the service instance is provisioned and the service releases are

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 96

specified in the ODB deployment manifest.

Step 2: Use Your On-Demand Service

To use the service instance that you created, do the following:

1. Clone the Kafka example app.

git clone https://github.com/pivotal-cf-experimental/kafka-example-app.git

2. Push the app.

cd kafka-example-app

cf push --no-start

3. Bind the app to your service instance.

cf bind-service kafka-example-app k1

4. Start the app.

cf start kafka-example-app

Step 3: Read and Write to Your Service Instance

Now the app runs at https:/kafka-example-app.PCF-DEV-DOMAIN. You can use it to read and write to

your on-demand Kafka service instance.

For example:

To write data, run the following.

curl -XPOST http://kafka-example-app.PCF-DEV-DOMAIN/queues/my-queue -d SOME-DAT

A

To read data, run the following.

curl http://kafka-example-app.PCF-DEV-DOMAIN/queues/my-queue

Create a pull request or raise an issue on the source for this page in GitHub

Creating a Service Release

This topic provides information for service authors about how to create a service release for an on-

demand service tile.

Service Author Deliverables

Service authors provide the following:

The Service Release. For more information, see Overview below.

The Service Adapter. For more information, see Creating a Service Adapter.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 97

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/getting-started.html.md.erb

Documentation for the operator to configure plan definitions for the Service Adapter.

Documentation for the operator to backup and restore service instances.

Overview

A service release is a BOSH release of the service that you want to create on-demand instances of.

The on-demand broker (ODB) deploys this release at instance creation time, once for each service

instance.

To create a service release, Pivotal recommends that you do the following:

1. Package an Initial Service Release

2. Refine your release using the information in the following sections:

Use Job Links

Service Instance Lifecycle Errands

3. Package the Final Service Release

Package an Initial Service Release

Package an initial version of the BOSH release for your service to test whether it deploys

successfully.

To do so, create and manually deploy a BOSH release for the service by following the instructions up

to and including Step 6: Create a Dev Release in Creating a Release in the BOSH Documentation.

Example service releases:

redis-example-service-release

kafka-example-service-release

Use Job Links

When there are multiple jobs in the manifest that need to communicate over the network, Pivotal

recommends that you use BOSH’s job link feature instead of using static IP addresses. IP addresses

must be different for each service instance. When you use job links, BOSH inserts IP addresses or

internal DNS names when templating the job configuration so you do not have to do it manually.

Job links are defined in the service release and configured in the manifest. For how to use job links,

see Links in the BOSH documentation.

For an example, see the kafka-example-service-release on GitHub. The example uses implicit job

links to get the IP addresses of the brokers and the zookeeper.

Note: Pivotal recommends that you create sample manifests that deploy the service

release(s). This helps you to write the generate-manifest component of the service

adapter. For help writing a sample manifest, see Deployment Config in the BOSH

documentation.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 98

https://bosh.io/docs/create-release/
https://bosh.io/docs/manifest-v2/
https://github.com/pivotal-cf-experimental/redis-example-service-release
https://github.com/pivotal-cf-experimental/kafka-example-service-release
https://bosh.io/docs/links.html
https://github.com/pivotal-cf-experimental/kafka-example-service-release/blob/master/jobs/kafka_server/spec#L15

Service Instance Lifecycle Errands

Service instance lifecycle errands allow additional short-lived jobs to run as part of service instance

deployment. ODB uses these errands to manage an instance lifecycle. A deployment is only

considered successful if the deployment and all lifecycle errands complete successfully.

ODB supports the following service instance lifecycle errands:

Post-deploy: These errands run after creating or updating a service instance. For example,

running a health check to ensure the service instance is functioning. To see the workflow for

post deploy errands, see Create or Update Service Instance with Post-Deploy Errands.

Pre-delete: These errands run before the deletion of a service instance. For example,

cleaning up data before a service shutdown. To see the workflow for pre-delete errands, see

Delete a Service Instance with Pre-Delete Errand.

For information for operators about how to enable these errands in the manifest, see Enable Service

Instance Lifecycle Errands.

Include Service Instance Lifecycle Errands

Lifecycle errands are defined in the service release. The service adapter or operator can configure

these errands when generating a manifest.

To include lifecycle errands in your service release, do the following:

1. Decide what errands your on-demand service needs. For example, you could create a

health check post-deploy errand using the criteria that you used to test the initial release.

2. Write code to run each lifecycle errand and define them as jobs in the service release. For

how to do so, see the Using Errands in the BOSH documentation.

For an example implementation of a health check post-deploy errand, see the redis-example-

service-release on GitHub.

Colocated Errands

Colocated errands run on an existing service instance group, avoiding additional resource allocation.

Both post-deploy and pre-delete errands can be run as colocated errands.

To enable a new colocated errand, add the errand to the list of jobs of an instance group.

Note: This feature requires BOSH Director v261 or later.

Note: When using the service adapter generate-manifest command, you must

validate that any lifecycle errands configured in the plan parameter exist in the

service release and are included in the service manifest as jobs. For more

information about the generate manifest command, see generate-manifest.

Note: This feature requires BOSH Director v263 or later.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 99

https://bosh.io/docs/errands.html
https://github.com/pivotal-cf-experimental/redis-example-service-release/tree/master/jobs/health-check

Package the Final Service Release

To package the final release, follow the instructions in Create a Final Release in the BOSH

documentation.

The tile author packages this release into the tile. For direct BOSH deployments, an operator uploads

this release to the BOSH Director.

Create a pull request or raise an issue on the source for this page in GitHub

Creating a Service Adapter

This topic provides information for service authors about how to create a service adapter for an on-

demand service tile. For more information about service author responsibilities, see Service Author

Deliverables.

About Service Adapters

A service adapter is an executable invoked by the on-demand broker (ODB). Pivotal has published

an SDK for teams writing their service adapters in golang. For more information, see On-Demand

Services SDK Golang SDK below.

Subcommands in the Adapter Interface

A service adapter is expected to respond to the subcommands below. For more information about

the parameters and expected output from these subcommands, see Service Adapter Interface

Reference.

generate-manifest: Generate a BOSH manifest for your service instance deployment and

output to stdout a JSON document containing the manifest as YAML, BOSH secrets, and

BOSH Configs, given information about the:

BOSH Director (stemcells, release names)

service instance (ID, request parameters, plan properties, IaaS resources)

previous manifest, if this is an upgrade deployment

For more information about this subcommand, see generate-manifest.

dashboard-url: Generate an optional URL of a web-based management UI for the service

instance. For more information about this subcommand, see dashboard-url.

create-binding: Create credentials for the service instance, printing them to stdout as JSON.

Note: ODB requires generate-manifest to be idempotent. Given the same

arguments when a previous manifest is supplied—which happens during a

deployment update—the command should always output the same BOSH

manifest.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 100

https://bosh.io/docs/create-release/#final-release
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/creating.html.md.erb

These should be unique, if possible. For more information about this subcommand, see

create-binding.

delete-binding: Invalidate the created credentials, if possible. Some services (e.g. Redis) are

single-user, and this endpoint does nothing. For more information about this subcommand,

see delete-binding.

generate-plan-schemas: Generate a JSON schema to validate service-specific configuration

parameters. For more information about this subcommand, see generate-plan-schemas.

Store Secrets on BOSH CredHub

The service adapter can generate secrets and use ODB as a proxy to the BOSH CredHub Config

server, instead of writing these secrets in plaintext in the manifest. To do this, use ODB-managed

secrets.

The following sections provide information about how to use ODB-managed secrets to store, persist,

and modify secrets in BOSH CredHub:

About ODB-Managed Secrets

Migrate from Plaintext Secrets to ODB-Managed Secrets

Persist Credentials Across Updates

Modify ODB-Managed Secrets

About ODB-Managed Secrets

To use ODB-managed secrets, the service adapter must do the following for the generate-manifest

output:

1. Generate a manifest that uses the ODB-managed secrets placeholder ((odb_secret:SECRET-

NAME)) for the secret that you want to store in BOSH CredHub.

2. Output the secret as part of the secrets map.

For example:

{

 "manifest": "password: ((odb_secret:SECRET-NAME))",

 "secrets": {

 "SECRET-NAME":"SOME-RANDOM-PASSWORD"

 }

}

When you use ODB-managed secrets, ODB does the following during provision:

1. Generates a BOSH CredHub name for each secret in the secrets map in the format

/odb/SERVICE-OFFERING-ID/SERVICE-INSTANCE-ID/SECRET-NAME.

2. Saves the value of the secret in the BOSH CredHub using the generated name.

3. Replaces all occurrences of ((odb_secret:SECRET-NAME)) with the generated BOSH

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 101

CredHub name.

4. Deploys the updated manifest.

Migrate from Plaintext Secrets to ODB-Managed Secrets

You can use the service adapter to migrate from plaintext secrets in the manifest to ODB-managed

secrets that are stored in BOSH CredHub. When the generate-manifest subcommand is provided

with a previous manifest, the service adapter copies secrets from the previous deployment to the

new manifest.

To migrate from plaintext secrets to ODB-managed secrets, write code in your service adapter that

does the following:

Detects whether a secret is a plaintext secret.

Replaces each plaintext secret from the previous manifest with an ODB-managed secrets

placeholder ((odb_secret:SECRET-NAME)) in the new manifest.

Returns the value of the secrets in the secrets map. For more information about the secrets

map, see About ODB-Managed Secrets above.

Each placeholder in the manifest a corresponding entry in the secrets map.

Each key in the secrets map at least one corresponding placeholder in the manifest.

Only returns secrets in the secrets map when the value of the secret is set for the first time,

or if the value is changed. For example, this might be when:

A new service is created.

You migrate plaintext secrets into BOSH CredHub.

You want to change the value for previously set secrets.

For example:

import(

 "github.com/pivotal-cf/on-demand-services-sdk/serviceadapter"

)

func extractSecret(oldValue, secretName string, secretsMap map[string]string, newValue

 string) {

 if !(strings.HasPrefix(redisPassword, "((") && strings.HasSuffix(redisPassword, "))

")) {

 // This is a plaintext secret

 // Add the value to the secrets map,

 secretsMap[secretName] = oldValue

 // and return its placeholder to use in the manifest.

 newValue = fmt.Sprintf("((%s:%s))", serviceadapter.ODBSecretPrefix, secretName)

 return newValue, secretsMap

 } else {

 // else: this secret could be one of the following:

 // - a custom CredHub name

Note: Secrets already stored in BOSH CredHub do not need placeholders. This is

because ODB ignores BOSH CredHub names during generate-manifest.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 102

 // - a reference to the BOSH generated variables block

 // - a CredHub reference to a secret already managed by the ODB

 // In all cases, the ODB does not need to send the secret to CredHub, so it

 // should not be included in the secrets map.

 return oldValue

 }

}

Persist Secrets across Updates

When dealing with properties that need to persist across updates, the service adapter must extract

the existing name for any ODB-managed secrets from the previous manifest.

The following manifest snippet shows an ODB-managed secret with a BOSH CredHub name:

name: the-deployment

...

properties:

password: ((/odb/SERVICE-GUID/SERVICE-INSTANCE-GUID/SECRET-NAME))

If the previous manifest contains BOSH CredHub names for secrets, the generate-manifest

command must not replace properties.password with the placeholder ((odb_secret:SECRET-

NAME)).

For more information about using the value during a bind, see create-binding.

Modify ODB-Managed Secrets

When updating or upgrading a service instance, operators might need to modify the value of an

ODB-managed secret. These secrets are passed to the service adapter from the following:

Plan properties in the on-demand broker manifest

Adapter secrets given in the adapter config

Configuration parameters in the cf update-service command

To regenerate the manifest with modified secrets, write code in your service adapter that does the

following:

1. Replaces the property in the manifest with an ODB-managed secrets placeholder that uses a

new secret name.

2. Uses the GenerateManifest method to return the new secret in the secrets map.

Detect When Secrets Are Modified

The service adapter must only insert the ODB-managed secrets placeholder if a secret has been

modified. This is because ODB requires that the GenerateManifest method is idempotent. When the

WARNING: Pivotal discourages modifying the value of secrets without changing the

secret name. If the BOSH deploy task fails during update or upgrade, ODB-managed

secrets might be left in an inconsistent state. For more information, see Inconsistent

Secrets after a Failed Update below.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 103

service adapter generates a new manifest after a deployment update, it must be the same as the

previous manifest when GenerateManifest is given the same input.

ODB provides all the currently deployed secrets to the GenerateManifest method using the

previousSecrets argument. For more information about the input to the previousSecrets argument,

see PREVIOUS-SECRETS-JSON.

To detect whether a secret has been modified, write code in your service adapter that does the

following:

1. Compares the previous value of the secret to the new value.

2. If the secret has changed:

1. Inserts the ODB-managed secrets placeholder.

2. Adds the value to the secrets map.

If the secret has remained the same:

1. Inserts the BOSH CredHub name from the previous manifest.

For example code that does the above, see the Redis Example Adapter.

Inconsistent Secrets after a Failed Update

If you modify the value of a secret without providing a new secret name, ODB-managed secrets can

be left in an inconsistent state if the update or upgrade of a BOSH deployment fails. This is because

ODB updates the secrets in BOSH CredHub before updating the deployment.

The failed deployment might contain a mixture of old and new secrets depending on the stage that

the deployment failed. When an operator attempts to troubleshoot this scenario by manually re-

deploying the previous manifest, this manifest contains BOSH CredHub names that refer to the new

secret values. This can cause errors with bindings.

Pivotal recommends that you avoid modifying secrets without using new names for new versions of

secrets.

Binding Credentials

Ensure binding credentials for a service instance share a namespace and are unique, if possible.

For MySQL, two bindings could include different username/password pairs, but share the same

MySQL database tables and data. The first step is to determine which credentials are best to supply

in the context of your service. Pivotal recommends that users are identified statelessly from the

binding ID. The simplest way to do this is to name the user after the binding ID.

You can take one of three approaches to credentials for a service binding:

Static Credentials

Credentials Unique to Each Binding

Use an Agent

Static Credentials

In this case, the same credentials are used for all bindings. One option is to define these credentials

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 104

https://github.com/pivotal-cf-experimental/redis-example-service-adapter/blob/ecf33c082bcd5180cf37ad32de03696fe2a0568f/adapter/redis_manifest_generator.go#L471-L483

in the service instance manifest.

This scenario makes sense for services that use the same credentials for all bindings, such as Redis.

For example:

properties:

 redis:

 password: PASSWORD

Credentials Unique to Each Binding

In this case, when the adapter generate-manifest subcommand is invoked, it generates random

admin credentials and returns them as part of the service instance manifest. When the create-

binding subcommand is invoked, the adapter can use the admin credentials from the manifest to

create unique credentials for the binding. Subsequent create-binding calls create new credentials.

This option makes sense for services whose binding creation resembles user creation, such as

MySQL or RabbitMQ. For example, in MySQL the admin user can be used to create a new user and

database for the binding:

properties:

 admin_password: ADMIN-PASSWORD

Use an Agent

In this case, the author defines an agent responsible for handling the creation of credentials unique

to each binding. The agent must be added as a BOSH release in the service manifest. Moreover, the

service and agent jobs should be colocated in the same instance group.

This option is useful for services where the adapter cannot, or tends not, to directly call out to the

service instance and instead delegates responsibility for setting up new credentials to an agent.

For example:

releases:

 - name: service-release

 version: 1.5.7

 - name: credentials-agent-release

 version: 4.2.0

instance_groups:

 - name: service-group

 jobs:

 - name: service-job

 release: service-release

 - name: credentials-agent-job

 release: credentials-agent-release

Enable ODB to Obtain BOSH DNS Addresses

Note: This feature requires v266.3 or later of the BOSH Director. This is available in

Ops Manager v2.2 and later.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 105

You can configure ODB to provide BOSH DNS addresses for service instances to the service adapter

create-binding and delete-binding calls. This is useful when the binding for a service instance

contains, or relies on, BOSH DNS addresses for that deployment. For more information about how

DNS addresses are passed to the create-binding and delete-binding calls, see DNS-ADDRESSES-

JSON.

To enable ODB to provide service instance DNS addresses to the create-binding and delete-

binding calls, do the following:

1. Provide a link from the service instance’s BOSH release. Choose any job in the service

release and add the link to its spec file.

For example:

name: redis-server-job

...

provides:

 - name: example-link-1

 type: example-type

For an example spec file, see the Redis Example Service Release.

2. Write code in the service adapter that shares the link you provided above in the BOSH

manifest generated for your service instance deployment. Share the link in the same job that

you added the link to in step 1. Include the link in all instance groups that require a DNS

address at binding time.

For example:

instance_groups:

- name: leader-node

 jobs:

 - name: redis-server-job

 release: redis-cluster-release

 provides: # add this section

 example-link-1: {shared: true}

 ...

Use Generic BOSH Configs with Service Instances

The service adapter can generate generic BOSH configs and use ODB to apply them to the BOSH

Director before deployment of the service instance. This enables the service author to provide

service instance-specific BOSH configs which exist only for the lifetime of the service instance.

See the BOSH documentation for more details about generic BOSH configs.

To return a BOSH config fragment specific to a service instance manifest, it must be included in the

response from the generate-manifest command, as in the example below.

{

 "manifest": "

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 106

https://github.com/pivotal-cf-experimental/redis-example-service-release/blob/master/jobs/redis-server/spec
https://bosh.io/docs/configs/

 name: MY-SERVICE-INSTANCE

 instance_groups:

 - vm_type: MY-SERVICE-INSTANCE-small",

 "configs": {

 "cloud":"

 vm_types:

 - name: MY-SERVICE-INSTANCE-small

 cloud_properties:

 cpu: 1"

 }

}

Where MY-SERVICE-INSTANCE is your service instance.

ODB takes the configs in the output and for each entry creates a generic BOSH config on the

director, using the map key as the config type and using the service instance deployment name as

the config name. If the example above were applied using the BOSH CLI, it would look similar to

this:

$ echo <content of configs["cloud"]> > config.yml

$ bosh update-config --type cloud --name MY-SERVICE-INSTANCE config.yml

The valid config types are: cloud, cpi and runtime.

The configs are scoped for the BOSH team client ODB is deployed with and they are applied to

subsequently deployed service instances.

On updates, ODB passes the BOSH configs previously set for the instance to the service adapter on

generate-manifest. When the service adapter returns a new value for an existing type, the

configuration is overwritten. When no value is returned for an existing type, that type remains as is.

When new types are passed, those are set.

When the service instance is deleted, all the associated BOSH configs are also be deleted.

Handle Errors

If a subcommand fails, the adapter must return a non-zero exit status and, optionally, print to stdout

or stderr.

When a subcommand exits with an unrecognized exit code anything printed to stdout is returned to

the CF CLI user.

Both the stdout and stderr streams are printed in the broker log for the operator. For that reason,

Pivotal recommends not printing the manifest or other sensitive details to stdout or stderr, because

ODB does no validation on this output.

For an example implementation, see Kafka example service adapter on GitHub.

Package a Service Adapter

Note: Pivotal recommends that service adapters also namespace their configuration

to avoid depending on a config value, which might be deleted in the future when the

associated service instance is removed.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 107

https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/892d48b066c9b1d2651080484a53531001e9e920/adapter/create_binding.go#L27-L29

Package the service adapter as a BOSH release. The operator should colocate the service adapter

release with the ODB release in a BOSH manifest to place the adapter executable on the same VM

as the ODB server. As a result, the adapter BOSH job’s monit file should have no processes

defined.

See the following example service adapter releases:

kafka-example-service-adapter-release

redis-example-service-adapter-release

For more information about how to create a BOSH release, see Creating a Release in the BOSH

documentation.

On-Demand Services Golang SDK

Pivotal has published an SDK for teams writing their service adapters in golang. It covers command

line invocation handling, parameter parsing, response serialization, and error handling so the adapter

authors can focus on the service-specific logic in the adapter. For more information about the

Golang SDK, see the on demand service SDK repository on GitHub.

The SDK supports properties in two levels for the generated BOSH manifest, manifest global and job

level. Global properties are deprecated in BOSH, in favor of job level properties and job links.

For an example of property generation, see the Kafka example service adapter.

Use the SDK

Perform the following steps to use the SDK:

1. Install the SDK by running the following go get command:

go get github.com/pivotal-cf/on-demand-services-sdk

Use the same version of the SDK as your ODB release. For example, if you are using v0.8.0

of the ODB BOSH release, you should check out the v0.8.0 tag of the SDK.

2. In the main function for the service adapter, call the HandleCLI function:

package main

import (

 "log"

 "os"

 "URL-FOR-SERVICE-ADAPTER-REPOSITORY"

 "github.com/pivotal-cf/on-demand-services-sdk/serviceadapter"

)

func main() {

 logger := log.New(os.Stderr, "[SERVICE-ADAPTER-NAME] ", log.LstdFlags)

 manifestGenerator := adapter.ManifestGenerator{}

 binder := adapter.Binder{}

 dashboardUrlGenerator := adapter.DashboardUrlGenerator{}

 handler := serviceadapter.CommandLineHandler{

 ManifestGenerator: manifestGenerator,

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 108

https://github.com/pivotal-cf-experimental/kafka-example-service-adapter-release
https://github.com/pivotal-cf-experimental/redis-example-service-adapter-release
https://bosh.io/docs/create-release/
https://github.com/pivotal-cf/on-demand-services-sdk
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/4a27c55ff6ea4a62e95e9a57e100333af5b24573/adapter/generate_manifest.go#L100-L129

 Binder: binder,

 DashboardURLGenerator: &adapter.DashboardUrlGenerator{},

 SchemaGenerator: adapter.SchemaGenerator{},

 }

 serviceadapter.HandleCLI(os.Args, handler)

}

Where:

URL-FOR-SERVICE-ADAPTER-REPOSITORY is the repository containing your service

adapter, for example github.com/bar-org/foo-service-adapter/adapter.

SERVICE-ADAPTER-NAME is the name of the service adapter, for example foo-service-

adapter.

Interfaces

The HandleCLI function accepts structs that implement the interfaces below. For more information

about the corresponding adapter interfaces, see Subcommands in the Adapter Interface.

type CommandLineHandler struct {

 ManifestGenerator ManifestGenerator

 Binder Binder

 DashboardURLGenerator DashboardUrlGenerator

 SchemaGenerator SchemaGenerator

}

Service adapters provide the following to the CommandLineHandler:

A ManifestGenerator, required for all service adapters:

type ManifestGenerator interface {

 GenerateManifest(params GenerateManifestParams) (GenerateManifestOutput, er

ror)

}

type GenerateManifestParams struct {

 ServiceDeployment ServiceDeployment

 Plan Plan

 RequestParams RequestParameters

 PreviousManifest *bosh.BoshManifest

 PreviousPlan *Plan

 PreviousSecrets ManifestSecrets

 PreviousConfigs BOSHConfigs

}

type GenerateManifestOutput struct {

 Manifest bosh.BoshManifest `json:"manifest"`

 ODBManagedSecrets ODBManagedSecrets `json:"secrets"`

 Configs BOSHConfigs `json:"configs"`

}

Note: The HandleCommandLineInvocation function is deprecated, but to see

its functionality, see Usage.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 109

https://docs.pivotal.io/svc-sdk/odb/0-19/creating.html#usage

A Binder, required for most service adapters:

type Binder interface {

 CreateBinding(params CreateBindingParams) (Binding, error)

 DeleteBinding(params DeleteBindingParams) error

}

type CreateBindingParams struct {

 BindingID string

 DeploymentTopology bosh.BoshVMs

 Manifest bosh.BoshManifest

 RequestParams RequestParameters

 Secrets ManifestSecrets

 DNSAddresses DNSAddresses

}

type DeleteBindingParams struct {

 BindingID string

 DeploymentTopology bosh.BoshVMs

 Manifest bosh.BoshManifest

 RequestParams RequestParameters

 Secrets ManifestSecrets

 DNSAddresses DNSAddresses

}

A DashboardUrlGenerator, optional:

type DashboardUrlGenerator interface {

 DashboardUrl(params DashboardUrlParams) (DashboardUrl, error)

}

type DashboardUrlParams struct {

 InstanceID string

 Plan Plan

 Manifest bosh.BoshManifest

}

A SchemaGenerator, optional

type SchemaGenerator interface {

 GeneratePlanSchema(params GeneratePlanSchemaParams) (PlanSchema, error)

}

type GeneratePlanSchemaParams struct {

 Plan Plan

}

Helpers

The helper function GenerateInstanceGroupsWithNoProperties can generate the instance groups for

the BOSH manifest from the arguments passed to the adapter.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 110

One of the inputs for this function is deploymentInstanceGroupsToJobs, where instance groups are

mapped to jobs for the deployment. The service author must provide this mapping. The helper

function does not address job level properties for the generated instance groups; the service author

must provide these properties. For an example implementation, see the job mapping in the Kafka

example adapter on GitHub.

The SDK provides the methods ArbitraryContext and Platform. These are used to extract the

context property from the request parameters and the platform property from within the context.

The context in the response is a feature of Open Service Broker API (OSBAPI) v2.13 specifications

and is used to pass through information about the environment in which the platform or app is

executing. See the OSBAPI v2.13 specification on GitHub for more information. If the platform does

not provide a context, the SDK returns empty values.

Error Handling

Any error returned by the interface functions is considered to be for the Cloud Foundry CLI user and

is printed to stdout.

The adapter code is responsible for performing any error logging to stderr that the authors think is

relevant for the operator logs.

There are three specialized errors for the CreateBinding function, which allow the adapter to exit

with the appropriate code:

serviceadapter.NewBindingAlreadyExistsError()

serviceadapter.NewBindingNotFoundError()

serviceadapter.NewAppGuidNotProvidedError()

For more complete code examples, see the Kafka example service adapter on GitHub and the Redis

example service adapter on GitHub.

BOSH Features

Service authors can enable configuration of BOSH Features in their service adapters.

The SDK provides the BoshFeatures struct below, with the option to add extra features using the

ExtraFeatures map:

type BoshFeatures struct {

 UseDNSAddresses *bool `yaml:"use_dns_addresses,omitempty"`

 RandomizeAZPlacement *bool `yaml:"randomize_az_placement,omitempt

y"`

 UseShortDNSAddresses *bool `yaml:"use_short_dns_addresses,omitemp

ty"`

 ExtraFeatures map[string]interface{} `yaml:"extra_features,inline"`

}

For an example implementation, see the Redis example service adapter in GitHub.

For more information about BOSH Features, see the BOSH documentation.

Create a pull request or raise an issue on the source for this page in GitHub

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 111

https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/generate_manifest.go#L15-L21
https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter
https://github.com/pivotal-cf-experimental/redis-example-service-adapter
https://github.com/pivotal-cf-experimental/redis-example-service-adapter/blob/4f78b89d791733d025ae96f4056eb6840989818e/adapter/redis_manifest_generator.go#L215-L222
https://bosh.io/docs/manifest-v2.html#features
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/service-adapter.html.md.erb

Creating an On-Demand Service Tile

This topic describes how to build an on-demand service tile using the Tile Generator. For an

example tile, see the example-kafka-on-demand-tile in GitHub. For a list of available manifest

properties for the broker, see the broker job spec in GitHub.

Requirements

To build an on-demand tile you need the following releases:

On Demand Service Broker (ODB)—Download ODB from Pivotal Network.

Your service adapter—Get this from the service author.

Your service release—Get this from the release author.

About Networks

When using the ODB in a tile with Ops Manager v2.0 and earlier, you need at least two private

networks:

A network where Ops Manager deploys the on-demand broker VM

A different network where the on-demand broker deploys service instance VMs

The network for service instances should be flagged as a Service Network in Ops Manager.

Build a Tile for an On-Demand Service

There are several methods you can use to build a tile. This topic describes how to build a tile using

the Tile Generator.

To use the Tile Generator to build a tile for an on-demand service, do the following:

1. Generate a tile.yml file by doing steps 1–4 of How to Use.

2. Add accessors, on-demand broker lifecycle errands, and optional features to the tile.yml

file generated in step 1. This provides configuration for the ODB and additional configuration

options for operators to select in Ops Manager.

For more information about what to add to the tile.yml, see the following sections below:

Add Accessors

Add On-Demand Broker Lifecycle Errands

(Optional) Allow Public IP Addresses for On-Demand Service Instance Groups

(Optional) Enable Floating Stemcells

(Optional) Allow Secure Binding

Note: For Ops Manager v2.1 and later, you do not need separate networks for the

on-demand broker and service instances. However, Pivotal recommends that you

have at least two networks as described above.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 112

https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/tree/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f
https://github.com/pivotal-cf/on-demand-service-broker-release/blob/master/jobs/broker/spec
https://network.pivotal.io/products/on-demand-services-sdk/
http://docs.pivotal.io/tiledev/tile-generator.html#how-to

3. Build your tile by running the following command:

tile build

Add Accessors

The ODB requires tiles to be configured with certain information. You must add accessors to the

tile.yml file to provide values that operators cannot configure in Ops Manager.

Add the following accessors to your tile.yml file:

director

Ops Manager uses these accessors to get values relating to the BOSH Director installation. For the

on-demand broker to interact with BOSH Director, on-demand service tiles must be configured with

credentials for managing BOSH deployments.

The following table lists the accessors you must add:

Accessor Description

$director.hostname The director’s hostname or IP address

$director.ca_public_key The director’s root ca certificate. Related: Configure SSL Certificates.

For example:

bosh:

 url: https://(($director.hostname)):25555

 root_ca_cert: (($director.ca_public_key))

To see this example in context, see the example-kafka-on-demand-tile.

self

Ops Manager uses these accessors to get values that have been assigned to the tile after installation.

To enable $self accessors, set service_broker: true at the top level of your tile.yml file.

The following table lists the accessors you must add:

Accessor Description

$self.uaa_client_name UAA client name that can authenticate with the BOSH Director

$self.uaa_client_secret UAA client secret that can authenticate with the BOSH Director

Note: The accessors in this section are mandatory. For other accessors, see Ops

Manager Provided Snippets.

Note: Setting service_broker: true causes the BOSH Director to redeploy when

installing or uninstalling the tile.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 113

https://docs.pivotal.io/tiledev/product-template-reference.html#ops-man-snippets
https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L104-L106

Accessor Description

$self.stemcell_version The stemcell that the service deployment uses

$self.service_network Service network configured for the on-demand instances

The service network has to be created manually. Create a subnet on AWS and then add it to the

director. In the BOSH Director tile, under Create Networks > ADD network > fill in the subnet/vpc

details.

For example:

bosh:

 authentication:

 uaa:

 url: https://(($director.hostname)):8443

 client_id: (($self.uaa_client_name))

 client_secret: (($self.uaa_client_secret))

To see this example in context, see the example-kafka-on-demand-tile.

(Optional) cf(Optional) cf

Ops Manager uses these accessors to get values from the Pivotal Application Service (PAS) tile. If

you want to use PAS, add these accessors to your tile.yml file.

The following table lists the accessors you must add to use PAS:

Accessor Description

..cf.ha_proxy.skip_cert_verify.value Flag to skip SSL certificate verification for connections to the CF API

..cf.cloud_controller.apps_domain.valu

e

The application domain configured in the CF installation

..cf.cloud_controller.system_domain.val

ue

The system domain configured in the CF installation

..cf.uaa.system_services_credentials.ide

ntity

Username of a CF user in the cloud_controller.admin group, to be used

by services

..cf.uaa.system_services_credentials.pas

sword

Password of a CF user in the cloud_controller.admin group, to be used

by services

For example:

disable_ssl_cert_verification: ((..cf.ha_proxy.skip_cert_verify.value))

cf:

 url: https://api.((..cf.cloud_controller.system_domain.value))

 authentication:

 url: https://uaa.((..cf.cloud_controller.system_domain.value))

 user_credentials:

 username: ((..cf.uaa.system_services_credentials.identity))

 password: ((..cf.uaa.system_services_credentials.password))

To see this example in context, see the example-kafka-on-demand-tile.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 114

https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L107-L111
https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L103-L119

Add On-Demand Broker Lifecycle Errands

The example-kafka-on-demand-tile example shows how the errands in the on-demand broker

release can be used.

Pivotal recommends that you add the errands below to your tile. The errands should be specified in

the following order:

Post-deploy:

register-broker

upgrade-all-service-instances

Pre-delete:

delete-all-service-instances-and-deregister-broker

For more information about these errands, see Broker and Service Management.

Upgrade All Service Instances Errand

The upgrade-all-service-instances errand can be configured with two parameters:

The number of simultaneous upgrades

The number of canary instances

For more information about these parameters, see Upgrade All Service Instances.

The example example-kafka-on-demand-tile shows how to create a tab with fields to configure the

parameters for this errand. The example tile has constraints to ensure the number of simultaneous

upgrades is greater than one and the number of canaries is greater than zero.

(Optional) Allow Public IP Addresses for On-Demand Service
Instance Groups

Ops Manager provides a VM extension called public_ip in the BOSH Director’s cloud config. Use

this feature to give Ops Manager operators the option to assign a public IP address to instance

groups. This IP is only used for outgoing traffic to the internet from VMs with the public_ip

extension. All internal traffic / incoming connections need to go over the private IP.

To allow operators to a assign public IP addresses to on-demand service instance groups, update

your tile.yml file as follows:

1. Add the following to the form_types section:

For example:

 form_types:

 - name: example_form

 property_inputs:

 - reference: .broker.example_vm_extensions

 label: VM options

 description: List of VM options for Service Instances

2. Add the following to the job_types section:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 115

https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/tree/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f
https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/tree/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f

For example:

 job_types:

 - name: broker

 templates:

 - name: broker

 release: on-demand-service-broker

 manifest: |

 service_catalog:

 plans:

 - name: example-plan

 instance_groups:

 - name: example-instance-group

 vm_extensions: ((.broker.example_vm_extensions.value)) # add th

is line

3. Add the following to the property_blueprints section under the broker job:

For example:

 property_blueprints: # add this section

 - name: example_vm_extensions

 type: multi_select_options

 configurable: true

 optional: true

 options:

 - name: "public_ip"

 label: "Internet Connected VMs (on supported IaaS providers)"

(Optional) Enable Floating Stemcells

Ops Manager provides a feature called Floating Stemcells that allows PCF to quickly propagate a

patched stemcell to all VMs in the deployment that have the same compatible stemcell. Both the

broker deployment and the service instances deployed by the On-Demand Broker can make use of

this feature. Enabling this feature can help ensure that all of your service instances are patched to

the latest stemcell.

For the service instances to be installed with the latest stemcell automatically, ensure that the

upgrade-all-service-instances errand is selected.

To enable floating stemcells for your tile, update your tile.yml file as follows:

1. Implement floating stemcells.

For example:

job_types:

 templates:

 - name: broker

 manifest: |

 service_deployment:

 releases:

 - name: release-name

 version: 1.0.0

 jobs: [job_server]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 116

https://docs.pivotal.io/pivotalcf/customizing/understanding-stemcells.html

 stemcells:

 - os: ubuntu-trusty

 version: (($self.stemcell_version)) # Add this line

2. Configure the stemcell_criteria.

For example:

name: example-on-demand-service

product_version: 1.0.0

stemcell_criteria:

 os: ubuntu-trusty

 version: '3312'

 enable_patch_security_updates: true # Add this line

(Optional) Allow Secure Binding

You can give Ops Manager operators the option to enable secure binding. If secure binding is

enabled, service instance credentials are stored securely in runtime CredHub. When users create

bindings or service keys, ODB passes a secure reference to the service credentials through the

network instead of plain text.

To include the option to enable secure binding, update your tile.yml file as follows:

1. Add secure_binding_credentials to the top-level properties block in the on-demand broker

manifest.

For example:

secure_binding_credentials:

 enabled: true

 authentication:

 uaa:

 client_id: CREDHUB_CLIENT_ID # client ID used by broker when communicatin

g with CredHub

 client_secret: CREDHUB_CLIENT_SECRET # client secret used by broker when

communicating with CredHub

 ca_cert: UAA_CA_CERT

2. To let users enable and disable this feature in the Ops Manager UI, you need to make some

changes to your tile’s metadata file:

1. Add a form field to allow the user to enable/disable secure bindings. For an example

form field, see the example-kafka-on-demand-tile.

2. Add an element in property_blueprints that reads the setting in the form field and

exposes the appropriate manifest snippet for CredHub and secure binding. For an

example property_blueprints section, see the example-kafka-on-demand-tile.

Note: To use the secure binding credentials feature you must use PCF v2.0 or later.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 117

https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L39-L46
https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L606-L632

3. Change the broker job so that it consumes the CredHub BOSH link from the

property_blueprints section. For an example broker job, see the example-kafka-

on-demand-tile.

4. Change the broker job so that it consumes the generated secure bindings manifest

snippet. For an example broker job, see the example-kafka-on-demand-tile.

Create a pull request or raise an issue on the source for this page in GitHub

Service Adapter Interface Reference

This topic describes the subcommands used with the Service Adapter Interface.

Service Adapter Interface

Implement your service adapter as a binary. The service adapter receives its parameters as a JSON

document using stdin.

For example service adapters, see the following examples written in golang:

Redis

Kafka

A service adapter is expected to respond to the subcommands. For each of these subcommands,

the following applies:

An exit status of 0 indicates that the command succeeded.

An exit status of 10 indicates not implemented.

Any non-zero exit status indicates failure.

For a list of possible subcommands and the structure of the JSON document passed via stdin, see

the subcommands below.

generate-manifest

This section contains the following topics:

Input Parameters

Output

Note: The Redis and Kafka examples above use the SDK to help with cross-cutting

concerns. For example, reading the JSON document from stdin.

Notes:

The on-demand broker (ODB) requires generate-manifest to be

idempotent. Given the same arguments when a previous manifest is

supplied—which happens during a deployment update—the command

should always output the same BOSH manifest.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 118

https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L96
https://github.com/pivotal-cf-experimental/example-kafka-on-demand-tile/blob/e206e04a1eb80a5f53a5edd9a1f11e096bea5f4f/metadata_parts/handcraft.yml#L112
http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/tile.html.md.erb
https://github.com/pivotal-cf-experimental/redis-example-service-adapter
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter

Input Parameters

This section details the parameters provided to the generate-manifest subcommand using stdin.

See the following example:

{

 "generate_manifest": {

 "service_deployment": "SERVICE-DEPLOYMENT-JSON",

 "plan": "PLAN-JSON",

 "previous_plan": "PREVIOUS-PLAN-JSON",

 "previous_manifest": "PREVIOUS-MANIFEST-YAML",

 "request_parameters": "REQUEST-PARAMETERS-JSON",

 "previous_secrets": "PREVIOUS-SECRETS-JSON",

 "previous_configs": "PREVIOUS-CONFIGS-JSON"

 }

}

All arguments are passed as strings, not JSON objects.

For example:

{

 "generate_manifest": {

 "service_deployment": "{\"deployment_name\":\"some-name\"...}"

 // ...

 }

}

SERVICE-DEPLOYMENT-JSON

SERVICE-DEPLOYMENT-JSON provides information regarding the BOSH Director.

When determining whether there are pending changes for an instance

during an update, ODB ignores any configuration supplied in the update

block of the manifest returned by the generate-manifest subcommand.

Service Authors should ensure that the service releases and stemcells satisfy

the functional requirements of the service adapter. This can be achieved, for

example, by checking that the service release satisfies a minimum version

constraint.

Note: Pivotal recommends that service authors use the following order of

precedence in their service adapters when generating manifests:

1. Arbitrary parameters

2. Previous manifest properties

3. Plan properties

For an example, see auto_create_topics in the example Kafka service adapter.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 119

https://bosh.io/docs/deployment-manifest.html#update
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/generate_manifest.go#L68-L77

The following table describes the JSON structure required for SERVICE-DEPLOYMENT-JSON:

Field Type Description

deployment_name string Name of the deployment on the Director, in the format service-

instance_GUID

releases array of

releases

List of service releases configured for the deployment by the operator

release.name string Name of the release on the Director

release.version string Version of the release

release.jobs array of strings List of jobs required from the release

stemcells array of

stemcells

The stemcells available on the Director

stemcell.stemcell_os string Stemcell OS available on the Director

stemcell.stemcell_versi

on

string Stemcell version available on the Director

For example:

{

 "deployment_name": "service-instance_GUID",

 "releases": [{

 "name": "kafka",

 "version": "dev.42",

 "jobs": [

 "kafka_node",

 "zookeeper"

]

 }],

 "stemcells": [{

 "stemcell_os": "BeOS",

 "stemcell_version": "2"

 }, {

 "stemcell_os": "Windows",

 "stemcell_version": "3"

 }]

}

Keep in mind the following:

ODB only supports using exact release and stemcell versions. The use of latest and floating

stemcells are not supported.

Your Service Adapter should be opinionated about which jobs it requires to generate its

manifest. For example, the Kafka example requires kafka_node and zookeeper. It should not

be opinionated about the mapping of BOSH release to job. The jobs can all be provided by

one release or across many. The SDK provides the helper function

GenerateInstanceGroupsWithNoProperties for generating instance groups without any

properties. The Kafka example service adapter uses this helper function and invokes it to

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 120

https://github.com/pivotal-cf/on-demand-services-sdk/blob/master/serviceadapter/instance_group_mapping.go
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/adapter.go
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/generate_manifest.go

map the service releases parameter to the BOSH manifest releases and instance_groups

sections.

You should provide documentation about which jobs are required by your Service Adapter,

and which BOSH releases operators should get these jobs from.

PLAN-JSON

PLAN-JSON specifies the plan that the manifest is generated for.

The following table describes the schema of the JSON structure required for PLAN-JSON:

Field Type Description

instance_groups array of

instance

groups

Instance groups configured for the plan

instance_group.nam

e

string Name of the instance group

instance_group.vm_t

ype

string The vm_type configured for the instance group, matches one in the cloud

config on the director

instance_group.vm_

extensions

array of

strings

Optional, the vm_extensions configured for the instance group, must be

present in the cloud config on the director

instance_group.persi

stent_disk_type

string Optional, the persistent_disk_type configured for the instance group,

matches one in the cloud config on the director

instance_group.netw

orks

array of

strings

The networks the instance group is supposed to be in

instance_group.insta

nces

int Number of instances for the instance group

instance_group.lifecy

cle

string Optional, specifies the kind of workload the instance group represents. Valid

values are service and errand; defaults to service

instance_group.azs array of

strings

A list of availability zones that the instance groups should be striped across

instance_group.migr

ated_from

array of

migrations

Optional, list of bosh migrations

migration.name string Optional, name of the instance group to be migrated from

properties map Properties which the operator has configured for deployments of the current

plan

lifecycle_errands map Optional, details of post-deploy and pre-delete errands

lifecycle_errands.post

_deploy

array of

errands

Optional, post-deploy errands configured for the plan

lifecycle_errands.pre

_delete

array of

errands

Optional, pre-delete errands configured for the plan

errand.name string Errand name

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 121

https://bosh.io/docs/migrated-from.html

Field Type Description

errand.instances array of

strings

Optional, for a colocated errand, specify a list of INSTANCE-

NAME/INSTANCE-IDX to run the errand

update map Update block which the operator has configured for deployments of the

current plan

update.canaries int Plan-specific number of canary instances

update.max_in_flight int Plan-specific maximum number of non-canary instances to update in

parallel

update.canary_watch

_time

string Plan-specific time in milliseconds that the BOSH Director sleeps before

checking whether the canary instances are healthy

update.update_watc

h_time

string Plan-specific time in milliseconds that the BOSH Director sleeps before

checking whether the non-canary instances are healthy

update.serial boolean Optional, plan-specific flag to deploy instance groups sequentially (true), or

in parallel (false); defaults to true

For example:

{

 "instance_groups": [

 {

 "name": "example-server",

 "vm_type": "small",

 "vm_extensions": [

 "some",

 "extensions"

],

 "persistent_disk_type": "ten",

 "networks": [

 "example-network"

],

 "azs": [

 "example-az"

],

 "instances": 1,

 "migrated_from": [

 {

 "name": "old-example-server"

 }

]

 },

 {

 "name": "example-migrations",

 "vm_type": "small",

 "persistent_disk_type": "ten",

 "networks": [

 "example-network"

],

 "instances": 1,

 "lifecycle": "errand"

 }

],

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 122

 "properties": {

 "example": "property"

 },

 "lifecycle_errands": {

 "post_deploy": [

 {

 "name": "health-check"

 },

 {

 "name": "init-replication",

 "instances": ["primary-node/0"]

 }

],

 "pre_delete": [

 {

 "name": "cleanup",

 "instances": ["example-server/0"]

 }

]

 },

 "update": {

 "canaries": 1,

 "max_in_flight": 2,

 "canary_watch_time": "1000-30000",

 "update_watch_time": "1000-30000",

 "serial": true

 }

}

Plans are composed by the operator and consist of resource mappings, properties, and an optional

update block.

Resource Mappings

The instance_groups section of the plan JSON. This maps service deployment instance groups

(defined by the service author) to resources (defined by the operator).

You should document the list of instance group names required for a deployment, for example,

“redis-server”. You should also document any recommended resource constraints. For example,

operators must add a persistent disk if the persistence property is enabled. You can enforce these

constraints in code.

The instance_groups section also contains a field for lifecycle, which can be set by the operator.

The service adapter adds a lifecycle field to the instance group within the BOSH manifest when

specified.

Properties

Properties are service-specific parameters that you choose. The Redis example exposes a property

persistence, which takes a boolean value and toggles disk persistence for Redis. You should

document these properties for the operator.

(Optional) Update Block

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 123

This block defines a plan-specific configuration for BOSH’s update instance operation. Although the

ODB considers this block optional, the service adapter must output an update block in every

manifest it generates. Some ways to achieve that are:

1. (Recommended) Define a default update block for all plans, which is used when a plan-

specific update block is not provided by the operator.

2. Hard code an update block for all plans in the service adapter.

3. Make the update block mandatory, so that operators must provide an update block for every

plan in the service catalog section of the ODB manifest.

REQUEST-PARAMS-JSON

This is a JSON object that holds the entire body of the service provision or service update request

sent by the Cloud Controller to the service broker. The request parameters JSON will be null for

upgrades.

The field context holds platform-specific contextual information under which the service instance is

to be provisioned.

The field parameters contains arbitrary key-value pairs that were passed by the application developer

as a cf CLI parameter when creating or updating the service instance. They allow Cloud Foundry

users to override the default configuration for a service plan. For example, the Kafka service adapter

supports the auto_create_topics arbitrary parameter to configure auto-creation of topics on the

cluster.

For example:

{

 "context": {

 "platform": "cloudfoundry",

 "some_field": "some-contextual-data"

 },

 "organization_guid": "org-guid-here",

 "parameters": {

 "parameter1": {

 "sub-param1": 1,

 "sub-param2": "some-info"

 }

 },

 "plan_id": "plan-id-here",

 "service_id": "service-id-here",

 "space_guid": "space-guid-here"

}

PREVIOUS-MANIFEST-YAML

Note: When updating an existing service instance, any arbitrary parameters passed

on a previous create or update are not passed again. Therefore, for arbitrary

parameters to stay the same across multiple deployments they must be retrieved

from the previous manifest.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 124

http://docs.cloudfoundry.org/services/api.html#provisioning
http://docs.cloudfoundry.org/services/api.html#updating-a-service-instance
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/generate_manifest.go

PREVIOUS-MANIFEST-YAML represents the previous BOSH deployment manifest for the service

instance. If you have a new deployment, the YAML file is empty.

The manifest format matches the BOSH v2 manifest. For more information about the BOSH v2

manifest, see Deployment Config in the BOSH documentation.

The service author must perform any necessary service-specific migration logic if previous manifest

is non-nil.

Another use case of the previous manifest is for the migration of deployment properties which need

to stay the same across multiple deployments of a manifest. In the Redis example, we generate a

password when we do a new deployment. But, when the previous deployment manifest is provided,

we copy the password over from the previous deployment, because generating a new password for

existing deployments will break existing bindings.

For an example, see the example Redis service adapter.

PREVIOUS-PLAN-JSON

This argument takes the previous plan as a JSON string.

The previous plan is nil if this is a new deployment.

The format of the plan should match the plan schema. The previous plan can be used for complex

plan migration logic. For an example, the Kafka service adapter rejects a plan migration if the new

plan reduces the number of instances, to prevent data loss.

PREVIOUS-SECRETS-JSON

If enable_secure_manifests is set to true in the broker, any secrets that use references to BOSH-

generated variables or literal CredHub paths in the previous service instance manifest are resolved

and sent to the adapter in the PREVIOUS-SECRETS-JSON parameter.

These secrets are passed during updates but not during upgrades.

If enable_secure_manifests is set to false in the broker, then the PREVIOUS-SECRETS-JSON

parameter is empty.

The following is an example previous service instance manifest:

...

password: ((redis_password))

root_ca: ((/global/root_ca))

variables:

- name: redis_password

 type: password

The service instance manifest snippet above produces a secrets JSON parameter similar to the

WARNING: If the service adapter does not migrate properties from the old manifest

to the new one, the update fails.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 125

https://bosh.io/docs/manifest-v2/
https://github.com/pivotal-cf-experimental/redis-example-service-adapter/blob/master/adapter/redis_manifest_generator.go#L112-L123
https://github.com/pivotal-cf-experimental/redis-example-service-adapter/blob/master/adapter/redis_manifest_generator.go#L333-L338
https://github.com/pivotal-cf-experimental/redis-example-service-adapter/blob/master/adapter/redis_manifest_generator.go#L333-L338
#plan-schema
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/generate_manifest.go#L27:L33

following. The keys are the reference names, and the values are the resolved secrets:

{

 "((redis_password))": "some-bosh-generated-password",

 "((/global/root_ca))": "some-global-value"

}

PREVIOUS-CONFIGS-JSON

This argument provides the previous BOSH configs specified for the service instance. If populated, it

will contain a map of config types to config content. For example:

{

 "cloud":"

 vm_types:

 - name: my-service-instance-small

 cloud_properties:

 cpu: 1"

}

Output

The following table describes the supported exit codes and output for the generate-manifest

subcommand:

Exit

code
Description Output

0 success Stdout: JSON document containing the BOSH manifest YAML, a map of adapter-

generated secrets to be managed by ODB, and a map of BOSH configs

10 not

implemente

d

anythi

ng else

failure Stdout: optional error message for CF CLI users

Stderr: error message for operator

ODB logs both stdout and stderr

Example JSON output printed when the generate-manifest command is successful:

{

 "manifest": "GENERATED-BOSH-MANIFEST-YAML",

 "secrets": { "secret1":"value1", "secret2":"value2" },

 "configs": {

 "cloud":"

 vm_types:

 - name: my-service-instance-small

Note: You can find the secrets key by accessing the manifest field that contains the

reference to the variable.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 126

 cloud_properties:

 cpu: 1"

 }

}

dashboard-url

This section contains the following topics:

Input Parameters

Output

Input Parameters

The following section details the parameters provided to the dashboard-url subcommand using

stdin.

See the following example:

{

 "dashboard_url": {

 "instance_id": "SERVICE-INSTANCE-ID",

 "plan": "PLAN-JSON",

 "manifest": "MANIFEST-YAML"

 }

}

All the arguments are passed as strings and not JSON objects.

For example:

{

 "dashboard_url": {

 ...

 "manifest": "---\nname: my-service-instance\n..."

 }

}

SERVICE-INSTANCE-ID

This parameter is the unique identifier of the service instance provided by the Cloud Controller. For

example, 42a09f38-c15b-47fe-a24e-ebf5f83ebd0.

PLAN-JSON

This parameter is the current plan for the service instance as JSON. The structure should be the

same as the plan given in the generate manifest.

See the following example:

{

 "properties": {

 "persistence": true

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 127

#plan

 },

 "lifecycle_errands": {

 "post_deploy": [],

 "pre_delete": []

 },

 "instance_groups": [

 {

 "name": "my-example-server",

 "vm_type": "t2.small",

 "persistent_disk_type": "10GB",

 "instances": 1,

 "networks": [

 "default"

],

 "azs": [

 "z1"

]

 }

]

}

MANIFEST-YAML

This parameter is the current manifest as YAML.

The manifest format matches the BOSH v2 manifest. For more information about the BOSH v2

manifest, see Deployment Config in the BOSH documentation.

See the following example:

name: my-service-instance

releases:

- name: my-service

 version: 1.1.0

stemcells:

- alias: only-stemcell

 os: ubuntu-trusty

 version: "3468.1"

instance_groups:

- name: my-example-server

 instances: 1

 jobs:

 - name: my-example-server

 release: my-service

 vm_type: t2.small

 stemcell: only-stemcell

 persistent_disk_type: 10GB

 azs:

 - z1

 networks:

 - name: default

 properties:

 some-parameter:

 param1: "some-value"

 param2: 1

update:

 canaries: 4

 canary_watch_time: 30000-240000

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 128

https://bosh.io/docs/manifest-v2/

 update_watch_time: 30000-240000

 max_in_flight: 4

tags:

 product: my-product

addons:

- name: some-addon

 jobs:

 - name: my-example-server

 release: my-service

Output

The following table describes the supported exit codes and output for the dashboard-url

subcommand:

Exit code Description Output

0 success Stdout: dashboard URL JSON

10 not implemented

anything else failure Stdout: optional error message for CF CLI users

Stderr: error message for operator

ODB logs both stdout and stderr

Example JSON output printed when the dashboard-url command is successful:

{

 "dashboard_url":"https://someurl.example.com"

}

The following table describes the output JSON above:

Field Type Description

dashboard_url string Dashboard url returned to the cf user

create-binding

This section contains the following topics:

Input Parameters

Output

Input Parameters

The following section details the parameters required by the create-binding subcommand as a

JSON document using stdin.

See the following example:

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 129

{

 "create_binding": {

 "binding_id": "BINDING-ID",

 "bosh_vms": "BOSH-VMS-JSON",

 "manifest": "MANIFEST-YAML",

 "request_parameters": "REQUEST-PARAMETERS-JSON",

 "secrets": "MANIFEST-SECRETS-JSON",

 "dns_addresses": "DNS-ADDRESSES-JSON"

 }

}

All the arguments are passed as strings and not JSON objects.

For example:

{

 "create_binding": {

 // ...

 "bosh_vms": "{\"mysql_node\": [\"192.0.2.1\", \"192.0.2.2\", \"192.0.2.3\"]}"

 }

}

BINDING-ID

This parameter is the binding ID generated by the Cloud Controller.

BOSH-VMS-JSON

This parameter is a JSON map of instance group name to an array of IP addresses provisioned for

that instance group.

See the following example:

{

 "mysql_node": ["192.0.2.1", "192.0.2.2", "192.0.2.3"],

 "management_box": ["192.0.2.4"]

}

This can be used to connect to the instance deployment, if required, or to create a service specific

binding. In the example above, the Service Adapter may connect to MySQL as the admin and create

a user. As part of the binding, the mysql_node IP addresses would be returned, but not the

management_box.

MANIFEST-YAML

This parameter is the current manifest as YAML. This is used to extract information about the

deployment that is necessary for the binding, such as admin credentials with which to create users.

The manifest format matches the BOSH v2 manifest. For more information about the BOSH v2

manifest, see Deployment Config in the BOSH documentation.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 130

https://bosh.io/docs/manifest-v2/

REQUEST-PARAMS-JSON

This parameter is a JSON object that holds the entire body of the service binding request sent by the

Cloud Controller to the service broker.

The field bind_resource contains key-value pairs for app_guid, credential_client_id and route. If

using the golang SDK, the brokerapi.BindResource struct containing these fields can be accessed

using the BindResource() helper method on requestParams.

The field parameters contains arbitrary key-value pairs which were passed by the app developer as a

cf CLI parameter when creating, or updating the service instance. If using the golang SDK, it can be

obtained using the ArbitraryParams() helper method on requestParams.

See the following example:

{

 "app_guid": "app-guid-here",

 "bind_resource": {

 "app_guid": "app-guid-here"

 },

 "context": {

 "platform": "cloudfoundry",

 "some_param": "some-value"

 },

 "parameters": {

 "parameter1": {

 "sub-param1": 1,

 "sub-param2": "some-info"

 }

 },

 "plan_id": "my-plan",

 "service_id": "my-service"

 }

MANIFEST-SECRETS-JSON

If enable_secure_manifests is set to true in the broker, any secrets in the service instance manifest

that use references to BOSH-generated variables or literal CredHub paths are resolved and sent to

the adapter in the MANIFEST-SECRETS-JSON parameter.

If enable_secure_manifests is set to false in the broker, then the MANIFEST-SECRETS-JSON

parameter is empty.

The following is an example service instance manifest:

...

password: ((redis_password))

root_ca: ((/global/root_ca))

variables:

- name: redis_password

 type: password

The service instance manifest snippet above produces a secrets JSON parameter similar to the

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 131

http://docs.cloudfoundry.org/services/api.html#binding

following. The keys are the reference names, and the values are the resolved secrets:

{

 "((redis_password))": "some-bosh-generated-password",

 "((/global/root_ca))": "some-global-value"

}

DNS-ADDRESSES-JSON

When this feature is enabled and a broker is deployed with binding_with_dns set for a plan, the

ODB retrieves DNS addresses from BOSH before calling the adapter. ODB passes these addresses

to the service adapter along with the names given in the binding_with_dns properties.

For how to enable this feature for your on-demand service, see Enable ODB to Obtain BOSH DNS

Addresses.

The following is an example binding_with_dns configuration in the broker manifest:

plans:

 ...

 - name: example-plan

 binding_with_dns:

 - name: leader-address

 link_provider: example-link-1

 instance_group: leader-node

 - name: follower-address

 link_provider: example-link-2

 instance_group: follower-node

The snippet above produces the following in DNS-ADDRESSES-JSON:

{

 "leader-address": "q-s0.leader-node.default.service-instance_c1371314-643f-48b7-b80a

-6741e7377022.bosh",

 "follower-address": "q-s0.follower-node.default.service-instance_c1371314-643f-48b7-

b80a-6741e7377022.bosh"

}

Each entry in binding_with_dns is converted to a single BOSH DNS address using the BOSH links

API.

The On Demand Services SDK includes the DNSAddresses parameter for the CreateBinding and

DeleteBinding methods. The ODB invokes the CreateBinding and DeleteBinding methods with this

parameter, which is a map of name to DNS address.

Output

The following table describes the supported exit codes and output for the create-binding

Note: You can find the secrets key by accessing the manifest field that contains the

reference to the variable.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 132

subcommand:

Exit code Description Output

0 success Stdout: binding credentials JSON

10 subcommand not implemented

42 app_guid not provided in the binding request

body
Stderr: error message for operator

ODB logs both stdout and stderr

49 binding already exists Stderr: error message for operator

ODB logs both stdout and stderr

anything

else

failure Stdout: optional error message for CF CLI

users

Stderr: error message for operator

ODB logs both stdout and stderr

Example JSON output printed when the create-binding command is successful:

{

 "credentials": {

 "username": "user1",

 "password": "reallysecret"

 },

 "syslog_drain_url": "optional: for syslog drain services only",

 "route_service_url": "optional: for route services only"

}

delete-binding

This subcommand should invalidate the credentials that were generated by create-binding if

possible. For example, the subcommand would delete the binding user in MySQL.

This section contains the following topics:

Input Parameters

Output

Input Parameters

This section describes the parameters required by the delete-binding subcommand.

See the following example:

{

 "delete_binding": {

 "binding_id": "BINDING-ID",

 "bosh_vms": "BOSH-VMS-JSON",

 "manifest": "MANIFEST-YAML",

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 133

 "delete_parameters": "DELETE-PARAMETERS-JSON",

 "secrets": "MANIFEST-SECRETS-JSON",

 "dns_addresses": "DNS-ADDRESSES-JSON"

 }

}

All the arguments are passed as strings and not JSON objects.

For example:

{

 "delete_binding": {

 // ...

 "manifest": "---\nname: some-name\n..."

 }

}

BINDING-ID

This parameter is the binding to be deleted.

BOSH-VMS-JSON

This parameter is a map of instance group name to an array of IPs provisioned for that instance

group.

See the following example:

{

 "my-instance-group": ["192.0.2.1", "192.0.2.2", "192.0.2.3"]

}

MANIFEST-YAML

MANIFEST-YAML represents the parameter for the current manifest. BOSH uses the manifest to extract

information about the deployment such as the credentials.

The manifest format matches the BOSH v2 manifest. For more information about the BOSH v2

manifest, see Deployment Config in the BOSH documentation.

For an example, see the Kafka delete binding.

DELETE-PARAMS-JSON

This parameter is a JSON object that holds query string parameters as useful hints for service

brokers. For more information, see the Open Service Broker API documentation.

See the following example:

{

 "plan_id":"my-plan-id",

 "service_id":"my-service-id"

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 134

https://bosh.io/docs/manifest-v2/
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/delete_binding.go
http://docs.cloudfoundry.org/services/api.html#unbinding

}

MANIFEST-SECRETS-JSON

See MANIFEST-SECRETS-JSON above.

DNS-ADDRESSES-JSON

See DNS-ADDRESSES-JSON above.

Output

The following table describes the supported exit codes and output for the delete-binding

subcommand:

exit code Description Output

0 success No output is required

10 not implemented

41 binding does not exist Stderr: error message for operator

ODB logs both stdout and stderr

anything else failure Stdout: optional error message for CF CLI users

Stderr: error message for operator

ODB logs both stdout and stderr

This can be used to connect to the actual VMs if required, to delete a service specific binding. For

example, this can be used to delete a user in MySQL.

generate-plan-schemas

The broker uses the schema returned by this subcommand to validate service-specific configuration

parameters. Apps Manager uses the schema to generate a form that users can use to populate those

parameters. The schema must be in the JSON Schema draft-04 format. For more information about

the plan schema, see the Open Service Broker API (OSBAPI) v2.13 specification.

If you do not want to validate all parameters and want additional parameters to be accepted without

constraints, set the JSON schema field additionalProperties to true. For the location of this field,

see the Kafka example adapter. For example, you might use this if you want to accept an

undocumented optional parameter, for administration purposes, that should not be exposed through

the Apps Manager UI.

This section contains the following topics:

Note: This parameter is different from the create-binding request_parameters

parameter and, in particular, does not include parameters or bind_resource.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 135

https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md#schema-object
https://github.com/pivotal-cf-experimental/kafka-example-service-adapter/blob/master/adapter/generate_plan_schemas.go#L43-L59

Input Parameters

Output

Input Parameters

This section describes the parameters required by the generate-plan-schemas subcommand, passed

using stdin.

See the following example:

{

 "generate_plan_schemas": {

 "plan": "PLAN-JSON"

 }

}

All the arguments are passed as strings and not JSON objects.

For example:

{

 "generate_plan_schemas": {

 "plan": "{\"instance_groups\":[]}"

 }

}

PLAN-JSON

This parameter is the service plan as JSON required to generate the JSON schema.

See the following example:

{

 "properties": {

 "persistence": true

 },

 "lifecycle_errands": {

 "post_deploy": [],

 "pre_delete": []

 },

 "instance_groups": [

 {

 "name": "my-example-server",

 "vm_type": "t2.small",

 "persistent_disk_type": "10GB",

 "instances": 1,

 "networks": [

 "default"

],

 "azs": [

 "z1"

]

 }

]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 136

}

Output

The following table describes the supported exit codes and output for the generate-plan-schemas

subcommand:

exit code Description Output

0 success Stdout: JSON document containing the plan schemas

10 not implemented

anything else failure Stdout: optional error message for cf CLI users

Stderr: error message for operator

ODB logs both stdout and stderr

Example JSON output printed when the generate-plan-schemas command is successful:

{

 "service_instance": {

 "create": {

 "parameters": {

 "": "http://json-schema.org/draft-04/schema#",

 "additionalProperties": true,

 "properties": {

 "auto_create_topics": {

 "description": "Auto create topics",

 "type": "boolean"

 },

 "default_replication_factor": {

 "description": "Replication factor",

 "type": "integer"

 }

 },

 "type": "object"

 }

 },

 "update": {

 "parameters": {

 "": "http://json-schema.org/draft-04/schema#",

 "additionalProperties": true,

 "properties": {

 "auto_create_topics": {

 "description": "Auto create topics",

 "type": "boolean"

 },

 "default_replication_factor": {

 "description": "Replication factor",

 "type": "integer"

 }

 },

 "type": "object"

 }

 }

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 137

 },

 "service_binding": {

 "create": {

 "parameters": {

 "": "http://json-schema.org/draft-04/schema#",

 "additionalProperties": false,

 "properties": {

 "topic": {

 "description": "The name of the topic",

 "type": "string"

 }

 },

 "type": "object"

 }

 }

 }

}

Create a pull request or raise an issue on the source for this page in GitHub

How On-Demand Services Process Commands

The sequence diagrams in this topic show how an on-demand service sets up and maintains service

instances. The diagrams indicate which tasks are undertaken by the on-demand broker (ODB) and

which require interaction with the Service Adapter.

Register the Service Broker with Cloud Foundry

The sequence diagram below shows the workflow for registering a service broker with Cloud

Foundry.

User Cloud Controller On Demand Broker

cf create-service-broker

GET catalog

catalog

OK

User Cloud Controller On Demand Broker

About Creating and Updating Service Instances

This section contains diagrams that present the workflow for the following actions:

Create a Service Instance

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 138

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/adapter-reference.html.md.erb

Update a Service Instance

Create or Update a Service Instance with Post-Deploy Errands

Recreate All Service Instances

Create a Service Instance

To create a service instance, users run the cf create-service command. For more information

about this command, see Creating Service Instances.

The sequence diagram below shows the workflow for creating a service instance.

User Cloud Controller On Demand Broker Service Adapter BOSH CredHub BOSH

cf create-service

POST instance (provision)

generate-manifest

manifest + secrets + BOSH configs

store secrets

update manifest with CredHub names

opt [Secure Manifests enabled]

update configs

opt [BOSH configs enabled]

deploy

accepted

accepted

create in progress

GET last operation

GET deploy task

task in progress

create in progress

loop [until bosh task is complete]

GET last operation

GET task

task done

create succeeded

cf service

create succeeded

User Cloud Controller On Demand Broker Service Adapter BOSH CredHub BOSH

There are two ways this process can fail:

Synchronously: The Cloud Controller deletes the service according to its orphan mitigation

strategy. For more information, see Orphans.

Asynchronously: This happens while BOSH deploys the service instance. The Cloud

Controller does not issue a delete request.

Update a Service Instance

To update a service instance, users run the cf update-service command. For more information

about this command, see Update a Service Instance.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 139

https://docs.pivotal.io/pivotalcf/devguide/services/managing-services.html#create
http://docs.cloudfoundry.org/services/api.html#orphans
https://docs.pivotal.io/pivotalcf/devguide/services/managing-services.html#update_service

Updates can only proceed if the existing service instance is up-to-date. ODB calls generate-

manifest on the service adapter to determine whether there are any pending changes for the

instance.

Update When There Are No Pending Changes

If there are no pending changes, the update proceeds. The manifest from the second call to

generate-manifest is deployed.

The sequence diagram below shows the workflow for updating a service instance if there are no

pending changes.

User Cloud Controller On Demand Broker BOSH BOSH CredHub Service Adapter

cf update-service -c ’{“some”:“prop”}’

PATCH instance (update)

GET manifest

previous manifest

GET previous secrets

secrets

opt [Secure Manifests enabled]

GET previous configs

opt[BOSH configs enabled]

generate-manifest (without PATCH options)

manifest

check for pending changes

generate-manifest (with PATCH options)

manifest + secrets + BOSH configs

store secrets

update manifest with CredHub names

opt [Secure Manifests enabled]

update configs

opt[BOSH configs enabled]

deploy

accepted

accepted

update in progress

GET last operation

GET task

task in progress

update in progress

loop [until bosh task is complete]

GET last operation

GET task

task done

Note: When determining whether there are pending changes for an instance during

an update, ODB ignores any configuration supplied in the update block of the

manifest returned by the service adapter’s generate-manifest subcommand For

more information, see Update Block in the Cloud Foundry BOSH documentation.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 140

https://bosh.io/docs/deployment-manifest.html#update

update succeeded

cf service

update succeeded

User Cloud Controller On Demand Broker BOSH BOSH CredHub Service Adapter

Update When There Are Pending Changes

If there are pending changes, the update fails.

The sequence diagram below shows the workflow for updating a service instance if there are

pending changes.

User Cloud Controller On Demand Broker BOSH Service Adapter

cf update-service -c ’{“some”:“config”}’

PATCH instance (update)

GET manifest

previous manifest

generate-manifest (without request parameters)

manifest

check for pending changes

update failed, pending changes detected

update failed, pending changes detected

User Cloud Controller On Demand Broker BOSH Service Adapter

Create or Update a Service Instance with Post-Deploy Errands

If a user runs the cf create-service command with post-deploy errands configured for the

deployment, ODB does not report success to Cloud Foundry until the deployment is created, or

updated, and all post-deploy errands complete. For more information about post-deploy errands,

see Service Instance Lifecycle Errands.

The sequence diagram below shows the workflow for creating or updating a service instance when

post-deploy errands are configured.

User Cloud Controller On Demand Broker Service Adapter BOSH CredHub BOSH

cf create-service

POST instance (create)

generate-manifest

manifest + secrets + BOSH configs

store secrets

update manifest with CredHub names

opt [Secure Manifests enabled]

update configs

opt [BOSH configs enabled]

deploy

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 141

accepted

accepted

create in progress

GET last operation

GET deploy task

task in progress

create in progress

loop [while bosh deployment is in progress]

GET last operation

run next post-deploy errand

accepted

create in progress

GET last operation

GET errand task

task in progress

create in progress

loop [while bosh task errand is in progress]

loop [until there are no more post-deploy errands to run]

GET last operation

GET final errand task

task done

create succeeded

cf service

create succeeded

User Cloud Controller On Demand Broker Service Adapter BOSH CredHub BOSH

Recreate All Service Instances

ODB provides the BOSH errand recreate-all-service-instances. This errand executes a bosh -d

DEPLOYMENT-NAME recreate --fix on each service instance (SI) managed by the broker. It is used for

triggering low-level BOSH agent certificate re-installation, or for backup and restore purposes, for

example in a migration between foundations.

The sequence diagram below shows the workflow for recreating service instances.

Operator Recreate Errand On Demand Broker CC / SI API BOSH

bosh run errand recreate-all-service-instances

GET instances

GET instances

instances

instances

PATCH instance (recreate)

recreate –fix

accepted

accepted

GET last operation

GET recreate task

loop [while bosh recreate task is in progress]

loop [for all instances]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 142

task in progress

recreate in progress

GET last operation

GET last task status

task done

run next post-deploy errand

accepted

errand in progress

loop [until there are no more post-deploy errands to run]

GET last operation

GET last task status

task done

recreate succeeded

completed successfully

Operator Recreate Errand On Demand Broker CC / SI API BOSH

About Upgrading Service Instances

This section contains diagrams that present the workflow for the following actions:

Upgrade All Service Instance

Upgrade All Service Instances with External Service Instances API Configured

Upgrade All Service Instances

ODB provides the BOSH errand upgrade-all-service-instances. This errand upgrades all service

instances managed by the broker. This is also used when a plan changes. The errand updates all

instances that implement a plan with the new plan definition. For more information, see Upgrade All

Service Instances in the Operator Guide.

The sequence diagram below shows the workflow for upgrading all service instances.

Operator Upgrade Errand On Demand Broker Cloud Controller Service Adapter BOSH CredHub BOSH

bosh run errand upgrade-all-service-instances

GET instances

GET instances

instances

instances

PATCH instance (upgrade)

generate-manifest

manifest + secrets + BOSH configs

store secrets

update manifest with CredHub names

opt [Secure Manifests enabled]

update configs

opt [BOSH configs enabled]

deploy

accepted

accepted

loop [for all instances]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 143

Upgrade Errand polls On Demand Broker for last operation until complete

completed successfully

Operator Upgrade Errand On Demand Broker Cloud Controller Service Adapter BOSH CredHub BOSH

Upgrade All Service Instances with External Service Instances API
Configured

If the service instances API is configured, the upgrade-all-service-instances errand connects to a

different endpoint to gather the list of instances to upgrade. For more information, see Service

Instances API.

The sequence diagram below shows the workflow for upgrading all service instances with external

service instances API configured.

Operator Upgrade Errand SI API On Demand Broker Service Adapter BOSH

bosh run errand upgrade-all-service-instances

GET instances

Service instances with Plan ID

PATCH instance (upgrade)

generate-manifest

manifest

deploy

accepted

accepted

Upgrade Errand polls On Demand Broker for last operation until complete

loop [for all instances]

completed successfully

Operator Upgrade Errand SI API On Demand Broker Service Adapter BOSH

About Binding and Unbinding Service Instances

This section contains diagrams that present the workflow for the following actions:

Bind a Service Instance

Unbind a Service Instance

Bind a Service Instance

To bind a service instance, users run the cf bind-service command. For more information about

this command, see Bind a Service Instance.

The sequence diagram below shows the workflow for creating a binding.

User Cloud Controller On Demand Broker BOSH CredHub Service Adapter Runtime CredHub

cf bind-service

PUT binding

request secrets

secrets

alt [Secure Manifests enabled]

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 144

https://docs.pivotal.io/pivotalcf/devguide/services/managing-services.html#bind

create-binding with secrets

create-binding

[Secure Manifests disabled]

binding credentials

Store credentials with ACLs for app

runtime CredHub reference

binding credentials

alt [Secure Binding enabled]

[Secure Binding disabled]

OK

User Cloud Controller On Demand Broker BOSH CredHub Service Adapter Runtime CredHub

Unbind a Service Instance

To unbind a service instance, users run the cf unbind-service command. For more information

about this command, see Unbind a Service Instance.

The sequence diagram below shows the workflow for unbinding a service instance.

User Cloud Controller On Demand Broker BOSH CredHub Service Adapter Runtime CredHub

cf unbind-service

DELETE binding

request secrets

secrets

delete-binding with secrets

delete-binding

alt [Secure Manifests enabled]

[Secure Manifests disabled]

exit 0

Delete credentials

OK

opt [Secure Binding enabled]

OK

OK

User Cloud Controller On Demand Broker BOSH CredHub Service Adapter Runtime CredHub

About Deleting Service Instances

This section contains diagrams that present the workflow for the following actions:

Delete a Service Instance

Delete a Service Instance with Pre-Delete Errands

Delete All Service Instances

Delete All Service Instances and Deregister Broker

Delete a Service Instance

To delete a service instance, users run the cf delete-service command. For more information

about this command, see Delete a Service Instance.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 145

https://docs.pivotal.io/pivotalcf/devguide/services/managing-services.html#unbind
https://docs.pivotal.io/pivotalcf/devguide/services/managing-services.html#delete

The service adapter is not invoked in the delete service workflow.

The sequence diagram below shows the workflow for deleting service instances.

User Cloud Controller On Demand Broker BOSH BOSH CredHub

cf delete-service

DELETE instance

delete deployment

accepted

accepted

delete in progress

GET last operation

GET task

task in progress

delete in progress

loop [until bosh task is complete]

GET last operation

GET task

task done

DELETE ODB-managed secrets

delete secrets succeeded

opt [Secure Manifests enabled]

delete configs

opt[BOSH configs enabled]

delete succeeded

cf service

not found

User Cloud Controller On Demand Broker BOSH BOSH CredHub

Delete a Service Instance with Pre-Delete Errands

If a user runs the cf delete-service command with pre-delete errands configured for the

deployment, ODB does not report success to Cloud Foundry until all pre-delete errands complete

and the deployment is deleted. For more information about pre-delete errands, see Service Instance

Lifecycle Errands.

The sequence diagram below shows the workflow for deleting service instances with pre-delete

errands configured.

User Cloud Controller On Demand Broker BOSH BOSH CredHub

cf delete-service

DELETE instance

run first pre-delete errand

accepted

accepted

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 146

delete in progress

GET last operation

GET first errand task

task in progress

delete in progress

loop [while the errand is in progress]

GET last operation

run next pre-delete errand

accepted

delete in progress

GET last operation

GET errand task

task in progress

delete in progress

loop [while the errand is in progress]

loop [until there are no more pre-delete errands to run]

GET last operation

run delete-deployment

task in progress

delete in progress

GET last operation

GET delete deployment task

task in progress

delete in progress

loop [while delete deployment bosh task is in progress]

GET last operation

GET delete deployment task

task done

DELETE ODB-managed secrets

delete secrets succeeded

opt [Secure Manifests enabled]

delete configs

opt[BOSH configs enabled]

delete succeeded

cf service

not found

User Cloud Controller On Demand Broker BOSH BOSH CredHub

Delete All Service Instances

ODB provides the BOSH errand delete-all-service-instances. This errand deletes all service

instances managed by the broker. For how to use this errand, see Delete All Service Instances in the

Operator Guide.

The sequence diagram below shows the workflow for deleting all service instances.

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 147

Operator Delete Errand Cloud Controller On Demand Broker Service Adapter BOSH

bosh run errand delete-all-service-instances

GET instances

instances

GET bindings

bindings

cf unbind-service

DELETE binding

delete-binding

exit code 0

OK

OK

loop [for all bindings]

GET service keys

service keys

cf delete-service-key

DELETE binding

delete-binding

exit code 0

OK

OK

loop [for all service keys]

cf delete-service

DELETE instance

delete deployment

accepted

accepted

accepted

GET instance

delete instance in progress

The Cloud Controller asynchronously polls ODB, which in turn polls BOSH for last operation status

loop [until DELETE completes]

GET instance

instance not found

loop [for all instances]

completed successfully

Operator Delete Errand Cloud Controller On Demand Broker Service Adapter BOSH

Delete All Service Instances and Deregister Broker

ODB provides the BOSH errand delete-all-service-instances-and-deregister-broker. This

errand deletes all service instances managed by the broker and deregisters the broker from Cloud

Foundry. For how to use this errand, see Delete All Service Instances and Deregister Broker in the

Operator Guide.

The sequence diagram below shows the workflow for deleting all service instances and deregistering

the broker.

Operator Delete Errand Cloud Controller On Demand Broker Service Adapter BOSH

bosh run errand delete-all-service-instances-and-deregister-broker

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 148

POST disable-service-access

completed successfully

GET instances

instances

GET bindings

bindings

cf unbind-service

DELETE binding

delete-binding

exit code 0

OK

OK

loop [for all bindings]

GET service keys

service keys

cf delete-service-key

DELETE binding

delete-binding

exit code 0

OK

OK

loop [for all service keys]

cf delete-service

DELETE instance

delete deployment

accepted

accepted

accepted

GET instance

delete instance in progress

The Cloud Controller asynchronously polls ODB, which in turn polls BOSH for last operation status

loop [until DELETE completes]

GET instance

instance not found

loop [for all instances]

DELETE service-broker

completed successfully

completed successfully

Operator Delete Errand Cloud Controller On Demand Broker Service Adapter BOSH

Create a pull request or raise an issue on the source for this page in GitHub

On-Demand Services SDK for VMware Tanzu v0.27

VMware, Inc 149

http://github.com/pivotal-cf/docs-on-demand-service-broker/tree/v0.27.x/concepts.html.md.erb

	On-Demand Services SDK
	On-Demand Services SDK
	Overview
	Product Snapshot
	Key Features
	Prerequisites for Deploying Brokers That Use ODB

	On-Demand Services SDK Release Notes
	v0.27.0
	Features
	Known Issues
	Minimum Version Requirements

	View Release Notes for Another Version

	About On-Demand Brokers
	Cloud Foundry Service Brokers and PCF Tiles
	Cloud Foundry Service Brokers
	PCF Tiles

	On-Demand Services SDK and the On-Demand Broker
	On-Demand Service Roles
	Service Author
	Tile Author
	Operator

	Service Network Requirement
	Pivotal Cloud Foundry v2.0 and Earlier
	Pivotal Cloud Foundry v2.1 and Later

	Service Adapters
	Get Started Using ODB
	Operator Guide
	Service and Tile Developer Guide

	Operator Guide
	Operating an On-Demand Broker
	Operator Responsibilities
	Configure Your BOSH Director
	Software Requirements
	Configure CA Certificates for TLS Communication
	ODB to BOSH Director
	ODB to Cloud Controller

	Use BOSH Teams
	Set Up Cloud Controller

	Upload Required Releases
	Write a Broker Manifest
	Configure Your Broker
	Starter Snippet for Your Broker

	Configure Your Service Catalog and Plan Composition
	Configure the Service Catalog
	Compose Plans
	Starter Snippet for the Service Catalog and Plans

	(Optional) Access Manifest Secrets at Bind Time
	(Optional) Enable Secure Binding
	Requirements
	Procedure for Enabling Secure Binding
	How Credentials Are Stored on Runtime CredHub

	(Optional) Enable Plan Schemas
	(Optional) Register the Route to the Broker
	(Optional) Set Service Instance Quotas
	Procedure for Setting Service Instance Quotas

	(Optional) Set Resource Quotas
	Procedure for Setting Service Resource Quotas

	(Optional) Configure Service Metrics
	(Optional) Obtain BOSH DNS Addresses for Binding Creation and Deletion
	Requirements
	Procedure
	Options for binding_with_dns

	About Broker Startup Checks
	About Broker Shutdown
	Service Instance Lifecycle Errands
	Enable Service Instance Lifecycle Errands
	(Optional) Enable Co-located Errands

	Broker and Service Management
	Broker Management Errands
	Register Broker
	Add the Errand to the Manifest
	Run the Errand

	Delete All Service Instances
	Add the Errand to the Manifest
	Run the Errand

	Deregister Broker
	Add the Errand to the Manifest
	Run the Errand

	Delete All Service Instances and Deregister Broker
	Add the Errand to the Manifest
	Run the Errand

	Orphan Deployments
	Add the Errand to the Manifest
	Run the Errand
	Delete an Orphan Deployment

	Recreate All Service Instances
	Add the Errand to the Manifest
	Run the Errand

	Service Management
	Update the Broker
	Update the Service Offering
	Disable Service Plans
	Remove Service Plans

	Upgrading
	Update Add-Ons to Run with Xenial Stemcell
	Upgrade the Broker
	Upgrade the Service Offering
	Upgrade All Service Instances
	Service Instances API
	General Request and Response
	Filtered Request and Response
	Configure the Broker to Use the Service Instances API

	Security
	BOSH API Endpoints
	BOSH UAA Permissions
	Unused BOSH permissions

	PCF IPsec Add-On
	CF API Endpoints
	Cloud Foundry UAA Permissions
	Unused Cloud Foundry permissions

	Backup and Restore Considerations
	On-Demand Service Broker
	On-Demand Service Instances
	Disaster Recovery

	Data on Deployment Performance and Sizing
	Set up
	Test
	Results
	Notes

	Troubleshooting On-Demand Services
	Troubleshooting for BOSH Operators
	Administer Service Instances
	Logs and Metrics
	Logs
	Syslog Forwarding for Errand Logs
	Metrics
	Service-level Metrics
	Plan-level Metrics

	Secure Binding Credentials
	Common Causes of Errors

	Identify Deployments in BOSH
	Identify Tasks in BOSH
	Identify Issues When Connecting to BOSH or UAA
	List Service Instances
	List Orphan Deployments
	Knowledge Base (Community)
	File a Support Ticket

	Troubleshooting for Ops Manager Operators
	How to Retrieve a Service Instance GUID
	Troubleshoot Errors
	Troubleshoot Components
	BOSH Problems
	Large BOSH Queue

	Configuration
	Service Instances in Failing State

	Authentication
	UAA Changes

	Networking
	Validate Service Broker Connectivity to Service Instances
	Validate App Access to Service Instance

	Quotas
	Plan Quota Issues
	Global Quota Issues

	Failing Jobs and Unhealthy Instances

	Techniques for Troubleshooting
	Parse a Cloud Foundry (CF) Error Message
	Access Broker and Instance Logs and VMs
	Access Broker Logs and VM(s)
	Access Service Instance Logs and VMs

	Run Service Broker Errands to Manage Brokers and Instances
	Register Broker
	Deregister Broker
	Upgrade All Service Instances
	Delete All Service Instances
	Detect Orphaned Instances Service Instances

	Get Admin Credentials for a Service Instance
	Identify Apps using a Service Instance
	View BOSH Resource Saturation and Scaling
	Monitor Quota Saturation and Service Instance Count
	Reinstall a Tile

	Knowledge Base (Community)
	File a Support Ticket

	Service and Tile Developer Guide
	Getting Started: ODB on a Local Development Environment
	Prerequisites
	Part 1: Set Up
	Step 1: Prepare BOSH Lite
	Step 2: Set Up the Kafka Example Service
	Step 3: Set Up the Kafka Example Service Adapter
	Step 4: Set Up ODB

	Part 2: Create
	Step 1: Create a BOSH Deployment
	Step 2: Create a Service Broker on PCF Dev

	Part 3: Verify and Use
	Step 1: Verify Your BOSH Deployment and On-Demand Service
	Step 2: Use Your On-Demand Service
	Step 3: Read and Write to Your Service Instance

	Creating a Service Release
	Service Author Deliverables
	Overview
	Package an Initial Service Release
	Use Job Links
	Service Instance Lifecycle Errands
	Include Service Instance Lifecycle Errands
	Colocated Errands

	Package the Final Service Release

	Creating a Service Adapter
	About Service Adapters
	Subcommands in the Adapter Interface
	Store Secrets on BOSH CredHub
	About ODB-Managed Secrets
	Migrate from Plaintext Secrets to ODB-Managed Secrets
	Persist Secrets across Updates
	Modify ODB-Managed Secrets
	Detect When Secrets Are Modified
	Inconsistent Secrets after a Failed Update

	Binding Credentials
	Static Credentials
	Credentials Unique to Each Binding
	Use an Agent

	Enable ODB to Obtain BOSH DNS Addresses
	Use Generic BOSH Configs with Service Instances
	Handle Errors
	Package a Service Adapter
	On-Demand Services Golang SDK
	Use the SDK
	Interfaces
	Helpers
	Error Handling
	BOSH Features

	Creating an On-Demand Service Tile
	Requirements
	About Networks
	Build a Tile for an On-Demand Service
	Add Accessors
	director
	self
	(Optional) cf

	Add On-Demand Broker Lifecycle Errands
	Upgrade All Service Instances Errand

	(Optional) Allow Public IP Addresses for On-Demand Service Instance Groups
	(Optional) Enable Floating Stemcells
	(Optional) Allow Secure Binding

	Service Adapter Interface Reference
	Service Adapter Interface
	generate-manifest
	Input Parameters
	SERVICE-DEPLOYMENT-JSON
	PLAN-JSON
	REQUEST-PARAMS-JSON
	PREVIOUS-MANIFEST-YAML
	PREVIOUS-PLAN-JSON
	PREVIOUS-SECRETS-JSON
	PREVIOUS-CONFIGS-JSON

	Output

	dashboard-url
	Input Parameters
	SERVICE-INSTANCE-ID
	PLAN-JSON
	MANIFEST-YAML

	Output

	create-binding
	Input Parameters
	BINDING-ID
	BOSH-VMS-JSON
	MANIFEST-YAML
	REQUEST-PARAMS-JSON
	MANIFEST-SECRETS-JSON
	DNS-ADDRESSES-JSON

	Output

	delete-binding
	Input Parameters
	BINDING-ID
	BOSH-VMS-JSON
	MANIFEST-YAML
	DELETE-PARAMS-JSON
	MANIFEST-SECRETS-JSON
	DNS-ADDRESSES-JSON

	Output

	generate-plan-schemas
	Input Parameters
	PLAN-JSON

	Output

	How On-Demand Services Process Commands
	Register the Service Broker with Cloud Foundry
	About Creating and Updating Service Instances
	Create a Service Instance
	Update a Service Instance
	Update When There Are No Pending Changes
	Update When There Are Pending Changes

	Create or Update a Service Instance with Post-Deploy Errands
	Recreate All Service Instances

	About Upgrading Service Instances
	Upgrade All Service Instances
	Upgrade All Service Instances with External Service Instances API Configured

	About Binding and Unbinding Service Instances
	Bind a Service Instance
	Unbind a Service Instance

	About Deleting Service Instances
	Delete a Service Instance
	Delete a Service Instance with Pre-Delete Errands
	Delete All Service Instances
	Delete All Service Instances and Deregister Broker

