
Services Toolkit for
VMware Tanzu Application
Platform v0.8

Services Toolkit for VMware Tanzu Application Platform 0.8

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

About Services Toolkit 11

Motivation 12

Component Overview 12

Resource claims 13

Service Offering 13

Service API Projection and Resource Replication (experimental) 13

Release notes 15

v0.8.3 15

v0.8.2 15

v0.8.1 15

v0.8.0 15

v0.7.1 16

Bug Fixes 16

v0.6.0 16

v0.5.1 17

v0.5.0 17

Breaking changes 17

Getting started 19

Install 19

Consuming Services on Tanzu Application Platform 19

Uninstall 19

Use Cases and Walkthroughs 21

Direct Secret References 21

Dedicated Service Clusters (using experimental Projection and
Replication APIs)

23

Prerequisites 23

Walkthrough 24

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 3

Consuming Cloud Services (AWS, Azure and GCP) on Tanzu Application
Platform

28

Consuming AWS RDS on Tanzu Application Platform 28

Consuming AWS RDS on Tanzu Application Platform with AWS
Controllers for Kubernetes (ACK)

28

Prerequisites 28

Create service instances that are compatible with Tanzu Application Platform 28

Obstacle 1: DBInstance does not adhere to the binding specification 29

Obstacle 2: Creating a DBInstance resource on its own is not sufficient 29

Solutions 29

Create an RDS service instance 30

Create a service instance class for RDS 30

Discover, Claim, and Bind to an RDS 32

Prerequisites 33

Configuring the AWS RDS environment 34

Prerequisites 34

Configure the AWS RDS environment 35

Creating AWS RDS Instances manually using kubectl (experimental) 36

Prerequisite 36

Create an RDS service instance by using kubectl 36

Create the DBInstance resource 36

Create a Binding Specification Compatible Secret 38

Create a ServiceAccount for secret templating 38

Create a SecretTemplate 39

Verify 40

Delete an RDS service instance 40

Summary and Next Steps 40

Creating AWS RDS instances by using a Carvel package (experimental) 41

Prerequisite 41

Create an RDS service instance using a Carvel package 41

Add a reference package repository to the in the cluster 41

Create an RDS service instance through the Tanzu CLI 42

Verify 43

Delete an RDS service instance 43

Summary 43

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 4

Consuming AWS RDS on Tanzu Application Platform with Crossplane 43

Overview 43

Prerequisites 43

Install Crossplane 44

Install AWS Provider for Crossplane 44

Configure AWS provider 44

Define composite resource types 45

Provision RDS PostgreSQL instance 48

Create an instance class 49

Provision RDS PostgreSQL instance 50

Claim the RDS PostgreSQL instance and connect to it from the Tanzu Application
Platform workload

51

Consuming Azure Flexible Server Tanzu Application Platform 52

Consuming Azure Flexible Server for PostgreSQL on Tanzu Application
Platform with Azure Service Operator (ASO)

52

Prerequisites 52

Create service instances that are compatible with Tanzu Application Platform 52

Create a service instance class for PSQL 53

Discover, Claim, and Bind to a PostgreSQL 54

Test claim With Tanzu Application Platform workload 55

Delete a PostgreSQL service instance 56

Delete a PostgreSQL service instance by using a Carvel package 56

Delete a PostgreSQL service instance by using kubectl 56

Troubleshooting Azure Service Operator 56

Prerequisites 56

Next Steps 58

Creating Azure PostgreSQL Instances manually using kubectl
(experimental)

58

Create a resource group 58

Create a Flexible Server service instance 59

Create a Binding Specification Compatible Secret 60

Create a ServiceAccount for Secret Templating 60

Create a SecretTemplate 61

Verify the Service Instance 62

Creating Azure PostgreSQL instances by using a Carvel package
(experimental)

62

Prerequisite 62

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 5

Create an Azure PostgreSQL service instance using a Carvel package 62

Add a reference package repository to the cluster 63

Create a Azure PostgreSQL service instance through the Tanzu CLI 64

Verify the Azure Resources 65

Verify the Service Instance 65

Summary 66

Azure Service Operator Troubleshooting 66

Increase Log Level 66

Not Updating The Kubernetes Resources 66

Consuming Azure Flexible Server for PostgreSQL on Tanzu Application
Platform with Crossplane

66

Introduction 67

Prerequisites 67

Install Crossplane 67

Install the Azure Provider for Crossplane 68

Install the Kubernetes Provider for Crossplane 68

Configure the Azure Provider 68

Configure the Kubernetes Provider 69

Define Composite Resource Types 70

Create an Instance Class 72

Provision Azure Flexible Server for PostgreSQL instances 73

Claim the Azure Flexible Server for PostgreSQL Server instance and connect to it
from the Tanzu Application Platform Workload

75

Consuming Google Cloud SQL on Tanzu Application Platform 76

Consuming Google Cloud SQL on Tanzu Application Platform (TAP) with
Config Connector

76

Introduction 76

Creating Service Instances that are compatible with Tanzu Application Platform 76

Creating a Service Instance Class for Cloud SQL 77

Discover, Claim and Bind to a Google Cloud SQL Postgresql Instance 78

Prerequisites 80

The gcloud CLI 80

A Kubernetes cluster 80

Configure a stable egress IP 81

Configure the ip-masq-agent 82

Set up a Cloud NAT service 82

A Tanzu Application Platform installation on the cluster (v1.2.0+). 82

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 6

Configure the Config Connector 83

Get the NAT IP(s) for egress from the cluster 83

Creating Google CloudSQL Instances manually using kubectl
(experimental)

83

Prerequisite 83

Create a CloudSQL service instance by using kubectl 83

Create the Secrets for the Database admin & user 84

Create a usable postgres database 85

Create a Binding Specification compatible Secret for the database 87

Verify 88

Delete a CloudSQL service instance 88

Summary and Next Steps 89

Creating Google CloudSQL instances by using a Carvel package
(experimental)

89

Prerequisite 89

Create an CloudSQL service instance using a Carvel package 89

Add a reference package repository to the cluster 89

Create a CloudSQL service instance through the Tanzu CLI 90

Verify 91

Delete a CloudSQL service instance 91

Summary 92

Consuming GCP CloudSQL on Tanzu Application Platform with
Crossplane

92

Introduction 92

Prerequisites 92

Install Crossplane 92

Install GCP Provider for Crossplane 93

Configure GCP Provider 93

Define Composite Resource Types 94

Create an Instance Class 96

Provision GCP CloudSQL Postgresql Instance 97

Claim the CloudSQL Postgresql instance and connect to it from the Tanzu
Application Platform Workload

98

Component API Documentation 101

Resource Claims 101

Install 101

Resources 101

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 7

ResourceClaim 101

ResourceClaimPolicy 102

ClusterInstanceClass 102

InstanceQuery 103

Permissions (RBAC) 103

Services plug-in for Tanzu CLI 104

Use cases 104

Discover service instance classes 104

Discover claimable service instances 104

Claim service instances with resource claims 105

List and get resource claims 105

Unclaim service instances 105

Service offering 105

Install 105

Resources 106

ClusterResource 106

GVKDescriptor (duck type) 106

ClusterExampleUsage (GVKDescriptor) 107

Scope, Discoverability, and Usability 107

RBAC Rules for Discoverability 107

Service API Projection and Service Resource Replication 108

Install 108

Concepts 108

Projection Plane 108

UpstreamClusterLink and DownstreamClusterLink 108

API Projection 110

APIExportRoleBinding 110

ClusterAPIGroupImport 110

APIResourceImport 111

Resource Replication 111

SecretExport 111

SecretImport 112

ClusterResourceImportMonitor 113

ResourceImportMonitorBinding 113

ClusterResourceExportMonitor 113

ResourceExportMonitorBinding 114

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 8

Reference 115

Services Toolkit Terminology and User roles 115

Terminology 115

Service 115

Examples 115

Service Resource 115

Examples 115

Provisioned Service 116

Service Binding 116

Examples 116

Service Instance 116

Examples 116

Service Instance Class 117

Examples 117

Resource Claim 117

Examples 117

Claimable Service Instance 117

Examples 117

Service Resource Lifecycle API 118

Examples 118

Service Cluster 118

Workload Cluster 118

User Roles 118

Application Developer (AD) 118

Jobs To Be Done 118

Application Operator (AO) 119

Jobs To Be Done 119

Service Operator (SO) 119

Jobs To Be Done 119

Known limitations 119

Service Resource Replication Limitations 119

Updates to Secrets are not replicated 119

Service API Projection Limitations 119

Unable to project Core Kubernetes APIs 119

CRD and Aggregation layer conflict 119

Local CRD is created before Service Resource API is projected 120

When local CRD is created after Service Resource API is projected 121

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 9

No built-in support for cluster-scoped requests against projected APIs in the
Workload Cluster

121

Service Resource Claims Limitations 122

Can only claim service resources that adhere to the Kubernetes Binding
specification

122

Can only claim service resources once 122

Resource requirements 123

Deployments 123

Supported Kubernetes distributions 124

Topology 124

Supported Topologies 125

Provide a Service Resource Lifecycle API 125

From one Service cluster to one Workload cluster 125

From a Service cluster to multiple Workload clusters 126

Provide different Service Resource Lifecycle APIs 127

From a Service cluster to a Workload cluster 127

Provide multiple Service Resource Lifecycle APIs 128

From a Service Cluster to a Workload cluster 128

From multiple Service Clusters to one Workload cluster 129

From multiple service clusters to multiple workload clusters 130

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 10

About Services Toolkit

Services Toolkit is a collection of Kubernetes-native components supporting the discoverability, life-

cycle management (CRUD), and connectivity of service resources (databases, message queues, DNS

records, and so on) on Kubernetes.

The toolkit is currently comprised of the following components:

Resource Claims

Service Offering

Service API Projection (experimental)

Resource Replication (experimental)

Each component has value independent of the others, however the most powerful and valuable use

cases can be unlocked by combining them together in unique and interesting ways. For a use case

with examples of what can be done with the toolkit, see Getting Started.

For an example of how to consume AWS services with Services Toolkit, see either Consuming AWS

RDS on Tanzu Application Platform (TAP) with AWS Controllers for Kubernetes (ACK) or Consuming

AWS RDS on Tanzu Application Platform (TAP) with Crossplane.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 11

* indicates an item is on the roadmap and no concrete design is available yet. An early prototype or

proposal might exist.

Motivation

Application teams need supporting service resources (databases, message queues, DNS records,

and so on) to develop and run their applications. They do not want the burden of running these

services themselves, so many organizations provide ticketing systems that allow application teams to

manually make requests for new service resources to be created and managed for them. This

process often takes weeks.

In the cloud, application teams have self-service access to create new managed resources that you

can provision with API calls, such as RDS. Services Toolkit aims to provide a set of modular tools that

you can use to provide a similar self-service experience to that of the cloud for service resources

running on Tanzu.

Component Overview

Here is a brief overview of the components comprising Services Toolkit.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 12

Resource claims

Resource claims enable application teams to express which service resources their applications

require without having to know the intricacies of the service resource fulfilling the request. This

replaces the traditional ticketing system previously mentioned with a model of application teams

claiming resources and service operators providing resources to be claimed. This provides a self-

service experience for the developer, but gives the service operators ultimate control of the service

resources.

This also means application teams can request a service resource without having to know the exact

name or namespace of the pre-provisioned service resource. Instead they express requirements

using more meaningful metadata. For example, type, protocol, provider, and version. The claim is

then fulfilled against an existing service resource using rules chosen by the service operator. This

enables application teams to focus on their application and its dependencies.

To learn more about resource claims, see Resource claims.

Service Offering

To discover service resources and understand how to use them, application operators need access

to a rich set of metadata that describes the semantics and management capabilities of the

corresponding Service Resource Lifecycle APIs.

The fundamental building blocks of Service Resource Lifecycle APIs are aggregated APIs or CRDs,

and these already define some metadata. However, this only consists of Kubernetes-level API

descriptions, such as name and field.

Although this metadata is useful, application operators require more holistic information that covers

details such as service-level management capabilities, QoS guarantees, and relationships between

different resource types the API exposes. Application operators also require other information that

aids discovery by application operators and higher-level tooling aimed at that role, such as keywords,

icons, and so on.

Some metadata surfaced by service description and offering relate not only to the Service Resource

Lifecycle API itself, but also to the specifics of the underlying infrastructure, such as the number and

the topology of worker nodes in the Service Cluster, or the particular CSI and CNI implementations

configured for the cluster.

For example, a service resource that is relevant to MySQL cannot claim high-availability for the

provisioned databases if the service cluster in which the individual MySQL pods run consists of only a

single worker node.

Because of this, the service operator is deemed responsible for ensuring that the correct level of

accurate metadata is specified for a service resource. Service description and offering enables the

association of metadata with service resources and surfacing it to application operators. The service

operator can provide this metadata, and service authors can provide infrastructure-agnostic

metadata, such as data that describes the relationships between different API resource types.

To learn more about service offering, see Service offering.

Service API Projection and Resource Replication (experimental)

VMware recommends that customers separate application and service infrastructure, which is done

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 13

in their production environments. Benefits of this segmentation of infrastructure include:

Dedicated cluster requirements for workload or service clusters: For example, service

clusters might need access to SSDs.

Different cluster life cycle management: Upgrades to service clusters can occur more

cautiously.

Unique compliance requirements: Data might have different compliance needs because it is

stored on a service cluster.

Separation of permissions and access: Application teams can only access the clusters where

their applications are running.

One way to address these needs in a Kubernetes multicluster world is to split clusters into application

workload clusters and service clusters, and then allow application teams to consume service

resource APIs from their application workload cluster, with reconciliation of resources occurring on

services clusters.

To learn more about service API projection and resource replication, see Service API projection and

service resource replication.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 14

Release notes

v0.8.3

Release Date: March 6, 2023

Patch release

Bump dependencies to address CVE-2022-27664.

v0.8.2

Release Date: February 16, 2023

Patch release

Bump dependencies to address CVE-2023-0286.

Bump dependencies to address CVE-2022-1996.

v0.8.1

Release Date: November 15, 2022

libssl3 has been updated to 3.0.2-0ubuntu1.7 to resolve CVE-2022-3786.

libssl3 has been updated to 3.0.2-0ubuntu1.7 to resolve CVE-2022-3602.

v0.8.0

Release Date: October 11, 2022

Added support for Openshift

Added support for Kubernetes 1.24

Created documentation and reference Service Instance Packages for new Cloud Service

Provider integrations:

Azure Flexible Server (Postgres) using the Azure Service Operator

Azure Flexible Server (Postgres) using Crossplane

Google Cloud SQL (Postgres) using Config Connector

Google Cloud SQL (Postgres) using Crossplane

Formally defined the Service Operator user role (see Services Toolkit Terminology and User

roles)

tanzu services CLI plug-in - improved info messages for deprecated commands

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 15

https://nvd.nist.gov/vuln/detail/CVE-2022-27664
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2022-1996
https://nvd.nist.gov/vuln/detail/CVE-2022-3786
https://nvd.nist.gov/vuln/detail/CVE-2022-3602

v0.7.1

Release Date: July 12, 2022

Services Toolkit now integrates with Amazon RDS using the ACK Operator. See Consuming

AWS RDS on Tanzu Application Platform with AWS Controllers for Kubernetes (ACK).

Services Toolkit now integrates with Amazon RDS by using Crossplane. See Consuming AWS

RDS on Tanzu Application Platform with Crossplane.

New ClusterInstanceClass supports service instance abstraction. It is available using tanzu

service classes list in v0.3.0 of the Services plug-in for Tanzu CLI.

You can now use the InstanceQuery API to discover claimable resources. It is available using

tanzu service claimable list --class CLASS in v0.3.0 of the Services plug-in for Tanzu

CLI.

ResourceClaims no longer mutate service resources with an annotation to mark a claimed

resource. Instead it uses Kubernetes Leases.

ResourceClaims no longer require the update permission when adding new service

resources to Tanzu Application Platform.

ResourceClaims now aggregate on ClusterRoles for service resources with the standard

servicebinding.io/controller: "true" label from the Service Binding specification for

Kubernetes This label is recommended over the existing

resourceclaims.services.apps.tanzu.vmware.com/controller: "true" label, although the

old label continues to work as expected.

Performance enhancements to ResourceClaim controller tracker.

All Services Toolkit components now conform to Tanzu Application Platform logging

standards.

Deprecation warning: tanzu service types list and tanzu service instances list

commands are now deprecated. These commands are hidden from help text but remain

functional if invoked. VMware intends to support these commands for either two additional

minor releases (v0.6.0 of the CLI plug-in) or after one year (2023-07-12), whichever comes

later. VMware recommends using tanzu service class and tanzu service claimable

commands in place of tanzu service type and tanzu service instance from now on.

Bug Fixes

ResourceClaims no longer overwrite existing secrets on cross namespace claims.

Fix ResourceClaims incorrectly logging resource requests as part of tracking.

ResourceClaims .status.ClaimedResourceRef.Namespace is now set for same namespace

claims.

v0.6.0

Release Date: April 12, 2022

Introduced default aggregating ClusterRoles for Tanzu Application Platform’s App Editors,

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 16

https://github.com/aws/aws-service-operator-k8s
https://crossplane.io/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/lease-v1/
https://github.com/servicebinding/spec

App Viewers, and App Operators.

The ResourceClaim and ResourceClaimPolicy CRD category resourceclaims was removed

to avoid clashes with the ResourceClaim resource plural.

Fixed kubectl table output of ResourceClaimPolicy.

All Services Toolkit pods now adhere to Restricted Pod Security Standards.

Services plug-in for Tanzu CLI v0.2.0 includes the following changes:

Allows the management of ResourceClaims using tanzu service claims

<list/get/create/delete>.

Alpha Warnings are now output to stderr instead of stdout.

v0.5.1

Release Date: March 3, 2022

Fixed a race condition issue that might lead to a failure of the services-toolkit controller

manager when a new ResourceClaim is being created whilst another is being deleted.

Fixed an issue that caused kapp-controller to unnecessarily reconcile continuously.

Services plug-in for Tanzu CLI at v0.1.2 now supports interactions with GCP clusters.

v0.5.0

Release Date: January 11, 2022

Resource Claims now support cross namespace claiming by using ResourceClaimPolicy

objects.

Resource Claims are now exclusive. Multiple ResourceClaim objects can not claim a single

service resource.

Services Toolkit, specifically Resource Claims, now depends on at least v0.5.0 of carvel-

secretgen-controller in GitHub.

Do not block claim deletion when it can not find GVR.

Breaking changes

Rename ClusterServiceResource to ClusterResource

Move ClusterResource, ClusterExampleUsage and ResourceClaim to

services.apps.tanzu.vmware.com APIGroup

Move DownstreamClusterLink, UpstreamClusterLink, APIExportRoleBinding,

APIResourceImport and ClusterAPIGroupImport to

projection.apiresources.multicluster.x-tanzu.vmware.com APIGroup

Move ClusterResourceExportMonitor, ClusterResourceImportMonitor,

ResourceExportMonitorBinding, ResourceImportMonitorBinding, SecretExport and

SecretImport to replication.apiresources.multicluster.x-tanzu.vmware.com APIGroup

Add the label prefix replication.apiresources.multicluster.x-tanzu.vmware.com for the

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 17

https://kubernetes.io/docs/concepts/security/pod-security-standards/#restricted
https://github.com/vmware-tanzu/carvel-secretgen-controller

monitored-resource-* labels of ClusterResourceExportMonitor and

ClusterResourceImportMonitor

Rename the Resource Claims finalizer from

claim.services.apps.tanzu.vmware.com/finalizer to

resourceclaims.services.apps.tanzu.vmware.com/finalizer. Existing ResourceClaims must

be updated to remove the old finalizer to be deleted.

Rename the Resource Claims aggregation ClusterRole label from

services.apps.tanzu.vmware.com/aggregate-to-resource-claims: "true" to

resourceclaims.services.apps.tanzu.vmware.com/controller: "true". Existing

aggregated roles must be updated to have the new label.

Edit all deployment resources naming to use services-toolkit rather than the outdated

scp-toolkit.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 18

Getting started

The quickest and easiest way to get started with Services Toolkit is to experience it as part of Tanzu

Application Platform. For more information about the main use cases, tools and APIs powered by the

toolkit, see About consuming services on Tanzu Application Platform.

In addition, a number of additional use cases are available:

Consuming AWS RDS on Tanzu Application Platform (TAP) with AWS Controllers for

Kubernetes (ACK)

Consuming AWS RDS on Tanzu Application Platform (TAP) with Crossplane

Consuming Azure FlexibleServer PostgreSQL on Tanzu Application Platform (TAP) with

Azure Server Operator v2

Direct Secret References

Dedicated Service Clusters

Install

Services Toolkit is packaged and distributed by using the carvel set of tools.

The Services Toolkit carvel package is currently published to the Tanzu Application Platform package

repository.

There are two options for installation:

To install it as part of a wider Tanzu Application Platform installation, see Installing Tanzu

Application Platform.

To install it as an individual package on its own, see Install Services Toolkit.

Consuming Services on Tanzu Application Platform

The best way to get started and to learn about Services Toolkit is to follow the getting started guides

published for Tanzu Application Platform. Two guides are available, one pertaining to the roles of the

Service Operator and Application Operator, and the other, complimentary guide pertaining to the

role of the Application Developer. These guides are linked below.

Set up services for consumption by developers

Consume services on Tanzu Application Platform

Uninstall

To uninstall Services Toolkit run:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 19

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-getting-started-about-consuming-services.html
https://carvel.dev/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-services-toolkit-install-services-toolkit.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-getting-started-set-up-services.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-getting-started-consume-services.html

tanzu package installed delete services-toolkit

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 20

Use Cases and Walkthroughs

This section of the documentation covers common use cases and walkthroughs to help you learn

about the capabilities and usage of Services Toolkit. Please refer to and select a use case of interest

from the table of contents.

Direct Secret References

This use case leverages direct references to Kubernetes Secret resources to enable developers to

connect their application workloads to almost any backing service, including backing services that:

are running external to Tanzu Application Platform

do not adhere to the ProvisionedService of the Service Binding Specification for Kubernetes

in GitHub.

The following example demonstrates a procedure to bind a new application on Tanzu Application

Platform to an existing PostgreSQL database that exists in Azure.

Depending on your Kubernetes distribution and the backing Service you are hoping to connect to

your Tanzu Application Platform workloads, there could be extra work to set up networking between

the workload and the service endpoint and to obtain the credentials for the backing service. This

example assumes the credentials are available and networking has been set up.

1. Create a Kubernetes secret resource similar to the following example:

external-azure-db-binding-compatible.yaml

apiVersion: v1

kind: Secret

metadata:

 name: external-azure-db-binding-compatible

type: Opaque

stringData:

 type: postgresql

 provider: azure

 host: EXAMPLE.DATABASE.AZURE.COM

 port: "5432"

 database: "EXAMPLE-DB-NAME"

 username: "USER@EXAMPLE"

 password: "PASSWORD"

Kubernetes secret resources must abide by the Well-known Secret Entries specifications in

GitHub. If you are planning to bind this secret to a Spring-based application workload and

want to take advantage of the auto-wiring feature, this secret must also contain the

properties required by Spring Cloud Bindings in GitHub.

2. Apply the YAML file by running:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 21

https://github.com/servicebinding/spec#provisioned-service
https://github.com/servicebinding/spec#well-known-secret-entries
https://github.com/spring-cloud/spring-cloud-bindings

kubectl apply -f external-azure-db-binding-compatible.yaml

3. Grant sufficient RBAC permissions to Services Toolkit to be able to read the secrets specified

by the class:

stk-secret-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

4. Apply your changes by running:

kubectl apply -f stk-secret-reader.yaml

5. Create a claim for the newly created secret by running:

tanzu service claim create external-azure-db-claim \

 --resource-name external-azure-db-binding-compatible \

 --resource-kind Secret \

 --resource-api-version v1

6. Obtain the claim reference of the claim by running:

tanzu service claim list -o wide

Expect to see the following output:

NAME READY REASON CLAIM REF

external-azure-db-claim True services.apps.tanzu.vmware.com/v1alpha1

:ResourceClaim:external-azure-db-claim

7. Create an application workload by running a command similar to the following example:

Example:

Note

Create the claim in the same namespace as your workload. If your workload

is in a different namespace to the one currently targeted, add the --

namespace flag to the above command.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 22

tanzu apps workload create WORKLOAD-NAME \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

 --git-branch main \

 --git-tag tap-1.2 \

 --type web \

 --label app.kubernetes.io/part-of=spring-petclinic \

 --annotation autoscaling.knative.dev/minScale=1 \

 --env SPRING_PROFILES_ACTIVE=postgres \

 --service-ref db=REFERENCE

Where:

WORKLOAD-NAME is the name of the Application Workload. For example, pet-clinic.

REFERENCE is the value of the CLAIM REF for the newly created claim in the output of

the last step.

Dedicated Service Clusters (using experimental Projection
and Replication APIs)

Caution: This use case leverages experimental APIs. Do not use it in a production environment.

This use case leverages the experimental API Projection and Resource Replication APIs to separate

application workloads and service instances onto separate Kubernetes clusters. There are several

reasons for it:

Dedicated cluster requirements for workload or service clusters: Service clusters, for

example, might need access to more powerful SSDs.

Different cluster life cycle management: Upgrades to service clusters can occur more

cautiously.

Unique compliance requirements: Data is stored on a service cluster, which might have

different compliance needs.

Separation of permissions and access: Application teams can only access the clusters where

their applications are running.

The benefits of implementing this use case include:

The experience for application developers and application operators working on their Tanzu

Application Platform cluster is unaltered.

All complexity in the setup and management of backing infrastructure is abstracted away

from application developers, which gives them more time to focus on developing their

applications.

Note: This use case currently does not support the federation of core Kubernetes APIs such as

Secret. It requires a ProvisionedService API that references a Secret in order to work. This means

that use cases such as Direct Service References or Cloud Service Provider use cases, support such

as Consuming AWS RDS on TAP, will not work when combined with this use case.

For information about network requirements and possible topology setups, see Topology.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 23

https://github.com/servicebinding/spec#provisioned-service

Prerequisites

Meet the following prerequisites before completing this use case walkthrough:

You have access to a cluster with Tanzu Application Platform installed, henceforth called the

application workload cluster.

You have access to a second, separate cluster with the Services Toolkit package installed,

henceforth called the service cluster.

You downloaded and installed the tanzu CLI and the corresponding plug-ins.

You downloaded and installed the experimental kubectl-scp plug-in. For instructions, see

Install the kubectl-scp plug-in.

You set up the default namespace on the application workload cluster as your developer

namespace to use installed packages. For more information, see Set up developer

namespaces to use installed packages.

The application workload cluster can pull source code from GitHub.

The service cluster can pull the images required by the RabbitMQ Cluster Kubernetes

Operator.

The service cluster can create LoadBalancer services.

If you have previously installed the RabbitMQ cluster operator to the application workload

cluster as part of Getting started with Tanzu Application Platform, uninstall it from that cluster.

This is necessary because of a limitation of the experimental API Projection APIs. To delete

the operator, run:

kapp delete -a rmq-operator -y

Walkthrough

Follow these steps to bind an application to a service instance running on a different Kubernetes

cluster:

1. As the service operator, link the workload cluster and service cluster together by using the

kubectl scp plug-in. To do so, run:

kubectl scp link --workload-kubeconfig-context=WORKLOAD-CONTEXT --service-kubec

onfig-context=SERVICE-CONTEXT

Where WORKLOAD-CONTEXT is your workload context and SERVICE-CONTEXT is your service

context.

Note: You might need to specify the service cluster Kubernetes API address with --service-

server-address=CLUSTER-EXAMPLE.com:6443>.

This is necessary if running kubectl get --raw /api results in an address that is not

reachable from the workload cluster or results in an address that doesn’t match the CA

certificate in the specified service kubeconfig entry.

2. Install the RabbitMQ Kubernetes operator in the services cluster by running:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 24

#GUID-install-scp-plugin
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-set-up-namespaces.html
https://www.rabbitmq.com/kubernetes/operator/using-operator.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-getting-started.html

kapp -y deploy --app rmq-operator \

 --file https://raw.githubusercontent.com/rabbitmq/cluster-operator/lb-binding/

hack/deploy.yml \

 --kubeconfig-context SERVICE-CONTEXT

Where SERVICE-CONTEXT is your service context.

This operator is installed in the service cluster, but RabbitmqCluster service instance life

cycles (CRUD) can still be managed from the workload cluster. Use the exact deploy.yml

specified in the command because this RabbitMQ operator deployment includes specific

changes to enable cross-cluster service binding.

3. Verify that you installed the operator by running:

kubectl --context SERVICE-CONTEXT get crds rabbitmqclusters.rabbitmq.com

Where SERVICE-CONTEXT is your service context.

The rabbitmq.com/v1beta1 API group is available in the service cluster. The following steps

federate the rabbitmq.com/v1beta1 in the workload cluster. This occurs in two parts,

projection and replication.

Projection applies to custom API groups.

Replication applies to core Kubernetes resources, such as secrets.

4. Create a service-instance namespace in both clusters. API projection occurs between

clusters by using namespaces with the same name and that are said to have a quality of

namespace sameness.

For example:

kubectl --context WORKLOAD-CONTEXT create namespace service-instances

kubectl --context SERVICE-CONTEXT create namespace service-instances

Where WORKLOAD-CONTEXT is your workload context and SERVICE-CONTEXT is your service

context.

5. Use the kubectl-scp plug-in to federate by running:

kubectl scp federate \

--workload-kubeconfig-context=WORKLOAD-CONTEXT \

--service-kubeconfig-context=SERVICE-CONTEXT \

--namespace=service-instances \

--api-group=rabbitmq.com \

--api-version=v1beta1 \

--api-resource=rabbitmqclusters

Where WORKLOAD-CONTEXT is your workload context and SERVICE-CONTEXT is your service

context.

Note: You might need to specify the service cluster Kubernetes API address with --service-

server-address=CLUSTER-EXAMPLE.com:6443.

This is necessary if running kubectl get --raw /api results in an address that is not

reachable from the workload cluster or an address that doesn’t match the CA certificate in

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 25

the specified service kubeconfig entry.

6. After federation, verify the rabbitmq.com/v1beta1 API is also available in the workload cluster

by running:

kubectl --context WORKLOAD-CONTEXT api-resources

Where WORKLOAD-CONTEXT is your workload context

7. Advertise that the RabbitmqCluster API is available to developers by applying the following

YAML to your workload cluster. Ensure the Tanzu CLI is configured to target the workload

cluster for the rest of the steps.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: rabbitmq

spec:

 description:

 short: It's a RabbitMQ cluster!

 pool:

 kind: RabbitmqCluster

 group: rabbitmq.com

8. Discover the new service and provision an instance from the workload cluster by running:

tanzu services classes list

The following output appears:

tanzu services classes list

NAME DESCRIPTION

rabbitmq It's a RabbitMQ cluster!

9. Provision a service instance on the Tanzu Application Platform cluster.

For example:

rabbitmq-cluster.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: projected-rmq

spec:

 service:

 type: LoadBalancer

10. Apply the YAML file by running:

kubectl --context WORKLOAD-CONTEXT -n service-instances apply -f rabbitmq-clust

er.yaml

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 26

Where WORKLOAD-CONTEXT is your workload context

11. Confirm that the RabbitmqCluster resource reconciles successfully from the workload cluster

by running:

kubectl --context WORKLOAD-CONTEXT -n service-instances get -f rabbitmq-cluster

.yaml

Where WORKLOAD-CONTEXT is your workload context

12. Verify that RabbitMQ pods are running in the service cluster, but not in the workload cluster,

by running:

kubectl --context WORKLOAD-CONTEXT -n service-instances get pods

kubectl --context SERVICE-CONTEXT -n service-instances get pods

Where WORKLOAD-CONTEXT is your workload context and SERVICE-CONTEXT is your service

context.

13. Enable cross-namespace claims by creating a ResourceClaimPolicy on your workload

cluster:

rabbitmq-cluster-policy.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: rabbitmq-cluster-policy

 namespace: service-instances

spec:

 consumingNamespaces:

 - default

 subject:

 group: rabbitmq.com

 kind: RabbitmqCluster

14. Apply the YAML file by running:

kubectl --context WORKLOAD-CONTEXT apply -f rabbitmq-cluster-policy.yaml

Where WORKLOAD-CONTEXT is your workload context

15. Create a claim for the projected service instance by running:

tanzu service claim create projected-rmq-claim \

 --resource-name projected-rmq \

 --resource-kind RabbitmqCluster \

 --resource-api-version rabbitmq.com/v1beta1 \

 --resource-namespace service-instances \

 --namespace default

16. Create the application workload by running:

tanzu apps workload create multi-cluster-binding-sample \

 --namespace default \

 --git-repo https://github.com/sample-accelerators/rabbitmq-sample \

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 27

 --git-branch main \

 --git-tag 0.0.1 \

 --type web \

 --label app.kubernetes.io/part-of=rabbitmq-sample \

 --annotation autoscaling.knative.dev/minScale=1 \

 --service-ref "rmq=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:proj

ected-rmq-claim"

17. Get the web-app URL by running:

tanzu apps workload get multi-cluster-binding-sample -n default

18. Visit the URL and refresh the page to confirm the app is running by viewing the new

message IDs.

Consuming Cloud Services (AWS, Azure and GCP) on Tanzu
Application Platform

This section of the documentation covers integrations of various Cloud Service Providers (AWS,

Azure and GCP) into Tanzu Application Platform.

Consuming AWS RDS on Tanzu Application Platform

This section of the documentation covers integrations of AWS RDS into Tanzu Application Platform.

Documentation is provided for both an integration using AWS Controllers for Kubernetes (ACK), as

well as an integration using Crossplane.

Consuming AWS RDS on Tanzu Application Platform with
AWS Controllers for Kubernetes (ACK)

This topic describes how to use Services Toolkit to allow Tanzu Application Platform workloads to

consume AWS RDS PostgreSQL databases.

This topic makes use of AWS Controllers for Kubernetes (ACK) to manage RDS instances in AWS.

As such, it is an alternative approach to using Crossplane to achieve the same outcomes.

Prerequisites

Prerequisites

Configure your AWS RDS environment

Create service instances that are compatible with Tanzu
Application Platform

Installing the ACK service controller for RDS makes available new Kubernetes APIs for interacting

with RDS resources from within the Tanzu Application Platform cluster.

$ kubectl api-resources --api-group rds.services.k8s.aws

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 28

https://github.com/aws-controllers-k8s/community

NAME SHORTNAMES APIVERSION NAMESPACED K

IND

dbclusterparametergroups rds.services.k8s.aws/v1alpha1 true D

BClusterParameterGroup

dbclusters rds.services.k8s.aws/v1alpha1 true D

BCluster

dbinstances rds.services.k8s.aws/v1alpha1 true D

BInstance

dbparametergroups rds.services.k8s.aws/v1alpha1 true D

BParameterGroup

dbsubnetgroups rds.services.k8s.aws/v1alpha1 true D

BSubnetGroup

globalclusters rds.services.k8s.aws/v1alpha1 true G

lobalCluster

DBInstance is of most interest here because this is the primary API for creating RDS databases.

However, there are two important obstacles with this API when considering compatibility with Tanzu

Application Platform.

Obstacle 1: DBInstance does not adhere to the binding specification

DBInstance does not adhere to the Service Binding Specification for Kubernetes. Tanzu Application

Platform uses this specification as a contract for ensuring compatibility between different parts of the

system. Given that DBInstance does not adhere to the specification it means that, by default, it is not

possible to claim and bind application workloads to DBInstance resources.

Obstacle 2: Creating a DBInstance resource on its own is not
sufficient

Creating a DBInstance resource on its own might not always be enough to create a working, usable

instance that can be connected to and utilized.

For example, DBInstance defines the field .spec.masterUserPassword, which must refer to a secret

containing credentials for the instance. As such, the secret resource can be considered a dependent

resource of DBInstance. Without both of these resources, it is not possible to properly configure the

RDS instance as wanted. In many cases, a group of related resources must be created to create

something usable.

Solutions

Tanzu Application Platform v1.2 and later enables solutions for both these obstacles.

For example, consider the first obstacle where DBInstance does not adhere to the Kubernetes

binding specification. One solution is for the authors of the RDS ACK service controller to update the

DBInstance API to make it adhere to the binding specification. However, this requires code changes

to the operator itself, and the authors of the operator might choose not to prioritize it.

Fortunately, there is an alternative solution that doesn’t require any code changes to the operator

itself while still enabling claiming and binding to RDS instances from within a Tanzu Application

Platform cluster.

This solution uses the SecretTemplate API provided by Carvel’s secretgen-controller. This API can

be used to create binding specification-conforming secrets by identifying and collecting information

that resources from the RDS APIs provide.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 29

https://github.com/servicebinding/spec
https://github.com/vmware-tanzu/carvel-secretgen-controller

Next, consider the second obstacle where multiple resources must be created to produce a usable

RDS database. One solution to this obstacle is to just document all the resources that must be

created to produce something that can be used. This solution is laborious, error-prone, and is

generally a poor developer experience.

Fortunately, there is an alternative solution that abstracts away the complexities of creating instances

that are known to work well with application workloads.

This solution uses the ClusterInstanceClass API provided by Services Toolkit. Instance classes allow

for logical service instances to be presented to Application Operators, allowing them to discover,

reason about, and, most importantly, claim service instances that they can then bind to their

application workloads.

The rest of this topic describes how both these solutions can come together to form an end-to-end

integration for RDS services on Tanzu Application Platform.

Create an RDS service instance

This section describes how to create an RDS service instance in Tanzu Application Platform by using

a ready-made reference Carvel Package. This step is typically performed by the Service Operator

role. Follow the steps in Creating an RDS service instance by using a Carvel Package.

Alternatively, if you want to author your own reference package and want to learn about the

underlying APIs and how they come together to produce a useable service instance for Tanzu

Application Platform, you can achieve the same outcome by using the more advanced Creating an

RDS service instance manually.

After you complete either of these steps and have a running RDS service instance, return here to

continue with the rest of the use case.

Create a service instance class for RDS

Now that you know how to create RDS service instances it’s time to learn how to make those

instances discoverable to Application Operators. This step is typically performed by the Service

Operator role.

You can use Services Toolkit’s ClusterInstanceClass API to create a service instance class to

represent RDS service instances within the cluster. The existence of such classes make these logical

service instances discoverable to Application Operators. This allows them to create Resource Claims

for such instances and to then bind them to application workloads.

Create the following Kubernetes resource on your EKS cluster:

clusterinstanceclass.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: aws-rds-postgres

spec:

 description:

 short: AWS RDS instances with a postgresql engine

 pool:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 30

 kind: Secret

 labelSelector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: rds-postgres

Apply it by running:

kubectl apply -f clusterinstanceclass.yaml

In this example, the class states that claimable instances of RDS PostgreSQL are represented by

Secret objects with the label services.apps.tanzu.vmware.com/class set to rds-postgres. A Secret

with this label was created in the earlier step when you provisioned an RDS service instance.

Although this example uses services.apps.tanzu.vmware.com/class, there is no special meaning to

that key. The Service Operator role can choose arbitrary label names and values. They might also

decide to select multiple labels or combine a label selector with a field selector when defining the

ClusterInstanceClass.

After creating a ClusterInstanceClass, you must grant sufficient RBAC permissions to enable

Services Toolkit to read the resources that match the pool definition of the instance class. For this

example, create the following aggregated ClusterRole in your EKS cluster:

stk-secret-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

Apply it by running:

kubectl apply -f stk-secret-reader.yaml

If you want to claim resources across namespace boundaries, you must create a corresponding

ResourceClaimPolicy. For example, if the provisioned RDS PostgreSQL instances exist in the

namespace service-instances, and you want to allow Application Operators to claim them for

workloads residing in the default namespace, create the following ResourceClaimPolicy:

resourceclaimpolicy.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: default-can-claim-rds-postgres

 namespace: service-instances

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 31

spec:

 subject:

 kind: Secret

 group: ""

 selector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: rds-postgres

 consumingNamespaces: ["default"]

Apply it by running:

kubectl apply -f resourceclaimpolicy.yaml

Discover, Claim, and Bind to an RDS

Creating the ClusterInstanceClass and the corresponding RBAC informs Application Operators that

RDS is available to use with their application workloads on Tanzu Application Platform. In this section

you learn how to discover, claim, and bind to the RDS service instance previously created. The

Application Operator is typically the role that discovers and claims service instances. The Application

Developer is typically the role that handles binding.

To discover what service instances are available to them, Application Operators can run

tanzu services classes list

 NAME DESCRIPTION

 aws-rds-postgres AWS RDS instances with a postgresql engine

Here you can see information about the ClusterInstanceClass created in the earlier step. Each

ClusterInstanceClass created is added to the list of classes returned here.

The next step is to claim an instance of the wanted class, but to do that, Application Operators must

first discover the list of currently claimable instances for the class. Many variables, including

namespace boundaries, claim policies, and the exclusivity of claims, affect the capacity to claim

instances. Therefore Services Toolkit provides the CLI command tanzu service claimable list to

help inform Application Operators of the instances that can enable successful claims. Example:

tanzu services claimable list --class aws-rds-postgres

 NAME NAMESPACE API KIND API GROUP/VERSION

 rds-bindable default Secret v1

Because of the setup performed as part of Creating a claimable class for RDS instances, the secrets

created from the SecretTemplate as part of Create an RDS service instance now appear as claimable

to the Application Operator. From here on it is simply a case of creating a resource claim for the

instance and then binding the claim to an application workload.

Create a claim for the newly created secret by running:

tanzu service claim create ack-rds-claim \

 --resource-name rds-bindable \

 --resource-kind Secret \

 --resource-api-version v1

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 32

Obtain the claim reference of the claim by running:

tanzu service claim list -o wide

Verify that the output is similar to the following:

NAME READY REASON CLAIM REF

ack-rds-claim True services.apps.tanzu.vmware.com/v1alpha1:Resourc

eClaim:ack-rds-claim

Create an application workload that consumes the claimed RDS PostgreSQL Database. Example:

tanzu apps workload create my-workload \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

 --git-branch main \

 --git-tag tap-1.2 \

 --type web \

 --label app.kubernetes.io/part-of=spring-petclinic \

 --annotation autoscaling.knative.dev/minScale=1 \

 --env SPRING_PROFILES_ACTIVE=postgres \

 --service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:ack-rds-claim

--service-ref is set to the claim reference obtained previously.

Your application workload now starts up and connects automatically to the RDS service instance. You

can verify this by visiting the app in the browser and, for example, creating a new owner through the

UI.

Prerequisites

Meet these prerequisites to follow along with Consuming AWS RDS on Tanzu Application Platform

(TAP) with AWS Controllers for Kubernetes (ACK).

1. Install the AWS CLI or gain access to the Amazon Cloud Console

2. Gain the AWS privileges required to configure the IAM permissions and identity used by the

ACK service controller for RDS

3. Create an Amazon EKS cluster. The quickest and simplest way to create an EKS cluster is to

use eksctl, as in this example:

eksctl create cluster -r YOUR-REGION -m 6 -M 8 -n YOUR-CLUSTER-NAME --version 1

.22

Note: Using an EKS Kubernetes version of 1.23 or above may require extra configuration

with TAP. See troubleshooting guide.

Note

Create the claim in the same namespace as your workload. If your workload is in a

different namespace to the one currently targeted, add the --namespace flag to the

above command.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 33

https://aws.amazon.com/cli/
https://github.com/aws-controllers-k8s/rds-controller
https://aws.amazon.com/eks/
https://eksctl.io/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-tanzu-build-service-troubleshooting.html?hWord=N4IghgNiBcIKIGkDKIC+Q#builds-fail-due-to-volume-errors-on-eks-running-kubernetes-v123-4

4. Tanzu Application Platform v1.2.0 or later and Cluster Essentials v1.2.0 or later have to be

installed on the Kubernetes cluster.

Note: To check if you have an appropriate version, run the following:

kubectl api-resources | grep secrettemplate

This command returns the SecretTemplate API. If it does not for you, verify that Cluster

Essentials for VMware Tanzu v1.2.0 or later is installed.

5. Install the ACK service controller for RDS and configure it in the cluster. It is recommended

to install the latest stable version of the Operator (v0.0.25 is known to work with this specific

use case). For instructions, see Install an ACK Controller. This entails installing the RDS ACK

service controller, which entails updating some of the environment variables used

throughout the official documentation. In particular, note the following changes:

Set the SERVICE environment variable to rds by running:

export SERVICE=rds

Set the AWS_REGION environment variable to the AWS region where the RDS

instances is created by running:

export AWS_REGION=us-east-1

6. After the operator is installed, configure IAM permissions. Set the following environment

variables accordingly:

Set the SERVICE environment variable to rds by running:

export SERVICE=rds

Set the EKS_CLUSTER_NAME environment variable to the name of your EKS cluster by

running:

export EKS_CLUSTER_NAME=<YOUR_CLUSTER_NAME>

Set the AWS_REGION environment variable to the AWS region where the RDS

instances is created by running:

export AWS_REGION=us-east-1

Configuring the AWS RDS environment

This topic tells you how to configure your AWS environment for Consuming AWS RDS on Tanzu

Application Platform (TAP) with AWS Controllers for Kubernetes (ACK).

Prerequisites

Meet the prerequisites for consuming AWS RDS on Tanzu Application Platform with AWS Controllers

for Kubernetes (ACK), including using eksctl to create an EKS cluster. This procedure entails

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 34

https://github.com/aws-controllers-k8s/rds-controller
https://aws-controllers-k8s.github.io/community/docs/user-docs/install/
https://aws-controllers-k8s.github.io/community/docs/user-docs/irsa/

reusing the resources created when you created the cluster.

You can still create separate VPCs, subnets and security groups if you want. Ensure that these are

configured such that Tanzu Application Platform workloads on EKS can discover and connect to RDS

instances.

Configure the AWS RDS environment

To configure the AWS RDS environment:

1. Use the AWS cloud console to determine the VPC ID of the EKS cluster, or run this

command:

aws eks describe-cluster --name YOUR-CLUSTER-NAME --region YOUR-REGION | \

 jq -r .cluster.resourcesVpcConfig.vpcId

RDS instances must be configured with a subnet group consisting of two or more subnets.

The subnets within the subnet group must adhere to the following rules:

The subnets must be in different availability zones, such as us-west-1a and us-west-

1b.

All subnets must either be public or private, which the MapPublicIpOnLaunch value

reveals.

2. Discover existing subnets within your VPC by using the AWS Cloud console or by running:

aws ec2 describe-subnets --filters "Name=vpc-id,Values=YOUR-VPC-ID" --region YO

UR-REGION | \

 jq -r '.Subnets[] | select(.MapPublicIpOnLaunch == false) | .SubnetId'

3. Create the following Kubernetes resource on your EKS cluster by using the subnet IDs

output:

dbsubnetgroup.yaml

apiVersion: rds.services.k8s.aws/v1alpha1

kind: DBSubnetGroup

metadata:

 name: DB-SUBNET-GROUP-NAME

 namespace: ack-system

spec:

 name: DB-SUBNET-GROUP-NAME

 description: rds-subnet-group

 subnetIDs:

 - SUBNET-ID-1

 - SUBNET-ID-2

 - SUBNET-ID-3

Where DB-SUBNET-GROUP-NAME, SUBNET-ID-1, SUBNET-ID-2, and SUBNET-ID-3 are your own

values.

4. Run

kubectl apply -f dbsubnetgroup.yaml

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 35

5. Confirm that you created DBSubnetGroup by running:

kubectl get DBSubnetGroup -n ack-system DB-SUBNET-GROUP-NAME -o yaml

6. Identify a suitable security group to use for the RDS instance that allows workloads running

on the Tanzu Application Platform cluster to establish a connection. Do so by searching for a

suitable security group within the AWS cloud console, or by running the following command,

which identifies the Communication between all nodes in the cluster security group:

aws ec2 describe-security-groups --filters "Name=vpc-id,Values=YOUR-VPC-ID" --r

egion YOUR-REGION | \

 jq -r '.SecurityGroups[] | select(.Description == "Communication between all

nodes in the cluster").GroupId'

7. Record DB-SUBNET-GROUP-NAME and the security group ID output from the previous

command. You need both when creating RDS instances as part of this use case.

Creating AWS RDS Instances manually using kubectl
(experimental)

This topic is for users who want to understand the underlying APIs involved in making a bindable

service instance using DBInstance and SecretTemplate resources. For a simpler user experience,

see Creating an RDS service instance through a Carvel Package.

Prerequisite

Meet the prerequisites in Consuming AWS RDS on Tanzu Application Platform (TAP) with AWS

Controllers for Kubernetes (ACK) and keep the following information to hand:

DB-SUBNET-GROUP-NAME - the name of the DBSubnetGroup resource previously created

SECURITY-GROUP-ID - the security group ID to use for this RDS instance

Create an RDS service instance by using kubectl

Follow these procedures to create an RDS service instance by using kubectl.

Create the DBInstance resource

This example uses secret-gen to generate a Password for the DBInstance. You can also provide an

explicit password through a Secret.

1. Create Kubernetes resources on your EKS cluster by using the following example. This

YAML creates the DBInstance resource in the default namespace.

dbinstance.yaml

apiVersion: secretgen.k14s.io/v1alpha1

kind: Password

metadata:

 name: rds-psql-password

 namespace: default

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 36

https://github.com/vmware-tanzu/carvel-secretgen-controller/

spec:

 length: 64

 secretTemplate:

 type: Opaque

 stringData:

 password: $(value) # do not edit, this will auto generate a password.

apiVersion: rds.services.k8s.aws/v1alpha1

kind: DBInstance

metadata:

 name: rds-psql-1

 namespace: default

spec:

 allocatedStorage: 20

 dbInstanceClass: db.t3.micro

 dbInstanceIdentifier: rds-psql-1

 dbName: postgres

 engine: postgres

 engineVersion: "14.1"

 masterUsername: adminUser

 masterUserPassword:

 namespace: default

 name: rds-psql-password

 key: password

 vpcSecurityGroupIDs:

 - SECURITY-GROUP-ID # modify value

 dbSubnetGroupName: DB-SUBNET-GROUP-NAME # modify value

 # Note: due to an issue in the RDS ACK controller, it is recommended to explic

itly set the

 # following optional spec fields.

 # default values for the optional fields are provided below.

 # https://github.com/aws-controllers-k8s/community/issues/1346

 autoMinorVersionUpgrade: true

 backupRetentionPeriod: 1

 copyTagsToSnapshot: false

 deletionProtection: false

 licenseModel: postgresql-license

 monitoringInterval: 0

 multiAZ: false

 preferredBackupWindow: 23:00-23:30

 preferredMaintenanceWindow: wed:23:34-thu:00:04

 publiclyAccessible: false

 storageEncrypted: false

 storageType: gp2

Where:

DB-SUBNET-GROUP-NAME is the name of the DBSubnetGroup resource previously created

SECURITY-GROUP-ID is the security group ID to use for this RDS instance

2. Run:

kubectl apply -f dbinstance.yaml

3. Verify the creation status of the DBInstance by inspecting the conditions in the Kubernetes

API. To do so, run:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 37

kubectl get DBInstance rds-psql-1 -o yaml -n default

Create a Binding Specification Compatible Secret

As mentioned in Creating service instances that are compatible with Tanzu Application Platform, for

Tanzu Application Platform workloads to be able to claim and bind to services such as RDS, a

resource compatible with Service Binding Specification must exist in the cluster.

This can take the form of either a ProvisionedService or a Kubernetes Secret with some known

keys. Both are defined in the specification.

The RDS DBInstance you created does not adhere to ProvisionedService and does not create a

spec-compatible secret. So, you must create one using the resources you have available.

In this topic, you create a Kubernetes secret in the necessary format using the secret-gen tooling.

You do so by using the SecretTemplate API to extract values from the DBInstance resource and

populate a new spec-compatible secret with the values.

Create a ServiceAccount for secret templating

As part of using the SecretTemplate API, a Kubernetes ServiceAccount must be provided. The

ServiceAccount is used for reading the DBInstance resource and the Secret created from the

Password resource.

1. Create the following Kubernetes resources on your EKS cluster:

secrettemplate-sa.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: rds-resources-reader

 namespace: default

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: rds-resources-reading

 namespace: default

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

 resourceNames:

 - rds-psql-password

- apiGroups:

 - rds.services.k8s.aws

 resources:

 - dbinstances

 verbs:

 - get

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 38

https://github.com/servicebinding/spec
https://github.com/vmware-tanzu/carvel-secretgen-controller/

 - list

 - watch

 resourceNames:

 - rds-psql-1

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: rds-resources-reader-to-read

 namespace: default

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: rds-resources-reading

subjects:

 - kind: ServiceAccount

 name: rds-resources-reader

 namespace: default

2. Run:

kubectl apply -f secrettemplate-sa.yaml

Create a SecretTemplate

In combination with the ServiceAccount you created, a SecretTemplate can be used to declaratively

create a secret that is compatible with the service binding specification.

The .spec.inputResources fields list the resources with information needed to create the secret. The

.spec.template field defines how that information is interpolated as a secret.

To specify fields on an input resource, you can use JSONPath syntax that is very similar to kubectl

syntax. The only difference is the delimiters, which are \$(and) instead of { and }.

For example, $(.rds.status.endpoint.address) produces the host address of an RDS instance if

the input resource is an ACK controller DBInstance resource.

This syntax can currently be used in the following fields of the SecretTemplate API:

.spec.inputResource[].ref.name for dynamically loading input resources of the APIs of

input resources previously in the list

.spec.template values for taking values from the input resources and interpolating them into

the secret you create

In this case, you directly reference the DBInstance resource and then dynamically load the secret

containing the password from its specification.

You then create a Secret conforming to the Postgres auto-configuration for Spring Cloud Bindings

to enable a fully automated, end-to-end binding experience for application workloads on Tanzu

Application Platform.

1. Create the following Kubernetes resources on your EKS cluster:

bindable-rds-secrettemplate.yaml

apiVersion: secretgen.carvel.dev/v1alpha1

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 39

https://github.com/spring-cloud/spring-cloud-bindings#postgresql-rdbms

kind: SecretTemplate

metadata:

 name: rds-bindable

 namespace: default

spec:

 serviceAccountName: rds-resources-reader

 inputResources:

 - name: rds

 ref:

 apiVersion: rds.services.k8s.aws/v1alpha1

 kind: DBInstance

 name: rds-psql-1

 - name: creds

 ref:

 apiVersion: v1

 kind: Secret

 name: "$(.rds.spec.masterUserPassword.name)"

template:

 metadata:

 labels:

 app.kubernetes.io/component: rds-postgres

 app.kubernetes.io/instance: "$(.rds.metadata.name)"

 services.apps.tanzu.vmware.com/class: rds-postgres

 type: postgresql

 stringData:

 type: postgresql

 port: "$(.rds.status.endpoint.port)"

 database: "$(.rds.spec.dbName)"

 host: "$(.rds.status.endpoint.address)"

 username: "$(.rds.spec.masterUsername)"

 data:

 password: "$(.creds.data.password)"

2. Run:

kubectl apply -f bindable-rds-secrettemplate.yaml

Verify

Find the name of the secret produced by reading the status of SecretTemplate. To do so, run:

kubectl get secrettemplate -n default rds-bindable -o jsonpath="{.status.secret.name}"

Delete an RDS service instance

Delete an RDS service instance by running:

kubectl delete DBInstance rds-psql-1 -n default

kubectl delete SecretTemplate rds-bindable -n default

kubectl delete Password rds-psql-password -n default

kubectl delete ServiceAccount rds-resources-reader -n default

kubectl delete RoleBinding rds-resources-reader-to-read -n default

kubectl delete Role rds-resources-reading -n default

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 40

Summary and Next Steps

You learned how to use Carvel’s SecretTemplate API to construct a secret that is compatible with the

binding specification to create an AWS RDS service instance.

Now that you have this available in the cluster, you can learn how to make use of it by continuing

where you left off in Consuming AWS RDS on Tanzu Application Platform (TAP) with AWS

Controllers for Kubernetes (ACK).

Creating AWS RDS instances by using a Carvel package
(experimental)

This topic describes how to create, update, and delete RDS service instances by using a Carvel

package. For a more detailed and low-level alternative procedure, see Creating AWS RDS Instances

manually by using kubectl.

Prerequisite

Meet the prerequisites in Consuming AWS RDS on Tanzu Application Platform (TAP) with AWS

Controllers for Kubernetes (ACK).

The package repository and service instance package bundles for this topic are in the tanzu-

application-platform-reference-packages GitHub repository.

Create an RDS service instance using a Carvel package

Follow the steps in the following procedures.

Add a reference package repository to the in the cluster

To add a reference package repository to the in the cluster:

1. Use the Tanzu CLI to add the new Service Reference packages repository by running:

tanzu package repository add tap-service-reference-packages --url ghcr.io/vmwar

e-tanzu/tanzu-application-platform-reference-packages/tap-service-reference-pac

kage-repo:0.0.1 -n tanzu-package-repo-global

2. Use the following example to create a ServiceAccount that you use to provision

PackageInstall resources. The namespace of this ServiceAccount must match the

namespace of the tanzu package install command in the next step.

rds-service-account-installer.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: rds-install

 namespace: default

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 41

https://github.com/vmware-tanzu/tanzu-application-platform-reference-service-packages

metadata:

 name: rds-install

 namespace: default

rules:

- apiGroups: ["*"] # TODO: use more fine-grained RBAC permissions

 resources: ["*"]

 verbs: ["*"]

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: rds-install

 namespace: default

subjects:

- kind: ServiceAccount

 name: rds-install

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: rds-install

3. Run:

kubectl apply -f rds-service-account-installer.yaml

Create an RDS service instance through the Tanzu CLI

To create an RDS service instance through the Tanzu CLI:

1. Create the following Kubernetes resources on your EKS cluster:

RDS-INSTANCE-NAME-values.yaml

name: "RDS-INSTANCE-NAME"

namespace: "default"

dbSubnetGroupName: "DB-SUBNET-GROUP-NAME"

vpcSecurityGroupIDs:

- "SECURITY-GROUP-ID"

Where:

RDS-INSTANCE-NAME is a chosen name for the RDS instance to create

DB-SUBNET-GROUP-NAME is the name of the DBSubnetGroup resource previously created

SECURITY-GROUP-ID is the security group ID to use for this RDS instance

2. Use the Tanzu CLI to install an instance of the reference service instance Package by

running:

tanzu package install RDS-INSTANCE-NAME --package-name psql.aws.references.serv

ices.apps.tanzu.vmware.com --version 0.0.1-alpha --service-account-name rds-ins

tall -f RDS-INSTANCE-NAME-values.yaml -n default

You can install the psql.aws.references.services.apps.tanzu.vmware.com package multiple times

to produce multiple RDS service instances.

To do so, prepare a separate RDS-INSTANCE-NAME-values.yaml file and then install the package with a

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 42

different name and the earlier mentioned separate data values file for each RDS service instance.

Verify

To verify:

1. Verify the creation status for the RDS instance by inspecting the conditions in the Kubernetes

API. To do so, run:

kubectl get DBInstance RDS-INSTANCE-NAME -n default -o yaml

2. Wait for up to 20 minutes.

3. Find the binding-compliant secret that PackageInstall produced by running:

kubectl get secrettemplate RDS-INSTANCE-NAME-bindable -n default -o jsonpath="{

.status.secret.name}"

Delete an RDS service instance

Delete the RDS service instance by running:

tanzu package installed delete RDS-INSTANCE-NAME -n default

Summary

You learned how to use Carvel’s Package and PackageInstall APIs to create an RDS service

instance. To learn more about the pieces that comprise this service instance package, see Create an

RDS service instance manually.

Now that you have an RDS service instance in the cluster, you can learn how to make use of it by

continuing from where you left off in Consuming AWS RDS on Tanzu Application Platform (TAP) with

AWS Controllers for Kubernetes (ACK).

Consuming AWS RDS on Tanzu Application Platform with
Crossplane

Overview

This topic describes how to use Services Toolkit to enable Tanzu Application Platform workloads to

consume AWS RDS PostgreSQL databases.

This topic makes use of Crossplane to manage RDS instances in AWS. It is an alternative approach to

using the AWS Controllers for Kubernetes (ACK) to achieve the same outcomes.

Note: This usecase is not currently compatible with TAP air-gapped installations.

Prerequisites

Meet these prerequisites:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 43

https://crossplane.io
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-prerequisites.html

Create a Kubernetes cluster that supports running both Tanzu Application Platform and

Crossplane

Install Tanzu Application Platform on the Kubernetes cluster

Gain access to an AWS account with permissions to manage RDS database instances

Install AWS CLI

Configure a named profile for an AWS account that has permissions to manage RDS

databases.

Install Crossplane

Note: For the latest steps for installing Crossplane, see these instructions. For the instructions in this

topic, it is important to enable support for external secret stores in Crossplane. This is currently an

Alpha feature. As such, you will have to explicitly set command line flag --enable-external-secret-

stores when starting the Crossplane controller.

Run the following commands to install Crossplane to your existing Kubernetes cluster:

kubectl create namespace crossplane-system

helm repo add crossplane-stable https://charts.crossplane.io/stable

helm repo update

helm install crossplane --namespace crossplane-system crossplane-stable/crossplane \

 --set 'args={--enable-external-secret-stores}'

For this topic, you do not need to install the Crossplane CLI or any additional configuration package.

Install AWS Provider for Crossplane

To install the AWS Provider for Crossplane:

1. Run:

kubectl apply -f -<<EOF

apiVersion: pkg.crossplane.io/v1

kind: Provider

metadata:

 name: provider-aws

spec:

 package: xpkg.upbound.io/crossplane-contrib/provider-aws:v0.33.0

EOF

2. After installing the provider, you see a new rdsinstances.database.aws.crossplane.io API

resource available in your Kubernetes cluster. See the health of the installed provider by

running:

kubectl get provider.pkg.crossplane.io provider-aws

Configure AWS provider

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 44

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-prerequisites.html
https://crossplane.io/docs/v1.9/reference/install.html#pre-requisites
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://crossplane.io/docs/v1.9/getting-started/install-configure.html#install-tab-helm3
https://github.com/crossplane/crossplane/blob/master/design/design-doc-external-secret-stores.md
https://marketplace.upbound.io/providers/crossplane/provider-aws/v0.24.1

To configure an AWS provider:

1. Ensure you are logged into using the aws cli and can view db instances.

AWS_PROFILE=default && aws rds describe-db-instances --region us-east-1 --profi

le $AWS_PROFILE

If your AWS profile is not named default, change AWS_PROFILE to the actual name.

2. Create a new key file:

AWS_PROFILE=default && echo -e "[default]\naws_access_key_id = $(aws configure

get aws_access_key_id --profile $AWS_PROFILE)\naws_secret_access_key = $(aws co

nfigure get aws_secret_access_key --profile $AWS_PROFILE)\naws_session_token =

$(aws configure get aws_session_token --profile $AWS_PROFILE)" > creds.conf

If your AWS profile is not named default, change AWS_PROFILE to the actual name.

3. Verify that you a created a new key file by reading the content of the newly created

creds.conf file.

4. Create a new secret from the key file by running:

kubectl create secret generic aws-provider-creds -n crossplane-system --from-fi

le=creds=./creds.conf

5. Delete the key file by running:

rm -f creds.conf

6. Configure the AWS provider to use the newly created secret by running:

kubectl apply -f -<<EOF

apiVersion: aws.crossplane.io/v1beta1

kind: ProviderConfig

metadata:

 name: default

spec:

 credentials:

 source: Secret

 secretRef:

 namespace: crossplane-system

 name: aws-provider-creds

 key: creds

EOF

Define composite resource types

Now that the AWS provider for Crossplane is installed and configured, you can create a new

CompositeResourceDefinition (XRD) and corresponding Composition representing individual

instances of RDS PostgreSQL by following the steps in this section. For more information about

these concepts see the Crossplane composition documentation.

Instead of creating your own custom XRD and composition, you can also install an existing

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 45

https://crossplane.io/docs/v1.9/concepts/composition.html
https://marketplace.upbound.io/configurations?packageAccount=crossplane&packageName=provider-aws&packageVersion=v0.24.1&query=aws

Crossplane configuration package for AWS that includes pre-configured XRDs and compositions for

RDS.

The primary reason for choosing to create a new XRD and composition is to ensure the connection

secrets for newly provisioned RDS PostgreSQL instances support the Service Binding Specification

for Kubernetes and automatic Spring Boot configuration using Spring Cloud Bindings.

1. Create a new XRD by running:

kubectl apply -f -<<EOF

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

 name: xpostgresqlinstances.bindable.database.example.org

spec:

 claimNames:

 kind: PostgreSQLInstance

 plural: postgresqlinstances

 connectionSecretKeys:

 - type

 - provider

 - host

 - port

 - database

 - username

 - password

 group: bindable.database.example.org

 names:

 kind: XPostgreSQLInstance

 plural: xpostgresqlinstances

 versions:

 - name: v1alpha1

 referenceable: true

 schema:

 openAPIV3Schema:

 properties:

 spec:

 properties:

 parameters:

 properties:

 storageGB:

 type: integer

 required:

 - storageGB

 type: object

 required:

 - parameters

 type: object

 type: object

 served: true

EOF

After the newly created XRD is reconciled there are two new API resources available in your

Kubernetes cluster, xpostgresqlinstances.bindable.database.example.org and

postgresqlinstances.bindable.database.example.org.

2. Create a corresponding composition by running:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 46

https://marketplace.upbound.io/configurations?packageAccount=crossplane&packageName=provider-aws&packageVersion=v0.24.1&query=aws
https://github.com/servicebinding/spec
https://github.com/spring-cloud/spring-cloud-bindings#postgresql-rdbms

kubectl apply -f -<<EOF

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

 labels:

 provider: "aws"

 vpc: "default"

 name: xpostgresqlinstances.bindable.aws.database.example.org

spec:

 compositeTypeRef:

 apiVersion: bindable.database.example.org/v1alpha1

 kind: XPostgreSQLInstance

 publishConnectionDetailsWithStoreConfigRef:

 name: default

 resources:

 - base:

 apiVersion: database.aws.crossplane.io/v1beta1

 kind: RDSInstance

 spec:

 forProvider:

 dbInstanceClass: db.t2.micro

 engine: postgres

 dbName: postgres

 engineVersion: "12" engineVersion: "12"

 masterUsername: masteruser

 publiclyAccessible: true

 region: us-east-1

 skipFinalSnapshotBeforeDeletion: true

 writeConnectionSecretToRef:

 namespace: crossplane-system

 connectionDetails:

 - name: type

 value: postgresql

 - name: provider

 value: aws

 - name: database

 value: postgres

 - fromConnectionSecretKey: username

 - fromConnectionSecretKey: password

 - name: host

 fromConnectionSecretKey: endpoint

 - fromConnectionSecretKey: port

 name: rdsinstance

 patches:

 - fromFieldPath: metadata.uid

 toFieldPath: spec.writeConnectionSecretToRef.name

 transforms:

 - string:

 fmt: '%s-postgresql'

 type: Format

 type: string

 type: FromCompositeFieldPath

 - fromFieldPath: spec.parameters.storageGB

 toFieldPath: spec.forProvider.allocatedStorage

 type: FromCompositeFieldPath

EOF

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 47

This composition ensures that all RDS PostgreSQL instances are placed in the us-east-1

region and use the default VPC for the respective AWS account.

3. Take one of these actions:

Connect to those instances from outside the default VPC by assigning an appropriate

inbound rule for TCP on port 5432 to the security group of that VPC.

Define a composition that creates a separate VPC for each RDS PostgreSQL instance

and automatically configures inbound rules. See this example.

Provision RDS PostgreSQL instance

As the service operator persona, you now provision an instance of RDS PostgreSQL using the

postgresqlinstances.bindable.database.example.org API managed by the XRD you previously

created.

.spec.publishConnectionDetailsTo provides Crossplane with the name and a label for the secret

that stores the connection details for the newly created database.

1. Create an RDS database instance in your AWS account by running:

kubectl apply -f -<<EOF

apiVersion: bindable.database.example.org/v1alpha1

kind: PostgreSQLInstance

metadata:

 name: rds-postgres-db

 namespace: default

spec:

 parameters:

 storageGB: 20

 compositionSelector:

 matchLabels:

 provider: aws

 vpc: default

 publishConnectionDetailsTo:

 name: rds-postgres-db

 metadata:

 labels:

 services.apps.tanzu.vmware.com/class: rds-postgres

EOF

Caution

If you are planning to create this resource using Namespace Provisioner,

then you must take steps to prevent the Namespace Provisioner from

overwriting changes that get written to the PostgreSQLInstance resource by

Crossplane as part of its reconciliation loop. One way of achieving that is to

append the following kapp Config rebaseRules to the same file as the

PostgreSQLInstance in your gitops repository. For example, the following

Config rebase rules will prevent Namespace Provisioner from overwriting

Crossplane’s updates to the .spec field.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 48

https://marketplace.upbound.io/configurations/xp/getting-started-with-aws-with-vpc/v1.9.0/compositions/vpcpostgresqlinstances.aws.database.example.org/database.example.org/XPostgreSQLInstance
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-about.html

apiVersion: kapp.k14s.io/v1alpha1

kind: Config

rebaseRules:

- path: [spec]

 type: copy

 sources: [existing]

 resourceMatchers:

 - apiVersionKindMatcher: {apiVersion: bindable.database.example.org/v1alpha1,

 kind: PostgreSQLInstance}

This additional configuration is not required if you create the PostgreSQLInstance manually.

2. Verify that you created the RDS database instance by running:

aws rds describe-db-instances --region us-east-1 --profile default

Expect the status of the newly created PostgreSQLInstance resource to be READY=True. This

might take a few minutes. You can wait for this by running:

kubectl wait --for=condition=Ready=true postgresqlinstances.bindable.database.e

xample.org rds-postgres-db

As soon as the RDS PostgreSQL instance is ready, it is claimable by the application operator persona

as shown in the next sections.

Create an instance class

To make instances of a service easy for application operators to discover and claim, the service

operator persona creates a ClusterInstanceClass. In this example, the class states that claimable

instances of RDS PostgreSQL are represented by secret objects of type

connection.crossplane.io/v1alpha1 with the label services.apps.tanzu.vmware.com/class set to

rds-postgres:

kubectl apply -f -<<EOF

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: rds-postgres

spec:

 description:

 short: AWS RDS Postgresql database instances

 pool:

 kind: Secret

 labelSelector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: rds-postgres

 fieldSelector: type=connection.crossplane.io/v1alpha1

EOF

In addition, grant RBAC permissions to Services Toolkit to enable reading the secrets specified by

the class.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 49

kubectl apply -f -<<EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

EOF

Provision RDS PostgreSQL instance

As the service operator persona, you now provision an instance of RDS PostgreSQL using the

postgresqlinstances.bindable.database.example.org API managed by the XRD you previously

created.

.spec.publishConnectionDetailsTo provides Crossplane with the name and a label for the secret

that stores the connection details for the newly created database. You can see that the label

specified here matches the drop-down menu value defined in the ClusterInstanceClass you

created earlier.

1. Create an RDS database instance in your AWS account by running:

kubectl apply -f -<<EOF

apiVersion: bindable.database.example.org/v1alpha1

kind: PostgreSQLInstance

metadata:

 name: rds-postgres-db

 namespace: default

spec:

 parameters:

 storageGB: 20

 compositionSelector:

 matchLabels:

 provider: aws

 vpc: default

 publishConnectionDetailsTo:

 name: rds-postgres-db

 metadata:

 labels:

 services.apps.tanzu.vmware.com/class: rds-postgres

EOF

2. Verify that you created the RDS database instance by running:

aws rds describe-db-instances --region us-east-1 --profile default

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 50

Expect the status of the newly created PostgreSQLInstance resource to be READY=True. This

might take a few minutes. You can wait for this by running:

kubectl wait --for=condition=Ready=true postgresqlinstances.bindable.database.e

xample.org rds-postgres-db

As soon as the RDS PostgreSQL instance is ready, it is claimable by the application operator persona

as shown in the next section.

Claim the RDS PostgreSQL instance and connect to it from
the Tanzu Application Platform workload

Thanks to the ClusterInstanceClass created in the earlier section, application operators can now

use the Tanzu CLI to discover and claim secrets representing RDS PostgreSQL instances.

1. Show available classes of service instances by running:

tanzu service classes list

NAME DESCRIPTION

rds-postgres AWS RDS Postgresql database instances

2. Show claimable instances belonging to the RDS PostgreSQL class by running:

tanzu services claimable list --class rds-postgres

NAME NAMESPACE API KIND API GROUP/VERSION

rds-postgres-db default Secret v1

3. Create a claim for the discovered secret by running:

tanzu service claim create rds-claim \

--resource-name rds-postgres-db \

--resource-kind Secret \

--resource-api-version v1

4. Obtain the claim reference by running:

tanzu service claim list -o wide

Expect to see the following output:

NAME READY REASON CLAIM REF

rds-claim True services.apps.tanzu.vmware.com/v1alpha1

Note

Create the claim in the same namespace as your workload. If your workload

is in a different namespace to the one currently targeted, add the --

namespace flag to the above command.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 51

:ResourceClaim:rds-claim

5. Create an application workload that consumes the claimed RDS PostgreSQL database. In this

example, --service-ref is set to the claim reference obtained earlier.

tanzu apps workload create my-workload \

--git-repo https://github.com/sample-accelerators/spring-petclinic \

--git-branch main \

--git-tag tap-1.2 \

--type web \

--label app.kubernetes.io/part-of=spring-petclinic \

--annotation autoscaling.knative.dev/minScale=1 \

--env SPRING_PROFILES_ACTIVE=postgres \

--service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:rds-clai

m

Consuming Azure Flexible Server Tanzu Application Platform

This section of the documentation covers integrations of Azure Flexible Server into Tanzu

Application Platform. Documentation is provided for both an integration using Azure Service

Operator (ASO), as well as an integration using Crossplane.

Consuming Azure Flexible Server for PostgreSQL on Tanzu
Application Platform with Azure Service Operator (ASO)

This topic describes using Services Toolkit to allow Tanzu Application Platform workloads to consume

Azure Flexible Server PostgreSQL. This particular topic makes use of Azure Service Operator v2 to

manage PostgreSQL instances in Azure.

Important: This use case is not currently compatible with air-gapped Tanzu Application Platform

installations.

Prerequisites

Meet these prerequisites

Create service instances that are compatible with Tanzu
Application Platform

To create an Azure PostgreSQL service instance for Tanzu Application Platform to consume, you

can use a ready-made, reference Carvel package. The Service Operator typically performs this step.

Follow the steps in Creating an Azure PostgreSQL service instance using a Carvel package.

$ kubectl api-resources --api-group=dbforpostgresql.azure.com

NAME SHORTNAMES APIVERSION

 NAMESPACED KIND

flexibleservers dbforpostgresql.azure.com/v1beta20210601

 true FlexibleServer

flexibleserversconfigurations dbforpostgresql.azure.com/v1beta20210601

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 52

https://github.com/Azure/azure-service-operator/tree/main/v2

 true FlexibleServersConfiguration

flexibleserversdatabases dbforpostgresql.azure.com/v1beta20210601

 true FlexibleServersDatabase

flexibleserversfirewallrules dbforpostgresql.azure.com/v1beta20210601

 true FlexibleServersFirewallRule

There is also the Resource Group, which is in another API group.

$ kubectl api-resources --api-group=resources.azure.com

NAME SHORTNAMES APIVERSION NAMESPACED KIND

resourcegroups resources.azure.com/v1beta20200601 true Resour

ceGroup

To create an Azure PostgreSQL service instance for Tanzu Application Platform to consume, you

can use a ready-made, reference Carvel package. The Service Operator typically performs this step.

Follow the steps in Creating an Azure PostgreSQL service instance using a Carvel package.

Alternatively, if you are interested in authoring your own reference package and want to learn about

the underlying APIs and how they come together to produce a useable service instance for Tanzu

Application Platform, you can achieve the same outcome by using the more advanced Creating an

Azure PostgreSQL service instance manually topic.

After creating a running Azure PostgreSQL service instance, return here to continue the use case.

Create a service instance class for PSQL

After creating Flexible Server service instances, you must make it possible for application operators

to discover them. The service operator role typically performs this step.

You can use Services Toolkit’s ClusterInstanceClass API to create a service instance class that

represents psql service instances within the cluster. The existence of such classes enables

application operators to discover logical service instances. This, in turn, enables application operators

to create Resource Claims for such instances and to then bind them to application workloads.

Create the following Kubernetes resource on your AKS cluster by running:

cat <<EOF | kubectl apply -f -

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: azure-postgres

spec:

 description:

 short: Azure Flexible Server instances with a postgresql engine

 pool:

 kind: Secret

 labelSelector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: azure-postgres

EOF

In this particular example, the class represents claimable instances of PostgreSQL by a Secret object

with the label services.apps.tanzu.vmware.com/class set to azure-postgres.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 53

In addition, you must grant RBAC permissions to Services Toolkit for reading the secrets that the

class specifies. Create the following RBAC on your AKS cluster by running:

cat <<EOF | kubectl apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

EOF

To claim resources across namespace boundaries, create a corresponding ResourceClaimPolicy.

For example, if the provisioned Azure Flexible Server instance exists in the namespace service-

instances, and you want to allow application operators to claim them for workloads residing in the

default namespace, you must create the following ResourceClaimPolicy by running:

cat <<EOF | kubectl apply -f -

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: default-can-claim-azure-postgres

 namespace: service-instances

spec:

 subject:

 kind: Secret

 group: ""

 selector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: azure-postgres

 consumingNamespaces: ["default"]

EOF

Discover, Claim, and Bind to a PostgreSQL

Creating the ClusterInstanceClass and the corresponding RBAC informs application operators that

Azure PostgreSQL is available to use with their application workloads on Tanzu Application Platform.

This section describes how to discover, claim, and bind to the PostgreSQL service instance

previously created.

Discovering and claiming service instances is typically the responsibility of the application operator

role. Binding is typically an action for application developers.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 54

To discover which service instances are available to them, application operators can run:

tanzu services classes list

NAME DESCRIPTION

azure-postgres Azure Flexible Server instances with a postgresql engine

You can see information about the ClusterInstanceClass created in the earlier step. Each

ClusterInstanceClass created is added to the list of classes.

Next, the application operator claims an instance of the class they want. But to do that the application

operator must first discover the list of currently claimable instances for the class.

Many variables affect the capacity to claim instances, including namespace boundaries, claim

policies, and the exclusivity of claims. Therefore, Services Toolkit provides the CLI command tanzu

service claimable list to help inform application operators of the instances that can cause

successful claims.

Example:

tanzu services claimable list --class azure-postgres

 NAME NAMESPACE API KIND API GROUP/VERSION

 aso-psql-bindable default Secret v1

Create a claim for the newly created secret by running:

tanzu services claim create aso-psql-claim \

 --resource-name aso-psql-bindable \

 --resource-kind Secret \

 --resource-api-version v1

Obtain the claim reference of the claim by running:

tanzu services claim list -o wide

Verify the output is similar to the following:

NAME READY REASON CLAIM REF

aso-psql-claim True services.apps.tanzu.vmware.com/v1alpha1:Resourc

eClaim:aso-psql-claim

Test claim With Tanzu Application Platform workload

Create an application workload that consumes the claimed Azure PostgreSQL database by running:

tanzu apps workload create my-workload

Example:

tanzu apps workload create my-workload \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

 --git-tag tap-1.2 \

 --type web \

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 55

 --label app.kubernetes.io/part-of=spring-petclinic \

 --annotation autoscaling.knative.dev/minScale=1 \

 --env SPRING_PROFILES_ACTIVE=postgres \

 --service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:aso-psql-clai

m

--service-ref is set to the claim reference obtained previously.

Your application workload starts and connects automatically to the Azure PostgreSQL service

instance. You can verify this by visiting the app in the browser and, for example, creating a new

owner through the UI.

Delete a PostgreSQL service instance

To delete the Azure PostgreSQL service instance, run the appropriate cleanup commands for how

you created the service.

Delete a PostgreSQL service instance by using a Carvel package

tanzu package installed delete demo-psql-instance

Delete a PostgreSQL service instance by using kubectl

Delete the Azure PostgreSQL service instance by running:

kubectl delete flexibleservers.dbforpostgresql.azure.com aso-psql

kubectl delete flexibleserversfirewallrules.dbforpostgresql.azure.com aso-psql

kubectl delete flexibleserversdatabases.dbforpostgresql.azure.com aso-psql

kubectl delete SecretTemplate aso-psql-bindable

kubectl delete Password aso-psql

kubectl delete ServiceAccount aso-psql-reader

kubectl delete RoleBinding aso-psql-reader-to-read

kubectl delete Role aso-psql-reading

Troubleshooting Azure Service Operator

Azure Service Operator is still in beta and doesn’t always behave as expected. For help with most

common scenarios, see Troubleshooting.

Prerequisites

To follow the procedures in Consuming Azure Flexible Server for PostgreSQL on Tanzu Application

Platform with Azure Service Operator (ASO) you need:

An Azure AKS Kubernetes cluster

This cluster should have a Paid SKU tier. Using the Free tier may cause resource

limitation issues.

Tanzu Application Platform v1.2.0 or later

Azure Service Operator (ASO) installed on the cluster

If you do not already have a cluster that meets these requirements, you can follow this procedure to

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 56

https://learn.microsoft.com/en-us/azure/aks/uptime-sla
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html
https://github.com/Azure/azure-service-operator/tree/main/v2#installation

create and configure a cluster:

1. Install the Azure CLI. For how to do so, see the Microsoft documentation.

2. Ensure that you are logged in to Azure by running:

az login

3. Create an Azure Kubernetes Service (AKS) cluster. The quickest and simplest way to create

an AKS cluster is to use the Azure CLI, as in the following example that creates a new

ResourceGroup and AKS cluster:

Name of the resource group to contain the AKS cluster

RESOURCE_GROUP_NAME=tap-psql-demo

Location of the Cluster

LOCATION=centralus

Cluster name

CLUSTER_NAME=tap-psql-demo-cluster

Arbitrary labels for the cluster

LABELS="key=value key2=value2"

Number of k8s nodes

NODES=2

az group create --name "${RESOURCE_GROUP_NAME}" --location "${LOCATION}"

az aks create -g "${RESOURCE_GROUP_NAME}" -n "${CLUSTER_NAME}" --enable-managed

-identity --node-count "${NODES}" --enable-addons monitoring --tags "${LABELS}"

 -s Standard_DS3_v2 --generate-ssh-keys --uptime-sla

az aks get-credentials --resource-group "${RESOURCE_GROUP_NAME}" --name "${CLUS

TER_NAME}"

Note: This creates an AKS cluster with a paid tier using the --uptime-sla flag. Not setting this

flag will cause the Kubernetes Control plane to potentially have resource limitation issues.

See https://learn.microsoft.com/en-us/azure/aks/quotas-skus-regions#service-quotas-and-

limits

For more information about AKS, see the Microsoft documentation.

4. Install Tanzu Application Platform v1.2.0 or later and Cluster Essentials v1.2.0 or later on the

Kubernetes cluster. For more information, see Installing Tanzu Application Platform

5. Verify that you have the appropriate versions by running:

kubectl api-resources | grep secrettemplate

This command returns the SecretTemplate API. If it does not work for you, you might not

have Cluster Essentials for VMware Tanzu v1.2.0 or later installed.

6. Install the Azure Service Operator (ASO) and configure it in the cluster. You must have the

appropriate permission in Azure to create a service principal and configure Azure access.

v2.0.0-beta.2 is known to work with this use case. Install the latest stable version of the

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 57

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install-intro.html
https://github.com/Azure/azure-service-operator/tree/main/v2#installation

operator by running:

AZURE_TENANT_ID=$(az account show | jq -r '.tenantId')

AZURE_SUBSCRIPTION_ID=$(az account show | jq -r '.id')

az ad sp create-for-rbac -n tap-azure-service-operator --role contributor \

--scopes /subscriptions/"${AZURE_SUBSCRIPTION_ID}" > /tmp/aso-creds.json

AZURE_CLIENT_ID=$(cat /tmp/aso-creds.json | jq -r '.appId')

AZURE_CLIENT_SECRET=$(cat /tmp/aso-creds.json | jq -r '.password')

rm -f /tmp/aso-creds.json

requires carvel kapp v0.46+

kapp deploy -a aso -f https://github.com/Azure/azure-service-operator/releases/

download/v2.0.0-beta.2/azureserviceoperator_v2.0.0-beta.2.yaml -y --wait=false

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: aso-controller-settings

 namespace: azureserviceoperator-system

stringData:

 AZURE_SUBSCRIPTION_ID: "${AZURE_SUBSCRIPTION_ID}"

 AZURE_TENANT_ID: "${AZURE_TENANT_ID}"

 AZURE_CLIENT_ID: "${AZURE_CLIENT_ID}"

 AZURE_CLIENT_SECRET: "${AZURE_CLIENT_SECRET}"

EOF

kubectl wait deployment -n azureserviceoperator-system -l app=azure-service-ope

rator-v2 --for=condition=Available=True

Next Steps

See Consuming Azure Flexible Server for PostgreSQL on Tanzu Application Platform with Azure

Service Operator (ASO).

Creating Azure PostgreSQL Instances manually using kubectl
(experimental)

This topic describes how to use Services Toolkit to allow Tanzu Application Platform workloads to

consume Azure Flexible Server PostgreSQL. This particular topic makes use of Azure Service

Operator v2 to manage PostgreSQL instances in Azure.

Create a resource group

First of all, a ResourceGroup for all PSQL Instances to reside in will be created:

cat <<EOF | kubectl apply -f -

apiVersion: resources.azure.com/v1beta20200601

kind: ResourceGroup

metadata:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 58

https://github.com/Azure/azure-service-operator/tree/main/v2

 name: aso-psql

spec:

 location: centralus

EOF

Create a Flexible Server service instance

Next, you will create a Flexible Server PSQL Instance, a Database and a Firewall Rule in Azure as

well as a Secret for credentials. In this guide you will leverage the Password API from Carvel’s

secretgen controller, which will create the Secrets for you. However, any other mechanism to

manage those secrets works too.

Change the .spec.azureName of the FlexibleServer resource below from “aso-psql” to something

unique, using only lowercase letters, digits and hyphens. This avoids naming conflicts as Azure has a

global naming namespace and this resource may already exist.

cat <<'EOF' | kubectl apply -f -

apiVersion: secretgen.k14s.io/v1alpha1

kind: Password

metadata:

 name: aso-psql

spec:

 length: 64

 secretTemplate:

 type: Opaque

 stringData:

 password: $(value)

apiVersion: dbforpostgresql.azure.com/v1beta20210601

kind: FlexibleServersDatabase

metadata:

 name: aso-psql

spec:

 azureName: mydb

 owner:

 name: aso-psql

 charset: utf8

apiVersion: dbforpostgresql.azure.com/v1beta20210601

kind: FlexibleServersFirewallRule

metadata:

 name: aso-psql

spec:

 owner:

 name: aso-psql

 startIpAddress: 0.0.0.0 #! only allow traffic from azure. See https://docs.microsoft

.com/en-us/azure/postgresql/single-server/concepts-firewall-rules#connecting-from-azur

e. Warning not for production use.

 endIpAddress: 0.0.0.0

apiVersion: dbforpostgresql.azure.com/v1beta20210601

kind: FlexibleServer

metadata:

 name: aso-psql

spec:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 59

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/password.md

 location: centralus

 azureName: aso-psql #! CHANGE THIS NAME

 owner:

 name: aso-psql #! the ResourceGroup above

 version: "13" #! only 11,12,13 supported

 sku:

 name: Standard_D4s_v3

 tier: GeneralPurpose

 administratorLogin: myAdmin

 administratorLoginPassword:

 name: aso-psql

 key: password

 storage:

 storageSizeGB: 128

EOF

Create a Binding Specification Compatible Secret

As mentioned in Creating service instances that are compatible with Tanzu Application Platform, in

order for Tanzu Application Platform workloads to be able to claim and bind to services such as

Azure PostgreSQL, a resource compatible with Service Binding Specification must exist in the

cluster. This can take the form of either a ProvisionedService, as defined by the specification, or a

Kubernetes Secret with some known keys, also as defined in the specification.

In this guide, you create a Kubernetes secret in the necessary format using the secretgen-controller

tooling. You do so by using the SecretTemplate API to extract values from the Azure Service

Operator resources and populate a new spec-compatible secret with the values.

Create a ServiceAccount for Secret Templating

As part of using the SecretTemplate API, a Kubernetes ServiceAccount must be provided. The

ServiceAccount is used for reading the FlexibleServer resource and the Secret created from the

Password resource above.

Create the following Kubernetes resources on your AKS cluster:

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: aso-psql-reader

 namespace: default

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: aso-psql-reading

 namespace: default

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 60

https://github.com/servicebinding/spec
https://github.com/vmware-tanzu/carvel-secretgen-controller/

 - list

 - watch

 resourceNames:

 - aso-psql

- apiGroups:

 - dbforpostgresql.azure.com

 resources:

 - flexibleservers

 - flexibleserversdatabases

 verbs:

 - get

 - list

 - watch

 resourceNames:

 - aso-psql

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: aso-psql-reader-to-read

 namespace: default

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: aso-psql-reading

subjects:

- kind: ServiceAccount

 name: aso-psql-reader

 namespace: default

EOF

Create a SecretTemplate

In combination with the ServiceAccount just created, a SecretTemplate can be used to declaratively

create a secret that is compatible with the service binding specification. For more information on this

API see the Secret Template Documentation.

Create the following Kubernetes resources on your AKS cluster:

cat <<'EOF' | kubectl apply -f -

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretTemplate

metadata:

 name: aso-psql-bindable

 namespace: default

spec:

 serviceAccountName: aso-psql-reader

 inputResources:

 - name: server

 ref:

 apiVersion: dbforpostgresql.azure.com/v1alpha1api20210601

 kind: FlexibleServer

 name: aso-psql

 - name: db

 ref:

 apiVersion: dbforpostgresql.azure.com/v1alpha1api20210601

 kind: FlexibleServersDatabase

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 61

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/secret-template.md

 name: aso-psql

 - name: creds

 ref:

 apiVersion: v1

 kind: Secret

 name: "$(.server.spec.administratorLoginPassword.name)"

 template:

 metadata:

 labels:

 app.kubernetes.io/component: aso-psql

 app.kubernetes.io/instance: "$(.server.metadata.name)"

 services.apps.tanzu.vmware.com/class: azure-postgres

 type: postgresql

 stringData:

 type: postgresql

 port: "5432"

 database: "$(.db.status.name)"

 host: "$(.server.status.fullyQualifiedDomainName)"

 username: "$(.server.status.administratorLogin)"

 data:

 password: "$(.creds.data.password)"

EOF

Verify the Service Instance

Firstly wait until the PostgreSQL instance is ready. This may take 5 to 10 minutes.

kubectl wait flexibleservers.dbforpostgresql.azure.com aso-psql -n default --for=condi

tion=Ready --timeout=5m

Next, ensure a bindable Secret was produced by the SecretTemplate. To do so, run:

kubectl wait SecretTemplate -n default aso-psql-bindable --for=condition=ReconcileSucc

eeded --timeout=5m

kubectl get Secret -n default aso-psql-bindable

Creating Azure PostgreSQL instances by using a Carvel
package (experimental)

This topic describes creating, updating, and deleting Azure PostgreSQL service instances using a

Carvel package. For a more detailed and low-level alternative procedure, see Creating Service

Instances that are compatible with Tanzu Application Platform.

Prerequisite

Meet the prerequisites:

The Package Repository and service instance Package Bundles for this guide can be found in the

Reference Service Packages GitHub repository.

Create an Azure PostgreSQL service instance using a Carvel
package

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 62

https://github.com/vmware-tanzu/tanzu-application-platform-reference-service-packages

Follow the steps in the following procedures.

Add a reference package repository to the cluster

The namespace tanzu-package-repo-global has a special significance. The kapp-controller defines

a Global Packaging namespace. In this namespace, any package the is made available through a

Package Respository, is available in every namespace.

When the kapp-controller is installed via Tanzu Application Platform, the namespace is tanzu-

package-repo-global. If you install the controller in another way, verify which namespace is

considered the Global Packaging namespace.

To add a reference package repository to the cluster:

1. Use the Tanzu CLI to add the new Service Reference packages repository:

tanzu package repository add tap-reference-service-packages \

 --url ghcr.io/vmware-tanzu/tanzu-application-platform-reference-service-pac

kages:0.0.3 \

 -n tanzu-package-repo-global

2. Create a ServiceAccount to provision PackageInstall resources by using the following

example. The namespace of this ServiceAccount must match the namespace of the tanzu

package install command in the next step.

kubectl apply -f - <<'EOF'

apiVersion: v1

kind: ServiceAccount

metadata:

 name: psql-install

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: psql-install

rules:

- apiGroups: ["dbforpostgresql.azure.com"]

 resources: ["flexibleservers","flexibleserversdatabases","flexibleserversfire

wallrules"]

 verbs: ["*"]

- apiGroups: ["resources.azure.com"]

 resources: ["resourcegroups"]

 verbs: ["*"]

- apiGroups: ["secretgen.carvel.dev", "secretgen.k14s.io"]

 resources: ["secrettemplates","passwords"]

 verbs: ["*"]

- apiGroups: [""]

 resources: ["serviceaccounts","configmaps"]

 verbs: ["*"]

- apiGroups: [""]

 resources: ["namespaces"]

 verbs: ["get", "list"]

- apiGroups: ["rbac.authorization.k8s.io"]

 resources: ["roles","rolebindings"]

 verbs: ["*"]

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 63

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: psql-install

subjects:

- kind: ServiceAccount

 name: psql-install

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: psql-install

Create a Azure PostgreSQL service instance through the Tanzu CLI

Before you create the values file, here are some values highlighted.

aso_controller_namespace: the Azure Service Operator has some potential conflicting

behaviors with the kapp-controller. We reduce the conflicts by annotating the resources with

the ASO installation namespace.

firewall_rules: by default, the FlexibleServer is not accessible. Setting 0.0.0.0 as the start

and end IP addresses for a firewall rule makes the server available from within Azure.

resource_group.use_existing: if you cannot create a Resource Group in Azure or have

other reasons for using an existing one, set this to true. Else, the package makes a Resource

Group with the name specified by the resource_group.name value.

The server.name field will be used for the FlexibleServer resource name on Azure, otherwise name

will be used. It is recommended to set the value of the name (and the optional server.name) field

below from aso-psql to something unique, using only lowercase letters, digits and hyphens. This

avoids naming conflicts, as Azure has a global naming namespace for FlexibleServer instances and

this resource may already exist. Do make sure you also change the commands below using a aso-

psql value, such as the aso-psql-bindable from the SecretTemplate,and replace aso-psql with the

actual name.

1. Create a file holding the configuration of the Azure PostgreSQL service instance:

cat <<'EOF' > aso-psql-instance-values.yml

name: aso-psql

namespace: service-instances

location: westeurope

aso_controller_namespace: azureserviceoperator-system

create_namespace: false

server:

 administrator_name: trpadmin

database:

 name: testdb

firewall_rules:

 - startIpAddress: 0.0.0.0

 endIpAddress: 0.0.0.0

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 64

resource_group:

 use_existing: false

 name: aso-psql

EOF

2. Use the Tanzu CLI to install an instance of the reference service instance Package.

tanzu package install aso-psql-instance \

 --package-name psql.azure.references.services.apps.tanzu.vmware.com \

 --version 0.0.1-alpha \

 --service-account-name psql-install \

 --values-file aso-psql-instance-values.yml \

 --wait

You can install the psql.azure.references.services.apps.tanzu.vmware.com package multiple

times to produce various Azure PostgreSQL Service instances. You create a separate <INSTANCE-

NAME>-values.yml for each instance, set a different name value, and then install the package with the

instance-specific data values file.

Verify the Azure Resources

1. Verify the creation status for the Azure PostgreSQL instance by inspecting the conditions in

the Kubernetes API. To do so, run:

kubectl get flexibleservers.dbforpostgresql.azure.com aso-psql -o yaml

2. After some time has passed, sometimes up to 10 minutes, you can find the binding-

compliant secret produced by PackageInstall. To do so, run:

kubectl get secrettemplate aso-psql-bindable -o jsonpath="{.status.secret.name}

"

Verify the Service Instance

Firstly wait until the PostgreSQL instance is ready. This may take 5 to 10 minutes.

kubectl wait flexibleservers.dbforpostgresql.azure.com aso-psql -n default --for=condi

tion=Ready --timeout=5m

Next, ensure a bindable Secret was produced by the SecretTemplate. To do so, run:

Note

: To understand which settings are available for this package you can run:

tanzu package available get \

 --values-schema \

 psql.azure.references.services.apps.tanzu.vmware.com/0.0.1-alpha

This shows a list of all configuration options you can use in the aso-psql-

instance-values.yml file.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 65

kubectl wait SecretTemplate -n default aso-psql-bindable --for=condition=ReconcileSucc

eeded --timeout=5m

kubectl get Secret -n default aso-psql-bindable

Summary

You have learnt to use Carvel’s Package and PackageInstall APIs to create a Azure PostgreSQL

service instance. If you want to learn more about the pieces that comprise this service instance

package, see Creating Azure PostgreSQL Instances manually using kubectl.

Now that you have this available in the cluster, you can learn how to make use of it by continuing

where you left off in Consuming Azure PostgreSQL on Tanzu Application Platform (TAP) with ASO.

Azure Service Operator Troubleshooting

Increase Log Level

There is a guide on the Azure Service Operator (ASO) controller for aiding you in diagnosing

problems.

We recommend temporarily change the Controller’s binary log level from v=2 to v=6. Setting it

higher than six prints a lot more things, such as the HTTP requests with headers, and usually doesn’t

add more value.

kubectl edit deploy -n azureserviceoperator-system azureserviceoperator-controller-man

ager

spec:

 template:

 spec:

 containers:

 - name: manager

 args:

 - --metrics-addr=0.0.0.0:8080

 - --health-addr=:8081

 - --enable-leader-election

 - --v=6

Not Updating The Kubernetes Resources

The ASO controller sometimes conflicts when updating the resource status in Kubernetes. The

resource in Azure exists, but is not reflected properly in its corresponding Kubernetes resource.

In the logs you will see a 409 conflict message when updating the Kubernetes resource. To

resolve this, you can restart the Pod, which will take a few seconds.

kubectl -n azureserviceoperator-system rollout restart deployment azureserviceoperator

-controller-manager

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 66

https://azure.github.io/azure-service-operator/guide/diagnosing-problems

Consuming Azure Flexible Server for PostgreSQL on Tanzu
Application Platform with Crossplane

Introduction

This topic demonstrates how to use Services Toolkit to allow Tanzu Application Platform workloads to

consume Azure Flexible Server for PostgreSQL. This particular topic makes use of Crossplane to

manage those Flexible Server for PostgreSQL instances. As such, it can be thought of as an

alternative approach to Consuming Azure Flexible Server for PostgreSQL on Tanzu Application

Platform with Azure Service Operator (ASO) to achieve the similar outcomes.

Note This usecase is not currently compatible with TAP air-gapped installations.

Prerequisites

Meet these prerequisites:

Install Azure CLI

Create an AKS cluster

Install Tanzu Application Platform (v1.2.0 or later) and Cluster Essentials (v1.2.0 or later)

Install Crossplane

Run the following commands to install Crossplane to your existing Kubernetes cluster:

kubectl create namespace crossplane-system

helm repo add crossplane-stable https://charts.crossplane.io/stable

helm repo update

helm install crossplane --namespace crossplane-system crossplane-stable/crossplane \

 --set 'args={--enable-external-secret-stores}'

Note

In this example we use an AKS Cluster to deploy Crossplane and Tanzu Application

Platform too. However, any other cluster which supports running those two systems

should suffice.

Note

For the latest steps for installing Crossplane, see these instructions. For the

instructions in this topic, it is important to enable support for external secret stores in

Crossplane. This is currently an Alpha feature. As such, you will have to explicitly set

command line flag --enable-external-secret-stores when starting the Crossplane

controller.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 67

https://docs.microsoft.com/en-us/azure/postgresql/flexible-server/overview
https://crossplane.io
https://crossplane.io/docs/v1.9/getting-started/install-configure.html#install-crossplane
https://github.com/crossplane/crossplane/blob/master/design/design-doc-external-secret-stores.md

For this topic, you do not need to install the Crossplane CLI or any additional configuration package.

Install the Azure Provider for Crossplane

To install the Azure Provider for Crossplane, run:

kubectl apply -f - <<'EOF'

apiVersion: pkg.crossplane.io/v1alpha1

kind: ControllerConfig

metadata:

 name: jet-azure-config

spec:

 image: crossplane/provider-jet-azure-controller:v0.12.0

 args: ["-d"]

apiVersion: pkg.crossplane.io/v1

kind: Provider

metadata:

 name: provider-jet-azure

spec:

 package: crossplane/provider-jet-azure:v0.12.0

 controllerConfigRef:

 name: jet-azure-config

EOF

After you have installed the provider, you see a new

flexibleservers.dbforpostgresql.azure.jet.crossplane.io API resource available in your

Kubernetes cluster. You can wait for the provider to become healthy by running:

kubectl -n crossplane-system wait provider/provider-jet-azure \

 --for=condition=Healthy=True --timeout=3m

Install the Kubernetes Provider for Crossplane

To install the Kubernetes Provider for Crossplane, run:

kubectl apply -f - <<'EOF'

apiVersion: pkg.crossplane.io/v1

kind: Provider

metadata:

 name: provider-kubernetes

spec:

 package: "crossplane/provider-kubernetes:main"

EOF

Configure the Azure Provider

This section creates a new Service Principal to be used by the Crossplane system to allow it to

manage PostgreSQL Servers.

1. Setup some configuration in the current shell session

Set the name of the Service Principal to be created

AZURE_SP_NAME='sql-crossplane-demo'

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 68

https://github.com/crossplane-contrib/provider-jet-azure
https://github.com/crossplane-contrib/provider-kubernetes

Get the subscription ID

AZURE_SUBSCRIPTION_ID="$(az account show -o json | jq -r '.id')"

2. Create a new Service Principal and set up the kubernetes secret

kubectl create secret generic jet-azure-creds -o yaml --dry-run=client --from-l

iteral=creds="$(

 az ad sp create-for-rbac -n "${AZURE_SP_NAME}" \

 --sdk-auth \

 --role "Contributor" \

 --scopes "/subscriptions/${AZURE_SUBSCRIPTION_ID}" \

 -o json

)" | kubectl apply -n crossplane-system -f -

3. Deploy a ProviderConfig which uses the previously created secret for the Azure crossplane

provider

kubectl apply -f - <<'EOF'

apiVersion: azure.jet.crossplane.io/v1alpha1

kind: ProviderConfig

metadata:

 name: default

spec:

 credentials:

 source: Secret

 secretRef:

 namespace: crossplane-system

 name: jet-azure-creds

 key: creds

EOF

Configure the Kubernetes Provider

SA=$(kubectl -n crossplane-system get sa -o name | grep provider-kubernetes | sed -e '

s|serviceaccount\/|crossplane-system:|g')

kubectl create role -n crossplane-system password-manager --resource=passwords.secretg

en.k14s.io --verb=create,get,update,delete

kubectl create rolebinding -n crossplane-system provider-kubernetes-password-manager -

-role password-manager --serviceaccount="${SA}"

kubectl apply -f - <<'EOF'

apiVersion: kubernetes.crossplane.io/v1alpha1

kind: ProviderConfig

metadata:

Note

You’ll see the following warning:

WARNING: Option '--sdk-auth' has been deprecated and will be removed

in a future release.

which you can ignore for now. There is some context about that in this issue

for the Azure CLI and this issue for the Crossplane Azure Provider.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 69

https://github.com/Azure/azure-cli/issues/22297
https://github.com/crossplane-contrib/provider-azure/issues/322

 name: default

spec:

 credentials:

 source: InjectedIdentity

EOF

Define Composite Resource Types

Now that the Azure Provider for Crossplane has been installed and configured, create a new

CompositeResourceDefinition (XRD) and corresponding Composition representing individual

instances of Azure PostgreSQL Server. For more information about these concepts see the

Crossplane Composition documentation.

1. Create a new XRD by running:

kubectl apply -f - <<'EOF'

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

 name: xpostgresqlinstances.bindable.database.example.org

spec:

 claimNames:

 kind: PostgreSQLInstance

 plural: postgresqlinstances

 connectionSecretKeys:

 - type

 - provider

 - host

 - port

 - database

 - username

 - password

 group: bindable.database.example.org

 names:

 kind: XPostgreSQLInstance

 plural: xpostgresqlinstances

 versions:

 - name: v1alpha1

 referenceable: true

 schema:

 openAPIV3Schema:

 properties:

 spec:

 properties:

 parameters:

 properties:

 storageGB:

 type: integer

 required:

 - storageGB

 type: object

 required:

 - parameters

 type: object

 type: object

 served: true

EOF

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 70

https://crossplane.io/docs/v1.9/concepts/composition.html

After the newly created XRD has been successfully reconciled, there are two new API

resources available in your Kubernetes cluster,

xpostgresqlinstances.bindable.database.example.org and

postgresqlinstances.bindable.database.example.org.

2. Create a corresponding composition (not in a production environment) by running:

kubectl apply -f - <<'EOF'

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

 labels:

 provider: azure

 name: xpostgresqlinstances.bindable.gcp.database.example.org

spec:

 compositeTypeRef:

 apiVersion: bindable.database.example.org/v1alpha1

 kind: XPostgreSQLInstance

 publishConnectionDetailsWithStoreConfigRef:

 name: default

 resources:

 - name: dbinstance

 base:

 apiVersion: dbforpostgresql.azure.jet.crossplane.io/v1alpha2

 kind: FlexibleServer

 spec:

 forProvider:

 administratorLogin: myPgAdmin

 administratorPasswordSecretRef:

 name: ""

 namespace: crossplane-system

 key: password

 location: westeurope

 skuName: GP_Standard_D2s_v3

 version: "12" #! 11,12 and 13 are supported

 resourceGroupName: tap-psql-demo

 writeConnectionSecretToRef:

 namespace: crossplane-system

 connectionDetails:

 - name: type

 value: postgresql

 - name: provider

 value: azure

 - name: database

 value: postgres

 - name: username

 fromFieldPath: spec.forProvider.administratorLogin

 - name: password

 fromConnectionSecretKey: "attribute.administrator_password"

 - name: host

 fromFieldPath: status.atProvider.fqdn

 - name: port

 type: FromValue

 value: "5432"

 patches:

 - fromFieldPath: metadata.uid

 toFieldPath: spec.writeConnectionSecretToRef.name

 transforms:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 71

 - string:

 fmt: '%s-postgresql'

 type: Format

 type: string

 type: FromCompositeFieldPath

 - type: FromCompositeFieldPath

 fromFieldPath: metadata.name

 toFieldPath: spec.forProvider.administratorPasswordSecretRef.name

 - fromFieldPath: spec.parameters.storageGB

 toFieldPath: spec.forProvider.storageMb

 type: FromCompositeFieldPath

 transforms:

 - type: math

 math:

 multiply: 1024

 - name: dbfwrule

 base:

 apiVersion: dbforpostgresql.azure.jet.crossplane.io/v1alpha2

 kind: FlexibleServerFirewallRule

 spec:

 forProvider:

 serverIdSelector:

 matchControllerRef: true

 #! not recommended for production deployments!

 startIpAddress: 0.0.0.0

 endIpAddress: 255.255.255.255

 - name: password

 base:

 apiVersion: kubernetes.crossplane.io/v1alpha1

 kind: Object

 spec:

 forProvider:

 manifest:

 apiVersion: secretgen.k14s.io/v1alpha1

 kind: Password

 metadata:

 name: ""

 namespace: crossplane-system

 spec:

 length: 64

 secretTemplate:

 type: Opaque

 stringData:

 password: $(value)

 patches:

 - type: FromCompositeFieldPath

 fromFieldPath: metadata.name

 toFieldPath: spec.forProvider.manifest.metadata.name

EOF

The composition defined above makes sure that all FlexibleServers are placed in the

westeurope region and under the resource group tap-psql-demo. This composition fulfils the

XRD previously created.

Warning: Setting the FlexibleServerFirewallRule to start at 0.0.0.0 and end at

255.255.255.255 will allow access to the PostgreSQL Server from any IP and is not

recommended in a production environment.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 72

Create an Instance Class

In order to make instances of a service easily discoverable and claimable by Application Operators,

the role of the Service Operator creates a ClusterInstanceClass. In this particular example, the

class states that claimable instances of PostgreSQL instances are represented by Secret objects of

type connection.crossplane.io/v1alpha1 with label services.apps.tanzu.vmware.com/class set to

azure-postgres:

kubectl apply -f - <<'EOF'

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: azure-postgres

spec:

 description:

 short: Azure Postgresql database instances

 pool:

 kind: Secret

 labelSelector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: azure-postgres

 fieldSelector: type=connection.crossplane.io/v1alpha1

EOF

In addition, you need to grant sufficient RBAC permissions to Services Toolkit to be able to read the

secrets specified by the class.

kubectl apply -f - <<'EOF'

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

EOF

Provision Azure Flexible Server for PostgreSQL instances

Playing the role of the Service Operator, you now provision an instance of an Azure Flexible Server

for PostgreSQL using the postgresqlinstances.bindable.database.example.org API managed by

the XRD you previously created. Note that .spec.publishConnectionDetailsTo provides Crossplane

with the name and a label for the secret that is being used to store the connection details for the

newly created database. You can see that the label specified here matches the label selector defined

on the ClusterInstanceClass you created in the previous step.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 73

The PostgreSQLInstance has a dependency on a Secret where the Service Operator needs to

specify the password for the admin user. Here we use Carvel’s Password API to create this Secret for

us.

Run the following command:

kubectl apply -f - <<'EOF'

apiVersion: bindable.database.example.org/v1alpha1

kind: PostgreSQLInstance

metadata:

 name: postgresql-server

 namespace: default

spec:

 parameters:

 #! supported storage sizes: 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,

32768

 storageGB: 32

 compositionSelector:

 matchLabels:

 provider: azure

 publishConnectionDetailsTo:

 name: postgresql-server

 metadata:

 labels:

 services.apps.tanzu.vmware.com/class: azure-postgres

EOF

Running this command will cause the creation of a Azure Flexible Server for PostgreSQL instance in

your Azure account. You can use the Azure CLI to verify this:

az postgres flexible-server list -o table

apiVersion: kapp.k14s.io/v1alpha1

kind: Config

rebaseRules:

- path: [spec]

 type: copy

 sources: [existing]

 resourceMatchers:

 - apiVersionKindMatcher: {apiVersion: bindable.database.example.org/v1alpha1, kind:

 PostgreSQLInstance}

Caution

If you are planning to create this resource using Namespace Provisioner, then you

must take steps to prevent the Namespace Provisioner from overwriting changes that

get written to the PostgreSQLInstance resource by Crossplane as part of its

reconciliation loop. One way of achieving that is to append the following kapp Config

rebaseRules to the same file as the PostgreSQLInstance in your gitops repository.

For example, the following Config rebase rules will prevent Namespace Provisioner

from overwriting Crossplane’s updates to the .spec field.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 74

https://github.com/vmware-tanzu/carvel-secretgen-controller
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-about.html

This additional configuration is not required if you create the PostgreSQLInstance manually.

After the instance has been successfully created, the status of the newly created

PostgreSQLInstance resource should show READY=True. This might take a few minutes. You can wait

for this by running:

kubectl wait postgresqlinstances.bindable.database.example.org/postgresql-server \

 --for=condition=Ready=true --timeout=10m

As soon as the Azure Flexible Server for PostgreSQL instance is ready, it is claimable by the role of

the Application Operator as shown in the next section.

Claim the Azure Flexible Server for PostgreSQL Server
instance and connect to it from the Tanzu Application
Platform Workload

Thanks to the previously created ClusterInstanceClass, Secrets representing PostgreSQL Server

instances can now be discovered and claimed by Application Operators through the Tanzu CLI as

shown below.

1. Show available classes of service instances by running:

tanzu service classes list

 NAME DESCRIPTION

 azure-postgres Azure Postgresql database instances

2. Show claimable instances belonging to the PostgreSQL Server instance class by running:

tanzu services claimable list --class azure-postgres

 NAME NAMESPACE API KIND API GROUP/VERSION

 postgresql-server default Secret v1

3. Create a claim for the discovered instance by running:

tanzu service claim create postgresql-server-claim \

 --resource-name postgresql-server\

 --resource-kind Secret \

 --resource-api-version v1

4. Obtain the claim reference by running:

tanzu service claim list -o wide

Note

Create the claim in the same namespace as your workload. If your workload

is in a different namespace to the one currently targeted, add the --

namespace flag to the above command.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 75

Expect to see the following output:

NAME READY REASON CLAIM REF

postgresql-server-claim True services.apps.tanzu.vmware.com/v1alp

ha1:ResourceClaim:postgresql-server-claim

5. Create an application workload that consumes the claimed PostgreSQL Server instance by

running:

Example:

tanzu apps workload create my-workload \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

 --git-branch main \

 --git-tag tap-1.2 \

 --type web \

 --label app.kubernetes.io/part-of=spring-petclinic \

 --annotation autoscaling.knative.dev/minScale=1 \

 --env SPRING_PROFILES_ACTIVE=postgres \

 --service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:postgr

esql-server-claim

Note that --service-ref is being set to the claim reference obtained previously.

Consuming Google Cloud SQL on Tanzu Application Platform

This section of the documentation covers integrations of Google Cloud SQL into Tanzu Application

Platform. Documentation is provided for both an integration using Config Connector, as well as an

integration using Crossplane.

Consuming Google Cloud SQL on Tanzu Application Platform
(TAP) with Config Connector

Introduction

This topic demonstrates how to use Services Toolkit to allow TAP Workloads to consume Google

Cloud SQL for PostgreSQL databases. This particular guide makes use of Config Connector to

manage PostgreSQL instances in GCP.

This is describing the procedures to produce similar outcomes as in “Consuming AWS RDS on Tanzu

Application Platform (TAP) with AWS Controllers for Kubernetes (ACK)”. The same points discussed

in “Creating Service Instances that are compatible with Tanzu Application Platform” apply here too:

Neither of the resources discussed below adhere to the Service Binding Specification

We need to manage the lifecycle of multiple resources which together form a usable

database instance

Note Please ensure you have met all prerequisites before reading on.

Note This usecase is not currently compatible with TAP air-gapped installations.

Creating Service Instances that are compatible with Tanzu

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 76

https://cloud.google.com/config-connector/docs/overview
https://github.com/servicebinding/spec

Application Platform

The installation of the Config Connector Addon results in the availability of new Kubernetes APIs for

interacting with Google Cloud resources, specifically Cloud SQL resources, from within the TAP

cluster.

$ kubectl api-resources --api-group sql.cnrm.cloud.google.com

NAME SHORTNAMES APIVERSION NA

MESPACED KIND

sqldatabases gcpsqldatabase,gcpsqldatabases sql.cnrm.cloud.google.com/v1beta1 tr

ue SQLDatabase

sqlinstances gcpsqlinstance,gcpsqlinstances sql.cnrm.cloud.google.com/v1beta1 tr

ue SQLInstance

sqlsslcerts gcpsqlsslcert,gcpsqlsslcerts sql.cnrm.cloud.google.com/v1beta1 tr

ue SQLSSLCert

sqlusers gcpsqluser,gcpsqlusers sql.cnrm.cloud.google.com/v1beta1 tr

ue SQLUser

To create a CloudSQL service instance for consumption by Tanzu Application Platform, you can use

a ready-made, reference Carvel Package. This step is typically performed by the role of the Service

Operator. Follow the steps in Creating an CloudSQL service instance by using a Carvel Package.

Alternatively, if you are interested in authoring your own Reference Package and want to learn about

the underlying APIs and how they come together to produce a useable service instance for Tanzu

Application Platform, you can achieve the same outcome by using the more advanced Creating an

CloudSQL service instance manually.

Once you have completed either of these steps and have a running CloudSQL service instance,

please return here to continue with the rest of the use case.

Creating a Service Instance Class for Cloud SQL

We can now make the Cloud SQL Service Instance discoverable to Application Operators. This step

is typically performed by the role of the Service Operator.

You can use Services Toolkit’s ClusterInstanceClass API to create a “Service Instance Class” to

represent Cloud SQL Service Instances within the cluster. The existence of such classes make these

logical Service Instances discoverable to Application Operators, thus allowing them to create

Resource Claims for such instances and to then bind them to Application Workloads.

Create the following Kubernetes resource::

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: cloudsql-postgres

spec:

 description:

 short: Google Cloud SQL with a postgresql engine

 pool:

 kind: Secret

 labelSelector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: cloudsql-postgres

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 77

In this particular example, the class states that claimable instances of Cloud SQL Postgresql are

represented by Secret objects with label services.apps.tanzu.vmware.com/class set to cloudsql-

postgres. A Secret with this label was created earlier when you created the CloudSQL service

instance.

Although this example uses services.apps.tanzu.vmware.com/class, there is no special meaning to

that key. The Service Operator persona can choose arbitrary label names and values. They might

also decide to select on multiple labels or combine a label selector with a field selector when defining

the ClusterInstanceClass.

Now that you have created a ClusterInstanceClass, you need to grant sufficient RBAC permissions

to enable Services Toolkit to read the resources that match the pool definition of the instance class.

For this example, create the following aggregated ClusterRole in your cluster:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups: [""]

 resources: ["secrets"]

 verbs: ["get", "list", "watch"]

If you want to claim resources across namespace boundaries, you will have to create a

corresponding ResourceClaimPolicy. For example, if the provisioned Cloud SQL instances exist in

namespace service-instances and you want to allow App Operators to claim them for workloads

residing in the default namespace, you would have to create the following ResourceClaimPolicy:

#! optional, when workload and services are in different namespaces

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: default-can-claim-cloudsql-postgres

 namespace: service-instances

spec:

 subject:

 kind: Secret

 group: ""

 selector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: cloudsql-postgres

 consumingNamespaces: ["default"]

Discover, Claim and Bind to a Google Cloud SQL Postgresql
Instance

The act of creating the ClusterInstanceClass and the corresponding RBAC essentially advertises to

Application Operators that Cloud SQL Instances are available to use with their Application Workloads

on Tanzu Application Platform. In this step you will learn how to discover, claim and bind to the

Cloud SQL Service Instance previously created. Discovery and claiming of Service Instances is

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 78

typically the role of the Application Operator while binding is typically a step for Application

Developers.

To discover what Service Instances are available to them, Application Operators can use the tanzu

services classes list command.

tanzu services classes list

 NAME DESCRIPTION

 cloudsql-postgres Google Cloud SQL with a postgresql engine

Here you can see information about the ClusterInstanceClass created in the previous step. Each

ClusterInstanceClass created will be added to the list of classes returned here.

The next step is to “claim” an instance of the desired class, but in order to do that, Application

Operators must first discover the list of currently claimable instances for the class. Claimability of

instances is affected by many variables (including namespace boundaries, claim policies and the

exclusivity of claims) and so Services Toolkit provides a CLI command to help inform Application

Operators of the instances that will result in successful claims. This command is the tanzu service

claimable list command.

tanzu services claimable list --class cloudsql-postgres

 NAME NAMESPACE KIND APIVERSION

 sql-instance-claimable service-instances Secret v1

Due to the setup done as part of creating a claimable class for Cloud SQL instances, the Secrets

created from the SecretTemplate now appears as “claimable” to the Application Operator. From

here on it is simply a case of creating a resource claim for the instance and then binding the claim to

an Application Workload.

Create a claim for the newly created secret by running:

tanzu service claim create cloudsql-postgres-claim \

 --resource-name sql-instance-claimable \

 --resource-namespace service-instances \

 --resource-kind Secret \

 --resource-api-version v1

Obtain the claim reference of the claim by running:

tanzu service claim list -o wide

Expect to see the following output:

NAME READY REASON CLAIM REF

Note

Create the claim in the same namespace as your workload. If your workload is in a

different namespace to the one currently targeted, add the --namespace flag to the

above command.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 79

cloudsql-postgres-claim True Ready services.apps.tanzu.vmware.com/v1alpha1:Resour

ceClaim:cloudsql-postgres-claim

Create an Application Workload that consumes the claimed Cloud SQL Postgresql Database by

running:

Example:

tanzu apps workload create my-workload \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

 --git-branch main \

 --git-tag tap-1.2 \

 --type web \

 --label app.kubernetes.io/part-of=spring-petclinic \

 --annotation autoscaling.knative.dev/minScale=1 \

 --env SPRING_PROFILES_ACTIVE=postgres \

 --service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:cloudsql-post

gres-claim

--service-ref is set to the claim reference obtained previously.

Congratulations - your Application Workload will now start up and will connect automatically to the

Cloud SQL Service Instance. This can be verified by visiting the app in the browser and, for example,

creating a new “Owner” through the GUI.

Prerequisites

The following prerequisites must be met in order to follow along with Consuming Cloud SQL on

Tanzu Application Platform (TAP) with Config Connector.

The gcloud CLI

You need to have the gcloud CLI installed and authenticated.

A Kubernetes cluster

with the Config Connector installed & configured

with a stable Egress IP/CIDR range to allow access to the Cloud SQL instance

(see further down at A Cloud NAT service)

In this example we went standard GKE cluster with the Config Connector pre-installed.

It is recommended to install the latest stable version of the Operator (1.71.0 is known to work with this

specific use case).

GCP_PROJECT='<GCP project ID>'

LABELS='<label1=value1,label2=value2,...>'

CLUSTER_NAME='<GKE cluster name>'

The Google Cloud Service Account to be used by the Config Connector

SA_NAME="${CLUSTER_NAME}-sa"

The cluster's node count

We suggest to start at 6 nodes to host all the TAP systems and to ensure

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 80

https://cloud.google.com/sdk/gcloud
https://cloud.google.com/config-connector/docs/overview
https://cloud.google.com/config-connector/docs/how-to/install-upgrade-uninstall

the (automatically provisioned and managed) control plane is also scaled

accordingly.

NODE_COUNT=6

The namespace you want to deploy the Config Connector / service instance# The namespace you want to deploy the Config Connector / service instance

objects into

SI_NAMESPACE="service-instances"

In this example we deploy a zonal cluster, thus you need to provide the

zone you want your cluster to land in

ZONE='europe-west6-b'

For Cloud NAT we need to provide the region we want to deploy the router

to, this needs to be the region the zonal cluster resides in

REGION='europe-west6'

Will be used for the name of the Cloud NAT router and the NAT config we

deploy on it

NAT_NAME="${REGION}-nat"

gcloud container --project "${GCP_PROJECT}" \

 clusters create "${CLUSTER_NAME}" \

 --zone "${ZONE}" \

 --release-channel "regular" \

 --machine-type "e2-standard-4" \

 --disk-type "pd-standard" \

 --disk-size "70" \

 --metadata disable-legacy-endpoints=true \

 --num-nodes "${NODE_COUNT}" \

 --node-labels "${LABELS}" \

 --logging=SYSTEM \

 --monitoring=SYSTEM \

 --enable-ip-alias \

 --enable-network-policy \

 --addons ConfigConnector,HorizontalPodAutoscaling,HttpLoadBalancing,GcePersistentD

iskCsiDriver \

 --workload-pool="${GCP_PROJECT}.svc.id.goog" \

 --labels "${LABELS}"

gcloud iam service-accounts create \

 "${SA_NAME}" \

 --description "${LABELS}"

gcloud projects add-iam-policy-binding "${GCP_PROJECT}" \

 --member="serviceAccount:${SA_NAME}@${GCP_PROJECT}.iam.gserviceaccount.com" \

 --role="roles/editor"

gcloud iam service-accounts add-iam-policy-binding \

 "${SA_NAME}@${GCP_PROJECT}.iam.gserviceaccount.com" \

 --member="serviceAccount:${GCP_PROJECT}.svc.id.goog[cnrm-system/cnrm-controller-ma

nager]" \

 --role="roles/iam.workloadIdentityUser"

Configure a stable egress IP

By default egress traffic from pods will get their source IP translated to the node’s public IP (SNAT)

on the way out. Thus, when we need to configure allowed ingress networks for a Cloud SQL

instance, we’d need to add each node of the cluster. Everytime the cluster scales or nodes get

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 81

repaved, their public IP would change and we would need to make sure to keep the list of

authorized networks up to date.

To make this easier we will: - turn off SNAT on the nodes, so egress traffic is not translated to the

node’s public IP - deploy a Cloud NAT service, which then handles the source IP translation and

gives us a stable egress IP

Configure the ip-masq-agent

Each cluster comes with a DaemonSet ip-masq-agent in the kube-system namespace. By deploying a

configuration for this service and restarting the DaemonSet, we can turn off SNAT for egress traffic.

cat <<'EOF' | kubectl -n kube-system create cm ip-masq-agent --from-file=config=/dev/s

tdin

nonMasqueradeCIDRs:

- 0.0.0.0/0

EOF

kubectl -n kube-system rollout restart daemonset ip-masq-agent

With this config none of the outbound traffic is translated to the node’s public IP.

Note: You can also set specfic destination network CIDRs in nonMasqueradeCIDRs for which the SNAT

on the nodes should be turned off. In that case, any traffic’s source IP will still be translated to the

node’s public IP, except if the destination is explicitly configured in that list.

Set up a Cloud NAT service

After we’ve turned off SNAT on the nodes, we will employ a Cloud NAT service.

Conceptually this does the same thing as the SNAT on the nodes. However, the difference is, that

we don’t translate to a node’s public IP address, but rather to a reserved IP address that is explicitly

used by the Cloud NAT router. Therefore this IP is stable as long as this Cloud NAT router exists and

all traffic originating from any pod, regardless which node it resides on, will get its source IP

translated to that stable IP.

gcloud compute routers create "${NAT_NAME}-router" --region "${REGION}" --network defa

ult

gcloud compute routers nats create "${NAT_NAME}-config" \

 --router-region "${REGION}" \

 --router "${NAT_NAME}-router" \

 --auto-allocate-nat-external-ips \

 --nat-all-subnet-ip-ranges

A Tanzu Application Platform installation on the cluster
(v1.2.0+).

Tanzu Application Platform (v1.2.0 or newer) and Cluster Essentials (v1.2.0 or newer) have to be

installed on the kubernetes cluster.

Note: To check if you have an appropriate version, please run the following:

kubectl api-resources | grep secrettemplate

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 82

https://cloud.google.com/kubernetes-engine/docs/how-to/ip-masquerade-agent#config-ip-masq-agent
https://cloud.google.com/nat/docs/overview

This command should return the SecretTemplate API. If it does not, ensure Cluster Essentials for

VMware Tanzu (v1.2.0 or newer) is installed.

Configure the Config Connector

cat <<EOF | kubectl apply -f -

apiVersion: core.cnrm.cloud.google.com/v1beta1

kind: ConfigConnector

metadata:

 name: configconnector.core.cnrm.cloud.google.com

spec:

 mode: cluster

 googleServiceAccount: "${SA_NAME}@${GCP_PROJECT}.iam.gserviceaccount.com"

EOF

kubectl create namespace "${SI_NAMESPACE}"

kubectl annotate namespace "${SI_NAMESPACE}" "cnrm.cloud.google.com/project-id=${GCP_P

ROJECT}"

kubectl wait -n cnrm-system --for=condition=Ready pod --all

gcloud services enable serviceusage.googleapis.com

Get the NAT IP(s) for egress from the cluster

gcloud compute routers get-status "${NAT_NAME}-router" --region "${REGION}" --format=j

son \

 | jq -r '.result.natStatus[].autoAllocatedNatIps[]'

This IP(s) will later be used for allowing access to the CloudSQL instance from the cluster.

Creating Google CloudSQL Instances manually using kubectl
(experimental)

Prerequisite

Meet the prerequisites and keep the following information to hand:

NAT-IP - the cluster’s egress NAT IP

Note

: This document is for users who are looking to understand the underlying APIs

involved in making a bindable service instance using SQLInstance, SQLDatabase,

SQLUser and SecretTemplate resources. For a simpler user experience, the

alternative Creating an CloudSQL service instance through a Carvel Package topic is

recommended.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 83

#package-create

Create a CloudSQL service instance by using kubectl

At a minimum, a useable database instance consists of a SQLInstance, a SQLDatabase, and a SQLUser.

Realistically, in addition to that we will also want another set of Secrets:

one Secret per SQLInstance to hold the password for the instance’s admin role

one Secret per SQLUser to hold that user’s password

In the simplest case, with one SQLInstance, one SQLDatabase, and one SQLUser, we need to manage

the following set of interrelated resources:

SQLUser "sql-user"

Secret "sql-user-creds"

depends onSQLInstance "sql-instance"

depends on

Secret "sql-admin-creds"

depends on

SQLDatabase "sql-database"

depends on

Create the Secrets for the Database admin & user

First we need to ensure that the Secrets which hold the admin’s and user’s password exist, so we

can reference them in the SQLInstance and SQLUser objects.

Those secrets can be created by any means. In this guide will leverage the Password API from

Carvel’s secretgen controller, which will create the Secrets for us. However, any other mechanism

to manage those secrets works too.

kind: List

apiVersion: v1

items:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 84

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/password.md

- kind: Password

 apiVersion: secretgen.k14s.io/v1alpha1

 metadata:

 name: sql-admin-creds

 namespace: service-instances

 spec: &passwordSpec

 length: 64

 secretTemplate:

 type: Opaque

 stringData:

 password: $(value)

- kind: Password

 apiVersion: secretgen.k14s.io/v1alpha1

 metadata:

 name: sql-user-creds

 namespace: service-instances

 spec: *passwordSpec

Applying this will create two Passwords which in turn will have two Secrets created:

kubectl -n service-instances get passwords,secrets sql-user-creds sql-admin-creds

NAME DESCRIPTION AGE

password.secretgen.k14s.io/sql-user-creds Reconcile succeeded 4m41s

password.secretgen.k14s.io/sql-admin-creds Reconcile succeeded 4m41s

NAME TYPE DATA AGE

secret/sql-user-creds Opaque 1 4m41s

secret/sql-admin-creds Opaque 1 4m41s

Create a usable postgres database

Now we can reference those two secrets and use the Config Connector APIs to create our database

objects:

apiVersion: sql.cnrm.cloud.google.com/v1beta1

kind: SQLInstance

metadata:

 name: sql-instance

 namespace: service-instances

spec:

 databaseVersion: POSTGRES_14

 #! If you have deployed your cluster into a different region, you might want

 #! to change this and deploy the SQLInstance into the same region as the

 #! cluster, to avoid traffic going across regions.

 region: europe-west6

 rootPassword:

 valueFrom:

Note

: You need to allow access from the Kubernetes cluster’s NAT IP. You can get the

NAT IP via the command described in the prerequisites. This NAT IP then needs to

be used in the SQLInstance’s spec.settings.ipConfiguration.authorizedNetworks.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 85

 secretKeyRef:

 key: password

 name: sql-admin-creds

 settings:

 tier: db-g1-small

 ipConfiguration:

 authorizedNetworks:

 - name: cluster-NAT-IP

 #! Update this value with your NAT IP address in CIDR notation (e.g. 8.8.8.8/3

2). See above.

 value: <NAT-IP>

 ipv4Enabled: true

apiVersion: sql.cnrm.cloud.google.com/v1beta1

kind: SQLDatabase

metadata:

 name: sql-database

 namespace: service-instances

spec:

 charset: UTF8

 collation: en_US.UTF8

 instanceRef:

 name: sql-instance

apiVersion: sql.cnrm.cloud.google.com/v1beta1

kind: SQLUser

metadata:

 name: sql-user

 namespace: service-instances

spec:

 instanceRef:

 name: sql-instance

 password:

 valueFrom:

 secretKeyRef:

 key: password

 name: sql-user-creds

Once those objects are committed to the Kubernetes API, the Config Connector will cause the

creation of those resources on GCP. This will take a short amount of time.

The three resources report their status and potential problems/errors back. If all goes well we should

see all of those resources as “Ready” & “UpToDate” after a couple of minutes.

kubectl -n service-instances get sqlinstance,sqldatabase,sqluser

NAME AGE READY STATUS STATUS

 AGE

sqlinstance.sql.cnrm.cloud.google.com/sql-instance 3d20h True UpToDate 3d20h

NAME AGE READY STATUS STATUS

 AGE

sqldatabase.sql.cnrm.cloud.google.com/sql-database 3d20h True UpToDate 3d20h

NAME AGE READY STATUS STATUS AGE

sqluser.sql.cnrm.cloud.google.com/sql-user 3d20h True UpToDate 3d20h

You can also see this Cloud SQL instance in the Google Cloud Console.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 86

https://console.cloud.google.com/sql/instances

Create a Binding Specification compatible Secret for the database

As pointed out, none of the created objects are compatible with the Service Binding Specification.

To help with that, we can create a secret which holds the data we need to know to connect to and

use the Cloud SQL instance and which allows the platform to discover the fact that this instance can

be “claimed” and “bound” to application workloads.

For this to be an automated process, we can use the SecretTemplate API of the secretgen

controller. The secretgen controller needs to be able to read the resources created, thus we also

need to deploy some RBAC rules to allow for that:

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretTemplate

metadata:

 name: sql-instance-claimable

 namespace: service-instances

spec:

 inputResources:

 - name: sqlInstance

 ref:

 apiVersion: sql.cnrm.cloud.google.com/v1beta1

 kind: SQLInstance

 name: sql-instance

 - name: sqlDatabase

 ref:

 apiVersion: sql.cnrm.cloud.google.com/v1beta1

 kind: SQLDatabase

 name: sql-database

 - name: sqlUser

 ref:

 apiVersion: sql.cnrm.cloud.google.com/v1beta1

 kind: SQLUser

 name: sql-user

 - name: sqlUserSecret

 ref:

 apiVersion: v1

 kind: Secret

 name: $(.sqlUser.spec.password.valueFrom.secretKeyRef.name)

 serviceAccountName: sql-objects-reader

Note

: Cloud SQL does not allow you to reuse the name of a deleted instance for a week.

If you try to create a new SQLInstance with a name you have already used

previously, you will see an error like

You can use a different name for the SQLInstance; make sure to use replace that

name in all examples going forward.

Note

[…] When you delete an instance, you can’t reuse the name of the

deleted instance until one week from the deletion date. […]

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 87

https://github.com/servicebinding/spec
https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/secret-template.md

 template:

 data:

 password: $(.sqlUserSecret.data.password)

 metadata:

 labels:

 app.kubernetes.io/component: cloudsql-postgres

 app.kubernetes.io/instance: "$(.sqlInstance.metadata.name)"

 services.apps.tanzu.vmware.com/class: cloudsql-postgres

 stringData:

 database: $(.sqlDatabase.metadata.name)

 host: $(.sqlInstance.status.publicIpAddress)

 port: "5432"

 type: postgresql

 username: $(.sqlUser.metadata.name)

apiVersion: v1

kind: ServiceAccount

metadata:

 name: sql-objects-reader

 namespace: service-instances

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: sql-objects-reader

 namespace: service-instances

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: sql-objects-reader

subjects:

- kind: ServiceAccount

 name: sql-objects-reader

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: sql-objects-reader

 namespace: service-instances

rules:

- apiGroups: [""]

 resources: ["secrets"]

 verbs: &objReaderVerbs ["get", "list", "watch"]

 resourceNames: ["sql-user-creds", "sql-admin-creds"]

- apiGroups: ["sql.cnrm.cloud.google.com"]

 resources: ["sqlinstances", "sqldatabases", "sqlusers"]

 verbs: *objReaderVerbs

 resourceNames: ["sql-instance", "sql-database", "sql-user"]

Verify

Find the name of the secret produced by reading the status of SecretTemplate. To do so, run:

kubectl get secrettemplate -n service-instances sql-instance-claimable -o jsonpath="{.

status.secret.name}"

Delete a CloudSQL service instance

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 88

Delete an CloudSQL service instance and all additional and related objects by running:

kubectl -n service-instances delete \

 sqlinstance/sql-instance \

 sqldatabase/sql-database \

 sqluser/sql-user \

 secrettemplate/sql-instance-claimable \

 password/sql-admin-creds \

 password/sql-user-creds \

 serviceaccount/sql-objects-reader \

 rolebinding/sql-objects-reader \

 roles/sql-objects-reader

Summary and Next Steps

You have learned how to use Carvel’s SecretTemplate API to construct a secret that is compatible

with the binding specification in order to create an Google CloudSQL service instance.

Now that you have this available in the cluster, you can learn how to make use of it by continuing

where you left off in Consuming Google Cloud SQL on Tanzu Application Platform (TAP) with Config

Connector.

Creating Google CloudSQL instances by using a Carvel
package (experimental)

This topic describes how to create, update, and delete CloudSQL service instances using a Carvel

package. For a more detailed and low-level alternative procedure, see Creating Service Instances

that are compatible with Tanzu Application Platform.

Prerequisite

Meet the prerequisites and keep the following information to hand:

NAT-IP - the cluster’s egress NAT IP

The Package Repository and service instance Package Bundles for this guide can be found in the

Reference Service Packages GitHub repository.

Create an CloudSQL service instance using a Carvel package

Follow the steps in the following procedures.

Add a reference package repository to the cluster

To add a reference package repository to the cluster:

1. Use the Tanzu CLI to add the new Service Reference packages repository:

tanzu package repository add tap-reference-service-packages \

 --url ghcr.io/vmware-tanzu/tanzu-application-platform-reference-packages/tap-

service-reference-package-repo:0.0.2 \

 -n tanzu-package-repo-global

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 89

https://github.com/vmware-tanzu/tanzu-application-platform-reference-service-packages

2. Create a ServiceAccount that is used to provision PackageInstall resources by using the

following example. The namespace of this ServiceAccount must match the namespace of the

tanzu package install command in the next step.

kubectl apply -f - <<'EOF'

apiVersion: v1

kind: ServiceAccount

metadata:

 name: cloudsql-install

 namespace: service-instances

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: cloudsql-install

 namespace: service-instances

rules:

- apiGroups: ["sql.cnrm.cloud.google.com"]

 resources: ["sqlinstances","sqldatabases","sqlusers"]

 verbs: ["*"]

- apiGroups: ["secretgen.carvel.dev", "secretgen.k14s.io"]

 resources: ["secrettemplates","passwords"]

 verbs: ["*"]

- apiGroups: [""]

 resources: ["serviceaccounts","configmaps"]

 verbs: ["*"]

- apiGroups: ["rbac.authorization.k8s.io"]

 resources: ["roles","rolebindings"]

 verbs: ["*"]

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: cloudsql-install

 namespace: service-instances

subjects:

- kind: ServiceAccount

 name: cloudsql-install

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: cloudsql-install

EOF

Create a CloudSQL service instance through the Tanzu CLI

1. Create a file holding the configuration of the CloudSQL service instance:

cat <<'EOF' > demo-pg-instance-values.yml

name: demo-pg-instance

namespace: service-instances

allowedNetworks:

- name: service-instances-cluster-snat

 #! replace that with the cluster's egress IP, see NAT-IP in Prerequisite

 value: 34.65.178.24/32

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 90

EOF

2. Use the Tanzu CLI to install an instance of the reference service instance Package.

tanzu package install demo-pg-instance \

 --package-name psql.google.references.services.apps.tanzu.vmware.com \

 --version 0.0.1-alpha \

 --namespace service-instances \

 --service-account-name cloudsql-install \

 --values-file demo-pg-instance-values.yml \

 --wait

You can install the psql.google.references.services.apps.tanzu.vmware.com package multiple

times to produce multiple CloudSQL Service instances. For that you need to prepare a separate

<INSTANCE-NAME>-values.yml and then install the package with a different name and the above

mentioned separate data values file for each CloudSQL service instance.

Verify

1. Verify the creation status for the CloudSQL instance by inspecting the conditions in the

Kubernetes API. To do so, run:

kubectl get sqlinstance demo-pg-instance -n service-instances -o yaml

2. After some time has passed, sometimes up to 20 minutes, you are able to find the binding-

compliant secret produced by PackageInstall. To do so, run:

kubectl get secrettemplate demo-pg-instance -n service-instances -o jsonpath="{

.status.secret.name}"

Delete a CloudSQL service instance

Note

: To understand which settings are available for this package you can run:

tanzu package available get \

 --values-schema \

 psql.google.references.services.apps.tanzu.vmware.com/0.0.1-alph

a

This shows a list of all configuration options you can use in the demo-pg-

instance-values.yml file.

: By default the package will create a claimable Secret which is labeled with

services.apps.tanzu.vmware.com/class: cloudsql-postgres. While you

can overwrite that by setting the serviceInstanceLabels setting above, you

don’t have to do that and it will still be aligned with the ClusterInstanceClass

we will set up later.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 91

To delete the CloudSQL service instance run:

tanzu package installed delete demo-pg-instance -n service-instances

Summary

You have learned how to use Carvel’s Package and PackageInstall APIs to create a CloudSQL

service instance. If you want to learn more about the pieces that comprise this service instance

package, see Creating Google CloudSQL Instances manually using kubectl.

Now that you have this available in the cluster, you can learn how to make use of it by continuing

where you left off in [Consuming Google Cloud SQL on Tanzu Application Platform (TAP) with Config

Connector][create-class].

Consuming GCP CloudSQL on Tanzu Application Platform
with Crossplane

Introduction

This topic demonstrates how to use Services Toolkit to allow Tanzu Application Platform workloads to

consume GCP CloudSQL PostgreSQL databases. This particular guide makes use of Crossplane to

manage CloudSQL instances in GCP. As such, it can be thought of as an alternative approach to

Consuming Google Cloud SQL on Tanzu Application Platform (TAP) with Config Connector to

achieve the same outcomes.

Note This usecase is not currently compatible with TAP air-gapped installations.

Prerequisites

Meet these prerequisites:

Create a Kubernetes cluster that supports running both Tanzu Application Platform and

Crossplane

Install Tanzu Application Platform (v1.2+) on the Kubernetes cluster

Install gcloud CLI

Ensure the Cloud SQL Admin API is enabled in your GCP Project

Install Crossplane

Note

: For the latest steps for installing Crossplane, see these instructions. For the

instructions in this topic, it is important to enable support for external secret stores in

Crossplane. This is currently an Alpha feature. As such, you will have to explicitly set

command line flag --enable-external-secret-stores when starting the Crossplane

controller.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 92

https://crossplane.io
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-prerequisites.html
https://crossplane.io/docs/v1.9/reference/install.html#pre-requisites
https://cloud.google.com/sdk/gcloud
https://crossplane.io/docs/v1.9/getting-started/install-configure.html#install-tab-helm3
https://github.com/crossplane/crossplane/blob/master/design/design-doc-external-secret-stores.md

Run the following commands to install Crossplane to your existing Kubernetes cluster:

kubectl create namespace crossplane-system

helm repo add crossplane-stable https://charts.crossplane.io/stable

helm repo update

helm install crossplane --namespace crossplane-system crossplane-stable/crossplane \

 --set 'args={--enable-external-secret-stores}'

For this topic, you do not need to install the Crossplane CLI or any additional configuration package.

Install GCP Provider for Crossplane

To install the GCP Provider for Crossplane, run:

kubectl apply -f -<<EOF

apiVersion: pkg.crossplane.io/v1

kind: Provider

metadata:

 name: crossplane-provider-gcp

spec:

 package: crossplane/provider-gcp:v0.21.0

EOF

After you have installed the provider, you see a new

cloudsqlinstances.database.gcp.crossplane.io API resource available in your Kubernetes cluster.

See the health of the installed provider by running:

kubectl get provider.pkg.crossplane.io crossplane-provider-gcp

Configure GCP Provider

This section creates a new GCP Service Account and gives it permissions to manage CloudSQL

databases which are necessary to use Crossplane to manage CloudSQL instances.

1. Create a new GCP ServiceAccount, give it Cloud SQL Admin and create a key file:

PROJECT_ID=<GCP Project ID>

SA_NAME=crossplane-cloudsql

gcloud iam service-accounts create "${SA_NAME}" --project "${PROJECT_ID}"

gcloud projects add-iam-policy-binding "${PROJECT_ID}" \

 --role="roles/cloudsql.admin" \

 --member "serviceAccount:${SA_NAME}@${PROJECT_ID}.iam.gserviceaccount.com"

gcloud iam service-accounts keys create creds.json --project "${PROJECT_ID}" --

iam-account "${SA_NAME}@${PROJECT_ID}.iam.gserviceaccount.com"

2. Create a new secret from the key file by running:

kubectl create secret generic gcp-creds -n crossplane-system --from-file=creds=

./creds.json

3. Delete the key file by running:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 93

https://github.com/crossplane-contrib/provider-gcp/releases/tag/v0.21.0
https://cloud.google.com/iam/docs/service-accounts

rm -f creds.json

4. Configure the GCP provider to use the newly created secret by running:

kubectl apply -f -<<EOF

apiVersion: gcp.crossplane.io/v1beta1

kind: ProviderConfig

metadata:

 name: default

spec:

 projectID: ${PROJECT_ID}

 credentials:

 source: Secret

 secretRef:

 namespace: crossplane-system

 name: gcp-creds

 key: creds

EOF

Define Composite Resource Types

Now that the GCP provider for Crossplane has been installed and configured, create a new

CompositeResourceDefinition (XRD) and corresponding Composition representing individual

instances of CloudSQL Postgresql. For more information about these concepts see the Crossplane

Composition documentation.

Note: Instead of creating your own custom XRD and Composition as shown below, you can also

install an existing Crossplane configuration package for GCP that includes pre-configured XRDs and

compositions for CloudSQL. The primary reason for creating a new XRD and composition from

scratch is to make sure the connection secrets for newly provisioned CloudSQL Postgresql instances

support the Service Binding Specification for Kubernetes and automatic Spring Boot configuration

using Spring Cloud Bindings.

1. Create a new XRD by running:

kubectl apply -f -<<EOF

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

 name: xpostgresqlinstances.bindable.database.example.org

spec:

 claimNames:

 kind: PostgreSQLInstance

 plural: postgresqlinstances

 connectionSecretKeys:

 - type

 - provider

 - host

 - port

 - database

 - username

 - password

 group: bindable.database.example.org

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 94

https://crossplane.io/docs/v1.9/concepts/composition.html
https://marketplace.upbound.io/configurations?packageAccount=crossplane&query=gcp
https://github.com/servicebinding/spec
https://github.com/spring-cloud/spring-cloud-bindings#postgresql-rdbms

 names:

 kind: XPostgreSQLInstance

 plural: xpostgresqlinstances

 versions:

 - name: v1alpha1

 referenceable: true

 schema:

 openAPIV3Schema:

 properties:

 spec:

 properties:

 parameters:

 properties:

 storageGB:

 type: integer

 required:

 - storageGB

 type: object

 required:

 - parameters

 type: object

 type: object

 served: true

EOF

After the newly created XRD has been successfully reconciled, there are two new API

resources available in your Kubernetes cluster,

xpostgresqlinstances.bindable.database.example.org and

postgresqlinstances.bindable.database.example.org. The XRD created is agnostic to the

underlying cloud managed service, so could also be fulfilled by a Composition that makes

use of AWS RDS Postgresql or Azure Database for PostgreSQL.

2. Create a corresponding composition (not in a production environment) by running:

kubectl apply -f -<<EOF

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

 labels:

 provider: gcp

 name: xpostgresqlinstances.bindable.gcp.database.example.org

spec:

 compositeTypeRef:

 apiVersion: bindable.database.example.org/v1alpha1

 kind: XPostgreSQLInstance

 publishConnectionDetailsWithStoreConfigRef:

 name: default

 resources:

 - base:

 apiVersion: database.gcp.crossplane.io/v1beta1

 kind: CloudSQLInstance

 spec:

 forProvider:

 databaseVersion: POSTGRES_14

 region: us-central1

 settings:

 dataDiskType: PD_SSD

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 95

 ipConfiguration:

 authorizedNetworks:

 - value: 0.0.0.0/0 # not recommended for production deployments!

 ipv4Enabled: true

 tier: db-custom-1-3840

 writeConnectionSecretToRef:

 namespace: crossplane-system

 connectionDetails:

 - name: type

 value: postgresql

 - name: provider

 value: gcp

 - name: database

 value: postgres

 - fromConnectionSecretKey: username

 - fromConnectionSecretKey: password

 - name: host

 fromConnectionSecretKey: endpoint

 - name: port

 type: FromValue

 value: "5432"

 name: cloudsqlinstance

 patches:

 - fromFieldPath: metadata.uid

 toFieldPath: spec.writeConnectionSecretToRef.name

 transforms:

 - string:

 fmt: '%s-postgresql'

 type: Format

 type: string

 type: FromCompositeFieldPath

 - fromFieldPath: spec.parameters.storageGB

 toFieldPath: spec.forProvider.settings.dataDiskSizeGb

 type: FromCompositeFieldPath

EOF

The composition defined above makes sure that all CloudSQL Postgresql instances are

placed in the us-central1 region. This composition fulfils the XRD previously created by

creating GCP CloudSQL databases.

Caution: The authorized network CIDR 0.0.0.0/0 provided above, will allow access to the

Cloud SQL from any IP and is not recommended in a production environment.

Create an Instance Class

In order to make instances of a service easily discoverable and claimable by application operators,

the role of the service operator creates a ClusterInstanceClass. In this particular example, the class

states that claimable instances of CloudSQL Postgresql are represented by secret objects of type

connection.crossplane.io/v1alpha1 with label services.apps.tanzu.vmware.com/class set to

cloudsql-postgres:

kubectl apply -f -<<EOF

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 96

 name: cloudsql-postgres

spec:

 description:

 short: GCP CloudSQL Postgresql database instances

 pool:

 kind: Secret

 labelSelector:

 matchLabels:

 services.apps.tanzu.vmware.com/class: cloudsql-postgres

 fieldSelector: type=connection.crossplane.io/v1alpha1

EOF

In addition, you need to grant sufficient RBAC permissions to Services Toolkit to be able to read the

secrets specified by the class.

kubectl apply -f -<<EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: stk-secret-reader

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups:

 - ""

 resources:

 - secrets

 verbs:

 - get

 - list

 - watch

EOF

Provision GCP CloudSQL Postgresql Instance

Playing the role of the Service Operator, you now provision an instance of GCP CloudSQL

Postgresql using the postgresqlinstances.bindable.database.example.org API managed by the

XRD you previously created. Note that .spec.publishConnectionDetailsTo provides Crossplane with

the name and a label for the secret that is being used to store the connection details for the newly

created database. You can see that the label specified here matches the label selector defined on

the ClusterInstanceClass you created in the previous step.

Run the following command:

kubectl apply -f -<<EOF

apiVersion: bindable.database.example.org/v1alpha1

kind: PostgreSQLInstance

metadata:

 name: cloudsql-postgres-db

 namespace: default

spec:

 parameters:

 storageGB: 20

 compositionSelector:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 97

 matchLabels:

 provider: gcp

 publishConnectionDetailsTo:

 name: cloudsql-postgres-db

 metadata:

 labels:

 services.apps.tanzu.vmware.com/class: cloudsql-postgres

EOF

apiVersion: kapp.k14s.io/v1alpha1

kind: Config

rebaseRules:

- path: [spec, resourceRef]

 type: copy

 sources: [existing]

 resourceMatchers:

 - apiVersionKindMatcher: {apiVersion: bindable.database.example.org/v1alpha1, kind:

 PostgreSQLInstance}

This additional configuration is not required if you create the PostgreSQLInstance manually.

Running this command will cause the creation of a CloudSQL database instance in your GCP

account. You can use the gcloud CLI to verify this:

gcloud sql instances list

After the instance has been successfully created in GCP, the status of the newly created

PostgreSQLInstance resource should show READY=True. This might take a few minutes. You can wait

for this by running:

kubectl wait --for=condition=Ready=true postgresqlinstances.bindable.database.example.

org cloudsql-postgres-db --timeout=10m

As soon as the CloudSQL Postgresql instance is ready, it is claimable by the role of the application

operator as shown in the next section.

Claim the CloudSQL Postgresql instance and connect to it
from the Tanzu Application Platform Workload

Thanks to the previously created ClusterInstanceClass, secrets representing CloudSQL Postgresql

instances can now be discovered and claimed by application operators through the Tanzu CLI as

shown below.

Caution

If you are planning to create this resource using Namespace Provisioner, then you

must take steps to prevent the Namespace Provisioner from overwriting changes that

get written to the PostgreSQLInstance resource by Crossplane as part of its

reconciliation loop. One way of achieving that is to append the following kapp Config

rebaseRules to the same file as the PostgreSQLInstance in your gitops repository.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 98

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-about.html

1. Show available classes of service instances by running:

tanzu service classes list

 NAME DESCRIPTION

 cloudsql-postgres GCP CloudSQL Postgresql database instances

2. Show claimable instances belonging to the CloudSQL Postgresql class by running:

tanzu services claimable list --class cloudsql-postgres

 NAME NAMESPACE API KIND API GROUP/VERSION

 cloudsql-postgres-db default Secret v1

3. Create a claim for the discovered instance by running:

tanzu service claim create cloudsql-claim \

 --resource-name cloudsql-postgres-db \

 --resource-kind Secret \

 --resource-api-version v1

4. Obtain the claim reference by running:

tanzu service claim list -o wide

Expect to see the following output:

NAME READY REASON CLAIM REF

cloudsql-claim True services.apps.tanzu.vmware.com/v1alpha1

:ResourceClaim:cloudsql-claim

5. Create an application workload that consumes the claimed CloudSQL Postgresql database by

running:

Example:

tanzu apps workload create my-workload \

 --git-repo https://github.com/sample-accelerators/spring-petclinic \

 --git-branch main \

 --git-tag tap-1.2 \

 --type web \

 --label app.kubernetes.io/part-of=spring-petclinic \

 --annotation autoscaling.knative.dev/minScale=1 \

 --env SPRING_PROFILES_ACTIVE=postgres \

 --service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:clouds

ql-claim

Note

Create the claim in the same namespace as your workload. If your workload

is in a different namespace to the one currently targeted, add the --

namespace flag to the above command.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 99

Note that --service-ref is being set to the claim reference obtained previously.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 100

Component API Documentation

This section of the documentation provides detailed, technical documentation for each of the APIs

provided by Services Toolkit. The documentation is split according to component, and can be

accessed via the table of contents.

Resource Claims

Install

See the documentation on installing the latest release of the Services Toolkit to get started.

Resources

ResourceClaim

The main purpose of ResourceClaim is to identify the concrete Kubernetes object within the cluster

that satisfies the requirements stated in the claim.

After the object is identified, the status condition ResourceMatched is set to true. If the reference

object adheres to the provisioned service duck type the .status.binding.name is copied to the

ResourceClaim. .status.binding.name and the ResourceClaimed condition are set to true. The claim

object itself is a provisioned service, so it can be< used to define a service binding.

ResourceClaims are currently exclusive. A Service Resource can only have one successfully claimed

ResourceClaim in the cluster.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

 name: rmq-claim

 namespace: accounts

spec:

 ref:

 apiVersion: rabbitmq.com/v1alpha1

 kind: RabbitmqCluster

 name: my-rmq

 namespace: my-rmq-namespace # optional (if claiming across namespaces)

status:

 binding:

 name: my-rmq-secret # copied from RabbitmqCluster/my-rmq

 conditions:

 - lastTransitionTime: "2019-10-22T16:29:25Z"

 status: "True"

 type: Ready

 - lastTransitionTime: "2019-10-22T16:29:24Z"

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 101

 status: "True"

 type: ResourceClaimed

 - lastTransitionTime: "2019-10-22T16:29:23Z"

 status: "True"

 type: ResourceMatched

ResourceClaimPolicy

ResourceClaimPolicy enables ResourceClaims to work across namespaces.

The policy refers to two pieces of information:

Service Resources, such as RabbitmqClusters, that this policy applies to

The namespaces allowed to claim these resources

The matching Service Resources must reside in the same namespace as the ResourceClaimPolicy

and their type must also be specified in .spec.subject.

Namespaces that are allowed to claim these service resources must have their namespace name in

the .spec.consumingNamespaces array. A value of * allows claiming from all namespaces in this

cluster.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: rmq-policy

 namespace: my-rmq-namespace

spec:

 consumingNamespaces:

 - accounts # or "*" for all namespaces

 subject:

 group: rabbitmq.com

 kind: RabbitmqCluster

 selector: # optional

 matchLabels:

 "key": "value"

 matchExpressions:

 - key: "key"

 operator: In

 values: ["value1", "value2"]

ClusterInstanceClass

ClusterInstanceClass represents a set of service instances and holds descriptive metadata about

those instances.

The class provides a description of the types of service instances represented by this class

(.spec.description) and also the traits that a resource needs to be part of the class (.spec.pool).

For example, its kind and the labels it has.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: test

spec:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 102

 description:

 short: test

 pool:

 kind: Secret

 labelSelector:

 matchLabels:

 service: "rds-postgres"

 claimable: "true"

InstanceQuery

InstanceQuery is a create-only API that, given a ClusterInstanceClass, returns the intersection of

the set of instances represented by that class and the claimable service instances for the namespace

of the InstanceQuery.

The InstanceQuery takes an input of a ClusterInstanceClass through .spec.class and an optional

limit on the number of instances returned through .spec.limit. This defaults to 50.

apiVersion: claimable.services.apps.tanzu.vmware.com/v1alpha1

kind: InstanceQuery

metadata:

 name: test

spec:

 class: my-db-class

 limit: 30

status:

 instances:

 - apiVersion: v1

 kind: Secret

 name: my-secret-two

 namespace: default

 - apiVersion: v1

 kind: Secret

 name: my-secret-ns-one

 namespace: one

Permissions (RBAC)

The ResourceClaim controller MUST have read access to Resources specified in the ResourceClaim

specification. As these resources are not known upfront, the appropriate RBAC must be setup on the

Cluster. To accomplish this RBAC must be set up using Aggregated ClusterRoles with the

servicebinding.io/controller: "true" label. For more information, see the Kubernetes

documentation

An example of a ClusterRole that allows RabbitmqCluster resources to be read by the ResourceClaim

controller:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: resource-claims-rmq-role

 labels:

 servicebinding.io/controller: "true"

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 103

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles

rules:

- apiGroups:

 - rabbitmq.com

 resources:

 - rabbitmqclusters

 verbs:

 - get

 - list

 - watch

Services plug-in for Tanzu CLI

Caution: The former tanzu service types list and tanzu service instance list commands are

now deprecated. They have been hidden from CLI output text but are still functional if invoked.

Support for these commands ends either after two minor releases (v0.6.0) or after one year (2023-

07-12), whichever occurs later. Use the alternative commands tanzu service class list and tanzu

service claimable list instead.

The Services plug-in improves the user experience of working with services on Tanzu Application

Platform. After installation, the plug-in is invoked by running the tanzu services command.

The plug-in is currently distributed with Tanzu Application Platform. See Install or update the Tanzu

CLI and plug-ins for information on how to acquire and install the plug-in.

Use cases

The Services plug-in for Tanzu CLI is currently of most use to the application developer and

application operator roles. See Terminology and User Roles for more details. The following use cases

are currently covered by the plug-in as documented below.

Discover service instance classes

Service instance classes can be discovered by running:

tanzu service classes list

For further information including help text and usage, run:

tanzu service classes list --help

Discover claimable service instances

Discover claimable service instance for a given class can be discovered by running:

tanzu service claimable list --class CLASS-NAME

Where CLASS-NAME is the name of a ClusterInstanceClass to discover claimable service instances

from.

For further information including help text and usage, run:

tanzu service claimable list --help

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 104

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install-tanzu-cli.html#cli-and-plugin

Claim service instances with resource claims

Application operators can claim service instances on their target cluster by running:

tanzu service claims create

CLAIM-NAME --resource-name SERVICE-INSTANCE-NAME --resource-kind SERVICE-INSTANCE-KIND

 --resource-api-version

SERVICE-INSTANCE-API-VERSION

Where:

CLAIM-NAME is the desired name of the Resource Claim to be created.

SERVICE-INSTANCE-NAME, SERVICE-INSTANCE-KIND and SERVICE-INSTANCE-API-VERSION are the

name, kind and apiVersion, respectively, of the service instance to be claimed.

--resource-namespace is an optional flag that can be passed in with a namespace to claim a

service instance in a different namespace.

For further information including help text and usage, run:

tanzu service claims create --help

List and get resource claims

Application developers can view existing claims on their target cluster by running:

tanzu service claims list

In addition, application developers can use this command to output claim references by passing in -o

wide, which can then be passed to the --service-ref flag of the tanzu apps workload create

command in order to bind application workloads to service instances.

For further information including help text and usage, run:

tanzu service claims list --help

Unclaim service instances

Application operators can unclaim a claimed service instance on their target cluster by running:

tanzu service claims delete CLAIM-NAME

Where CLAIM-NAME is the name of the resource claim that currently claims the service instance.

For further information including help text and usage, run:

tanzu service claims delete --help

Service offering

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 105

Install

See the documentation about installing the latest release of Services Toolkit to get started.

Resources

ClusterResource

The ClusterResource CR is a place to store metadata regarding a Service Resource Lifecycle API.

The only required field is .spec.resourceRef, which defines the Kubernetes API Group and Kind

that a ClusterResource CR describes.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterResource

metadata:

 name: rabbitmqcluster

 labels:

 # The following labels will be applied automatically by the ClusterResource contro

ller

 # to help with filtering and searching of ClusterResource resources

 services.apps.tanzu.vmware.com/api-group: rabbitmq.com

 services.apps.tanzu.vmware.com/api-kind: RabbitmqCluster

spec:

 # A reference to the Kubernetes API Group and Kind that this ClusterResource is desc

ribing

 resourceRef:

 # The Kubernetes API Group the resource belongs to

 group: rabbitmq.com

 # The Kubernetes API Kind of the resource

 kind: RabbitmqCluster

 # Short description of the resource (optional; string)

 shortDescription: "It's a RabbitMQ Cluster"

 # Long description of the resource (optional; string)

 longDescription: "RabbitMQ is an open source ..."

Note: Metadata stored in ClusterResource CRs is not specific to a particular version of the API.

Version-specific API metadata is stored in GVKDescriptor CRs.

GVKDescriptor (duck type)

GVKDescriptor is not a concrete CRD itself, but rather a duck type of the following shape:

apiVersion: group/version

kind: Kind

spec:

 # A reference to the Kubernetes API Group/Version/Kind

 gvkRef:

 # The Kubernetes API Group the resource belongs to

 group: rabbitmq.com

 # The Kubernetes API Version of the API

 version: v1beta1

 # The Kubernetes API Kind of the resource

 kind: RabbitmqCluster

Any CR that contains .spec.gvkRef with the group, version, and kind fields can be considered a

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 106

GVKDescriptor.

ClusterExampleUsage (GVKDescriptor)

ClusterExampleUsage CR adheres to the GVKDescriptor duck type and is used to store a YAML

document for a Service Resource Lifecycle API.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterExampleUsage

metadata:

 name: rabbitmqcluster-hello-world

 labels:

 # The following labels will be applied automatically by the ClusterExampleUsage co

ntroller

 # to help with filtering and searching of ClusterExampleUsage resources

 services.apps.tanzu.vmware.com/api-group: rabbitmq.com

 services.apps.tanzu.vmware.com/api-kind: RabbitmqCluster

 services.apps.tanzu.vmware.com/api-version: v1beta1

spec:

 # Adherence to GVKDescriptor duck type

 gvkRef:

 group: rabbitmq.com

 version: v1beta1

 kind: RabbitmqCluster

 # Description of the example

 description: |

 "Hello World" example for the RabbitmqCluster resource

 # YAML document for the example

 yaml: |

 apiVersion: rabbitmq.com/v1beta1

 kind: RabbitmqCluster

 metadata:

 name: hello-world

 spec:

 ...

Scope, Discoverability, and Usability

All Service Offering APIs are cluster-scoped. This means that, assuming relevant RBAC is

configured, any user can get, list, and watch CRs from these APIs. This configuration helps to

support discoverability, in that just as any user can run kubectl api-resources any user can also run

kubectl get clusterresources. The former command outputs all API resources on the server,

while the latter command outputs only the Service Resource Lifecycle APIs on the server (a subset).

Ability to discover Service Resource Lifecycle APIs does not mean a user has permission to use the

APIs. Accessibility of a Service Resource Lifecycle API depends on whether the user has relevant

RBAC permissions on the API that is discovered.

RBAC Rules for Discoverability

By default, the Services Toolkit carvel package allows the system:authenticated Group to get, list,

and watch Service Offering resources by using the ClusterRole service-offering-api-

discoverability.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 107

Service API Projection and Service Resource Replication

Install

See the documentation on installing the latest release of the Services Toolkit to get started and see

Topology for information about supported topologies.

Concepts

This topic introduces a number of concepts. These are summarized as follows:

Projection Plane

API Projection

Resource Replication

Projection Plane

Projection Plane defines an “upstream” and “downstream” relationship between a pair of

Kubernetes clusters, namely between a Service Cluster (upstream) and a Workload Cluster

(downstream).

UpstreamClusterLink and DownstreamClusterLink

The UpstreamClusterLink resource is created on a Service Cluster. Its main purpose is to manage a

Service Account that components running in a Workload Cluster use.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: UpstreamClusterLink

metadata:

 name: workload-3c

 namespace: services-toolkit

spec:

 downstream:

 # Name of the Workload Cluster. This will be used for debugging.

 name: workload-3c

status:

 # Created Service Account that will be used by the Workload Cluster

 serviceAccount:

 name: managed-service-account

 observedGeneration: 1

 conditions:

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: Ready

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ServiceAccountReady

The DownstreamClusterLink resource is created on a Workload Cluster. Its primary purpose is to

manage an API aggregation server that is eventually used to project specific APIs. This resource:

Contains information about the corresponding Service Cluster URL, name, CA certificate, and

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 108

service account token.

Deploys the API-aggregation server that is configured to proxy to the Service Cluster using

the provided service account token.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: DownstreamClusterLink

metadata:

 name: services-2b

 namespace: services-toolkit

spec:

 proxy:

 TLS:

 # TLS cert to be used for the API proxy

 secretName: omnia-isla

 upstream:

 kubeconfig:

 # Secret containing the kubeconfig to connect to the Service Cluster

 secretName: pumpkin-seeds

 name: services-2b

status:

 proxy:

 # base64-encoded CA for the API proxy

 caBundle: facade0ff1cebadc0ffee...

 # Reference to the kubernetes Service providing access to the API proxy

 serviceReference:

 name: services-2b-proxy

 namespace: services-toolkit

 port: 443

 conditions:

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: Ready

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ServiceAccountReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyDeploymentReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyServiceReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyConfigMapReady

 - lastTransitionTime: "2021-02-02T18:41:22Z"

 status: "True"

 type: ProxyServiceAccountReady

The service account used by the proxy Deployment must have the following RBAC set up for it:

A ClusteRoleBinding to the system:auth-delegator ClusterRole to delegate authentication

decisions to the Kubernetes core API server.

A RoleBinding to the extension-apiserver-authentication-reader role in the kube-system

namespace. This allows your extension API-server to access the extension-apiserver-

authentication configmap.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 109

A ClusterRoleBinding to a ClusterRole that provides get, list, and watch for namespaces.

If such a ClusterRole doesn’t exist, you must create one.

API Projection

API Projection makes custom Kubernetes APIs installed on a Service Cluster (upstream) available in

a Workload Cluster (downstream).

APIExportRoleBinding

The purpose of the APIExportRoleBinding is to provide downstream users with necessary

permissions on the Upstream Cluster. It does so by binding a user-specified ClusterRole to the

service account referred to in the provided UpstreamClusterLink resource.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: APIExportRoleBinding

spec:

 upstreamClusterLinkRef:

 name: fish-sauce

 namespace: project-alpha

 clusterRoleRef:

 name: cluster-1-a

ClusterAPIGroupImport

The ClusterAPIGroupImport resource is a cluster-scoped resource created on the Workload Cluster.

It expresses the intent to import an API group using the specified DownstreamClusterLink. Only one

ClusterAPIGroupImport can exist per API Group.

After created, if a corresponding APIExportRole exists in the Service Cluster, a new custom

Kubernetes API is available in the Workload Cluster and can be discovered by running the kubectl

command api-resources.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ClusterAPIGroupImport

metadata:

 name: rabbitmq.com

spec:

 # This is the reference to the DownstreamClusterLink resources

 downstreamClusterLinkRef:

 name: services-2b

 namespace: services-toolkit

 # The api group that is to be projected

 group: rabbitmq.com

 # Version of the api to be projected. Optional, if not specified register all discov

ered versions

 version: v1beta1

status:

 conditions:

 - type: Ready

 lastTransitionTime: "2020-12-01T13:03:32Z"

 status: "True"

 - type: APIServicesReady

 lastTransitionTime: "2020-12-01T13:03:28Z"

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 110

 status: "True"

APIResourceImport

The APIResourceImport resource is a namespace-scoped resource created on the downstream

cluster. Its presence indicates to the proxy whether a projected Group and Resource is available in a

namespace. The proxy uses this information to decide whether to forward a particular request

upstream. This is for convenience rather than policy enforcement, which the RBAC achieves

upstream.

Resources are specified at the namespace scope rather than the cluster scope to allow different

resources to be made available in different namespaces.

apiVersion: projection.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: APIResourceImport

metadata:

 name: rabbitmq.com-import

 namespace: team-1 # namespace scoped resource as it sets up ns RBAC

 spec:

 clusterApiImportRef:

 name: rabbitmq.com

 resources: [“rabbitmqclusters”]

status:

 conditions:

 - type: Ready

 message: "Successfully reconciled"

 lastTransitionTime: "2020-12-01T13:03:30Z"

 status: "True"

 - type: ResourcesAvailable

 message: "Resources Ready"

 lastTransitionTime: "2020-12-01T13:03:32Z"

 status: "True"

Resource Replication

The resource replication components are responsible for synchronizing core Kubernetes resources

across multiple clusters. As of version v0.5.0, the resource replication only handles the Secret

resources.

SecretExport

SecretExport is a namespaced resource indicating that the named secret is involved in replication.

Services Toolkit places these resources on the services cluster. This resource sets up permissions for

the local service account, which the Workload Clusters use to pull the secret across.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: SecretExport

metadata:

 name: small-postgres-23.status.binding.name

 namespace: project-1

 labels:

 # The following labels will be applied automatically

 # to help with filtering and searching of SecretExport resources

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-group: sql.t

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 111

anzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-version: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-kind: Postgr

es

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-name: small-

postgres-23

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-uid: cafe012

3d09e

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitor-binding-uid: 0ff1

ceca5cade

spec:

 secret:

 # The name of the secret in the current namespace to be replicated

 name: pg-binding

 serviceAccount:

 # The name of the service account in the current namespace that will be used for r

eplication

 name: upstream-replication-sa

SecretImport

SecretImport is responsible for replicating the secret from the Service Cluster. Services Toolkit

places the SecretImport in a user namespace of the Workload Cluster for each secret. Currently, the

namespace on the Service Cluster has to match the namespace on the Workload Cluster.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: SecretImport

metadata:

 namespace: project-1

 name: small-postgres-23.status.binding.name

 labels:

 # The following labels will be applied automatically

 # to help with filtering and searching of SecretImport resources

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-group: sql.t

anzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-version: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-kind: Postgr

es

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-name: small-

postgres-23

 replication.apiresources.multicluster.x-tanzu.vmware.com/secret-owner-uid: cafe012

3d09e

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitor-binding-uid: 0b5e

55ed90dde55

spec:

 secret:

 # The name of the secret in the current namespace to be replicated

 name: dumbo

 remoteKubeconfig:

 # The name of a secret in the current namespace holding a kubeconfig for the Servi

ce Cluster

 name: energy-source

The two resources mentioned earlier handle a single Secret object replication. To set up replication

of the specified secrets for every service instance of a given type, cluster-scoped resources

ClusterResourceImportMonitor and ClusterResourceExportMonitor are used. Additionally,

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 112

ResourceImportMonitorBinding and ResourceExportMonitorBinding are used to enable automatic

replication in a namespace, and specify the connection details for replication for this namespace.

ClusterResourceImportMonitor

ClusterResourceImportMonitor is responsible for setting up watching on service instances. As a

result, SecretImport resources can be produced when needed. ClusterResourceImportMonitor

resources are defined on the Workload Cluster.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ClusterResourceImportMonitor

metadata:

 name: postgres

 labels:

 # The following labels are required and must match the values in spec.resource

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-group:

 sql.tanzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-versio

n: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-kind:

Postgres

spec:

 # The type of the resource owning the secrets to be replicated

 resource:

 group: sql.tanzu.vmware.com

 version: v1

 kind: Postgres

 # The list of secrets to be replicated expressed as JSON path on the resource

 secretPaths:

 - .status.binding.name

ResourceImportMonitorBinding

By default, defining an ClusterResourceImportMonitor resource configures the resource type and

secrets to be replicated, but does not enable replication. ResourceImportMonitorBinding enables the

replication of secrets for service instances within a namespace. It references a secret containing the

kubeconfig of the Service Cluster to pull the secrets from.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ResourceImportMonitorBinding

spec:

 monitorRef:

 # Name of the related cluster-scoped ClusterResourceImportMonitor

 name: postgres

 remoteKubeconfig:

 # The name of a secret in the current namespace holding a kubeconfig for the Servi

ce Cluster

 name: energy-source

ClusterResourceExportMonitor

ClusterResourceExportMonitor is responsible for setting up watching on service instances, so that as

a result, SecretExport resources can be produced when needed. ClusterResourceExportMonitor

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 113

resources are defined on the services cluster.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ClusterResourceExportMonitor

metadata:

 name: postgres

 labels:

 # The following labels are required and must match the values in spec.resource

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-group:

 sql.tanzu.vmware.com

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-versio

n: v1

 replication.apiresources.multicluster.x-tanzu.vmware.com/monitored-resource-kind:

Postgres

spec:

 # The type of the resource owning the secrets to be replicated

 resource:

 group: sql.tanzu.vmware.com

 version: v1

 kind: Postgres

 # The list of secrets to be replicated expressed as JSON path on the resource

 secretPaths:

 - .status.binding.name

ResourceExportMonitorBinding

By default, defining an ClusterResourceExportMonitor resource configures the resource type and

secrets to be replicated, but does not enable replication. ResourceExportMonitorBinding enables the

replication of secrets for service instances within a namespace. It provides the service account in the

current namespace of the Service Cluster to pull the secrets from.

apiVersion: replication.apiresources.multicluster.x-tanzu.vmware.com/v1alpha1

kind: ResourceExportMonitorBinding

metadata:

 name: cluster1-postgres

 namespace: project-1

spec:

 monitorRef:

 # Name of the related cluster-scoped ClusterResourceImportMonitor

 name: postgres

 serviceAccount:

 # Name of the service account in the current namespace used by the Workload Cluste

r to pull secrets.

 name: upstream-replication-sa

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 114

Reference

This section provides further references for Services Toolkit:

Resource Requirements

Known Limitations

Supported Kubernetes Distributions

Topology

Terminology and User Roles

Troubleshooting

Services Toolkit Terminology and User roles

Terminology

Service

A broad, high-level term used to describe something used in either the development of, or

running of Application Workloads

Often, but not exclusively, synonymous with the concept of a Backing Service as defined by

The Twelve Factor App *… any service the app consumes over the network as part of its

normal operation

Examples

A PostgreSQL service (implemented as a Kubernetes Operator provided by Tanzu Data

Services)

A PostgreSQL service (implemented as a process running on an Application Developer’s

laptop)

Object storage (implemented as SaaS running on AWS)

AppSSO

Service ResourceService Resource

Any Kubernetes resource which provides (partial) functionality related to a Service

Examples

A Kubernetes resource with API Kind PostgreSQL

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 115

#GUID-reference-troubleshooting

A Kubernetes resource with API Kind FirewallRule

A Kubernetes resource with API Kind RabbitmqUser

A Kubernetes resource with API Kind ClientRegistration providing access to an App SSO

service

A Kubernetes resource with API Kind Secret containing credentials and connectivity

information for a Service (which may or may not be running on the cluster itself)

Provisioned Service

This term is defined in the Service Binding Specification for Kubernetes.

Essentially, any Service Resource which defines a .status.binding.name which

points to a Secret in the same namespace containing credentials and connectivity

information for the resource

See Provisioned Service for the full definition.

Service Binding

A mechanism in which Service Instance credentials and other related connectivity

information are communicated to Application Workloads in an automated way

Examples

The Service Binding concept implemented through the ServiceBinding Service Resource

provided by https://github.com/vmware-tanzu/servicebinding

Service Instance

An abstraction over one or a group of interrelated Service Resources that together provide

the expected functionality for a particular service

One of the Service Resource that make up an Instance must either adhere to Provisioned

Service or be a Secret conforming to the Service Binding Specification for Kubernetes

This guarantees that Service Instances can be Claimed and subsequently bound to

Application Workloads

Service Instances are made discoverable through Service Instance Classes

Examples

The RabbitmqCluster Service Resource provided by the RabbitMQ Cluster Operator

This Service Resource adheres to Provisioned Service, as such any RabbitmqCluster

resource on a Kubernetes cluster could be considered a Service Instance

A logical grouping of the following Service Resources could be said to form a single “AWS

RDS” Service Instance:

An AWS RDS DBInstance

An AWS RDS DBSubnetGroup

A Carvel SecretTemplate configured to produce a Secret conforming to the Service

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 116

https://github.com/servicebinding/spec#provisioned-service

Binding Specification for Kubernetes

A Role, RoleBinding and ServiceAccount

A Kubernetes Secret conforming to the Service Binding Specification for Kubernetes

containing credentials for a Service running external to the cluster

Service Instance Class

Provides a way to describe “classes” (i.e. categories) of Service Instances

Allows for discovery of Service Instances belonging to the class

Refers to a pool of Service Instances

Different classes might map to different Services or to different configurations of the same

Service

Examples

A ClusterInstanceClass named “rabbitmq-dev” pointing to all RabbitmqCluster Service

Resources configured with .spec.replicas=1 identified by label class: rmq-dev

A ClusterInstanceClass named “rabbitmq-prod” pointing to all RabbitmqCluster Service

Resources configured with .spec.replicas=3 identified by label class: rmq-prod

A ClusterInstanceClass named “aws-rds-postgresql” pointing to Secrets conformant with

the Binding Specification and identified by label class: aws-rds

Resource Claim

A mechanism in which requests for Service Instances can be declared and fulfilled without

requiring detailed knowledge of the Service Instances themselves

Examples

The Resource Claim concept implemented through the ResourceClaim Service Resource

provided by Services Toolkit

Claimable Service Instance

Any Service Instance which is permitted to be claimed via a Resource Claim from a

namespace, taking into consideration:

Location (namespace) of the Service Instance in relation to the location (namespace)

of the Resource Claim

Any matching Resource Claim Policies

Exclusivity of Resource Claims (i.e. a given instance can only be claimed once at a

time)

Examples

A RabbitmqCluster Service Resource residing in the same namespace as a Resource Claim

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 117

and which has not already been claimed by another Resource Claim could be said to be a

“Claimable Service Instance”

A RabbitmqCluster Service Resource residing in a different namespace to a Resource Claim,

for which a matching Resource Claim Policy exists, and for which has not already been

claimed by another Resource Claim could be said to be a “Claimable Service Instance”

A RabbitmqCluster Service Resource residing in the same namespace as a Resource Claim

which has already been claimed could not be said to be a “Claimable Service Instance” due

to the exclusive nature of Resource Claims

Service Resource Lifecycle API

Any Kubernetes API that can be used to manage the life cycle (CRUD) of a Service Resource

Examples

rabbitmqclusters.rabbitmq.com/v1beta1

Service Cluster

Applicable within the context of Service API Projection and Service Resource Replication

A Kubernetes cluster that has Service Resource Lifecycle APIs installed and a corresponding

controller managing their life cycle

Workload Cluster

Applicable within the context of Service API Projection and Service Resource Replication

A Kubernetes cluster that has developer-created applications running on it

User Roles

Services Toolkit caters to the following user roles.

It is important to note that these User Roles are not User Personas - it is perfectly possible (and even

expected) that one human being could be associated with many User Roles at any given time. The

User Roles align to Tanzu Application Platform’s User Roles, and the Services Toolkit team is

primarily responsible for defining the Service Operator role.

The User Roles listed here consist of a short description as well as the Jobs To Be Done for the role.

For detailed information on corresponding RBAC associated with each role, please refer to Detailed

role permissions breakdown.

Application Developer (AD)

Encompasses both app-editor and app-viewer roles as defined by Tanzu Application Platform

Jobs To Be Done

Bind and unbind Application Workloads to/from Resource Claims

Get, List, Watch ResourceClaims

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 118

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-authn-authz-role-descriptions.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-authn-authz-permissions-breakdown.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-authn-authz-role-descriptions.html#appeditor-0
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-authn-authz-role-descriptions.html#appviewer-1

Get, List, Watch ClusterInstanceClasses associated with ResourceClaims

Application Operator (AO)

Encompasses the app-operator role as defined by Tanzu Application Platform

Jobs To Be Done

Discover and learn about Service Instance Classes available on a cluster

Discover Claimable Service Instances associated with Service Instance Classes

Lifecycle management (CRUD) of Resource Claims

Service Operator (SO)

Jobs To Be Done

Lifecycle management (CRUD) of Service Instances

Lifecycle management (CRUD) of Service Instance Classes

Lifecycle management (CRUD) of Resource Claim Policies

Identify pending Resource Claims and, if deemed appropriate, help to fulfil such claims

through a combination of the above Jobs To Be Done

Known limitations

This topic lists known limitations and issues with Services Toolkit.

Service Resource Replication Limitations

Service Resource Replication limitations are listed as follows.

Updates to Secrets are not replicated

Currently, after a Secret is replicated from a Service Cluster to a Workload Cluster, any further

updates to the original Secret in the Service Cluster are not propagated to the replica Secret in the

Workload Cluster. VMware aims to remove this limitation in a future release of Services Toolkit.

Service API Projection Limitations

Service API Projection limitations are listed as follows.

Unable to project Core Kubernetes APIs

API projection via does not work with core Kubernetes APIs such as Secrets. This means that use

cases such as Direct Service References or Cloud Service Provider use cases, support such as

Consuming AWS RDS on TAP, will not work when combined with usage of the kubectl-scp plugin

as shown in Dedicated Service Clusters.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 119

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-authn-authz-role-descriptions.html#appoperator-2

CRD and Aggregation layer conflict

VMware uses api-aggregation as the mechanism to project APIs. After an API is registered by using

this aggregation layer (the APIService is available), even if you create a CRD pointing to the same

path, the aggregation layer still proxies the requests. If you do it the other way around, first create

the CRD and then “project” the API (or register the APIService). That way the APIService is not

available.

Local CRD is created before Service Resource API is projected

For example, you create rabbitmqclusters.rabbitmq.com/v1beta1 on your workload cluster by

creating a CustomResourceDefinition before projecting the rabbitmq.com/v1beta1 API. When you

try to project the rabbitmq.com/v1beta1 API, the APIService v1beta1.rabbitmq.com is not ready.

rabbitmqclusters.rabbitmq.com CRD status:

status:

 acceptedNames:

 categories:

 - all

 kind: RabbitmqCluster

 listKind: RabbitmqClusterList

 plural: rabbitmqclusters

 shortNames:

 - rmq

 singular: rabbitmqcluster

 conditions:

 - lastTransitionTime: "2021-08-18T13:01:31Z"

 message: no conflicts found

 reason: NoConflicts

 status: "True"

 type: NamesAccepted

 - lastTransitionTime: "2021-08-18T13:01:31Z"

 message: the initial names have been accepted

 reason: InitialNamesAccepted

 status: "True"

 type: Established

 storedVersions:

 - v1beta1

rabbitmq.com-v1beta1-api-group-import ClusterAPIGroupImport status:

status:

 conditions:

 - lastTransitionTime: "2021-08-18T13:01:47Z"

 message: apiservices.apiregistration.k8s.io "v1beta1.rabbitmq.com" already exists

 reason: APIServiceNotReady

 status: "False"

 type: APIServiceReady

 - lastTransitionTime: "2021-08-18T13:01:47Z"

 message: apiservices.apiregistration.k8s.io "v1beta1.rabbitmq.com" already exists

 reason: APIServiceNotReady

 status: "False"

 type: Ready

 observedGeneration: 1

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 120

To use Service API Projection on your cluster when you don’t have any Custom Resources

provisioned from this CRD, delete the local CRD and delete/recreate the ClusterAPIGroupImport.

When local CRD is created after Service Resource API is projected

When local CRD is created after Service Resource API is projected, the APIService is available but

the rabbitmqclusters.rabbitmq.com CRD does not show any errors on the status. This can be

confusing as when you provision or delete a Custom Resource because the requests are proxied

and run on the linked Service cluster, not on your local cluster.

rabbitmqclusters.rabbitmq.com CRD status:

status:

 acceptedNames:

 categories:

 - all

 kind: RabbitmqCluster

 listKind: RabbitmqClusterList

 plural: rabbitmqclusters

 shortNames:

 - rmq

 singular: rabbitmqcluster

 conditions:

 - lastTransitionTime: "2021-08-18T09:40:35Z"

 message: no conflicts found

 reason: NoConflicts

 status: "True"

 type: NamesAccepted

 - lastTransitionTime: "2021-08-18T09:40:35Z"

 message: the initial names have been accepted

 reason: InitialNamesAccepted

 status: "True"

 type: Established

 storedVersions:

 - v1beta1

rabbitmq.com-v1beta1-api-group-import ClusterAPIGroupImport status:

status:

 conditions:

 - lastTransitionTime: "2021-08-18T13:10:48Z"

 status: "True"

 type: APIServiceReady

 - lastTransitionTime: "2021-08-18T13:10:48Z"

 status: "True"

 type: Ready

 observedGeneration: 1

No built-in support for cluster-scoped requests against projected
APIs in the Workload Cluster

By default, Services Toolkit does not support projection of cluster-scoped requests in the Workload

Cluster. It supports namespace-scoped requests only.

This poses a problem with certain controllers watching these APIs in the Workload Cluster, for

example, Service Binding implementation in GitHub. They might require cluster-scoped read access

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 121

https://github.com/vmware-labs/service-bindings/

verbs on projected APIs in the Workload Cluster.

There is a workaround for these types of scenarios:

VMware provides a ClusterRole by using the kubectl-scp plug-in’s federate command on the

Service Cluster.

For example:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: "example"

rules:

- apiGroups:

 - rabbitmq.com

 resources:

 - rabbitmqcluster

 verbs: ["get", "list", "watch"]

The ClusterRole is then bound to the Proxy Service Account on the Service Cluster.

This workaround has significant implications:

It represents a potential attack vector in which a malicious user operating in Workload Cluster

A might obtain the secret access token used by the Proxy and, in turn, use that token to

perform read actions (e.g. get/watch/list) on resources in the Service Cluster that are owned

by an entirely different Workload Cluster B. In other words, this workaround circumvents

proper isolation of projected resources between different Workload Clusters.

It’s confusing to the App Operator who might see resources that belong to non-existing

namespaces.

Projected resources belonging to a Workload Cluster A are potentially being leaked to users

in Workload Cluster B. It’s similar to the security issue stated earlier in this list, but different in

that the user doesn’t even have to have any sort of malicious intent.

Future versions of the Services Toolkit add first-class support for cluster-scoped requests against

projected APIs and, therefore, remove the need for the laid out workaround and its problematic

characteristics.

Service Resource Claims Limitations

Service Resource Claims limitations are listed as follows.

Can only claim service resources that adhere to the Kubernetes
Binding specification

Currently, a ResourceClaim is only successful in claiming a service resource if that service resource

adheres to the Provisioned Service duck type in GitHub or if directly referring to a compatible secret.

Future iterations of Services Toolkit might loosen this requirement by using an extension of the

ResourceClaim function or another API.

Can only claim service resources once

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 122

https://github.com/vmware-labs/service-bindings/
https://gitlab.eng.vmware.com/services-control-plane/prototypes/kubectl-scp/
https://gitlab.eng.vmware.com/services-control-plane/prototypes/kubectl-scp/-/blob/1e44f3bcd0c23438fac2daecd4c6be1ab13fd0e2/kubectl-scp#L615
https://gitlab.eng.vmware.com/services-control-plane/prototypes/kubectl-scp/-/blob/1e44f3bcd0c23438fac2daecd4c6be1ab13fd0e2/kubectl-scp#L616
https://github.com/servicebinding/spec#provisioned-service

Currently, only a single ResourceClaim can successful claim a service resource. If a second

ResourceClaim is created for the same service resource, it fails with ResourceAlreadyClaimed. Future

iterations of Services Toolkit might allow shared service resources.

Resource requirements

This topic describes the resources required to install and use Services Toolkit.

Note: At present it is not possible to alter default resource configurations for Services Toolkit as part

of installation.

Deployments

To better understand resource requirements and use, consider the various Kubernetes deployments

that are created as part of installation, and subsequent use of Services Toolkit.

Upon installation of Services Toolkit to a cluster, a single Deployment named services-toolkit-

controller-manager is created and it defines a container with the following resource configuration:

 resources:

 limits:

 cpu: 200m

 memory: 500Mi

 requests:

 cpu: 100m

 memory: 100Mi

Note: See the Kubernetes documentation for further information about resource management in

Kubernetes.

For each DownstreamClusterLink resource created as part of configuring a Projection Plane (see

Service API Projection and Service Resource Replication), one additional Deployment is created on

the downstream cluster. This Deployment defines a container with the following resource

configuration:

 resources:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 20Mi

There is one additional Deployment for each ClusterResourceExportMonitor and

ClusterResourceImportMonitor resource that is created upon configuration of Resource Replication

(see Service API Projection and Service Resource Replication). This Deployment defines a container

with the following resource configuration:

 resources:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 123

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

 cpu: 100m

 memory: 20Mi

Therefore, the minimum set of resources required to support the federation of an API between a

Workload Cluster and a Service Cluster is as follows:

Workload Cluster

1 x Services Toolkit controller manager deployment

requests 100m CPU and 100Mi memory

1 x API proxy deployment

requests 100m CPU and 20Mi memory

1 x ClusterResourceImportMonitor deployment

requests 100m CPU and 20Mi memory

Service Cluster

1 x Services Toolkit controller manager deployment

requests 100m CPU and 100Mi memory

1 x ClusterResourceExportMonitor deployment

requests 100m CPU and 20Mi memory

Total minimum resource requirements

Workload Cluster = 300m CPU and 140Mi memory

Service Cluster = 200m CPU and 120Mi

Note: Services Toolkit does not require the use of volumes or any external storage.

Supported Kubernetes distributions

Kubernetes Distribution GA Functionality Tested?
Experimental / Beta

Functionality Tested?

kind Yes (used for our local development) Yes

GKE Yes (continuously tested in CI) Yes

AKS Yes Not yet

EKS Yes Not yet

VMware Tanzu Kubernetes

Grid (TKGm) clusters

Yes (TKGm v1.5.0 on vSphere)* Not yet

Other Unknown - we haven’t tested Services Toolkit on other

distributions yet, but it should** work.

Unknown

* TKGm 1.5+ is required.

** Services Toolkit leverages core Kubernetes APIs to provide function, therefore, in most case, it is

compatible with most reasonably up-to-date distributions.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 124

Topology

Topology is a combination of Service and Workload Clusters, their namespaces and the Service

Resource Lifecycle APIs that are to be made available from Service Clusters to one or more

Workload Clusters.

The following two assumptions that must hold true for topologies currently supported by the Services

Toolkit.

The presence of a “flat” network is assumed, which is to say that workloads running in one

cluster can establish network connections (resolution and routing) to the Kubernetes API

Server endpoints of all other clusters without any additional setup.

Application workloads can establish network connections to the endpoints of service

instances without any additional setup.

Supported Topologies

Topologies currently supported by Service Toolkit have the following rules:

API Projection does not work within a single cluster but only across a set of distinct service

and workload clusters.

An API group can be either projected into a cluster or installed/reconciled within that cluster,

not both. For example, you cannot install the RabbitmqCluster Operator and project

RabbitmqCluster resources from a Service cluster in the same Workload cluster. See

Limitations for further details.

Resources of a projected API group must exist in identically named namespaces in the

workload and service clusters. For a workload cluster, there can only be a single service

cluster for a API group projection. For example, a workload cluster cannot receive

projections of a RabbitmqCluster API from service cluster 1 and from service cluster 2.

Provide a Service Resource Lifecycle API

From one Service cluster to one Workload cluster

Service Operator wants to provide a Service Resource Lifecycle API from one service cluster to one

workload cluster in the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 125

From a Service cluster to multiple Workload clusters

Service Operator wants to provide a Service Resource Lifecycle API from a Service cluster to

multiple Workload clusters with the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 126

Provide different Service Resource Lifecycle APIs

From a Service cluster to a Workload cluster

Service Operator wants to provide different Service Resource Lifecycle APIs from one Service

cluster and distinct namespaces to one Workload cluster in matching named namespaces.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 127

Provide multiple Service Resource Lifecycle APIs

From a Service Cluster to a Workload cluster

Service Operator wants to provide multiple Service Resource Lifecycle APIs from one Service

Cluster and one namespace to one Workload cluster with the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 128

From multiple Service Clusters to one Workload cluster

Service Operator wants to provide multiple Service Resource Lifecycle APIs from multiple Service

Clusters with the same namespace to one Workload cluster with the same named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 129

Caution: In this particular scenario, you might encounter name collisions in the application workload

clusters for the core resources such as secrets. For example, if API-1 creates a secret called

binding-secret and API-2 also creates a secret called binding-secret, Resource Replication

component copies both of these secrets in the application workload cluster, but one is overridden by

the other depending on which one is replicated second.

From multiple service clusters to multiple workload clusters

Service Operator wants to provide multiple Service Resource from multiple distinct Service Clusters

with the same namespace name to multiple Workload clusters with matching named namespace.

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 130

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 131

Services Toolkit for VMware Tanzu Application Platform v0.8

VMware, Inc 132

	About Services Toolkit
	Motivation
	Component Overview
	Resource claims
	Service Offering
	Service API Projection and Resource Replication (experimental)

	Release notes
	v0.8.3
	v0.8.2
	v0.8.1
	v0.8.0
	v0.7.1
	Bug Fixes

	v0.6.0
	v0.5.1
	v0.5.0
	Breaking changes

	Getting started
	Install
	Consuming Services on Tanzu Application Platform
	Uninstall
	Use Cases and Walkthroughs
	Direct Secret References
	Dedicated Service Clusters (using experimental Projection and Replication APIs)
	Prerequisites
	Walkthrough

	Consuming Cloud Services (AWS, Azure and GCP) on Tanzu Application Platform
	Consuming AWS RDS on Tanzu Application Platform
	Consuming AWS RDS on Tanzu Application Platform with AWS Controllers for Kubernetes (ACK)
	Prerequisites
	Create service instances that are compatible with Tanzu Application Platform
	Obstacle 1: DBInstance does not adhere to the binding specification
	Obstacle 2: Creating a DBInstance resource on its own is not sufficient
	Solutions

	Create an RDS service instance
	Create a service instance class for RDS
	Discover, Claim, and Bind to an RDS

	Prerequisites
	Configuring the AWS RDS environment
	Prerequisites
	Configure the AWS RDS environment

	Creating AWS RDS Instances manually using kubectl (experimental)
	Prerequisite
	Create an RDS service instance by using kubectl
	Create the DBInstance resource
	Create a Binding Specification Compatible Secret
	Create a ServiceAccount for secret templating
	Create a SecretTemplate
	Verify

	Delete an RDS service instance
	Summary and Next Steps

	Creating AWS RDS instances by using a Carvel package (experimental)
	Prerequisite
	Create an RDS service instance using a Carvel package
	Add a reference package repository to the in the cluster
	Create an RDS service instance through the Tanzu CLI
	Verify

	Delete an RDS service instance
	Summary

	Consuming AWS RDS on Tanzu Application Platform with Crossplane
	Overview
	Prerequisites
	Install Crossplane
	Install AWS Provider for Crossplane
	Configure AWS provider

	Define composite resource types
	Provision RDS PostgreSQL instance
	Create an instance class
	Provision RDS PostgreSQL instance
	Claim the RDS PostgreSQL instance and connect to it from the Tanzu Application Platform workload

	Consuming Azure Flexible Server Tanzu Application Platform
	Consuming Azure Flexible Server for PostgreSQL on Tanzu Application Platform with Azure Service Operator (ASO)
	Prerequisites
	Create service instances that are compatible with Tanzu Application Platform
	Create a service instance class for PSQL
	Discover, Claim, and Bind to a PostgreSQL
	Test claim With Tanzu Application Platform workload

	Delete a PostgreSQL service instance
	Delete a PostgreSQL service instance by using a Carvel package
	Delete a PostgreSQL service instance by using kubectl

	Troubleshooting Azure Service Operator

	Prerequisites
	Next Steps

	Creating Azure PostgreSQL Instances manually using kubectl (experimental)
	Create a resource group
	Create a Flexible Server service instance
	Create a Binding Specification Compatible Secret
	Create a ServiceAccount for Secret Templating
	Create a SecretTemplate
	Verify the Service Instance

	Creating Azure PostgreSQL instances by using a Carvel package (experimental)
	Prerequisite
	Create an Azure PostgreSQL service instance using a Carvel package
	Add a reference package repository to the cluster
	Create a Azure PostgreSQL service instance through the Tanzu CLI
	Verify the Azure Resources
	Verify the Service Instance

	Summary

	Azure Service Operator Troubleshooting
	Increase Log Level
	Not Updating The Kubernetes Resources

	Consuming Azure Flexible Server for PostgreSQL on Tanzu Application Platform with Crossplane
	Introduction
	Prerequisites
	Install Crossplane
	Install the Azure Provider for Crossplane
	Install the Kubernetes Provider for Crossplane
	Configure the Azure Provider
	Configure the Kubernetes Provider

	Define Composite Resource Types
	Create an Instance Class
	Provision Azure Flexible Server for PostgreSQL instances
	Claim the Azure Flexible Server for PostgreSQL Server instance and connect to it from the Tanzu Application Platform Workload

	Consuming Google Cloud SQL on Tanzu Application Platform
	Consuming Google Cloud SQL on Tanzu Application Platform (TAP) with Config Connector
	Introduction
	Creating Service Instances that are compatible with Tanzu Application Platform
	Creating a Service Instance Class for Cloud SQL
	Discover, Claim and Bind to a Google Cloud SQL Postgresql Instance

	Prerequisites
	The gcloud CLI
	A Kubernetes cluster
	Configure a stable egress IP
	Configure the ip-masq-agent
	Set up a Cloud NAT service

	A Tanzu Application Platform installation on the cluster (v1.2.0+).
	Configure the Config Connector
	Get the NAT IP(s) for egress from the cluster

	Creating Google CloudSQL Instances manually using kubectl (experimental)
	Prerequisite
	Create a CloudSQL service instance by using kubectl
	Create the Secrets for the Database admin & user
	Create a usable postgres database
	Create a Binding Specification compatible Secret for the database
	Verify

	Delete a CloudSQL service instance
	Summary and Next Steps

	Creating Google CloudSQL instances by using a Carvel package (experimental)
	Prerequisite
	Create an CloudSQL service instance using a Carvel package
	Add a reference package repository to the cluster
	Create a CloudSQL service instance through the Tanzu CLI
	Verify

	Delete a CloudSQL service instance
	Summary

	Consuming GCP CloudSQL on Tanzu Application Platform with Crossplane
	Introduction
	Prerequisites
	Install Crossplane
	Install GCP Provider for Crossplane
	Configure GCP Provider

	Define Composite Resource Types
	Create an Instance Class
	Provision GCP CloudSQL Postgresql Instance
	Claim the CloudSQL Postgresql instance and connect to it from the Tanzu Application Platform Workload

	Component API Documentation
	Resource Claims
	Install
	Resources
	ResourceClaim
	ResourceClaimPolicy
	ClusterInstanceClass
	InstanceQuery

	Permissions (RBAC)

	Services plug-in for Tanzu CLI
	Use cases
	Discover service instance classes
	Discover claimable service instances
	Claim service instances with resource claims
	List and get resource claims
	Unclaim service instances

	Service offering
	Install
	Resources
	ClusterResource
	GVKDescriptor (duck type)
	ClusterExampleUsage (GVKDescriptor)

	Scope, Discoverability, and Usability
	RBAC Rules for Discoverability

	Service API Projection and Service Resource Replication
	Install
	Concepts
	Projection Plane
	UpstreamClusterLink and DownstreamClusterLink

	API Projection
	APIExportRoleBinding
	ClusterAPIGroupImport
	APIResourceImport

	Resource Replication
	SecretExport
	SecretImport
	ClusterResourceImportMonitor
	ResourceImportMonitorBinding
	ClusterResourceExportMonitor
	ResourceExportMonitorBinding

	Reference
	Services Toolkit Terminology and User roles
	Terminology
	Service
	Examples

	Service Resource
	Examples

	Provisioned Service
	Service Binding
	Examples

	Service Instance
	Examples

	Service Instance Class
	Examples

	Resource Claim
	Examples

	Claimable Service Instance
	Examples

	Service Resource Lifecycle API
	Examples

	Service Cluster
	Workload Cluster

	User Roles
	Application Developer (AD)
	Jobs To Be Done

	Application Operator (AO)
	Jobs To Be Done

	Service Operator (SO)
	Jobs To Be Done

	Known limitations
	Service Resource Replication Limitations
	Updates to Secrets are not replicated

	Service API Projection Limitations
	Unable to project Core Kubernetes APIs
	CRD and Aggregation layer conflict
	Local CRD is created before Service Resource API is projected
	When local CRD is created after Service Resource API is projected

	No built-in support for cluster-scoped requests against projected APIs in the Workload Cluster

	Service Resource Claims Limitations
	Can only claim service resources that adhere to the Kubernetes Binding specification
	Can only claim service resources once

	Resource requirements
	Deployments

	Supported Kubernetes distributions
	Topology
	Supported Topologies
	Provide a Service Resource Lifecycle API
	From one Service cluster to one Workload cluster
	From a Service cluster to multiple Workload clusters

	Provide different Service Resource Lifecycle APIs
	From a Service cluster to a Workload cluster

	Provide multiple Service Resource Lifecycle APIs
	From a Service Cluster to a Workload cluster
	From multiple Service Clusters to one Workload cluster
	From multiple service clusters to multiple workload clusters

