
Services Toolkit for
VMware Tanzu Application
Platform v0.6

Services Toolkit for VMware Tanzu Application Platform 0.6

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

About Services Toolkit 6

Motivation 7

Component Overview 8

Resource Claims 8

Service Offering 8

Service API Projection & Resource Replication (experimental) 9

Resource Classes 9

Release Notes 10

v0.6.0 10

v0.5.1 10

v0.5.0 10

Breaking changes 10

Install 12

Getting Started 13

Uninstall 14

Service API Projection and Service Resource Replication for VMware
Tanzu

15

Install 15

Terminology 15

Concepts 15

Resources 15

Projection Plane 15

UpstreamClusterLink and DownstreamClusterLink 15

API Projection 17

APIExportRoleBinding 17

ClusterAPIGroupImport 17

APIResourceImport 18

Resource Replication 18

SecretExport 19

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 3

SecretImport 19

ClusterResourceImportMonitor 20

ResourceImportMonitorBinding 20

ClusterResourceExportMonitor 21

ResourceExportMonitorBinding 21

Service Offering for VMware Tanzu 23

Install 23

Terminology 23

Resources 23

ClusterResource 23

GVKDescriptor (duck type) 24

ClusterExampleUsage (GVKDescriptor) 24

Scope, Discoverability and Usability 24

RBAC Rules for Discoverability 25

Service Resource Claims 26

Install 26

Terminology 26

Resources 26

ResourceClaim 26

ResourceClaimPolicy 27

Permissions (RBAC) 27

Services Plug-in for Tanzu CLI 29

Use Cases 29

Discovery of Service Types 29

Listing Service Instances 29

Claiming Service Instances with Resource Claims 29

Listing and getting Resource Claims 30

Unclaiming Service Instances 30

Reference 31

Resource Requirements 31

Deployments 31

Known Limitations 33

Service Resource Replication Limitations 33

Limitation 1: Updates to Secrets are not automatically replicated 33

Service API Projection Limitations 33

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 4

Limitation 1: CRD and Aggregation layer conflict 33

Behaviour when local CRD is created before Service Resource API has been
projected

33

Behaviour when local CRD is created after Service Resource API is
projected

34

Limitation 2: No built-in support for cluster-scoped requests against projected
APIs in the Workload Cluster

35

Service Resource Claims Limitations 36

Limitation 1: Can only claim service resources that adhere to the Kubernetes
Binding specification

36

Limitation 2: Can only claim service resources once 36

Supported Kubernetes Distributions 36

Topology 36

Supported Topologies 37

Provide a Service Resource Lifecycle API 37

From one Service cluster to one Workload cluster 37

From a Service cluster to multiple Workload clusters 38

Provide different Service Resource Lifecycle APIs 39

From a Service cluster to a Workload cluster 39

Provide multiple Service Resource Lifecycle APIs 40

From a Service Cluster to a Workload cluster 40

From multiple Service Clusters to one Workload cluster 41

From multiple Service Clusters to multiple Workload clusters 42

User Roles 43

Service Author (SA) 44

Service Operator (SO) 44

Application Operator (AO) 44

Application Developer (AD) 44

Advanced Use Cases 44

Direct Secret References 44

Dedicated Service Clusters (using experimental Projection and Replication APIs) 46

Pre-Requisites 46

Walkthrough 47

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 5

About Services Toolkit

Services Toolkit (“STK”) is a collection of Kubernetes native components supporting the

discoverability, lifecycle management (CRUD) and connectivity of Service Resources (databases,

message queues, DNS records, etc.) on Kubernetes.

The toolkit is currently comprised of the following components:

1. Resource Claims

2. Service Offering

3. Service API Projection (experimental)

4. Resource Replication (experimental)

5. Resource Classes (coming soon)

Each component has value independent of the others, however the most powerful and valuable use

cases are unlocked by combining them together in unique and interesting ways.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 6

* indicates item is on the roadmap. No concrete design available yet. Early prototype and/or

proposal might exist.

Motivation

Application teams need supporting Service Resources (e.g. databases, message queues, DNS

records, etc.) to develop and run their applications. They do not want the burden of having to run

these services themselves, so often organizations provide ticketing systems that allow Application

teams to make manual requests for new Service Resources to be created and managed for them.

This process often takes weeks. In the cloud, Application Teams have self-service access to create

new managed resources that can be provisioned with simple API calls, for example RDS. Services

Toolkit aims to provide a set of modular tools that can be used to provide a similar self-service

experience to that of the cloud for Service Resources running on Tanzu.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 7

Component Overview

Following is a brief overview of the components comprising Services Toolkit.

Resource Claims

Resource Claims allows Application Teams to express which Service Resources their applications

require without having to know the intricacies of the Service Resource fulfilling the request. This

replaces the traditional ticketing system previously mentioned with a model of Application teams

“claiming” resources and Service Operators providing resources to be “claimed”. This provides a

self-service experience for the developer, but gives the Service Operators ultimate control of the

Service Resources.

This also means Application Teams can request a Service Resource without having to know the exact

name or namespace of the pre-provisioned Service Resource. Instead they express requirements

using more meaningful metadata, e.g. type, protocol, provider, version. The claim is then fulfilled

against an existing (or in the future automatically created) Service Resource using rules decided by

the Service Operator. This allows Application teams to focus on their application and its

dependencies.

To learn more about Resource Claims, see Resource Claims.

Service Offering

In order to discover Service Resources and understand how to use them, Application Operators

need access to a rich set of metadata that describes the semantics and management capabilities of

the corresponding Service Resource Lifecycle APIs.

The fundamental building blocks of Service Resource Lifecycle APIs are Aggregated APIs or CRDs,

and these do already define some metadata, however, this only consists of Kubernetes level API

descriptions, e.g. name, field descriptions. While this metadata is useful, Application Operators

require more holistic information covering details such as service level management capabilities,

QoS guarantees, relationships between different resource types the API exposes, as well as other

information that aids discovery by Application Operators and higher-level tooling aimed at that role

(e.g. keywords, icons, etc).

It is worth noting that some metadata surfaced by Service Description and Offering relate not only to

the Service Resource Lifecycle API itself, but also the specifics of the underlying infrastructure, such

as the number and the topology of worker nodes in the Service Cluster, or the particular CSI and CNI

implementations configured for the cluster. As an example, a Service Resource that is concerned

with MySQL cannot claim high-availability for the provisioned databases if the Service Cluster in

which the individual MySQL pods run consists of only a single worker node.

Because of this, we consider it the responsibility of the Service Operator to make sure that the right

level of accurate metadata has been specified for a given Service Resource. Service Description and

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 8

Offering enables associating metadata with Service Resources and surfacing it to Application

Operators. This metadata can be provided by Service Operator or, for infrastructure agnostic

metadata (e.g. data that describes the relationships between different API resource types), by

Service Authors.

To learn more about Service Offering, see Service Offering.

Service API Projection & Resource Replication (experimental)

We also believe Application and Service infrastructure should be separated, and we have observed

customers doing this in production environments. A few examples of the benefits of this

segmentation of infrastructure are:

Dedicated cluster requirements for workload or service clusters. For example, Service

clusters may need access to SSDs.

Different cluster lifecycle management. Upgrades to Service clusters may occur more

cautiously.

Unique Compliance requirements. As data is stored on a Service cluster it may have different

compliance needs.

Separation of permissions and access. Application teams can only access the clusters where

their applications are running.

One way to address these needs in a Kubernetes multi-cluster world is to split clusters into

Application Workload clusters and Service clusters, then allow application teams to consume Service

Resource APIs from their Application Workload cluster, with reconciliation of resources occurring on

Services clusters.

To learn more about Service API Projection and Resource Replication, see Service API Projection

and Service Resource Replication.

Resource Classes

Coming soon.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 9

Release Notes

v0.6.0

Release Date: April 12, 2022

Introduced default aggregating ClusterRoles for Tanzu Application Platform’s App Editors,

App Viewers and App Operators.

The ResourceClaim and ResourceClaimPolicy CRD category resourceclaims has been

removed to avoid clashes with the ResourceClaim resource plural.

Fixed kubectl table output of ResourceClaimPolicy.

All Services Toolkit pods now adhere to Restricted Pod Security Standards.

tanzu services CLI plug-in v0.2.0 includes the following changes:

Allows the management of ResourceClaims using tanzu service claims

<list/get/create/delete>.

Alpha Warnings are now output to stderr instead of stdout.

v0.5.1

Release Date: March 3, 2022

Fixed a race condition issue that might lead to a failure of the services-toolkit controller

manager when a new ResourceClaim is being created whilst another is being deleted.

Fixed a issue that caused kapp-controller to unnecessarily reconcile continuously.

tanzu services CLI plug-in at v0.1.2 now supports interactions with GCP clusters.

v0.5.0

Release Date: January 11, 2022

Resource Claims now support cross namespace claiming by using ResourceClaimPolicy

objects.

Resource Claims are now exclusive, multiple ResourceClaim objects can not claim a single

Service Resource.

Services Toolkit, specifically Resource Claims, now depends on at least v0.5.0 of carvel-

secretgen-controller.

Do not block claim deletion when not able to find GVR

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 10

https://kubernetes.io/docs/concepts/security/pod-security-standards/#restricted
https://github.com/vmware-tanzu/carvel-secretgen-controller

Breaking changes

Rename ClusterServiceResource to ClusterResource

Move ClusterResource, ClusterExampleUsage and ResourceClaim to

services.apps.tanzu.vmware.com APIGroup

Move DownstreamClusterLink, UpstreamClusterLink, APIExportRoleBinding,

APIResourceImport and ClusterAPIGroupImport to

projection.apiresources.multicluster.x-tanzu.vmware.com APIGroup

Move ClusterResourceExportMonitor, ClusterResourceImportMonitor,

ResourceExportMonitorBinding, ResourceImportMonitorBinding, SecretExport and

SecretImport to replication.apiresources.multicluster.x-tanzu.vmware.com APIGroup

Add the label prefix replication.apiresources.multicluster.x-tanzu.vmware.com for the

monitored-resource-* labels of ClusterResourceExportMonitor and

ClusterResourceImportMonitor

Rename the Resource Claims finalizer from

claim.services.apps.tanzu.vmware.com/finalizer to

resourceclaims.services.apps.tanzu.vmware.com/finalizer. Existing ResourceClaims will

need to be updated to remove the old finalizer in order to be deleted.

Rename the Resource Claims aggregation ClusterRole label from

services.apps.tanzu.vmware.com/aggregate-to-resource-claims: "true" to

resourceclaims.services.apps.tanzu.vmware.com/controller: "true". Existing

aggregated roles must be updated to have the new label.

Edit all deployment resources naming to use services-toolkit rather than the outdated

scp-toolkit.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 11

Install

Services Toolkit is packaged and distributed using the carvel set of tools. The Services Toolkit carvel

Package is currently published to the Tanzu Application Platform Package Repository. It can be

installed either as part of a wider Tanzu Application Platform installation (see here) or as an individual

Package on its own (see here).

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 12

https://carvel.dev/
https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-install-intro.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-services-toolkit-install-services-toolkit.html

Getting Started

The quickest and easist way to get started with Services Toolkit is to experience it as part of Tanzu

Application Platform. A comprehensive walkthrough demonstrating the main use cases, tools and

APIs powered by the toolkit is published in Tanzu Application Platform’s Getting Started Guide,

which can be found here.

In addition, a number of additional Use Cases can be found in Use Cases.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 13

https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-getting-started.html#section-5-consuming-services-on-tanzu-application-platform-26

Uninstall

tanzu package installed delete services-toolkit

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 14

Service API Projection and Service Resource
Replication for VMware Tanzu

Install

See the documentation on installing the latest release of the Services Toolkit to get started and refer

to Topology for information on supported topologies.

Terminology

Service Resources - Things like databases, message queues, caches, DNS records, firewall

rules, virtual networks, etc.

Service Resource Lifecycle API - Any Kubernetes API that can be used to manage the

lifecycle (CRUD) of a Service Resource.

Service Cluster - A Kubernetes cluster that has Service Resource Lifecycle APIs installed

and a corresponding controller managing their lifecycle.

Workload Cluster - A Kubernetes cluster that has developer-created applications running on

it.

Concepts

This document introduces a number of concepts. These are briefly summarised below:

Projection Plane - Defines an “upstream” and “downstream” relationship between a pair of

Kubernetes clusters, namely between a Service Cluster (upstream) and a Workload Cluster

(downstream).

API Projection - Makes custom Kubernetes APIs installed on a Service Cluster (upstream)

available in a Workload Cluster (downstream).

Resource Replication - Synchronizes core Kubernetes resources across Kubernetes

clusters.

Resources

Projection Plane

UpstreamClusterLink and DownstreamClusterLink

The UpstreamClusterLink resource is created on a Service Cluster. Its main purpose is to manage a

Service Account that will be used by components running in a Workload Cluster.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 15

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: UpstreamClusterLink

metadata:

 name: workload-3c

 namespace: services-toolkit

spec:

 downstream:

 # Name of the Workload Cluster. This will be used for debugging.

 name: workload-3c

status:

 # Created Service Account that will be used by the Workload Cluster

 serviceAccount:

 name: managed-service-account

 observedGeneration: 1

 conditions:

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: Ready

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ServiceAccountReady

The DownstreamClusterLink resource is created on a Workload Cluster. Its primary purpose is to

manage an API aggregation server that will eventually be used to project specific APIs. This

resource does the following:

Contains information about the corresponding Service Cluster - url, name, ca cert and

service account token.

Deploys the API-aggregation server that is configured to proxy to the Service Cluster using

the provided service account token.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: DownstreamClusterLink

metadata:

 name: services-2b

 namespace: services-toolkit

spec:

 proxy:

 TLS:

 # TLS cert to be used for the API proxy

 secretName: omnia-isla

 upstream:

 kubeconfig:

 # Secret containing the kubeconfig to connect to the Service Cluster

 secretName: pumpkin-seeds

 name: services-2b

status:

 proxy:

 # base64-encoded CA for the API proxy

 caBundle: facade0ff1cebadc0ffee...

 # Reference to the kubernetes Service providing access to the API proxy

 serviceReference:

 name: services-2b-proxy

 namespace: services-toolkit

 port: 443

 conditions:

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 16

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: Ready

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ServiceAccountReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyDeploymentReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyServiceReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyConfigMapReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyServiceAccountReady

Note: the service account used by the proxy Deployment must have the following RBAC set up for it:

* A ClusteRoleBinding to the system:auth-delegator ClusterRole to delegate auth decisions to the

Kubernetes core API server. * A RoleBinding to the extension-apiserver-authentication-reader

role in the kube-system namespace. This allows your extension api-server to access the extension-

apiserver-authentication configmap. * A ClusterRoleBinding to a ClusterRole that provides “get”,

“list” and “watch” for namespaces, if such a ClusterRole doesn’t exist you will need to create one.

API Projection

APIExportRoleBinding

The purpose of the APIExportRoleBinding is to provide downstream users with necessary

permissions on the Upstream Cluster. It does so by binding a user-specified ClusterRole to the

service account referred to in the provided UpstreamClusterLink resource.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: APIExportRoleBinding

spec:

 upstreamClusterLinkRef:

 name: fish-sauce

 namespace: project-alpha

 clusterRoleRef:

 name: cluster-1-a

ClusterAPIGroupImport

The ClusterAPIGroupImport resource is a cluster-scoped resource created on the Workload Cluster.

It expresses the intent to import an API group using the specified DownstreamClusterLink. Only one

ClusterAPIGroupImport can exist per API Group.

Once created, if a corresponding APIExportRole exists in the Service Cluster, a new custom

Kubernetes API will be available in the Workload Cluster and can be discovered via kubectl api-

resources.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 17

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ClusterAPIGroupImport

metadata:

 name: rabbitmq.com

spec:

 # This is the reference to the DownstreamClusterLink resources

 downstreamClusterLinkRef:

 name: services-2b

 namespace: services-toolkit

 # The api group that is to be projected

 group: rabbitmq.com

 # Version of the api to be projected. Optional, if not specified register all discov

ered versions

 version: v1beta1

status:

 conditions:

 - type: Ready

 lastTransitionTime: "2020-12-01T13:03:32Z"

 status: "True"

 - type: APIServicesReady

 lastTransitionTime: "2020-12-01T13:03:28Z"

 status: "True"

APIResourceImport

The APIResourceImport resource is a namespace-scoped resource created on the downstream

cluster. Its presence indicates to the proxy whether a projected Group and Resource is available in a

given namespace. This information allows the proxy to decide if a particular request should be

forwarded to upstream. It is worth noting this is for convenience rather than policy enforcement,

which is achieved by the RBAC in upstream.

Resources are specified at the namespace scope rather than the cluster scope to allow different

resources to be made available in different namespaces.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: APIResourceImport

metadata:

 name: rabbitmq.com-import

 namespace: team-1 # namespace scoped resource as it sets up ns RBAC

 spec:

 clusterApiImportRef:

 name: rabbitmq.com

 resources: [“rabbitmqclusters”]

status:

 conditions:

 - type: Ready

 message: "Successfully reconciled"

 lastTransitionTime: "2020-12-01T13:03:30Z"

 status: "True"

 - type: ResourcesAvailable

 message: "Resources Ready"

 lastTransitionTime: "2020-12-01T13:03:32Z"

 status: "True"

Resource Replication

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 18

The resource replication components are responsible for synchronizing core kubernetes resources

across multiple clusters. As of version v0.5.0, the resource replication only handles the Secret

resources.

SecretExport

SecretExport is a namespaced resource indicating that the named Secret is involved in the

replication process. Services toolkit will place these resources on the services cluster. This resource

is used to set up permissions for the local service account, which will be used by the Workload

Clusters when pulling the secret across.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: SecretExport

metadata:

 name: small-postgres-23.status.binding.name

 namespace: project-1

 labels:

 # The following labels will be applied automatically

 # to help with filtering and searching of SecretExport resources

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-group: sql.t

anzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-version: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-kind: Postgr

es

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-name: small-

postgres-23

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-uid: cafe012

3d09e

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitor-binding-uid: 0ff1

ceca5cade

spec:

 secret:

 # The name of the secret in the current namespace to be replicated

 name: pg-binding

 serviceAccount:

 # The name of the service account in the current namespace that will be used for r

eplication

 name: upstream-replication-sa

SecretImport

SecretImport is responsible for replicating the secret from the Service Cluster. Services Toolkit

places the SecretImport in a user namespace of the Workload Cluster for each secret. Currently, the

namespace on the Service Cluster has to match the namespace on the Workload Cluster.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: SecretImport

metadata:

 namespace: project-1

 name: small-postgres-23.status.binding.name

 labels:

 # The following labels will be applied automatically

 # to help with filtering and searching of SecretImport resources

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-group: sql.t

anzu.vmware.com

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 19

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-version: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-kind: Postgr

es

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-name: small-

postgres-23

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-uid: cafe012

3d09e

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitor-binding-uid: 0b5e

55ed90dde55

spec:

 secret:

 # The name of the secret in the current namespace to be replicated

 name: dumbo

 remoteKubeconfig:

 # The name of a secret in the current namespace holding a kubeconfig for the Servi

ce Cluster

 name: energy-source

The two resources above handle a single Secret object replication. In order to automatically set up

replication of the specified secrets for every service instance of a given type, cluster-scoped

resources ClusterResourceImportMonitor and ClusterResourceExportMonitor are used.

Additionally, ResourceImportMonitorBinding and ResourceExportMonitorBinding are used to enable

automatic replication in a given namespace, and specify the connection details for replication for this

namespace.

ClusterResourceImportMonitor

ClusterResourceImportMonitor is responsible for setting up watching on service instances, so that as

a result, SecretImport resources could be produced when needed. ClusterResourceImportMonitor

resources are defined on the Workload Cluster.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ClusterResourceImportMonitor

metadata:

 name: postgres

 labels:

 # The following labels are required and must match the values in spec.resource

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-group:

 sql.tanzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-versio

n: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-kind:

Postgres

spec:

 # The type of the resource owning the secrets to be replicated

 resource:

 group: sql.tanzu.vmware.com

 version: v1

 kind: Postgres

 # The list of secrets to be replicated expressed as JSON path on the resource

 secretPaths:

 - .status.binding.name

ResourceImportMonitorBinding

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 20

By default, defining an ClusterResourceImportMonitor resource configures the resource type and

secrets to be replicated, but does not enable replication. ResourceImportMonitorBinding is used to

enable the replication of secrets for service instances within a given namespace. It references a

secret containing the kubeconfig of the Service Cluster to pull the secrets from.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ResourceImportMonitorBinding

spec:

 monitorRef:

 # Name of the related cluster-scoped ClusterResourceImportMonitor

 name: postgres

 remoteKubeconfig:

 # The name of a secret in the current namespace holding a kubeconfig for the Servi

ce Cluster

 name: energy-source

ClusterResourceExportMonitor

ClusterResourceExportMonitor is responsible for setting up watching on service instances, so that as

a result, SecretExport resources could be produced when needed. ClusterResourceExportMonitor

resources are defined on the services cluster.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ClusterResourceExportMonitor

metadata:

 name: postgres

 labels:

 # The following labels are required and must match the values in spec.resource

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-group:

 sql.tanzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-versio

n: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-kind:

Postgres

spec:

 # The type of the resource owning the secrets to be replicated

 resource:

 group: sql.tanzu.vmware.com

 version: v1

 kind: Postgres

 # The list of secrets to be replicated expressed as JSON path on the resource

 secretPaths:

 - .status.binding.name

ResourceExportMonitorBinding

By default, defining an ClusterResourceExportMonitor resource configures the resource type and

secrets to be replicated, but does not enable replication. ResourceExportMonitorBinding is used to

enable the replication of secrets for service instances within a given namespace. It provides the

service account in the current namespace of the Service Cluster to pull the secrets from.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ResourceExportMonitorBinding

metadata:

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 21

 name: cluster1-postgres

 namespace: project-1

spec:

 monitorRef:

 # Name of the related cluster-scoped ClusterResourceImportMonitor

 name: postgres

 serviceAccount:

 # Name of the service account in the current namespace used by the Workload Cluste

r to pull secrets.

 name: upstream-replication-sa

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 22

Service Offering for VMware Tanzu

Install

See the documentation on installing the latest release of the Services Toolkit to get started.

Terminology

Service Resources - Things like databases, message queues, caches, DNS records, firewall

rules, virtual networks, etc.

Service Resource Lifecycle API - Any Kubernetes API that can be used to manage the

lifecycle (CRUD) of a Service Resource.

Resources

ClusterResource

The ClusterResource CR is a place to store metadata regarding a Service Resource Lifecycle API.

The only required field is .spec.resourceRef, which defines the Kubernetes API Group and Kind

that a given ClusterResource CR is describing.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterResource

metadata:

 name: rabbitmqcluster

 labels:

 # The following labels will be applied automatically by the ClusterResource contro

ller

 # to help with filtering and searching of ClusterResource resources

 services.apps.tanzu.vmware.com/api-group: rabbitmq.com

 services.apps.tanzu.vmware.com/api-kind: RabbitmqCluster

spec:

 # A reference to the Kubernetes API Group and Kind that this ClusterResource is desc

ribing

 resourceRef:

 # The Kubernetes API Group the resource belongs to

 group: rabbitmq.com

 # The Kubernetes API Kind of the resource

 kind: RabbitmqCluster

 # Short description of the resource (optional; string)

 shortDescription: "It's a RabbitMQ Cluster"

 # Long description of the resource (optional; string)

 longDescription: "RabbitMQ is an open source ..."

Note that metadata stored in ClusterResource CRs is not specific to a particular version of the API.

Version-specific API metadata is stored in GVKDescriptor CRs.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 23

GVKDescriptor (duck type)

GVKDescriptor is not a concrete CRD itself, but rather a duck type of the following shape:

apiVersion: group/version

kind: Kind

spec:

 # A reference to the Kubernetes API Group/Version/Kind

 gvkRef:

 # The Kubernetes API Group the resource belongs to

 group: rabbitmq.com

 # The Kubernetes API Version of the API

 version: v1beta1

 # The Kubernetes API Kind of the resource

 kind: RabbitmqCluster

Any CR that contains .spec.gvkRef with the group, version and kind fields can be considered an

GVKDescriptor.

ClusterExampleUsage (GVKDescriptor)

ClusterExampleUsage CR adheres to the GVKDescriptor duck type and is used to store a YAML

document for a given Service Resource LifecycleAPI.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterExampleUsage

metadata:

 name: rabbitmqcluster-hello-world

 labels:

 # The following labels will be applied automatically by the ClusterExampleUsage co

ntroller

 # to help with filtering and searching of ClusterExampleUsage resources

 services.apps.tanzu.vmware.com/api-group: rabbitmq.com

 services.apps.tanzu.vmware.com/api-kind: RabbitmqCluster

 services.apps.tanzu.vmware.com/api-version: v1beta1

spec:

 # Adherence to GVKDescriptor duck type

 gvkRef:

 group: rabbitmq.com

 version: v1beta1

 kind: RabbitmqCluster

 # Description of the example

 description: |

 "Hello World" example for the RabbitmqCluster resource

 # YAML document for the example

 yaml: |

 apiVersion: rabbitmq.com/v1beta1

 kind: RabbitmqCluster

 metadata:

 name: hello-world

 spec:

 ...

Scope, Discoverability and Usability

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 24

All Service Offering APIs are cluster scoped meaning that, assuming relevant RBAC has been

configured (see below), any user can get, list and watch CRs from these APIs. This configuration

helps to support discoverability, in that just as any user can run kubectl api-resources, so they can

run kubectl get clusterresources. The former command outputs all API resources on the server,

while the latter outputs only the Service Resource Lifecycle APIs on the server (a subset).

Ability to discover Service Resource Lifecycle APIs does not automatically mean a user has

permission to use the APIs. Accessibility of a given Service Resource Lifecycle API depends on

whether the user has relevant RBAC permissions on the API that has been discovered.

RBAC Rules for Discoverability

By default Services Toolkit carvel package allows the system:authenticated Group to get, list and

watch Service Offering resources via the ClusterRole service-offering-api-discoverability.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 25

Service Resource Claims

Install

See the documentation on installing the latest release of the Services Toolkit to get started.

Terminology

Service Resource - Represents a concrete resource that provides a certain service like

databases, message queues, caches, DNS records, firewall rules, virtual networks, etc.

Service Bindings Represents the intent of providing information about a well-known Service

Resource object to a well-known Application.

Provisioned service used to refer to any kubernetes object that adheres to the Provisioned

Service duck type

Service Resource Claim - Represents a request by an Application to use any Service

Resource of a certain category as long as it satisfies a set of specified requirements

Resources

ResourceClaim

The main purpose of ResourceClaim is to identify the concrete Kubernetes object within the cluster

that satisfies the requirements stated in the claim.

Once the object is identified the status condition ResourceMatched is set to true.

If the reference object adheres to the Provisioned Service duck type the .status.binding.name will

be copied to the ResourceClaim .status.binding.name and the ResourceClaimed condition will be

set to true. The claim object itself is a Provisioned Service, so it can be used to define a Service

Binding.

ResourceClaims are currently exclusive. A Service Resource can only have ONE successfully

claimed ResourceClaim in the cluster.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

 name: rmq-claim

 namespace: accounts

spec:

 ref:

 apiVersion: rabbitmq.com/v1alpha1

 kind: RabbitmqCluster

 name: my-rmq

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 26

https://github.com/servicebinding/spec#provisioned-service

 namespace: my-rmq-namespace # optional (if claiming across namespaces)

status:

 binding:

 name: my-rmq-secret # copied from RabbitmqCluster/my-rmq

 conditions:

 - lastTransitionTime: "2019-10-22T16:29:25Z"

 status: "True"

 type: Ready

 - lastTransitionTime: "2019-10-22T16:29:24Z"

 status: "True"

 type: ResourceClaimed

 - lastTransitionTime: "2019-10-22T16:29:23Z"

 status: "True"

 type: ResourceMatched

ResourceClaimPolicy

ResourceClaimPolicy enables ResourceClaims to work across namespaces.

The Policy refers to two pieces of information. Service Resources (e.g. RabbitmqClusters) that this

policy applies to and which namespaces are allowed to claim these resources. * The matching

Service Resources MUST reside in the same namespace as the ResourceClaimPolicy and their type

must also be specified in .spec.type. * Namespaces that are allowed to claim these service

resources must have their namespace name in the .spec.consumingNamespaces array. A value of *

would allow claiming from ALL namespaces in this cluster.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: rmq-policy

 namespace: my-rmq-namespace

spec:

 consumingNamespaces:

 - accounts # or "*" for all namespaces

 type:

 group: rabbitmq.com

 kind: RabbitmqCluster

Permissions (RBAC)

The ResourceClaim controller MUST have read access to Resources specified in the ResourceClaim

spec. As these resources are not known upfront, the appropriate RBAC must be setup on the

Cluster. To accomplish this RBAC must be setup using Aggregated ClusterRoles with the

resourceclaims.services.apps.tanzu.vmware.com/controller: "true" label.

An example of a ClusterRole that allows RabbitmqCluster resources to be read by the ResourceClaim

controller:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: resource-claims-rmq-role

 labels:

 resourceclaims.services.apps.tanzu.vmware.com/controller: "true"

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 27

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles

rules:

- apiGroups:

 - rabbitmq.com

 resources:

 - rabbitmqclusters

 verbs:

 - get

 - list

 - watch

 - update

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 28

Services Plug-in for Tanzu CLI

Warning: The services plug-in is currently in ALPHA. Commands and arguments might change

without notice.

The services plug-in improves the user experience of working with services on Tanzu Application

Platform. After installation, the plug-in is invoked by using the tanzu services command.

The plug-in is currently distributed with Tanzu Application Platform. Please see here for information

on how to acquire and install the plug-in.

Use Cases

The services plug-in is currently of most use to the Application Developer and Application Operator

roles. See User Roles for more details. The following use cases are currently covered by the plug-in

as documented below. We hope to unlock more use cases for the services plug-in in the near

future.

Discovery of Service Types

Application Developers can discover the list of service types available on their target cluster by

running tanzu service types list.

For further information including help text and usage, please run tanzu service types list --help.

Listing Service Instances

Application Developers can list existing Service Instances on their target cluster by running tanzu

Service Instances list.

For further information including help text and usage, please run tanzu Service Instances list --

help.

Claiming Service Instances with Resource Claims

Application Developers can claim Service Instances on their target cluster by running:

tanzu service claims create

CLAIM-NAME --resource-name SERVICE-INSTANCE-NAME --resource-kind SERVICE-INSTANCE-KIND

 --resource-api-version

SERVICE-INSTANCE-API-VERSION

Where:

CLAIM-NAME is the desired name of the Resource Claim to be created and

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 29

https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-install-tanzu-cli.html

SERVICE-INSTANCE-NAME, SERVICE-INSTANCE-KIND and SERVICE-INSTANCE-API-VERSION are the

name, kind and apiVersion, respectively, of the Service Instance to be claimed.

--resource-namespace is an optional flag that can be passed in along with a namespace in

order to claim a Service Instance in a different namespace.

For further information including help text and usage, please run tanzu service claims create --

help.

Listing and getting Resource Claims

Application Developers can view existing claims on their target cluster by running tanzu service

claims list. In addition, Application Developers can use this command to output Claim References

by passing in -o wide, which can then be passed to the --service-ref flag of the tanzu apps

workload create command in order to bind Application Workloads to Service Instances.

For further information including help text and usage, please run tanzu service claims list --

help.

Unclaiming Service Instances

Application Developers can unclaim a claimed Service Instance on their target cluster by running:

tanzu service claims delete CLAIM-NAME

Where CLAIM-NAME is the name of the resource claim that currently claims the Service Instance.

For further information including help text and usage, please run tanzu service claims delete --

help.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 30

Reference

This section provides further references regarding Services Toolkit:

Resource Requirements

Known Limitations

Supported Kubernetes Distributions

Topology

User Roles

Use Cases

Resource Requirements

This page provides information that can be used to help you understand how much resource (such

as CPU and RAM) is required to install and use Services Toolkit.

Deployments

In order to better understand resource requirements and utilisation, it is important to consider the

various Kubernetes Deployments that get created as part of installation, and subsequent usage of,

Services Toolkit.

Upon installation of Services Toolkit to a cluster, a single Deployment named services-toolkit-

controller-manager will be created and it defines a container with the following resource

configuration:

 resources:

 limits:

 cpu: 200m

 memory: 500Mi

 requests:

 cpu: 100m

 memory: 100Mi

Note: Please refer to the Kubernetes documentation on Managing Resources for Containers for

Note

: At present it is not possible to alter default resource configurations for Services

Toolkit as part of the installation process. We are planning to add support for this at

some point in the future.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 31

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

further information on resource management in Kubernetes.

Then, for each DownstreamClusterLink resource created as part of configuring a Projection Plane

(see Service API Projection and Service Resource Replication), 1 additional Deployment will be

created on the downstream cluster. This Deployment defines a container with the following resource

configuration:

 resources:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 20Mi

And finally, there will be one additional Deployment for each ClusterResourceExportMonitor and

ClusterResourceImportMonitor resource that gets created upon configuration of Resource

Replication (see Service API Projection and Service Resource Replication). This Deployment defines a

container with the following resource configuration:

 resources:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 20Mi

Taking the above into consideration, the minimum set of resources required to support the

federation of an API between a Workload Cluster and a Service Cluster can be broken down as

follows:

Workload Cluster

1 x Services Toolkit controller manager deployment

requests 100m CPU and 100Mi memory

1 x API proxy deployment

requests 100m CPU and 20Mi memory

1 x ClusterResourceImportMonitor deployment

requests 100m CPU and 20Mi memory

Service Cluster

1 x Services Toolkit controller manager deployment

requests 100m CPU and 100Mi memory

1 x ClusterResourceExportMonitor deployment

requests 100m CPU and 20Mi memory

Total min resource requirements

Workload Cluster = 300m CPU and 140Mi memory

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 32

Service Cluster = 200m CPU and 120Mi

Note: Services Toolkit does not require the use of volumes or any external storage.

Known Limitations

This page lists known limitations and issues with Services Toolkit.

Service Resource Replication Limitations

Limitation 1: Updates to Secrets are not automatically replicated

Currently, after a Secret has been replicated from a Service Cluster to a Workload Cluster, any

further updates to the original Secret in the Service Cluster are not propagated to the replica Secret

in the Workload Cluster. We are aiming to remove this limitation in a future release of Services

Toolkit.

Service API Projection Limitations

Limitation 1: CRD and Aggregation layer conflict

We use api-aggregation as the mechanism to project APIs. Once an API is registered via this

aggregation layer (the APIService is available), even if you create a CRD pointing to the same path,

the requests will still be proxied by the aggregation layer. If you do it the other way around, as in first

create the CRD and then “project” the API (or register the APIService), the APIService won’t be

available.

Behaviour when local CRD is created before Service Resource API has been projected

For example, let’s say you created rabbitmqclusters.rabbitmq.com/v1beta1 on your workload

cluster by creating a CustomResourceDefinition before you project the rabbitmq.com/v1beta1 API.

When you try to project it, the APIService v1beta1.rabbitmq.com won’t be ready:

rabbitmqclusters.rabbitmq.com CRD status:

status:

 acceptedNames:

 categories:

 - all

 kind: RabbitmqCluster

 listKind: RabbitmqClusterList

 plural: rabbitmqclusters

 shortNames:

 - rmq

 singular: rabbitmqcluster

 conditions:

 - lastTransitionTime: "2021-08-18T13:01:31Z"

 message: no conflicts found

 reason: NoConflicts

 status: "True"

 type: NamesAccepted

 - lastTransitionTime: "2021-08-18T13:01:31Z"

 message: the initial names have been accepted

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 33

 reason: InitialNamesAccepted

 status: "True"

 type: Established

 storedVersions:

 - v1beta1

rabbitmq.com-v1beta1-api-group-import ClusterAPIGroupImport status:

status:

 conditions:

 - lastTransitionTime: "2021-08-18T13:01:47Z"

 message: apiservices.apiregistration.k8s.io "v1beta1.rabbitmq.com" already exists

 reason: APIServiceNotReady

 status: "False"

 type: APIServiceReady

 - lastTransitionTime: "2021-08-18T13:01:47Z"

 message: apiservices.apiregistration.k8s.io "v1beta1.rabbitmq.com" already exists

 reason: APIServiceNotReady

 status: "False"

 type: Ready

 observedGeneration: 1

The workaround in this case, if you want to use Service API Projection on your cluster (and you

don’t have any Custom Resources provisioned from this CRD) is to delete the local CRD and

delete/recreate the ClusterAPIGroupImport.

Behaviour when local CRD is created after Service Resource API is projected

If you did things in the other order however, the APIService will be available but also the

rabbitmqclusters.rabbitmq.com CRD won’t show any errors on the status, which can be confusing

as when you provision/delete a Custom Resource, the requests will be proxied and will run on the

linked Service cluster, not on your local cluster.

rabbitmqclusters.rabbitmq.com CRD status:

status:

 acceptedNames:

 categories:

 - all

 kind: RabbitmqCluster

 listKind: RabbitmqClusterList

 plural: rabbitmqclusters

 shortNames:

 - rmq

 singular: rabbitmqcluster

 conditions:

 - lastTransitionTime: "2021-08-18T09:40:35Z"

 message: no conflicts found

 reason: NoConflicts

 status: "True"

 type: NamesAccepted

 - lastTransitionTime: "2021-08-18T09:40:35Z"

 message: the initial names have been accepted

 reason: InitialNamesAccepted

 status: "True"

 type: Established

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 34

 storedVersions:

 - v1beta1

rabbitmq.com-v1beta1-api-group-import ClusterAPIGroupImport status:

status:

 conditions:

 - lastTransitionTime: "2021-08-18T13:10:48Z"

 status: "True"

 type: APIServiceReady

 - lastTransitionTime: "2021-08-18T13:10:48Z"

 status: "True"

 type: Ready

 observedGeneration: 1

Limitation 2: No built-in support for cluster-scoped requests against
projected APIs in the Workload Cluster

By default, Services Toolkit does not support projection of cluster-scoped requests in the Workload

Cluster. It supports namespace-scoped requests only.

This poses a problem with certain controllers watching these APIs in the Workload Cluster, e.g.

Service Binding implementation. They might require cluster-scoped read access verbs on projected

APIs in the Workload Cluster.

There is a workaround for these types of scenarios:

We provide a ClusterRole through our prototypical kubectl-scp plugin’s federate command on the

Service Cluster. For example:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: "example"

rules:

- apiGroups:

 - rabbitmq.com

 resources:

 - rabbitmqcluster

 verbs: ["get", "list", "watch"]

The ClusterRole is then bound to the Proxy Service Account on the Service Cluster.

This workaround has significant implications to be aware of:

It represents a potential attack vector in which a malicious user operating in Workload Cluster

A might obtain the secret access token used by the Proxy and, in turn, use that token to

perform read actions (e.g. get/watch/list) on resources in the Service Cluster that are owned

by an entirely different Workload Cluster B. In other words, this workaround circumvents

proper isolation of projected resources between different Workload Clusters.

It’s confusing to the App Operator who might see resources that belong to non-existing

namespaces.

Projected resources belonging to a Workload Cluster A are potentially being leaked to users

in Workload Cluster B. It’s similar to the security issue stated earlier in this list, but different in

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 35

https://github.com/vmware-labs/service-bindings/
https://gitlab.eng.vmware.com/services-control-plane/prototypes/kubectl-scp/
https://gitlab.eng.vmware.com/services-control-plane/prototypes/kubectl-scp/-/blob/1e44f3bcd0c23438fac2daecd4c6be1ab13fd0e2/kubectl-scp#L615
https://gitlab.eng.vmware.com/services-control-plane/prototypes/kubectl-scp/-/blob/1e44f3bcd0c23438fac2daecd4c6be1ab13fd0e2/kubectl-scp#L616

that the user doesn’t even have to have any sort of malicious intent.

Future versions of the Services Toolkit will add first-class support for cluster-scoped requests against

projected APIs and, thus, remove the need for the laid out workaround and its problematic

characteristics.

Service Resource Claims Limitations

Limitation 1: Can only claim service resources that adhere to the
Kubernetes Binding specification

Currently, a ResourceClaim will only be successful in claiming a service resource if that service

resource adheres to the Provisioned Service duck type or if directly referring to a compatible Secret.

Eventually future iterations of the Services Toolkit will loosen this requirement through an extension

of the ResourceClaim functionality or another API.

Limitation 2: Can only claim service resources once

Currently, only a single ResourceClaim can successful claim a service resource. If a second

ResourceClaim is created for the same service resource it will fail with ResourceAlreadyClaimed.

Eventually future iterations of the Services Toolkit may allow shared service resources.

Supported Kubernetes Distributions

Kubernetes Distribution GA Functionality Tested?
Experimental / Beta

Functionality Tested?

kind Yes (used for our local development) Yes

GKE Yes (continuously tested in CI) Yes

AKS Yes Not yet

EKS Yes Not yet

VMware Tanzu Kubernetes

Grid (TKGm) clusters

Yes (TKGm v1.5.0 on vSphere)* Not yet

Other Unknown - we haven’t tested Services Toolkit on other

distributions yet, but it should** work.

Unknown

* TKGm 1.5+ is required.

** Services Toolkit leverages core Kubernetes APIs to provide functionality, as such we would

expect it to work on most reasonably up-to-date distributions.

Topology

Topology is a combination of Service and Workload Clusters, their namespaces and the Service

Resource Lifecycle APIs that are to be made available from Service Clusters to one or more

Workload Clusters.

Note: The following two assumptions that must hold true for topologies currently supported by the

Services Toolkit.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 36

https://github.com/servicebinding/spec#provisioned-service

1. The presence of a “flat” network is assumed, which is to say that workloads running in one

cluster are able to establish network connections (resolution and routing) to the Kubernetes

API Server endpoints of all other clusters without any additional setup

2. Application workloads can establish network connections to the endpoints of Service

Instances without any additional setup

We are considering ideas that will allow us to relax these assumptions in the future but do not yet

have a firm date in mind for when such functionality may be released.

Supported Topologies

Topologies that are currently supported by the Services Toolkit are documented below. Please also

note the following rules that apply.

API Projection does NOT work within a single cluster but only across a set of distinct service

and workload clusters.

We have no plans on changing this with subsequent releases.

An API group can be either projected into a given cluster or installed/reconciled within that

cluster, not both.

For example, you cannot install the RabbitmqCluster Operator and project

RabbitmqClusters from a Service cluster in the same Workload cluster.

Right now, we have no plans on changing this with subsequent releases.

Refer to Limitations for further details.

Resources of a projected API group must exist in identically named namespaces in the

workload and service clusters.

For a given workload cluster, there can only be a single service cluster for a given

API group projection.

For example, a workload cluster cannot receive projections of a RabbitmqCluster API

from service cluster 1 as well as from service cluster 2.

We think this is a legitimate use case, so we may change this in the future.

Provide a Service Resource Lifecycle API

From one Service cluster to one Workload cluster

As a Service Operator I want to provide a Service Resource Lifecycle API from one Service cluster

to one Workload cluster in the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 37

From a Service cluster to multiple Workload clusters

As Service Operator I want to provide a Service Resource Lifecycle API from a Service cluster to

multiple Workload clusters with the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 38

Provide different Service Resource Lifecycle APIs

From a Service cluster to a Workload cluster

As a Service Operator I want to provide different Service Resource Lifecycle APIs from one Service

cluster and distinct namespaces to one Workload cluster in matching named namespaces.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 39

Provide multiple Service Resource Lifecycle APIs

From a Service Cluster to a Workload cluster

As Service Operator I want to provide multiple Service Resource Lifecycle APIs from one Service

Cluster and one namespace to one Workload cluster with the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 40

From multiple Service Clusters to one Workload cluster

As Service Operator I want to provide multiple Service Resource Lifecycle APIs from multiple

Service Clusters with the same namespace to one Workload cluster with the same named

namespace.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 41

Warning: In this particular scenario, you might encounter name collisions in the Application

Workload Clusters for the core resources like secrets. For example, if API-1 creates a secret called

binding-secret and API-2 also creates a secret called binding-secret, Resource Replication

component will copy both of these secrets in the Application Workload Cluster but one will be

overridden by the other depending on which one is replicated second.

From multiple Service Clusters to multiple Workload clusters

As Service Operator I want to provide multiple Service Resource from multiple distinct Service

Clusters with the same namespace name to multiple Workload clusters with matching named

namespace.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 42

User Roles

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 43

Services Toolkit caters to the following user roles, which can be considered groupings of jobs to be

done. Each role can be carried out by the same or alternatively by different people, and each

individual person can play more than one role.

Service Author (SA)

Responsible for the development and release of Kubernetes Operators and their Service

Resource Lifecycle APIs.

May optionally provide recommendations regarding configuration of Service Resources (e.g.

production-ready configuration provided by the RabbitMQ Cluster Operator SAs here).

Service Operator (SO)

Responsible for the installation, operation and ongoing maintenance of one or more

Kubernetes Operators providing Service Resource Lifecycle APIs.

Responsible for offering out Service Resource Lifecycle APIs and making them available to

Application Operators and Developers.

Lifecycle management (Create, Read, Update, Delete) of Service Instances

Lifecycle management (Create, Read, Update, Delete) of Resource Claim Policies

Application Operator (AO)

Discover Service Resource Lifecycle APIs and assesses their capabilities through provided

metadata.

Make decisions about which APIs to consume, taking into consideration the needs of the

Application (e.g. QoS, persistence, HA, etc.).

Lifecycle management (Create, Read, Update, Delete) of Resource Claims

Application Developer (AD)

Lifecycle management (Create, Read, Update, Delete) of Application Workloads

Binding Application Workloads to Service Instances

Advanced Use Cases

This page contains a number of use cases for Tanzu Application Platform powered by the Services

Toolkit. It is highly recommended to have first completed the Getting Started Walkthrough in the

Tanzu Application Platform Getting Started Guide as this covers the most common day-to-day use

cases.

Direct Secret References

This use case leverages direct references to Kubernetes Secret resources to enable developers to

connect their application workloads to almost any backing service, including backing services that:

are running external to Tanzu Application Platform

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 44

https://github.com/rabbitmq/cluster-operator/tree/main/docs/examples/production-ready
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-getting-started.html#walkthrough-34

do not adhere to the ProvisionedService of the Service Binding Specification for Kubernetes.

The following example demonstrates a procedure to bind a new application on Tanzu Application

Platform to an existing PostgreSQL database that exists in Azure.

1. Create a Kubernetes Secret resource similar to the following example:

external-azure-db-binding-compatible.yaml

apiVersion: v1

kind: Secret

metadata:

 name: external-azure-db-binding-compatible

type: Opaque

stringData:

 type: postgresql

 provider: azure

 host: EXAMPLE.DATABASE.AZURE.COM

 port: "5432"

 database: "EXAMPLE-DB-NAME"

 username: "USER@EXAMPLE"

 password: "PASSWORD"

Note: Kubernetes Secret resources must abide by the Well-known Secret Entries

specifications. Note: If you are planning to bind this Secret to a Spring-based Application

Workload and want to take advantage of the auto-wiring feature, this Secret must also

contain the properties required by Spring Cloud Bindings.

2. Apply the YAML file by running:

kubectl apply -f external-azure-db-binding-compatible.yaml

3. Create a claim for the newly created secret by running:

tanzu service claim create external-azure-db-claim \

 --resource-name external-azure-db-binding-compatible \

 --resource-kind Secret \

 --resource-api-version v1

4. Obtain the claim reference of the claim by running:

tanzu service claim list -o wide

Expect to see the following output:

NAME READY REASON CLAIM REF

external-azure-db-claim True services.apps.tanzu.vmware.com/v1alpha1

:ResourceClaim:external-azure-db-claim

5. Create an Application Workload by running:

Example:

tanzu apps workload create <WORKLOAD-NAME> \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 45

https://github.com/servicebinding/spec#provisioned-service
https://github.com/servicebinding/spec#well-known-secret-entries
https://github.com/spring-cloud/spring-cloud-bindings

 --git-branch main \

 --git-tag tap-1.0 \

 --type web \

 --service-ref db=<REFERENCE>

Where:

<WORKLOAD-NAME> is the name of the Application Workload. For example, pet-clinic.

<REFERENCE> is the value of the CLAIM REF for the newly created claim in the output of

the last step.

Dedicated Service Clusters (using experimental Projection
and Replication APIs)

Note: This Use Case make use of experimental APIs and is not recommended for use in production

environments.

This use case make use of the experimental API Projection and Resource Replication APIs in order

to separate Application Workloads and Service Instances onto separate Kubernetes clusters. There

are several reasons as to why you may want to do this.

Dedicated cluster requirements for Workload or Service clusters: service clusters, for

instance, might need access to more powerful SSDs.

Different cluster life cycle management: upgrades to Service clusters can occur more

cautiously.

Unique compliance requirements: data is stored on a Service cluster, which might have

different compliance needs.

Separation of permissions and access: application teams can only access the clusters where

their applications are running.

The benefits of implementing this use case include:

The experience for Application Developers and Application Operators working on their

Tanzu Application Platform cluster is unaltered.

All complexity in the setup and management of backing infrastructure is abstracted away

from application developers, which gives them more time to focus on developing their

applications.

For information about network requirements and possible topology setups, see Topology.

Pre-Requisites

Please note the following assumptions / pre-requisites for completing this use case walkthrough:

1. You have access to a cluster with Tanzu Application Platform installed (henceforth referred to

as the “Application Workload Cluster”)

2. You have access to a second, separate cluster with the Services Toolkit package installed

(henceforth referred to as the “Service Cluster”)

3. You have downloaded and installed the tanzu CLI along with the corresponding plug-ins

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 46

4. You have downloaded and installed the experimental kubectl-scp plug-in (see Install the

kubectl-scp plug-in)

5. You have setup the default namespace on the Application Workload Cluster to use installed

packages (see Set up developer namespaces to use installed packages) and will use it as

your “developer namespace”

6. The Application Workload Cluster is able to pull source code from GitHub

7. The Service Cluster is able to pull the images required by the RabbitMQ Cluster Kubernetes

Operator

8. The Service Cluster is able to create LoadBalancer services

Important: If you have previously installed the RabbitMQ Cluster Operator to the Application

Workload Cluster (i.e. as part of running through the Getting Started Walkthrough), you must first

uninstall it from that cluster. This is due to a known limitation with the experimental API Projection

APIs. Further information regarding this limitation can be found in Limitations.

kapp delete -a rmq-operator -y

Walkthrough

Follow these steps to bind an application to a service instance running on a different Kubernetes

cluster:

Important: Some of the commands listed in the following steps have placeholder values WORKLOAD-

CONTEXT and SERVICE-CONTEXT. Change these values before running the commands.

1. As the Service Operator, run the following command to link the Workload Cluster and

Service Cluster together by using the kubectl scp plug-in:

kubectl scp link --workload-kubeconfig-context=<WORKLOAD-CONTEXT> --service-kub

econfig-context=<SERVICE-CONTEXT>

2. Install the RabbitMQ Kubernetes Operator in the Services Cluster using kapp.

Note: This Operator is installed in the Service Cluster, but RabbitmqCluster service instances

can still have their lifecycles managed (CRUD) from the Workload Cluster.

Note: Use the exact deploy.yml specified in the command as this RabbitMQ Operator

deployment includes specific changes to enable cross-cluster service binding.

 kapp -y deploy --app rmq-operator \

 --file https://raw.githubusercontent.com/rabbitmq/cluster-operator/lb-bindi

ng/hack/deploy.yml \

 --kubeconfig-context <SERVICE-CONTEXT>

3. Verify that the Operator is installed by running:

kubectl --context <SERVICE-CONTEXT> get crds rabbitmqclusters.rabbitmq.com

The following steps federate the rabbitmq.com/v1beta1 API group, which is available in the

Service Cluster, into the Workload Cluster. This occurs in two parts: projection and

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 47

#GUID-install-scp-plugin
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-components.html#setup
https://www.rabbitmq.com/kubernetes/operator/using-operator.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-getting-started.html#walkthrough-34

replication.

Projection applies to custom API groups.

Replication applies to core Kubernetes resources, such as Secrets.

4. Create service-instance namespace in both clusters.

API Projection ocurrs between clusters using namespaces with the same name and that are

said to have a quality of “namespace sameness”.

For example:

kubectl --context <WORKLOAD-CONTEXT> create namespace service-instances

kubectl --context <SERVICE-CONTEXT> create namespace service-instances

5. Federate using the kubectl-scp plug-in by running:

 kubectl scp federate \

 --workload-kubeconfig-context=<WORKLOAD-CONTEXT> \

 --service-kubeconfig-context=<SERVICE-CONTEXT> \

 --namespace=service-instances \

 --api-group=rabbitmq.com \

 --api-version=v1beta1 \

 --api-resource=rabbitmqclusters

6. After federation, verify the rabbitmq.com/v1beta1 API is also available in the Workload

Cluster by running:

kubectl --context <WORKLOAD-CONTEXT> api-resources

7. Discover the new service and provision an instance from the Workload cluster by running:

Note: Ensure the tanzu CLI is configured to target the Workload cluster.

tanzu service types list

The following output appears:

Warning: This is an ALPHA command and may change without notice.

NAME DESCRIPTION APIVERSION KIND

rabbitmq It's a RabbitMQ cluster! rabbitmq.com/v1beta1 RabbitmqCluster

8. Provision a service instance on the Tanzu Application Platform cluster.

For example:

rabbitmq-cluster.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: projected-rmq

spec:

 service:

 type: LoadBalancer

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 48

9. Apply the YAML file by running:

kubectl --context <WORKLOAD-CONTEXT> -n service-instances apply -f rabbitmq-clu

ster.yaml

10. Confirm that the RabbitmqCluster resource reconciles successfully from the Workload Cluster

by running:

kubectl --context <WORKLOAD-CONTEXT> -n service-instances get -f rabbitmq-clust

er.yaml

11. Confirm that RabbitMQ Pods are running in the Service Cluster, but not in the Workload

Cluster by running:

kubectl --context <WORKLOAD-CONTEXT> -n service-instances get pods

kubectl --context <SERVICE-CONTEXT> -n service-instances get pods

12. Create a claim for the projected service instance by running:

tanzu service claim create projected-rmq-claim \

 --resource-name projected-rmq \

 --resource-kind RabbitmqCluster \

 --resource-api-version rabbitmq.com/v1beta1 \

 --resource-namespace service-instances

13. Create the application workload by running:

tanzu apps workload create multi-cluster-binding-sample \

 --git-repo https://github.com/sample-accelerators/rabbitmq-sample \

 --git-branch main \

 --git-tag tap-1.0 \

 --type web \

 --service-ref "rmq=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:proj

ected-rmq-claim"

14. Get the web-app URL by running:

tanzu apps workload get multi-cluster-binding-sample

15. Visit the URL and refresh the page to confirm the app is running by checking the new

message IDs.

Services Toolkit for VMware Tanzu Application Platform v0.6

VMware, Inc 49

	About Services Toolkit
	Motivation
	Component Overview
	Resource Claims
	Service Offering
	Service API Projection & Resource Replication (experimental)
	Resource Classes

	Release Notes
	v0.6.0
	v0.5.1
	v0.5.0
	Breaking changes

	Install
	Getting Started
	Uninstall
	Service API Projection and Service Resource Replication for VMware Tanzu
	Install
	Terminology
	Concepts
	Resources
	Projection Plane
	UpstreamClusterLink and DownstreamClusterLink

	API Projection
	APIExportRoleBinding
	ClusterAPIGroupImport
	APIResourceImport

	Resource Replication
	SecretExport
	SecretImport
	ClusterResourceImportMonitor
	ResourceImportMonitorBinding
	ClusterResourceExportMonitor
	ResourceExportMonitorBinding

	Service Offering for VMware Tanzu
	Install
	Terminology
	Resources
	ClusterResource
	GVKDescriptor (duck type)
	ClusterExampleUsage (GVKDescriptor)

	Scope, Discoverability and Usability
	RBAC Rules for Discoverability

	Service Resource Claims
	Install
	Terminology
	Resources
	ResourceClaim
	ResourceClaimPolicy

	Permissions (RBAC)

	Services Plug-in for Tanzu CLI
	Use Cases
	Discovery of Service Types
	Listing Service Instances
	Claiming Service Instances with Resource Claims
	Listing and getting Resource Claims
	Unclaiming Service Instances

	Reference
	Resource Requirements
	Deployments

	Known Limitations
	Service Resource Replication Limitations
	Limitation 1: Updates to Secrets are not automatically replicated

	Service API Projection Limitations
	Limitation 1: CRD and Aggregation layer conflict
	Behaviour when local CRD is created before Service Resource API has been projected
	Behaviour when local CRD is created after Service Resource API is projected

	Limitation 2: No built-in support for cluster-scoped requests against projected APIs in the Workload Cluster

	Service Resource Claims Limitations
	Limitation 1: Can only claim service resources that adhere to the Kubernetes Binding specification
	Limitation 2: Can only claim service resources once

	Supported Kubernetes Distributions
	Topology
	Supported Topologies
	Provide a Service Resource Lifecycle API
	From one Service cluster to one Workload cluster
	From a Service cluster to multiple Workload clusters

	Provide different Service Resource Lifecycle APIs
	From a Service cluster to a Workload cluster

	Provide multiple Service Resource Lifecycle APIs
	From a Service Cluster to a Workload cluster
	From multiple Service Clusters to one Workload cluster
	From multiple Service Clusters to multiple Workload clusters

	User Roles
	Service Author (SA)
	Service Operator (SO)
	Application Operator (AO)
	Application Developer (AD)

	Advanced Use Cases
	Direct Secret References
	Dedicated Service Clusters (using experimental Projection and Replication APIs)
	Pre-Requisites
	Walkthrough

