
Push Notification Service
v1.10

Push Notification Service 1.10

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Push Notification Service v1.10

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Push Notification Service for Pivotal Cloud Foundry 17

Product Snapshot 17

Upgrading to the Latest Version 17

About 17

Push Notification Service Release Notes 19

v1.10.6 19

v1.10.5 19

v1.10.4 20

v1.10.3 20

v1.10.2 20

v1.10.1 21

v1.10.0 21

v1.9.4 22

v1.9.3 22

v1.9.2 22

v1.9.1 23

v1.9.0 23

v1.8.1 23

v1.8.0 23

v1.7.1 24

v1.7.0 24

v1.6.3 24

v1.6.2 24

v1.6.1 25

v1.6.0 26

v1.5.7 26

v1.5.6 26

v1.5.3 26

v1.5.0 26

v1.4.27 26

v1.4.25 26

v1.4.24 26

v1.4.12 27

Push Notification Service v1.10

VMware, Inc 3

v1.4.10 27

v1.4.9 27

v1.4.7 27

v1.4.5 27

v1.4.3 27

v1.4.2 27

v1.4.0 27

v1.3.5 28

v1.3.4 28

v1.3.3 28

v1.3.3 iOS and Android Client SDK 28

v1.3.2 28

v1.3.2 iOS and Android Client SDK 28

v1.3.1 28

v1.3.1 iOS and Android Client SDK 29

v1.3.0 29

v1.2.1 29

v1.2.0 29

v1.1.0 — January 2015 29

v1.0.1 — November 2014 29

v1.0.0 — July 2014 29

Push Notification Service v1.5.0 Release Notes 30

Dependencies 30

On PCF 1.4 30

On PCF 1.5 30

On PCF 1.6 30

Known issues 30

List of Changes 31

Push Notification Service v1.4.0 Release Notes 32

Dependencies 32

On PCF 1.4 32

On PCF 1.5 32

On PCF 1.6 32

Known issues 32

List of Changes 33

Push Notification Service v1.3.5 Release Notes 34

Dependencies 34

Push Notification Service v1.10

VMware, Inc 4

On PCF 1.5.x or 1.6.x 34

Known issues 34

List of Changes 34

Push Notification Service v1.3.4 Release Notes 35

Dependencies 35

On PCF 1.4 35

On PCF 1.5 35

Known issues 35

List of Changes 35

Push Notification Service v1.3.2 Release Notes 36

Dependencies 36

On PCF 1.4 36

On PCF 1.5 36

Known issues 36

List of Changes 36

Push Notification Service v1.3.2 Release Notes 37

Dependencies 37

On PCF 1.4 37

On PCF 1.5 37

Known issues 37

List of Changes 37

Push Notification Service v1.3.1 Release Notes 39

Dependencies 39

On PCF 1.4 39

On PCF 1.5 39

Known issues 39

List of Changes 39

Push Notification Service v1.3.0 Release Notes 41

Dependencies 41

On PCF 1.4 41

On PCF 1.5 41

Known issues 41

List of Changes 41

Location based notifications 41

List of Known issues 42

Upgrading from version 1.2 42

Push Notification Service v1.10

VMware, Inc 5

Backup data 42

Backup encryption key 42

Backup Redis 42

Uninstall push 1.2 42

Install push 1.3 42

Restore data 43

From the push-api app 43

Bind depricated api url for existing apps (if you are using the old route) 43

Push Notification Service v1.2.0.0 Release Notes 44

List of Changes 44

List of Known issues 44

Push Notification Service v1.1.0.0 Release Notes 45

Changes 45

Push Notification Service v1.0.1.0 Release Notes 46

List of Changes 46

List of Known issues 46

Push Notification Service v1.0.0 Release Notes 47

Changes 47

Known issues 47

Installation 48

Dependencies 48

Prerequisites 48

Tailing logs through the push dashboard 48

Download the Product 48

Adding the Product 48

Set Encryption Key 49

Set Available Platforms 49

Configure Deployment Settings 49

Configure MySQL 50

Configure Redis for Analytics and Logs 50

Configure Proxy 50

Default Errand Behavior 51

Upload Stemcell 52

Apply Changes 52

Creating a Tenant 53

Push Notification Service v1.10

VMware, Inc 6

Dashboard Setup 53

Note: 53

Installation Verification 53

DevOps 57

Monitoring 57

Healthcheck 57

Heartbeat Monitoring 57

Uninstalling 57

Troubleshooting Common Problems 58

Configurable Environment Variables 58

Push Api 58

Installing the Push Server Behind a Proxy 59

GCM Pushes Through Proxy 59

FCM Pushes Through Proxy 59

Baidu Pushes Through Proxy 59

APNS Pushes Through Proxy 60

For All Pushes Through Proxy 60

Push Dashboard 60

Backup And Restore 60

Backup MySQL Data 60

Backup Encryption Key 61

Restore MySQL Data 61

Backup Redis Data 62

Migrate from MySQL for PCF v1 to v2 62

Prerequisites 62

Install and Migrate 62

Bind, Unbind, and Stage 63

Import Tile and Deploy 63

Removing Log Redis Instance 64

Configuring Heartbeat Monitor for iOS 65

Prerequisites 65

Request an iOS Development Certificate 65

Request an APNS Certificate 67

Create an App ID 67

Create an APNS Certificate 69

Create a Provisioning Profile 71

Register a Device 71

Create a Profile 73

Push Notification Service v1.10

VMware, Inc 7

Configure your Push Dashboard 73

Navigate to Push Dashboard using Apps Manager 74

Navigate to Push Dashboard using cf CLI 74

Configure the Push Notification Service 74

Run the App on Your Device 76

Download the App Repo 76

Configure the App Project 76

Build and Run the App 78

Configuring Heartbeat Monitor for Android 80

Prerequisites 80

Prepare an FCM Project 80

Configure Your Push Dashboard 81

Navigate to Push Dashboard using Apps Manager 81

Navigate to Push Dashboard using cf CLI 81

Configure the Push Notification Service 81

Run the App on Your Device 82

Using the Dashboard 83

Applications 83

Adding an Application 83

API URL 83

Editing an Application 83

Regenerating an API Key 84

Regenerating the Shared Secret 84

Deleting an Application 85

Platforms 85

Adding a Platform 86

Editing a Platform 87

Deleting a Platform 88

iOS Expired Certificate Warning 89

Devices 89

Send a Test Push Notification to a Device 89

Sending a Push Message 90

Topics 92

Locations 93

Adding a Location 93

Adding a Location Group 94

Geofence Push Notifications 95

Logs 96

Push Notification Service v1.10

VMware, Inc 8

Push Notifications ASG Installation 98

Application Security Groups 98

Pre-Installation Requirements 98

Push Service Network Connections 98

APNS 98

GCM / FCM 99

Load Balancer 99

Assigned Network 100

Pre-installation ASG binding 100

Network Setup Guide 101

APNS / iOS Push 101

Server and Device Settings 101

GCM / Android Push 101

Server and Device Settings 101

FCM / Android Push 101

Server and Device Settings 101

Push API & Mobile Devices 102

Push API & Server Applications 102

Migrating to a MySQL for PCF v2 Database 103

Prerequisites 103

Install the MysqlTools Plugin 103

Check the Status of the Broker 103

Stop the Broker 104

Migrate Your Data 105

Bind the New Database 106

Delete the Old Database 107

(Optional) Update the Tile to Reflect Changes 107

Development Guide 108

First Push Walkthrough 109

Step 1 109

Step 2 109

Step 3 110

Step 4 111

Step 5 111

Step 6 112

Push Notification Service v1.10

VMware, Inc 9

Step 7 112

Step 8 113

Step 9 113

Step 10 113

Geofence Walkthrough 115

Step 1 115

Step 2 115

Step 3 115

Step 4 116

Step 5 116

Step 6 117

Step 7 117

iOS Push Client SDK 119

Sample Apps 119

Features 119

Device Requirements 119

Required Setup 119

Getting Started 119

Configure iOS Push Notifications on Apple Developer 119

Configure iOS Push Notifications on the Push Dashboard 119

Link to the Framework 120

Set up your Pivotal.plist file 120

Register for Push Notifications with APNS 121

Register for Push Notifications with Pivotal CF 122

Registration Examples 123

Receiving Push Notifications 125

Optional Items 126

Enable or disable push analytics 126

Subscribing to Tags 126

Unregistering from Pivotal Cloud Foundry Push Notification Service 127

Reading the Device UUID 127

Geofences 127

Step 1 - Set your background modes 127

Step 2 - Set required device capabilities 128

Step 3 - Set your location usage description 128

Step 4 - Link to Core Location 129

Step 5 - Enable geofences 129

Step 6 - Authorize location services 130

Push Notification Service v1.10

VMware, Inc 10

Step 7 - Add property to application delegate 131

Step 8 - Receiving Local Notifications 131

Step 9 - Receive Geofence Status Updates 131

SSL Authentication 132

Setting custom HTTP request headers 133

Appendix 133

iOS 9.0+ Notes - App Transport Security 133

Setting up your app on Apple Developer Member Center 134

Generating an App ID 134

Push Sandbox SSL Certificate 135

Generate your provisioning profile 135

Troubleshooting 136

Android Push Client SDK 137

Sample App 137

Version 137

Features 137

Device Requirements 137

Required Setup 137

Getting Started 137

Link to PCF Push SDK 138

Configuration: Set Up Your pivotal.properties File 139

Registration 139

Registration Examples 140

Receiving Push Notifications 141

Optional Items 141

Push Analytics 141

Tags 143

Unregistration 143

Reading the Device UUID 143

SSL Authentication 144

Setting Custom HTTP Request Headers 145

Geofences 145

Step 1: Set Up Your AndroidManifest.xml File 145

Step 2: Set Up Your Push Service 146

Step 3: (Optional) Receive Geofence Status Updates 146

Step 4: Request device location permission (Android v6.0 Marshmallow
and up)

147

Step 5: Enable geofences 148

Appendix 149

Push Notification Service v1.10

VMware, Inc 11

Google Developers Console 149

Troubleshooting 149

Setting up Push Notifications with FCM 150

Prerequisites 150

Prepare an FCM Project 150

Configure Your Push Dashboard 151

Navigate to Push Dashboard using Apps Manager 151

Navigate to Push Dashboard using cf CLI 151

Configure the Push Notification Service 151

Run the App on Your Device 152

Setting up Push Notifications with Baidu 154

Prerequisites 154

Prepare a Baidu Project 154

Configure Your Push Dashboard 154

Navigate to Push Dashboard using Apps Manager 155

Navigate to Push Dashboard using cf CLI 155

Configure the Push Notification Service 155

Run the App on Your Device 156

APIs 157

Push 158

Push a Message 158

POST /v1/push 158

Request Body: 158

Message Field Size Limitations 158

Response Data, status: 200 (OK) 158

Response Data 159

Targeting and Audience Selection 159

Limits 160

Notes 160

Target Examples 160

Setting Expiration Time on Pushes 162

Scheduled Pushes 163

Scheduled Pushes Examples 163

Custom Fields for Platform specific Pushes 163

Custom Fields for iOS Pushes 163

Custom Fields for Android Pushes 165

Push Notification Service v1.10

VMware, Inc 12

Complete Examples 166

Registration 169

GET /v1/registration/:deviceUuid 169

Response Data, status: 200 (OK) 169

GET /v1/registration/count/ 169

Response Data, status: 200 (OK) 169

POST /v1/registration/ 170

Request Body: 170

Response Data, status: 200 (OK) 170

LIMITS 171

Examples: 171

PUT /v1/registration/:device_uuid 171

Request Body: 171

Examples: 172

DELETE /v1/registration/:device_uuid 172

Request Body: 172

Response Data, status: 204 (NO CONTENT) 172

Registrations 173

GET /v2/registrations/ 173

Response Data, status: 200 (OK) 173

Topics 175

GET /v2/topics 175

Response Data, status: 200 (OK) 175

POST /v2/topics/ 176

Request Body: 176

Response: status: 201 (CREATED) 176

DELETE /v2/topics/:topicId 176

Request Body: 176

Response Data, status: 204 (NO CONTENT) 176

POST /v2/topics/batch/ 177

Request Body: 177

Response: status: 201 (CREATED) 177

DELETE /v2/topics/batch 178

Request Body: 178

Response: status: 200 (OK) 178

Custom User IDs 179

Push Notification Service v1.10

VMware, Inc 13

Custom User ID and Topics 179

GET /v2/custom_user_ids 179

Response Body: 179

Examples: 179

GET /v2/custom_user_ids?q={query} 180

Response Body: 180

Examples: 180

Schedule 181

GET /v1/schedules 181

Request Body: 181

Response Data, status: 200 (OK) 181

GET /v1/schedules/:schedule_id 182

Request Body: 182

Response Data, status: 200 (OK) 182

PUT /v1/schedules/:schedule_id 183

Request Body: 183

Response Data, status: 200 (OK) 183

DELETE /v1/schedules/:schedule_id 184

Request Body: 184

Response Data, status: 204 (NO CONTENT) 184

Geofences 185

Endpoints for Managing Geofences 185

Create Geofence 185

POST /v1/geofence 185

Request Body: 185

Geofence Fields 186

iOS Geofence Data Fields 187

Response: 188

Get Geofences 189

GET /v1/geofence 189

Request Body: None 189

Response: 189

Get Geofence Updates 190

GET /v1/geofences 190

Request Body: 190

Response: 190

Get One Geofence 191

GET /v1/geofence/:geofence_id 191

Push Notification Service v1.10

VMware, Inc 14

Request Body: 191

Response: 191

Update a Geofence 192

PUT /v1/geofence/:geofence_id 192

Request Body: 192

Response: 192

Delete a Geofence 192

DELETE /v1/geofence/:geofence_id 192

Request Body: 193

Response: 204 (NO CONTENT) 193

Locations 193

Get All Locations 193

GET /v1/locations 193

Request Body: 193

Response: 193

Get One Location 194

GET /v1/locations/:location_id 194

Request Body: 194

Response: 194

Create a New Location 194

POST /v1/locations 194

Request Body: 194

Response: 194

Update a Location 195

PUT /v1/locations/:location_id 195

Request Body: 195

Response: 195

Delete a Location 195

DELETE /v1/locations/:location_id 195

Request Body: 195

Response: 204 (NO CONTENT) 195

Location Groups 196

Get All Location Groups 196

GET /v1/location_groups 196

Request Body: 196

Response: 196

Get One Location Group 197

GET /v1/location_groups/:location_group_id 197

Request Body: 197

Push Notification Service v1.10

VMware, Inc 15

Response: 197

Create a Location Group 197

POST /v1/location_groups 197

Request Body: 197

Response: 198

Update a Location Group 198

PUT /v1/location_groups/:location_group_id 198

Request Body: 198

Response: 198

Delete a Location Group 199

DELETE /v1/location_groups/:location_group_id 199

Request Body: 199

Response: 204 (NO CONTENT) 199

Push Notification Service v1.10

VMware, Inc 16

Push Notification Service for Pivotal Cloud
Foundry

This is documentation for the Push Notification Service for Pivotal Cloud Foundry (PCF).

Product Snapshot

The following table provides version and version-support information about Push Notification Service

for PCF:

Element Details

Version v1.10.6

Release date October 30, 2019

SDK version(s) Android-GCM: io.pivotal.android:push:1.6.2

Android-FCM: io.pivotal.android:push-fcm:1.9.1

Android-Baidu: io.pivotal.android:push-baidu:1.9.1

iOS: 1.7.1

Compatible Ops Manager version(s) 2.2, 2.3, 2.4, 2.5, and 2.6

Compatible Pivotal Application Service (PAS)

version(s)

2.3, 2.4, 2.5, and 2.6

IaaS support AWS, Azure, GCP, OpenStack, and vSphere

Upgrading to the Latest Version

See the Product Compatibility Matrix.

About

The Pivotal Push Notification Service for Pivotal Cloud Foundry allows developers to create a

backend that can be used to send push notifications to mobile apps. The service connects and

manages the interface to Apple Push Notification Service, Google Cloud Messaging, Firebase Cloud

Messaging and Baidu Cloud Push.

Each mobile app communicates with the service for registrations and notification preferences by

using the corresponding client SDK. Back-end business logic servers send push notifications to all

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 17

https://pivotal.io/support/lifecycle_policy
https://network.pivotal.io/products/push-notification-service
https://network.pivotal.io/products/pivotal-cf
http://docs.pivotal.io/resources/product-compatibility-matrix.pdf
https://network.pivotal.io/products/push-notification-service
https://network.pivotal.io/products/pivotal-cf

users or a subset of them. Users can be targeted by platform, by geolocation, by custom user id or

by topics.

For installation, a PCF administrator initially imports the Pivotal Push Notifications tile into PCF

Operations Manager and configures it via the Dashboard at which point the service becomes

available to send notifications. The Dashboard provides the ability to configure apps, platforms, and

device-specific service parameters. Client SDKs for iOS and Android provide a simplified way to

integrate with the Push Notifications service.

The Push Notifications service requires:

Pivotal RabbitMQ

Redis database (Pivotal Redis or user provided)

MySQL database (Pivotal MySQL or user provided)

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 18

http://github.com/cfmobile/docs-push-notifications/tree/1.10/index.html.md.erb

Push Notification Service Release Notes

v1.10.6

Release Date: October 30, 2019

Maintenance

Updates compatibility to support ruby 2.6.x

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.10.5

Release Date: August 7, 2019

Maintenance

Adds the ability to specify the Redis service plan used.

Compatible with on-demand Redis service plans.

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: Changing Redis plans causes analytics information to reset. Plans can

be changed from a Shared-VM or Dedicated-VM Redis service plan to an

on-demand plan or from one on-demand plan to another on-demand plan.

Push Notification Service v1.10

VMware, Inc 19

https://pivotal.io/support/lifecycle_policy

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.10.4

Release Date: July 12, 2019

Bug Fixes

Fixes the ERR invalid password issue where the scheduler application was unable to accept

passwords from some Redis instances.

Maintenance

Updated to use Xenial Stemcells.

Now defaults to cflinuxfs3 during initial installation.

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.10.3

Release Date: February 12, 2019

Bug Fixes

Fixes an issue that causes the broker to not run on cflinux3-based ruby buildpacks.

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.10.2

Release Date: October 25, 2018

Bug Fixes

Handles the LZ4 compression exception to avoid the exception blocking the message

queue.

Adds a registration failure listener to the Android SDK.

Push Notification Service v1.10

VMware, Inc 20

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.10.1

Release Date: August 17, 2018

Features

Add package-lock.json to push-dashboard to allow installing in offline environment with latest

nodejs-buildpack

Bug Fixes

Fix issue when push-analytics reconnects to RabbitMQ when there are messages in queues that

cannot be acked

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.10.0

Release Date: June 10, 2018

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes:

com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and HTTP/2 are d

isabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the back end. For more information, see API

Breaking Change: Push Notification Service for PCF v1.10.0 does not support MySQL

for PCF v1. If you have an earlier version of Push Notification Service using MySQL

for PCF v1, you must migrate the data to MySQL for PCF v2 before upgrading to

Push Notification Service v1.10.0. For instructions, see Migrate from MySQL v1 to v2.

Push Notification Service v1.10

VMware, Inc 21

URL.

v1.9.4

Release Date: February 2018

Features

Upgrade push-backend and push-analytics to support TLSv1.2

Bug Fixes

Fix issue when push-analytics reconnects to RabbitMQ when there are messages in queues that

cannot be acked

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.9.3

Release Date: September 2017

Bug Fixes

Improve RabbitMQ connection stability and logging

Improve handling of Redis password with special characters

Fix issue where dashboard shows zero(0) registrations under certain conditions

If push is sent with custom fields, show [Custom message] as message body in summary page of

push-dashboard instead of blank

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.9.2

Release Date: July 2017

Features

Devices that are no longer registered against the FCM Google key are now deactivated

Push Notification Service v1.10

VMware, Inc 22

Bug Fixes

Fix push-service-broker packaging for offline installation of Push Notification Service tile

Fix push-dashboard page “Not Found” error if Accept-Encoding is missing in request header

Known Issues

The following message in the push-api log can be ignored because it does not affect

sending pushes: com.squareup.okhttp.OkHttpClient - ALPN callback dropped: SPDY and

HTTP/2 are disabled. Is alpn-boot on the boot class path?

When configuring the push app with multiple routes, the API Url under configuration might

not show the correct URL to communicate with the backend. For more information, see API

URL.

v1.9.1

Release Date: June 2017

Bug Fixes

Fix RabbitMQ connectivity issue

Ensure push-scheduler and push-service-broker use correct Ruby version in latest CF buildpacks

Known Issues

In an offline environment, running post-install errands will fail due to push-service-broker package

missing local dependencies

v1.9.0

Release Date: June 2017

Features

Added support for Baidu Cloud Push Service on android.

Removed push logs dependency on redis service instance. Push dashboard now uses websockets

for tailing logs. For updated setup instructions, see the installation guide.

Logs redis instance can be removed. Refer to devops guide for instructions.

Push Dashboard Configuration page shows iOS certificate status.

v1.8.1

Release Date: March 2017

Bug Fixes

Fix an issue when upgrading the push tile on PCF 1.9.*

v1.8.0

Release Date: February 2017

Push Notification Service v1.10

VMware, Inc 23

Features

Ability to customize push app instance counts during deployment. For more information, see custom

deployments.

The Push Dashboard will now show a warning when the iOS certificate in use is expired.

Official support for Azure.

Bug Fixes

Known Issues

Upgrading to Push 1.8.0 when running on PCF 1.9 may fail with an error Server error, status

code: 500, error code: 10001, message: An unknown error occurred.

This is due to the 1.8 version of the push tile defaulting to 2 app instances for each application it

deploys on the system org, push-notifications space. This error is encountered when an app is

staged and scaled at the same time.

Please upgrade to version 1.8.1 to fix this issue.

Workaround: Update the instance counts of the apps under the system org, push-notifications space

to 2 each before installing Push 1.8.0 (or the custom instance counts if you’re using that option.)

v1.7.1

Release Date: January 2017

Bug Fixes

Fix the ability to edit scheduled pushes

v1.7.0

Release Date: December 2016

Features

Support for Android FCM push notifications

Bug Fixes

Dashboard session timeout error

Known Issues

Once a scheduled push is created, it cannot be edited (will address this bug in a later release)

v1.6.3

Release Date: September 2016

Updated stemcell to v3263 to address kernel vulnerabilities (includes 4.4 kernel)

v1.6.2

Release Date: September 2016

Push Notification Service v1.10

VMware, Inc 24

Updated stemcell to v3263 to address kernel vulnerabilities (includes 4.4 kernel)

Fixes:

Fixed dashboard issue found when upgrading from PCF v1.7 to PCF v1.8

Known Issues

If you installed Push v1.6.2+ after upgrading to PCF v1.8, then remove the app named push-

notifications-analytics with the following command:

$ cf delete push-notifications-analytics

v1.6.1

Release Date: August 2016

Features:

Proxy support in Push Tile: Users can now add a proxy in the Push Tile (via Ops Mgr console)

Installation logs now available in Ops Mgr console upon installation failure fixes

Fixes:

Fixed issue with multiple tenants being provisioned in system org in push notifications space

Fixed scaling issue with push api instances due to lack of database connections

Known Issues:

Upgrading to PCF v1.8 exposes a bug in versions of Push v1.6.1 and older. The impact is that the

dashboard won’t be able to display analytics (a message will appear stating “Analytics Data is not

available at the moment”). Analytics data is still collected on the backend, the bug prevents it from

being displayed.

The recommended solution is to upgrade to push v1.6.2 prior to upgrading to PCF v1.8 (this is

now a pre-requisite for PCF v1.8)

If installing push v1.6.1 or earlier on PCF v1.8, follow the instructions below

1. To confirm this is the problem you are experiencing, you can check to see if there is a CF

app running in the system org and push-notifications space called push-notifications-

analytics.

2. Replace push-analytics with push-notifications-analytics and add a matching route as

per the commands shown below

 cf delete push-analytics

 cf rename push-notifications-analytics push-analytics

 cf map-route push-analytics $ENV_URL --hostname push-analytics

where $ENV_URL is the value of the domain name used for your PCF environment

Note: Update to Push Notification Service v1.6.2 prior to upgrading to Pivotal Cloud

Foundry v1.8.

Push Notification Service v1.10

VMware, Inc 25

v1.6.0

Release Date: July 2016

Devices can be grouped under Custom User IDs which can be targeted for pushes

Tags have been replaced by Topics

Topics can be created with expiry dates

v1.5.7

Release Date: December 2016

Security release for CVE as detailed in USN-3156-1

v1.5.6

Release Date: December 2016

Security release for CVE as detailed in USN-3151-2

v1.5.3

Release Date: June 2016

Bug fix for Service broker bug with HTTPS

v1.5.0

Release Date: June 2016

New Heartbeat Application is deployed with the Push Notifications Service

Heartbeat Monitor App available on iOS and Android

v1.4.27

Release Date October 2016

Bump to stemcell v3151.3 for CVE as detailed in USN-3106-2:

https://www.ubuntu.com/usn/usn-3106-2/

v1.4.25

Release Date October 2016

Bump Ubuntu stemcell for USN-3099-2: Linux kernel (Xenial HWE) vulnerabilities

v1.4.24

Release Date: October 2016

Updated Ubuntu stemcell for USN-3087-2: OpenSSL regression

Push Notification Service v1.10

VMware, Inc 26

https://www.ubuntu.com/usn/USN-3156-1/
https://www.ubuntu.com/usn/usn-3151-2/
https://www.ubuntu.com/usn/usn-3106-2/

v1.4.12

Release Date: June 2016

Updated BOSH stemcell to v3262.2

Bug fix for cf CLI

v1.4.10

Release Date: June 2016

Security release requiring stemcell v3232.8

v1.4.9

Release Date: June 2016

Security release requiring stemcell v3232.6

Bug fix for Service broker bug with HTTPS

v1.4.7

Release Date: May 2016 - Security release requiring stemcell v3232.2

v1.4.5

Release Date: May 2016 - PCF v1.7 compatibility. - Update to this version of push before updating to

PCF v1.7.0

v1.4.3

Release Date: March 2016 - Security release requiring stemcell v3146.10.

v1.4.2

Release Date: February 2016 - Security release requiring stemcell v3146.8.

v1.4.0

Release Date: November 2015

The Push Notifications Service now supports multiple tenants.

Push Notifications is now a service that can be provisioned from the CF Marketplace.

The dashboard now requires a Tenant Id.

The dashboard now displays logs related to push activities.

The analytics system now configures a second Redis to behave as a cache for storing logs.

Update to the Push SDK supports iOS 9 and includes a Swift sample app.

Push Notification Service v1.10

VMware, Inc 27

The Push SDK for Android now supports Android 6.0 Marshmallow, including the new

permissions system.

For an example of Android 6.0 Marshmallow permissions, see the Push Sample app.

v1.3.5

Release Date: October 2015

Support for PCF v1.6 and Diego.

SOCKS proxy bug fix.

v1.3.4

Release Date: October 2015

Bug fixes for smoke tests.

v1.3.3

Release Date: September 2015

Bug fixes for certain scenarios regarding expiry time.

v1.3.3 iOS and Android Client SDK

Push app analytics.

Custom HTTP request headers.

Custom SSL authentication.

v1.3.2

Release Date: August 2015

Deprecated lucid64 stack in favour of the new Trusty/cflinuxfs2 stack

Proxy Support for iOS push notifications. Supports SOCKS proxies.

Proxy Support for Android push notifications. Supports HTTP and SOCKS proxies.

v1.3.2 iOS and Android Client SDK

Enable and disable geofences at runtime.

Added a method to read the device UUID at runtime.

v1.3.1

Release Date: August 2015

Support for RabbitMQ Service versions v1.4.0 and later

Push Notification Service v1.10

VMware, Inc 28

Tag management added to dashboard

Ability to regenerate push api keys

Minor improvements to installation

Allow certificate checks to be disabled in cf environments that use self signed certificates

v1.3.1 iOS and Android Client SDK

SSL Certificate pinning.

Any geofences with tags will be monitored only if the user is subscribed to that tag.

v1.3.0

Release Date: June 2015

Location based notifications

Android and iOS support (SDKs)

Dashboard support

Maps

Saved locations and groups of locations

Active geofences view

Upgrading from version v1.2.x to v1.3.0

v1.2.1

Release Date: April 2015

Offline installation support

v1.2.0

Release Date: March 2015

Scheduled push notifications

Notifications with expiry time

Updated UI/UX for dashboard (sending scheduled push with expiry time)

v1.1.0 — January 2015

v1.0.1 — November 2014

v1.0.0 — July 2014

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 29

http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes.html.md.erb

Push Notification Service v1.5.0 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.6

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

This release does not support Redis Cluster

If you are using redis behind a tcp proxy, make sure to use Session Persistence.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 30

https://pivotal.io/support/lifecycle_policy
http://redis.io/topics/cluster-spec

List of Changes

The Push Notifications Service now supports multiple tenants.

Push Notifications is now a service that can be provisioned from the CF Marketplace.

The dashboard now requires a Tenant Id.

The dashboard now displays logs related to push activities.

The analytics system now configures a second Redis to behave as a cache for storing logs.

Update to the Push SDK supports iOS 9 and includes a Swift sample app.

The Push SDK for Android now supports Android 6.0 Marshmallow, including the new

permissions system.

See the Push Sample app for an example of Android 6.0 Marshmallow permissions.

Create a pull request or raise an issue on the source for this page in GitHub

Note: BOSH Stemcell 3140 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 31

http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.5.0.html.md.erb

Push Notification Service v1.4.0 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.6

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

This release does not support Redis Cluster

If you are using redis behind a tcp proxy, make sure to use Session Persistence.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 32

https://pivotal.io/support/lifecycle_policy
http://redis.io/topics/cluster-spec

List of Changes

The Push Notifications Service now supports multiple tenants.

Push Notifications is now a service that can be provisioned from the CF Marketplace.

The dashboard now requires a Tenant Id.

The dashboard now displays logs related to push activities.

The analytics system now configures a second Redis to behave as a cache for storing logs.

Update to the Push SDK supports iOS 9 and includes a Swift sample app.

The Push SDK for Android now supports Android 6.0 Marshmallow, including the new

permissions system.

See the Push Sample app for an example of Android 6.0 Marshmallow permissions.

Create a pull request or raise an issue on the source for this page in GitHub

Note: BOSH Stemcell 3140 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 33

http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.4.0.html.md.erb

Push Notification Service v1.3.5 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.5.x or 1.6.x

Pivotal Elastic Runtime 1.6.0+

Pivotal MySQL Service 1.6.3+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

List of Changes

Support for PCF 1.6 and Diego.

SOCKS proxy bug fix.

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: BOSH Stemcell 3100 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 34

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.3.5.html.md.erb

Push Notification Service v1.3.4 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

List of Changes

Bugfixes for smoke tests.

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: BOSH Stemcell 2989 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 35

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.3.4.html.md.erb

Push Notification Service v1.3.2 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

List of Changes

Bugfixes for certain scenarios regarding expiry time

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: BOSH Stemcell 2989 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 36

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.3.3.html.md.erb

Push Notification Service v1.3.2 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

List of Changes

Deprecated lucid64 stack in favour of the new Trusty/cflinuxfs2 stack

Proxy Support for iOS push notifications. Supports SOCKS proxies.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: BOSH Stemcell 2989 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 37

https://pivotal.io/support/lifecycle_policy

Proxy Support for Android push notifications. Supports HTTP and SOCKS proxies.

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 38

http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.3.2.html.md.erb

Push Notification Service v1.3.1 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.x

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

List of Changes

Support for RabbitMQ Service versions 1.4.0 and higher

Tag management added to dashboard

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: BOSH Stemcell 2989 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 39

https://pivotal.io/support/lifecycle_policy

Ability to regenerate push api keys

Minor improvements to installation

Allow certificate checks to be disabled in cf environments that use self signed certificates

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 40

http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.3.1.html.md.erb

Push Notification Service v1.3.0 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

Dependencies

On PCF 1.4

Pivotal MySQL Service 1.4.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.0

On PCF 1.5

Pivotal MySQL Service 1.5.0+

Pivotal Redis Service 1.4.x

Pivotal RabbitMQ Service 1.4.0

Known issues

On AWS, this version supports deployments in the US-East region. Multi-region support is

coming in a future release.

The experimental HTTPS-only feature in Elastic Runtime 1.5 may cause issues with this

version of the product. Full support for HTTPS-only traffic is coming in a future release.

List of Changes

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: BOSH Stemcell 2989 is required for installation on Ops Manager 1.5.x and

above.

Push Notification Service v1.10

VMware, Inc 41

https://pivotal.io/support/lifecycle_policy

Location based notifications

Android and iOS support (SDKs)

Dashboard support

Maps

Saved locations and groups of locations

Active geofences view

List of Known issues

Upgrading from version 1.2

There is no automated upgrade path from version 1.2 to version 1.3 however it is possible to migrate

data from an 1.2 intallation to a 1.3 installation with the following steps:

Backup data

In the developer console in the “system” org go to the “push-notifications” space and

the “push-notifications” app

Go to services

click show credentials for mysql

get username, password and database name

ssh into the proxy for your pivotal cf environment

From the proxy run

mysqldump -h hostname -p -u username database_name > push_db.sql

Backup encryption key

In the developer console go to the push-notifictions app and go to the “Env Variables” tab

Get and record the value for ‘crypto_applicationKey’. You will need this during the v1.3

install.

Backup Redis

See redis backup instructions

Uninstall push 1.2

Delete Push Notification Service v 1.2.x in Ops Manager

Install push 1.3

Upload the pivotal package for Push Notification Service v 1.3.0 to Ops Manager

Under security settings be sure to enter the encryption key from the previous installation.

This is very important as portions of the exported data is encrypted.

Push Notification Service v1.10

VMware, Inc 42

http://docs.pivotal.io/redis/manual-br.html

Apply changes and wait for the install to complete

Restore data

From the developer console in the “push notifications” space through the “system” org,

stop the “push” and “push-api” applications

From the push-api app

Go to services

Click show credentials for mysql

Get username, password and database name

ssh into the proxy for your pivotal cf environment

Delete data from push 1.3 install (this should just be empty data)

From the proxy run

mysql -h hostname -p -u username name -e "drop database database_name; cr

eate database database_name;"

Import data from old install

from the proxy run

mysql -h hostname -p -u username database_name > push_db.sql

Enable migrations

In the developer console, find the “push-api” application and go to the “Env

Variables” tab

Edit 'liquibase_runMitrations’ and set it to 'true’

Start the “push-api” and “push” applications

Disable migrations

In the developer console, find the “push-api” application and go to the “Env

Variables” tab

Edit 'liquibase_runMitrations’ and set it to 'false’

Restart the “push-api” application

Bind depricated api url for existing apps (if you are using the old
route)

In the developer console, find the “push-api” application, and go to the Routes tab

Click 'Map A Route’ add a route named 'push-notifications’

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 43

http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.3.0.html.md.erb

Push Notification Service v1.2.0.0 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

List of Changes

Added scheduled notifications.

Added expiring notifications.

UI improvements.

Minor bug fixes.

List of Known issues

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 44

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.2.0.html.md.erb

Push Notification Service v1.1.0.0 Release
Notes

Changes

New UI

Added interactive push support

Analytics page shows graphs of registered users and pushes over time

Added ability to search devices

Added new screen to send push notification with message provided by dashboard user

Added /healthcheck endpoint that returns of the status of the server and its dependent

services.

Added responsive UI for mobile screens

Simplified naming (apps, variants and environments are now apps and platforms)

Cleaned up swagger API documentation for developers

General UI flow improvements

Let the /v1/apps endpoint operate on environments and discontinue use of apps.

API updated to allow fetching all registrations for an application.

Now shows count of total devices in Devices list

Improved certificate upload screen for Windows based devices

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 45

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.1.0.html.md.erb

Push Notification Service v1.0.1.0 Release
Notes

The Push Notification services allows application developers to publish push notifications to devices

on various platforms. Integration is done through provided SDKs which implement the device

registration flow.

List of Changes

Push Dashboard now requires authentication

Changed the database connector from MySQL to MariaDB

Can now send up a payload of up to 2048 bytes to iOS devices

Upgraded Spring Boot to the 1.1.8.Release version and upgraded all dependencies

Improved logging

Performance updates

Bugfixes

List of Known issues

Rabbit healthcheck requires admin credentials (not available on CF)

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 46

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.0.1.html.md.erb

Push Notification Service v1.0.0 Release
Notes

Changes

RESTful APIs to send push notifications

Support for iOS, Android, Windows 8, and Windows Phone

Administrative dashboard to manage applications and environments (e.g. development,

staging, production)

Ability to send test messages to an environment, or a particular device

Audit logging allows tracing of a pushed message from the initial API call, up to and including

the transmission to the platform’s push endpoint

Known issues

Multi-tenant data protection is not available. Push configuration data in the dashboard is

accessible to all PCF UAA users. However, an App user only sees messages pushed to that

user.

High-availability configuration requires a high-availability configuration of MySQL.

There is no BB10 support

There are no statistics or status checks on the messages in the queue.

All apps and variants use the same RabbitMQ queues.

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 47

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/release-notes/release-notes-1.0.0.html.md.erb

Installation

This document describes how to install the Pivotal Cloud Foundry (PCF) Push Notification Service.

The PCF Push Notification Service installs as a suite of five CF apps deployed in the system org

under the push-notifications space.

API

Dashboard

Service Broker

Scheduler

Analytics

A default installation deploys 10 Application Instances (AIs), two for each app shown above. For

production deployments, Pivotal recommends deploying a minimum of two instances for each push

app, 10 AIs total, per PCF environment. Additional API application instances may be required

depending on the peak load required, with peak load defined as the maximum number of

notifications sent per second.

Dependencies

The Push Notification service depends on MySQL (optionally MySQL for Pivotal CF), RabbitMQ for

Pivotal CF, and Redis for Pivotal CF being successfully installed on Pivotal Cloud Foundry.

Prerequisites

Tailing logs through the push dashboard

Tailing logs through the push dashboard is now done using websockets. Please ensure that

websocket traffic is allowed through to the push dashboard (push.SYSTEM-DOMAIN) and push-

analytics(push-analytics.SYSTEM-DOMAIN) addresses.

Download the Product

Download the Push Notification software from Pivotal Network.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 48

https://pivotal.io/support/lifecycle_policy
https://network.pivotal.io/products/p-mysql
https://network.pivotal.io/products/pivotal-rabbitmq-service
https://network.pivotal.io/products/p-redis
https://network.pivotal.io/products/pivotal-cf
https://network.pivotal.io/products/push-notification-service

Adding the Product

To get started with Push, you need to add the product with Pivotal Ops Manager.

Before you can complete the installation you must provide some configuration.

Set Encryption Key

From Ops Manager click on the Push Notification Service tile and go to the “Security Settings”
section. Generate an encryption key by running the following command in terminal (you should set

your own password here):

openssl enc -aes-128-cbc -k samplepassword -P -md sha1

This produces a salt, key, and initialization vector. Copy the key into the “Encryption Key” field on

Ops Manager and click “Save”. This key is used for symmetric encryption of push certificates and

API keys.

Set Available Platforms

From Ops Manager click on the Push Notification Service tile and go to the “Available Platforms”
section. Select which new platforms will be available for creation when using the Push Notification

dashboard.

One or more of these options must be selected:

iOS: Allows the creation of iOS APNS push platforms

Android: Allows the creation of Android push platforms through Google Cloud Messaging

Android (FCM): Allows the creation of Android push platforms through Google Firebase

Messaging

Android (Baidu): Allows the creation of Android push platforms through Baidu Messaging.

This setting is useful for environments deployed in regions in which certain push platforms may not

be available. For example, “Android” and “Android (FCM)” are currently not available in China.

NOTE: This setting will only affect the creation of new platforms; currently existing platforms will not

be affected by this setting.

Configure Deployment Settings

From Ops Manager click on the Push Notification Service tile and go to the “Push Deployment

Settings” section.

The following deployment options are available:

Development: One instance of each service is used by the Push Notification Service tile.

Production (default): Two instances of each service are used by the Push Notification

Service tile.

Custom: Customize how many instances are used for each service. Enter the number of

instances, between 1 and 100, for each service.

The following table outlines the resource requirements each service per instance.

Push Notification Service v1.10

VMware, Inc 49

http://docs.pivotal.io/pivotalcf/customizing/add-delete.html

Service Memory Usage per instance Disk Usage per instance

Push API 2G 1G

Push Dashboard 512M 1G

Push Broker 512M 1G

Push Analytics 1G 1G

Push Scheduler 512M 1G

Ensure the Diego Cell match the resource requirements for running all instances.

Configure MySQL

From Ops Manager click on the Push Notification Service tile and go to the “MySQL Settings”
section. Select MySQL Service to use MySQL for PCF. See the [Installation] section of the MySQL for

PCF documentation for more information. When using the MySQL for PCF service for Push

Notifications, you must provide a MySQL for PCF service plan name. Pivotal recommends creating a

custom MySQL for PCF service plan called “Push”. You can find instructions for creating a custom

service plan in the MySQL for PCF Service Plans documentation. After you identify the appropriate

service plan, enter its name in the text field, such as “Push”.

To use an external (user provided) MySQL server select “External” and fill in the required fields.

After you have completed this configuration click “Save”.

Configure Redis for Analytics and Logs

From Ops Manager click on the Push Notification Service tile and go to the “Analytics Redis

Settings” section. Select the Redis service to use Pivotal Redis service. If you select this option you

must install the Pivotal Redis service as well. Select from the drop-down the type of service plan to

use. See Pivotal Redis Documentation for more information.

To use an external (user provided) Redis server select “External” and fill in the required fields. -

NOTE: This release does not support Redis Cluster if you are using external redis. - If you are using

redis behind a tcp proxy, make sure to use Session Persistence.

The same steps apply to set the “Logs Redis Settings” section as above.

After you have completed these configurations click “Save”.

Configure Proxy

PCF Push Notification Service supports routing communication with push providers (Apple Push

Notification Service, Google Cloud Messaging, Firebase Cloud Messaging, Baidu Cloud Push)

through a proxy server.

For example, to route FCM API request through a SOCKS proxy server running on 10.0.4.2:1080,

set Server Host and Server Port under SOCKS of FCM Proxy Settings as following:

Push Notification Service v1.10

VMware, Inc 50

https://network.pivotal.io/products/p-mysql
http://docs.pivotal.io/p-mysql/#installation
http://docs.pivotal.io/p-mysql/1-8/index.html#service-plan
https://network.pivotal.io/products/p-redis
http://docs.pivotal.io/redis
http://redis.io/topics/cluster-spec

Each push providers proxy settings can be configured independently from each other.

For Android based push providers (GCM, FCM, and Baidu), both SOCKS and HTTP proxies are

supported. For Apple push provider (APNS), only SOCKS proxy is supported.

Default Errand Behavior

As of PCF v1.10, Ops Manager skips all unnecessary BOSH errands when performing updates to PCF

Push Notification Service v1.10

VMware, Inc 51

services. For more information about this behaviour, see the Ops Manager documentation,

Managing Errands in Ops Manager.

For PCF Push Notification services, Pivotal strongly recommends that operators set the default

Errand execution behaviour to On, through the Errands Form in the Push Notifications tile settings in

Ops Manager.

Upload Stemcell

Ops Manager requires that you upload the stemcell that the Push Notification Service uses.

1. Depending on your Ops Manager version, navigate to the area where you can manage your

stemcell for the Push Notification Service:

If you are using Ops Manager v2.0 or earlier, click Stemcells.

If you are using Ops Manager v2.1 or later, click Stemcell Library. For more

information about using the Stemcell Library, see Importing and Managing Stemcells.

2. Verify and, if necessary, import a new stemcell version. You can acquire stemcells from

Pivotal Network.

Apply Changes

After you complete the security settings and MySQL configuration, perform the following steps to

Note: As of Ops Manager v2.1, operators manage stemcells for all

products from the Stemcell Library.

Push Notification Service v1.10

VMware, Inc 52

http://docs.pivotal.io/pivotalcf/customizing/managing_errands.html
https://docs.pivotal.io/pivotalcf/opsguide/managing-stemcells.html
https://network.pivotal.io/products/stemcells/

complete the installation.

1. If you are using Ops Manager v2.3 or later, click Review Pending Changes. For more

information about this Ops Manager page, see Reviewing Pending Product Changes.

2. Click Apply Changes.

Creating a Tenant

PCF Push Notification Service supports multiple tenants. Each tenant in the PCF Push Notification

Service can have its own set of applications. In order to set up a new tenant, you need to create a

new space in your PCF Apps Manager. You can use any org that is appropriate for your needs.

The applications for the Push Notification Service itself are in the “push-notifications” space in the

“system” org. Don’t use this space for your own tenant. Create a new space instead.

After you have selected your space you can create your Push service instance by clicking the “Add

Service” button. Select the “PCF Push Notification Service” service from the Marketplace. Select

the default (free) plan. Give the service a name and add it to your space.

Only create one instance of the Push Notification Service per space.

After the service instance is created you can click the “Manage” link on the service instance to

show the Dashboard for the Push Notification Service.

You can control access to the Push Dashboard by using the using Cloud Controller. Any users with

access to see the space also have access to use the Push Notification Dashboard. You need to be

logged in to the Apps Manager before you can access the Push Dashboard.

Dashboard Setup

After the service has been added, verify the successful installation by viewing the dashboard.

Note:

The Push Notification service is a CF Service that is installed in the “System” org and “push-

notifications” space. You see it in the Marketplace. Each instance of the Push Notifications Service

has its own dashboard URL.

Login as “admin” to the CF console and go to that org and space. To access the Push Dashboard,

click on the “Manage” link for the “push-service-instance” service.

Installation Verification

There are two different ways to manually verify the installation was successful.

The first way is to use the CF CLI to view the installed apps and services. Instructions to log in are

included on the CF CLI page.

The organization is “System” and the space is “push-notifications”, both are needed to view the

apps and services using the CF CLI.

After setting the api and logging in to the CF CLI, type in cf a to see a listing of all the apps currently

under the push-notifications space, with a quick overview of their current status.

Push Notification Service v1.10

VMware, Inc 53

https://docs.pivotal.io/pivotalcf/customizing/review-pending-changes.html
https://github.com/cloudfoundry/cli

The apps that should appear are as follows:

Dashboard (push)

Backend (push-api)

Scheduler (push-scheduler)

Analytics (push-analytics)

Service Broker (push-service-broker)

And they should all have their own unique urls.

For the services, typing in cf s gives a list of the services plus the apps which they are bound to.

The services that should appear are as follows:

MySQL (push-notifications-mysql)

RabbitMQ (push-notifications-rabbitmq)

Redis for Analytics (push-notifications-analytics-redis)

Redis for Logs (push-notifications-logs-redis)

Push Notification (push-service-instance)

The second way is to use the developer console. After logging in, select the System organization

from the dropdown box. Selecting the organization then shows all of the spaces which are nested

within.

Push Notification Service v1.10

VMware, Inc 54

Click on the push-notifications space, which then show the apps and services running under that

space.

The listing of applications show the status, the name, the url to access the app, how many instances

of that app is running, and how much memory that app is using. Verify that each apps status is 100%,

which means it is running as expected.

Push Notification Service v1.10

VMware, Inc 55

The listing of services show the name, the plan, and how many apps are bound to it. Some services

have extra options, such as managing the service, or looking up documentation on the service.

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 56

http://github.com/cfmobile/docs-push-notifications/tree/1.10/installation.html.md.erb

DevOps

Monitoring

Healthcheck

Push provides a healthcheck endpoint which can be polled for monitoring the health of both Push

and its connection to dependencies. Access the endpoint at http://push-api.pcf-top-level-

domain/healthcheck

See the following sample output of the healthcheck endpoint:

{

 "database": {

 "healthy": true,

 "message": "MySQL"

 },

 "rabbitmq": {

 "healthy": true,

 "message": "All rabbit nodes (ingest, dispatch, push, audit) are running"

 },

 "scheduler-backend": {

 "healthy": true,

 "message": "Scheduler is up"

 }

}

Heartbeat Monitoring

At installation time, a pre-configured heartbeat monitor mobile app is created. This app sends a

regular push notification through the system to a mobile device. See Configuring Heartbeat Monitor

for iOS and Configuring Heartbeat Monitor for Android for more information.

Uninstalling

IMPORTANT

Push is a stateful service!

It is advised that you do NOT UNINSTALL the Push tile in order to solve problems with binding or

communicating with other services. The Push team will provide instructions on how to manually

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 57

https://pivotal.io/support/lifecycle_policy

restore these connections.

Deleting the tile will cause all of the Push user data stored in the MySQL, Redis, and RabbitMQ

services to be DELETED as well.

If you need to delete the Push tile or delete any of its connections to the above services then you

will need to BACKUP and RESTORE all of the Push user data in these services.

Instructions for backing up and restore the user data is provided below.

Troubleshooting Common Problems

For solutions to common problems, please see our troubleshooting guide.

Configurable Environment Variables

Push Api

push_security_trustAllCerts (Boolean, default: inherited from cf runtime)

When the push_security_trustAllCerts environment variable is set to true the Push API will skip

SSL validation on calls to RabbitMQ and the Push Scheduler. This variable is necessary in

environments that use self-signed certificates. The default value is false unless the CF Runtime is

configured to trust self-signed certificates.

Certificates generated in Pivotal Application Service are signed by the Operations Manager

Certificate Authority. They are not technically self-signed, but they are referred to as ‘Self-Signed

Certificates’ in the Ops Manager GUI and throughout this documentation.

push_scheduler_sendImmediatelyWithin (Integer, default: 60)

The push_scheduler_sendImmediatelyWithin environment variable pertains to scheduled push

notifications. It is a threshold (in seconds) within which the push server will skip scheduling a push

and simply send it right away. The default value is 60 seconds. If a push is scheduled within 60

seconds of the current time it will not be scheduled but simply be sent right away. You can modify

that threshold by modifying this environment variable.

push_apns_sendReceipt (Boolean, default: true)

The push_apns_sendReceipt environment variable is a flag that enables passing a receipt to the

device as part of the push payload. The receipt is a unique id for each message that can be used for

analytics. This flag enables sending receipts for iOS/APNS.

push_apns_logDeviceTokens (Boolean, default: true)

The push_apns_logDeviceTokens environment variable controls the log verbosity of the APNS push

handler. When set to true the device token for every recipient of a push will be logged as the push

is sent. Note that this extra logging will reduce push throughput.

push_gcm_sendReceipt (Boolean, default: true)

Push Notification Service v1.10

VMware, Inc 58

#push-1-10-troubleshooting

The push_gcm_sendReceipt environment variable is a flag that enables passing a receipt to the device

as part of the push payload. The receipt is a unique id for each message that can be used for

analytics. This enables sending receipts for Android/GCM.

push_gcm_logDeviceTokens (Boolean, default: true)

The push_gcm_logDeviceTokens environment variable controls the log verbosity of the Android push

handler. When set to true the device token for every recipient of a push will be logged as the push

is sent. Note that this extra logging will reduce push throughput.

Install ing the Push Server Behind a Proxy

You can route communication with push providers (APNS, Google Cloud Messaging, Firebase Cloud

Messaging, Baidu Cloud Push) through a proxy server.

It is strongly suggested to change this setting in the Push Notification tile through Ops Manager.

GCM Pushes Through Proxy

GCM pushes can use either a HTTP or socks proxy. Use the following environment variables to

specify proxies.

push_gcm_httpProxyHost (String, default: [empty])

push_gcm_httpProxyPort (Integer, default: [empty])

The push_gcm_httpProxyHost and push_gcm_httpProxyPort environment variables allow you to

specify an HTTP proxy server through which to route Google API requests (for Android pushes).

push_gcm_socksProxyHost (String, default: [empty])

push_gcm_socksProxyPort (String, default: [empty])

The push_gcm_socksProxyHost and push_gcm_socksProxyPort environment variables allow you to

specify a SOCKS proxy through which to route Google API requests.

FCM Pushes Through Proxy

FCM pushes can use either a HTTP or socks proxy. Use the following environment variables to

specify proxies.

push_fcm_httpProxyHost (String, default: [empty])

push_fcm_httpProxyPort (Integer, default: [empty])

The push_fcm_httpProxyHost and push_fcm_httpProxyPort environment variables allow you to

specify an HTTP proxy server through which to route Google API requests (for Android pushes).

push_fcm_socksProxyHost (String, default: [empty])

push_fcm_socksProxyPort (String, default: [empty])

The push_fcm_socksProxyHost and push_fcm_socksProxyPort environment variables allow you to

specify a SOCKS proxy through which to route Google API requests.

Push Notification Service v1.10

VMware, Inc 59

Baidu Pushes Through Proxy

Baidu pushes can use either a HTTP or socks proxy. Use the following environment variables to

specify proxies.

push_baidu_httpProxyHost (String, default: [empty])

push_baidu_httpProxyPort (Integer, default: [empty])

The push_baidu_httpProxyHost and push_baidu_httpProxyPort environment variables allow you to

specify an HTTP proxy server through which to route Baidu API requests (for Android pushes).

push_baidu_socksProxyHost (String, default: [empty])

push_baidu_socksProxyPort (String, default: [empty])

The push_gcm_socksProxyHost and push_baidu_socksProxyPort environment variables allow you to

specify a SOCKS proxy through which to route Google API requests.

APNS Pushes Through Proxy

APNS pushes can only use a socks proxy.

push_apns_socksProxyHost (String, default: [empty])

push_apns_socksProxyPort (String, default: [empty])

The push_apns_socksProxyHost and push_apns_socksProxyPort environment variables allow you to

specify a SOCKS proxy through which to route APNS push requests.

For Al l Pushes Through Proxy

If both HTTP and SOCKS proxies are defined for a particular Push service provider (GCM, FCM, and

Baidu), SOCKS will be used.

Push Dashboard

CREATE_PLATFORM_DIALOG_WHITELIST (String, default: "ios,android,android-fcm,android-ba

idu")

The CREATE_PLATFORM_DIALOG_WHITELIST environment variable specifies which new push platforms

are available for creation when using the Push Notification dashboard.

If this variable is empty, the Push Dashboard will fail to start.

NOTE: It is strongly suggested to change this setting in the Push Notification tile through Ops

Manager.

Backup And Restore

Backup MySQL Data

It is highly recommended that you enable automatic backups with your MySQL Tile (Requires an

Amazon s3 Bucket). Additionally, you should always backup your MySQL tile if you are planning on

removing Push Notification Service or MySQL. You can perform a manual backup by following the

Push Notification Service v1.10

VMware, Inc 60

http://docs.pivotal.io/p-mysql/backup.html#automated-backups

directions found here: MySQL Manual Backup

Follow these instructions to backup solely the Push Notification database.

In the Apps Manager console in the “system” org go to the “push-notifications” space

and the “push-analytics” app.

Go to the “Services” tab.

Click “▸ Show credentials” for the MySQL service.

Get “username”, “password” and “database name”.

SSH into the proxy for your Pivotal CF environment.

From the proxy run (using the credentials above):

mysqldump -h hostname -p -u USERNAME DATABASE-NAME > push_db.sql

Backup Encryption Key

In the Apps Manager console navigate to the Push-api app and select the Env Variables tab.

Get and record the value for crypto_applicationKey. You will need this key during the

installation.

The crypto_applicationKey environment variable contains the key which will be

used to encrypt sensitive information used by the push server (i.e.: iOS push

certificates, Google API keys). This value is set at install time and should not be

modified. You will however need to record this value in order save and restore the

push notification service database.

Restore MySQL Data

From the Apps Manager console in the Push Notifications space through the System org,

stop the push and push-api applications.

Navigate to Services.

Select Show credentials for MySQL.

Get the username, password and database name.

SSH into the proxy for your Pivotal CF environment.

Delete data from Push Installation (this should just be empty data) by running the following

command from the proxy using the above credentials:

mysql -h HOSTNAME -p -u USERNAME name -e drop database DATABASE-NAME; create da

tabase DATABASE-NAME;"

Import data from old install by running the following command from the proxy (using the

above credentials):

mysql -h HOSTNAME -p -u USERNAME DATABASE-NAME < push_db.sql

Enable migrations:

Push Notification Service v1.10

VMware, Inc 61

http://docs.pivotal.io/p-mysql/backup.html#manual-process

In the Apps Manager console, find the Push-api application and navigate to the Env

Variables tab.

Set the liquibase_runMitgations field to true.

Start the Push-api and Push applications.

Disable migrations:

In the Apps Manager console, find the “push-api” application and navigate to the

Env Variables tab.

Set the Liquibase_runMigrations to false.

Restart the Push-api and Push applications.

Backup Redis Data

See redis backup instructions

Migrate from MySQL for PCF v1 to v2

Because Push Notification Service for PCF v1.10 does not support MySQL for PCF v1, if you are

running an earlier version of Push Notification Service using MySQL for PCF v1, you must migrate

the data to MySQL for PCF v2 before upgrading to Push Notification Service v1.10.

To migrate from MySQL for PCF v1 to MySQL to PCF v2, follow the procedures below.

Prerequisites

Ensure that you have the following:

Push Notification Service for PCF v1.10

A MySQL for PCF v1 service instance with the data you want to migrate

MySQL for PCF v2 tile installed

Install and Migrate

1. Enter the following command to install the MySQL migration plugin.

cf install-plugin -r CF-Community "mysql-plugin"

For more information about the plugin, see the README for the mysql-cli-plugin.

2. Enter the following commands to stop push-api and push.

cf stop push-api

cf stop push

3. Enter the following command to migrate the data.

cf mysql-tools migrate V1-INSTANCE V2-PLAN

Where:

V1-INSTANCE is the name of the Push Notification service instance using MySQL for

Push Notification Service v1.10

VMware, Inc 62

http://docs.pivotal.io/redis/manual-br.html
https://github.com/pivotal-cf/mysql-cli-plugin/blob/master/README.md

PCF v1, for example, push-notifications-mysql.

V2-PLAN is the name of the MySQL for PCF v2 service plan to use for the new MySQL

for PCF v2 service instance, for example, db-large.

For example:

$ cf mysql-tools migrate push-notifications-mysql db-large

4. Confirm that you receive the expected output, similar to the following:

2018/06/05 11:59:54 Creating new service instance "push-notifications-mysql-new

" for service p.mysql using plan db-large

2018/06/05 12:03:03 Unpacking assets for migration to /var/folders/6t/syyk38954

f1cqyrf246fmh3w0000gp/T/migrate_app_576946222

2018/06/05 12:03:03 Started to push app

Done uploading

2018/06/05 12:03:10 Successfully pushed app

2018/06/05 12:03:11 Successfully bound app to v1 instance

2018/06/05 12:03:12 Successfully bound app to v2 instance

2018/06/05 12:03:12 Starting migration app

2018/06/05 12:03:25 Started to run migration task

2018/06/05 12:03:29 Migration completed successfully

2018/06/05 12:03:30 Cleaning up...

Bind, Unbind, and Stage

1. Enter the following command to unbind push-api and push from the old MySQL service

instance.

cf unbind-service push-api push-notifications-mysql-old

cf unbind-service push push-notifications-mysql-old

2. Enter the following command to bind push-api and push to new MySQL service instance.

cf bind-service push-api push-notifications-mysql

cf bind-service push push-notifications-mysql

3. Enter the following command to update the push-api environment variable.

cf set-env push-api cf_mysqlService p.mysql

4. Enter the following command to restage push-api and push.

cf restage push-api

cf restage push

After restaging, confirm that push-api is running. Also, push is expected to be broken. This is

because the Push Notification dashboard is inaccessible. However, all PNS back-end

activities should be functional.

Import Tile and Deploy

Push Notification Service v1.10

VMware, Inc 63

1. Import the Push Notification for PCF v1.10 tile. Confirm that the plan name on the PNS

MySQL setting matches V2-PLAN in Step 3 of Install and Migrate above. For example, db-

large.

2. If you are using Ops Manager v2.3 or later, click Review Pending Changes. For more

information about this Ops Manager page, see Reviewing Pending Product Changes.

3. Click Apply Changes to complete the migration.

4. Verify that the push app is running and that the Push Notification dashboard is accessible.

5. Enter the following command to delete push-notifications-mysql-old.

cf delete-service -f push-notifications-mysql-old

Removing Log Redis Instance

Starting with v1.9.0, log redis service instance is no longer required for Push. As such, push-analytics

is no longer bound to the service.

The log redis service instance, under the system org and push-notifications space, can be safely

removed:

If using the PCF Redis tile, the service name is push-notifications-logs-redis

If using an external Redis, the service name is push-notifications-user-defined-logs-

redis

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 64

https://docs.pivotal.io/pivotalcf/customizing/review-pending-changes.html
http://github.com/cfmobile/docs-push-notifications/tree/1.10/devops.html.md.erb

Configuring Heartbeat Monitor for iOS

This topic describes how Pivotal Cloud Foundry (PCF) operators can configure the Push Notification

Heartbeat Monitor app for iOS.

Heartbeat Monitor is a Cloud Foundry app deployed by the PCF Push Notification service to help you

ensure the service runs correctly end-to-end. It does this by sending a push, or heartbeat, every

minute to the devices registered with the app. You can also select the app in the Push dashboard to

view its historical data.

Follow the instructions below to configure Heartbeat Monitor and run the companion iOS app on

your device.

Prerequisites

To configure the Heartbeat Monitor app for iOS, you must have the following:

An iOS 8+ device

The latest Xcode that supports Swift 2.2 installed on your workstation

An Apple Developer account

Request an iOS Development Certificate

Follow these steps to obtain an iOS development certificate:

1. Navigate to the Certificates, Identifiers & Profiles section of the Apple Developer Portal.

2. In the side navigation, select Certificates > All.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 65

https://pivotal.io/support/lifecycle_policy
https://developer.apple.com/account/ios/certificate

3. Click the + button in the top right to add a new certificate.

4. Select iOS App Development and click Continue.

5. Follow the on-screen instructions to Create a CSR file and click Continue.

Push Notification Service v1.10

VMware, Inc 66

6. Upload the .csr file you created and click Continue to generate the new certificate.

7. Click Download.

8. Open your certificate and import it to the Keychain Access app when prompted.

Request an APNS Certificate

Follow these steps to enable your app to receive push notifications:

Create an App ID

Push Notification Service v1.10

VMware, Inc 67

1. Navigate to the Certificates, Identifiers & Profiles section of the Apple Developer Portal.

2. In the side navigation, select Identifiers > App IDs.

3. Click the + button to create an App ID.

4. Enter an Name and a Bundle ID.

5. Select the Push Notifications checkbox and click Continue.

Push Notification Service v1.10

VMware, Inc 68

https://developer.apple.com/account/ios/certificate

6. Click Register.

Create an APNS Certificate

1. In the App IDs list, select the App ID you registered and click Edit.

Push Notification Service v1.10

VMware, Inc 69

2. Under the Push Notifications section, choose Development SSL Certificate and click the

corresponding Create Certificate button.

Push Notification Service v1.10

VMware, Inc 70

3. Follow the on-screen instructions to create a new CSR.

4. Upload the .csr file you created and click Continue to generate the new certificate.

5. Click Download.

6. Open your certificate and import it to Keychain Access when prompted.

7. In Keychain Access, select both your Apple Development iOS Push Services certificate and

the private key it was signed with.

8. Right click your selection and choose Export 2 Items⋯

9. Save the .p12 file for uploading to the Push dashboard in a later step.

Create a Provisioning Profile

Follow these steps to create a Provisioning Profile that you specify when building the Heartbeat

Monitor iOS app in Xcode:

Push Notification Service v1.10

VMware, Inc 71

Register a Device

1. Navigate to the Certificates, Identifiers & Profiles section of the Apple Developer Portal.

2. In the side navigation, select Devices > All.

3. Click on the + button in the top right to add a device.

4. Retrieve the UDID of your device:

1. Connect your device to your computer.

2. Open iTunes.

3. Select the device tab.

5. Click the Serial Number of the device to reveal the UDID and right click the field to copy it.

6. In the Apple Developer Portal, enter a Name for your device and paste the UDID into its

field.

Note: You need an iOS 8+ Device to use Heartbeat Monitor. If you already have an

iOS 8+ Device registered, skip to the next step.

Push Notification Service v1.10

VMware, Inc 72

https://developer.apple.com/account/ios/certificate

7. Click Register.

Create a Profile

1. Navigate to the Certificates, Identifiers & Profiles section of the Apple Developer Portal.

2. In the side navigation, select Provisioning Profiles > All.

3. Click on the + button in the top right to create a Provisioning Profile.

4. Choose the iOS App Development type and click Continue.

5. From the App ID dropdown, select the App ID you created earlier and click Continue.

6. Select the Developer Certificate(s) that you want to use and click Continue.

7. Select the Devices that you registered and click Continue.

8. Provide a descriptive Name for the Provisioning Profile and click Continue.

9. Click Download and open your Provisioning Profile.

Configure your Push Dashboard

Note: When you open your Provisioning Profile, Xcode installs it without

providing any confirmation. In a later step, you configure your Xcode app

project to use this Provisioning Profile.

Push Notification Service v1.10

VMware, Inc 73

https://developer.apple.com/account/ios/certificate

Follow these steps to navigate to the Push dashboard and then configure the service to talk to your

device.

You can navigate to the Push dashboard using either Apps Manager or the Cloud Foundry

Command Line Interface (cf CLI). Use the cf CLI instructions if you did not enable the Push Apps

Manager errand when deploying Pivotal Application Service.

Navigate to Push Dashboard using Apps Manager

1. In a browser, navigate to apps.YOUR-SYSTEM-DOMAIN.

2. Select the system org and the push-notifications space.

3. Click the Services tab.

4. Select the PCF Push Notification Service row and click the Manage link.

Navigate to Push Dashboard using cf CLI

1. Open a terminal window and log in:

$ cf login -a https://api.YOUR-SYSTEM-DOMAIN -u USERNAME -p PASSWORD

2. Target the correct org and space:

$ cf target -o system -s push-notifications

3. Run the following command:

$ cf service push-service-instance

4. Copy the URL from the Dashboard field and paste it into your browser.

Configure the Push Notification Service

1. Select the Heartbeat App from the list of applications.

2. Select the Configuration pane.

Push Notification Service v1.10

VMware, Inc 74

3. Under the Platforms section, in the Heartbeat iOS Platform row, click the pencil icon to edit

the record.

4. Complete the following fields:

MODE: Select Development from the dropdown menu.

CERTIFICATE: Click Choose File and upload the APNS certificate you created.

PASSWORD: Enter the password you used when creating your APNS certificate.

5. Click Save.

Push Notification Service v1.10

VMware, Inc 75

Run the App on Your Device

Follow these steps to open the project for the Heartbeat Monitor iOS app in Xcode and run the app

on your device:

Download the App Repo

1. Clone the Push iOS Heartbeat Monitor repository:

$ git clone git@github.com:cfmobile/push-ios-heartbeatmonitor.git

2. Run the following command to open the Xcode project:

$ open PCF\ Push\ Heartbeat\ Monitor.xcodeproj/

Configure the App Project

1. In the Project Navigator, select the Pivotal.plist file.

2. In the editor, change the value for pivotal.push.serviceUrl to the Push Notification API

endpoint for your environment: https://push-api.YOUR-SYSTEM-DOMAIN.

Push Notification Service v1.10

VMware, Inc 76

3. Ensure that the values for the following Root fields in the editor match the corresponding

values in the Push dashboard under the Heartbeat iOS Platform record:

Root Field in Editor Platform Field in Push Dashboard

pivotal.push.platformUuidDevelopment Platform UUID

pivotal.push.platformSecretDevelopment Platform Secret

4. Under the General tab, set the Provisioning Profile dropdowns to the profile you created

earlier.

5. Under the Capabilities tab, ensure that both Steps are enabled for Push Notifications.

6. If your PCF deployment does not use an SSL certificate signed by a Certificate Authority

(CA), add an exception domain to the info.plist file by selecting App Transport Security

Note: Do not select the checkbox to automatically manage signing.

Push Notification Service v1.10

VMware, Inc 77

Settings > Exception Domains and entering push-api.YOUR-SYSTEM-DOMAIN.

Build and Run the App

1. At the top of the Xcode window, select the device icon and choose your device.

2. Click the play button to build and run the app on your device.

3. Select Allow when the app asks if it can send you notifications.

The screen updates with a new heartbeat count every minute as it receives pushes from

Push Notification Service v1.10

VMware, Inc 78

your environment.

Create a pull request or raise an issue on the source for this page in GitHub

Note: If you send a test push to your device from the Push dashboard,

ensure the app is not open on your device. You cannot see the test push

while the app is open.

Push Notification Service v1.10

VMware, Inc 79

http://github.com/cfmobile/docs-push-notifications/tree/1.10/heartbeat-ios.html.md.erb

Configuring Heartbeat Monitor for Android

This topic describes how Pivotal Cloud Foundry (PCF) operators can configure the Push Notification

Heartbeat Monitor app for Android.

Heartbeat Monitor is a Cloud Foundry app deployed by the PCF Push Notification service to help you

ensure the service runs correctly end-to-end. It does this by sending a push, or heartbeat, every

minute to the devices registered with the app. You can also select the app in the Push dashboard to

view its historical data.

Follow the instructions below to configure Heartbeat Monitor and run the companion Android app on

your device.

Prerequisites

The procedures in this document require the following:

You must have access to a PCF environment with the Push Notification Service installed.

You must have Android Studio 2.2 or later installed on your machine.

You must have the Google Repository from the Android SDK Manager.

You must have the Push Android SDK 1.7 or later from Github.

The devices that you want to send push notifications to must run Android 2.3 (Gingerbread)

or later.

The devices that you want to send push notifications to must have Google Play Services

9.8.0 or later.

Prepare an FCM Project

Follow these steps to prepare an FCM project for your app.

1. Navigate to the Firebase Console and create an account if you do not have one already.

2. Once logged in, Create a project for the Heartbeat Monitor.

1. When prompted, click Add Firebase to your Android app.

2. For Package name, enter io.pivotal.android.push.heartbeatmonitor.

3. Ensure the Debug signing certificate SHA-1 matches the SHA-1 from your debug

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 80

https://pivotal.io/support/lifecycle_policy
https://developer.android.com/tools/help/sdk-manager.html
https://github.com/cfmobile/push-android
https://console.firebase.google.com/

signing certificate. For instructions on how to get this fingerprint, refer to

Authenticating Your Client in the Google APIs for Android documentation.

4. After you finish creating or importing your project, a google-services.json file

downloads. Keep track of this file for later use.

3. Click your project.

4. Click the settings icon next to your project name and select Project Settings.

5. Select the Cloud Messaging tab.

6. Record the Server key for later use.

Configure Your Push Dashboard

Follow these steps to navigate to the Push dashboard and then configure the service to talk to your

device.

You can navigate to the Push dashboard using either Apps Manager or the Cloud Foundry

Command Line Interface (cf CLI). Use the cf CLI instructions if you did not enable the Push Apps

Manager errand when deploying Pivotal Application Service.

Navigate to Push Dashboard using Apps Manager

1. In a browser, navigate to apps.YOUR-SYSTEM-DOMAIN.

2. Select the system org and the push-notifications space.

3. Click the Services tab.

4. Select the PCF Push Notification Service row and click the Manage link.

Navigate to Push Dashboard using cf CLI

1. Open a terminal window and log in:

$ cf login -a https://api.YOUR-SYSTEM-DOMAIN -u USERNAME -p PASSWORD

2. Target the correct org and space:

$ cf target -o system -s push-notifications

3. Run the following command:

$ cf service push-service-instance

4. Copy the URL from the Dashboard field and paste it into your browser.

Configure the Push Notification Service

1. Select the Heartbeat App from the list of applications.

2. Select the Configuration pane.

3. Under the Platforms section, in the Heartbeat Android Platform over FCM row, click the

pencil icon to edit the record.

Push Notification Service v1.10

VMware, Inc 81

https://developers.google.com/android/guides/client-auth

4. In the Google Key field, paste the server key that you recorded earlier.

Run the App on Your Device

Follow these steps to compile and run the app on your Android device.

1. Navigate to the Push Android Heartbeat Monitor repository.

2. Clone the repository to your workspace.

3. Checkout the release-v1.7.0 branch, or the branch of a later version.

4. Copy the google-services.json file from earlier into the app directory of the Heartbeat

Monitor project.

5. Open a project in Android Studio using the repo you cloned.

6. Update pivotal.properties file located in app/src/main/res/raw:

pivotal.push.platformUuid: This value must match the platform UUID of the

Android FCM Heartbeat Platform in the Push dashboard.

pivotal.push.platformSecret: This value must match the platform SECRET of the

Android Heartbeat FCM Platform in the Push dashboard.

pivotal.push.serviceUrl: Enter the server address to your push backend API in the

form of https://push-api.YOUR-SYSTEM-DOMAIN.

7. Compile and deploy the application to your Android device.

8. Open the app on your device and select Allow when the app asks if it can send you

notifications. The screen updates with a new heartbeat count every minute as it receives

pushes from your environment.

Create a pull request or raise an issue on the source for this page in GitHub

Note: To verify that your device registered, see the Devices tab in the Push

dashboard. The device Type field displays a Firebase logo.

Note: If you send a test push to your device from the Push dashboard,

ensure the app is not open on your device. You cannot see the test push

while the app is open.

Push Notification Service v1.10

VMware, Inc 82

https://github.com/cfmobile/push-android-heartbeatmonitor
http://github.com/cfmobile/docs-push-notifications/tree/1.10/heartbeat-fcm.html.md.erb

Using the Dashboard

Applications

An application in the Push Dashboard represents a mobile application from the perspective of the

application author, including all supported platforms. Applications are listed in the dropdown at the

top of the sidebar.

Adding an Application

Click Create New Application in left sidebar. Fill in the form and click Save to create the application,

or optionally click Add Platform to add a platform for the application.

API URL

The default API URL value of the push backend is https://push-api.YOUR-SYSTEM-DOMAIN.

However, because the operator can set up multiple routes for network traffic separation, the API

URL displayed in the dashboard might be the incorrect endpoint to use, depending on which

network the request originates from.

The correct value used to communicate with the push backend is the route that allows the device to

reach the push backend. Use cf routes push-api to show all routes for the push backend.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 83

https://pivotal.io/support/lifecycle_policy

Editing an Application

Click the Configuration link in the sidebar menu to bring up the information about the application.

Click the pencil icon under the Actions column to edit the application. Edit the fields and click Save

to update the application. The UUID is immutable.

Regenerating an API Key

Click Regenerate API Key to generate a new API key. After generating a new key, you can longer

send pushes using the previous API key.

Regenerating the Shared Secret

Click Regenerate Shared Secret. A new shared secret will be generated for use when registering

with a custom user id. See Registering with a Custom User ID for more information.

Push Notification Service v1.10

VMware, Inc 84

#push-1-10-custom-user-id-format

Deleting an Application

To delete an application, click the Configuration link in the sidebar menu to bring up information

about the application. Click the delete icon under the Actions column to delete the application.

Platforms

A platform configures platform specific attributes to send push messages. For example, this would

include a certificate necessary to send messages to Apple’s APNS, or a token necessary to send

messages to Google’s GCN. A platform has many devices.

NOTE: This icon will be disabled if the application has one or more platforms.

Push Notification Service v1.10

VMware, Inc 85

Adding a Platform

On the Configuration page, click Add New Platform. Fill in the form and click Save to create the

platform.

Push Notification Service v1.10

VMware, Inc 86

Editing a Platform

On the Configuration page, click the pencil icon link next to the platform you want to edit. Edit the

fields and click Save to update the platform. The Type field cannot be changed once set.

Push Notification Service v1.10

VMware, Inc 87

Deleting a Platform

On the Configuration page, click the trash icon link next to the platform you want to delete.

NOTE: You cannot delete a platform that has devices. In order to remove devices

you must unregister from the device.

Push Notification Service v1.10

VMware, Inc 88

iOS Expired Certificate Warning

If your iOS APNS certificate expires, the dashboard displays a warning next to the platform type icon.

Devices

A device is given a unique identifier which represents a user opting in to receive push notifications.

This identifier is not necessarily unique to a device since it might change if the user reinstalls the

mobile application, or unsubscribes and resubscribes.

Send a Test Push Notification to a Device

Click Devices in the sidebar menu. Click Test Push next to the device. Fill out the push form. See

Push Notification Service v1.10

VMware, Inc 89

Sending a push message for details on the form fields.

Sending a Push Message

Click Push Notifications in the sidebar menu, and click Create Push Notification.

Push Notification Service v1.10

VMware, Inc 90

On the Create Push Message page, fill in the form and click Send Push Notification.

Push Message: The alert body for the message

Target Platform: Send the push to all devices belonging to a specific platform: iOS, Android,

etc.

Topics(s): Send the push to all devices subscribed to one or more topics

Schedule

Send: Schedule the push to be sent immediately or at a later time. Defaults to

“Immediately”

Expire: Prevent delivery of the message after a specified time, if delivery is delayed

for some reason, for example no connectivity on user device. Defaults to “Never”

Interactive Push Category

iOS Only: Set the category for a push. This is required for interactive pushes

ONLY SEND TO INTERACTIVE PUSH DEVICES: Filter targeted devices for only devices that

Push Notification Service v1.10

VMware, Inc 91

support interactive push

Target Location: Pick a location to setup a geofence

Trigger Type: If a location is selected, trigger type determines when a geofence is activated

A Note About Targeting

Target Platform targets all devices of the selected platform. Adding topics to the Topic(s) field will

refine the target list down, adding only those devices subscribed to one of the listed topics.

A Note About Sending Push With Invalid Certificate

iOS Only: Sending a push to a device using an invalid .p12 certificate set up in the device’s

corresponding platform results in the device getting removed from the platform.

Topics

A topic allows push notifications to be sent to all devices that have explicitly subscribed to it as

opposed to all users that have the application installed. This allows an application to send targeted

push notifications to a subset of devices. Devices can subscribe to topics via the registrations api.

Available topics are listed in the targeting section of the Create Notification form.

Push Notification Service v1.10

VMware, Inc 92

#api-registration-registration

Locations

Locations allow you to send push notifications to a subset of users who are within or enter the radius

of a specified area.

Adding a Location

Click Locations on the left sidebar, then click Add Location.

Push Notification Service v1.10

VMware, Inc 93

Fill in the Name of the location. You can input a Latitude and Longitude pair, or click the map.

Select a radius that suits the location. Once all the details are set, click Create.

Adding a Location Group

Select the Location Group tab, then click Add Location Group.

Push Notification Service v1.10

VMware, Inc 94

Fill in the Name and Description of the Location Group. In the Target Location field, select a

location from the drop-down or click on one of the markers on the map. Once all the details are set,

click Create.

Geofence Push Notifications

Fill in the details of the Push Notification, such as Message, Platform, and Schedule. From the

Target Location drop-down, select either a Location or a Location Group.

Trigger Type field appears on the addition of Location or Location Group. Select either Enter or

Exit, depending on how you want the Geofence to activate. Once you have set all the details, click

Send Push Notification.

Push Notification Service v1.10

VMware, Inc 95

Logs

The Logs page displays any logged events that occur while the Logs page is open. Clicking

Download Logs copies the logs displayed into a text file onto your local machine.

By default, the push dashboard app uses the default SSL socket port 443 for streaming logs. If the

foundation does not use port 443 for SSL sockets, set the environment variable

CFMS_METRICS_LOGS_PORT to the custom port in push dashboard app.

Push Notification Service v1.10

VMware, Inc 96

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 97

http://github.com/cfmobile/docs-push-notifications/tree/1.10/dashboard-user-guide.html.md.erb

Push Notifications ASG Installation

Application Security Groups

To allow this service to have network access you will need to create Application Security Groups

(ASGs).

Pre-Installation Requirements

Push Notification Service depends on MySQL, RabbitMQ, and Redis. Please refer to their

corresponding ASG documentation to ensure their required ASGs are in place.

Push Service Network Connections

This service is deployed as a suite of applications to the push-notifications space in the system org,

and requires the following outbound network connections:

Destination Ports Protocol Reason

17.0.0.0/8 5223, 2195,

2196

tcp This is Apple’s IP address which is used to access APNS

GOOGLE_IP_

RANGE

5228,

5229,

5230, 443

tcp This is Google’s url for sending GCM Messages

LOAD_BALAN

CER_IP

80, 443 tcp This service will access the load balancer and CAPI

ASSIGNED_N

ETWORK

3306,

5672, 6379

tcp This service requires access to p-mysql, p-rabbitmq, p-redis, or external

services. ASSIGNED_NETWORK is the CIDR of the network assigned to this

service.

APNS

Apple exposes the entire 17.0.0.0/8 block and uses ports 2195, 2196, and 5223. Create a file

apns.json as follows:

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Note: Without Application Security Groups the service will not be usable.

Push Notification Service v1.10

VMware, Inc 98

https://pivotal.io/support/lifecycle_policy
http://docs.pivotal.io/pivotalcf/adminguide/app-sec-groups.html

[

 {

 "protocol": "tcp",

 "destination": "17.0.0.0/8",

 "ports": "2195, 2196, 5223"

 }

]

Create a security group called apns: cf create-security-group apns apns.json

GCM / FCM

The push-api app requires outbound access to the GCM or FCM google servers (https://gcm-

http.googleapis.com/gcm/send or https://fcm.googleapis.com/fcm/send respectively).

Google unfortunately has a very large range of IP addresses that it can use.

Create a file gcm.json as follows:

[

 {

 "protocol": "tcp",

 "destination": "8.8.4.0/24",

 "ports": "443"

 }, {

 "protocol": "tcp",

 "destination": "8.8.8.0/24",

 "ports": "443"

 },

 ...rest of Google IPs elided...

]

Create a security group called gcm: cf create-security-group gcm gcm.json

Load Balancer

If the built-in HAProxy is being used as the load balancer. The IP addresses can be found in Pivotal

Application Service Tile → Settings Tab → Networking under HAProxy IPs, (e.g., 10.68.196.250).

Create a file load-balancer-https.json as follows:

[

 {

 "protocol": "tcp",

 "destination": "10.68.196.250",

 "ports": "80,443"

 }

]

Create a security group called load-balancer-https: cf create-security-group load-balancer-

https load-balancer-https.json

Note: Google’s ASN is 15169. You can search for “ASN 15169” to find the most up

to date list of their IP addresses.

Push Notification Service v1.10

VMware, Inc 99

https://gcm-http.googleapis.com/gcm/send
https://fcm.googleapis.com/fcm/send

Assigned Network

Log into Ops Manager and click on the Pivotal Application Service Tile → Settings Tab → AZ and

Network Assignments. Note the name of the network selected in the drop-down (e.g., “first-

network”). Then click on the BOSH Director tile → Settings Tab → Create Networks → “first-

network” and note the CIDR in the subnets section (e.g., 10.68.0.0/20). This should allow the space

to access p-mysql, p-rabbitmq, and p-redis Then create a file assigned-network.json as follows:

[

 {

 "protocol": "tcp",

 "destination": "10.68.0.0/20",

 "ports": "3306,5672,6379"

 }

]

Create a security group called assigned-network: cf create-security-group assigned-network

assigned-network.json

Pre-installation ASG binding

Log in as an administrator and create the above ASGs. Afterwards, create the space push-

notifications in the system org and bind each of them to the it :

cf target -o system

cf create-space push-notifications

cf bind-security-group apns system push-notifications

cf bind-security-group gcm system push-notifications

cf bind-security-group load-balancer-https system push-notifications

cf bind-security-group assigned-network system push-notifications

Create a pull request or raise an issue on the source for this page in GitHub

Note: If you decide to use external services, the IP addresses, ports, and protocols

will be dependent on what you use.

Push Notification Service v1.10

VMware, Inc 100

http://github.com/cfmobile/docs-push-notifications/tree/1.10/application-security-groups.html.md.erb

Network Setup Guide

APNS / iOS Push

Server and Device Settings

The push-api backend needs to have persistent sockets open to the Apple APNs servers.

Information from the Apple Support site

To use Apple Push Notification service (APNs) you need a direct and persistent connection to

Apple’s servers. Your device connects to APNs using cellular data if it’s available. If there’s no

viable cellular connection the device switches to Wi-Fi.

If you use Wi-Fi behind a firewall or a private Access Point Name (APN) for cellular data then you’ll

need a direct unproxied connection to the APNs servers on these ports:

TCP port 5223: For communicating with Apple Push Notification services (APNs).

TCP port 2195: For sending notifications to APNs.

TCP port 2196: For the APNs feedback service.

TCP port 443: For a fallback on Wi-Fi only when devices can’t reach APNs on port 5223.

The APNs servers use load balancing so your devices won’t always connect to the same public IP

address for notifications. It’s best to allow access to these ports on the entire 17.0.0.0/8 address

block which is assigned to Apple.

GCM / Android Push

Server and Device Settings

The push-api backend needs to send requests to “https://gcm-http.googleapis.com/gcm/send”
(port 443).

Devices will need direct unproxied connections to Google servers on port 5228. Android 4.3 and up

have fallback capabilities to use port 443.

FCM / Android Push

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 101

https://pivotal.io/support/lifecycle_policy
https://support.apple.com/en-ca/HT203609
https://gcm-http.googleapis.com/gcm/send

Server and Device Settings

The push-api backend needs to send requests to “https://fcm.googleapis.com/fcm/send” (port

443).

Devices will need direct unproxied connections to Google servers on port 5228, 5229, and 5230.

FCM typically only uses 5228, but it sometimes uses 5229 and 5230. FCM doesn’t provide specific

IPs, so you should allow your firewall to accept outgoing connections to all IP addresses contained in

the IP blocks listed in Google’s ASN of 15169.

Android 4.3 and up have fallback capabilities to use port 443.

Push API & Mobile Devices

Mobile devices require access to push-api backend in order to register and unregister themselves.

For example, if the Push API backend is behind a firewall, it should allow incomming connections to

the IP address and port of the Push API backend.

Push API & Server Applications

Server applications (or any applications) require access to the push-api backend in order to send

pushes to registered devices. For example, if the Push API backend is behind a firewall, it should

allow incomming connections to the IP address and port of the Push API backend.

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 102

https://fcm.googleapis.com/fcm/send
http://github.com/cfmobile/docs-push-notifications/tree/1.10/network.html.md.erb

Migrating to a MySQL for PCF v2 Database

This topic explains how to perform the migration from a MySQL for PCF v1 database to a MySQL for

PCF v2 database.

If your Push Notification Service is configured to use the MySQL for PCF v1 tile, Pivotal recommends

migrating your data to a MySQL for PCF v2 database. Doing this migration reduces dependency on

v1 as users move to v2 and prepares you to use Transport Layer Security (TLS) encryption for your

Push Notification Service.

Prerequisites

To perform the database migration, you must have the following:

The latest Cloud Foundry CLI

Cloud Foundry credentials to access the org and space of the Push Notification Service

Install the MysqlTools Plugin

You can use the MysqlTools plugin to migrate your data.

1. Install the MysqlTools plugin using the following command:

cf install-plugin -f -r CF-Community "MysqlTools"

2. Verify that the plugin is installed using the following command:

cf mysql-tools -h

Check the Status of the Broker

1. Log in to your Cloud Foundry deployment:

cf api YOUR-CLOUD-FOUNDRY-API

cf login

The broker is deployed in the system org in the iaas-brokers space.

2. Target this space and verify that you see the broker:

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 103

https://pivotal.io/support/lifecycle_policy
https://docs.pivotal.io/pivotalcf/cf-cli/install-go-cli.html

cf target -o system -s iaas-brokers

Example output:

api endpoint: https://api.sys.my-domain.com

api version: 2.94.0

user: admin

org: system

space: iaas-brokers

3. Check the state of the broker by running the command:

cf app BROKER-NAME

For example:

$ cf app aws-services-broker

Showing health and status for app aws-services-broker in org system / space iaa

s-brokers as admin...

name: aws-services-broker

requested state: started

instances: 2/2

usage: 64M x 2 instances

routes: aws-services-broker.sys.my-domain.com

last uploaded: Tue 05 Jun 14:46:50 EDT 2018

stack: cflinuxfs2

buildpack: go_buildpack

 state since cpu memory disk detai

ls

#0 running 2018-06-05T18:47:39Z 0.0% 12.4M of 64M 47.4M of 1G

#1 running 2018-06-05T18:47:39Z 0.0% 12.5M of 64M 47.4M of 1G

4. View your MySQL for PCF v1 database instance bound to the broker by running the

command:

cf services

Example output:

Getting services in org system / space iaas-brokers as admin...

name service plan bound apps last operation

aws-broker-db p-mysql 100mb aws-services-broker create succeeded

Stop the Broker

After verifying the state of the broker, you can safely stop it and unbind the database.

1. Stop the broker by running the command:

cf stop BROKER-NAME

Push Notification Service v1.10

VMware, Inc 104

For example:

$ cf stop aws-services-broker

Stopping app aws-services-broker in org system / space iaas-brokers as admin...

OK

2. Unbind the database from the broker by running:

cf unbind-service BROKER-NAME SERVICE-INSTANCE-NAME

For example:

$ cf unbind-service aws-services-broker aws-broker-db

Migrate Your Data

Follow these steps to migrate your data.

1. Determine which plan you want to use by running the command:

cf marketplace -s p.mysql

Example output:

Getting service plan information for service p.mysql as admin...

OK

service plan description free or

paid

db-small This plan provides a small dedicated MySQL instance. free

db-medium This plan provides a medium dedicated MySQL instance. free

db-large This plan provides a large dedicated MySQL instance. free

2. Migrate your data by running:

cf mysql-tools migrate SERVICE-INSTANCE-NAME PLAN-TYPE

For example:

$ cf mysql-tools migrate aws-broker-db db-small

2018/06/06 09:11:53 Creating new service instance "aws-broker-db-new" for servi

ce p.mysql using plan db-small

2018/06/06 09:16:05 Unpacking assets for migration to /var/folders/qn/bxc0sm8j5

dgcx260_4r3vr7w0000gn/T/migrate_app_335236385

2018/06/06 09:16:05 Started to push app

Done uploading

2018/06/06 09:16:15 Successfully pushed app

2018/06/06 09:16:16 Successfully bound app to v1 instance

2018/06/06 09:16:18 Successfully bound app to v2 instance

2018/06/06 09:16:18 Starting migration app

Note: This example uses the service instance called aws-broker-db and the

plan type db-small.

Push Notification Service v1.10

VMware, Inc 105

2018/06/06 09:16:33 Started to run migration task

2018/06/06 09:16:37 Migration completed successfully

3. The migration tool gives the old database the name SERVICE-INSTANCE-NAME-old, for

example:

$ cf services

Getting services in org system / space iaas-brokers as admin...

name service plan bound apps last operation

aws-broker-db-old p-mysql 100mb update succeeded

aws-broker-db p.mysql db-small update succeeded

Bind the New Database

After migrating your data, bind the new database to the broker.

1. Bind the database to the broker by running the command:

cf bind-service BROKER-NAME SERVICE-INSTANCE-NAME

For example:

$ cf bind-service aws-services-broker aws-broker-db

Binding service aws-broker-db to app aws-services-broker in org system / space

iaas-brokers as admin...

OK

2. Start the broker by running:

cf start BROKER-NAME

For example:

$ cf start aws-services-broker

Starting app aws-services-broker in org system / space iaas-brokers as admin...

Waiting for app to start...

name: aws-services-broker

requested state: started

instances: 2/2

usage: 64M x 2 instances

routes: aws-services-broker.my-domain.com

last uploaded: Wed 06 Jun 10:23:12 EDT 2018

stack: cflinuxfs2

buildpack: go_buildpack

start command: bin/aws-services-broker

Note: Take note of the Migration completed successfully message in the

above example. This is the best available indication that the migration was

successful. This message does not appear if the migration process was not

successful.

Push Notification Service v1.10

VMware, Inc 106

 state since cpu memory disk detai

ls

#0 running 2018-06-06T14:26:48Z 0.0% 11.7M of 64M 47.4M of 1G

#1 running 2018-06-06T14:26:49Z 0.0% 11.8M of 64M 47.4M of 1G

Delete the Old Database

1. Before deleting the old database instance, confirm that the broker behaves correctly by

creating some new Push Notification Service service instances. Try binding these services to

the v2 database. (You can delete these service instances after running this test.)

2. After confirming that your data has migrated and the broker is running, delete the old

database by running the command:

cf delete-service -f SERVICE-INSTANCE-NAME-old

For example:

$ cf delete-service -f aws-broker-db-old

Deleting service aws-broker-db-old in org system / space iaas-brokers as admin.

..

OK

(Optional) Update the Tile to Reflect Changes

Update the plan name in the Broker Config section of your tile to be consistent with the changes

you made during migration.

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 107

http://github.com/cfmobile/docs-push-notifications/tree/1.10/mysql-migration.html.md.erb

Development Guide

First Push Walkthrough

First Geofence Walkthrough

iOS

Sample App

Android (FCM, Baidu)

Sample App

Baidu

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 108

https://pivotal.io/support/lifecycle_policy
https://github.com/cfmobile/push-ios-samples
https://github.com/cfmobile/push-android-samples
http://github.com/cfmobile/docs-push-notifications/tree/1.10/development-guide.html.md.erb

First Push Walkthrough

Step 1

In the Cloud Foundry App Manager, click on the “Marketplace” link. Select “Push Notification

Service” from the list of available services.

Step 2

Select the “Default” service plan. Give the service instance a name and make sure to select the

correct Space for the service to be created in before clicking the “Add” button.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 109

https://pivotal.io/support/lifecycle_policy

Step 3

You can now click on the “Manage” link for the Push Notifications Service instance you’ve

created. This will open the Push Dashboard.

Add an application by filling in the form that appears when first navigating to the dashboard. If

applications already exist, you can access the add application screen by clicking on “Create New

Application” on the left hand sidebar dropdown.

Push Notification Service v1.10

VMware, Inc 110

Step 4

Fill in fields on the new application screen. There are two fields: name and description. These fields

are purely for keeping track of which application is which.

Step 5

Create a new platform by clicking on the ‘Add Platform’ button and filling out the proper fields

depending on the platform type.

For Android platforms you will need to provide Project Number and Google Key values. The Project

Number is the numeric value found at the top middle of a project on the Google Developers

Console. Do not use the 'Project ID’. The Google Key is a Server API key, created on the

“Credentials” screen of the Google Developers Console.

For iOS platforms you will need to create a APNS Development Certificate and APNS Production

Certificate using the Apple Developer Website. These files, along with their associated private keys,

need to be exported from your Keychain Access program into a password protected P12 file. You

will upload this P12 file and provide its password when you create your platform on the PCF Push

Notification Service dashboard.

Push Notification Service v1.10

VMware, Inc 111

https://console.developers.google.com
https://developer.apple.com

Step 6

After saving, click on 'Configuration’ on the left sidebar, this is where the UUID and secret will be

found. These values are used to register devices and eventually send pushes.

Step 7

Now you will have to integrate the sdk with your app. See the getting started section of the SDK

documentation.

Push Notification Service v1.10

VMware, Inc 112

Step 8

Click on the 'Devices’ link on the left sidebar to see registered devices, and click on the 'Test

Push’ button for the device you wish to send a push.

Step 9

Fill in a message and press send to send a test message.

Step 10

If the server accepts this push for delivery, a receipt will be shown on screen. This does not

guarantee delivery to the device (device could be off, notifications could be disabled, etc).

Push Notification Service v1.10

VMware, Inc 113

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 114

http://github.com/cfmobile/docs-push-notifications/tree/1.10/first-push-walkthrough/first-push-walkthrough.html.md.erb

Geofence Walkthrough

Modern mobile devices can track numerous geofences, each of which are defined by a lat/long pair

and a radius. Whenever the device enters or exits the boundries of a geofence, a notification can be

triggered. The triggering of a notification is not dependant on the device having an Internet/Data

connection.

Step 1

Complete the steps from the First Push Walkthrough guide. (Setup an application, platform(s) and

devices).

Step 2

Click Locations on the left sidebar and then click the Add Location button.

Step 3

Fill in the Name of the location. You may type in a Latitude and Longitude pair, or simply click on the

map. Select a radius that suits the location. Once all the details are set, click the Create button.

Create a few more locations.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 115

https://pivotal.io/support/lifecycle_policy

Step 4

Click on the Location Group tab, and then on the Add Location Group button.

Step 5

Fill in the Name and Description of the Location Group. In the Target Location field, select a location

from the drop-down or click on one of the markers on the map. Once all the details are set, click the

Create button.

Push Notification Service v1.10

VMware, Inc 116

Step 6

Click on Push Notifications on the left sidebar, and then on the Create Push Notification button.

Step 7

Fill in the details of the Push Notification, such as Message, Platform, and Schedule. Select from the

Target Location drop-down either a Location or a Location Group. Trigger Type field will appear

upon the addition of Location/Location Group. Select either Enter or Exit, depending on how you

want the Geofence to activate. Once all the details are set, click the Send Push Notification button.

Push Notification Service v1.10

VMware, Inc 117

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 118

http://github.com/cfmobile/docs-push-notifications/tree/1.10/geofence-walkthrough/geofence-walkthrough.html.md.erb

iOS Push Client SDK

Sample Apps

You can find the newest version of the iOS Sample App on github

Features

The PCF Push Notification Service Push Client SDK is a light-weight library that will help your

application register with the PCF Mobile Services Push Notifications service.

The SDK does not provide any code for registering with APNS or for handling remote push

notifications.

Device Requirements

The Push SDK requires iOS 8.0 or greater.

Required Setup

Getting Started

In order to receive push messages from the Push Server in your iOS application, you will need to

follow these steps:

Configure iOS Push Notifications on Apple Developer

If you are not familiar with the steps to set up an application on Apple Developer Member Center

and set it up for push notifications, see the instructions below.

You will need to create an Explicit App Id with Push Notifications enabled.

Note that you can NOT use a Wildcard App ID in an application with push notifications.

Configure iOS Push Notifications on the Push Dashboard

Create your application and platforms on the PCF Mobile Services Push Dashboard. You will need

two platforms – one for development mode and one for production. Each of these two platforms

will need their own Apple Push Notification Service (APNS) SSL certificates; the development

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 119

https://pivotal.io/support/lifecycle_policy
https://github.com/cfmobile/push-ios-samples
https://network.pivotal.io/products/push-notification-service

platform needs a sandbox SSL certificate and the production platform needs a production SSL

certificate. You will need to export both of these certificates and their associated private signing keys

as P12 files using the Keychain Access program on our Mac OS machine. This task is beyond the

scope of this document (see the documentation for the Push Notification Service Dashboard). After

setting up your platforms in the administration console make sure to note the Platform UUID and

Platform Secret parameters have been defined under Configuration for both platforms. You will

need them below.

You can find steps on how to create your application and platforms on PCF Mobile Services Push

Dashboard notes: Push Dashboard Document

Link to the Framework

1. Download the project framework from Pivotal Network and add it to your project in Xcode.

You can drag and drop the .framework file into your project in the Project Navigator view.

Make sure to enable Copy items if needed.

2. Go to the Build Settings in Xcode. Go to the General tab. Remove PCFPush.framework from

the Linked Frameworks And Libraries. Add PCFPush.framework to the list of Embedded

Binaries.

3. Go to Build Settings in Xcode, then navigate down to the Linking section and add -ObjC to

Other Linker Flags.

NOTE: if you are targeting iOS 7.0 then you will have to compile and link the SDK from source. iOS

7.0 does not support iOS 8.0 frameworks.

Set up your Pivotal.plist file

Create a Pivotal.plist file in your project’s root directory. The following keys are required:

Key Type Required? Description

pivotal.push.serviceUr

l

Strin

g

YES The URL of the PCF Push Notification Service API Server. For more

information, see API URL.

pivotal.push.platform

UuidDevelopment

Strin

g

YES The platform UUID of your push development platform.

pivotal.push.platform

SecretDevelopment

Strin

g

YES The platform secret of your push development platform.

pivotal.push.platform

UuidProduction

Strin

g

YES The platform UUID of your push production platform.

pivotal.push.platform

SecretProduction

Strin

g

YES The platform secret of your push production platform.

pivotal.push.sslCertV

alidationMode

Strin

g

NO Can be set to default, trustall, pinned, or callback. More details

below in the SSL Authentication section.

pivotal.push.pinnedS

slCertificateNames

Arra

y

NO A list of SSL certificates in the DER format stored in the application

bundle that are used during pinned SSL authentication.

pivotal.push.areAnaly

ticsEnabled

Bool

ean

NO Set to NO in order to disable the collection of push analytics at runtime.

If this parameter is omitted then analytics are assumed to be enabled.

Push Notification Service v1.10

VMware, Inc 120

None of the above values may be nil. None of the above values may be empty.

The pivotal.push.platformUuidDevelopment and pivotal.push.platformSecretDevelopment

parameters should be the development platform UUID and secret values from the Push

Dashboard. The Push Client SDK uses this platform if it detects that the APNS Sandbox

environment is being used at runtime. These values may not be empty or nil.

The pivotal.push.platformUuidProduction and pivotal.push.platformSecretProduction

parameters should be the production platform UUID and secret values from the Push

Dashboard. Note that if you are just trying the Push Client SDK out and don’t have an actual

production environment set up then you can put dummy data in these fields. These values

may not be empty or nil.

For instructions on converting your PEM certificate files to DER, see the OpenSSL

documentation.

Note that the pivotal.push.trustAllSslCertificates property was removed in PCF Push

Client SDK 1.3.3.

Register for Push Notifications with APNS

You will need to register your app for push notifications with APNS. Add the following code to your

application:didFinishLaunchingWithOptions: method in your application delegate.

 - (BOOL) application:(UIApplication *)application didFinishLaunchingWithOptions:(N

SDictionary *)launchOptions

 {

 // Register for push notifications with the Apple Push Notification Service (A

PNS).

 //

 // On iOS 8.0+ you need to provide your user notification settings by calling

 // [UIApplication.sharedDelegate registerUserNotificationSettings:] and then

 // [UIApplication.sharedDelegate registerForRemoteNotifications];

 //

 // On < iOS 8.0 you need to provide your remote notification settings by calli

ng

 // [UIApplication.sharedDelegate registerForRemoteNotificationTypes:]. There

are no

 // user notification settings on < iOS 8.0.

 //

 // If this line gives you a compiler error then you need to make sure you have

 updated

 // your Xcode to at least Xcode 6.0:

 //

 if ([application respondsToSelector:@selector(registerUserNotificationSettings

:)]) {

 // iOS 8.0 +

 UIUserNotificationType notificationTypes = UIUserNotificationTypeAlert | U

IUserNotificationTypeBadge | UIUserNotificationTypeSound; // Provide different notific

ation types if you need them

 UIUserNotificationSettings *settings = [UIUserNotificationSettings setting

sForTypes:notificationTypes categories:nil]; // Provide custom categories if you need

them

 [application registerUserNotificationSettings:settings];

 [application registerForRemoteNotifications];

Push Notification Service v1.10

VMware, Inc 121

https://www.openssl.org/docs/manmaster/man1/rsa.html

 } else {

 // < iOS 8.0

 UIRemoteNotificationType notificationTypes = UIRemoteNotificationTypeAlert

 | UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound; // Provide different

 notification types if you need them

 [application registerForRemoteNotificationTypes:notificationTypes];

 }

 return YES;

 }

If using geofences you will also need to request authorization for location services here (i.e.:

[self.locationManager requestAlwaysAuthorization]). Please see the Geofences section

below.

The notification types for < iOS 8.0 are described in the UIApplication Class Reference.

Note that the OS will display a dialog box on the screen at runtime to confirm the requested

notification types to the user when the app attempts to register for push notifications the first

time.

Register for Push Notifications with Pivotal CF

Include the following header in your application delegate class:

 #import <PCFPush/PCFPush.h>

In your application delegate’s application:didRegisterforRemoteNotifications: method put the

following code:

 // This method is called when APNS registration succeeds.

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWithDev

iceToken:(NSData *)deviceToken

 {

 NSLog(@"APNS registration succeeded!");

 // APNS registration has succeeded and provided the APNS device token. Start

registration with PCF Push

 // Notification Service and pass it the APNS device token.

 //

 // Required: Create a file in your project called "Pivotal.plist" in order to

provide parameters for registering with

 // PCF Push Notification Service

 //

 // Optional: You can provide a custom user ID to associate your device with it

s user.

 //

 // Optional: You can also provide a set of tags to subscribe to.

 //

 // Optional: You can also provide a device alias. The use of this device alia

s is application-specific.

 // We recommend that you use the user's device name to populate this field.

 //

 // Optional: You can pass blocks to get callbacks after registration succeeds

or fails.

 //

Push Notification Service v1.10

VMware, Inc 122

https://developer.apple.com/library/ios/documentation/uikit/reference/UIApplication_Class/Reference/Reference.html#//apple_ref/doc/c_ref/UIRemoteNotificationType

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:YOUR_TAGS

 deviceAlias:YOUR_DEVICE_ALIAS

 customUserId:YOUR_CUSTOM_USER_ID

 areGeofencesEnabled:ARE_GEOFENCES_ENABLED

 success:^{

 NSLog(@"CF registration succeeded!");

 } failure:^(NSError *error) {

 NSLog(@"CF registration failed: %@", error);

 }];

 }

The YOUR_TAGS parameter is a parameter that provides a set of the tags that you’d like the

application to subscribe to. This parameter should be an NSSet object containing a set of

NSString objects. If you pass in tags via this register method then you need to provide ALL

tags that the user has subscribed to each time registration is called. To manage your tags you

can also call the [PCFPush subscribeToTags:success:failure:] method (described below).

The YOUR_DEVICE_ALIAS parameter is a custom parameter that you can use to identify a

user’s device (eg: a user may have multiple devices) - this is for future use. We

recommend that you use the user’s device name to populate this field (e.g.:

UIDevice.currentDevice.name).

The YOUR_CUSTOM_USER_ID parameter is another custom parameter that you can use to

associate this device with the user. It is possible to target push notifications to custom user

IDs. If you don’t want to use the custom user ID then you can set this argument to nil or

an empty string. Custom user IDs are treated as case-sensitive. For more information, see

Registering with a Custom User ID.

The ARE_GEOFENCES_ENABLED is a BOOL value that turns the geofences feature on and off

(described below).

All of the deviceAlias, tags, success, and failure parameters are optional and may be set

to nil.

You can call the [PCFPush

registerForPCFPushNotificationsWithDeviceToken:tags:deviceAlias:customUserId:areGe

ofencesEnabled:success:failure:] method whenever your parameterization changes

during runtime (e.g.: when you want to update the device alias). It is not harmful to call this

method several times during the lifetime of a process.

Registration Examples

Example 1: Registering for Push Notifications with no options, tags, and without geofences.

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWithDev

iceToken:(NSData *)deviceToken

 {

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:nil

 deviceAlias:nil

 customUserId:nil

 areGeofencesEnabled:NO

 success:^{ NSLog(@"CF registration succeed

ed!"); }

Push Notification Service v1.10

VMware, Inc 123

#push-custom-user-id-format

 failure:^(NSError *error) { NSLog(@"CF reg

istration failed: %@", error); }];

 }

Example 2: Registering for Push Notifications with a customer user ID using the user’s account

name (for example).

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWithDev

iceToken:(NSData *)deviceToken

 {

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:nil

 deviceAlias:nil

 customUserId:@"test@example.net" //

 User's account name

 areGeofencesEnabled:NO

 success:^{ NSLog(@"CF registration succeed

ed!"); }

 failure:^(NSError *error) { NSLog(@"CF reg

istration failed: %@", error); }];

 }

Example 3: Removing the registration for the custom user ID (which will prevent the user from being

targeted by their custom user ID).

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWithDev

iceToken:(NSData *)deviceToken

 {

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:nil

 deviceAlias:nil

 customUserId:@"" // Remove the user

's account name. Can use nil or empty string.

 areGeofencesEnabled:NO

 success:^{ NSLog(@"CF registration succeed

ed!"); }

 failure:^(NSError *error) { NSLog(@"CF reg

istration failed: %@", error); }];

 }

Example 4: Subscribing to several topics on a news service.

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWithDev

iceToken:(NSData *)deviceToken

 {

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:[NSSet setWithArray:@[

@"breaking_news", @"local_news"]]

 deviceAlias:nil

 customUserId:nil

 areGeofencesEnabled:NO

 success:^{ NSLog(@"CF registration succeed

ed!"); }

 failure:^(NSError *error) { NSLog(@"CF reg

istration failed: %@", error); }];

 }

Push Notification Service v1.10

VMware, Inc 124

Example 5: Unsubscribing from the “breaking_news” tag while remaining subscribed to the

“local_news” tag.

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWithDev

iceToken:(NSData *)deviceToken

 {

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:[NSSet setWithObject:@

"local_news"]

 deviceAlias:nil

 customUserId:nil

 areGeofencesEnabled:NO

 success:^{ NSLog(@"CF registration succeed

ed!"); }

 failure:^(NSError *error) { NSLog(@"CF reg

istration failed: %@", error); }];

 }

Receiving Push Notifications

To receive push notifications you can implement the following code in your application delegate

class.

VERY IMPORTANT: You must call the [PCFPush

didReceiveRemoteNotification:completionHandler:] method in your application delegate

application:didReceiveRemoteNotification:fetchCompletionHandler method, as

demonstrated below.

 // This method is called when APNS sends a push notification to the application.

 - (void) application:(UIApplication *)application didReceiveRemoteNotification:(NS

Dictionary *)userInfo

 {

 [self handleRemoteNotification:userInfo];

 }

 // This method is called when APNS sends a push notification to the application wh

en the application is

 // not running (e.g.: in the background). Requires the application to have the Re

mote Notification Background Mode Capability.

 - (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSD

ictionary *)userInfo fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))complet

ionHandler

 {

 [self handleRemoteNotification:userInfo];

 // IMPORTANT: Inform PCF Push Notification Service that this message has been

received.

 [PCFPush didReceiveRemoteNotification:userInfo completionHandler:^(BOOL wasIgn

ored, UIBackgroundFetchResult fetchResult, NSError *error) {

 if (completionHandler) {

 completionHandler(fetchResult);

 }

 }];

 }

 // This method is called when the user touches one of the actions in a notificatio

Push Notification Service v1.10

VMware, Inc 125

n when the application is

 // not running (e.g.: in the background). iOS 8.0+ only.

 - (void)application:(UIApplication *)application handleActionWithIdentifier:(NSStr

ing *)identifier forRemoteNotification:(NSDictionary *)userInfo completionHandler:(voi

d(^)())completionHandler

 {

 NSLog(@"Handling action %@ for message %@", identifier, userInfo);

 if (completionHandler) {

 completionHandler();

 }

 }

 - (void) handleRemoteNotification:(NSDictionary*) userInfo

 {

 if (userInfo) {

 NSLog(@"Received push message: %@", userInfo);

 } else {

 NSLog(@"Received push message (no userInfo).");

 }

 }

If you do not call [PCFPush didReceiveRemoteNotification:completionHandler:] then the SDK will

not be able to fetch geofence updates nor will it be able to capture push analytics data.

Optional Items

Enable or disable push analytics

Version 1.3.3 of the PCF Push Client SDK supports the collection of some simple push analytics data:

Receiving push notifications

Opening push notifications

Triggering geofences

Analytics are enabled by default. You can disable it by setting the

pivotal.push.areAnalyticsEnabled BOOLEAN parameter in your pivotal.plist file to NO. Ensure

that you have an up-to-date version of the PCF Push API server and that it is generating receiptId

data in the remote notifications that it generates.

In order for the SDK to capture push analytics data you will need to make sure to call the [PCFPush

didReceiveRemoteNotification ...] method in your application:didReceiveRemoteNotification:

handler, as described in the Receiving Push Notifications section above.

Ensure your that the remote notifications background mode has been set for your project target

configuration in order to capture analytics data when push notifications are received by the device

when your application is in the background.

NOTE: If a remote notification does not have the "content-available":1 field in its payload and if

the user does not touch the notification then there will be no analytics event logged for receiving the

notification when the application is in the background (since iOS does not call the application for the

remote notifications in the background without "content-available":1).

Subscribing to Tags

Push Notification Service v1.10

VMware, Inc 126

The [PCFPush subscribeToTags:success:failure:] method allows you to manage your tags after

registration has completed. If you call this method before registration is complete then an error will

occur. This parameter should be an NSSet object containing a set of NSString objects.

In general, an application should keep track of all of the tags it is currently subscribed to. Whenever

you call [PCFPush

registerForPCFPushNotificationsWithDeviceToken:tags:deviceAlias:customUserId:areGeofences

Enabled:success:failure:] or [PCFPush subscribeToTags:success:failure:] you need to pass

ALL of the tags that the application is currently subscribed to. If you want to add new tags you must

provide them alongside the tags you are currently subscribed to. If you omit some tags then the SDK

will think that you want to unsubscribe from those tags.

Unregistering from Pivotal Cloud Foundry Push Notification Service

The [PCFPush unregisterFromPCFPushNotificationsWithSuccess:failure:] method allows you to

unregister from push notifications from PCF. After unregistering PCF will stop sending the device

any notifications.

Reading the Device UUID

In order to target individual devices for remote notifications using the PCF Push Notification Service

you will need to target the Device UUID assigned to each device by the service. You can read the

Device UUID at run time any time after a successful registration with the service by calling the

[PCFPush deviceUuid] method. This method will return nil if the device is not currently registered

with the PCF Push Notification Service.

Example:

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken

 tags:nil

 deviceAlias:UIDevice.currentDevice.nam

e

 customUserId:nil

 areGeofencesEnabled:YES

 success:

 ^{

 PCFPushLog(@"The Device UUID is \"%@\".", [PCFPush deviceUuid]);

 // Note: add code to transmit the deviceUuid to your middleware server.

 } failure:^(NSError *error) {

 PCFPushLog(@"CF registration failed: %@", error);

 }];

Geofences

Geofences are newly supported in version 1.3.0 of the Push Notification Service. Using this service

you will be able to register push notifications that your app users will see when they enter or exit

certain geographic regions that you define on the Push Notification Service Dashboard.

In order to set up your app to receive geofence notifications, follow these steps.

Step 1 - Set your background modes

Push Notification Service v1.10

VMware, Inc 127

Ensure your location updates and remote notifications background modes have been set for your

project target capabilities. Both of these modes are required for your application to fetch and monitor

geofence updates from the server.

Step 2 - Set required device capabilities

Add location-services and gps to your application Info.plist file under “Required device

capabilities”.

Step 3 - Set your location usage description

If this is the first time that your app is using any location services then you will need to set the text

Push Notification Service v1.10

VMware, Inc 128

that is displayed on iOS 8.0+ when the app first requests the permission to read your current device

location. You can set this text by setting the NSLocationAlwaysUsageDescription key in your app’s

Info.plist file (contained in Supporting Files folder by default). e.g.: “Your App Name would like to

read your current location and monitor geofences (if enabled).”

Step 4 - Link to Core Location

Ensure that your app is linked to the Core Location framework. In Xcode, go to your app targets

build phases screen and add CoreLocation.framework to the Link Binary With Libraries build phase.

Step 5 - Enable geofences

In order to enable geofences at runtime you will need to pass YES to the areGeofencesEnabled

argument when you call the [PCFPush registerForPCFPushNotificationsWithDeviceToken ...

method in your application delegate. If this parameter is set to NO then no geofences features will be

Push Notification Service v1.10

VMware, Inc 129

available at runtime. Any geofences that may have been monitored before will be cleared and will no

longer be monitored.

Step 6 - Authorize location services

If using geofences on iOS 8.0+ devices you will need to add the method call to request permission

from the user to read the current device location. A good place for that is in your application

delegate application:didFinishLaunchingWithOptions method. This call will show an alert dialog

box to the user that shows the NSLocationAlwaysUsageDescription text in your PLIST file.

 - (BOOL) application:(UIApplication *)application didFinishLaunchingWithOptions:(N

SDictionary *)launchOptions

 {

 // Register for push notifications with the Apple Push Notification Service (A

PNS).

 //

 // On iOS 8.0+ you need to provide your user notification settings by calling

 // [UIApplication.sharedDelegate registerUserNotificationSettings:] and then

 // [UIApplication.sharedDelegate registerForRemoteNotifications];

 //

 // On < iOS 8.0 you need to provide your remote notification settings by calli

ng

 // [UIApplication.sharedDelegate registerForRemoteNotificationTypes:]. There

are no

 // user notification settings on < iOS 8.0.

 //

 // If this line gives you a compiler error then you need to make sure you have

 updated

 // your Xcode to at least Xcode 6.0:

 //

 if ([application respondsToSelector:@selector(registerUserNotificationSettings

:)]) {

 // iOS 8.0 +

 UIUserNotificationType notificationTypes = UIUserNotificationTypeAlert | U

IUserNotificationTypeBadge | UIUserNotificationTypeSound;

 UIUserNotificationSettings *settings = [UIUserNotificationSettings setting

sForTypes:notificationTypes categories:nil];

 [application registerUserNotificationSettings:settings];

 [application registerForRemoteNotifications];

 // NOTE: add this block to enable location services for geofences

 if ([application respondsToSelector:@selector(registerUserNotificationSett

ings:)]) {

 self.locationManager = [[CLLocationManager alloc] init];

 [self.locationManager requestAlwaysAuthorization]; // iOS 8.0+ only

 }

 } else {

 // < iOS 8.0

 UIRemoteNotificationType notificationTypes = UIRemoteNotificationTypeAlert

 | UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound;

 [application registerForRemoteNotificationTypes:notificationTypes];

 }

 return YES;

Push Notification Service v1.10

VMware, Inc 130

 }

Step 7 - Add property to application delegate

Required only if you are using geofences: add a property to your application delegate class

(AppDelegate.h) as follows:

 @property (strong, nonatomic) CLLocationManager *locationManager;

You will also need to include the following header to the same file:

 #import <CoreLocation/CoreLocation.h>

Step 8 - Receiving Local Notifications

If you follow the above steps then your application will be able to show geofences when they are

triggered. Geofences are delivered as local notifications to your app. Similar to remote notifications,

local notifications will be automatically displayed when your application is in the background but you

will need to add your own code in order to display them when your app is in the foreground.

If you need to know if the geofence was triggered via an ‘enter’ or 'exit’ condition then look at

the pivotal.push.geofence_trigger_condition key in the userInfo dictionary provided with the

location notification. You can also use this userInfo field to distinguish geofence local notifications

from other kinds of local notifications.

As an example, if you want to print a log message when a local notification is received:

 - (void) application:(UIApplication *)application didReceiveLocalNotification:(UIL

ocalNotification *)notification

 {

 NSLog(@"Received %@ local notification '%@'", notification.userInfo[@"pivotal.

push.geofence_trigger_condition"], notification.alertBody);

 }

Step 9 - Receive Geofence Status Updates

The PCF Push Notification Service server will push updated geofences to user devices via push

notifications. You don’t need to do any more work to process these updates or monitor these

geofences. You can read the geofence status object to find out if any problems occur during these

background updates. These errors can be reported directly to your application if you add an

observer to the PCF_PUSH_GEOFENCE_STATUS_UPDATE_NOTIFICATION notification in

NSNotificationCenter.

Example:

You can subscribe to the geofence update notification with the following code in your program. You

could put it in your one of your view controllers or your application delegate, as you see fit.

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(geofence

StatusChanged:) name:PCF_PUSH_GEOFENCE_STATUS_UPDATE_NOTIFICATION object:nil];

The above method call will cause the geofenceStatusChanged method to be called. You will need to

Push Notification Service v1.10

VMware, Inc 131

define this method yourself in the same class (or in whatever object instance you passed to

NSNotificationCenter above:

 - (void) geofenceStatusChanged:(NSNotification*)notification

 {

 PCFPushGeofenceStatus *status = [PCFPush geofenceStatus];

 NSLog(@"%@", status);

 }

SSL Authentication

The property pivotal.push.sslCertValidationMode allows the application to accept the following

supported SSL Authentication modes:

1. default : When the service URL is not HTTPS or when using a server trusted certificate this

mode should be set.

2. trustall : When using a development environment there is the ability to trust all certificates

while using a HTTPS service URL. This mode replaces the previous property (prior to v1.3.3)

pivotal.push.trustAllSslCertificates.

3. pinned : To ensure no man in the middle attacks this mode should be set. The server

certificate will be verified with the local copy of the certificate referred to as Certificate

Pinning authentication. When this mode is set the local copy of the certificate(s) should bePinning authentication. When this mode is set the local copy of the certificate(s) should be

provided with the pivotal.push.pinnedSslCertificateNames array property. All certificates

provided will be stored in the assets folder of the application in a DER format.

4. callback : When a custom SSL authentication schema is required this mode can be set

whereby the specific authentication logic would be added inside the application as a callback

to the SDK. The callback must be a block that receives the arguments (NSURLConnection *,

NSURLAuthenticationChallenge *) and will be called when attempting to make an HTTPS

network request.

In order for this method to take effect you will need to call it both before [PCFPush

registerForPCFPushNotificationsWithDeviceToken:...] and also before [PCFPush

didReceiveRemoteNotification:...].

example:

 @implementation AppDelegate

 ...

 - (PCFPushAuthenticationCallback) getAuthenticationCallback

 {

 return ^(NSURLConnection *connection, NSURLAuthenticationChallenge *challe

nge) {

 // Handle the SSL challenge here!

 };

 }

 - (void) application:(UIApplication *)app didRegisterForRemoteNotificationsWit

hDeviceToken:(NSData *)deviceToken

 {

 [PCFPush setAuthenticationCallback:[self getAuthenticationCallback]];

Push Notification Service v1.10

VMware, Inc 132

 ...

 [PCFPush registerForPCFPushNotificationsWithDeviceToken:deviceToken ...];

 }

 - (void)application:(UIApplication *)app didReceiveRemoteNotification:(NSDicti

onary *)userInfo fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionH

andler

 {

 [PCFPush setAuthenticationCallback:[self getAuthenticationCallback]];

 ...

 [PCFPush didReceiveRemoteNotification:userInfo completionHandler: ...];

 }

 ...

 @end

Please see Apple’s documentation for the NSURLConnectionDelegate

connection:willSendRequestForAuthenticationChallenge method for more information on how to

handle the callback.

Setting custom HTTP request headers

In order to inject custom headers into any HTTP requests made by the Push SDK you should call the

[PCFPush setRequestHeaders:] method with a dictionary of the required HTTP header values. All

values should be pairs of (NSString, NSString) values. Note that you can not provide any

'Authorization’ or 'Content-Type’ headers via this method; they will be ignored by the Push SDK.

In order for this method to take effect you will need to call it before

registerForPCFPushNotificationsWithDeviceToken.

example:

[PCFPush setRequestHeaders:@{ @"Cookie:"@"MY_SESSION_COOKIE", @"My-Special-Custom-Head

er":@"My-Special-Custom-Value" }];

...

[PCFPush registerForPCFPushNotificationsWithDeviceToken:@"My-Device-Token"];

Appendix

iOS 9.0+ Notes - App Transport Security

Apple introduced App Transport Security (ATS) in iOS 9.0. ATS will, by default block all HTTP

connections. If you want to use HTTP in iOS 9.0 apps then you will have to set up an ATS exception

in your Info.plist file and enable NSExceptionAllowsInsecureHTTPLoads for your desired

subdomain. Apple does not recommend HTTP and recommends using ATS as soon as possible.

If you are using HTTPS and need to use any of the “trustall”, “pinned”, or “callback”
sslCertValidationModes then you will also need to enable NSExceptionAllowsInsecureHTTPLoads for

your desired subdomain. Enabling insure HTTP loads will allow the custom SSL validation in the PCF

Push SDK.

Example info.plist:

Push Notification Service v1.10

VMware, Inc 133

https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSURLConnectionDelegate_Protocol/index.html#//apple_ref/occ/intfm/NSURLConnectionDelegate/connection:willSendRequestForAuthenticationChallenge:
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/index.html

<key>NSAppTransportSecurity</key>

<dict>

 <key>NSExceptionDomains</key>

 <dict>

 <key>yourserver.com</key>

 <dict>

 <!--Include to allow subdomains-->

 <key>NSIncludesSubdomains</key>

 <true/>

 <!--Include to allow HTTP request and custom SSL validation -->

 <key>NSExceptionAllowsInsecureHTTPLoads</key>

 <true/>

 </dict>

 </dict>

</dict>

Setting up your app on Apple Developer Member Center

If you are not familiar with how to create an application on the Apple Developer Member Center,

follow the steps below. This information is subject to change and you may find more up-to-date

information at App Distribution Guide.

Generating an App ID

1. Log into your Apple Developer Account.

2. Click the Certificates, Identifiers & Profiles link on the right side of the page.

3. On the iOS Apps section on the left side of the page click the Identifiers link.

4. You should now be on the iOS App IDs page. Click the + button on the top right to create

your AppID.

5. Fill in your App ID Description and Bundle ID under App ID Suffix → Explicit App ID.

This Bundle ID is the same Bundle Identifier that was generated when you create your

application in Xcode.

6. Scroll down to the App Services Section and under Enable Services check Push

Notifications. Once Push Notifications are enabled click the Continue button.

7. Look over the settings on the next page and click Submit when you’ve verified your

settings.

8. You should now see your App ID in the list on the iOS App IDs page.

Push Notification Service v1.10

VMware, Inc 134

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringPushNotifications/ConfiguringPushNotifications.html#//apple_ref/doc/uid/TP40012582-CH32-SW1

Push Sandbox SSL Certificate

1. Click on your newly created App ID and click the Edit button.

2. Scroll down to the Push Notifications section. We will now generate a Development SSL

Certificate. Navigate to the Development SSL Certificate section and then click on the

Create Certificate button.

3. Follow the instructions on the About Creating a Certificate Signing Request (CSR) page:

Open Keychain Access.

Within the Keychain Access drop down menu select Certificate Assistant →
Request a Certificate from a Certificate Authority.

Type in your email address.

Ensure Saved to disk is checked.

Click the Continue button.

Save the certificate to disk and Reveal in Finder.

4. Go back to your web browser to the About Creating a Certificate Signing Request (CSR)

page and click Continue. Choose the certificate signing request that you just saved to disk

and click Generate. You will need to download this file and open it. Keychain Access should

open this file. If prompted, add it to the login keychain. You should be able to see this

certificate if you navigate to the My Certificates section in Keychain Access.

5. Export your certificate as a p12 file with a password.

Navigate to your My Certificates section in Keychain Access

Expand your certificate and select both items.

Right click on the certificate and select Export 2 items...

Name this certificate with your Bundle ID and append Sandbox to the end, and

ensure that the File Format is Personal Information Exchange (.p12)

Select a password to protect this certificate with, you will need this password when

you setup the PCF Push server though the PCF Push Dashboard. Save this .p12 file

in a location you will remember.

Generate your provisioning profile

1. Go to the Provisioning Profiles on the left and click the Development link.

2. Click the + at the top right of the page by iOS Provisioning Profiles

Push Notification Service v1.10

VMware, Inc 135

3. Go to the Development section and select iOS App Development. Click the Continue button to

proceed.

4. Select the AppID that you created above. Click the Continue button to proceed.

5. Select your signing certificate. Click the Continue button to proceed.

6. Select your desired test devices.

7. Click the Generate button to generate your provisioning profile.

8. Click the Download button to download your provisioning profile. Open this file and go back to

Xcode.

9. In Xcode, make sure you are on the Build Settings tab and navigate down to Provisioning

Profile. Select the provisioning profile that you just created. This profile will only show up if

you opened the file from the previous step.

Troubleshooting

Please see our troubleshooting guide

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 136

#iosSDK
http://github.com/cfmobile/docs-push-notifications/tree/1.10/ios/ios.html.md.erb

Android Push Client SDK

Sample App

You can find the Android Sample App on Github.

Version

This document covers the Android Push Client SDK v1.6.0.

There was no release of the Push Android SDK for v1.5.0.

Features

The Android Push Client SDK is a light-weight library that helps your app:

1. Register for push notifications with Google Cloud Messaging (GCM) and an instance of the

PCF Push Notification Service.

2. Receive push messages sent via the same frameworks.

3. Monitor geofences that have been configured from a central server.

Device Requirements

The Push SDK requires Android API level 16 or greater. Support for Android 14 and 15 was dropped

as of Push SDK v1.4.0.

The Google Play Services app must be installed on the device before you can register your device

or receive push messages. Typically, the user needs to be logged into a Google account as well.

Most devices already have this app installed, but some odd ones may not. You should be able to

receive push notifications on a Android emulated device if it has the Google APIs installed.

Required Setup

Getting Started

To receive push messages from the PCF Push Notification Service in your Android app, you need to

create a project within the Google Developers Console. See Google Developers Console below.

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 137

https://pivotal.io/support/lifecycle_policy
https://github.com/cfmobile/push-android-samples
https://network.pivotal.io/products/push-notification-service

Set up your app and an Android Platform on the PCF Push Notification Service Dashboard. This task

is beyond the scope of this document, but note that you need the API Key parameter from Google

Cloud Console above. After setting up your Android platform in PCF Mobile Services, note down the

Platform UUID and Platform Secret parameters. You need them below. At this time, the Android

Push software makes no distinction between developer and production modes.

For information on how to create your app and platforms, see Using the Dashboard.

Link to PCF Push SDK

Download the PCF Push Client SDK for Android from Pivotal Network. The Client SDK is delivered as

an Android Library (i.e.: an “AAR” file). Copy the AAR file into the libs directory of your project

and ensure that the following line line is in the dependencies section of your module-level

build.gradle file:

 repositories {

 mavenCentral()

 flatDir {

 dirs 'libs'

 }

 }

Additionally, add the following dependency to the dependencies section of your module-level

build.gradle file:

 dependencies {

 compile(name:'PCFPush-1.6.0', ext:'aar')

 compile 'com.google.code.gson:gson:2.4'

 compile 'com.google.android.gms:play-services-location:8.4.0'

 compile 'com.google.android.gms:play-services-gcm:8.4.0'

 compile 'com.android.support:support-annotations:23.3.0'

 compile 'com.android.support:appcompat-v7:23.3.0'

 }

You need to define and use the following permission element in the manifest element of your

app’s AndroidManifest.xml file. Ensure that the base of the permission name is your app’s

package name:

 <permission

 android:name="[YOUR.PACKAGE.NAME].permission.C2D_MESSAGE"

 android:protectionLevel="signature" />

 <uses-permission android:name="[YOUR.PACKAGE.NAME].permission.C2D_MESSAGE" />

You need to add the following receiver to the application element of your app’s

AndroidManifest.xml file. Ensure that you set the category name to your app’s package name:

 <receiver

 android:name="io.pivotal.android.push.receiver.GcmBroadcastReceiver" android:p

ermission="com.google.android.c2dm.permission.SEND">

 <intent-filter>

 <action android:name="com.google.android.c2dm.intent.RECEIVE"/>

 <category android:name="[YOUR.PACKAGE.NAME]"/>

 </intent-filter>

Push Notification Service v1.10

VMware, Inc 138

https://network.pivotal.io/products/p-push-notifications

 </receiver>

Configuration: Set Up Your pivotal.properties File

Create a pivotal.properties file in your project’s src/main/assets or src/main/res/raw directory.

The following properties are required:

Property Required Description

pivotal.push.service

Url

Yes The URL of the PCF Push Server. See API URL for more information.

pivotal.push.platfor

mUuid

Yes The platform UUID of your push platform on the PCF Push server.

pivotal.push.platfor

mSecret

Yes The platform secret of your push platform on the PCF Push server.

pivotal.push.gcmSe

nderId

Yes The project number assigned by Google Cloud Console.

pivotal.push.sslCert

ValidationMode

No Can be set to default, trustall, pinned, or callback. More details below in the

SSL Authentication section.

pivotal.push.pinned

SslCertificateNames

No If using pinned SSL validation mode then this property should be a list of SSL

certificates in the DER format stored in the assets directory. The list is space

separated.

pivotal.push.areAna

lyticsEnabled

No Set to false to disable the capture of push analytics data. Defaults to true.

None of the above values may be null. None of the above values may be empty.

The pivotal.push.platformUuid and pivotal.push.platformSecret parameters are the

platform UUID and secret values from the Push Dashboard. If you use the SDK v1.6, then

use UUID and secret of platform type Android. If you use the SDK v1.7, then use the type

Android-FCM.

For instructions on how to convert your PEM certificate files to DER, see the OpenSSL

documentation.

Note that the pivotal.push.trustAllSslCertificates property was removed in PCF Push

Client SDK v1.3.3.

Registration

It is recommended that you initialize the Push Client SDK in your app’s primary Activity subclass’
onCreate method.

Add the following lines of code to the initialization section of your app. You need a Context object to

pass to the getInstance method, so you should try to add this code to your Activity class. In the

example below the Context is the this object passed to the getInstance method (assuming that

we’re in an Activity):

 try {

 // RegistrationListener is optional and may be `null`.

 Push.getInstance(this).startRegistration(DEVICE_ALIAS, CUSTOM_USER_ID, TAGS, A

Push Notification Service v1.10

VMware, Inc 139

http://openssl.org/docs/apps/rsa.html

RE_GEOFENCES_ENABLED, new RegistrationListener() {

 @Override

 public void onRegistrationComplete() {

 Log.i("MyLogTag", "Registration with PCF Push successful.");

 }

 @Override

 public void onRegistrationFailed(String reason) {

 Log.e("MyLogTag", "Registration with PCF Push failed: " + reason);

 }

 });

 } catch (Exception e) {

 Log.e("MyLogTag", "Registration with PCF Push failed: " + e);

 }

The DEVICE_ALIAS is a custom field that you can use to differentiate this device from others and is

intended for future use. If you don’t want to use the device alias then you can set this argument to

null or an empty string. At this time you can not use the device alias for targeting push notifications.

We recommend that you use the user’s device name to populate this field.

The CUSTOM_USER_ID is another custom field that you can use to associate this device with the

user. It is possible to target push notifications to custom user IDs. If you don’t want to use the

custom user ID then you can set this argument to null or an empty string. Custom user IDs are

treated as case-sensitive. For more information, see Registering with a Custom User ID.

The TAGS parameter is a Set<String> of tags that your app would like to subscribe to. There are

many possible uses of tags but they are dependent on your particular use cases. Always ensure that

you provide all of the tags that you’d like to be subscribed to; if you omit tags in future calls to the

register method then the SDK thinks that you are trying to unsubscribe from those tags. If there are

no tags that you want to register to then you can set this argument to null. Tags are treated as case-

insensitive.

The ARE_GEOFENCES_ENABLED is a boolean value that turns the geofences feature on and off

(described below). If you want to use geofences in your app, then request permission to read the

device location. If you want to support Android Marshmallow, you must write extra code to request

the device location. This extra code is described in the geofences section below.

You should only have to call startRegistration once in the lifetime of your process – but calling it

more times is not harmful. The startRegistration method is asynchronous and will return before

registration is complete. If you need to know when registration is complete (or if it fails), then provide

a RegistrationListener as the second argument.

Registration Examples

Example 1: Registering for Push Notifications with no options, tags, without geofences and with no

callback.

 Push.getInstance(this).startRegistration(null, null, null, false, null);

Example 2: Registering for Push Notifications with a customer user ID using the user’s account

name (for example).

 final String customUserId = "test@example.net"; // Your user's account name

Push Notification Service v1.10

VMware, Inc 140

#push-custom-user-id-format

 Push.getInstance(this).startRegistration(null, customUserId, null, false, null);

Example 3: Removing the registration for the custom user ID (which prevents the user from being

targeted by their custom user ID).

 final String customUserId = ""; // Can use null or empty string to remove the cust

om user ID

 Push.getInstance(this).startRegistration(null, customUserId, null, false, null);

Example 4: Subscribing to several topics on a news service.

 final Set<String> tags = new HashSet<>();

 tags.add("breaking_news");

 tags.add("local_news");

 Push.getInstance(this).startRegistration(null, null, tags, false, null);

Example 5: Unsubscribing from the “breaking_news” tag while remaining subscribed to the

“local_news” tag.

 final Set<String> tags = new HashSet<>();

 tags.add("local_news");

 Push.getInstance(this).startRegistration(null, null, tags, false, null);

Receiving Push Notifications

To receive push notifications in your app, you need to add a custom Service to your app that

extends the GcmService provided in the SDK. The intent that GCM sends is passed to your service’s

onReceiveMessage method. Here is a simple example:

 public class MyPushService extends GcmService {

 @Override

 public void onReceiveMessage(Bundle payload) {

 if (payload.containsKey("message")) {

 final String message = payload.getString("message");

 handleMessage(message);

 }

 }

 private void handleMessage(String msg) {

 // Your code here. Display the message

 // on the device's bar as a notification.

 }

 }

Finally, you need to declare your service in your AndroidManifest.xml file.

 <service android:name=".MyPushService" android:exported="false" />

Optional Items

Push Analytics

Push Notification Service v1.10

VMware, Inc 141

Version 1.3.3 of the PCF Push Client SDK supports the collection of some simple push analytics data:

Receiving push notifications

Opening push notifications

Triggering geofences

Analytics are enabled by default. You can disable it by setting the

pivotal.push.areAnalyticsEnabled parameter in your pivotal.properties file to false. Ensure that

you have an up-to-date version of the PCF Push API server and that it is generating receiptId data

in the remote notifications that it generates (which is activated by default).

Since the notification capabilities on Android are very diverse the SDK doesn’t do any work to help

apps display them. It relies on your app to decide how to display and handle all push notifications. As

such, there is no way for the SDK to know when the user touches a notification and opens your app.

If you want to collect metrics about how many users are opening the notifications in your app then

the SDK relies on your app to inform it. You need to call the logOpenedNotification method in the

Push class with the same Bundle that was delivered in the push notification.

The capturing push analytics data requires v1.3.2 of the Push API server. The SDK checks the server

version before capturing any analytics data. If the server version is too old, then no analytics data is

recorded. The SDK checks the server version once every 24 hours in release builds and every 5

minutes in debug builds.

e.g.:

Let’s say that you use this code to display a push notification in your subclass of GcmService:

 @Override

 public void onReceiveMessage(Bundle payload) {

 final String message = payload.getString("message");

 final NotificationManager notificationManager = (NotificationManager) getSyste

mService(Context.NOTIFICATION_SERVICE);

 final Intent intent = new Intent(this, MyAppsMainActivity.class);

 intent.setAction("YOUR_CUSTOM_NOTIFICATION_ACTION_NAME");

 intent.putExtras(payload);

 final PendingIntent contentIntent = PendingIntent.getActivity(this, 0, intent,

 0);

 final NotificationCompat.Builder builder = new NotificationCompat.Builder(this

)

 .setSmallIcon(R.drawable.ic_your_app_logo)

 .setContentTitle(getString(R.string.app_name))

 .setContentIntent(contentIntent)

 .setContentText(msg);

 notificationManager.notify(NOTIFICATION_ID, builder.build());

 }

Then you can use the following code in the opened activity to report that the notification has been

opened:

 public class MyAppsMainActivity extends Activity {

 ...

Push Notification Service v1.10

VMware, Inc 142

 @Override

 protected void onResume() {

 super.onResume();

 final Intent i = getIntent();

 if (i.getAction().equals("YOUR_CUSTOM_NOTIFICATION_ACTION_NAME")) {

 Push.getInstance(this).logOpenedNotification(i.getExtras());

 }

 }

Note that it is important to pass the entire remote notification payload Bundle into the

logOpenedNotification method. This example accomplishes this requirement by saving the payload

Bundle in the Intent Extras in the PendingIntent passed to the notification.

Tags

If any of your tags change during the lifetime of your process (e.g.: your app wants to change the list

of tags that it has subscribed to) then call subscribeToTags with your new set of parameters.

Example:

 // The SubscribeToTagsListener is optional and may be `null`.

 Push.getInstance(this).subscribeToTags(TAGS, new SubscribeToTagsListener() {

 @Override

 public void onSubscribeToTagsComplete() {

 Log.i("MyLogTag", "Successfully subscribed to tags with PCF Push.");

 }

 @Override

 public void onSubscribeToTagsFailed(String reason) {

 Log.e("MyLogTag", "Failed to subscribe to tags with PCF Push:" + reason);

 }

 });

Unregistration

If you want to unregister from push notifications then you can call the startUnregistration method:

 // The UnregistrationListener is optional and may be `null`.

 Push.getInstance(this).startUnregistration(new UnregistrationListener() {

 @Override

 public void onUnregistrationComplete() {

 Log.i("MyLogTag", "Successfully unregistered from PCF Push.");

 }

 @Override

 public void onUnregistrationFailed(String reason) {

 Log.e("MyLogTag", "Failed to unregister from PCF Push: " + reason);

 }

 });

Reading the Device UUID

In order to target individual devices for remote notifications using the PCF Push Notification Service,

you need to target the Device UUID assigned to each device by the service. You can read the

Push Notification Service v1.10

VMware, Inc 143

Device UUID at run time any time after a successful registration with the service by calling the

getDeviceUuid method. This method returns null if the device is not currently registered with the

PCF Push Notification Service.

Example:

 Push.getInstance(this).startRegistration(deviceAlias, subscribedTags, areGeofences

Enabled, new RegistrationListener() {

 @Override

 public void onRegistrationComplete() {

 Log.i("MyLogTag", "Device Uuid: " + Push.getInstance(this).getDeviceUuid()

);

 }

 @Override

 public void onRegistrationFailed(String reason) {

 Log.e("MyLogTag", "Failed to unregister from PCF Push: " + reason);

 }

 });

SSL Authentication

The property pivotal.push.sslCertValidationMode allows the app to accept the following

supported SSL Authentication modes:

1. default : When the service URL is not HTTPS or when using a server trusted certificate this

mode should be set.

2. trustall : When using a development environment there is the ability to trust all certificates

while using a HTTPS service URL. This mode replaces the previous property (prior to v1.3.3)

pivotal.push.trustAllSslCertificates.

3. pinned : To ensure no man in the middle attacks this mode should be set. The server

certificate is verified with the local copy of the certificate referred to as Certificate Pinning

authentication. When this mode is set the local copy of the certificate(s) should be provided

with a space-separated list in the pivotal.push.pinnedSslCertificateNames property. All

certificates provided are stored in the assets folder of the app in a DER format.

4. callback : When a custom SSL authentication schema is required this mode can be set

whereby the specific authentication logic would be added inside the app as a callback to the

SDK. You need to create your own implementation of a class extending the

CustomSslProvider interface and declare it in your manifest file in a <meta-data> element in

your <application> element. The name of the meta-data is

“io.pivotal.android.push.CustomSslProvider” and the value of the meta-data should be the

name of your custom SSL provider class (with its full package name). This class must have a

default (empty) constructor and is instantiated at runtime when network requests are made to

HTTPS service endpoints.

example CustomSslProvider implementation:

 public class MyCustomSslProvider implements CustomSslProvider {

 public MyCustomSslProvider() { /* default constructor is required */ }

Push Notification Service v1.10

VMware, Inc 144

 @Override

 public SSLSocketFactory getSSLSocketFactory() throws NoSuchAlgorithmException,

 KeyManagementException {

 TrustManager[] trustAllCerts = new TrustManager[] { FILL ME IN };

 SSLContext context = SSLContext.getInstance("TLS"); // or "SSL" - please l

ook at the Java documentation

 context.init(null, trustAllCerts, null);

 return context.getSocketFactory();

 }

 @Override

 public HostnameVerifier getHostnameVerifier() {

 return new HostnameVerifier() {

 public boolean verify(String hostname, SSLSession session) { FILL ME I

N }

 };

 }

 }

example AndroidManifest.xml:

 <application>

 ...

 <meta-data

 android:name="io.pivotal.android.push.CustomSslProvider"

 android:value="YOUR PACKAGE NAME.MyCustomSslProvider"/>

 ...

 </application>

Setting Custom HTTP Request Headers

In order to inject custom headers into any HTTP requests made by the Push SDK you should call the

setRequestHeaders method in the Push class with a Map<String, String> of the required HTTP

header values. Note that you can not provide any ‘Authorization’ or 'Content-Type’ headers via

this method; they are ignored by the Push SDK.

In order for this method to take effect you need to call it before startRegistration,

subscribeToTags, or any other methods that make network requests.

Geofences

Geofences are newly supported in v1.3.0 of the Push Notification Service. Using this service, you can

register push notifications that your app users see when they enter or exit certain geographic

regions that you define on the Push Notification Service Dashboard.

To set up your app to receive geofence notifications, perform the following steps.

Step 1: Set Up Your AndroidManifest.xml File

Push Notification Service v1.10

VMware, Inc 145

Add these two permissions to the application element of your AndroidManifest.xml file.

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

Step 2: Set Up Your Push Service

You need to override the following two methods in your app custom Service (see Step 7 above).

 @Override

 public void onGeofenceEnter(Bundle payload) {

 Log.i("My Log Tag", "Entered geofence " + payload.getString("message"));

 // Process geofence enter event

 }

 @Override

 public void onGeofenceExit(Bundle payload) {

 Log.i("My Log Tag", "Exited geofence " + payload.getString("message"));

 // Process geofence exit event

 }

Step 3: (Optional) Receive Geofence Status Updates

The PCF Push Notification Service server pushes updated geofences to user devices via push

notifications. You don’t need to do any more work to process these updates or monitor these

geofences. You can read the geofence status object to find out if any problems occur during these

background updates. These errors can be reported directly to your app if you create a

BroadcastReceiver that listens to io.pivotal.android.push.geofence.UPDATE intents.

Example:

Create a class called MyGeofenceUpdateBroadcastReceiver:

 public class MyGeofenceUpdateBroadcastReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 final GeofenceStatus status = Push.getInstance(context).getGeofenceStatus(

); // Read geofence status

 if (status != null) {

 if (status.isError()) {

 Toast.makeText(context, status.getErrorReason(), Toast.LENGTH_LONG

).show();

 }

 Toast.makeText(context, "Number of currently monitoring geofences: " +

 status.getNumberCurrentlyMonitoringGeofences(), Toast.LENGTH_LONG).show();

 }

 }

 }

You can configure your BroadcastReceiver class to listen to geofence updates by adding the

following element in your AndroidManifest.xml:

 <receiver

Push Notification Service v1.10

VMware, Inc 146

 android:name=".MyGeofenceUpdateBroadcastReceiver" android:exported="false" >

 <intent-filter>

 <action android:name="io.pivotal.android.push.geofence.UPDATE"/>

 </intent-filter>

 </receiver>

Step 4: Request device location permission (Android v6.0 Marshmallow and up)

Android v6.0 Marshmallow introduced a new system for obtaining user permission for

“dangerous” operations. If you want to use geofences in your app then you need to request the

permission to read the device location at runtime. Before Android v6.0 Marshmallow it was sufficient

to simply add a uses-permission element to your AndroidManifest.xml file in order to request

permission as described in Step 1 above. In Android v6.0 Marshmallow you must still add the uses-

permission element to your AndroidManifest.xml file but you must also request permission from the

user directly at runtime. We’ve added a helper method to the Push SDK to help you with this task

but you still need to do some of the work yourself in your app.

In one of your app’s primary Activity classes, you need to add the following code to your

onCreate method BEFORE you initialize the Push SDK. The dialog box must contain a message that

explains to your user why your app needs to read the device location. You may style or theme this

dialog box any way that you would like to. You only need to give the dialog box one button: “OK”.

 if (ARE_GEOFENCES_ENABLED) {

 // If you want to use geofences and are targetting Android Marshmallow or grea

ter, then you must specifically

 // ask the user for permission to read the device location. The following Dia

log class is used to explain

 // to the user why your app is requesting permission to read the device locati

on.

 final Dialog dialog = new AlertDialog.Builder(this)

 .setMessage("This application needs permission to read the device loca

tion in order to send you notifications when you enter certain locations.")

 .setPositiveButton("OK", null)

 .create();

 final boolean werePermissionsAlreadyGranted = Push.getInstance(this).requestPe

rmissions(this, REQUEST_PERMISSION_FOR_GEOFENCES_RESPONSE_CODE, dialog);

 if (werePermissionsAlreadyGranted) {

 // If Push.requestPermissions returns true then ACCESS_FINE_LOCATION permi

ssion has already been granted

 // and we can immediately begin push registration.

 startPushRegistrationWithGeofencesEnabled(true);

 }

 } else {

 startPushRegistrationWithGeofencesEnabled(false);

 }

If the permission to read the device location has not yet been granted, then Google shows a system

dialog box to request permission. It may also show your user-defined dialog box. After the user

Push Notification Service v1.10

VMware, Inc 147

presses “Allow” or “Deny” then Google calls the onRequestPermissionsResult callback in the

same activity:

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissi

ons, @NonNull int[] grantResults) {

 // This callback is invoked by Android after the user decides to allow or deny

 permission for ACCESS_FINE_LOCATION.

 // If Push.requestPermissions returns false then you need to wait for this cal

lback before attempting

 // to register for pushes.

 if (requestCode == REQUEST_PERMISSION_FOR_GEOFENCES_RESPONSE_CODE && permissio

ns[0].equals(android.Manifest.permission.ACCESS_FINE_LOCATION)) {

 if (grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 startPushRegistrationWithGeofencesEnabled(true);

 } else {

 startPushRegistrationWithGeofencesEnabled(false);

 }

 }

 }

The REQUEST_PERMISSION_FOR_GEOFENCES_RESPONSE_CODE value is a unique integer that is echoed

back to the onRequestPermissionsResult method after the user allows or denies the permission. You

can select any integer that you would like.

 // Request code when requesting permission to use geofences.

 private static final int REQUEST_PERMISSION_FOR_GEOFENCES_RESPONSE_CODE = 27; // Y

our favourite integer

Step 5: Enable geofences

In order to enable geofences at runtime you need to pass true to the areGeofencesEnabled

argument when you call the startRegistration method in your app main activity. If this parameter is

set to false then no geofences features are available at runtime. Any geofences that may have been

monitored before are cleared and are no longer monitored.

The startPushRegistrationWithGeofencesEnabled method in the above example will finally initialize

the Push SDK. If the device location permission was not granted then you should disable geofences.

Note that the user is able to allow or revoke this permission at any other time in the future. It is

important to request this permission EVERY TIME you initialize your Push SDK:

 private void startPushRegistrationWithGeofencesEnabled(boolean areGeofencesEnabled

) {

 Push.getInstance(this).startRegistration(DEVICE_ALIAS, TAGS, areGeofencesEnabl

ed, new RegistrationListener() {

 @Override

 public void onRegistrationComplete() {

 printMessage("Registration successful.");

 }

 @Override

Push Notification Service v1.10

VMware, Inc 148

 public void onRegistrationFailed(String reason) {

 printMessage("Registration failed. Reason: " + reason);

 }

 });

 }

Appendix

Google Developers Console

1. Log into Google Developers Console. You need a Google account.

2. Click Create Project.

3. Enter a Project Name and leave the auto-generated Project ID field untouched. Click

Create.

4. Wait until the project is completed, this might take a couple of minutes. After this, you are on

the project page.

5. Note at the top your Project Number. This value should be in light gray text. Make note of

this value because you need it later. Make sure you use the numeric project number. Do not

use the project ID with the words.

6. On the left, in the APIs & Auth section, click APIs.

7. In the Browse APIs field, enter Google Cloud Messaging and ensure that Google Cloud

Messaging for Android is enabled by clicking Enable API.

8. On the left click the Credentials link which is directly below the APIs link.

9. Find Public API Access on the page and click the Create new Key button below. Click

Server key when the dialog pops up.

10. In the text field inside the dialog box enter 0.0.0.0/0 and click the Create button.

11. Make note of the API KEY value because you need it later.

Troubleshooting

See Troubleshooting.

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 149

https://console.developers.google.com/project
#androidSDK
http://github.com/cfmobile/docs-push-notifications/tree/1.10/android/android.html.md.erb

Setting up Push Notifications with FCM

This document describes how developers can set up the Pivotal Cloud Foundry (PCF) Push

Notification Service with the Firebase Cloud Messaging (FCM) platform so their apps can send push

notifications to Android devices.

Prerequisites

The procedures in this document require the following:

You must have access to a PCF environment with the Push Notification Service installed.

You must have Android Studio 2.2 or later installed on your machine.

You must have the Google Repository from the Android SDK Manager.

You must have the Push Android SDK 1.7 or later from Github.

The devices that you want to send push notifications to must run Android 2.3 (Gingerbread)

or later.

The devices that you want to send push notifications to must have Google Play Services

9.8.0 or later.

Prepare an FCM Project

Follow these steps to prepare an FCM project for your app.

1. Navigate to the Firebase Console and create an account if you do not have one already.

2. Once logged in, Create or Import a project you want to use with FCM.

1. When prompted, click Add Firebase to your Android app.

2. Enter a Package name that matches the ID of your app:

For the push-sample app, the ID is io.pivotal.android.push.sample.

For the push-demo app, the ID is io.pivotal.android.push.demo.

3. Ensure the Debug signing certificate SHA-1 matches the SHA-1 from your debug

signing certificate. For instructions on how to get this fingerprint, refer to

Authenticating Your Client in the Google APIs for Android documentation.

4. After you finish creating or importing your project, a google-services.json file

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 150

https://pivotal.io/support/lifecycle_policy
https://developer.android.com/tools/help/sdk-manager.html
https://github.com/cfmobile/push-android
https://console.firebase.google.com/
https://developers.google.com/android/guides/client-auth

downloads. Keep track of this file for later use.

3. Click your project.

4. Click the settings icon next to your project name and select Project Settings.

5. Select the Cloud Messaging tab.

6. Record the Server key for later use.

Configure Your Push Dashboard

Follow the steps below to navigate to the Push dashboard and configure the Push Notification

service.

You can navigate to the Push dashboard using either Apps Manager or the Cloud Foundry

Command Line Interface (cf CLI). Use the cf CLI instructions if you did not enable the Push Apps

Manager errand when deploying Pivotal Application Service.

Navigate to Push Dashboard using Apps Manager

1. In a browser, navigate to apps.YOUR-SYSTEM-DOMAIN.

2. Select the system org and the push-notifications space.

3. Click the Services tab.

4. Select the PCF Push Notification Service row and click the Manage link.

Navigate to Push Dashboard using cf CLI

1. Open a terminal window and log in:

$ cf login -a https://api.YOUR-SYSTEM-DOMAIN -u USERNAME -p PASSWORD

2. Target the correct org and space:

$ cf target -o system -s push-notifications

3. Run the following command:

$ cf service push-service-instance

4. Copy the URL from the Dashboard field and paste it into your browser.

Configure the Push Notification Service

Follow these steps to configure the Push backend by creating a new platform for the sample app.

1. In the Push dashboard, select the + icon from the left to create a new app to send push

notifications to, either the push sample app or push demo app.

Enter a Name and Description.

2. Once you create an app, select the Configuration tab for that app.

3. Click Add New Platform.

Push Notification Service v1.10

VMware, Inc 151

4. Enter a Name and Description, and choose a Mode.

5. For Type, select Android-FCM.

6. Once created, click the pencil icon to edit the platform.

7. In the Google Key field, paste the server key that you recorded earlier.

Run the App on Your Device

Follow these steps to compile and deploy the app on your Android device.

1. Navigate to the Push Android Samples repository.

2. Clone the repository to your workspace.

3. Checkout the release-v1.7.0 branch, or the branch of a later version.

4. Copy the google-services.json file from earlier into your app project:

If you want to compile the sample app, copy the json file to the push-sample

subdirectory of the app project.

If you want to compile the demo app, copy the json file to the push-demo

subdirectory.

5. Open a project in Android Studio using the repo you cloned.

6. Open the pivotal.properties file.

For the sample app, you can find this file in push-sample/src/main/res/raw/.

For the demo app, you can find this file in push-demo/src/main/assets/.

7. Update the file as follows:

pivotal.push.platformUuid: This value must match the platform UUID of the FCM

Platform you created in the previous section.

pivotal.push.platformSecret: This value must match the platform SECRET of the

FCM Platform you created in the previous step.

pivotal.push.serviceUrl: Enter the server address to your push backend API in the

form of https://push-api.YOUR-SYSTEM-DOMAIN. For more information, see API URL.

8. Compile and deploy the application to your Android device.

Once the application registers with the Push backend, it can receive push notifications. To verify that

your device registered, see the Devices tab in the Push dashboard. The device Type field displays a

Firebase logo.

You can also send test pushes to the device from the Push dashboard.

Note: You can add multiple FCM Platforms with server keys from different FCM

projects, depending on how your FCM applications and projects are organized. There

is no requirement that all FCM Platforms use the same server key in the Push

backend.

Note: If you send a test push to your device from the Push dashboard, ensure the

Push Notification Service v1.10

VMware, Inc 152

https://github.com/cfmobile/push-android-samples

Create a pull request or raise an issue on the source for this page in GitHub

app is not open on your device. You cannot see the test push while the app is open.

Push Notification Service v1.10

VMware, Inc 153

http://github.com/cfmobile/docs-push-notifications/tree/1.10/fcm.html.md.erb

Setting up Push Notifications with Baidu

This document describes how developers can set up the Pivotal Cloud Foundry (PCF) Push

Notification Service with the Baidu platform so their apps can send push notifications to Android

devices.

Prerequisites

The procedures in this document require the following:

You must have access to a PCF environment with the Push Notification Service installed.

You must have Android Studio 2.2 or later installed on your machine.

You must have the Google Repository from the Android SDK Manager.

You must have the Push Android SDK 1.7 or later from Github.

The devices that you want to send push notifications to must run Android 2.3 (Gingerbread)

or later.

The devices that you want to send push notifications to must have Google Play Services

9.8.0 or later.

Prepare a Baidu Project

Follow these steps to prepare a Baidu application for your app.

1. Navigate to the Baidu Push website.

2. Select Log in (登录) or Register (注册) at the top right and log in or register.

3. Select your username at the top right to view your application list.

4. Select Create a new application (创建新应用), enter a name and continue.

5. On the App Configuration (应用配置) screen, select Android, enter your app’s package

name and select Save (保存).

6. Back on the application list page, select Application Configuration (应用配置) to obtain the

API Key and Secret Key.

Configure Your Push Dashboard

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 154

https://pivotal.io/support/lifecycle_policy
https://developer.android.com/tools/help/sdk-manager.html
https://github.com/cfmobile/push-android
http://push.baidu.com

Follow the steps below to navigate to the Push dashboard and configure the Push Notification

service.

You can navigate to the Push dashboard using either Apps Manager or the Cloud Foundry

Command Line Interface (cf CLI). Use the cf CLI instructions if you did not enable the Push Apps

Manager errand when deploying Pivotal Application Service.

Navigate to Push Dashboard using Apps Manager

1. In a browser, navigate to apps.YOUR-SYSTEM-DOMAIN.

2. Select the System org and the Push-notifications space.

3. Select the Services tab.

4. Select the PCF Push Notification Service row and select the Manage link.

Navigate to Push Dashboard using cf CLI

1. Open a terminal window and log in:

$ cf login -a https://api.YOUR-SYSTEM-DOMAIN -u USERNAME -p PASSWORD

2. Target the correct org and space:

$ cf target -o system -s push-notifications

3. Run the following command:

$ cf service push-service-instance

4. Copy the URL from the Dashboard field and paste it into your browser.

Configure the Push Notification Service

Follow these steps to configure the Push backend by creating a new platform for the sample app.

1. In the Push dashboard, select the + icon from the left to create a new app to send push

notifications to, either the push sample app or the push demo app.

Enter a Name and Description.

2. Once you create an app, select the Configuration tab for that app.

3. Select Add New Platform.

4. Enter a Name and Description, and choose a Mode.

5. For Type, select Android-Baidu.

6. Select the pencil icon to edit the platform.

7. In the Baidu API Key field, enter the API key that you recorded earlier.

8. In the Baidu Secret field, enter the secret key that you recorded earlier.

Note: You can add multiple Baidu Platforms with keys from different Baidu

applications, depending on how your Baidu applications and projects are organized.

Push Notification Service v1.10

VMware, Inc 155

Run the App on Your Device

Follow these steps to compile and deploy the app on your Android device.

1. Navigate to the Push Android Samples repository.

2. Clone the repository to your workspace.

3. Checkout the release_v1.9 branch, or the branch of a later version.

4. Ensure the baiduDebug or baiduRelease build variant is selected. The Android sample apps

are multi-flavor: Baidu and FCM can both be built from this repository.

5. Provide a keystore location for debug signingConfigs in the respective project’s

build.gradle file. Optionally, remove this block.

6. Populate the MainActivity configuration:

VARIANT_UUID with the platform UUID of the Baidu platform created in the previous

section.

VARIANT_SECRET with the platform secret of the Baidu platform created in the previous

step.

BASE_SERVER_URL with the server address to your push backend API in the form of

https://push-api.YOUR-SYSTEM-DOMAIN. For more information, see API URL.

7. Compile and deploy the application to your Android device.

Once the application registers with the Push backend, it can receive push notifications. To verify that

your device registered, see the Devices tab in the Push dashboard. The device Type field displays a

Baidu paw logo.

You can also send test pushes to the device from the Push dashboard.

Create a pull request or raise an issue on the source for this page in GitHub

There is no requirement that all Baidu Platforms use the same keys in the Push

backend.

Note: If you send a test push to your device from the Push dashboard, ensure the

app is not open on your device. You cannot see the test push while the app is open.

Push Notification Service v1.10

VMware, Inc 156

https://github.com/cfmobile/push-android-samples
http://github.com/cfmobile/docs-push-notifications/tree/1.10/baidu.html.md.erb

APIs

You can use the following APIs for the Push Notification Service:

Push API

Registration API

Registrations API

Topics API

Custom User IDs API

Schedules API

Geofences API

Create a pull request or raise an issue on the source for this page in GitHub

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 157

https://pivotal.io/support/lifecycle_policy
http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/index.html.md.erb

Push

Push a Message

POST /v1/push

Push a message out to a list of devices or devices targeted by platform.

Authentication: HTTP Basic application_uuid:api_key

Query Parameters: None

Request Body:

There are many possible options for the request body. All of the options are listed in the JSON text

example below. Most of the individual JSON fields are optional. The options you need to use are

described below. Several examples are illustrated below.

The message → body field in the JSON request body is the default message that is supplied in

notifications to remote devices. It will be overridden by any platform-specific custom message body

data.

In particular, iOS devices will receive the message → body field as their alert message unless the

custom → ios → alert → body field is populated. Android devices will receive the message → body

field in their payload message field unless the custom → android → message field is populated.

Message Field Size Limitations

The size limit for the message field depends on the operating system:

iOS: The Push Notifications backend uses legacy APNs binary interface that is limited to 2 KB

(2048 bytes) payload. As such, if message field is too large, APNs will reject these

notifications.

Android: The Push Notification backend is limited to sending push payloads to FCM, GCM,

and Baidu to 4 KB (4096 bytes). As such, if the message field is too large, GCM, FCM, and

Baidu will reject these notifications.

Response Data, status: 200 (OK)

The fields returned by the /v1/push POST API depend on the type of push notification that was

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 158

https://pivotal.io/support/lifecycle_policy

requested: scheduled or immediate.

If the push is given scheduleAt or scheduleIn fields then the push is scheduled to be delivered in

the future. These pushes will return a schedule_id field in the response data. These schedule_id

values can be used in the /v1/schedule APIs to update or cancel the scheduled push before it is

delivered.

Otherwise, the push will be queued to be sent immediately. In this case, the response will also

contain a receipt_id field that can be used to follow the push notification delivery status in the audit

logs.

Response Data

{

 "schedule_id": "", # only returned if the push notification is a scheduled push

 "receipt_id": "" # only returned if the push is being delivered immediately.

}

Scheduled pushes are described further below.

Targeting and Audience Selection

You can target your push notifications in many ways:

By platform(s). e.g.: “ios”, “android”.

By device UUID(s):

Devices UUIDs are determined by:

the device registration process in the PCF Push Client SDKs. See the

documentation for the iOS or Android SDKs.

or by the /v1/registration POST/PUT APIs if you are registering your devices

without using the Client SDKs.

By topic(s):

Topics are created:

implicitly when devices subscribed to them. See the /v1/registration

POST/PUT APIs.

or when the /v1/topics POST API is used.

By Custom User ID:

Custom User IDs are created via the Register a device API /v1/registration POST

APIs.

Sending a push to a Custom User ID:

the push will be sent simultaneously to all devices registered with this Custom

User ID.

By Custom User ID and Topic(s):

Sending a push to a Custom User ID and Topic(s):

the push will be sent simultaneously to all devices registered with this Custom

Push Notification Service v1.10

VMware, Inc 159

User ID and all devices registered with any of the provided Topic(s).

Key Description

devi

ces

A list of up to 4096 device UUIDs to target. These device UUIDs are the same ones that are returned by the

PCF Push Client SDKs after registration or by the /v1/registration HTTP POST call if you are registering your

devices without using the Client SDKs.

topi

cs

A list of up 1024 topics (formerly tags) to which devices may be subscribed. Only devices subscribed to one of

more of the listed topics will be targeted. Devices select which topics to subscribe to by calling the

appropriate subscribeToTopics methods in the client SDKs or by calling the /v1/registration HTTP POST or

PUT.

platf

orm

s

A list of platforms to be targeted. Available platforms are ‘ios’, 'android’, 'android-fcm’, 'android-

baidu’.

platf

orm

DEPRECATED. Possible values are 'all’, 'ios’, 'android’, 'android-fcm’, 'android-baidu’. If 'platforms’ is

also populated the platform(s) selected here will be added to list of platforms.

inter

acti

ve-

only

If set to true then only those devices that can accept interactive pushes are targetted. At this time only iOS 8+

or Android 4.1+ devices are considered to support interactive pushes.

cust

om

_us

er_i

ds

A list of IDs for devices that is meaningful to your system, such as their login. The same Custom User ID can be

used to refer to multiple devices.

Limits

Pushing to multiple targets is bounded by the following limits per request:

Devices: 4096

Custom User Ids: 4096

Topics: 1024

Notes

At least one of devices, topics, platforms, or platform is required.

devices will override any other targeting type. Any topics, platforms, or platform targetting

key will be ignored if there is a devices key.

topics and platforms can be used in a complementary way to push a message to just a

subset of users (See example below).

Devices only need to be subscribed to at least one of the topics in the targetting data in

order to receive the message (See example below). There is no way using the Push API to

send a message to a device that is subscribed to all of the topics in a list.

Target Examples

Sending push messages to three specific devices (specified by their device UUIDs):

Push Notification Service v1.10

VMware, Inc 160

 {

 ...

 "target": {

 "devices": ["device_uuid1", "device_uuid2", "device_uuid3"]

 }

 ...

 }

Sending pushes to all devices (regardless of platform) subscribed to one of two specific topics

(a device only needs to be subscribed to one of the topics in the list of topics in order to

receive the message).

 {

 ...

 "target": {

 "topics": ["exciting_topic", "pedantic_topic"]

 }

 ...

 }

Sending pushes to all iOS devices:

 {

 ...

 "target": {

 "platforms": ["ios"]

 }

 ...

 }

Sending pushes to all “Android” devices subscribed to one specific topic:

 {

 ...

 "target": {

 "platforms": ["android"],

 "topics": ["best_topic_ever"]

 }

 ...

 }

Sending pushes to interactive only devices:

 {

 ...

 "target": {

 "platforms": ["android", "ios"],

 "interactive-only": true

 }

 ...

 }

Sending pushes to devices registered with a Custom User ID:

 {

 ...

Push Notification Service v1.10

VMware, Inc 161

 "target": {

 "custom_user_ids": ["some_customer_user_id", "some_other_custom_user_id"]

 }

 ...

 }

Sending pushes to devices registered with a Custom User ID and devices registered with

Topic(s):

 {

 ...

 "target": {

 "custom_user_ids": ["some_customer_user_id"],

 "topics": ["exciting_topic", "pedantic_topic"]

 }

 ...

 }

Sending pushes to devices registered with Custom User IDs and devices registered with

Topic(s):

 {

 ...

 "target": {

 "custom_user_ids": ["some_customer_user_id1", "some_customer_user_id2"],

 "topics": ["exciting_topic", "pedantic_topic"]

 }

 ...

 }

Setting Expiration Time on Pushes

The “expiryTime” field can be used to specify a time after which a push should not be displayed. It

should be an Epoch timestamp integer in milliseconds (i.e.: the number of milliseconds since

midnight January 1, 1970). If expiryTime is not set the behavior will be the platform default. For iOS

and Android pushes will be queued for delivery if the target device is unreachable at the time of the

push and delivered as soon as it is reachable. If expiryTime is set and the the device becomes

reachable AFTER the expiry time, the push will not be delivered.

IMPORTANT NOTE:

If omitted, the default expiry time used for Apple devices is Integer.MAX_VALUE seconds (i.e.:

sometime in the year 2038).

If omitted, the default expiry time used on GCM is 4 weeks (2,419,200 seconds). The

maximum time-to-live for messages delivered on GCM is also 4 weeks.

IMPORTANT: If omitted, the default expiry time is as follows:

For Apple devices, it is Integer.MAX_VALUE seconds (i.e., sometime in the year

2038).

On GCM, it is 4 weeks (2,419,200 seconds). The maximum time-to-live for messages

delivered on GCM is also 4 weeks.

Push Notification Service v1.10

VMware, Inc 162

Scheduled Pushes

Pushes can be scheduled to be sent at a later time. Use the scheduleAt field to specify the time

when the push should be sent. As with expiryTime this should be an Epoch timestamp integer in

milliseconds. Alternatively you can use the scheduleIn field to specify the scheduled time as the

number of seconds from the time the server receives the push request. NOTE: You cannot set both

the scheduleAt and scheduleIn fields at the same time as doing this would result in an error

message from the server.

If the scheduled time is less than a preconfigured time in the future, the push will not be scheduled

and will be sent immediately. By default this amount is 60 seconds.

Scheduled Pushes Examples

Scheduling a push message to be delivered for February 2, 2016 at 8 AM (UTC):

 {

 ...

 "scheduleAt": 1454313600000

 ...

 }

Scheduling a push message to be delivered two hours from now:

 {

 ...

 "scheduleIn": 7200000

 ...

 }

Custom Fields for Platform specific Pushes

Custom Fields for iOS Pushes

The fields available in the custom block for iOS are described here:

{

 "ios": {

 "alert": {

 "body": "iOS only message body",

 "action-loc-key": "actionKey",

 "loc-key": "localizedStringKey",

 "loc-args": [

 ""

],

 "title": "Title",

 "title-loc-key": "titleKey",

 "title-loc-args": [

 "arg1",

 "arg2"

],

 "launch-image": "Default.png"

 },

 "category": "SAMPLE_CATEGORY",

Push Notification Service v1.10

VMware, Inc 163

 "badge": 1,

 "sound": "default",

 "content-available": true, # Note - the Push API expects this field to b

e a boolean. (see below)

 "extra": { "freeform custom data" : "freeform custom data", ... }

 }

}

extra

type: dictionary or null

This property can be used to pass free-form arbitrary payload data to the receiving iOS

device. This data will be passed in the userInfo dictionary in the

application:didReceiveRemoteNotification callback in the application’s app delegate

class. It is up to the application to use this data as it needs.

alert

type: string or dictionary

If this property is included, the system displays a standard alert. You may specify a string as

the value of alert or a dictionary as its value. If you specify a string, it becomes the message

text of an alert with two buttons: Close and View. If the user taps View, the app is launched.

Alternatively, you can specify a dictionary as the value of alert. See Table 3-2 at the Apple

Documentation for descriptions of the keys of this dictionary.

badge

type: number

The number to display as the badge of the app icon. If this property is absent the badge is

not changed. To remove the badge, set the value of this property to 0.

sound

type: string

The name of a sound file in the app bundle. The sound in this file is played as an alert. If the

sound file doesn’t exist or default is specified as the value, the default alert sound is played.

The audio must be in one of the audio data formats that are compatible with system sounds;

see Preparing Custom Alert Sounds for details.

content-available

type: boolean

Provide this key with a value of true to indicate that new content is available. Including this

key and value means that when your app is launched in the background or resumed,

application:didReceiveRemoteNotification:fetchCompletionHandler: is called.

(Newsstand apps are guaranteed to be able to receive at least one push with this key per 24-

hour window). The Push API will translate the value of this field to 1 or 0 before sending it to

APNS.

title

type: string

A short string describing the purpose of the notification. This field was introduced on Apple

Watch but is also displayed on iOS devices as of iOS version 10.0. This key was added in iOS

8.2.

body

type: string

Push Notification Service v1.10

VMware, Inc 164

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW2
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CreatingtheNotificationPayload.html#//apple_ref/doc/uid/TP40008194-CH10-SW1

The text of the alert message.

title-loc-key

type: string or null

The key to a title string in the “Localizable.strings” file for the current localization. The key

string can be formatted with %@ and %n$@ specifiers to take the variables specified in the title-

loc-args array. For more information, see Localized Formatted Strings. This key was added in

iOS 8.2.

title-loc-args

type: array of strings or null

Variable string values to appear in place of the format specifiers in title-loc-key. For more

information, see Localized Formatted Strings. This key was added in iOS 8.2.

action-loc-key

type: string or null

If a string is specified, the system displays an alert that includes the Close and View buttons.

The string is used as a key to get a localized string in the current localization to use for the

right button’s title instead of “View”. For more information, see Localized Formatted

Strings.

loc-key

type: string

A key to an alert-message string in a “Localizable.strings” file for the current localization

(which is set by the user’s language preference). The key string can be formatted with %@

and %n$@ specifiers to take the variables specified in the loc-args array. For more information,

see Localized Formatted Strings.

loc-args

type: array of strings

Variable string values to appear in place of the format specifiers in loc-key. For more

information, see Localized Formatted Strings.

launch-image

type: string

The filename of an image file in the app bundle; it may include the extension or omit it. The

image is used as the launch image when users tap the action button or move the action

slider. If this property is not specified then the system either uses the previous snapshot or

uses the image identified by the UILaunchImageFile key in the app’s “Info.plist” file, or

falls back to “Default.png”. This property was added in iOS 4.0.

For more detailed information, check the Apple documentation.

Custom Fields for Android Pushes

The custom fields for android are a dictionary that can contain any fields required by your

application. You can also specify a collapse_key in the custom fields for Android. A message with a

collapse_key that has not yet been delivered may be replaced by a newer message with the same

collapse key. See the Google documentation on collapsable messages.

Otherwise, you can specify any arbitrary freeform payload data to deliver to the receiving Android

device. All of the fields in this in the android element in the push request will be supplied to the

receiving Android device in the Bundle provided to onReceiveMessage method in the Android

Push Notification Service v1.10

VMware, Inc 165

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW1
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW1
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW1
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW1
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW1
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW1
https://developers.google.com/cloud-messaging/downstream#collapsible_and_non-collapsible_messages

application’s subclass of GcmService. In general the push message data would be provided in a

message JSON field but it is up to your application to use the message payload as it needs.

Complete Examples

Unlike the above examples, these examples will show the complete Push request body.

Send a message to all users subscribed to the “local_seminars” topics to alert them to an

important community meeting. This message expires on the morning of Friday April 1, 2016.

{

 "message": {

 "body": "Town Hall This Thursday: Forging, Cheese, And You"

 },

 "target": {

 "topics": ["local_seminars"]

 },

 "expiryTime": 1459468800000

}

Send a push to all iOS and Android devices that are subscribed to one (or more) of the

“breaking_news”, “local”, or “dairy” topics. Provide some custom fields that apps can

use to deep link to article data. This message is scheduled to be delivered in two hours.

{

 "message": {

 "custom": {

 "ios": {

 "alert": {

 "body": "Breaking News: World's Biggest Cheese Forged At Local Bakery"

 },

 "content-available": true,

 "extra": { "story_url": "https://my_server/article/123456789" }

 },

 "android": {

 "message": "Breaking News: World's Biggest Cheese Forged At Local Bakery",

 "story_url": "https://my_server/article/123456789"

 }

 }

 },

 "target": {

 "topics": ["breaking_news", "local", "dairy"],

 "platforms": ["ios", "android"]

 },

 "scheduleIn": 7200

}

Send a push to one particular device informating the user that they have one new email

notification. The badge on the app icon will be set to “1” and a sound will be played. Some

of the email metadata is provided in the message extras so that the application can show a

preview of the message. The message is given the “new_email” category so that iOS 8.0+

Note: The “message” → “body” field in the Push request body, if present, will

be delivered in the “message” field of the GCM push notification payload.

Push Notification Service v1.10

VMware, Inc 166

devices can provide appropriate action buttons for the user.

{

 "message": {

 "custom": {

 "ios": {

 "alert": {

 "body": "You've got mail!"

 },

 "category": "new_email",

 "badge": 1,

 "sound": "new_email",

 "content-available": true,

 "extra": {

 "from": "Your Local Bakery",

 "to": "You",

 "subject": "Special Deal on Cheese",

 "message_body": "Please come to your local bakery before Friday to sample a

piece of the world's biggest cheese."

 }

 }

 }

 },

 "target": {

 "devices": ["111-222-333444"]

 }

}

All options in request body for pushing a message out to a list of devices or devices targeted

by platform.

{

 "message": {

 "body": "Message body", # The text of the push message

 "custom": {

 "ios": {

 "alert": {

 "body": "iOS only message body", # The body of the push message

 "action-loc-key": "actionKey", # (overrides body defined above)

 "loc-key": "localizedStringKey",

 "loc-args": ["arg1", "arg2", ...],

 "title": "Title",

 "title-loc-key": "titleKey",

 "title-loc-args": ["arg1", "arg2", ...],

 "launch-image": "Default.png"

 },

 "category": "SAMPLE_CATEGORY",

 "badge": 1,

 "sound": "default",

 "content-available": true, # Note - the Push API expects this field

to be a boolean. (see below)

 "extra": {}

 },

 "android": {

 "collapse_key": "collapseKey"

 }

 }

 },

Push Notification Service v1.10

VMware, Inc 167

 "target": {

 "topics": ["topic1", "topic2", ...],

 "platforms": ["platform1", "platform2", ...], # One or more of the following

: ios, android, android-fcm, android-baidu

 "devices": ["device_uuid1", "device_uuid2", ...],

 "interactive-only": false, # Either true or false

 },

 "scheduleAt": 1345852800000, # Epoch timestamp in milliseconds.

 "scheduleIn": 0, # Integer (time delta in seconds)

 "expiryTime": null # Epoch timestamp in milliseconds.

}

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 168

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/push/push.html.md.erb

Registration

GET /v1/registration/:deviceUuid

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Retrieves a device’s registration for a specific platform.

Authentication: HTTP Basic platform_uuid:platform_secret

Query Parameters: None

Response Data, status: 200 (OK)

{

 "os": "", # one of [ios|android|android-fcm|android-baidu]

 "device_model": "", # device model identifier

 "device_manufacturer": "", # device manufacturer identifier

 "device_alias": "", # application specific device/user identifier

 "device_uuid": "", # unique device identifier

 "registration_token": "", # token provided by APNS (ios), GCM (android), FCM (an

droid-fcm), or Baidu (android-baidu)

 "tags": [# tags the device/user is subscribed to, this will ove

rwrite any existing tags the device/user was previously subscribed to

 {

 "text": ""

 }

],

 "active": "", # can the device be targeted for pushes

 "os_version": "" # device version string

}

GET /v1/registration/count/

Returns the total number of device registrations that have been stored for one platform.

Authentication: HTTP Basic platform_uuid:platform_secret

Query Parameters: None

Response Data, status: 200 (OK)

Returns an integer.

Push Notification Service v1.10

VMware, Inc 169

https://pivotal.io/support/lifecycle_policy

POST /v1/registration/

Register a device to an app release. The response will include device_uuid. You should save this

identifier, as other registration endpoints will require it (ex. DELETE).

When the environment variable push_security_verifyCustomUserId is set to true (which is default),

creating a registration with a custom_user_id, it is required that the custom_user_id is encrypted

with a unique HMAC using the device shared secret as the cryptigraphic key.

For more information see Registering with a Custom User ID.

Authentication: HTTP Basic platform_uuid:platform_secret

Query Parameters: None

Request Body:

{

 "device_alias": "string", # application specific device/user identifie

r. We recommend that you use the user's device name as device alias

 "device_model": "string", # device model identifier

 "device_manufacturer": "string", # device manufacturer identifier

 "os": "string", # device os, one of [ios|android|android-fcm

|android-baidu]

 "os_version": "string", # device version string

 "registration_token": "string", # token provided by APNS (ios), GCM (android

), FCM (android-fcm), or Baidu (android-baidu)

 "tags": ["tag1", "tag2"], # tags the device/user is subscribed to, thi

s will overwrite any existing tags the device/user was previously subscribed to

 "custom_user_id": "string" # allows you to register a device under an I

D that is meaningful to your system such as their login

}

Response Data, status: 200 (OK)

{

 "os_version": "", # os version string

 "tags": [# tags that the device has subscribed to

 {

 "text": "tag1"

 },

 {

 "text": "tag2"

 }

],

 "os": "", # one of [ios|android|android-fcm|android-baidu]

 "device_model": "", # device model identifier

 "device_manufacturer": "", # device manufacturer identifier

 "device_alias": "", # application specific device/user identifier

 "device_uuid": "", # the unique identifier assigned to the device by Push N

otifications

 "registration_token": "", # token provided by APNS (ios), GCM (android), FCM (andr

oid-fcm), or Baidu (android-baidu)

 "active": "", # can the device be targeted for pushes

 "custom_user_id": "" # device registered with custom user id

}

Push Notification Service v1.10

VMware, Inc 170

#push-1-10-custom-user-id-format

LIMITS

Registering a device is bounded by the following limits per request:

Devices: Auto-Generated

Custom User Ids: 1

Tags: 1024

Examples:

Register a device:

 {

 "device_alias": "John's iPhone",

 "device_model": "iPhone 6",

 "device_manufacturer": "Apple",

 "os": "ios",

 "os_version": "9.0",

 "registration_token": "b50edac575bfba07dd019b28b2af7189a3ddda17c806ef14a9abbfd0053

3f67e",

 "tags": ["beta", "gamma", "alpha"],

 "custom_user_id": "jsmith"

 }

PUT /v1/registration/:device_uuid

Update a registration. Requires that the device_uuid returned when you registered is sent as a url

parameter.

When the environment variable push_security_verifyCustomUserId is set to true (which is default),

updating a registration with a custom_user_id, it is required that the custom_user_id is encrypted

with a unique HMAC using the device shared secret as the cryptigraphic key.

Authentication: HTTP Basic platform_uuid:platform_secret

Query Parameters: None

Request Body:

{

 "device_alias": "string", # application specific device/user identifier. W

e recommend that you use the user's device name as device alias.

 "device_manufacturer": "string", # device manufacturer identifier

 "device_model": "string", # device model identifier

 "os_version": "string", # os version string

 "registration_token": "string", # token provided by APNS (ios), GCM (android), F

CM (android-fcm), or Baidu (android-baidu)

 "tags": {

 "subscribe": ["tag1","tag2"], # add new tags subscriptions to the device/user

 "unsubscribe": ["tag3","tag4"] # remove tags that the device/user is subscribed

 to

 },

Push Notification Service v1.10

VMware, Inc 171

 "custom_user_id": "string" # allows you to register a device under an ID th

at is meaningful to your system such as their login

}

Examples:

Update device registration:

 {

 "device_alias": "John Smith's iPhone",

 "device_model": "iPhone 6",

 "device_manufacturer": "Apple",

 "os": "ios",

 "os_version": "9.0",

 "registration_token": "b50edac575bfba07dd019b28b2af7189a3ddda17c806ef14a9abbfd0053

3f67e",

 "tags": ["beta", "gamma", "alpha", "delta"],

 "custom_user_id": "john.smith"

 }

DELETE /v1/registration/:device_uuid

Delete a registration. Requires that the device_uuid returned when you registered is sent as a url

parameter

Authentication: HTTP Basic platform_uuid:platform_secret

Query Parameters: None

Request Body:

None.

Response Data, status: 204 (NO CONTENT)

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 172

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/registration/registration.html.md.erb

Registrations

API calls for the v1/registration/ endpoint can be found here.

GET /v2/registrations/

Retrieves all device registrations.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters:

Parameters Description

size Controls the maximum number of registrations to be returned. This value defaults to 20 if not

provided. Values in the range 0-50 are accepted.

page Controls which page of results will be returned with an offset of size page. This value defaults to 1 if not

provided.

q Returns only the registrations results containing the query string provided in either the deviceUuid, the

registration token, the custom user id, or the device alias.

platform Returns only the registrations results registered to the given platform. Valid inputs are all, ios, android,

android-fcm, or android-baidu.

platformUui

d

Returns only the registrations results registered to the given platformUuid.

topic Returns only the registrations results registered to the given topic name.

Response Data, status: 200 (OK)

{

 "registrations":

 [

 {

 "os": "", # one of [ios|android|android-fcm|android-baidu]

 "os_version": "", # device version string

 "device_model": "", # device model identifier

 "device_manufacturer": "", # device manufacturer identifier

 "device_alias": "", # application specific device/user identifier

 "device_uuid": "", # unique device identifier

 "registration_token": "", # token provided by APNS (ios), GCM (android), FCM (

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 173

https://pivotal.io/support/lifecycle_policy

android-fcm), or Baidu (android-baidu)

 "active": "" # can the device be targeted for pushes

 }

]

 "totalRegistrations": 1 # the total number of device registrations for all p

ages

 "totalPages": 1 # the number of pages of device registrations

 "page": 1 # the page of results requested

 "size": 1 # the size of the page of results requested

}

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 174

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/registrations/registrations.html.md.erb

Topics

A Topic is a keyword that users can subscribe to in order to receive pushes sent to the same topic.

The topics themselves are free-form, that is, your app defines them as needed and they can be any

text that your app needs.

GET /v2/topics

Returns all non-expired topics.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters:

Parameter Description

q: string Optional — Match all topics that contain the string. Default match all non-expired topics.

size:

integer

Optional — Maximum number of topics to return. Range between 1 and 50. Default set to 20.

page:

integer

Optional — Page number to return set of topics. Default set to 1.

hasExpiry:

boolean

Optional — If set to true, filter results to topics that have an expiry. If false, filter results to topics with no

expiry. If missing, no filtering is done, all resulting topics are returned. Default returns all resulting

topics.

Response Data, status: 200 (OK)

Returns a json list of topics.

For example:

{

 "topics": list, // List of topic objects that match the request

 "totalTopics": integer, // Total number of topics that match the request

 "totalPages": integer, // Total number of pages of topic results

 "page": integer, // Current page returned. Same as page in request

 "size": integer, // Current size of page. Same as size in request

}

// Topic Object

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 175

https://pivotal.io/support/lifecycle_policy

{

 "id": integer, // Unique ID of the topic

 "name": string, // Topic name

 "expireAt": long // Optional - Epoch time, in ms, of when topic will expir

e. If missing, topic will not expire.

}

POST /v2/topics/

Creates a topic, if not already created, with an optional expiry time.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Request Body:

{

 "name": string, // Name of the topic to create

 "expireAt": long, // Optional - Expiry time of the topic, in Unix epoch time

 in ms

 "timeToLive":long // Optional - Duration, in seconds, before expiring the to

pic. Must be at least 60 seconds.

}

Response: status: 201 (CREATED)

{

 "id": integer, // Unique ID of the topic

 "name": string, // Topic name

 "expireAt": long, // Optional - Epoch time, in ms, of when topic will expir

e. If missing, topic will not expire.

}

DELETE /v2/topics/:topicId

Deletes a non-expired topic, defined by its topic ID.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Request Body:

None.

Note: Either expireAt or timeToLove may be present, not both. If both expireAt and

timeToLive are missing, then the topic will never expire.

Push Notification Service v1.10

VMware, Inc 176

Response Data, status: 204 (NO CONTENT)

POST /v2/topics/batch/

Creates multiple topics in one batch.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None.

Request Body:

{

 "topics": list, // List of topic objects to create. Maximum size is

1024

 "returnTopics": boolean // Optional - If true, the response will return the

list of created topics. If false, only the count will be returned. Defaults to false.

}

//Topic object

{

 "name": string, // Name of the topic to create

 "expireAt": long, // Optional - Expiry time of the topic, in Unix epoch time

 in ms

 "timeToLive":long // Optional - Duration, in seconds, before expiring the to

pic. Must be at least 60 seconds.

}

Response: status: 201 (CREATED)

{

 "numTopicsCreated": integer, // Number of newly created topics

 "numTopicsExisted": integer, // Number of topics that already existed from re

quests.

 "topics": list // List of topics added. Not present if "returnT

opics" in the request is false.

}

// Topic Object

{

 "id": integer, // Unique ID of the topic

 "name": string, // Topic name

 "expireAt": long // Optional - Epoch time, in ms, of when topic will expire

. If missing, topic will not expire.

}

Note: Either expireAt or timeToLive may be present, not both. If both expireAt and

timeToLive are missing, then the topic will never expire.

Push Notification Service v1.10

VMware, Inc 177

DELETE /v2/topics/batch

Delete multiple topics in one batch.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None.

Request Body:

{

 "topicIds": list // List of topic ids (integer)

}

Response: status: 200 (OK)

{

 "numTopicsDeleted": integer // Number of topics deleted

}

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 178

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/topics/topics.html.md.erb

Custom User IDs

The Custom User ID feature allows you to register a device under an ID that is meaningful to your

system such as their login. In addition, the same Custom User ID can be used to refer to multiple

devices. This means that a push sent to the Custom User ID will be sent simultaneously to all devices

registered with this Custom User ID.

Note: The Custom User ID field is case sensitive for device registrations.

Custom User ID and Topics

Custom User ID works in combination with topics so that you can target a set of Custom User IDs as

well as topics and the Push Notification Service will ensure that all devices receive only 1 copy of the

notification.

GET /v2/custom_user_ids

Get a list of Custom User IDs

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Response Body:

 {

 "custom_user_ids": [

 "string 1",

 "string 2"

]

 }

Examples:

Retrive a list of all Custom User IDs:

 {

 "custom_user_ids": [

 "custom-user-id1"

]

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 179

https://pivotal.io/support/lifecycle_policy

 }

GET /v2/custom_user_ids?q={query}

Get Custom User IDs by Query Parameter

Authentication: HTTP Basic app_uuid:api_key

Query Parameters:

Parameter Description

q Returns only the Custom User IDs results containing the query string provided.

Response Body:

 {

 "custom_user_ids": [

 "string 1",

 "string 2"

]

 }

Examples:

Retrive Custom User IDs by query parameter (i.e. query parameter is ‘id1’):

 {

 "custom_user_ids": [

 "custom-user-id1"

]

 }

Note: In order to use the Custom User IDs feature, you will have to register a device using the POST

method on /v1/registration endpoint, with a custom_user_id field populated as described in

Register section of the Registration API.

 {

 ...

 "custom_user_id": "custom-user-id1"

 ...

 }

For additional information regarding Registration, please consult the Registration API section of our

API.

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 180

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/custom-user-ids/custom-user-ids.html.md.erb

Schedule

This document describes the endpoints for managing scheduled pushes.

Pushes can be scheduled for delivery in the future by providing the schedule information in the

/v1/push POST API. These pushes return a schedule_id field that can be used as the identify for the

/v1/schedule APIs that are described below.

GET /v1/schedules

Get all scheduled pushes for an application.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Request Body:

None.

Response Data, status: 200 (OK)

[

 {

 "schedule_id": "fc226fbc1443ebfe",

 "scheduled_for": 1423513994000, # Epoch Timestamp in milliseconds

 "push": {

 "scheduleAt": 1423513994000, # Epoch Timestamp in milliseconds

 "scheduleIn": 0,

 "expiryTime": null,

 "message": {

 "custom": {

 "ios": {

 "alert": {

 "body": "", # The body of the push message (overrides body

defined above)

 "action-loc-key": "",

 "loc-key": "",

 "loc-args": ["arg1", "arg2", ...],

 "title": "",

 "title-loc-key": "",

 "title-loc-args": ["arg1", "arg2", ...],

 "launch-image": ""

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 181

https://pivotal.io/support/lifecycle_policy

 },

 "category": "",

 "badge": 0,

 "sound": "",

 "content-available": false,

 "extra": {}

 },

 "android": "object"

 },

 "body": ""

 },

 "target": {

 "topics": ["topic1", "topics2", ...],

 "platforms": ["platform1", "platform2", ...],

 "devices": ["device_uuid1", "device_uuid2", ...],

 "interactive-only": false

 }

 }

 }

]

GET /v1/schedules/:schedule_id

Get a single scheduled push for an application.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Request Body:

None.

Response Data, status: 200 (OK)

{

 "schedule_id": "fc226fbc1443ebfe",

 "scheduled_for": 1423513994000, # Epoch Timestamp in milliseconds

 "push": {

 "scheduleAt": 1423513994000, # Epoch Timestamp in milliseconds

 "scheduleIn": 0,

 "expiryTime": null,

 "message": {

 "custom": {

 "ios": {

 "extra": "object",

 "category": "",

 "badge": 0,

 "sound": "",

 "content-available": false,

 "alert": {

 "body": "",

 "loc-key": "",

 "action-loc-key": "",

 "loc-args": ["arg1", "arg2", ...],

 "launch-image": ""

 }

Push Notification Service v1.10

VMware, Inc 182

 },

 "android": "object"

 },

 "body": ""

 },

 "target": {

 "interactive-only": false,

 "platform": "",

 "topics": ["topic1", "topic2", ...],

 "platforms": ["platform1", "platform2", ...],

 "devices": ["device_uuid1", "device_uuid2", ...]

 }

 }

}

PUT /v1/schedules/:schedule_id

Update a scheduled push for an application.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Request Body:

{

 "scheduleAt": 1345852800000, # Epoch timestamp in milliseconds.

 "message": {

 "custom": {

 "android": "object"

 },

 "body": ""

 },

 "target": {

 "interactive-only": false,

 "platform": "",

 "platforms": ["platform1", "platform2", ...],

 "topics": ["topic1", "topic2", ...],

 "devices": ["device_uuid1", "device_uuid2", ...]

 }

}

Response Data, status: 200 (OK)

{

 "schedule_id": "fc226fbc1443ebfe",

 "scheduled_for": 1345852800000, # Epoch Timestamp in milliseconds

 "push": {

 "scheduleAt": 1345852800000,

 "scheduleIn": 0,

 "expiryTime": null,

 "message": {

 "custom": {

 "ios": {

 "extra": "object",

 "category": "",

Push Notification Service v1.10

VMware, Inc 183

 "badge": 0,

 "sound": "",

 "content-available": false,

 "alert": {

 "body": "",

 "loc-key": "",

 "action-loc-key": "",

 "loc-args": ["arg1", "arg2", ...],

 "launch-image": ""

 }

 },

 "android": "object"

 },

 "body": ""

 },

 "target": {

 "interactive-only": false,

 "platform": "",

 "platforms": ["platform1", "platform2", ...],

 "topics": ["topic1", "topic2", ...],

 "devices": ["device_uuid1", "device_uuid2", ...]

 }

 }

}

DELETE /v1/schedules/:schedule_id

Cancel a scheduled push for an application.

Authentication: HTTP Basic app_uuid:api_key

Query Parameters: None

Request Body:

None.

Response Data, status: 204 (NO CONTENT)

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 184

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/schedules/schedules.html.md.erb

Geofences

Endpoints for Managing Geofences

Create Geofence

POST /v1/geofence

Create a geofence for an app

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

 {

 "tags": [

 "tag1",

 "tag2"

],

 "locations": [

 "1",

 "2"

],

 "trigger_type": "enter",

 "start_time": 0,

 "expiry_time": 1424443201000,

 "platform": "",

 "data": {

 "ios": {

 "alertBody": "",

 "category": "",

 "alertAction": "",

 "alertTitle": "",

 "alertLaunchImage": "",

 "hasAction": false,

 "applicationBadgeNumber": 0,

 "soundName": "",

 "userInfo": "object"

 },

 "android": "object"

Warning: Push Notification Services is no longer supported because it has reached

the End of General Support (EOGS) phase as defined by the Support Lifecycle

Policy.

Push Notification Service v1.10

VMware, Inc 185

https://pivotal.io/support/lifecycle_policy

 }

 }

Geofence Fields

tags

type: array of strings

required: no

This is a list of tags to target. If not empty it will limit the audience for the geofence to only

users that have subcribed to one or more of the listed tags

locations

required: yes

type: array of numbers

List of location ids for the locations that should be included in the geofence

trigger_type

required: yes

type: “string”; possible values are “enter”, “exit”

When trigger_type is set to “enter” the notification will be displayed when a user enter the

geofence. When it is set to “exit” the notification will not be displayed until the user exits

the geofence.

start_time

required: yes

type: millisecond timestamp (integer)

Geofences are only active for a fixed period of time. “start_time” determines when the

geofence should become active. Set this to “0” to activate the geofence upon creation

expiry_time

required: yes

type: millisecond timestamp (integer)

Sets the time when the geofence should become inactive.

platform

Push Notification Service v1.10

VMware, Inc 186

required: yes

type: string; possible values are “android”, “ios”, “all”

Target the geofence to devices of a specific platform

data

required: yes

type: object

The data object contains platform specific fields for constructing the notification to be

displayed. These are slightly different than fields used in the push api because geofence

notifications are actually local notifications. Custom User IDs are not a supported way to

target registered devices for geofences.

iOS Geofence Data Fields

For Apple’s reference on local notifications see

https://developer.apple.com/library/ios/documentation/iPhone/Reference/UILocalNotification_Clas

s/index.html#//apple_ref/occ/instp/UILocalNotification/alertBody

All fields here are optional.

alertBody

type: string

A string or localized-string key to use as the notification alert message. If nil or empty there

no alert will be shown. Printf style escape characters are stripped from the string prior to

display; to include a percent symbol (%) in the message, use two percent symbols (%%).

category type: string

The value of this property is the category name associated with a registered

UIUserNotificationSettings object. When the alert for the local notification is displayed, the

system uses the string you specify to look up the group and retrieve its actions. It then adds a

button to the alert for each action defined by the group. When the user taps one of those

buttons, the app is woken up (or launched) and given a chance to perform the designated

action. If the specified category name does not belong to a registered group of actions, the

alert does not display any additional action buttons.

alertAction

type: string

A string or localized-string key to use as the title of the right button of the alert or the value

of the unlock slider, where the value replaces “unlock” in “slide to unlock”. If you specify

nil, and alertBody is non-nil, “View” (localized to the preferred language) is used as the

default value.

Push Notification Service v1.10

VMware, Inc 187

#custom_user_id
https://developer.apple.com/library/ios/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/occ/instp/UILocalNotification/alertBody

alertTitle

type: string

A short description of the reason for the alert. Apple Watch displays the title string as part of

the short look notification interface, which has limited space.

alertLaunchImage

type: string

Identifies the image used as the launch image when the user taps (or slides) the action

button (or slider).

hasAction type: boolean Determines whether or not to show an alert action.

applicationBadgeNumber

type: number

The number to display as the app icon’s badge. Default value is 0 which will simply not

display a badge.

soundName

type: string

The name of the file containing the sound to play when an alert is displayed.

userInfo

type: dictionary A dictionary for passing custom information to the notified app.

Response:

 {

 "id": 0,

 "tags": [

 ""

],

 "expiry_time": 0,

 "trigger_type": "",

 "locations": [

 {

 "name": "",

 "id": 0,

 "long": "",

 "rad": 0,

 "lat": "",

 "created_at": 0,

 "updated_at": 0

 }

],

Push Notification Service v1.10

VMware, Inc 188

 "platform": "",

 "created_at": 0,

 "updated_at": 0,

 "data": {

 "ios": {

 "alertBody": "",

 "category": "",

 "alertAction": "",

 "alertTitle": "",

 "alertLaunchImage": "",

 "hasAction": false,

 "applicationBadgeNumber": 0,

 "soundName": "",

 "userInfo": "object"

 },

 "android": "object"

 },

 "start_time": 0

 }

Get Geofences

GET /v1/geofence

Get all geofences for an app

Authentication: HTTP basic application_uuid:api_key

Query Parameters:

Parameters Description

page: integer result page to display

size: integer number of results per page

timestamp: long timestamp in milliseconds

Request Body: None

Response:

 {

 "size": 25,

 "totalGeofences": 1,

 "totalPages": 1,

 "page": 1,

 "geofences": [

 {

 "id": 1,

 "expiry_time": 1424443201000,

 "trigger_type": "enter",

 "updated_at": 1423513994000,

 "created_at": 1423513994000,

 "data": {"object":{"key":"value"}},

 "tags": ["tag1"],

Push Notification Service v1.10

VMware, Inc 189

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

 "updated_at": 1423513994000,

 "created_at": 1423513994000

 }

]

 }

]

 }

Get Geofence Updates

GET /v1/geofences

Get updated geofences since a timestamp. This endpoint is used by devices to fetch an updated list

of geofences to monitor.

Authentication: HTTP basic platform_uuid:platform_secret

Query Parameters:

Parameters Description

timestamp: long timestamp in milliseconds

Request Body:

None.

Response:

 {

 "num": 3,

 "deleted_geofence_ids": [1,2],

 "geofences": [

 {

 "id": 5,

 "expiry_time": 1424443201000,

 "trigger_type": "enter",

 "updated_at": 1423513994000,

 "created_at": 1423513994000,

 "data": {"object":{"key":"value"}},

 "tags": ["tag1"],

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

Push Notification Service v1.10

VMware, Inc 190

 "updated_at": 1423513994000,

 "created_at": 1423513994000

 }

],

 "last_modified": 1423513994000

 }

deleted_geofence_ids

type: array of numbers

List of ids for geofences that have been deleted since the requested timestamp.

geofences

type: array of geofence objects

List of geofences that have been added since the requested timestamp.

Get One Geofence

GET /v1/geofence/:geofence_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

None.

Response:

 {

 "id": 1,

 "expiry_time": 1424443201000,

 "trigger_type": "enter",

 "updated_at": 1423513994000,

 "created_at": 1423513994000,

 "data": {"object":{"key":"value"}},

 "tags": ["tag1"],

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

 "updated_at": 1423513994000,

 "created_at": 1423513994000

 }

]

 }

Push Notification Service v1.10

VMware, Inc 191

Update a Geofence

PUT /v1/geofence/:geofence_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

 {

 "trigger_type": "enter",

 "expiry_time": 1424443201000,

 "data": {"object":{"key":"value"}},

 "tags": [

 "tag1"

],

 "locations": [1]

 }

Response:

 {

 "id": 1,

 "expiry_time": 1424443201000,

 "trigger_type": "enter",

 "updated_at": 1423513994000,

 "created_at": 1423513994000,

 "data": {"object":{"key":"value"}},

 "tags": [

 "tag1"

],

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

 "updated_at": 1423513994000,

 "created_at": 1423513994000

 }

]

 }

Delete a Geofence

DELETE /v1/geofence/:geofence_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Push Notification Service v1.10

VMware, Inc 192

Request Body:

None.

Response: 204 (NO CONTENT)

Locations

Endpoints for managing geofence locations.

Get All Locations

GET /v1/locations

Get all geofence locations for an app

Authentication: HTTP basic application_uuid:api_key

Query Parameters:

Parameters Description

page: integer result page to display

size: integer number of results per page

timestamp: long timestamp in milliseconds

q: string keyword to search for

Request Body:

None.

Response:

 {

 "size": 25,

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "long": "0.0",

 "rad": 100,

 "lat": "0.0",

 "created_at": 1423513994000,

 "updated_at": 1423513994000

 }

],

 "totalLocations": 1,

 "totalPages": 1,

 "page": 1

 }

Push Notification Service v1.10

VMware, Inc 193

Get One Location

GET /v1/locations/:location_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

None.

Response:

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

 "updated_at": 1423513994000,

 "created_at": 1423513994000

 }

Create a New Location

POST /v1/locations

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

 {

 "name": "sample",

 "lat": "0.0",

 "long": "0.0",

 "rad": 100

 }

name: a name for the location

lat: latitude in degrees

long: longitude in degrees

rad: radius in meters

Response:

Push Notification Service v1.10

VMware, Inc 194

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

 "updated_at": 14235139940000,

 "created_at": 1423513994000

 }

Update a Location

PUT /v1/locations/:location_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

 {

 "name": "sample",

 "lat": "0.0",

 "long": "0.0",

 "rad": 100

 }

Response:

 {

 "name": "sample",

 "id": 1,

 "lat": "0.0",

 "long": "0.0",

 "rad": 100,

 "updated_at": 1423513994000,

 "created_at": 1423513994000

 }

Delete a Location

DELETE /v1/locations/:location_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

None.

Push Notification Service v1.10

VMware, Inc 195

Response: 204 (NO CONTENT)

Location Groups

Endpoints for managing geofence locations.

Get All Location Groups

GET /v1/location_groups

Get all location groups for an app

Authentication: HTTP basic application_uuid:api_key

Query Parameters:

Parameters Description

page: integer result page to display

size: integer number of results per page

timestamp: long timestamp in milliseconds

q: string keyword to search for

Request Body:

None.

Response:

 {

 "size": 25,

 "location_groups": [

 {

 "name": "sample group",

 "id": 1,

 "description": "sample location group",

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "long": "0.0",

 "rad": 100,

 "lat": "0.0",

 "createdAt": 1423513994000,

 "updatedAt": 1423513994000

 }

],

 "created_at": 1423513994000,

 "updated_at": 1423513994000

 }

],

 "totalLocationGroups": 1,

Push Notification Service v1.10

VMware, Inc 196

 "totalPages": 1,

 "page": 1

 }

Get One Location Group

GET /v1/location_groups/:location_group_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

None.

Response:

 {

 "name": "sample group",

 "id": 1,

 "description": "sample location group",

 "locations": [

 {

 "name": "sample location",

 "id": 1,

 "long": "0.0",

 "lat": "0.0",

 "rad": 100

 "createdAt": 1423513994000,

 "updatedAt": 1423513994000

 }

],

 "created_at": 1423513994000,

 "updated_at": 1423513994000

 }

Create a Location Group

POST /v1/location_groups

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

 {

 "name": "sample group",

 "location_ids": [

 1

],

 "description": "a sample location group"

Push Notification Service v1.10

VMware, Inc 197

 }

name: name for the location group

location_ids: list of ids for locations to include in the group

description: a short description of the group

Response:

 {

 "name": "sample group",

 "id": 1,

 "description": "",

 "locations": [

 {

 "name": "sample",

 "id": 1,

 "long": "0.0",

 "rad": 100,

 "lat": "0.0",

 "createdAt": 1423513994000,

 "updatedAt": 1423513994000

 }

],

 "created_at": 1423513994000,

 "updated_at": 1423513994000

 }

Update a Location Group

PUT /v1/location_groups/:location_group_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

 {

 "name": "sample group",

 "location_ids": [

 1

],

 "description": "a sample location group"

 }

Response:

 {

 "name": "sample group",

 "id": 1,

 "description": "",

 "locations": [

Push Notification Service v1.10

VMware, Inc 198

 {

 "name": "sample",

 "id": 1,

 "long": "0.0",

 "rad": 100,

 "lat": "0.0",

 "createdAt": 1423513994000,

 "updatedAt": 1423513994000

 }

],

 "created_at": 1423513994000,

 "updated_at": 1423513994000

 }

Delete a Location Group

DELETE /v1/location_groups/:location_group_id

Authentication: HTTP basic application_uuid:api_key

Query Parameters: None

Request Body:

None.

Response: 204 (NO CONTENT)

Create a pull request or raise an issue on the source for this page in GitHub

Push Notification Service v1.10

VMware, Inc 199

http://github.com/cfmobile/docs-push-notifications/tree/1.10/api/geofences/geofences.html.md.erb

	Push Notification Service for Pivotal Cloud Foundry
	Product Snapshot
	Upgrading to the Latest Version
	About

	Push Notification Service Release Notes
	v1.10.6
	v1.10.5
	v1.10.4
	v1.10.3
	v1.10.2
	v1.10.1
	v1.10.0
	v1.9.4
	v1.9.3
	v1.9.2
	v1.9.1
	v1.9.0
	v1.8.1
	v1.8.0
	v1.7.1
	v1.7.0
	v1.6.3
	v1.6.2
	v1.6.1
	v1.6.0
	v1.5.7
	v1.5.6
	v1.5.3
	v1.5.0
	v1.4.27
	v1.4.25
	v1.4.24
	v1.4.12
	v1.4.10
	v1.4.9
	v1.4.7
	v1.4.5
	v1.4.3
	v1.4.2
	v1.4.0
	v1.3.5
	v1.3.4
	v1.3.3
	v1.3.3 iOS and Android Client SDK
	v1.3.2
	v1.3.2 iOS and Android Client SDK
	v1.3.1
	v1.3.1 iOS and Android Client SDK
	v1.3.0
	v1.2.1
	v1.2.0
	v1.1.0 — January 2015
	v1.0.1 — November 2014
	v1.0.0 — July 2014

	Push Notification Service v1.5.0 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5
	On PCF 1.6

	Known issues
	List of Changes

	Push Notification Service v1.4.0 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5
	On PCF 1.6

	Known issues
	List of Changes

	Push Notification Service v1.3.5 Release Notes
	Dependencies
	On PCF 1.5.x or 1.6.x

	Known issues
	List of Changes

	Push Notification Service v1.3.4 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5

	Known issues
	List of Changes

	Push Notification Service v1.3.2 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5

	Known issues
	List of Changes

	Push Notification Service v1.3.2 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5

	Known issues
	List of Changes

	Push Notification Service v1.3.1 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5

	Known issues
	List of Changes

	Push Notification Service v1.3.0 Release Notes
	Dependencies
	On PCF 1.4
	On PCF 1.5

	Known issues
	List of Changes
	Location based notifications

	List of Known issues
	Upgrading from version 1.2
	Backup data
	Backup encryption key
	Backup Redis
	Uninstall push 1.2
	Install push 1.3
	Restore data
	From the push-api app

	Bind depricated api url for existing apps (if you are using the old route)

	Push Notification Service v1.2.0.0 Release Notes
	List of Changes
	List of Known issues

	Push Notification Service v1.1.0.0 Release Notes
	Changes

	Push Notification Service v1.0.1.0 Release Notes
	List of Changes
	List of Known issues

	Push Notification Service v1.0.0 Release Notes
	Changes
	Known issues

	Installation
	Dependencies
	Prerequisites
	Tailing logs through the push dashboard

	Download the Product
	Adding the Product
	Set Encryption Key
	Set Available Platforms
	Configure Deployment Settings
	Configure MySQL
	Configure Redis for Analytics and Logs
	Configure Proxy
	Default Errand Behavior
	Upload Stemcell
	Apply Changes

	Creating a Tenant
	Dashboard Setup
	Note:

	Installation Verification

	DevOps
	Monitoring
	Healthcheck
	Heartbeat Monitoring

	Uninstalling
	Troubleshooting Common Problems
	Configurable Environment Variables
	Push Api
	Installing the Push Server Behind a Proxy
	GCM Pushes Through Proxy
	FCM Pushes Through Proxy
	Baidu Pushes Through Proxy
	APNS Pushes Through Proxy
	For All Pushes Through Proxy

	Push Dashboard

	Backup And Restore
	Backup MySQL Data
	Backup Encryption Key
	Restore MySQL Data
	Backup Redis Data

	Migrate from MySQL for PCF v1 to v2
	Prerequisites
	Install and Migrate
	Bind, Unbind, and Stage
	Import Tile and Deploy

	Removing Log Redis Instance

	Configuring Heartbeat Monitor for iOS
	Prerequisites
	Request an iOS Development Certificate
	Request an APNS Certificate
	Create an App ID
	Create an APNS Certificate

	Create a Provisioning Profile
	Register a Device
	Create a Profile

	Configure your Push Dashboard
	Navigate to Push Dashboard using Apps Manager
	Navigate to Push Dashboard using cf CLI
	Configure the Push Notification Service

	Run the App on Your Device
	Download the App Repo
	Configure the App Project
	Build and Run the App

	Configuring Heartbeat Monitor for Android
	Prerequisites
	Prepare an FCM Project
	Configure Your Push Dashboard
	Navigate to Push Dashboard using Apps Manager
	Navigate to Push Dashboard using cf CLI
	Configure the Push Notification Service

	Run the App on Your Device

	Using the Dashboard
	Applications
	Adding an Application
	API URL
	Editing an Application
	Regenerating an API Key
	Regenerating the Shared Secret
	Deleting an Application

	Platforms
	Adding a Platform
	Editing a Platform
	Deleting a Platform
	iOS Expired Certificate Warning

	Devices
	Send a Test Push Notification to a Device
	Sending a Push Message

	Topics
	Locations
	Adding a Location
	Adding a Location Group
	Geofence Push Notifications

	Logs

	Push Notifications ASG Installation
	Application Security Groups
	Pre-Installation Requirements
	Push Service Network Connections
	APNS
	GCM / FCM
	Load Balancer
	Assigned Network

	Pre-installation ASG binding

	Network Setup Guide
	APNS / iOS Push
	Server and Device Settings

	GCM / Android Push
	Server and Device Settings

	FCM / Android Push
	Server and Device Settings

	Push API & Mobile Devices
	Push API & Server Applications

	Migrating to a MySQL for PCF v2 Database
	Prerequisites
	Install the MysqlTools Plugin
	Check the Status of the Broker
	Stop the Broker
	Migrate Your Data
	Bind the New Database
	Delete the Old Database
	(Optional) Update the Tile to Reflect Changes

	Development Guide
	First Push Walkthrough
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Geofence Walkthrough
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	iOS Push Client SDK
	Sample Apps
	Features
	Device Requirements
	Required Setup
	Getting Started
	Configure iOS Push Notifications on Apple Developer
	Configure iOS Push Notifications on the Push Dashboard

	Link to the Framework
	Set up your Pivotal.plist file
	Register for Push Notifications with APNS
	Register for Push Notifications with Pivotal CF
	Registration Examples
	Receiving Push Notifications

	Optional Items
	Enable or disable push analytics
	Subscribing to Tags
	Unregistering from Pivotal Cloud Foundry Push Notification Service
	Reading the Device UUID
	Geofences
	Step 1 - Set your background modes
	Step 2 - Set required device capabilities
	Step 3 - Set your location usage description
	Step 4 - Link to Core Location
	Step 5 - Enable geofences
	Step 6 - Authorize location services
	Step 7 - Add property to application delegate
	Step 8 - Receiving Local Notifications
	Step 9 - Receive Geofence Status Updates

	SSL Authentication
	Setting custom HTTP request headers

	Appendix
	iOS 9.0+ Notes - App Transport Security
	Setting up your app on Apple Developer Member Center
	Generating an App ID
	Push Sandbox SSL Certificate
	Generate your provisioning profile

	Troubleshooting

	Android Push Client SDK
	Sample App
	Version
	Features
	Device Requirements
	Required Setup
	Getting Started
	Link to PCF Push SDK
	Configuration: Set Up Your pivotal.properties File
	Registration
	Registration Examples
	Receiving Push Notifications

	Optional Items
	Push Analytics
	Tags
	Unregistration
	Reading the Device UUID
	SSL Authentication
	Setting Custom HTTP Request Headers
	Geofences
	Step 1: Set Up Your AndroidManifest.xml File
	Step 2: Set Up Your Push Service
	Step 3: (Optional) Receive Geofence Status Updates
	Step 4: Request device location permission (Android v6.0 Marshmallow and up)
	Step 5: Enable geofences

	Appendix
	Google Developers Console
	Troubleshooting

	Setting up Push Notifications with FCM
	Prerequisites
	Prepare an FCM Project
	Configure Your Push Dashboard
	Navigate to Push Dashboard using Apps Manager
	Navigate to Push Dashboard using cf CLI
	Configure the Push Notification Service

	Run the App on Your Device

	Setting up Push Notifications with Baidu
	Prerequisites
	Prepare a Baidu Project
	Configure Your Push Dashboard
	Navigate to Push Dashboard using Apps Manager
	Navigate to Push Dashboard using cf CLI
	Configure the Push Notification Service

	Run the App on Your Device

	APIs
	Push
	Push a Message
	POST /v1/push
	Request Body:
	Message Field Size Limitations
	Response Data, status: 200 (OK)
	Response Data

	Targeting and Audience Selection
	Limits
	Notes
	Target Examples

	Setting Expiration Time on Pushes
	Scheduled Pushes
	Scheduled Pushes Examples

	Custom Fields for Platform specific Pushes
	Custom Fields for iOS Pushes
	Custom Fields for Android Pushes

	Complete Examples

	Registration
	GET /v1/registration/:deviceUuid
	Response Data, status: 200 (OK)

	GET /v1/registration/count/
	Response Data, status: 200 (OK)

	POST /v1/registration/
	Request Body:
	Response Data, status: 200 (OK)
	LIMITS
	Examples:

	PUT /v1/registration/:device_uuid
	Request Body:
	Examples:

	DELETE /v1/registration/:device_uuid
	Request Body:
	Response Data, status: 204 (NO CONTENT)

	Registrations
	GET /v2/registrations/
	Response Data, status: 200 (OK)

	Topics
	GET /v2/topics
	Response Data, status: 200 (OK)

	POST /v2/topics/
	Request Body:
	Response: status: 201 (CREATED)

	DELETE /v2/topics/:topicId
	Request Body:
	Response Data, status: 204 (NO CONTENT)

	POST /v2/topics/batch/
	Request Body:
	Response: status: 201 (CREATED)

	DELETE /v2/topics/batch
	Request Body:
	Response: status: 200 (OK)

	Custom User IDs
	Custom User ID and Topics
	GET /v2/custom_user_ids
	Response Body:
	Examples:

	GET /v2/custom_user_ids?q={query}
	Response Body:
	Examples:

	Schedule
	GET /v1/schedules
	Request Body:
	Response Data, status: 200 (OK)

	GET /v1/schedules/:schedule_id
	Request Body:
	Response Data, status: 200 (OK)

	PUT /v1/schedules/:schedule_id
	Request Body:
	Response Data, status: 200 (OK)

	DELETE /v1/schedules/:schedule_id
	Request Body:
	Response Data, status: 204 (NO CONTENT)

	Geofences
	Endpoints for Managing Geofences
	Create Geofence
	POST /v1/geofence
	Request Body:
	Geofence Fields
	iOS Geofence Data Fields
	Response:

	Get Geofences
	GET /v1/geofence
	Request Body: None
	Response:

	Get Geofence Updates
	GET /v1/geofences
	Request Body:
	Response:

	Get One Geofence
	GET /v1/geofence/:geofence_id
	Request Body:
	Response:

	Update a Geofence
	PUT /v1/geofence/:geofence_id
	Request Body:
	Response:

	Delete a Geofence
	DELETE /v1/geofence/:geofence_id
	Request Body:
	Response: 204 (NO CONTENT)

	Locations
	Get All Locations
	GET /v1/locations
	Request Body:
	Response:

	Get One Location
	GET /v1/locations/:location_id
	Request Body:
	Response:

	Create a New Location
	POST /v1/locations
	Request Body:
	Response:

	Update a Location
	PUT /v1/locations/:location_id
	Request Body:
	Response:

	Delete a Location
	DELETE /v1/locations/:location_id
	Request Body:
	Response: 204 (NO CONTENT)

	Location Groups
	Get All Location Groups
	GET /v1/location_groups
	Request Body:
	Response:

	Get One Location Group
	GET /v1/location_groups/:location_group_id
	Request Body:
	Response:

	Create a Location Group
	POST /v1/location_groups
	Request Body:
	Response:

	Update a Location Group
	PUT /v1/location_groups/:location_group_id
	Request Body:
	Response:

	Delete a Location Group
	DELETE /v1/location_groups/:location_group_id
	Request Body:
	Response: 204 (NO CONTENT)

