
Tanzu Application
Platform v1.0

VMware Tanzu Application Platform 1.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Tanzu Application Platform v1.0

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Tanzu Application Platform v1.0 38

Overview of Tanzu Application Platform 38

Installation profiles in Tanzu Application Platform v1.0 42

About Tanzu Application Platform package profiles 43

About installing the Tanzu Application Platform v1.0 44

Notice of telemetry collection for Tanzu Application Platform 44

Release notes 45

v1.0.3 45

Security issue 45

Known issues 45

Grype scanner 45

Supply Chain Security Tools - Scan 45

Resolved issues 46

v1.0.2 46

Security issue 46

Known issues 46

Grype scanner 46

Supply Chain Security Tools – Scan 46

Resolved issues 46

Services Toolkit 46

Supply Chain Security Tools – Scan 47

v1.0.1 47

Security issue 47

Known issues 47

Developer Conventions 47

Grype scanner 47

Application Accelerator 48

Application Live View 48

Tanzu Application Platform GUI 48

Resolved issues 48

Tanzu Developer Tools for VS Code 48

Services Toolkit 48

v1.0 49

Tanzu Application Platform v1.0

VMware, Inc 3

Known issues 49

Installing 49

Application Accelerator 49

Application Live View 49

Convention Service 49

Developer Conventions 50

Grype scanner 50

Learning Center 50

Supply Chain Choreographer 51

Supply Chain Security Tools – Scan 51

Supply Chain Security Tools - Sign 51

Supply Chain Security Tools - Store 52

Tanzu Application Platform GUI 53

Tanzu CLI 53

Tanzu Developer Tools for VS Code 53

Services Toolkit 54

Security issue 54

Breaking changes 54

Resolved issues 54

Tanzu Developer Tools for VS Code 54

Supply Chain Security Tools - Store 54

Installing Tanzu Application Platform 55

Installation process 55

Prerequisites 55

VMware Tanzu Network and container image registry requirements 55

DNS Records 56

Tanzu Application Platform GUI 56

Kubernetes cluster requirements 57

Resource requirements 58

Tools and CLI requirements 58

Installing the Tanzu CLI 58

Accept the End User License Agreements 58

Installing the Tanzu CLI 60

Set Kubernetes cluster context 60

Install Cluster Essentials for VMware Tanzu 61

Install or update the Tanzu CLI and plug-ins 62

Cleanly Install Tanzu CLI 62

Tanzu Application Platform v1.0

VMware, Inc 4

Linux: Install the Tanzu CLI 63

Mac: Install the Tanzu CLI 64

Windows: Install the Tanzu CLI 64

Install/Update Tanzu CLI plug-ins 65

Updating Tanzu CLI Installed for a Previous Tanzu Application Platform Release 67

Updating Tanzu CLI Installed for Tanzu Application Platform v1.0.0 or v1.0.1 67

Updating Tanzu CLI Installed for Tanzu Application Platform v0.4 or earlier 69

Installing the Tanzu Application Platform Package and Profiles 71

Relocate images to a registry 71

Install your Tanzu Application Platform profile 74

Full Profile 75

Light Profile 77

View possible configuration settings for your package 79

Install your Tanzu Application Platform package 81

Configure LoadBalancer for Contour Ingress 81

Access the Tanzu Application Platform GUI 82

Exclude Packages from a Tanzu Application Platform Profile 82

Opting out of telemetry collection 82

Turn off telemetry collection 83

Upgrading Tanzu Application Platform 84

Prerequisites 84

Add new package repository 84

Perform upgrade of Tanzu Application Platform 84

Upgrade instructions for Profile-based installation 84

Upgrade instructions for component-specific installation 85

Verify the upgrade 85

Getting started with the Tanzu Application Platform 87

Purpose 87

Getting started prerequisites 87

Section 1: Develop your first application on the Tanzu Application Platform 88

About application accelerators 88

Deploy your application 88

Add your application to Tanzu Application Platform GUI Software Catalog 90

Iterate on your application 91

Live update your application 92

Debug your application 92

Tanzu Application Platform v1.0

VMware, Inc 5

Monitor your running application 93

Section 2: Create your application accelerator 93

Create an application accelerator 93

Using accelerator.yaml 95

Section 3: Add Testing and Security Scanning to Your Application 95

Introducing a Supply Chain 95

A path to production 96

Available Supply Chains 96

1: OOTB Basic (default) 96

2: OOTB Testing 97

3: OOTB Testing+Scanning 98

Install OOTB Testing 98

Tekton pipeline config example 99

Workload update 100

Install OOTB Testing+Scanning 101

Workload update 103

Query for vulnerabilities 104

Congratulations! You have successfully deployed your application on the
Tanzu Application Platform.

105

Section 4: Configure image signing and verification in your supply chain 105

Configure your supply chain to sign your image builds 105

Next steps 106

Scan and Store: Introducing vulnerability scanning and metadata storage to
your Supply Chain

106

Next steps 107

Section 5: Consuming Services on Tanzu Application Platform 107

Overview 107

Use cases enabled by Services Toolkit on Tanzu Application Platform 107

Set up 108

Use case 1: Binding an application to a pre-provisioned service instance
running in the same namespace

110

Use case 2 - Binding an application to a pre-provisioned service instance
running in a different namespace on the same Kubernetes cluster

111

Use case 3 - Binding an application to a service running outside Kubernetes 113

Use case 4: Binding an application to a service instance running on a different
Kubernetes cluster (Experimental).

114

Prerequisites 114

Steps 115

Troubleshooting Tanzu Application Platform 119

Troubleshoot installing Tanzu Application Platform 119

Tanzu Application Platform v1.0

VMware, Inc 6

Developer cannot be verified when installing Tanzu CLI on macOS 119

Access .status.usefulErrorMessage details 120

“Unauthorized to access” error 120

“Serviceaccounts already exists” error 121

After package installation, one or more packages fails to reconcile 121

Failure to accept an End User License Agreement error 125

Troubleshoot using Tanzu Application Platform 125

Missing build logs after creating a workload 126

“Workload already exists” error after updating the workload 126

Workload creation fails due to authentication failure in Docker Registry 127

Explanation 127

Solution 127

Telemetry component logs show errors fetching the “reg-creds” secret 127

Debug convention may not apply 128

Execute bit not set for App Accelerator build scripts 128

“No live information for pod with ID” error 128

“image-policy-webhook-service not found” error 129

“Increase your cluster resources” error 129

MutatingWebhookConfiguration prevents pod admission 129

Priority class of webhook’s pods preempts less privileged pods 130

CrashLoopBackOff from password authentication fails 131

Password authentication fails 132

metadata-store-db pod fails to start 132

Missing persistent volume 133

Uninstalling Tanzu Application Platform 135

Delete the packages 135

Delete the Tanzu Application Platform package repository 135

Remove Tanzu CLI, plug-ins, and associated files 136

Component documentation 137

Installing individual packages 137

Install pages for individual Tanzu Application Platform packages 137

Verify the installed packages 138

Set up developer namespaces to use installed packages 139

Apps CLI plug-in overview 141

About workloads 141

Command reference 141

Tanzu Application Platform v1.0

VMware, Inc 7

Usage and examples 141

Install Apps CLI plug-in 141

Prerequisites 142

Install 142

Create a workload 142

Prerequisites 142

Get started with an example workload 143

Check build logs 143

Get the workload status and details 143

Create a workload from local source code 144

Bind a service to a workload 144

Next steps 144

Command reference 145

Tanzu apps 145

Options 145

See also 145

Tanzu apps workload 146

Options 146

Options inherited from parent commands 146

See also 146

Tanzu apps workload apply 146

Synopsis 146

Examples 147

Options 147

Options inherited from parent commands 148

See also 148

Tanzu apps workload create 148

Synopsis 148

Examples 148

Options 148

Options inherited from parent commands 149

See also 149

Tanzu apps workload update 150

Tanzu Application Platform v1.0

VMware, Inc 8

Synopsis 150

Examples 150

Options 150

Options inherited from parent commands 151

See also 151

Tanzu apps workload get 151

Examples 151

Options 151

Options inherited from parent commands 152

See also 152

Tanzu apps workload delete 152

Examples 152

Options 152

Options inherited from parent commands 152

See also 153

Tanzu apps workload list 153

Examples 153

Options 153

Options inherited from parent commands 153

See also 153

Tanzu apps workload tail 153

Examples 153

Options 154

Options inherited from parent commands 154

See also 154

Tanzu apps cluster supply chain 154

Options 154

Options inherited from parent commands 154

See also 154

Tanzu apps cluster supply chain list 154

Examples 155

Options 155

Options inherited from parent commands 155

See also 155

Tanzu Application Platform v1.0

VMware, Inc 9

Usage and examples 155

Changing clusters 155

Checking update status 156

Working with YAML files 156

Autocompletion 156

Bash 156

Zsh 156

Application Accelerator for VMware Tanzu 157

Install Application Accelerator 157

Prerequisites 157

Configure properties and resource usage 157

Install 158

Application Live View for VMware Tanzu 160

Install Application Live View 160

Prerequisites 160

Install Application Live View 161

Convention Service 163

Overview 163

About applying conventions 163

Applying conventions by using image metadata 163

Applying conventions without using image metadata 164

Install Convention Service 164

Prerequisites 164

Install 164

Creating conventions 166

Introduction 166

Convention server 166

Convention controller 167

Getting started 167

Prerequisites 167

Define convention criteria 168

Define the convention behavior 171

Matching criteria by labels or annotations 171

Matching criteria by environment variables 172

Tanzu Application Platform v1.0

VMware, Inc 10

Matching criteria by image metadata 172

Configure and install the convention server 173

Deploy a convention server 175

Next Steps 178

Troubleshoot Convention Service 178

No server in the cluster 178

Symptoms 178

Cause 178

Solution 178

Server with wrong certificates configured 178

Symptoms 179

Cause 179

Solution 179

Server fails when processing a request 179

Symptoms 179

Cause 180

Solution 180

Connection refused due to unsecured connection 181

Symptoms 181

Cause 182

Solution 182

Convention Resources 182

Convention Service Resources 182

API Structure 182

Template Status 183

Chaining Multiple Conventions 183

Collecting Logs from the Controller 183

References 183

cert-manager, Contour, and FluxCD Source Controller 184

Install cert-manager, contour, and FluxCD Source Controller 184

Prerequisites 184

Install cert-manager 184

Install Contour 186

Install FluxCD source-controller 190

Cloud Native Runtimes 191

Tanzu Application Platform v1.0

VMware, Inc 11

Install Cloud Native Runtimes 192

Prerequisites 192

Install 192

Spring Boot conventions 195

Overview 195

Install Spring Boot conventions 196

Prerequisites 196

Install Spring Boot conventions 196

Conventions 197

Spring boot convention 197

Spring boot graceful shutdown convention 199

Spring Boot web convention 200

Spring Boot Actuator convention 202

Service intent conventions 203

Example 204

Troubleshoot Spring Boot Conventions 205

Collect logs 205

Service Bindings for Kubernetes 206

Install Service Bindings 206

Prerequisites 207

Install Service Bindings 207

Troubleshoot Service Bindings 208

Collect logs 208

Resources 210

ServiceBinding (servicebinding.io/v1alpha3) 210

Services Toolkit 210

Install Services Toolkit 211

Prerequisites 211

Install Services Toolkit 211

Source Controller 212

Install Source Controller 212

Tanzu Application Platform v1.0

VMware, Inc 12

Prerequisites 212

Install 212

Troubleshoot Source Controller 214

Collecting Logs from Source Controller Manager 214

Source Controller Reference 215

ImageRepository 215

Developer Conventions for Tanzu Application Platform 215

Overview 215

Features 215

Enabling Live Updates 215

Enabling debugging 216

Next steps 217

Install Developer Conventions 217

Prerequisites 217

Install 217

Resource limits 218

Uninstall 218

Learning Center for Tanzu Application Platform 218

Overview 218

Use cases 218

Use case requirements 219

Platform architectural overview 220

Next steps 221

Install Learning Center 222

Install Learning Center 222

Prerequisites 222

Install 222

Procedure to install the Self-Guided Tour Training Portal and Workshop 224

Learning Center workshops 226

Getting started with Learning Center 229

Learning Center operator 229

Installing and setting up Learning Center operator 229

Tanzu Application Platform v1.0

VMware, Inc 13

Cluster pod security policies 230

Specifying the ingress domain 230

Set the environment variable manually 231

Enforcing secure connections 231

Configuration YAML 232

Create the TLS secret manually 232

Specifying the ingress class 232

Configuration YAML 233

Set the environment variable manually 233

Trusting unsecured registries 233

Deleting Learning Center 234

Learning Center Workshops 234

Creating the workshop environment 235

Requesting a workshop instance 235

Deleting the workshop instance 236

Deleting the workshop environment 237

TrainingPortal 237

Working with multiple workshops 237

Loading the workshop definition 237

Creating the workshop training portal 238

Accessing workshops via the web portal 240

Deleting the workshop training portal 242

Learning Center local install guides 242

Installing on Kind 242

Prerequisites 243

Kind cluster creation 243

Ingress controller with DNS 243

Install carvel tools 244

Install Tanzu package repository 244

Create a configuration YAML file for Learning Center package 245

Using a nip.io DNS address 246

Install Learning Center package onto a Kubernetes cluster 247

Install workshop tutorial package onto a Kubernetes cluster 247

Run the workshop 247

Trusting insecure registries 247

Tanzu Application Platform v1.0

VMware, Inc 14

Installing on Minikube 249

Trusting insecure registries 249

Prerequisites 250

Ingress controller with DNS 250

Install carvel tools 250

Install Tanzu package repository 251

Create a configuration YAML file for the Learning Center package 251

Using a nip.io DNS address 252

Install Learning Center package onto a minikube cluster 253

Install workshop tutorial package onto a minikube cluster 253

Run the workshop 253

Working with large images 254

Limited resource availability 254

Storage provisioner issue 254

Creating Learning Center workshops 255

Workshop configuration 255

Specifying structure of the content 255

Specifying the runtime configuration 257

Next steps 258

Workshop images 258

Templates for creating a workshop 258

Workshop content directory layout 258

Directory for workshop exercises 259

Workshop content 260

Deactivating reserved sessions 260

Live updates to the content 260

Custom workshop image changes 261

Custom workshop image overlay 262

Changes to workshop definition 263

Local build of workshop image 263

Building an image 263

Structure of the Dockerfile 264

Base images and version tags 264

Custom workshop base images 264

Installing extra system packages 265

Installing third-party packages 266

Tanzu Application Platform v1.0

VMware, Inc 15

Workshop instructions 266

Annotation of executable commands 266

Annotation of text to be copied 267

Extensible clickable actions 268

Clickable actions for the dashboard 270

Clickable actions for the editor 271

Clickable actions for file download 274

Clickable actions for the examiner 274

Clickable actions for sections 276

Overriding title and description 277

Escaping of code block content 278

Interpolation of data variables 278

Adding custom data variables 279

Passing environment variables 280

Handling embedded URL links 280

Conditional rendering of content 280

Embedding custom HTML content 281

Workshop runtime 282

Predefined environment variables 282

Running steps on container start 283

Running background applications 283

Terminal user shell environment 284

Overriding terminal shell command 284

Presenter slides 285

Using reveal.js presentation tool 285

Using a PDF file for presenter slides 285

Learning Center runtime environment 285

Custom resources 286

Workshop definition resource 286

Workshop environment resource 286

Workshop request resource 287

Workshop session resource 288

Training portal resource 288

System profile resource 288

Loading the workshop CRDs 289

Tanzu Application Platform v1.0

VMware, Inc 16

Workshop resource 289

Workshop title and description 289

Downloading workshop content 291

Container image for the workshop 293

Setting environment variables 294

Overriding the memory available 295

Mounting a persistent volume 296

Resource budget for namespaces 296

Patching workshop deployment 299

Creation of session resources 299

Overriding default role-based access control (RBAC) rules 301

Running user containers as root 303

Creating additional namespaces 304

Shared workshop resources 306

Workshop pod security policy 307

Custom security policies for user containers 310

Defining additional ingress points 311

External workshop instructions 313

Disabling workshop instructions 314

Enabling the Kubernetes console 315

Enabling the integrated editor 315

Enabling workshop downloads 316

Enabling the test examiner 317

Enabling session image registry 318

Enabling ability to use Docker 319

Enabling WebDAV access to files 321

Customizing the terminal layout 322

Adding custom dashboard tabs 323

WorkshopEnvironment resource 324

Specifying the workshop definition 324

Overriding environment variables 324

Overriding the ingress domain 325

Controlling access to the workshop 326

Overriding the login credentials 328

Additional workshop resources 328

Creation of workshop instances 329

WorkshopRequest resource 330

Tanzu Application Platform v1.0

VMware, Inc 17

Specifying workshop environment 330

Specifying required access token 331

TrainingPortal resource 331

Specifying the workshop definitions 331

Limiting the number of sessions 332

Capacity of individual workshops 332

Set reserved workshop instances 333

Override initial number of sessions 333

Setting defaults for all workshops 334

Setting caps on individual users 334

Expiring of workshop sessions 335

Updates to workshop environments 336

Overriding the ingress domain 337

Overriding the portal hostname 339

Setting extra environment variables 339

Overriding portal credentials 340

Controlling registration type 341

Specifying an event access code 342

Making list of workshops public 342

Using an external list of workshops 343

Overriding portal title and logo 344

Allowing the portal in an iframe 344

Collecting analytics on workshops 345

Tracking using Google Analytics 346

SystemProfile resource 347

Operator default system profile 347

Defining configuration for ingress 348

Defining container image registry pull secrets 348

Defining storage class for volumes 349

Defining storage group for volumes 349

Restricting network access 350

Running Docker daemon rootless 351

Overriding network packet size 352

Image registry pull through cache 352

Setting default access credentials 353

Overriding the workshop images 354

Tracking using Google Analytics 355

Overriding styling of the workshop 356

Tanzu Application Platform v1.0

VMware, Inc 18

Additional custom system profiles 357

Workshop session resource 357

Specifying the session identity 357

Specifying the login credentials 358

Specifying the ingress domain 358

Setting the environment variables 360

Learning Center Portal Rest API 361

Anonymous access 361

Enabling anonymous access 361

Triggering workshop creation 362

Workshop catalog 362

Listing available workshops 362

Session management 364

Disabling portal user registration 364

Requesting a workshop session 365

Associating sessions with a user 366

Listing all workshop sessions 367

Client authentication 368

Querying the credentials 369

Requesting an access token 369

Refreshing the access token 370

Troubleshoot Learning Center 370

Training portal stays in pending state 370

image-policy-webhook-service not found 371

Cannot update parameters 371

Increase your cluster’s resources 371

Supply Chain Choreographer for Tanzu 371

Overview 372

Out of the Box Supply Chains 372

Install Supply Chain Choreographer 372

Prerequisites 372

Install 373

Tanzu Application Platform v1.0

VMware, Inc 19

Out of the Box Delivery Basic 373

Prerequisites 373

Usage 373

Install Out of the Box Delivery Basic 374

Prerequisites 374

Install 374

Out of the Box Supply Chain Basic 375

Prerequisites 376

Developer Namespace 376

Image Secret 376

ServiceAccount 377

Role and RoleBinding 377

Developer workload 379

Local Iteration with Local Code 379

Local Iteration with Code from Git 380

Private Source Git Repository 380

GitOps 382

Workload Using Default Git Organization 383

Install Out of the Box Supply Chain Basic 384

Prerequisites 384

Install 384

Out of the Box Supply Chain with Testing 386

Prerequisites 387

Developer Namespace 387

Updates to the Developer Namespace 388

Tekton/Pipeline 388

Developer Workload 389

Install Out of the Box Supply Chain with Testing 390

Prerequisites 390

Install 390

Out of the Box Supply Chain with Testing and Scanning 393

Prerequisites 393

Developer Namespace 394

Updates to the Developer Namespace 395

Tanzu Application Platform v1.0

VMware, Inc 20

ScanPolicy 395

ScanTemplate 396

Developer Workload 396

Install Out of the Box Supply Chain with Testing and Scanning 397

Prerequisites 397

Install 398

Out of the Box Templates 400

Install Out of the Box Templates 401

Prerequisites 401

Install 401

Supply Chain Security Tools - Scan 401

Overview 401

Use cases 402

Supply Chain Security Tools - Scan features 402

Install Supply Chain Security Tools - Scan 402

Prerequisites 402

Scanner support 403

Install 403

Spec reference 405

About source and image scans 405

About policy enforcement around vulnerabilities found 406

Scan samples 406

Sample public image scan with compliance check 407

Public image scan 407

Define the ScanPolicy and ImageScan 407

(Optional) Set up a watch 408

Deploy the resources 408

View the scan results 408

Modify the ScanPolicy 408

Clean up 408

Sample public source code scan with compliance check 408

Public source scan 408

Define the ScanPolicy and SourceScan 409

Tanzu Application Platform v1.0

VMware, Inc 21

Sample private image scan 411

Define the resources 411

(Optional) Set up a watch 411

Deploy the resources 412

View the scan results 412

Clean up 412

View vulnerability reports 412

Sample private source scan 412

Define the resources 412

(Optional) Set up a watch 413

Deploy the resources 413

View the scan status 413

Clean up 413

View vulnerability reports 413

Sample public source scan of a blob 413

Define the resources 413

(Optional) Set up a watch 414

Deploy the resources 415

View the scan results 415

Clean up 415

View vulnerability reports 415

Observe Supply Chain Security Tools - Scan 415

Watching in-flight jobs 415

Troubleshooting Supply Chain Security Tools - Scan 415

Missing target image pull secret 415

Blob Source Scan is reporting wrong source URL 416

Additional resources 417

Configure code repositories and image artifacts to be scanned 417

Prerequisite 417

Deploy scan custom resources 417

SourceScan 417

ImageScan 419

Enforce compliance policy using Open Policy Agent 420

Tanzu Application Platform v1.0

VMware, Inc 22

Writing a policy template 420

Rego file contract 420

Define a Rego file for policy enforcement 421

Create a ScanTemplate 421

Structure 422

Pod requirements 422

Best practices 422

View scan status conditions 423

Viewing scan status 423

Understanding conditions 423

Condition types for the scans 423

Scanning 423

Succeeded 423

SendingResults 423

PolicySucceeded 423

Understanding CVECount 424

Understanding MetadataURL 424

Understanding Phase 424

Understanding ScannedBy 424

Understanding ScannedAt 424

Supply Chain Security Tools for VMware Tanzu - Sign 425

Install Supply Chain Security Tools - Sign 425

Prerequisites 425

Install 426

Configure 428

Known issues 428

Configuring Supply Chain Security Tools - Sign 428

Create a ClusterImagePolicy resource 429

Provide credentials for the package 430

Provide secrets for authentication in your policy 431

Provide secrets for authentication in the image-policy-registry-credentials
service account

432

Image name patterns 432

Verify your configuration 433

Logs messages and reasons 434

Tanzu Application Platform v1.0

VMware, Inc 23

Supply Chain Security Tools for Tanzu – Store 436

Install Supply Chain Security Tools - Store 436

Prerequisites 437

Install 437

Troubleshooting upgrading 439

Database deployment does not exist 440

Invalid checkpoint record 440

Upgraded pod hanging 440

Additional resources 440

Install 441

Querying the database 441

Adding & querying data 441

Auditing 441

Known issues 441

Security 441

Backing up data 441

Failover and redundancy 442

API details 442

Information 442

Version 442

Content negotiation 442

URI Schemes 442

Consumes 442

Produces 442

All endpoints 442

images 442

Operations 442

Packages 443

Sources 443

Vulnerabilities 443

Paths 443

Create a new image report. Related packages and vulnerabilities are also
created. (CreateImageReport)

443

Parameters 444

All responses 444

Responses 444

200 - Image 444

Tanzu Application Platform v1.0

VMware, Inc 24

Schema 444

Default Response 444

Schema 444

Create a new source report. Related packages and vulnerabilities are also
created. (CreateSourceReport)

444

Parameters 444

All responses 444

Responses 445

200 - Source 445

Schema 445

Default Response 445

Schema 445

List the packages in an image. (GetImagePackages) 445

Parameters 445

All responses 445

Responses 445

200 - Package 445

Schema 445

Default Response 446

Schema 446

List vulnerabilities from the given image. (GetImageVulnerabilities) 446

Parameters 446

All responses 446

Responses 446

200 - Vulnerability 446

Schema 446

Default Response 446

Schema 446

Search image by id or digest. (GetImages) 446

Parameters 446

responses 447

Responses 447

200 - Image 447

Schema 447

Default Response 447

Schema 447

List the images that contain the given package. (GetPackageImages) 447

Parameters 447

All responses 447

Tanzu Application Platform v1.0

VMware, Inc 25

Responses 448

200 - Image 448

Schema 448

Default Response 448

Schema 448

List the sources containing the given package. (GetPackageSources) 448

Parameters 448

All responses 448

Responses 448

200 - Source 448

Schema 448

Default Response 449

Schema 449

List vulnerabilities from the given package. (GetPackageVulnerabilities) 449

Parameters 449

All responses 449

Responses 449

200 - Vulnerability 449

Schema 449

Default Response 449

Schema 449

Search packages by id, name and/or version. (GetPackages) 449

Parameters 450

All responses 450

Responses 450

200 - Package 450

Schema 450

Default Response 450

Schema 450

get source packages (GetSourcePackages) 450

Parameters 450

All responses 451

Responses 451

200 - Package 451

Schema 451

Default Response 451

Schema 451

List packages of the given source. (GetSourcePackagesQuery) 451

Parameters 451

Tanzu Application Platform v1.0

VMware, Inc 26

All responses 451

Responses 451

200 - Package 452

Schema 452

Default Response 452

Schema 452

get source vulnerabilities (GetSourceVulnerabilities) 452

Parameters 452

All responses 452

Responses 452

200 - Vulnerability 452

Schema 452

Default Response 452

Schema 453

List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery) 453

Parameters 453

All responses 453

Responses 453

200 - Vulnerability 453

Schema 453

Default Response 453

Schema 453

Search for sources by ID, repository, commit sha, and/or organization.
(GetSources)

453

All responses 454

Responses 454

200 - Source 454

Schema 454

Default Response 454

Schema 454

Search for vulnerabilities by CVE id. (GetVulnerabilities) 454

Parameters 454

All responses 454

Responses 454

200 - Vulnerability 454

Schema 455

Default Response 455

Schema 455

List the images that contain the given vulnerability. (GetVulnerabilityImages) 455

Parameters 455

Tanzu Application Platform v1.0

VMware, Inc 27

All responses 455

Responses 455

200 - Image 455

Schema 455

Default Response 455

Schema 455

List packages that contain the given CVE id. (GetVulnerabilityPackages) 456

Parameters 456

All responses 456

Responses 456

200 - Package 456

Schema 456

Default Response 456

Schema 456

List sources that contain the given vulnerability. (GetVulnerabilitySources) 456

Parameters 456

All responses 457

Responses 457

200 - Source 457

Schema 457

Default Response 457

Schema 457

health check (HealthCheck) 457

All responses 457

Responses 457

200 457

Schema 457

Default Response 457

Schema 458

Models 458

DeletedAt 458

ErrorMessage 458

Image 458

MethodType 458

Model 459

NullTime 459

Package 459

Rating 460

Source 460

Tanzu Application Platform v1.0

VMware, Inc 28

StringArray 460

Vulnerability 460

API walkthrough 461

Using CURL to POST an image report 461

CLI installation 462

CLI configuration 463

Set the target and certificate authority certificate 463

Check the connection 463

Insight 464

Synopsis 464

Options 464

See also 464

Insight config 464

Options 464

See also 464

Insight health 465

Insight health 465

Synopsis 465

Examples 465

Options 465

See also 465

Insight image 465

Options 465

See also 465

Insight package 465

Options 466

See also 466

Insight source 466

Options 466

See also 466

Insight version 466

Options 466

Tanzu Application Platform v1.0

VMware, Inc 29

See also 466

Insight vulnerabilities 467

Options 467

See also 467

Deployment details and configuration 467

What is deployed 467

Deployment configuration 467

Database configuration 467

Using AWS RDS postgres database 468

Custom database password 468

App service type 468

Service accounts 468

Exporting certificates 468

AWS RDS Postgres configuration 469

Prerequisites 469

AWS RDS 469

Creating service accounts and access tokens 469

Service accounts 470

Read-only service account 470

Read-write service account 471

Getting the Access Token 471

Setting the Access Token 472

Using encryption to connect to the database 472

Using LoadBalancer 472

Obtaining the CA certificate 473

Editing /etc/hosts 473

Using NodePort 474

Obtaining the CA certificate 474

Configuring port forwarding 474

Modifying your /etc/hosts file 474

Add data 474

Methods 474

Supported Formats and File Types 474

Generate a CycloneDX File 475

Add Data with the Insight CLI 475

Tanzu Application Platform v1.0

VMware, Inc 30

Example #1: Create an Image Report 475

Example #2: Create a Source Report 476

Query data 476

Add data 476

Methods 476

Supported use cases 476

Query using the Insight CLI 477

Example #1: What images contain a specific dependency? 477

Example #2: What dependencies are affected by a specific CVE? 478

Log configuration and usage 478

Log levels 478

Error Logs 479

Obtaining logs 479

API endpoint log output 479

Format 480

Log header 480

Name 480

Key-value pairs 480

Common to all logs 480

Logging query and path parameter values 481

API payload log output 482

SQL Query log output 482

Format 482

Security details 482

Security Scans 482

Application security 482

TLS encryption 483

Cryptographic algorithms: 483

Access controls 483

Authentication 483

Authorization 483

Container security 484

Non-root user 484

Security scanning 484

Static Application Security Testing (SAST) 484

Software Composition Analysis (SCA) 484

Tanzu Application Platform v1.0

VMware, Inc 31

SCA scanning results 484

1.0.2 484

Black Duck Binary Analysis (BDBA) 484

API backend 484

CLI 485

Grype 485

API Backend Container Image 485

API Backend Code Repository 485

CLI Code Repository 485

1.0.0 485

Scan Type: 485

Source of Scan: 485

Version of Source: 485

CVEs: 485

BDBA 486

Grype 486

Backing up Supply Chain Security Tools – Store data 486

Backup 486

Restore 487

Failover, redundancy, and backups 487

API Server 487

Database 487

VMware Tanzu Developer Tools for Visual Studio Code 488

Installing Tanzu Dev Tools for Visual Studio Code 488

Prerequisites 488

Installation 488

Configuration 489

Quick Start 489

Uninstall 489

Using Tanzu Dev Tools to Get Started 490

Set Up with Snippets 490

The workload.yaml File 490

The catalog.yaml File 490

Tiltfile 490

Set Up Manually 490

Creating a workload.yaml File 490

Tanzu Application Platform v1.0

VMware, Inc 32

Create a Tiltfile 491

Using Tanzu Dev Tools to iterate on your workload 491

Debug your workload 491

Live update your workload 492

Starting Live Update 492

Stopping Live Update 492

Deactivate Live Update 492

Switch a namespace 492

Troubleshooting Tanzu Developer Tools for VS Code 493

Unable to to configure task 493

Symptom 493

Solution 493

Extension Pack for Java has not automatically installed 493

Symptom 493

Solution 493

Tanzu API portal 493

Install Tanzu API portal 493

Prerequisites 493

Install 494

Tanzu Application Platform GUI 495

Overview of Tanzu Application Platform GUI 495

Install Tanzu Application Platform GUI 496

Prerequisites 496

Procedure 497

Accessing Tanzu Application Platform GUI 499

Access with the LoadBalancer method (default) 499

Access with the shared Ingress method 499

Catalog operations 500

Adding catalog entities 501

Users and groups 501

Systems 502

Components 502

Tanzu Application Platform v1.0

VMware, Inc 33

Update software catalogs 503

Register components 503

Deregister components 503

Add or change organization catalog locations 503

Install demo apps and their catalogs 504

Yelb system 504

Install Yelb 504

Install the Yelb catalog 505

Setting up a Tanzu Application Platform GUI authentication provider 505

Configure an authentication provider 505

(Optional) Allow guest access 506

(Optional) Customize the login page 506

Support menu customization 507

Overview 507

Customizing 507

Structure of the support configuration 507

URL 507

Items 508

Title 508

Icon 508

Links 508

Adding Tanzu Application Platform GUI integrations 509

Add a GitHub provider integration 509

Add a Git-based provider integration that isn’t GitHub 509

Add a non-Git provider integration 510

Update the package profile 510

Configuring the Tanzu Application Platform GUI database 510

Configure a PostgreSQL database 510

TechDocs 511

Create an Amazon S3 bucket 511

Configure Amazon S3 access 512

Find the catalog locations and their entities’ namespace/kind/name 513

Use the TechDocs CLI to generate and publish TechDocs 513

Update techdocs section in app-config.yaml to point to the Amazon S3 bucket 514

Tanzu Application Platform GUI plug-ins 515

Tanzu Application Platform v1.0

VMware, Inc 34

Overview 515

Runtime resources visibility 515

Prerequisites 515

Generate YAML files using Tanzu Application Platform Initializer 516

Navigate to the Runtime Resources visibility screen 518

View details for a specific resource 519

Detail pages 519

Overview section 520

Status section 520

Ownership section 521

Annotations and Labels 521

Navigating to Pods 522

Knative service details page 522

Pod details page 523

Application Live View in Tanzu Application Platform GUI 524

Overview 524

Entry point to Application Live View plug-in 525

Application Live View pages 525

Details page 525

Health page 526

Environment page 526

Log Levels page 527

Threads page 528

Memory page 529

Request Mappings page 530

HTTP Requests page 531

Caches page 532

Configuration Properties page 533

Conditions page 533

Scheduled Tasks page 534

Beans page 534

Metrics page 535

Actuator page 536

Troubleshooting 536

Application Accelerator in Tanzu Application Platform GUI 536

Overview 536

Access Application Accelerator 537

Tanzu Application Platform v1.0

VMware, Inc 35

Configure project generation 537

Create the project 538

Develop your code 539

Next steps 540

Install Application Accelerator 540

Prerequisites 540

Configure properties and resource usage 540

Install 541

Upgrade Tanzu Application Platform GUI 543

Considerations 543

Upgrade within a Tanzu Application Platform profile 543

Upgrade Tanzu Application Platform GUI individually 543

Troubleshoot Tanzu Application Platform GUI 544

Tanzu Application Platform GUI does not work in Safari 544

Symptom 544

Solution 544

Catalog not found 544

Symptom 544

Cause 545

Solution 545

Issues updating the values file 545

Symptom 545

Solution 545

Pull logs from Tanzu Application Platform GUI 546

Symptom 546

Solution 546

Tanzu Build Service 546

Install Tanzu Build Service 547

Prerequisites 547

Install Tanzu Build Service by using the Tanzu CLI 547

Install Tanzu Build Service using the Tanzu CLI air-gapped 550

Tekton 551

Install Tekton 551

Prerequisites 551

Tanzu Application Platform v1.0

VMware, Inc 36

Install Tekton Pipelines 551

Workload types 554

Web workloads 554

Functions (Beta Feature) 554

Overview 554

Prerequisites 554

Adding function buildpacks 555

Add accelerators to Tanzu Application Platform GUI 557

Create a functions project from an accelerator 557

Deploy your function 558

Tanzu Application Platform v1.0

VMware, Inc 37

Tanzu Application Platform v1.0

Overview of Tanzu Application Platform

VMware Tanzu Application Platform is an application development platform that provides a rich set of

developer tools. It offers developers a paved path to production to build and deploy software quickly

and securely on any compliant public cloud or on-premises Kubernetes cluster.

Tanzu Application Platform delivers a superior developer experience for enterprises building and

deploying cloud-native applications on Kubernetes. It enables application teams to get to production

faster by automating source-to-production pipelines. It clearly defines the roles of developers and

operators so they can work collaboratively and integrate their efforts.

Tanzu Application Platform includes elements that enable developers to quickly begin building and

testing applications regardless of their familiarity with Kubernetes.

Operations teams can create application scaffolding templates with built-in security and compliance

guardrails, making those considerations mostly invisible to developers. Starting with the templates,

developers turn source code into a container and get a URL to test their app in minutes.

After the container is built, it updates every time there’s a new code commit or dependency patch.

And connecting to other applications and data, regardless of how they’re built or what kind of

infrastructure they run on, has never been easier, thanks to an internal API management portal.

Customers can simplify workflows in both the inner loop and outer loop of Kubernetes-based app

development with Tanzu Application Platform while creating supply chains.

Inner Loop:

The inner loop describes a developer’s development cycle of iterating on code.

Tanzu Application Platform v1.0

VMware, Inc 38

Inner loop activities include coding, testing, and debugging before making a commit.

On cloud-native or Kubernetes platforms, developers in the inner loop often build

container images and connect their apps to all necessary services and APIs to deploy

them to a development environment.

Outer Loop:

The outer loop describes how operators deploy apps to production and maintain

them over time.

On a cloud-native platform, outer loop activities include building container images,

adding container security, and configuring continuous integration and continuous

delivery (CI/CD) pipelines.

Outer loop activities are challenging in a Kubernetes-based development

environment due to app delivery platforms being constructed from various third-

party and open source components with numerous configuration options.

Supply Chains and choreography:

Tanzu Application Platform uses the choreography pattern inherited from the context

of microservices^1 and applies it to continuous integration and continuous

deployment (CI/CD) to create a path to production.^2

Supply Chains provide a way of codifying all of the steps of your path to production, or what is more

commonly known as CI/CD. A supply chain differs from CI/CD in that you can add any and every

step that is necessary for an application to reach production or a lower environment.

In order to address the developer experience gap, the path to production allows users to create a

unified access point for all of the tools required for their applications to reach a customer-facing

environment.

Instead of having four tools that are loosely coupled to each other, a path to production defines all

four tools in a single, unified layer of abstraction. Where tools typically can’t integrate with one

another and additional scripting or webhooks are necessary, a unified automation tool codifies all the

interactions between each of the tools.

Tanzu Application Platform provides a default set of components that automates pushing an app to

staging and production on Kubernetes, removing the pain points for both inner and outer loops. In

addition, it allows the operators to customize the platform by replacing Tanzu Application Platform

components with other products.

Tanzu Application Platform v1.0

VMware, Inc 39

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography
https://tanzu/developer/guides/supply-chain-choreography/

The following packages are part of the Tanzu Application Platform:

API portal for VMware Tanzu

API portal for VMware Tanzu enables API consumers to find APIs they can use in their own

applications.

Consumers can view detailed API documentation and try out an API to see if it meets their

needs. API portal assembles its dashboard and detailed API documentation views by

ingesting OpenAPI documentation from the source URLs. An API portal operator can add

any number of OpenAPI source URLs to be displayed in a single instance.

Application Accelerator for VMware Tanzu

The Application Accelerator component helps app developers and app operators through

the creation and generation of application accelerators.

Accelerators are templates that codify best practices and ensure important configurations

and structures are in place from the start. Developers can bootstrap their applications and get

started with feature development right away.

Application operators can create custom accelerators that reflect their desired architectures

and configurations and enable fleets of developers to use them, decreasing operator

concerns about whether developers are implementing their desired best practices.

Application Live View for VMware Tanzu

Application Live View is a lightweight insight and troubleshooting tool that helps application

developers and application operators look inside running applications.

It is based on the concept of Spring Boot Actuators. Fundamentally, the application provides

information from inside the running processes by using endpoints (in our case, HTTP

endpoints). Application Live View uses those endpoints to get the data from the application

and to interact with it.

Cloud Native Runtimes for VMware Tanzu

Tanzu Application Platform v1.0

VMware, Inc 40

https://docs.pivotal.io/api-portal
https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is

based on Knative and runs on a single Kubernetes cluster. For information about Knative,

see the Knative documentation. Cloud Native Runtimes capabilities are included in VMware

Tanzu Advanced Edition and VMware Tanzu Application Platform.

Convention Service for VMware Tanzu

The convention service provides a means for people in operational roles to express their

hard-won knowledge and opinions about how apps must run on Kubernetes as a convention.

The convention service applies these opinions to fleets of developer workloads as they are

deployed to the platform, saving operator and developer time.

Developer Conventions

Developer conventions configure workloads to prepare them for inner loop development.

It’s meant to be a “deploy and forget” component for developers: after it is installed on the

cluster with the Tanzu Package CLI, developers do not need to directly interact with it.

Developers instead interact with the Tanzu Developer Tools for VSCode IDE Extension or

Tanzu CLI Apps plug-in, which rely on the Developer Conventions to modify the workload to

enable inner loop capabilities.

Flux Source Controller

The main role of the source management component is to provide a common interface for

artifact acquisition.

Grype in GitHub

Grype is a vulnerability scanner for container images and file systems.

Services Toolkit

Services Toolkit comprises a number of Kubernetes-native components which support the

management, life cycle, discoverability, and connectivity of Service Resources (databases,

message queues, DNS records, etc) on Kubernetes.

Supply Chain Choreographer for VMware Tanzu

Supply Chain Choreographer is based on open-source Cartographer. It enables app

operators to create pre-approved paths to production by integrating Kubernetes resources

with the elements of their existing toolchains, such as Jenkins.

Each pre-approved supply chain creates a paved road to production. It orchestrates supply

chain resources - test, build, scan, and deploy - enabling developers to focus on delivering

value to their users while also providing app operators with the peace of mind that all code in

production has finished all the steps of an approved workflow.

Supply Chain Security Tools - Scan

With Supply Chain Security Tools for VMware Tanzu - Scan, Tanzu customers can build and

deploy secure trusted software that complies with their corporate security requirements.

To enable this, Supply Chain Security Tools - Scan provides scanning and gatekeeping

capabilities that Application and DevSecOps teams can incorporate earlier in their path to

production. This is an established industry best practice for reducing security risk and

ensuring more efficient remediation.

Tanzu Application Platform v1.0

VMware, Inc 41

https://knative.dev/docs/
https://fluxcd.io/docs/components/source/
https://github.com/anchore/grype
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/index.html
https://cartographer.sh/docs/

Supply Chain Security Tools - Store

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database

and enables you to query for image, source, package, and vulnerability relationships. It

integrates with Supply Chain Security Tools - Scan to automatically store the resulting source

and image vulnerability reports.

Tanzu Application Platform GUI

Tanzu Application Platform GUI lets your developers view your organization’s running

applications and services. It provides a central location for viewing dependencies,

relationships, technical documentation, and even service status. Tanzu Application Platform

GUI is built from the Cloud Native Computing Foundation’s project Backstage.

Tanzu Build Service

Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application

source code into container images.

Build Service executes reproducible builds that align with modern container standards, and

keeps images up to date. It does so by leveraging Kubernetes infrastructure with kpack, a

Cloud Native Buildpacks Platform, to orchestrate the image life cycle.

The kpack CLI tool, kp, can aid in managing kpack resources. Build Service helps you

develop and automate containerized software workflows securely and at scale.

Tanzu Developer Tools for Visual Studio Code

Tanzu Developer Tools for Visual Studio Code is the official VMware Tanzu IDE extension for

VSCode to help you develop code using the Tanzu Application Platform. The VSCode

extension enables live updates of your application while it runs on the cluster and lets you

debug your application directly on the cluster.

Learning Center for Tanzu Application Platform

Learning Center provides a platform for creating and self-hosting workshops. With Learning

Center, content creators can create workshops from markdown files that learners can view in

a terminal shell environment with an instructional wizard UI. The UI can embed slide content,

an integrated development environment (IDE), a web console for accessing the Kubernetes

cluster, and other custom web applications.

Although Learning Center requires Kubernetes to run, and it teaches users about

Kubernetes, you can use it to host training for other purposes as well. For example, you can

use it to train users on web-based applications, use of databases, or programming languages.

Tekton

Tekton is a powerful and flexible open-source framework for creating CI/CD systems,

enabling developers to build, test, and deploy across cloud providers and on-premise

systems.

Installation profiles in Tanzu Application Platform v1.0

Tanzu Application Platform is available from predefined profiles or individual packages.

The following profiles are available in Tanzu Application Platform:

Tanzu Application Platform v1.0

VMware, Inc 42

Light: Contains packages that drive the Inner Loop personal developer experience of

building and iterating on applications.

Full: This profile contains all of the Tanzu Application Platform packages.

About Tanzu Application Platform package profiles

You can install Tanzu Application Platform by using predefined profiles or individual packages. This

section explains how to install a profile.

Tanzu Application Platform contains the following two profiles:

Full (full)

Light (light)

The following table lists the packages contained in each profile:

Capability Name Full Light

API portal ✓

Application Accelerator ✓ ✓

Application Live View ✓ ✓

Application Live View Conventions ✓ ✓

Cloud Native Runtimes ✓ ✓

Convention Controller ✓ ✓

Developer Conventions ✓ ✓

Flux Source Controller ✓ ✓

Grype ✓

Image Policy Webhook ✓

Learning Center ✓

Out of the Box Delivery - Basic ✓ ✓

Out of the Box Supply Chain - Basic ✓ ✓

Out of the Box Supply Chain - Testing ✓* ✓

Out of the Box Supply Chain - Testing and Scanning ✓*

Out of the Box Templates ✓ ✓

Services Toolkit ✓ ✓

Service Bindings ✓ ✓

Source Controller ✓ ✓

Spring Boot Convention ✓ ✓

Supply Chain Choreographer ✓ ✓

Tanzu Application Platform v1.0

VMware, Inc 43

Supply Chain Security Tools - Scan ✓

Supply Chain Security Tools - Store ✓

Tanzu Build Service ✓ ✓

Tanzu Application Platform GUI ✓ ✓

Tekton Pipelines ✓ ✓

* Only one supply chain must be installed at any given time. For information about switching from

one supply chain to another, see Getting Started with Tanzu Application Platform.

About installing the Tanzu Application Platform v1.0

To install the Tanzu Application Platform profiles, see Installing Tanzu Application Platform.

Notice of telemetry collection for Tanzu Application Platform

Tanzu Application Platform participates in the VMware Customer Experience Improvement Program

(CEIP). As part of CEIP, VMware collects technical information about your organization’s use of

VMware products and services in association with your organization’s VMware license keys. For

information about CEIP, see the Trust & Assurance Center. You can join or leave CEIP at any time.

The CEIP Standard Participation Level provides VMware with information to:

improve its products and services

identify and fix problems

advise you on how to best deploy and use VMware products

For example, this information can enable a proactive product deployment discussion with your

VMware account team or VMware support team to help resolve your issues. This information cannot

directly identify any individual.

You must acknowledge that you have read the VMware CEIP policy before you can proceed with

the installation. For more information, see Install your Tanzu Application Platform profile. To opt out

of telemetry participation after installation, see Opting out of telemetry collection.

Tanzu Application Platform v1.0

VMware, Inc 44

http://www.vmware.com/trustvmware/ceip.html

Release notes

This topic contains release notes for Tanzu Application Platform v1.0.

v1.0.3

Release Date: April 1, 2022

Security issue

Tanzu Application Platform GUI is vulnerable to CVE-2021-3918 from the json-schema package.

Known issues

This release has the following known issues:

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages that make use of dependency lock files, such as Golang and Node.js, Grype uses the lock

files to check the dependencies for vulnerabilities.

In the case of Java, dependency lock files are not guaranteed, so Grype instead uses the

dependencies present in the built binaries, such as .jar or .war files.

Because best practices do not include committing binaries to source code repositories, Grype fails to

find vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan,

after the binaries are built and packaged as images.

occurs during scanning, the Scan Phase field is not updated to Error and remains in the Scanning

phase. Read the scan pod logs to verify that there was an error.

Supply Chain Security Tools - Scan

Blob Source Scan is reporting wrong source URL: - When running a Source Scan of a blob

compressed file, Supply Chain Security Tools - Scan looks for a .git directory present in the files to

extract information that is useful for the report sent to the Supply Chain Security Tools - Store

deployment.

Workaround - The following workarounds fix this issue:

1. This problem is resolved in Supply Chain Security Tools - Scan v1.2.0. Upgrade your

Supply Chain Security Tools - Scan and Grype Scanner deployment to version v1.2.0

or later.

Tanzu Application Platform v1.0

VMware, Inc 45

https://nvd.nist.gov/vuln/detail/CVE-2021-3918

2. Configure your SourceScan or Workload to connect to the repository by using

HTTPS instead of using SSH.

3. Edit the FluxCD GitRepository resource to not include the .git directory.

Resolved issues

This release has the following fix:

CVE-2022-22965: Spring Framework RCE via Data Binding on JDK 9+

v1.0.2

Release Date: March 8, 2022

Security issue

Tanzu Application Platform GUI is vulnerable to CVE-2021-3918 from the json-schema package.

Known issues

This release has the following known issues:

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages that make use of dependency lock files, such as Golang and Node.js, Grype uses the lock

files to check the dependencies for vulnerabilities.

In the case of Java, dependency lock files are not guaranteed, so Grype instead uses the

dependencies present in the built binaries, such as .jar or .war files.

Because best practices do not include committing binaries to source code repositories, Grype fails to

find vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan,

after the binaries are built and packaged as images.

Supply Chain Security Tools – Scan

Two scan jobs and two scan pods appear at the same time: There is an edge case where

two scan jobs and two scan pods appear when a scan policy is updated. This does not affect

the result of the scan.

Scan Phase indicates Scanning incorrectly: Scans have an edge case where, when an error

occurs during scanning, the Scan Phase field is not updated to Error and remains in the

Scanning phase. Read the scan Pod logs to verify if there was an error.

Resolved issues

This release has the following fixes:

Services Toolkit

Tanzu Application Platform v1.0

VMware, Inc 46

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-22965
https://nvd.nist.gov/vuln/detail/CVE-2021-3918

Resolved an issue with the tanzu services CLI plugin which meant it was not compatible

with Kubernetes clusters running on GKE.

Fixed a potential race condition during reconciliation of ResourceClaims which could cause

the Services Toolkit manager to crash.

Updated configuration of the Services Toolkit carvel Package to prevent an unwanted build

up of ConfigMap resources.

Supply Chain Security Tools – Scan

Resolved the issue that events show SaveScanResultsSuccess when metadata store is not

configured.

CVE print columns are now properly populated.

Fixed failing Blob source scans where .git directory is not provided.

Prevent scan controller pod from failing when metadata store certificate is not available.

Removed unnecessary reconciliation of resources upon deletion.

Prevent scan controller failure upon Git clone fails.

v1.0.1

Release Date: February 8, 2022

Security issue

Tanzu Application Platform GUI is vulnerable to CVE-2021-3918 from the json-schema package.

Known issues

This release has the following known issues:

Developer Conventions

Debug Convention might not apply: If you upgraded from Tanzu Application Platform v0.4 then the

debug convention may not apply to the app run image. This is because of the missing SBOM data in

the image. To prevent this issue, delete existing app images that were built using Tanzu Application

Platform v0.4.

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages that make use of dependency lock files, such as Golang and Node.js, Grype uses the lock

files to check the dependencies for vulnerabilities.

In the case of Java, dependency lock files are not guaranteed, so Grype instead uses the

dependencies present in the built binaries (.jar or .war files).

Because best practices do not include committing binaries to source code repositories, Grype fails to

Tanzu Application Platform v1.0

VMware, Inc 47

https://nvd.nist.gov/vuln/detail/CVE-2021-3918

find vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan,

after the binaries are built and packaged as images.

Application Accelerator

Build scripts are provided as part of an accelerator now have the execute bit set when a new

project is generated from the accelerator.

Accelerators that do not include an accelerator.yaml file or have an empty list of options

now render in the UI.

The CLI plug-in no longer shows panic output for errors. It just adds the error message to

the output.

The entity loader for Tanzu Application Platform GUI does not stop when encountering an

invalid accelerator.

Deleted accelerators are no longer shown in Tanzu Application Platform GUI.

The Tanzu Application Platform GUI Explore feature now shows engine errors.

Application Live View

Updated pod security policies for Application Live View component

Updated Spring Boot v2.5.7 to v2.5.8

Application Live View connector now handles stream reset exceptions

Increased requests and limits for Application Live View connector to fix pod restarts

CVE vulnerability fix to update protobuf-java to 3.19.2 in the connector

Tanzu Application Platform GUI

This release is vulnerable to CVE-2021-3918 from the json-schema package

Resolved issues

This release has the following fixes:

Tanzu Developer Tools for VS Code

v0.5.0 does not install the extensions in the dependency Extension Pack for Java. v0.5.2

installs Debugger for Java and Language Support for Java(TM) by Red Hat extensions

directly instead of installing the extension pack.

Users can run Configure Tasks, Configure the Default Build Task, or Launch Extension

Host when using the Tanzu Developer Tools extension in a workspace without a

workload.yaml file.

Fixes CVE 2022-0144

Services Toolkit

Resolved an issue with the tanzu services CLI plug-in which meant it was not compatible

Tanzu Application Platform v1.0

VMware, Inc 48

https://nvd.nist.gov/vuln/detail/CVE-2021-3918
https://www.cvedetails.com/cve/CVE-2022-0144/

with Kubernetes clusters running on GKE.

Fixed a potential race condition during reconciliation of ResourceClaims which might cause

the Services Toolkit manager to stop responding.

Updated configuration of the Services Toolkit carvel Package to prevent an unwanted build

up of ConfigMap resources.

v1.0

Release Date: January 11, 2022

Known issues

This release has the following issues:

Installing

When you install Tanzu Application Platform on Google Kubernetes Engine (GKE), Kubernetes

control plane can be unavailable for several minutes during the installation. Package installations can

enter the ReconcileFailed state. When API server becomes available, packages try to reconcile to

completion.

This can happen on newly provisioned clusters that have not finished GKE API server autoscaling.

When GKE scales up an API server, the current Tanzu Application install continues, and any

subsequent installs succeed without interruption.

Application Accelerator

Build scripts provided as part of an accelerator do not have the execute bit set when a new

project is generated from the accelerator.

To resolve this issue, explicitly set the execute bit. For more information, see Execute Bit Not

Set for App Accelerator Build Scripts in Troubleshooting Tanzu Application Platform.

Upgraded log4j-api dependency to 2.16.0.

Disabled the Exec Transform.

Improved App Accelerator TAP GUI plug-in refresh cycle.

Fixed Accelerator loading issues for TAP GUI plug-in.

Application Live View

The Live View section in Tanzu Application Platform GUI might show “No live information for pod

with ID” after deploying Tanzu Application Platform workloads.

Resolve this issue by recreating the Application Live View Connector pod. For more information, see

No Live Information for Pod with ID Error in Troubleshooting Tanzu Application Platform.

Convention Service

Convention Service does not currently support custom certificates for integrating with a private

Tanzu Application Platform v1.0

VMware, Inc 49

registry. Support for custom certificates is planned for an upcoming release.

Developer Conventions

Debug Convention might not apply: If you upgraded from Tanzu Application Platform v0.4 then the

the debug convention might not apply to the app run image. This is because of the missing SBOM

data in the image. To prevent this issue, delete existing app images that were built using Tanzu

Application Platform v0.4.

For more information, see Debug Convention May Not Apply in Troubleshooting Tanzu Application

Platform.

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages that make use of dependency lock files, such as Golang and Node.js, Grype uses the lock

files to check the dependencies for vulnerabilities.

In the case of Java, dependency lock files are not guaranteed, so Grype instead uses the

dependencies present in the built binaries (.jar or .war files).

Because best practices do not include committing binaries to source code repositories, Grype fails to

find vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan,

after the binaries are built and packaged as images.

Learning Center

Training Portal in pending state: Under certain circumstances, the training portal is stuck in

a pending state. To resolve this issue, see Training portal stays in pending state.

image-policy-webhook-service not found: If you are installing a Tanzu Application Platform

profile, you might see the error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.a

pps.tanzu.vmware.com": failed to call webhook: Post "https://image-policy-webho

ok-service.image-policy-system.svc:443/signing-policy-check?timeout=10s": servi

ce "image-policy-webhook-service" not found

This is a rare condition error among some packages. To recover from this error, redeploy the

trainingPortal resource.

Cannot Update Parameters: Normally you must update some parameters provided to the

Learning Center Operator. These parameters include ingressDomain, TLS secret,

ingressClass, and others.

After updating parameters, if the Training Portals do not work or you cannot see the updated

values, redeploy trainingportal in a maintenance window where Learning Center is

unavailable while the systemprofile is updated.

Increase your cluster’s resources: Node pressure may be caused by not enough nodes or

not enough resources on nodes for deploying the workloads you have. In this case, follow

your cloud provider instructions on how to scale out or scale up your cluster.

Tanzu Application Platform v1.0

VMware, Inc 50

Supply Chain Choreographer

Deployment from a public Git repository might require a Git SSH secret. Workaround is to configure

SSH access for the public Git repository.

Supply Chain Security Tools – Scan

Failing Blob source scans: Blob source scans have an edge case where, when a

compressed file without a .git directory is provided, sending results to the Supply Chain

Security Tools - Store fails and the scanned revision value is not set. The current workaround

is to add the .git directory to the compressed file.

Events show SaveScanResultsSuccess incorrectly: SaveScanResultsSuccess appears in the

events when the Supply Chain Security Tools - Store is not configured. The

.status.conditions output, however, correctly reflects SendingResults=False.

Scan Phase indicates Scanning incorrectly: Scans have an edge case where, when an error

has occurred during scanning, the Scan Phase field is not updated to Error and instead

remains in the Scanning phase. Read the scan Pod logs to verify there was an error.

CVE print columns are not getting populated: After running a scan and using kubectl get

on the scan, the CVE print columns (CRITICAL, HIGH, MEDIUM, LOW, UNKNOWN,

CVETOTAL) are not populated. You can run kubectl describe on the scan and look for Scan

completed. Found x CVE(s): ... under Status.Conditions to find these severity counts

and CVETOTAL.

Scan controller pod fails: If there is a misconfiguration (i.e. secretgen-controller not running,

wrong CA secret name) after enabling the metadata store integration, the controller pod fails.

The current workaround is to update the tap-values.yaml file with the proper configuration

and update the application.

Deleted resources keep reconciling: After creating a scan CR and deleting it, the controllers

keep trying to fetch the deleted resource, resulting in a not found or unable to fetch log

entry with every reconciliation cycle.

Scan controller crashes when Git clone fails: If this occurs, confirm that the Git URL and the

SSH credentials are correct.

Supply Chain Security Tools - Sign

Blocked pod creation: If all webhook nodes or pods are evicted by the cluster or scaled

down, the admission policy blocks any pods from being created in the cluster. To resolve the

issue, delete MutatingWebhookConfiguration and re-apply it when the cluster is stable.

MutatingWebhookConfiguration prevents pods from being admitted: Under certain

circumstances, if the image-policy-controller-manager deployment pods do not start up

before the MutatingWebhookConfiguration is applied to the cluster, it can prevent the

admission of all pods.

To resolve this issue, delete the MutatingWebhookConfiguration resource, then restore the

MutatingWebhookConfiguration resource to re-enable image signing enforcement. For

instructions, see MutatingWebhookConfiguration Prevents Pod Admission in Troubleshooting

Tanzu Application Platform v1.0

VMware, Inc 51

Tanzu Application Platform.

Terminated kube-dns prevents new pods from being admitted: If kube-dns is terminated,

it prevents the admission controller from being able to reach the image policy controller. This

prevents new pods from being admitted, including core services like kube-dns.

Modify the mutating webhook configuration to exclude the kube-system namespace from the

admission check. This allows pods in the kube-system to appear, which should restore kube-

dns

Priority class of webhook’s pods might preempt less privileged pods: This component

uses a privileged PriorityClass to start up its pods in order to prevent node pressure from

preempting its pods. However, this can cause other less privileged components to have their

pods preempted or evicted instead.

To resolve this issue, see Priority Class of Webhook’s Pods Preempts Less Privileged Pods in

Troubleshooting Tanzu Application Platform.

Supply Chain Security Tools - Store

CrashLoopBackOff from password authentication failed: Supply Chain Security Tools -

Store does not start up. You see the following error in the metadata-store-app Pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=met

adata-store-db user=metadata-store-user database=metadata-store`: server error

(FATAL: password authentication failed for user "metadata-store-user" (SQLSTATE

 28P01))

This error results when the database password was changed between deployments. This is

not supported. To resolve this issue, see CrashLoopBackOff from Password Authentication

Fails in Troubleshooting Tanzu Application Platform.

Warning: Changing the database password deletes your Supply Chain Security Tools - Store

data.

Persistent volume retains data If Supply Chain Security Tools - Store is deployed, deleted,

and then redeployed the metadata-store-db Pod fails to start if the database password

changed during redeployment. This is caused by the persistent volume used by postgres

retaining old data, even though the retention policy is set to DELETE.

To resolve this issue, see CrashLoopBackOff from Password Authentication Fails in

Troubleshooting Tanzu Application Platform.

Warning: Changing the database password deletes your Supply Chain Security Tools - Store

data.

Missing persistent volume: After Supply Chain Security Tools - Store is deployed, metadata-

store-db Pod might fail for missing volume while postgres-db-pv-claim pvc is in the PENDING

state. This issue may occur if the cluster where Supply Chain Security Tools - Store is

deployed does not have storageclass defined.

The provisioner of storageclass is responsible for creating the persistent volume after

Tanzu Application Platform v1.0

VMware, Inc 52

metadata-store-db attaches postgres-db-pv-claim. To resolve this issue, see Missing

Persistent Volume in Troubleshooting Tanzu Application Platform.

Querying local path source reports: If a source report has a local path as the name – for

example, /path/to/code – the leading / on the resulting repository name causes the

querying packages and vulnerabilities to return the following error from the client lib and the

CLI: { "message": "Not found" }.

The URL of the resulting HTTP request is properly escaped. For example,

/api/sources/%2Fpath%2Fto%2Fdir/vulnerabilities.

The rbac-proxy used for authentication handles this URL in a way that the response is a

redirect. For example, HTTP 301\nLocation: /api/sources/path/to/dir/vulnerabilities.

The Client Lib follows the redirect, making a request to the new URL which does not exist in

the Supply Chain Security Tools - Store API, resulting in this error message.

No support for installing in custom namespaces: All of our testing uses the metadata-store

namespace. Using a different namespace breaks authentication and certificate validation for

the metadata-store API.

Tanzu Application Platform GUI

Tanzu Application Platform GUI doesn’t work in Safari: Tanzu Application Platform GUI

does not work in the Safari web browser.

Back-end Kubernetes plug-in reporting failure in multicluster environments: In a

multicluster environment when one request to a Kubernetes cluster fails, backstage-

kubernetes-backend reports a failure to the front end. This is a known issue with upstream

Backstage and it applies to all released versions of Tanzu Application Platform GUI. For more

information, see this Backstage code in GitHub. This behavior arises from the API at the

Backstage level. There are currently no known workarounds. There are plans for upstream

commits to Backstage to resolve this issue.

Tanzu CLI

tanzu apps workload get: Passing in --output json with the --export flag returns YAML

rather than JSON. Support for honoring the --output json with --export is planned for the

next release.

tanzu apps workload create/update/apply: --image is not supported by the default supply

chain in Tanzu Application Platform v0.3. --wait functions as expected when a workload is

created for the first time but might return prematurely on subsequent updates when passed

with workload update/apply for existing workloads. When the --wait flag is included and

you decline the “Do you want to create this workload?” prompt, the command continues to

wait and must be cancelled manually.

Tanzu Developer Tools for VS Code

Unable to configure task: After launching Extension Host, you might not be able to

configure tasks in a workspace that does not contain workload YAML files. For more

Tanzu Application Platform v1.0

VMware, Inc 53

https://github.com/backstage/backstage/blob/c7f88d041b671185dc7a01e716f80dca0709e2a1/plugins/kubernetes-backend/src/service/KubernetesFanOutHandler.ts#L250-L271

information, see Troubleshooting.

Extension Pack for Java has not automatically installed: In some cases, the Extension Pack

for Java (vscjava.vscode-java-pack) does not automatically install. For more information,

see Troubleshooting.

Services Toolkit

It is not possible for more than one application workload to consume the same service

instance. Attempting to create two or more application workloads while specifying the same -

-service-ref value causes only one of the workloads to bind to the service instance and

reconcile successfully. This limitation is planned to be relaxed in an upcoming release.

The tanzu services CLI plug-in is not compatible with Kubernetes clusters running on GKE.

Security issue

The installation specifies that the installer’s Tanzu Network credentials be exported to all

namespaces. Customers can choose to mitigate this concern using one of the following methods:

Create a Tanzu Network account with their own credentials and use this for the installation

exclusively.

Using Carvel tool’s imgpkg customers can create a dedicated OCI registry on their own

infrastructure that can comply with any required security policies that might exist.

Tanzu Application Platform GUI is vulnerable to CVE-2021-3918 from the json-schema

package

Breaking changes

This release has the following breaking change:

Supply Chain Security Tools - Store: Changed package name to metadata-

store.apps.tanzu.vmware.com.

Resolved issues

This release has the following fixes:

Tanzu Developer Tools for VS Code

Fixed issue where the Tanzu Developer Tools extension might not support projects with

multi-document YAML files

Modified debug to remove any leftover port-forwards from past runs

Supply Chain Security Tools - Store

Upgrade golang version from 1.17.1 to 1.17.5

Tanzu Application Platform v1.0

VMware, Inc 54

https://carvel.dev/imgpkg/
https://nvd.nist.gov/vuln/detail/CVE-2021-3918

Installing Tanzu Application Platform

This document provides an overview to installing Tanzu Application Platform.

Installation process

The process of installing Tanzu Application Platform includes the following tasks:

Step Task Link

1. Review the prerequisites to ensure that you have set up everything you

need before beginning the installation.

Prerequisites

2. Accept the end-user license agreements. Accept the EULAs

3. Install the Tanzu command line interface (CLI) and plug-ins for the

Tanzu CLI.

Install the Tanzu CLI and plug-ins

4. Create a namespace, add a secret, and add the Tanzu Application

Platform package repository.

Add the Tanzu Application Platform

Package Repository

5. Prepare your Tanzu Application Platform profile. Prepare to install your Tanzu

Application Platform profile

6. Install the profile to the cluster. Install your Tanzu Application

Platform package

7. (Optional) Install any additional packages that were not included in the

profile.

Installing Individual Packages

8. Install developer tools into your integrated development environment

(IDE).

Installing Tanzu Developer Tools for

VSCode

Prerequisites

The following are required to install Tanzu Application Platform:

VMware Tanzu Network and container image registry
requirements

Installation requires:

Access to VMware Tanzu Network:

A Tanzu Network account to download Tanzu Application Platform packages.

Network access to https://registry.tanzu.vmware.com.

Cluster-specific registry:

Tanzu Application Platform v1.0

VMware, Inc 55

#add-package-repositories
https://network.tanzu.vmware.com/

A container image registry, such as Harbor or Docker Hub for application images,

base images, and runtime dependencies. When available, VMware recommends

using a paid registry account to avoid potential rate-limiting associated with some free

registry offerings.

If installing using the lite descriptor for Tanzu Build Service, 1 GB of available

storage is recommended.

If installing using the full descriptor for Tanzu Build Service, which is suitable for

offline environments, 10 GB of available storage is recommended.

Note: For production environments, the full descriptor is recommended to optimize

security and performance.

Registry credentials with read and write access made available to Tanzu Application Platform

to store images.

Network access to your chosen container image registry.

DNS Records

There are some optional but recommended DNS records you should allocate if you decide to use

these particular components:

Cloud Native Runtimes (knative) - Allocate a wildcard subdomain for your developer’s

applications. This is specified in the cnrs.domain_name key of the tap-values.yml

configuration file that you input with the installation. This wildcard should be pointed at the

external IP address of the tanzu-system-ingress’s envoy service. See Ingress Method for

more information about tanzu-system-ingress.

Tanzu Learning Center - Similar to Cloud Native Runtimes, allocate a wildcard subdomain for

your workshops and content. This is specified in the learningcenter.ingressDomain key of

the tap-values.yml configuration file that you input with the installation. This wildcard should

be pointed at the external IP address of the tanzu-system-ingress’s envoy service.

Tanzu Application Platform GUI - Should you decide to implement the shared ingress and

include the Tanzu Application Platform GUI, allocate a fully Qualified Domain Name (FQDN)

that can be pointed at the tanzu-system-ingress service. The default hostname consists of

tap-gui plus an IngressDomain of your choice. For example, tap-gui.example.com.

Tanzu Application Platform GUI

Latest version of Chrome, Firefox, or Edge. Tanzu Application Platform GUI currently does

not support Safari browser.

Git repository for the Tanzu Application Platform GUI’s software catalogs, along with a token

allowing read access. For more information about how you will use your Git repository, see

the Using accelerator.yaml section in Getting started with the Tanzu Application Platform.

Supported Git infrastructure includes:

GitHub

GitLab

Azure DevOps

Tanzu Application Platform v1.0

VMware, Inc 56

https://goharbor.io/
https://hub.docker.com/

Tanzu Application Platform GUI Blank Catalog from the Tanzu Application section of Tanzu

Network

To install, navigate to Tanzu Network. Under the list of available files to download,

there is a folder titled tap-gui-catalogs-latest. Inside that folder is a compressed

archive titled Tanzu Application Platform GUI Blank Catalog. You must extract

that catalog to the preceding Git repository of choice. This serves as the configuration

location for your Organization’s Catalog inside Tanzu Application Platform GUI.

The Tanzu Application Platform GUI catalog allows for two approaches towards storing

catalog information:

The default option uses an in-memory database and is suitable for test and

development scenarios. This reads the catalog data from Git URLs that you specify in

the tap-values.yml file. This data is temporary, and any operations that cause the

server pod in the tap-gui namespace to be re-created also cause this data to be

rebuilt from the Git location. This can cause issues when you manually register

entities through the UI because they only exist in the database and are lost when that

in-memory database gets rebuilt.

For production use-cases, use a PostgreSQL database that exists outside the Tanzu

Application Platform packaging. The PostgreSQL database stores all the catalog data

persistently both from the Git locations and the UI manual entity registrations. For

more information, see Configuring the Tanzu Application Platform GUI database

Kubernetes cluster requirements

Installation requires Kubernetes cluster v1.20, v1.21, or v1.22 on one of the following Kubernetes

providers:

Azure Kubernetes Service

Amazon Elastic Kubernetes Service

Google Kubernetes Engine

GKE Autopilot clusters do not have required features enabled

GKE clusters that are set up in zonal mode might detect Kubernetes API errors when

the GKE control plane is resized after traffic increases. Users can mitigate this by

creating a regional cluster with 3 control-plane nodes right from the start.

Minikube

Reference the resource requirements below

Hyperkit driver is supported on macOS only; Docker driver is not supported.

Tanzu Kubernetes Grid multicloud

vSphere with Tanzu v7.0 U3a (not possible with Tanzu Application Platform v1.0.0 or earlier).

For vSphere with Tanzu, pod security policies must be configured so that Tanzu Application

Platform controller pods can run as root. To set the pod security policies, run:

kubectl create clusterrolebinding default-tkg-admin-privileged-binding --cluste

rrole=psp:vmware-system-privileged --group=system:authenticated

For more information about Pod Security Policies on Tanzu for vSphere, see Using Pod

Tanzu Application Platform v1.0

VMware, Inc 57

https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-CD033D1D-BAD2-41C4-A46F-647A560BAEAB.html

Security Policies with Tanzu Kubernetes Clusters in VMware vSphere Product

Documentation.

Resource requirements

To deploy all Tanzu Application Platform packages, your cluster must have at least:

8 CPUs for i9 (or equivalent) available to Tanzu Application Platform components

12 CPUs for i7 (or equivalent) available to Tanzu Application Platform components

8 GB of RAM across all nodes available to Tanzu Application Platform

12 GB of RAM is available to build and deploy applications, including Minikube.

VMware recommends 16 GB of RAM for an optimal experience.

70 GB of disk space available per node

For the full profile, or use of Security Chain Security Tools - Store, your cluster must have a

configured default StorageClass.

Tools and CLI requirements

Installation requires:

The Kubernetes CLI, kubectl, v1.20, v1.21 or v1.22, installed and authenticated with

administrator rights for your target cluster. See Install Tools in the Kubernetes

documentation.

Installing the Tanzu CLI

Accept the End User License Agreements

Before installing packages, you must accept the End User License Agreements (EULAs).

To accept EULAs:

1. Sign in to Tanzu Network.

2. For each of the following components, accept or confirm that you have accepted the EULA:

Cluster Essentials for VMware Tanzu

Tanzu Application Platform

Tanzu Build Service and its associated components:

Tanzu Build Service Dependencies

Buildpacks for VMware Tanzu

Stacks for VMware Tanzu

This is an example of how to accept EULAs for Tanzu Application Platform: After signing in to Tanzu

Network, select the “Click here to sign the EULA” link in the yellow warning box under the release

drop down as seen in the following screen shot. (If this warning is not there then the EULA has

already been accepted).

Tanzu Application Platform v1.0

VMware, Inc 58

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-CD033D1D-BAD2-41C4-A46F-647A560BAEAB.html
https://kubernetes.io/docs/tasks/tools/
https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/#/releases/1011100
https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://network.tanzu.vmware.com/products/build-service/
https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tanzu-buildpacks-suite
https://network.tanzu.vmware.com/products/tanzu-stacks-suite

Select “Agree” in the bottom right of the dialog box that comes up as seen in the following screen

shot.

Tanzu Application Platform v1.0

VMware, Inc 59

This example shows that you have now accepted the EULAs for Tanzu Application Platform. In

addition, you must accept the EULAs for Cluster Essentials for VMware Tanzu and for Tanzu Build

Services and its associated components as stated above.

Installing the Tanzu CLI

This document describes how to Set Kubernetes cluster context, Install Cluster Essentials for

VMware Tanzu, and Install or Update the Tanzu CLI and plug-ins for Tanzu Application Platform:

Set Kubernetes cluster context

To set the Kubernetes cluster context:

1. List the existing contexts by running:

kubectl config get-contexts

For example:

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO

Tanzu Application Platform v1.0

VMware, Inc 60

 NAMESPACE

 aks-repo-trial aks-repo-trial clusterUser_aks-r

g-01_aks-repo-trial

* aks-tap-cluster aks-tap-cluster clusterUser_aks-r

g-01_aks-tap-cluster

2. Set the context to the cluster that you want to use for the Tanzu Application Platform

packages install. For example, set the context to the aks-tap-cluster context by running:

kubectl config use-context aks-tap-cluster

For example:

$ kubectl config use-context aks-tap-cluster

Switched to context "aks-tap-cluster".

Install Cluster Essentials for VMware Tanzu

Note: If you use Tanzu Kubernetes Grid (TKG) multi-cloud v1.5.1 or later, skip this section. Clusters

on TKG v1.5.1 or later do not require Cluster Essentials for VMware Tanzu.

The Cluster Essentials for VMware Tanzu package simplifies the process of installing the open-source

Carvel tools on your cluster. It includes a script that uses the Carvel CLI tools to download and install

the server-side components kapp-controller and secretgen-crontroller on the targeted cluster.

Currently, only MacOS and Linux are supported for Cluster Essentials for VMware Tanzu.

To install cluster essentials for VMware Tanzu:

1. Sign in to Tanzu Network.

2. Navigate to Cluster Essentials for VMware Tanzu on VMware Tanzu Network.

3. If using macOS, download tanzu-cluster-essentials-darwin-amd64-1.0.0.tgz. If using

Linux, download tanzu-cluster-essentials-linux-amd64-1.0.0.tgz.

4. Unpack the TAR file into the tanzu-cluster-essentials directory by running:

mkdir $HOME/tanzu-cluster-essentials

tar -xvf DOWNLOADED-CLUSTER-ESSENTIALS-PACKAGE -C $HOME/tanzu-cluster-essential

s

Where DOWNLOADED-CLUSTER-ESSENTIALS-PACKAGE is the cluster essentials package you

downloaded.

5. (Optional) If your registry needs a custom certificate, you must load that configuration into

the cluster before installing kapp-controller. If your registry uses a public certificate, this

step is not required.

Create the kapp-controller namespace:

kubectl create namespace kapp-controller

Create a configuration secret by using the registry’s ca.crt stored on local disk:

Tanzu Application Platform v1.0

VMware, Inc 61

https://carvel.dev
https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/
https://carvel.dev/kapp-controller/docs/v0.32.0/controller-config/

kubectl create secret generic kapp-controller-config \

 --namespace kapp-controller \

 --from-file caCerts=ca.crt

6. Configure and run install.sh, which installs kapp-controller and secretgen-controller on

your cluster:

export INSTALL_BUNDLE=registry.tanzu.vmware.com/tanzu-cluster-essentials/cluste

r-essentials-bundle@sha256:82dfaf70656b54dcba0d4def85ccae1578ff27054e7533d08320

244af7fb0343

export INSTALL_REGISTRY_HOSTNAME=registry.tanzu.vmware.com

export INSTALL_REGISTRY_USERNAME=TANZU-NET-USER

export INSTALL_REGISTRY_PASSWORD=TANZU-NET-PASSWORD

cd $HOME/tanzu-cluster-essentials

./install.sh

Where TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for VMware Tanzu

Network.

7. Install the kapp CLI onto your $PATH:

sudo cp $HOME/tanzu-cluster-essentials/kapp /usr/local/bin/kapp

8. Install the imgpkg CLI onto your $PATH:

sudo cp $HOME/tanzu-cluster-essentials/imgpkg /usr/local/bin/imgpkg

Install or update the Tanzu CLI and plug-ins

Choose the install scenario that is right for you:

1. Sign in to VMware Tanzu Network.

2. Go to the Tanzu Application Platform product page.

3. Select Release 1.0.0 from the release drop-down menu.

4. Click tanzu-cli-tap-1.0.0 to list the Tanzu framework bundles.

5. Click and download the Tanzu framework bundle for your operating system.

6. (Optional) If an earlier upgrade attempt failed, you can uninstall the previous version of the

Tanzu CLI and associated plug-ins and files. See Remove Tanzu CLI, plug-ins, and associated

files for more information.

To install the Tanzu CLI and plug-ins:

Cleanly Install Tanzu CLI

Note

Follow the steps in this topic if you do not want to use a profile to install the Tanzu

CLI and plug-ins. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 62

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-application-platform

To perform a clean installation of Tanzu CLI:

1. If applicable, uninstall Tanzu CLI, plug-ins, and associated files by following the steps in

Remove Tanzu CLI, plug-ins, and associated files.

2. Follow the procedure for your operating system:

Linux: Install the Tanzu CLI

Mac: Install the Tanzu CLI

Windows: Install the Tanzu CLI

Linux: Install the Tanzu CLI

To install the Tanzu CLI on a Linux operating system:

1. Create a directory named tanzu by running:

mkdir $HOME/tanzu

2. Sign in to Tanzu Network.

3. Navigate to Tanzu Application Platform on VMware Tanzu Network.

4. Click the Tanzu CLI folder for your Tanzu Application Platform version:

For v1.0.2 or v1.0.1, select tanzu-cli-v0.11.1.

For v1.0.0, select tanzu-cli-v0.10.0.

5. Download tanzu-framework-bundle-linux and unpack the TAR file into the tanzu directory

by running:

tar -xvf tanzu-framework-linux-amd64.tar -C $HOME/tanzu

6. Set environment variable TANZU_CLI_NO_INIT to true to ensure the local downloaded

versions of the CLI core and plug-ins are installed:

export TANZU_CLI_NO_INIT=true

7. Install the CLI core by running:

cd $HOME/tanzu

sudo install cli/core/VERSION/tanzu-core-linux_amd64 /usr/local/bin/tanzu

Where VERSION is:

v0.11.1 if you are on Tanzu Application Platform v1.0.1 or v1.0.2

v0.10.0 if you are on Tanzu Application Platform v1.0.0

8. Confirm installation of the CLI core by running:

tanzu version

The expected output is:

Tanzu Application Platform v1.0

VMware, Inc 63

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-application-platform/

version: v0.11.1 for Tanzu Application Platform v1.0.1 or v1.0.2

version: v0.10.0 for Tanzu Application Platform v1.0.0

9. Proceed to Cleanly Install Tanzu CLI Plug-ins.

Mac: Install the Tanzu CLI

To install the Tanzu CLI on macOS:

1. Create a directory named tanzu:

mkdir $HOME/tanzu

2. Proceed to Install/Update Tanzu CLI plug-ins

3. Navigate to Tanzu Application Platform on VMware Tanzu Network.

4. Click the Tanzu CLI folder for your Tanzu Application Platform version:

For v1.0.2 or v1.0.1, select tanzu-cli-v0.11.1.

For v1.0.0, select tanzu-cli-v0.10.0.

5. Download tanzu-framework-bundle-mac and unpack the TAR file into the tanzu directory:

tar -xvf tanzu-framework-darwin-amd64.tar -C $HOME/tanzu

6. Set environment variable TANZU_CLI_NO_INIT to true to ensure the local downloaded

versions of the CLI core and plug-ins are installed:

export TANZU_CLI_NO_INIT=true

7. Install the CLI core by running:

cd $HOME/tanzu

install cli/core/VERSION/tanzu-core-darwin_amd64 /usr/local/bin/tanzu

Where VERSION is:

v0.11.1 if you are on Tanzu Application Platform v1.0.1 or v1.0.2

v0.10.0 if you are on Tanzu Application Platform v1.0.0

8. Confirm installation of the CLI core by running:

tanzu version

The expected output is:

version: v0.11.1 for Tanzu Application Platform v1.0.1 or v1.0.2

version: v0.10.0 for Tanzu Application Platform v1.0.0

9. Proceed to Cleanly Install Tanzu CLI Plug-ins.

Windows: Install the Tanzu CLI

Tanzu Application Platform v1.0

VMware, Inc 64

#cli-plugin-clean-install
https://network.tanzu.vmware.com/products/tanzu-application-platform/
#cli-plugin-clean-install

To install the Tanzu CLI on Windows:

1. Create a directory called tanzu-bundle.

2. Sign in to Tanzu Network.

3. Navigate to Tanzu Application Platform on Tanzu Network.

4. Click the Tanzu CLI folder for your Tanzu Application Platform version:

For v1.0.2 or v1.0.1, select tanzu-cli-v0.11.1.

For v1.0.0, select tanzu-cli-v0.10.0.

5. Download tanzu-framework-bundle-windows and unpack the TAR files into the tanzu-bundle

directory.

6. Create a new Program Files\tanzu folder.

7. In the unpacked CLI folder tanzu-bundle, locate and copy

core/VERSION/tanzu-core-windows_amd64.exe

Where VERSION is:

v0.11.1 if you are on Tanzu Application Platform v1.0.1 or v1.0.2

v0.10.0 if you are on Tanzu Application Platform v1.0.0

8. Paste the file into the new Program Files\tanzu directory.

9. Rename tanzu-core-windows_amd64.exe as tanzu.exe.

10. Right-click the tanzu folder, select Properties > Security, and make sure that your user

account has the Full Control permission.

11. Use Windows Search to search for env.

12. Select Edit the system environment variables, and click Environment Variables.

13. Select the Path row under System variables, and click Edit.

14. Click New to add a new row, and enter the path to the Tanzu CLI.

15. Set the environmental variable TANZU_CLI_NO_INIT to true.

16. From the tanzu directory, confirm the installation of the Tanzu CLI by running the following

command in a terminal window:

tanzu version

The expected output is:

version: v0.11.2

...

1. Proceed to Install/Update Tanzu CLI plug-ins

17. Proceed to Cleanly Install Tanzu CLI Plug-ins

Tanzu Application Platform v1.0

VMware, Inc 65

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-application-platform/
#cli-plugin-clean-install

Install/Update Tanzu CLI plug-ins

To install or update Tanzu CLI plug-ins follow the steps below:

1. If it hasn’t been done already, set environment variable TANZU_CLI_NO_INIT to true to assure

the locally downloaded plug-ins are installed:

export TANZU_CLI_NO_INIT=true

2. From your tanzu directory, Install the local versions of the plug-ins you downloaded by

running:

cd $HOME/tanzu

tanzu plugin install --local cli all

3. Check the plug-in installation status by running:

tanzu plugin list

If using Tanzu Application Platform v1.0.0, expect to see the following:

tanzu plugin list

NAME LATEST VERSION DESCRIPTION

 REPOSITORY VERSION STATUS

accelerator Manage accelerators in a Kubernetes cluster

 v1.0.0 installed

apps Applications on Kubernetes

 v0.4.0 installed

cluster v0.13.1 Kubernetes cluster operations

 core v0.10.0 installed

kubernetes-release v0.13.1 Kubernetes release operations

 core v0.10.0 installed

login v0.13.1 Login to the platform

 core v0.10.0 installed

management-cluster v0.13.1 Kubernetes management cluster operations

 core v0.10.0 installed

package v0.13.1 Tanzu package management

 core v0.10.0 installed

pinniped-auth v0.13.1 Pinniped authentication operations (usually

 not directly invoked) core v0.10.0 installed

secret v0.13.1 Tanzu secret management

 core v0.10.0 installed

services Discover Service Types and manage Service I

nstances (ALPHA) v0.1.1 installed

If using Tanzu Application Platform v1.0.1, expect to see the following:

tanzu plugin list

NAME DESCRIPTION

 SCOPE DISCOVERY VERSION STATUS

login Login to the platform

 Standalone default v0.11.1 not installed

management-cluster Kubernetes management-cluster operations

 Standalone default v0.11.1 not installed

package Tanzu package management

 Standalone default v0.11.1 installed

Tanzu Application Platform v1.0

VMware, Inc 66

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.11.1 not installed

secret Tanzu secret management

 Standalone default v0.11.1 installed

accelerator Manage accelerators in a Kubernetes cluster

 Standalone v1.0.1 installed

apps Applications on Kubernetes

 Standalone v0.4.1 installed

services Discover Service Types and manage Service Instances (ALPHA)

 Standalone v0.1.1 installed

If using Tanzu Application Platform v1.0.2, expect to see the following:

tanzu plugin list

NAME DESCRIPTION

 SCOPE DISCOVERY VERSION STATUS

login Login to the platform

 Standalone default v0.11.1 not installed

management-cluster Kubernetes management-cluster operations

 Standalone default v0.11.1 not installed

package Tanzu package management

 Standalone default v0.11.1 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.11.1 not installed

secret Tanzu secret management

 Standalone default v0.11.1 installed

accelerator Manage accelerators in a Kubernetes cluster

 Standalone v1.0.1 installed

apps Applications on Kubernetes

 Standalone v0.4.1 installed

services Discover Service Types and manage Service Instances (ALPHA)

 Standalone v0.1.2 installed

Ensure that you have the accelerator, apps, package, secret, and services plug-ins. You

need these plug-ins to install and interact with the Tanzu Application Platform.

Tanzu Application Platform requires cluster-admin privileges. Running commands associated

with the additional plug-ins can have unintended side effects. VMware discourages running

cluster, kubernetes-release, login, management-cluster, and pinniped-auth commands.

You can now proceed with installing Tanzu Application Platform. For more information, see Installing

the Tanzu Application Platform Package and Profiles.

Updating Tanzu CLI Installed for a Previous Tanzu
Application Platform Release

To update Tanzu CLI if it was installed on an earlier release of Tanzu Application Platform, follow the

relevant procedure below.

Updating Tanzu CLI Installed for Tanzu Application Platform v1.0.0
or v1.0.1

Follow these instructions to update the Tanzu CLI that was installed for Tanzu Application Platform

v1.0.0 or v1.0.1:

1. Uninstall Tanzu CLI, plug-ins, and associated files by following the steps in Remove Tanzu

Tanzu Application Platform v1.0

VMware, Inc 67

CLI, plug-ins, and associated files.

2. Perform a clean install of the Tanzu CLI by following the steps in Cleanly Install Tanzu CLI

above.

3. If a directory named tanzu does not exist, create one by running:

mkdir $HOME/tanzu

4. Sign in to Tanzu Network.

5. Navigate to Tanzu Application Platform on Tanzu Network.

6. Click the tanzu-cli-v0.11.1 directory.

7. Download the CLI bundle corresponding with your operating system. For example, if your

client operating system is Linux, download the tanzu-framework-linux-amd64.tar bundle.

8. If they exist, delete any CLI files from previous installs by running:

rm -rf $HOME/tanzu/cli

9. Unpack the TAR file in the tanzu directory by running:

tar -xvf tanzu-framework-linux-amd64.tar -C $HOME/tanzu

10. Navigate to the tanzu directory by running:

cd $HOME/tanzu

11. Set environment variable TANZU_CLI_NO_INIT to true to install the local versions of the CLI

core and plug-ins you’ve downloaded:

export TANZU_CLI_NO_INIT=true

12. Update the core CLI by running:

install cli/core/VERSION/tanzu-core-linux_amd64 /usr/local/bin/tanzu

Where VERSION is:

v0.11.1 if you are on Tanzu Application Platform v1.0.1

v0.10.0 if you are on Tanzu Application Platform v1.0.0

13. Check installation status for the core CLI by running:

tanzu version

Expected output: version: v0.11.1

14. Install new plug-in versions by running:

tanzu plugin install --local cli all

15. Check installation status for plug-ins by running:

Tanzu Application Platform v1.0

VMware, Inc 68

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-application-platform/

tanzu plugin list

Expect to see the following:

tanzu plugin list

NAME DESCRIPTION

 SCOPE DISCOVERY VERSION STATUS

login Login to the platform

 Standalone default v0.11.1 not installed

management-cluster Kubernetes management-cluster operations

 Standalone default v0.11.1 not installed

package Tanzu package management

 Standalone default v0.11.1 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.11.1 not installed

secret Tanzu secret management

 Standalone default v0.11.1 installed

accelerator Manage accelerators in a Kubernetes cluster

 Standalone v1.0.1 installed

apps Applications on Kubernetes

 Standalone v0.4.1 installed

services Discover Service Types and manage Service Instances (ALPHA)

 Standalone v0.1.2 installed

You can now install Tanzu Application Platform. See Installing the Tanzu Application Platform

Package and Profiles.

Updating Tanzu CLI Installed for Tanzu Application Platform v0.4 or
earlier

Follow these instructions to update the Tanzu CLI that was installed for Tanzu Application Platform

v0.4 or earlier:

1. Uninstall Tanzu CLI, plug-ins, and associated files by following the steps in Remove Tanzu

CLI, plug-ins, and associated files.

2. Perform a clean install of the Tanzu CLI by following the steps in Cleanly Install Tanzu CLI

above.

3. If a directory named tanzu does not exist, create one by running:

mkdir $HOME/tanzu

4. Sign in to Tanzu Network.

5. Navigate to Tanzu Application Platform on Tanzu Network.

6. Click the tanzu-cli-v0.10.0 directory.

7. Download the CLI bundle corresponding with your operating system. For example, if your

client operating system is Linux, download the tanzu-framework-linux-amd64.tar bundle.

8. If they exist, delete any CLI files from previous installs by running:

rm -rf $HOME/tanzu/cli

Tanzu Application Platform v1.0

VMware, Inc 69

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-application-platform/

9. Unpack the TAR file in the tanzu directory by running:

tar -xvf tanzu-framework-linux-amd64.tar -C $HOME/tanzu

10. Navigate to the tanzu directory by running:

cd $HOME/tanzu

11. Set env var TANZU_CLI_NO_INIT to true to install the local versions of the CLI core and plug-

ins you’ve downloaded:

export TANZU_CLI_NO_INIT=true

12. Update the core CLI by running:

install cli/core/VERSION/tanzu-core-linux_amd64 /usr/local/bin/tanzu

Where VERSION is:

v0.11.1 if you are on Tanzu Application Platform v1.0.1

v0.10.0 if you are on Tanzu Application Platform v1.0.0

13. Check installation status for the core CLI by running:

tanzu version

Expected output: version: v0.10.0

14. List the plug-ins to see if the imagepullsecret plug-in was previously installed by running:

tanzu plugin list

If installed, delete it by running:

tanzu plugin delete imagepullsecret

15. Remove previously installed plug-in binaries by running:

rm -rf ~/Library/Application\ Support/tanzu-cli/*

16. Install new plug-in versions by running:

tanzu plugin install --local cli all

17. Check installation status for plug-ins by running:

tanzu plugin list

Expect to see the following:

tanzu plugin list

NAME LATEST VERSION DESCRIPTION

 REPOSITORY VERSION STATUS

Tanzu Application Platform v1.0

VMware, Inc 70

accelerator Manage accelerators in a Kubernetes cluster

 v1.0.0 installed

apps Applications on Kubernetes

 v1.0.1 installed

cluster v0.13.1 Kubernetes cluster operations

 core v0.10.0 installed

kubernetes-release v0.13.1 Kubernetes release operations

 core v0.10.0 installed

login v0.13.1 Login to the platform

 core v0.10.0 installed

management-cluster v0.13.1 Kubernetes management cluster operations

 core v0.10.0 installed

package v0.13.1 Tanzu package management

 core v0.10.0 installed

pinniped-auth v0.13.1 Pinniped authentication operations (usually

 not directly invoked) core v0.10.0 installed

secret v0.13.1 Tanzu secret management

 core v0.10.0 installed

services Discover Service Types and manage Service I

nstances (ALPHA) v0.1.1 installed

You can now install Tanzu Application Platform. See Installing the Tanzu Application Platform

Package and Profiles.

Installing the Tanzu Application Platform Package and
Profiles

This document describes how to install Tanzu Application Platform packages from the Tanzu

Application Platform package repository.

Before you install the packages, ensure that you have completed the prerequisites, configured and

verified the cluster, accepted the EULA, and installed the Tanzu CLI with any required plug-ins. See

Installing the Tanzu CLI.

Relocate images to a registry

VMware recommends relocating the images to your registry from VMware Tanzu Network registry

before attempting installation.

If you choose not to relocate images, Tanzu Application Platform depends directly on VMware Tanzu

Network for continued operation. VMware recommends relocating images because there are no

uptime guarantees for installations that depend directly on VMware Tanzu Network in this manner.

The option to skip relocation is documented for purposes of evaluation and proof-of-concept only.

The supported container registries are Harbor, Azure Container Registry, Google Container Registry,

and Quay.io. See the documentation for a registry to learn how to set it up. See Prerequisites for

container image registry requirements.

To relocate images from the VMware Tanzu Network registry to your registry:

1. Log in to your image registry by running:

docker login MY-REGISTRY

Where MY-REGISTRY is your own container registry.

Tanzu Application Platform v1.0

VMware, Inc 71

2. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network credentials

by running:

docker login registry.tanzu.vmware.com

3. Set up environment variables for use during the installation by running:

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

Where:

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.0.2.

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

4. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-p

ackages

Where TARGET-REPOSITORY is your target repository

5. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

6. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install --export-to-all-namespaces --yes --namespace tap-install

7. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-packages:$TAP_VERSIO

N \

 --namespace tap-install

Where:

$TAP_VERSION is the Tanzu Application Platform version environment variable you

defined earlier.

TARGET-REPOSITORY is the necessary repository.

8. Get the status of the Tanzu Application Platform package repository, and ensure the status

Tanzu Application Platform v1.0

VMware, Inc 72

updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

| Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: tapmdc.azurecr.io/mdc/1.0.2/tap-packages

TAG: 1.0.2

STATUS: Reconcile succeeded

REASON:

Note: the VERSION and TAG numbers differ from the earlier example if you are on Tanzu

Application Platform v1.0.2 or earlier.

9. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

 SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

 A unified user interface to e

nable search, discovery and try-out of API endpoints at ease.

 run.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 build.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 buildservice.tanzu.vmware.com Tanzu Build Service

 Tanzu Build Service enables t

he building and automation of containerized software workflows securely and at

scale.

 cartographer.tanzu.vmware.com Cartographer

 Kubernetes native Supply Chai

n Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

 Cloud Native Runtimes is a se

rverless runtime based on Knative

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime configurations to fleets of w

orkloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

 Tanzu Source Controller enabl

es workload create/update from source code.

Tanzu Application Platform v1.0

VMware, Inc 73

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 grype.scanning.apps.tanzu.vmware.com Grype Scanner for Supply

 Chain Security Tools - Scan Default scan templates using

Anchore Grype

 image-policy-webhook.signing.apps.tanzu.vmware.com Image Policy Webhook

 The Image Policy Webhook allo

ws platform operators to define a policy that will use cosign to verify signatu

res of container images

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native Supply Chains.

 metadata-store.apps.tanzu.vmware.com Tanzu Supply Ch

ain Security Tools - Store The Metadata Store e

nables saving and querying image, package, and vulnerability data.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

 The Services Toolkit enables

the management, lifecycle, discoverability and connectivity of Service Resource

s (databases, message queues, DNS records, etc.).

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use case.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile

settings. This is done by using the package manager you installed using Tanzu Cluster Essentials. For

more information about profiles, see Installation profiles in Tanzu Application Platform.

To install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

Tanzu Application Platform v1.0

VMware, Inc 74

2. Create a tap-values.yml file by using the Full Profile sample as a guide. These samples have

the minimum configuration required to deploy Tanzu Application Platform. The sample

values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package

Subordinate packages, or individual child packages

The values file you provide during installation is used for further configuration of Tanzu

Application Platform.

Important: Keep this file for future use.

3. Proceed to the View possible configuration settings for your package section.

Full Profile

The following is the YAML file sample for the full-profile:

profile: full

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 tanzunet_username: "TANZUNET-USERNAME"

 tanzunet_password: "TANZUNET-PASSWORD"

 descriptor_name: "DESCRIPTOR-NAME"

 enable_automatic_dependency_updates: TRUE-OR-FALSE-VALUE # Optional, set as true or

false. Not a string.

supply_chain: basic

cnrs:

 domain_name: INGRESS-DOMAIN

ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: ""

learningcenter:

 ingressDomain: "INGRESS-DOMAIN"

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: "INGRESS-DOMAIN"

 app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

Tanzu Application Platform v1.0

VMware, Inc 75

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

metadata_store:

 app_service_type: LoadBalancer # (optional) Defaults to LoadBalancer. Change to Node

Port for distributions that don't support LoadBalancer

grype:

 namespace: "MY-DEV-NAMESPACE" # (optional) Defaults to default namespace.

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies

are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-

service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-

service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-

project/build-service"

KP-DEFAULT-REPO-USERNAME is the username that can write to KP-DEFAULT-REPO. You should

be able to docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.

You can docker push to this location with this credential.

For Google Cloud Registry, use the contents of the service account JSON key.

DESCRIPTOR-NAME is the name of the descriptor to import automatically. Current available

options at time of release:

tap-1.0.0-full contains all dependencies, and is for production use.

tap-1.0.0-lite smaller footprint used for speeding up installs. Requires Internet

access on the cluster.

SERVER-NAME is the hostname of the registry server. Examples:

Harbor has the form server: "my-harbor.io"

Docker Hub has the form server: "index.docker.io"

Google Cloud Registry has the form server: "gcr.io"

REPO-NAME is where workload images are stored in the registry. Images are written to SERVER-

NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain"

Docker Hub has the form repository: "my-dockerhub-user"

Google Cloud Registry has the form repository: "my-project/supply-chain"

Tanzu Application Platform v1.0

VMware, Inc 76

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-

ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can

download either a blank or populated catalog file from the Tanzu Application Platform

product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built

and posted on the Git infrastructure you specified in the Integration section.

MY-DEV-NAMESPACE is the namespace where you want the ScanTemplates to be deployed to.

This is the namespace where the scanning feature is going to run.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the credentials

to pull an image from the registry for scanning. If built images are pushed to the same

registry as the Tanzu Application Platform images, this can reuse the tap-registry secret

created in Add the Tanzu Application Platform package repository.

Note: When using the tbs-values.yaml configuration, enable_automatic_dependency_updates:

true causes the dependency updater to update Tanzu Build Service dependencies (buildpacks and

stacks) when they are released on VMware Tanzu Network. Use false to pause the automatic

update of Build Service dependencies. When automatic updates are paused, the pinned version of

the descriptor for TAP 1.0.2 is 100.0.267 If left undefined, this value is false.

Light Profile

The following is the YAML file sample for the light-profile:

profile: light

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 tanzunet_username: "TANZUNET-USERNAME"

 tanzunet_password: "TANZUNET-PASSWORD"

 enable_automatic_dependency_updates: TRUE-OR-FALSE-VALUE # Optional, set as true or

false. Not a string.

supply_chain: basic

cnrs:

 domain_name: INGRESS-DOMAIN

ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: ""

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: "INGRESS-DOMAIN"

 app_config:

Tanzu Application Platform v1.0

VMware, Inc 77

https://network.pivotal.io/products/tanzu-application-platform/#/releases/1043418/file_groups/6091
https://network.pivotal.io/products/tbs-dependencies#/releases/1053790

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

metadata_store:

 app_service_type: LoadBalancer # (optional) Defaults to LoadBalancer. Change to Node

Port for distributions that don't support LoadBalancer

Where:

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies

are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-

service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-

service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-

project/build-service"

KP-DEFAULT-REPO-USERNAME is the username that can write to KP-DEFAULT-REPO. You should

be able to docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.

You can docker push to this location with these credentials.

For Google Cloud Registry, use the contents of the service account JSON key.

SERVER-NAME is the hostname of the registry server. Examples:

Harbor has the form server: "my-harbor.io"

Docker Hub has the form server: "index.docker.io"

Google Cloud Registry has the form server: "gcr.io"

REPO-NAME is where workload images are stored in the registry. Images are written to SERVER-

NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain"

Docker Hub has the form repository: "my-dockerhub-user"

Google Cloud Registry has the form repository: "my-project/supply-chain"

INGRESS-DOMAIN is the subdomain for the host name that you will point at the tanzu-shared-

ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can

download either a blank or populated catalog file from the Tanzu Application Platform

Tanzu Application Platform v1.0

VMware, Inc 78

https://network.pivotal.io/products/tanzu-application-platform/#/releases/1043418/file_groups/6091

product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built

and posted on the Git infrastructure you specified in the Integration section.

Note: When using the tbs-values.yaml configuration, enable_automatic_dependency_updates:

true causes the dependency updater to update Tanzu Build Service dependencies (buildpacks and

stacks) when they are released on VMware Tanzu Network. Use false to pause the automatic

update of Build Service dependencies. When automatic updates are paused, the pinned version of

the descriptor for TAP 1.0.2 is 100.0.267 If left undefined, this value is false.

View possible configuration settings for your package

To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you defined

earlier.

Note: The tap.tanzu.vmware.com package does not show all configuration settings for packages it

plans to install. The package only shows top-level keys. View individual package configuration

settings with the same tanzu package available get command. For example, use tanzu package

available get -n tap-install cnrs.tanzu.vmware.com/1.0.3 --values-schema for Cloud Native

Runtimes.

profile: full

...

e.g. CNRs specific values go under its name

cnrs:

 provider: local

e.g. App Accelerator specific values go under its name

accelerator:

 server:

 service_type: "ClusterIP"

The following table summarizes the top-level keys used for package-specific configuration within

your tap-values.yml.

Package Top-level Key

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View Conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Supply Chain supply_chain

Tanzu Application Platform v1.0

VMware, Inc 79

https://network.pivotal.io/products/tanzu-application-platform/#/releases/1043418/file_groups/6091
https://network.pivotal.io/products/tbs-dependencies#/releases/1053790

Package Top-level Key

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Image Policy Webhook image_policy_webhook

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

For information about package-specific configuration, see Install components.

For example, to identify the SSH secret keys for Supply Chain Basic, you can run:

tanzu package available get ootb-supply-chain-basic.tanzu.vmware.com/0.5.1 --values-sc

hema -n tap-install

Expect to see the following outputs that list the all the SSH secret keys and the descriptions

applicable to the package:

KEY DEFAULT TYPE DESCRIPTION

cluster_builder default string Name of the Tanzu Build S

ervice (TBS) ClusterBuilder to use by default on image objects managed by the supply c

hain.

gitops.branch main string Default branch to use for

 pushing Kubernetes configuration files produced by the supply chain.

gitops.commit_message bump configuration string Default git commit messag

e to write when publishing Kubernetes configuration files produces by the supply chain

 to git.

gitops.email supplychain@cluster.local string Default user email to be

used for the commits produced by the supply chain.

gitops.repository_prefix <nil> string Default prefix to be used

 for forming Git SSH URLs for pushing Kubernetes configuration produced by the supply

chain.

gitops.ssh_secret git-ssh string Name of the default Secre

t containing SSH credentials to lookup in the developer namespace for the supply chain

 to fetch source code from and push configuration to.

gitops.username supplychain string Default user name to be u

sed for the commits produced by the supply chain.

registry.repository <nil> string Name of the repository in

 the image registry server where the application images from the workloads should be p

Tanzu Application Platform v1.0

VMware, Inc 80

ushed to (required).

registry.server index.docker.io string Name of the registry serv

er where application images should be pushed to (required).

service_account default string Name of the service accou

nt in the namespace where the Workload is submitted to utilize for providing registry

credentials to Tanzu Build Service (TBS) Image objects as well as deploying the applic

ation.

Install your Tanzu Application Platform package

To install the Install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

 tap-values.yml -n tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you

defined earlier.

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This may take 5-10 minutes because it installs several packages on your cluster.

3. Verify that all the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. (Optional) Install any additional packages not included in your profile.

Important: Ensure you have set up developer namespaces to use your installed packages.

After you install the Full Profile or Light Profile on to your cluster, you can install the Tanzu

Developer Tools for VSCode extension to help you develop against it. For instructions, see Installing

Tanzu Dev Tools for VSCode.

Configure LoadBalancer for Contour Ingress

This section only applies when you use Tanzu Application Platform to deploy its own shared Contour

ingress controller in tanzu-system-ingress. It is not applicable when you use your own existing

ingress.

You can share this ingress across Cloud Native Runtimes (cnrs), Tanzu Application Platform GUI

(tap_gui), and Learning Center (learningcenter).

By default, Contour uses NodePort as the service type. To set the service type to LoadBalancer, add

the following to your tap-values.yml:

contour:

 envoy:

Tanzu Application Platform v1.0

VMware, Inc 81

 service:

 type: LoadBalancer

If you are using AWS, the section above creates a classic LoadBalancer. If you want to use the

Network LoadBalancer instead of the classic LoadBalancer for ingress, add the following to your tap-

values.yml:

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

Access the Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you’ll be able to use the hostname that is pointed at the

shared ingress you configured earlier. You can configure a LoadBalancer for Tanzu Application

Platform GUI if you prefer. For how to configure one, see Accessing Tanzu Application Platform GUI.

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started topic

or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude Packages from a Tanzu Application Platform Profile

To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Note: If you decide to exclude a package after performing a profile installation which included that

package, you cannot see the the accurate package states immediately after running tap package

installed list -n tap-install.

Note: You can break package dependencies by removing a package. Allow 20 minutes to verify that

all packages have reconciled correctly while troubleshooting.

Opting out of telemetry collection

This topic describes how to opt out of the VMware Customer Experience Improvement Program

(CEIP). By default, when you install Tanzu Application Platform, you are opted into telemetry

collection. To turn off telemetry collection, complete following the instructions.

Note: If you opt out of telemetry collection, VMware cannot offer you proactive support and the

Tanzu Application Platform v1.0

VMware, Inc 82

other benefits that accompany participation in the CEIP.

Turn off telemetry collection

To turn off telemetry collection on your Tanzu Application Platform installation:

1. Ensure your Kubernetes context is pointing to the cluster where Tanzu Application Platform

is installed.

2. Run the following kubectl command:

kubectl apply -f - <<EOF

apiVersion: v1

kind: Namespace

metadata:

 name: vmware-system-telemetry

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: vmware-system-telemetry

 name: vmware-telemetry-cluster-ceip

data:

 level: disabled

EOF

3. If you already have Tanzu Application Platform installed, restart the telemetry collector to

pick up the change:

kubectl delete pods --namespace tap-telemetry --all

Your Tanzu Application Platform deployment no longer emits telemetry, and you are opted out of

the CEIP.

Tanzu Application Platform v1.0

VMware, Inc 83

Upgrading Tanzu Application Platform

This document describes how to upgrade Tanzu Application Platform from 1.0 or 1.0.1 to 1.0.2.

You can perform fresh install of Tanzu Application Platform 1.0.2 by following the instructions in

Installing Tanzu Application Platform.

Prerequisites

Before you upgrade Tanzu Application Platform:

For information about installing your Tanzu Application Platform, see Install your Tanzu

Application Platform profile

For information about installing or updating the Tanzu CLI and plug-ins, see Install or update

the Tanzu CLI and plug-ins

For information on Tanzu Application Platform GUI considerations, see Tanzu Application

Platform GUI Considerations

Verify all packages are reconciled by running tanzu package installed list -A

Add new package repository

Follow these steps to add the new package repository:

1. Add the 1.0.2 version of the Tanzu Application Platform package repository by running:

tanzu package repository update tanzu-tap-repository \

 --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:1.0

.2 \

 --namespace tap-install

2. Verify you have added the new package repository by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Perform upgrade of Tanzu Application Platform

Upgrade instructions for Profile-based installation

For Tanzu Application Platform that is installed by profile, you can perform the upgrade by running:

Note: Ensure you run the following command in the directory where the tap-values.yaml file

resides.

Tanzu Application Platform v1.0

VMware, Inc 84

tanzu package installed update tap -p tap.tanzu.vmware.com -v 1.0.2 --values-file tap

-values.yaml -n tap-install

Upgrade instructions for component-specific installation

For information about upgrading Tanzu Application Platform GUI, see upgrading Tanzu Application

Platform GUI.

Verify the upgrade

Verify the versions of packages after the upgrade by running:

tanzu package installed list --namespace tap-install

Your output is similar, but probably not identical, to the following example output:

- Retrieving installed packages...

 NAME PACKAGE-NAME PACKAG

E-VERSION STATUS

 accelerator accelerator.apps.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 api-portal api-portal.tanzu.vmware.com 1.0.9

 Reconcile succeeded

 appliveview run.appliveview.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 appliveview-conventions build.appliveview.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 buildservice buildservice.tanzu.vmware.com 1.4.3

 Reconcile succeeded

 cartographer cartographer.tanzu.vmware.com 0.2.2

 Reconcile succeeded

 cert-manager cert-manager.tanzu.vmware.com 1.5.3+

tap.1 Reconcile succeeded

 cnrs cnrs.tanzu.vmware.com 1.1.1

 Reconcile succeeded

 contour contour.tanzu.vmware.com 1.18.2

+tap.1 Reconcile succeeded

 conventions-controller controller.conventions.apps.tanzu.vmware.com 0.5.1

 Reconcile succeeded

 developer-conventions developer-conventions.tanzu.vmware.com 0.5.0

 Reconcile succeeded

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com 0.16.3

 Reconcile succeeded

 grype grype.scanning.apps.tanzu.vmware.com 1.0.1

 Reconcile succeeded

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 learningcenter learningcenter.tanzu.vmware.com 0.1.1

 Reconcile succeeded

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com 0.1.1

 Reconcile succeeded

 metadata-store metadata-store.apps.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com 0.6.1

 Reconcile succeeded

 ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.6.1

Tanzu Application Platform v1.0

VMware, Inc 85

 Reconcile succeeded

 ootb-templates ootb-templates.tanzu.vmware.com 0.6.1

 Reconcile succeeded

 scanning scanning.apps.tanzu.vmware.com 1.0.1

 Reconcile succeeded

 service-bindings service-bindings.labs.vmware.com 0.6.1

 Reconcile succeeded

 services-toolkit services-toolkit.tanzu.vmware.com 0.5.1

 Reconcile succeeded

 source-controller controller.source.apps.tanzu.vmware.com 0.2.1

 Reconcile succeeded

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com 0.3.0

 Reconcile succeeded

 tap tap.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 tap-gui tap-gui.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 tap-telemetry tap-telemetry.tanzu.vmware.com 0.1.4

 Reconcile succeeded

 tekton-pipelines tekton.tanzu.vmware.com 0.30.1

 Reconcile succeeded

Tanzu Application Platform v1.0

VMware, Inc 86

Getting started with the Tanzu Application
Platform

Purpose

Welcome to the Tanzu Application Platform. This document guides you through getting started on

the platform. Specifically, you are going to learn how to:

Develop and promote an application

Create an application accelerator

Add testing and security scanning to an application

Administer, set up, and manage supply chains

Before getting started, you must complete the prerequisites in the next section.

Getting started prerequisites

Verify you have successfully:

Installed the Tanzu Application Platform

See Installing Tanzu Application Platform.

Installed the Tanzu Application Platform on the target Kubernetes cluster

See Installing the Tanzu CLI and Installing the Tanzu Application Platform Package and

Profiles.

Set the default kubeconfig context to the target Kubernetes cluster

See Changing clusters.

Installed Out of The Box (OOTB) Supply Chain Basic

See Install Out of The Box Supply Chain Basic.

Note: If you used the default profiles provided in Installing the Tanzu Application Platform

Package and Profiles, you have already installed the Out of The Box (OOTB) Supply Chain

Basic.

Set up a developer namespace to accommodate the developer Workload

See Set up developer namespaces to use installed packages.

Installed Tanzu Application Platform GUI

See Install Tanzu Application Platform GUI.

Installed the VSCode Tanzu Extension

See Install the Visual Studio Code Tanzu Extension for instructions.

When you have completed the prerequisites, you are ready to get started.

Tanzu Application Platform v1.0

VMware, Inc 87

#install-tap-gui

Section 1: Develop your first application on the Tanzu
Application Platform

In this section, you are going to:

Learn about application accelerators

Deploy your application

Add your application to Tanzu Application Platform GUI Software Catalog

Set up your integrated development environment (IDE)

Iterate on your application

Live update your application

Debug your application

Monitor your running application

About application accelerators

Application accelerators are templates that not only codify best practices, but also provide important

configuration and structures ready and available for use. Developers can create applications and get

started with feature development immediately. Admins can create custom application accelerators

that reflect desired architectures and configurations, enabling developer use according to the best

practices defined. The Application Accelerator plug-in of Tanzu Application Platform GUI assists both

application developers and admins with creating and generating application accelerators. To create

your own application accelerator, see Create your accelerator.

Deploy your application

To deploy your application, you must download an accelerator, upload it on your Git repository of

choice, and run a CLI command. VMware recommends using the accelerator called Tanzu-Java-

Web-App.

1. From Tanzu Application Platform GUI portal, click Create located on the left-hand side of the

navigation bar to see the list of available accelerators. For information about connecting to

Tanzu Application Platform GUI, see Accessing Tanzu Application Platform GUI.

Tanzu Application Platform v1.0

VMware, Inc 88

2. Locate the Tanzu Java Web App accelerator, which is a Spring Boot web app, and click

CHOOSE.

3. In the Generate Accelerators dialog box, replace the default value dev.local in the prefix

for container image registry field with the registry in the form of SERVER-NAME/REPO-NAME.

The SERVER-NAME/REPO-NAME must match what was specified for registry as part of the

installation values for ootb_supply_chain_basic. Click NEXT STEP, verify the provided

information, and click CREATE.

4. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

5. After downloading the ZIP file, expand it in a workspace directory and follow your preferred

procedure for uploading the generated project files to a Git repository for your new project.

6. Ensure you have set up developer namespaces to use installed packages.

7. Deploy the Tanzu Java Web App accelerator by running the tanzu apps workload create

command:

tanzu apps workload create tanzu-java-web-app \

--git-repo GIT-URL-TO-PROJECT-REPO \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--yes

Where GIT-URL-TO-PROJECT-REPO is the path you uploaded to in step 5.

If you bypassed step 5 or were unable to upload your accelerator to a Git repository, use the

following public version to test:

tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

Tanzu Application Platform v1.0

VMware, Inc 89

--yes

For more information, see Tanzu Apps Workload Create.

Note: This deployment uses an accelerator source from Git, but in later steps you use the

VSCode extension to debug and live-update this application.

8. View the build and runtime logs for your app by running the tail command:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp

9. After the workload is built and running, you can view the Web App in your browser. View

the URL of the Web App by running the command below, and then press ctrl-click on the

Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get tanzu-java-web-app

Add your application to Tanzu Application Platform GUI Software
Catalog

1. Navigate to the home page of Tanzu Application Platform GUI and click Home, located on

the left-side navigation bar. Click REGISTER ENTITY.

2. Register an existing component prompts you to type a repository URL. Type the link to the

catalog-info.yaml file of the tanzu-java-web-app in the Git repository field, for example,

https://github.com/USERNAME/PROJECTNAME/blob/main/catalog-info.yaml.

3. Click ANALYZE.

4. Review the catalog entities to be added and click IMPORT.

Tanzu Application Platform v1.0

VMware, Inc 90

5. Navigate back to the home page. The catalog changes and entries are visible for further

inspection.

Iterate on your application

Now that you have a skeleton workload working, you are ready to iterate on your application and test

code changes on the cluster. Tanzu Developer Tools for Visual Studio Code, VMware Tanzu’s official

IDE extension for VSCode, helps you develop and receive fast feedback on your workloads running

on the Tanzu Application Platform.

The VSCode extension enables live updates of your application while running on the cluster and

allows you to debug your application directly on the cluster. For information about installing the

prerequisites and the Tanzu Developer Tools extension, see Install Tanzu Dev Tools for VSCode.

Note: Use Tilt v0.23.2 or a later version for the sample application.

1. Open the Tanzu Java Web App as a project within your VSCode IDE.

2. To ensure your extension assists you with iterating on the correct project, configure its

settings using the following instructions.

In Visual Studio Code, navigate to Preferences > Settings > Extensions > Tanzu.

In the Local Path field, provide the path to the directory containing the Tanzu Java

Web App. The current directory is the default.

In the Source Image field, provide the destination image repository to publish an

image containing your workload source code. For example, gcr.io/myteam/tanzu-

Tanzu Application Platform v1.0

VMware, Inc 91

java-web-app-source.

You are now ready to iterate on your application.

Live update your application

Deploy the application to view it updating live on the cluster to demonstrate how code changes are

going to behave on a production cluster early in the development process.

Follow the following steps to live update your application:

1. From the Command Palette (⇧⌘P), type in and select Tanzu: Live Update Start. You can

view output from Tanzu Application Platform and from Tilt indicating that the container is

being built and deployed.

You see “Live Update starting…” in the status bar at the bottom right.

Live update can take 1 to 3 minutes while the workload deploys and the Knative

service becomes available.

Note: Depending on the type of cluster you use, you might see an error similar to the

following:

ERROR: Stop! cluster-name might be production. If you're sure you want to deploy

there, add: allow_k8s_contexts('cluster-name') to your Tiltfile. Otherwise, switch

k8scontexts and restart Tilt. Follow the instructions and add the line

allow_k8s_contexts('cluster-name') to your Tiltfile.

2. When the Live Update status in the status bar is visible, resolve to “Live Update Started”,

navigate to http://localhost:8080 in your browser, and view your running application.

3. Enter to the IDE and make a change to the source code. For example, in

HelloController.java, edit the string returned to say Hello! and save.

4. The container is updated when the logs stop streaming. Navigate to your browser and

refresh the page.

5. View the changes to your workload running on the cluster.

6. Either continue making changes, or stop and deactivate the live update when finished. Open

the command palette (⇧⌘P), type Tanzu, and choose an option.

Debug your application

Debug your cluster either on the application or in your local environment.

Follow the following steps to debug your cluster:

1. Set a breakpoint in your code.

2. Right-click the file workload.yaml within the config directory, and select Tanzu: Java Debug

Start. In a few moments, the workload is redeployed with debugging enabled. You are going

to see the “Deploy and Connect” Task complete and the debug menu actions are available

to you, indicating that the debugger has attached.

3. Navigate to http://localhost:8080 in your browser. This hits the breakpoint within VSCode.

Play to the end of the debug session using VSCode debugging controls.

Tanzu Application Platform v1.0

VMware, Inc 92

Monitor your running application

Inspect the runtime characteristics of your running application using the Application Live View UI to

monitor:

Resource consumption

Java Virtual Machine (JVM) status

Incoming traffic

Change log level

You can also troubleshoot environment variables and fine-tune the running application.

Follow the following steps to diagnose Spring Boot-based applications using Application Live View:

1. Confirm that the Application Live View components installed successfully. For instructions,

see Verify the Application Live View components in the Application Live View

documentation.

2. Access the Application Live View Tanzu Application Platform GUI. For instructions, see Entry

point to Application Live View plug-in in Application Live View in Tanzu Application Platform

GUI.

3. Select your running application to view the diagnostic options and inside the application. For

more information, see Product Features in the Application Live View documentation.

Section 2: Create your application accelerator

In this section, you are going to:

Create an application accelerator using Tanzu Application Platform GUI.

Create an application accelerator

To create a new application accelerator, follow the following steps:

1. Click Create on the left-hand side of the navigation bar on Tanzu Application Platform GUI

portal to view the list of available accelerators.

2. Click CHOOSE to select the New Accelerator tile.

3. Complete the New Project form with the following information.

Name: Your accelerator name This is the name of the generated ZIP file

Description (Optional): A description of your accelerator

K8s Resource Name: A Kubernetes resource name to use for the accelerator

Git Repository URL: The URL for the Git repository that contains the

accelerator source code

Git Branch: The branch for the Git repository

Tags (Optional): Associated tags that are used for searches in the UI

Tanzu Application Platform v1.0

VMware, Inc 93

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.0/docs/GUID-installing.html#verify-the-application-live-view-components-5
https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.0/docs/GUID-product-features.html

(Optional) To navigate through the accelerator files, click EXPLORE. When finished, click

NEXT STEP.

4. Verify the provided information and click CREATE.

Tanzu Application Platform v1.0

VMware, Inc 94

5. Download and expand the ZIP file by clicking DOWNLOAD ZIP FILE and expand it.

The output contains a YAML file for an Accelerator resource, pointing to the Git

repository.

The output contains a file named new-accelerator.yaml which defines the metadata

for your new accelerator.

6. To apply the k8s-resource.yml, run the following command in your terminal in the folder

where you expanded the zip file:

kubectl apply -f k8s-resource.yaml --namespace accelerator-system

7. The Tanzu Application Platform GUI refreshes periodically. After the UI refreshes, the new

accelerator becomes available. After waiting a few minutes, click Create on the left-hand side

navigation bar of Tanzu Application Platform GUI to see if the accelerator appears.

Using accelerator.yaml

The Accelerator ZIP file contains a file called new-accelerator.yaml. This file is a starting point for

the metadata for your new accelerator and the associated options and file processing instructions.

This new-accelerator.yaml file must be copied to the root directory of your GIT repository and

named accelerator.yaml.

Copy this file into your GIT repository as accelerator.yaml to have additional attributes rendered in

the web UI. See Creating Accelerators.

After you push that change to your GIT repository, the Accelerator is refreshed based on the

git.interval setting for the Accelerator resource. The default is 10 minutes. You can run the

following command to force an immediate reconciliation:

tanzu accelerator update <accelerator-name> --reconcile

Section 3: Add Testing and Security Scanning to Your
Application

In this section, you are going to:

Learn about supply chains

Discover available out of the box (OOTB) supply chains

OOTB Basic (default)

OOTB Testing

OOTB Testing+Scanning

Install OOTB Testing (optional)

Install OOTB Testing+Scanning (optional)

Introducing a Supply Chain

Supply Chains provide a way of codifying all of the steps of your path to production, more commonly

Tanzu Application Platform v1.0

VMware, Inc 95

https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/1.0/acc-docs/GUID-creating-accelerators-index.html

known as continuous integration/Continuous Delivery (CI/CD). CI/CD is a method to frequently

deliver applications by introducing automation into the stages of application development. The main

concepts attributed to CI/CD are continuous integration, continuous delivery, and continuous

deployment. CI/CD is the method used by supply chain to deliver applications through automation

where supply chain allows you to use CI/CD and add any other steps necessary for an application to

reach production, or a different environment such as staging.

A path to production

A path to production allows users to create a unified access point for all of the tools required for their

applications to reach a customer-facing environment. Instead of having four tools that are loosely

coupled to each other, a path to production defines all four tools in a single, unified layer of

abstraction, which may be automated and repeatable between teams for applications at scale.

Where tools typically are not able to integrate with one another and additional scripting or webhooks

are necessary, there would be a unified automation tool to codify all the interactions between each

of the tools. Supply chains used to codify the organization’s path to production are configurable,

allowing their authors to add all of the steps of their application’s path to production.

Available Supply Chains

The Tanzu Application Platform provides three OOTB supply chains to work with the Tanzu

Application Platform components, and they include:

1: OOTB Basic (default)

The default OOTB Basic supply chain and its dependencies were installed on your cluster during the

Tanzu Application Platform install. The following table and diagrams provide descriptions for each of

the supply chains and dependencies provided with the Tanzu Application Platform.

Name Package

Name

Description Dependencies

Tanzu Application Platform v1.0

VMware, Inc 96

Out of the Box Basic

(Default - Installed

during Installing

Part 2)

ootb-supply-

chain-

basic.tanzu.

vmware.com

This supply chain monitors a repository that is identified

in the developer’s workload.yaml file. When any new

commits are made to the application, the supply chain:

Creates a new image.

Applies any predefined conventions.

Deploys the application to the cluster.

Flux/Sou

rce

Controlle

r

Tanzu

Build

Service

Conventi

on

Service

Cloud

Native

Runtime

s

If using

Service

Referenc

es:

S

e

r

vi

c

e

B

i

n

d

i

n

g

s

S

e

r

vi

c

e

s

T

o

o

lk

it

2: OOTB Testing

The OOTB Testing supply chain runs a Tekton pipeline within the supply chain. It depends on

Tekton being installed on your cluster.

Tanzu Application Platform v1.0

VMware, Inc 97

https://tekton.dev/

Name Package Name Description Dependencies

Out of

the

Box

Testing

ootb-supply-

chain-

testing.tanzu.v

mware.com

The Out of the Box Testing contains all of the same elements as the

Source to URL. It allows developers to specify a Tekton pipeline that

runs as part of the CI step of the supply chain.

The application tests using the Tekton pipeline.

A new image is created.

Any predefined conventions are applied.

The application is deployed to the cluster.

All of the

Source to URL

dependencies,

and:

Tekton

3: OOTB Testing+Scanning

The OOTB Testing+Scanning supply chain includes integrations for secure scanning tools.

Name Package

Name

Description Dependencies

Out of

the Box

Testing

and

Scannin

g

ootb-supply-

chain-

testing-

scanning.tan

zu.vmware.co

m

The Out of the Box Testing and Scanning contains all of the

same elements as the Out of the Box Testing supply chains but

it also includes integrations out of the box with the secure

scanning components of Tanzu Application Platform.

The application is tested using the provided Tekton

pipeline.

The application source code is scanned for

vulnerabilities.

A new image is created.

The image is scanned for vulnerabilities.

Any predefined conventions are applied.

The application deploys to the cluster.

All of the Source to

URL dependencies,

and:

The secure

scanning

components

included

with Tanzu

Application

Platform

Install OOTB Testing

This section introduces how to install the OOTB Testing supply chain, which includes the steps

required to install Tekton and provides a sample Tekton pipeline that tests your sample application.

The pipeline is configurable. Therefore, you can customize the steps to perform either additional

testing or other tasks with the Tekton pipeline.

To apply this install method, follow the following steps:

1. Install Tekton

2. With Tekton installed, you can activate the Out of the Box Supply Chain with Testing by

updating our profile to use testing rather than basic as the selected supply chain for

workloads in this cluster. Update tap-values.yml (the file used to customize the profile in

Tanzu package install tap --values-file=...) with the following changes:

- supply_chain: basic

+ supply_chain: testing

Tanzu Application Platform v1.0

VMware, Inc 98

- ootb_supply_chain_basic:

+ ootb_supply_chain_testing:

 registry:

 server: "<SERVER-NAME>"

 repository: "<REPO-NAME>"

3. Update the installed profile by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v 1.0.2 --values-fi

le tap-values.yml -n tap-install

Tekton pipeline config example

In this section, a Tekton pipeline is added to the cluster. In the next section, the workload is updated

to point to the pipeline and resolve any current errors.

To add the Tekton supply chain to the cluster, apply the following YAML to the cluster:

Note: Developers can perform this step because they know how their application needs to be tested.

The operator can also add the Tekton supply chain to a cluster before the developer get access.

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

The preceding YAML defines a Tekton Pipeline with a single step. The step itself contained in the

steps pull the code from the repository indicated in the developers workload and run the tests within

the repository. The steps of the Tekton pipeline are configurable and allow the developer to add any

additional items that is needed to test their code. Because this step is one of many in the supply

Tanzu Application Platform v1.0

VMware, Inc 99

chain (and the next step is an image build in this case), the developer is free to focus on testing their

code. Any additional steps that the developer adds to the Tekton pipeline is independent for the

image being built and any subsequent steps of the supply chain being executed.

The params are templated by the Supply Chain Choreographer. Additionally, Tekton pipelines

require a Tekton pipelineRun in order to execute on the cluster. The Supply Chain Choreographer

handles creating the pipelineRun dynamically each time that step of the supply requires execution.

Workload update

To connect the new supply chain to the workload, the workload must be updated to point at your

Tekton pipeline.

1. Update the workload by running the following with the Tanzu CLI:

tanzu apps workload create tanzu-java-web-app \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --yes

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/has-tests: "true"

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

? Do you want to create this workload? Yes

Created workload "tanzu-java-web-app"

2. After accepting the workload creation, monitor the creation of new resources by the

workload by running:

kubectl get workload,gitrepository,pipelinerun,images.kpack,podintent,app,servi

ces.serving

You will see output similar to the following example that shows the objects that were created

by the Supply Chain Choreographer:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

Tanzu Application Platform v1.0

VMware, Inc 100

 READY STATUS

 AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

sample-accelerators/tanzu-java-web-app True Fetched revision: main/872ff44

c8866b7805fb2425130edb69a9853bfdf 109s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

 77s

NAME LATESTIMAGE

 READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME READY REASON

 AGE

podintent.conventions.apps.tanzu.vmware.com/tanzu-java-web-app True

 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

 LATESTCREATED LATESTREADY READY

 REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Install OOTB Testing+Scanning

Follow these steps to install the OOTB Testing+Scanning supply chain:

Note: When leveraging both TBS and Grype in your Tanzu Application Platform supply chain, you

can receive enhanced scanning coverage for Java workloads that includes application runtime layer

dependencies.

Important: The grype must be installed for scanning.

1. Supply Chain Security Tools - Scan is installed as part of the profiles. Verify that both Scan

Link and Grype Scanner are installed by running:

tanzu package installed get scanning -n tap-install

tanzu package installed get grype -n tap-install

If the packages are not already installed, follow the steps in Supply Chain Security Tools -

Scan to install the required scanning components.

During installation of the Grype Scanner, sample ScanTemplates are installed into the

default namespace. If the workload is deployed into another namespace, these sample

ScanTemplates also must be present in the other namespace. One way to accomplish this is

to install Grype Scanner again, and provide the namespace in the values file.

Tanzu Application Platform v1.0

VMware, Inc 101

A ScanPolicy is required and the following code must be in the required namespace. You

can either add the namespace flag to the kubectl command or add the namespace field to

the template itself. Run:

kubectl apply -f - -o yaml << EOF

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

 violatingSeverities := ["Critical","High","UnknownSeverity"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

EOF

2. (optional) To persist and query the vulnerability results post-scan, ensure that Supply Chain

Security Tools - Store is installed using the following command. The Tanzu Application

Platform profiles install the package by default.

tanzu package installed get metadata-store -n tap-install

If the package is not installed, follow the installation instructions.

3. Update the profile to use the supply chain with testing and scanning by updating tap-

values.yml (the file used to customize the profile in tanzu package install tap --values-

file=...) with the following changes:

- supply_chain: testing

+ supply_chain: testing_scanning

- ootb_supply_chain_testing:

+ ootb_supply_chain_testing_scanning:

 registry:

 server: "<SERVER-NAME>"

Tanzu Application Platform v1.0

VMware, Inc 102

#install-scst-store

 repository: "<REPO-NAME>"

4. Update the tap package:

tanzu package installed update tap -p tap.tanzu.vmware.com -v 1.0.2 --values-fi

le tap-values.yml -n tap-install

Workload update

To connect the new supply chain to the workload, update the workload to point to your Tekton

pipeline:

1. Update the workload by running the following using the Tanzu CLI:

tanzu apps workload create tanzu-java-web-app \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --yes

Example output:

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/has-tests: "true"

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

? Do you want to create this workload? Yes

Created workload "tanzu-java-web-app"

2. After accepting the workload creation, view the new resources that the workload created by

running:

kubectl get workload,gitrepository,sourcescan,pipelinerun,images.kpack,imagesca

n,podintent,app,services.serving

The following is an example output, which shows the objects that the Supply Chain

Choreographer created:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

Tanzu Application Platform v1.0

VMware, Inc 103

NAME URL

 READY STATUS

 AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

sample-accelerators/tanzu-java-web-app True Fetched revision: main/872ff44

c8866b7805fb2425130edb69a9853bfdf 109s

NAME PHASE SCAN

NEDREVISION SCANNEDREPOSITORY

 AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 1878

50b39b754e425621340787932759a0838795 https://github.com/sample-accelerators/t

anzu-java-web-app 90s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

 77s

NAME LATESTIMAGE

 READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME PHASE SCANN

EDIMAGE

 AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOT

AL

imagescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 10.18

8.0.3:5000/foo/tanzu-java-web-app@sha256:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b8965

46e005f1efd98fbc4e79b7552c 14s

NAME READY REASON

 AGE

podintent.conventions.apps.tanzu.vmware.com/tanzu-java-web-app True

 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

 LATESTCREATED LATESTREADY READY

 REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

If the source or image scan has a “Failed” phase, then the scan has failed compliance and

the supply chain will not continue.

Query for vulnerabilities

Scan reports are automatically saved to the Supply Chain Security Tools - Store, and can be queried

for vulnerabilities and dependencies. For example, open-source software (OSS) or third party

packages.

Tanzu Application Platform v1.0

VMware, Inc 104

1. Query the tanzu-java-web-app image dependencies and vulnerabilities with the following

commands:

insight image get --digest DIGEST

insight image vulnerabilities --digest DIGEST

DIGEST is the component version, or image digest printed in the KUBECTL GET command.

Important: The Insight CLI is separate from the Tanzu CLI.

See Query Data or CLI Details for additional examples.

Congratulations! You have successfully deployed your application
on the Tanzu Application Platform.

Through the next two sections to learn about recommended supply chain security best practices and

access to a powerful Services Journey experience on the Tanzu Application Platform by enabling

several advanced use cases.

Section 4: Configure image signing and verification in your
supply chain

In this section, you are about to:

Configure your supply chain to sign your image builds.

Configure an admission control policy to verify image signatures before admitting Pods to the

cluster.

Configure your supply chain to sign your image builds

1. Configure Tanzu Build Service to sign your container image builds by using cosign. See

Managing Image Resources and Builds for instructions.

2. Create a values.yaml file, and install the sign supply chain security tools and image policy

web-hook. See Install Supply Chain Security Tools - Sign for instructions.

3. Configure a ClusterImagePolicy resource to verify image signatures when deploying

resources.

Note: The resource must be named image-policy.

For example:

```

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

   name: image-policy

spec:

   verification:

     exclude:

       resources

         namespaces:

Tanzu Application Platform v1.0

VMware, Inc 105

https://docs.vmware.com/en/Tanzu-Build-Service/1.4/vmware-tanzu-build-service/GUID-managing-images.html


         - kube-system

         - test-namespace

     keys:

     - name: first-key

       publicKey: |

         -----BEGIN PUBLIC KEY-----

         <content ...>

         -----END PUBLIC KEY-----

     images:

     - namePattern: registry.example.org/myproject/*

       keys:

       - name: first-key

```

When you apply the ClusterImagePolicy resource, your cluster requires valid signatures for all

images that match the namePattern: you define in the configuration. For more information about

configuring an image signature policy, see Configuring Supply Chain Security Tools - Sign.

Next steps

Overview for Supply Chain Security Tools - Sign

Configuring Supply Chain Security Tools - Sign

Supply Chain Security Tools - Sign known issues

Scan and Store: Introducing vulnerability scanning and metadata
storage to your Supply Chain

Overview

This feature set allows an application operator to introduce source code and image vulnerability

scanning, and scan-time rules, to their Tanzu Application Platform Supply Chain. The scan-time rules

prevent critical vulnerabilities from flowing to the supply chain unresolved.

All vulnerability scan results are stored over time in a metadata store that allows a team to reference

historical scan results, and provides querying capability to support the following use cases:

What images and packages are affected by a specific vulnerability?

What source code repos are affected by a specific vulnerability?

What packages and vulnerabilities does a particular image have?

Supply Chain Security Tools - Store takes the scanning results and stores them. Users can query for

information about CVEs, images, packages, and their relationships by using the CLI, or directly from

the API.

Features

Scan source code repositories and images for known CVEs before deploying to a cluster

Identify CVEs by scanning continuously on each new code commit or each new image built

Analyze scan results against user-defined policies using Open Policy Agent

Produce vulnerability scan results and post them to the Supply Chain Security Tools Store

where they can later be queried

Tanzu Application Platform v1.0

VMware, Inc 106

To try the scan and store features as individual one-off scans, see Scan samples.

To try the scan and store features in a supply chain, see Section 3: Add testing and security scanning

to your application.

After completing scans, query the Supply Chain Security Tools - Store to view your vulnerability

results. It is a Tanzu component that stores image, package, and vulnerability metadata about your

dependencies. Use the Supply Chain Security Tools - Store CLI, called Insight, to query metadata

that is submitted to the component after the scan step.

For a complete guide on how to query the store, see Querying Supply Chain Security Tools - Store.

Next steps

Configure Code Repositories and Image Artifacts to be Scanned

Code and Image Compliance Policy Enforcement Using Open Policy Agent (OPA)

How to Create a ScanTemplate

Viewing and Understanding Scan Status Conditions

Observing and Troubleshooting

Section 5: Consuming Services on Tanzu Application Platform

Tanzu Application Platform makes it straight forward to discover, curate, consume, and manage

services across single-cluster or multi-cluster environments. This section introduces procedures for

implementing several use cases regarding the services journey on Tanzu Application Platform.

Overview

Nowadays most applications depend on backing services such as databases, queues, and caches.

Developers want to spend more of their time developing their applications and less of their time

worrying about the provisioning, configuration, and operation of these backing services. In Tanzu

Application Platform, Services Toolkit is the component that enables this experience.

Use cases enabled by Services Toolkit on Tanzu Application
Platform

The following four use cases relate to the binding of an application workload to a service instance.

The use cases vary according to where the service instance is located. The use cases are

summarized in the following table:

Bind application to a service instance running: See:

in the same namespace Use case 1

in different namespace on the same Kubernetes cluster Use case 2

outside Kubernetes, for example, on an external Azure database Use case 3

on a different Kubernetes cluster Use case 4

Services Toolkit comprises the following Kubernetes-native components:

Service Offering

Tanzu Application Platform v1.0

VMware, Inc 107

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-service_offering-terminology_and_apis.html

Service Resource Claims

Service API Projection (Experimental)

Service Resource Replication (Experimental)

Note: Services marked with Experimental/beta are subject to change.

Each component has its value, however the most powerful use cases are enabled by combining

multiple components together. For information about each of the Services Toolkit components,

including the use cases and the API reference guides, see the About Services Toolkit.

Within the context of Tanzu Application Platform, one of the most important use cases is binding an

application workload to a backing service such as a PostgreSQL database or a RabbitMQ queue. This

ensures the best user experience for working with backing services as part of the development life

cycle.

Before exploring the cases, you must first install a service and a few supporting resources so

Application Teams can discover, provision, and bind to services in Tanzu Application Platform. The

setup procedure is typically performed by the Service Operator.

Note: Services Toolkit and Tanzu Application Platform use the Service Binding Specification for

Kubernetes.

Note: Any service that adheres to the Provisioned Service part of the specification is compatible with

Tanzu Application Platform.

Set up

Follow these steps to install RabbitMQ Operator, create the necessary role-based access control

(RBAC), and create a Services Toolkit resource called ClusterResource for RabbitmqCluster.

1. Install RabbitMQ Operator which provides a RabbitmqCluster API kind on the

rabbitmq.com/v1beta1 API Group/Version.

kapp -y deploy --app rmq-operator --file https://github.com/rabbitmq/cluster-op

erator/releases/download/v1.9.0/cluster-operator.yml

2. After a new API is installed and available on the cluster, create corresponding RBAC rules to

give relevant permissions to both the services-toolkit controller manager and the users of the

cluster.

Example:

In the following example, VMware starts with the RBAC required by the services-toolkit

controller-manager. The rules in this ClusterRole get aggregated to the services-toolkit

controller manager through the label, thus enabling the services-toolkit controller manager

to get, list, watch and update all rabbitmqcluster resources.

Note: A ClusterRole with the RBAC required by the services-toolkit controller-manager must

be enabled for each additional API resource installed onto the cluster.

resource-claims-rmq.yaml

apiVersion: rbac.authorization.k8s.io/v1

Tanzu Application Platform v1.0

VMware, Inc 108

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-service_offering-terminology_and_apis.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-service_resource_claims-terminology_and_apis.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-api_projection_and_resource_replication-terminology_and_apis.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-api_projection_and_resource_replication-terminology_and_apis.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-overview.html
https://github.com/servicebinding/spec
https://github.com/servicebinding/spec#provisioned-service

kind: ClusterRole

metadata:

 name: resource-claims-rmq

 labels:

 resourceclaims.services.apps.tanzu.vmware.com/controller: "true"

rules:

- apiGroups: ["rabbitmq.com"]

 resources: ["rabbitmqclusters"]

 verbs: ["get", "list", "watch", "update"]

3. Apply resource-claims-rmq.yaml by running:

kubectl apply -f resource-claims-rmq.yaml

4. In rabbitmqcluster-reader.yaml, ensure you have RBAC enabled for all authenticated

users. The following example grants get, list, and watch to all rabbitmqcluster resources

for all authenticated users.

Note: The specifics of these permissions vary depending on the desired level of access to

resources.

rabbitmqcluster-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: rabbitmqcluster-reader

rules:

- apiGroups: ["rabbitmq.com"]

 resources: ["rabbitmqclusters"]

 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: rabbitmqcluster-reader

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: rabbitmqcluster-reader

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: system:authenticated

5. Apply rabbitmqcluster-reader.yaml by running:

kubectl apply -f rabbitmqcluster-reader.yaml

6. Make the API discoverable to the Application Development team by creating a

ClusterResource to reference and describe it.

Example:

rabbitmq-clusterresource.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

Tanzu Application Platform v1.0

VMware, Inc 109

kind: ClusterResource

metadata:

 name: rabbitmq

spec:

 shortDescription: It's a RabbitMQ cluster!

 resourceRef:

 group: rabbitmq.com

 kind: RabbitmqCluster

7. Apply rabbitmq-clusterresource.yaml by running:

kubectl apply -f rabbitmq-clusterresource.yaml

The creation of this ClusterResource referring to RabbitmqCluster is the mechanism by

which the tanzu service CLI plugin (discussed below) determines which resources to disply.

For more information about ClusterResource, see Service Offering for VMware Tanzu.

Use case 1: Binding an application to a pre-provisioned service
instance running in the same namespace

Note: The following examples implement a RabbitMQ service instance and a single sample

application which acts as both a producer and consumer of messages. For most real-world scenarios

using RabbitMQ it’s likely that there are multiple applications deployed and communicating through

the RabbitMQ service. Currently it is not possible for more than one application workload to consume

the same service instance. For more information, see the known issues in the release notes for

further information.

Follow these steps to bind an application to a pre-provisioned service instance running in the same

namespace.

1. Create a RabbitMQ service instance with the following YAML:

example-rabbitmq-cluster-service-instance.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: example-rabbitmq-cluster-1

spec:

 replicas: 1

2. Apply example-rabbitmq-cluster-service-instance.yaml by running:

kubectl apply -f example-rabbitmq-cluster-service-instance.yaml

3. List the resource by running:

kubectl get rabbitmqclusters

4. Follow these steps to create an application workload that automatically claims and binds to

the RabbitMQ instance:

Note: Ensure your namespace has been setup to to use installed Tanzu Application Platform

packages For more information, see Set up developer namespaces to use installed

Tanzu Application Platform v1.0

VMware, Inc 110

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-service_offering-terminology_and_apis.html

packages. Note: Ensure you have run through the setup procedure.

1. Obtain a service reference by running:

$ tanzu service instance list -owide

Expect to see the following outputs:

NAME KIND SERVICE TYPE AGE SERVICE R

EF

example-rabbitmq-cluster-1 RabbitmqCluster rabbitmq 50s rabbitmq.

com/v1beta1:RabbitmqCluster:default:example-rabbitmq-cluster-1

2. Create the application workload and the rabbitmq-sample application hosted at

https://github.com/sample-accelerators/rabbitmq-sample by running:

tanzu apps workload create rmq-sample-app-usecase-1 --git-repo https://gi

thub.com/sample-accelerators/rabbitmq-sample --git-branch main --git-tag

tap-1.0 --type web --service-ref "rmq=<SERVICE-REF>"

Where <SERVICE-REF> is the value of SERVICE REF from the output in the last step.

5. Get the Knative web-app URL by running:

tanzu apps workload get rmq-sample-app-usecase-1

Note: It can take some time before the workload is ready.

6. Visit the URL and confirm the app is working by refreshing the page and checking the new

message IDs.

Use case 2 - Binding an application to a pre-provisioned service
instance running in a different namespace on the same Kubernetes
cluster

Note: Consumption of a single service instance by multiple workloads from different namespaces is

currently not supported, but is intended to be supported in the near future.

Use case 1 introduces binding a sample application workload to a service instance that is running in

the same namespace. Use case 2 describes binding a sample application workload to a service

instance that is running in a different namespace. This is a common scenario as it separates concerns

between those users working with application workloads, and those who are responsible for service

instances.

1. Create a new namespace for the service instances:

kubectl create namespace service-instances

2. Create a new service instance in the new namespace.

example-rabbitmq-cluster-service-instance-2.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

Tanzu Application Platform v1.0

VMware, Inc 111

metadata:

 name: example-rabbitmq-cluster-2

spec:

 replicas: 1

3. Apply example-rabbitmq-cluster-service-instance-2.yaml by running:

kubectl -n service-instances apply -f example-rabbitmq-cluster-service-instance

-2.yaml

4. Obtain a service reference by running:

Note: Ensure you have run through the setup procedure.

$ tanzu service instances list --all-namespaces -owide

Expect to see the following outputs:

NAMESPACE NAME KIND SERVICE TYPE A

GE SERVICE REF

default example-rabbitmq-cluster-1 RabbitmqCluster rabbitmq 1

05s rabbitmq.com/v1beta1:RabbitmqCluster:default:example-rabbitmq-cluster-1

service-instances example-rabbitmq-cluster-2 RabbitmqCluster rabbitmq 1

4s rabbitmq.com/v1beta1:RabbitmqCluster:service-instances:example-rabbitmq-cl

uster-2

5. Create a ResourceClaimPolicy to enable cross-namespace binding.

Note: The service instance is in a different namespace to the one the application workload is

running in. By default, it is impossible to bind an application workload to a service instance

that resides in a different namespace as this would break tenancy of the Kubernetes

namespace model.

resource-claim-policy.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: rabbitmqcluster-cross-namespace

spec:

 consumingNamespaces:

 - '*'

 subject:

 group: rabbitmq.com

 kind: RabbitmqCluster

Where * indicates this policy permits any namespace to claim a RabbitmqCluster resource

from the service-instances namespace.

6. Apply resource-claim-policy.yaml by running:

kubectl -n service-instances apply -f resource-claim-policy.yaml

For more information about ResourceClaimPolicy, see the ResourceClaimPolicy

documentation.

Tanzu Application Platform v1.0

VMware, Inc 112

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-service_resource_claims-terminology_and_apis.html#resourceclaimpolicy-4

7. Bind the application workload to the RabbitmqCluster Service Instance:

$ tanzu apps workload update rmq-sample-app-usecase-1 --service-ref="rmq=<SERVI

CE-REF>" --yes

Where <SERVICE-REF> is the value of the SERVICE REF from the service-instances

namespace in the output of step 3.

8. Get the Knative web-app URL by running:

tanzu apps workload get rmq-sample-app-usecase-1

9. Visit the URL and confirm the app is working by refreshing the page and checking the new

message IDs.

Note: It can take a few moments for the app workload to finish updating.

Use case 3 - Binding an application to a service running outside
Kubernetes

This use case leverages direct references to Kubernetes Secret resources to enable developers to

connect their application workloads to almost any backing service, including backing services that:

are running external to the platform

do not adhere to the Provisioned Service specifications

Note: Kubernetes Secret resource must abide by the Well-known Secret Entries specifications.

The following example demonstrates the procedures to bind a new application on Tanzu Application

Platform to an existing PostgreSQL database that exists in Azure.

1. Create a Kubernetes Secret resource similar to the following example:

external-azure-db-binding-compatible.yaml

apiVersion: v1

kind: Secret

metadata:

 name: external-azure-db-binding-compatible

type: Opaque

stringData:

 type: postgresql

 provider: azure

 host: EXAMPLE.DATABASE.AZURE.COM

 port: "5432"

 database: "EXAMPLE-DB-NAME"

 username: "USER@EXAMPLE"

 password: "PASSWORD"

2. Apply the YAML file by running:

kubectl apply -f external-azure-db-binding-compatible.yaml

Note: The Secret can be defined in a different namespace than the Workload and claimed

cross namespace by using ResourceClaimPolicy resources. For more information, see Use

Tanzu Application Platform v1.0

VMware, Inc 113

https://github.com/servicebinding/spec#provisioned-service
https://github.com/servicebinding/spec#well-known-secret-entries

case 2.

3. Create your application workload by running:

Example:

tanzu apps workload create <WORKLOAD-NAME> --git-repo https://github.com/sample

-accelerators/spring-petclinic --git-branch main --git-tag tap-1.0 --type web -

-service-ref db=<REFERENCE>

Where:

<WORKLOAD-NAME> is the name of the application workload. For example, pet-clinic.

<REFERENCE> is a reference provided to the Secret. For example,

v1:Secret:external-azure-db-binding-compatible.

Use case 4: Binding an application to a service instance running on
a different Kubernetes cluster (Experimental).

Note: Use cases marked with Experimental are subject to change.

This use case is similar to use case 1, but rather than installing and running the RabbitMQ Cluster

Kubernetes Operator on the same cluster as Tanzu Application Platform, we install and run it on an

entirely separate dedicated services cluster. There are several reasons why we want to implement

this use case:

Dedicated cluster requirements for Workload or Service clusters: service clusters, for

instance, might need access to more powerful SSDs.

Different cluster life cycle management: upgrades to Service clusters can occur more

cautiously.

Unique compliance requirements: data is stored on a Service cluster, which might have

different compliance needs.

Separation of permissions and access: application teams can only access the clusters where

their applications are running.

The benefits of implementing this use case include:

The experience of application developers working on their Tanzu Application Platform cluster

is unaltered.

All complexity in the setup and management of backing infrastructure is abstracted away

from application developers, which gives them more time to focus on developing their

applications.

Note: The components of Services Toolkit that drive this experience are Service API Projection and

Service Resource Replication. These components are not currently considered to be GA.

For more information about network requirements and recommended topologies, see the Topology

section of the Services Toolkit documentation.

Prerequisites

Important: Ensure you have completed the previous use cases prior to continuing with use case 4.

Tanzu Application Platform v1.0

VMware, Inc 114

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-reference-topologies.html

Ensure you have met the following prerequisites before starting the procedures of use case 4.

1. Uninstall the RabbitMQ Cluster Operator that was installed in consuming services setup

procedures.

kapp delete -a rmq-operator -y

2. Follow the documentation to install Tanzu Application Platform on to a second separate

Kubernetes cluster.

This cluster must be able to create LoadBalanced services.

After adding the Tanzu Application Platform package repository, instead of installing

all packages, you only need to install the Services Toolkit package. For installation

information, see Add the Tanzu Application Platform Package Repository and Install

Services Toolkit.

From now on this cluster is called the Service Cluster.

3. Download and install the kubectl-scp plug-in from Tanzu Application Platform Tanzu

Network.

Note: This plug-in is for experimental purposes only.

Note: To install the plug-in you must place it in your PATH and ensure it is executable.

For example:

sudo cp PATH-TO-KUBECTL-SCP /usr/local/bin/kubectl-scp

sudo chmod +x /usr/local/bin/kubectl-scp

Now you have two Kubernetes clusters:

Workload Cluster, which is where Tanzu Application Platform, including Services

Toolkit, is installed. The RabbitMQ Cluster Kubernetes Operatorr is not installed on

this cluster.

Services Cluster, which is where only Services Toolkit is installed. No other

component is installed in this cluster.

Steps

Follow these steps to bind an application to a service instance running on a different Kubernetes

cluster:

Important: Some of the commands listed in the following steps have placeholder values WORKLOAD-

CONTEXT and SERVICE-CONTEXT. Change these values before running the commands.

1. As the Service Operator, run the following command to link the Workload Cluster and

Service Cluster together by using the kubectl scp plug-in:

kubectl scp link --workload-kubeconfig-context=<WORKLOAD-CONTEXT> --service-kub

econfig-context=<SERVICE-CONTEXT>

2. Install the RabbitMQ Kubernetes Operator in the Services Cluster using kapp.

Tanzu Application Platform v1.0

VMware, Inc 115

#add-package-repositories
https://network.pivotal.io/products/scp-toolkit

Note: This Operator is installed in the Service Cluster, but developers can still create

RabbitmqCluster service instances from the Workload Cluster.

Note: Use the exact deploy.yml specified in the command as this RabbitMQ Operator

deployment includes specific changes to enable cross-cluster service binding.

 kapp -y deploy --app rmq-operator \

 --file https://raw.githubusercontent.com/rabbitmq/cluster-operator/lb-bindi

ng/hack/deploy.yml \

 --kubeconfig-context <SERVICE-CONTEXT>

3. Verify that the Operator is installed by running:

kubectl --context <SERVICE-CONTEXT> get crds rabbitmqclusters.rabbitmq.com

The following steps federate the rabbitmq.com/v1beta1 API group, which is available in the

Service Cluster, into the Workload Cluster. This occurs in two parts: projection and

replication.

Projection applies to custom API groups.

Replication applies to core Kubernetes resources, such as Secrets.

4. Create a corresponding namespace in the Service cluster. In use case 2, you created a

namespace named service-instances, now create a namespace with the same name on the

Service cluster.

For example:

kubectl --context <SERVICE-CONTEXT> create namespace service-instances

5. Federate using the kubectl-scp plug-in by running:

 kubectl scp federate \

 --workload-kubeconfig-context=<WORKLOAD-CONTEXT> \

 --service-kubeconfig-context=<SERVICE-CONTEXT> \

 --namespace=service-instances \

 --api-group=rabbitmq.com \

 --api-version=v1beta1 \

 --api-resource=rabbitmqclusters

6. After federation, verify the rabbitmq.com/v1beta1 API is also available in the Workload

Cluster by running:

kubectl --context <WORKLOAD-CONTEXT> api-resources

The application operator takes over from here. Ensure you are targeting the Tanzu

Application Platform workload cluster, not the service cluster.

7. Discover the new service and provision an instance by running:

tanzu service types list

The following output appears:

Tanzu Application Platform v1.0

VMware, Inc 116

Warning: This is an ALPHA command and may change without notice.

NAME DESCRIPTION APIVERSION KIND

rabbitmq It's a RabbitMQ cluster! rabbitmq.com/v1beta1 RabbitmqCluster

8. Provision a service instance on the Tanzu Application Platform cluster.

For example:

rabbitmq-cluster.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: projected-rmq

spec:

 service:

 type: LoadBalancer

9. Apply the YAML file by running:

kubectl --context <WORKLOAD-CONTEXT> -n service-instances apply -f rabbitmq-clu

ster.yaml

10. Confirm that the RabbitmqCluster resource reconciles successfully from the Workload Cluster

by running:

kubectl --context <WORKLOAD-CONTEXT> -n service-instances get -f rabbitmq-clust

er.yaml

11. Confirm that RabbitMQ Pods are running in the Service Cluster, but not in the Workload

Cluster by running:

kubectl --context <WORKLOAD-CONTEXT> -n service-instances get pods

kubectl --context <SERVICE-CONTEXT> -n service-instances get pods

Finally, the app developer takes over. The experience is the same for the application

developer as in use case 1.

12. Create the application workload by running:

tanzu apps workload create rmq-sample-app-usecase-4 --git-repo https://github.c

om/sample-accelerators/rabbitmq-sample --git-branch main --git-tag tap-1.0 --ty

pe web --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:service-instance

s:projected-rmq"

13. Get the web-app URL by running:

tanzu apps workload get rmq-sample-app-usecase-4

14. Visit the URL and refresh the page to confirm the app is running by checking the new

message IDs.

Tanzu Application Platform v1.0

VMware, Inc 117

Tanzu Application Platform v1.0

VMware, Inc 118

Troubleshooting Tanzu Application Platform

These topics provide troubleshooting information to help resolve issues with Tanzu Application

Platform:

Troubleshoot installing Tanzu Application Platform

Troubleshoot using Tanzu Application Platform

For component-level troubleshooting, see these topics:

Troubleshoot Tanzu Application Platform GUI

Troubleshoot Convention Service

Troubleshoot Learning Center

Troubleshoot Service Bindings

Troubleshoot Source Controller

Troubleshoot Spring Boot Conventions

Troubleshoot Application Live View for VMware Tanzu

Troubleshoot Cloud Native Runtimes for Tanzu

Troubleshoot Tanzu Build Service (FAQ)

Troubleshoot installing Tanzu Application Platform

In this topic, you’ll find troubleshooting information to help resolve issues installing Tanzu Application

Platform.

Developer cannot be verified when installing Tanzu CLI on
macOS

You see the following error when you run Tanzu CLI commands, for example tanzu version, on

macOS:

"tanzu" cannot be opened because the developer cannot be verified

Explanation

Security settings are preventing installation.

Solution

To resolve this issue:

1. Click Cancel in the macOS prompt window.

Tanzu Application Platform v1.0

VMware, Inc 119

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.0/docs/GUID-troubleshooting.html
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.1/tanzu-cloud-native-runtimes/GUID-troubleshooting.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.4/vmware-tanzu-build-service/GUID-faq.html

2. Open System Preferences > Security & Privacy.

3. Click General.

4. Next to the warning message for the Tanzu binary, click Allow Anyway.

5. Enter your system username and password in the macOS prompt window to confirm the

changes.

6. In the terminal window, run:

tanzu version

7. In the macOS prompt window, click Open.

Access .status.usefulErrorMessage details

When installing Tanzu Application Platform, you receive an error message that includes the

following:

(message: Error (see .status.usefulErrorMessage for details))

Explanation

A package fails to reconcile and you must access the details in .status.usefulErrorMessage.

Solution

Access the details in .status.usefulErrorMessage by running:

kubectl get PACKAGE-NAME grype -n tap-install -o yaml

Where PACKAGE-NAME is the name of the package to target.

“Unauthorized to access” error

When running the tanzu package install command, you receive an error message that includes

the error:

UNAUTHORIZED: unauthorized to access repository

Example:

$ tanzu package install app-live-view -p appliveview.tanzu.vmware.com -v 0.1.0 -n tap-

install -f ./app-live-view.yml

Error: package reconciliation failed: vendir: Error: Syncing directory '0':

 Syncing directory '.' with imgpkgBundle contents:

 Imgpkg: exit status 1 (stderr: Error: Checking if image is bundle: Collecting imag

es: Working with registry.tanzu.vmware.com/app-live-view/application-live-view-install

-bundle@sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: GET h

ttps://registry.tanzu.vmware.com/v2/app-live-view/application-live-view-install-bundle

/manifests/sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: UN

AUTHORIZED: unauthorized to access repository: app-live-view/application-live-view-ins

tall-bundle, action: pull: unauthorized to access repository: app-live-view/applicatio

Tanzu Application Platform v1.0

VMware, Inc 120

n-live-view-install-bundle, action: pull

Note: This example shows an error received when with Application Live View as the package. This

error can also occur with other packages.

Explanation

The Tanzu Network credentials needed to access the package may be missing or incorrect.

Solution

To resolve this issue:

1. Repeat the step to create a secret for the namespace. For instructions, see Add the Tanzu

Application Platform Package Repository in Installing the Tanzu Application Platform Package

and Profiles. Ensure that you provide the correct credentials.

When the secret has the correct credentials, the authentication error should resolve itself

and the reconciliation succeed. Do not reinstall the package.

2. List the status of the installed packages to confirm that the reconcile has succeeded. For

instructions, see Verify the Installed Packages in Installing Individual Packages.

“Serviceaccounts already exists” error

When running the tanzu package install command, you receive the following error:

failed to create ServiceAccount resource: serviceaccounts already exists

Example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 0.2.0

-n tap-install -f app-accelerator-values.yaml

Error: failed to create ServiceAccount resource: serviceaccounts "app-accelerator-tap-

install-sa" already exists

Note: This example shows an error received with App Accelerator as the package. This error can

also occur with other packages.

Explanation

The tanzu package install command may be executed again after failing.

Solution

To update the package, run the following command after the first use of the tanzu package install

command

tanzu package installed update

After package installation, one or more packages fails to
reconcile

You run the tanzu package install command and one or more packages fails to install. For

Tanzu Application Platform v1.0

VMware, Inc 121

example:

tanzu package install tap -p tap.tanzu.vmware.com -v 0.4.0 --values-file tap-values.ya

ml -n tap-install

- Installing package 'tap.tanzu.vmware.com'

\ Getting package metadata for 'tap.tanzu.vmware.com'

| Creating service account 'tap-tap-install-sa'

/ Creating cluster admin role 'tap-tap-install-cluster-role'

| Creating cluster role binding 'tap-tap-install-cluster-rolebinding'

| Creating secret 'tap-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tap'

/ 'PackageInstall' resource install status: Reconciling

| 'PackageInstall' resource install status: ReconcileFailed

Please consider using 'tanzu package installed update' to update the installed package

 with correct settings

Error: resource reconciliation failed: kapp: Error: waiting on reconcile packageinstal

l/tap-gui (packaging.carvel.dev/v1alpha1) namespace: tap-install:

 Finished unsuccessfully (Reconcile failed: (message: Error (see .status.usefulError

Message for details))). Reconcile failed: Error (see .status.usefulErrorMessage for de

tails)

Error: exit status 1

Explanation

Often, the cause is one of the following:

Your infrastructure provider takes longer to perform tasks than the timeout value allows.

A race-condition between components exists. For example, a package that uses Ingress

completes before the shared Tanzu ingress controller becomes available.

The VMware Carvel tools kapp-controller continues to try in a reconciliation loop in these cases.

However, if the reconciliation status is failed then there might be a configuration issue in the

provided tap-config.yml file.

Solution

1. Verify if the installation is still in progress by running:

tanzu package installed list -A

If the installation is still in progress, the command produces output similar to the following

example, and the installation is likely to finish successfully.

\ Retrieving installed packages...

 NAME PACKAGE-NAME

PACKAGE-VERSION STATUS NAMESPACE

 accelerator accelerator.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 api-portal api-portal.tanzu.vmware.com

1.0.6 Reconcile succeeded tap-install

 appliveview run.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconciling tap-install

 appliveview-conventions build.appliveview.tanzu.vmware.com

Tanzu Application Platform v1.0

VMware, Inc 122

1.0.0-build.3 Reconcile succeeded tap-install

 buildservice buildservice.tanzu.vmware.com

1.4.0-build.1 Reconciling tap-install

 cartographer cartographer.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 cert-manager cert-manager.tanzu.vmware.com

1.5.3+tap.1 Reconcile succeeded tap-install

 cnrs cnrs.tanzu.vmware.com

1.1.0 Reconcile succeeded tap-install

 contour contour.tanzu.vmware.com

1.18.2+tap.1 Reconcile succeeded tap-install

 conventions-controller controller.conventions.apps.tanzu.vmware.com

0.4.2 Reconcile succeeded tap-install

 developer-conventions developer-conventions.tanzu.vmware.com

0.4.0-build1 Reconcile succeeded tap-install

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.16.0 Reconcile succeeded tap-install

 grype grype.scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

1.0.0-beta.3 Reconcile succeeded tap-install

 learningcenter learningcenter.tanzu.vmware.com

0.1.0-build.6 Reconcile succeeded tap-install

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.1.0-build.7 Reconcile succeeded tap-install

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-templates ootb-templates.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 scanning scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 metadata-store metadata-store.apps.tanzu.vmware.com

1.0.2 Reconcile succeeded tap-install

 service-bindings service-bindings.labs.vmware.com

0.6.0 Reconcile succeeded tap-install

 services-toolkit services-toolkit.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 source-controller controller.source.apps.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 tap tap.tanzu.vmware.com

0.4.0-build.12 Reconciling tap-install

 tap-gui tap-gui.tanzu.vmware.com

1.0.0-rc.72 Reconcile succeeded tap-install

 tap-telemetry tap-telemetry.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 tekton-pipelines tekton.tanzu.vmware.com

0.30.0 Reconcile succeeded tap-install

If the installation has stopped running, one or more reconciliations have likely failed, as seen

in the following example:

NAME PACKAGE NAME

 PACKAGE VERSION DESCRIPTION

 AGE

accelerator accelerator.apps.tanzu.vmware.com

Tanzu Application Platform v1.0

VMware, Inc 123

 1.0.1 Reconcile succeeded

 109m

api-portal api-portal.tanzu.vmware.com

 1.0.9 Reconcile succeeded

 119m

appliveview run.appliveview.tanzu.vmware.com

 1.0.2-build.2 Reconcile succeeded

 109m

appliveview-conventions build.appliveview.tanzu.vmware.com

 1.0.2-build.2 Reconcile succeeded

 109m

buildservice buildservice.tanzu.vmware.com

 1.4.2 Reconcile succeeded

 119m

cartographer cartographer.tanzu.vmware.com

 0.2.1 Reconcile succeeded

 117m

cert-manager cert-manager.tanzu.vmware.com

 1.5.3+tap.1 Reconcile succeeded

 119m

cnrs cnrs.tanzu.vmware.com

 1.1.0 Reconcile succeeded

 109m

contour contour.tanzu.vmware.com

 1.18.2+tap.1 Reconcile succeeded

 117m

conventions-controller controller.conventions.apps.tanzu.vmware.com

 0.5.0 Reconcile succeeded

 117m

developer-conventions developer-conventions.tanzu.vmware.com

 0.5.0 Reconcile succeeded

 109m

fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

 0.16.1 Reconcile succeeded

 119m

grype grype.scanning.apps.tanzu.vmware.com

 1.0.0 Reconcile failed: Error (see .status.usefulErrorMessage for

details) 109m

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

 1.0.1 Reconcile succeeded

 117m

learningcenter learningcenter.tanzu.vmware.com

 0.1.0 Reconcile succeeded

 109m

learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

 0.1.0 Reconcile succeeded

 103m

metadata-store metadata-store.apps.tanzu.vmware.com

 1.0.2 Reconcile succeeded

 117m

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

 0.6.1 Reconcile succeeded

 103m

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

 0.6.1 Reconcile succeeded

 103m

ootb-templates ootb-templates.tanzu.vmware.com

 0.6.1 Reconcile succeeded

 109m

Tanzu Application Platform v1.0

VMware, Inc 124

scanning scanning.apps.tanzu.vmware.com

 1.0.0 Reconcile succeeded

 119m

service-bindings service-bindings.labs.vmware.com

 0.6.0 Reconcile succeeded

 119m

services-toolkit services-toolkit.tanzu.vmware.com

 0.5.1 Reconcile succeeded

 119m

source-controller controller.source.apps.tanzu.vmware.com

 0.2.0 Reconcile succeeded

 119m

spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

 0.3.0 Reconcile succeeded

 109m

tap tap.tanzu.vmware.com

 1.0.1 Reconcile failed: Error (see .status.usefulErrorMessage for

details) 119m

tap-gui tap-gui.tanzu.vmware.com

 1.0.2 Reconcile succeeded

 109m

tap-telemetry tap-telemetry.tanzu.vmware.com

 0.1.3 Reconcile succeeded

 119m

tekton-pipelines tekton.tanzu.vmware.com

 0.30.0 Reconcile succeeded

 119m

In this example, packageinstall/grype and packageinstall/tap have reconciliation errors.

2. To get more details on the possible cause of a reconciliation failure, run:

kubectl describe packageinstall/NAME -n tap-install

Where NAME is the name of the failing package. For this example it would be grype.

3. Use the displayed information to search for a relevant troubleshooting issue in this topic. If

none exists, and you are unable to fix the described issue yourself, please contact support.

4. Repeat these diagnosis steps for any other packages that failed to reconcile.

Failure to accept an End User License Agreement error

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu

Network.

Explanation

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu

Network before accepting the relevant EULA in VMware Tanzu Network.

Solution

Follow the steps in Accept the End User License Agreements in Installing the Tanzu CLI.

Troubleshoot using Tanzu Application Platform

In this topic, you’ll find troubleshooting information to help resolve issues using Tanzu Application

Tanzu Application Platform v1.0

VMware, Inc 125

https://tanzu.vmware.com/support

Platform.

Missing build logs after creating a workload

You create a workload, but no logs appear when you check for logs by running the following

command:

tanzu apps workload tail workload-name --since 10m --timestamp

Explanation

Common causes include:

Misconfigured repository

Misconfigured service account

Misconfigured registry credentials

Solution

To resolve this issue, run each of the following commands to receive the relevant error message:

kubectl get clusterbuilder.kpack.io -o yaml

kubectl get image.kpack.io <workload-name> -o yaml

kubectl get build.kpack.io -o yaml

“Workload already exists” error after updating the workload

When you update the workload, you receive the following error:

Error: workload "default/APP-NAME" already exists

Error: exit status 1

Where APP-NAME is the name of the app.

For example, when you run:

$ tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/dbuchko/tanzu-java-web-app \

--git-branch main \

--type web \

--label apps.tanzu.vmware.com/has-tests=true \

--yes

You receive the following error

Error: workload "default/tanzu-java-web-app" already exists

Error: exit status 1

Explanation

The app is running before performing a live update using the same app name.

Solution

Tanzu Application Platform v1.0

VMware, Inc 126

To resolve this issue, either delete the app or use a different name for the app.

Workload creation fails due to authentication failure in
Docker Registry

You might encounter an error message similar to the following when creating or updating a workload

by using IDE or apps CLI plug-in:

Error: Writing 'index.docker.io/shaileshp2922/build-service/tanzu-java-web-app:latest'

: Error while preparing a transport to talk with the registry: Unable to create round

tripper: GET https://auth.ipv6.docker.com/token?scope=repository%3Ashaileshp2922%2Fbui

ld-service%2Ftanzu-java-web-app%3Apush%2Cpull&service=registry.docker.io: unexpected s

tatus code 401 Unauthorized: {"details":"incorrect username or password"}

Explanation

This type of error frequently occurs when the URL set for source image (IDE) or --source-image flag

(apps CLI plug-in) is not Docker registry compliant.

Solution

1. Verify that you can authenticate directly against the Docker registry and resolve any failures

by running:

docker login -u USER-NAME

2. Verify your --source-image URL is compliant with Docker.

The URL in this example index.docker.io/shaileshp2922/build-service/tanzu-java-web-

app includes nesting. Docker registry, unlike many other registry solutions, does not support

nesting.

3. To resolve this issue, you must provide an unnested URL. For example,

index.docker.io/shaileshp2922/tanzu-java-web-app

Telemetry component logs show errors fetching the “reg-
creds” secret

When you view the logs of the tap-telemetry controller by running kubectl logs -n tap-

telemetry <tap-telemetry-controller-<hash> -f, you see the following error:

"Error retrieving secret reg-creds on namespace tap-telemetry","error":"secrets \"reg-

creds\" is forbidden: User \"system:serviceaccount:tap-telemetry:controller\" cannot g

et resource \"secrets\" in API group \"\" in the namespace \"tap-telemetry\""

Explanation

The tap-telemetry namespace misses a Role that allows the controller to list secrets in the tap-

telemetry namespace. For more information about Roles, see Role and ClusterRole in Using RBAC

Authorization in the Kubernetes documentation.

Tanzu Application Platform v1.0

VMware, Inc 127

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole

Solution

To resolve this issue, run:

kubectl patch roles -n tap-telemetry tap-telemetry-controller --type='json' -p='[{"op"

: "add", "path": "/rules/-", "value": {"apiGroups": [""],"resources": ["secrets"],"ver

bs": ["get", "list", "watch"]} }]'

Debug convention may not apply

If you upgrade from Tanzu Application Platform v0.4, the debug convention may not apply to the

app run image.

Explanation

The Tanzu Application Platform v0.4 lacks SBOM data.

Solution

Delete existing app images that were built using Tanzu Application Platform v0.4.

Execute bit not set for App Accelerator build scripts

You cannot execute a build script provided as part of an accelerator.

Explanation

Build scripts provided as part of an accelerator do not have the execute bit set when a new project is

generated from the accelerator.

Solution

Explicitly set the execute bit by running the chmod command:

chmod +x BUILD-SCRIPT-NAME

Where BUILD-SCRIPT-NAME is the name of the build script.

For example, for a project generated from the “Spring PetClinic” accelerator, run:

chmod +x ./mvnw

“No live information for pod with ID” error

After deploying Tanzu Application Platform workloads, the Tanzu Application Platform GUI shows a

“No live information for pod with ID” error.

Explanation

The connector must discover the application instances and render the details in Tanzu Application

Platform GUI.

Solution

Tanzu Application Platform v1.0

VMware, Inc 128

Recreate the Application Live View Connector pod by running:

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

This allows the connector to discover the application instances and render the details in Tanzu

Application Platform GUI.

“image-policy-webhook-service not found” error

When installing a Tanzu Application Platform profile, you receive the following error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.apps.tan

zu.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.ima

ge-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webh

ook-service" not found

Explanation

The “image-policy-webhook-service” service cannot be found.

Solution

Redeploy the trainingPortal resource.

“Increase your cluster resources” error

You receive an “Increase your cluster’s resources” error.

Explanation

Node pressure may be caused by an insufficient number of nodes or a lack of resources on nodes

necessary to deploy the workloads that you have.

Solution

Follow instructions from your cloud provider to scale out or scale up your cluster.

MutatingWebhookConfiguration prevents pod admission

Admission of all pods is prevented when the image-policy-controller-manager deployment pods

do not start before the MutatingWebhookConfiguration is applied to the cluster.

Explanation

Pods can be prevented from starting if nodes in a cluster are scaled to zero and the webhook is

forced to restart at the same time as other system components. A deadlock can occur when some

components expect the webhook to verify their image signatures and the webhook is not yet

running.

A known rare condition during Tanzu Application Platform profiles installation can cause this. If so,

you may see a message similar to one of the following in component statuses:

Events:

 Type Reason Age From Message

Tanzu Application Platform v1.0

VMware, Inc 129

 ---- ------ ---- ---- -------

 Warning FailedCreate 4m28s replicaset-controller Error creati

ng: Internal error occurred: failed calling webhook "image-policy-webhook.signing.apps

.tanzu.vmware.com": Post "https://image-policy-webhook-service.image-policy-system.svc

:443/signing-policy-check?timeout=10s": no endpoints available for service "image-poli

cy-webhook-service"

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 10m replicaset-controller Error creating: Internal error occurr

ed: failed calling webhook "image-policy-webhook.signing.apps.tanzu.vmware.com": Post

"https://image-policy-webhook-service.image-policy-system.svc:443/signing-policy-check

?timeout=10s": service "image-policy-webhook-service" not found

Solution

Delete the MutatingWebhookConfiguration resource to resolve the deadlock and enable the system

to restart. After the system is stable, restore the MutatingWebhookConfiguration resource to re-

enable image signing enforcement.

Important: These steps temporarily disable signature verification in your cluster.

1. Back up MutatingWebhookConfiguration to a file by running:

kubectl get MutatingWebhookConfiguration image-policy-mutating-webhook-configur

ation -o yaml > image-policy-mutating-webhook-configuration.yaml

2. Delete MutatingWebhookConfiguration by running:

kubectl delete MutatingWebhookConfiguration image-policy-mutating-webhook-confi

guration

3. Wait until all components are up and running in your cluster, including the image-policy-

controller-manager pods (namespace image-policy-system).

4. Re-apply MutatingWebhookConfiguration by running:

kubectl apply -f image-policy-mutating-webhook-configuration.yaml

Priority class of webhook’s pods preempts less privileged
pods

When viewing the output of kubectl get events, you see events similar to the following:

$ kubectl get events

LAST SEEN TYPE REASON OBJECT MESSAGE

28s Normal Preempted pod/testpod Preempted by image-polic

y-system/image-policy-controller-manager-59dc669d99-frwcp on node test-node

Explanation

The Supply Chain Security Tools - Sign component uses a privileged PriorityClass to start its pods

Tanzu Application Platform v1.0

VMware, Inc 130

to prevent node pressure from preempting its pods. This can cause less privileged components to

have their pods preempted or evicted instead.

Solution

Solution 1: Reduce the number of pods deployed by the Sign component: If your

deployment of the Sign component runs more pods than necessary, scale down the

deployment down as follows:

1. Create a values file named scst-sign-values.yaml with the following contents:

replicas: N

Where N is an integer indicating the lowest number of pods you necessary for your

current cluster configuration.

2. Apply the new configuration by running:

tanzu package installed update image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.0.0-beta.3 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

3. Wait a few minutes for your configuration to take effect in the cluster.

Solution 2: Increase your cluster’s resources: Node pressure may be caused by an

insufficient number of nodes or a lack of resources on nodes necessary to deploy the

workloads that you have. Follow instructions from your cloud provider to scale out or scale

up your cluster.

CrashLoopBackOff from password authentication fails

Supply Chain Security Tools - Store does not start. You see the following error in the metadata-

store-app Pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation

The database password has been changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow these steps below to erase the

data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* Pod fails.

Tanzu Application Platform v1.0

VMware, Inc 131

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the Pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Password authentication fails

Supply Chain Security Tools - Store does not start. You see the following error in the metadata-

store-app Pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation

The database password has been changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow these steps below to erase the

data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* Pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the Pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Tanzu Application Platform v1.0

VMware, Inc 132

metadata-store-db pod fails to start

When Supply Chain Security Tools - Store is deployed, deleted, and then redeployed, the metadata-

store-db Pod fails to start if the database password changed during redeployment.

Explanation

The persistent volume used by postgres retains old data, even though the retention policy is set to

DELETE.

Solution

Redeploy the app either with the original database password or follow these steps below to erase the

data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* Pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the Pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Missing persistent volume

After Supply Chain Security Tools - Store is deployed, metadata-store-db Pod fails for missing

volume while postgres-db-pv-claim pvc is in the PENDING state.

Explanation

The cluster where Supply Chain Security Tools - Store is deployed does not have storageclass

defined. The provisioner of storageclass is responsible for creating the persistent volume after

metadata-store-db attaches postgres-db-pv-claim.

Solution

1. Verify that your cluster has storageclass by running:

kubectl get storageclass

2. Create a storageclass in your cluster before deploying Supply Chain Security Tools - Store.

For example:

This is the storageclass that Kind uses

Tanzu Application Platform v1.0

VMware, Inc 133

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Tanzu Application Platform v1.0

VMware, Inc 134

Uninstalling Tanzu Application Platform

This document describes how to uninstall Tanzu Application Platform packages from the Tanzu

Application Platform package repository.

The process for uninstalling Tanzu Application Platform is made up of three tasks:

Delete the Packages

Delete the Tanzu Application Platform Package Repository

Remove Tanzu CLI, plug-ins, and associated files

Delete the packages

To delete the installed packages:

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

2. Remove a package by running:

tanzu package installed delete PACKAGE-NAME --namespace tap-install

For example:

$ tanzu package installed delete cloud-native-runtimes --namespace tap-install

| Uninstalling package 'cloud-native-runtimes' from namespace 'tap-install'

/ Getting package install for 'cloud-native-runtimes'

\ Deleting package install 'cloud-native-runtimes' from namespace 'tap-install'

\ Package uninstall status: Reconciling

/ Package uninstall status: Deleting

| Deleting admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Deleting role binding 'cloud-native-runtimes-tap-install-cluster-rolebinding'

| Deleting secret 'cloud-native-runtimes-tap-install-values'

/ Deleting service account 'cloud-native-runtimes-tap-install-sa'

 Uninstalled package 'cloud-native-runtimes' from namespace 'tap-install'

Where PACKAGE-NAME is the name of a package listed in step 1.

3. Repeat step 2 for each package installed.

Delete the Tanzu Application Platform package repository

To delete the Tanzu Application Platform package repository:

1. Retrieve the name of the Tanzu Application Platform package repository by running:

Tanzu Application Platform v1.0

VMware, Inc 135

tanzu package repository list --namespace tap-install

For example:

$ tanzu package repository list --namespace tap-install

- Retrieving repositories...

 NAME REPOSITORY

 STATUS DETAILS

 tanzu-tap-repository registry.tanzu.vmware.com/tanzu-application-platform/ta

p-packages:0.2.0 Reconcile succeeded

2. Remove the Tanzu Application Platform package repository by running:

tanzu package repository delete PACKAGE-REPO-NAME --namespace tap-install

Where PACKAGE-REPO-NAME is the name of the packageRepository from the earlier step.

For example:

$ tanzu package repository delete tanzu-application-platform-package-repository

 --namespace tap-install

- Deleting package repository 'tanzu-application-platform-package-repository'..

.

 Deleted package repository 'tanzu-application-platform-package-repository' in

namespace 'tap-install'

Remove Tanzu CLI, plug-ins, and associated files

To completely remove the Tanzu CLI, plug-ins, and associated files, run the script for your OS:

For Linux or macOS, run:

#!/bin/zsh

rm -rf $HOME/tanzu/cli # Remove previously downloaded cli files

sudo rm /usr/local/bin/tanzu # Remove CLI binary (executable)

rm -rf ~/.config/tanzu/ # current location # Remove config directory

rm -rf ~/.tanzu/ # old location # Remove config directory

rm -rf ~/.cache/tanzu # remove cached catalog.yaml

rm -rf ~/Library/Application\ Support/tanzu-cli/* # Remove plug-ins

Tanzu Application Platform v1.0

VMware, Inc 136

Component documentation

Tanzu Application Platform is a modular, composable platform consisting of various components.

Most of the Tanzu Application Platform components are documented in this section. In some cases,

a component’s documentation is hosted on a separate site, and you’ll find a link to it in this section.

Installing individual packages

You can install Tanzu Application Platform through predefined profiles or through individual

packages. This page provides links to install instructions for each of the individual packages. For

more information about installing through profiles, see Installing the Tanzu Application Platform

Package and Profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile

to install packages or if you want to install additional packages after installing a profile. Before

installing the packages, be sure to complete the prerequisites, configure and verify the cluster,

accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see

Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install cert-manager, Contour, and FluxCD

Install Cloud Native Runtimes

Install Convention Service

Install Source Controller

Install Application Accelerator

Install Tanzu Build Service

Install Supply Chain Choreographer

Install Out of the Box Supply Chain Basic

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Developer Conventions

Install Spring Boot Conventions

Install Application Live View

Tanzu Application Platform v1.0

VMware, Inc 137

Install Tanzu Application Platform GUI

Install Learning Center for Tanzu Application Platform

Install Service Bindings

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Sign

Install Supply Chain Security Tools - Scan

Install API portal

Install Services Toolkit

Install Tekton

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.0

.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.0

.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.0

.2-build.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.0

.2-build.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.1

.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.0

.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.4

.2 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.3

.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.0

.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

0.0-beta.1 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.0

.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.5

.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.5

.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.0

.0 Reconcile succeeded

Tanzu Application Platform v1.0

VMware, Inc 138

service-bindings service-bindings.labs.vmware.com 0.5

.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.5

.1 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.2

.0 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.3

.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.4

.2 Reconcile succeeded

Set up developer namespaces to use installed packages

To create a Workload for your application using the registry credentials specified, run these

commands to add credentials and Role-Based Access Control (RBAC) rules to the namespace that

you plan to create the Workload in:

1. Add read/write registry credentials to the developer namespace by running:

tanzu secret registry add registry-credentials --server REGISTRY-SERVER --usern

ame REGISTRY-USERNAME --password REGISTRY-PASSWORD --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name that you want to use for the developer namespace. For

example, use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be

https://index.docker.io/v1/. Specifically, it must have the leading https://, the v1

path, and the trailing /. For GCR, this is gcr.io. Based on the information used in

Installing the Tanzu Application Platform Package and Profiles, you can use the same

registry server as in ootb_supply_chain_basic - registry - server.

Note: If you observe the following issue with the above command:

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x128 pc=0x2bcce00]

Use kubectl to create the secret:

kubectl create secret docker-registry registry-credentials --docker-server=REGI

STRY-SERVER --docker-username=REGISTRY-USERNAME --docker-password=REGISTRY-PASS

WORD -n YOUR-NAMESPACE

2. Add secrets, a service account, and RBAC rules to the developer namespace by running:

Important: Ensure to replace YOUR-NAMESPACE with the name of the developer namespace.

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

Tanzu Application Platform v1.0

VMware, Inc 139

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: default

rules:

- apiGroups: [source.toolkit.fluxcd.io]

 resources: [gitrepositories]

 verbs: ['*']

- apiGroups: [source.apps.tanzu.vmware.com]

 resources: [imagerepositories, mavenartifacts]

 verbs: ['*']

- apiGroups: [carto.run]

 resources: [deliverables, runnables]

 verbs: ['*']

- apiGroups: [kpack.io]

 resources: [images]

 verbs: ['*']

- apiGroups: [conventions.apps.tanzu.vmware.com]

 resources: [podintents]

 verbs: ['*']

- apiGroups: [""]

 resources: ['configmaps']

 verbs: ['*']

- apiGroups: [""]

 resources: ['pods']

 verbs: ['list']

- apiGroups: [tekton.dev]

 resources: [taskruns, pipelineruns]

 verbs: ['*']

- apiGroups: [tekton.dev]

 resources: [pipelines]

 verbs: ['list']

- apiGroups: [kappctrl.k14s.io]

 resources: [apps]

 verbs: ['*']

- apiGroups: [serving.knative.dev]

 resources: ['services']

 verbs: ['*']

- apiGroups: [servicebinding.io]

 resources: ['servicebindings']

 verbs: ['*']

- apiGroups: [services.apps.tanzu.vmware.com]

 resources: ['resourceclaims']

Tanzu Application Platform v1.0

VMware, Inc 140

 verbs: ['*']

- apiGroups: [scanning.apps.tanzu.vmware.com]

 resources: ['imagescans', 'sourcescans']

 verbs: ['*']

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: default

subjects:

 - kind: ServiceAccount

 name: default

EOF

Apps CLI plug-in overview

This Tanzu CLI plug-in provides the ability to create, view, update, and delete application workloads

on any Kubernetes cluster that has the Tanzu Application Platform components installed.

About workloads

Tanzu Application Platform enables developers to quickly build and test applications regardless of

their familiarity with Kubernetes. Developers can turn source code into a workload that runs in a

container with a URL.

A workload enables developers to choose application specifications, such as repository location,

environment variables, service binding, and more. For more information on workload creation and

management, see Command Reference.

Tanzu Application Platform can support a range of workloads, including a serverless process that

starts on demand, a constellation of microservices that functions as a logical application, or a small

hello-world test app.

Command reference

For information about available commands, see Command Reference.

Usage and examples

For information about how to use the Apps CLI plug-in, see Usage and Examples.

Install Apps CLI plug-in

This document describes how to install the Apps CLI plug-in.

Note

Follow the steps in this topic if you do not want to use a profile to install PACKAGE-

Tanzu Application Platform v1.0

VMware, Inc 141

Prerequisites

Before you install the Apps CLI plug-in:

Follow the instructions to Install or update the Tanzu CLI and plug-ins.

Install

To install the Apps CLI plug-in:

1. From the $HOME/tanzu directory, run:

tanzu plugin install --local ./cli apps

2. To verify that the CLI is installed correctly, run:

tanzu apps version

A version should be displayed in the output.

If the following error is displayed during installation:

Error: could not find plug-in "apps" in any known repositories

✖ could not find plug-in "apps" in any known repositories

Verify that there is an apps entry in the cli/manifest.yaml file. It should look like this:

plugins:

...

 - name: apps

 description: Applications on Kubernetes

 versions: []

Create a workload

This document describes how to create a workload from example source code with Tanzu

Application Platform.

Prerequisites

The following prerequisites are required to use workloads with Tanzu Application Platform:

Install Kubernetes command line tool (kubectl). For information about installing kubectl, see

Install Tools in the Kubernetes documentation.

Install Tanzu Application Platform components on a Kubernetes cluster. See Installing Tanzu

Application Platform.

NAME. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 142

https://kubernetes.io/docs/tasks/tools/

Set your kubeconfig context to the prepared cluster kubectl config use-context

CONTEXT_NAME.

Install Tanzu CLI. See Install or update the Tanzu CLI and plug-ins.

Install the apps plug-in. See the Install Apps plug-in.

Set up developer namespaces to use installed packages.

Get started with an example workload

Here is how you can get started with an example workload.

To name the workload and specify a source code location to create the workload from, run:

tanzu apps workload create pet-clinic --git-repo https://github.com/spring-proj

ects/spring-petclinic --git-branch main --type web

Respond Y to prompts to complete process.

Where:

pet-clinic is the name of the workload.

--git-repo is the location of the code to build the workload from.

--git-branch (optional) specifies which branch in the repository to pull the code

from.

--type is used to distinguish the workload type.

You can find the options available for specifying the workload in the command reference for

workload create, or you can run tanzu apps workload create --help.

Check build logs

Once the workload is created, you can tail the workload to view the build and runtime logs.

Check logs by running:

tanzu apps workload tail pet-clinic --since 10m --timestamp

Where:

pet-clinic is the name you gave the workload.

--since (optional) the amount of time to go back to begin streaming logs. The default

is 1 second.

--timestamp (optional) prints the timestamp with each log line.

Get the workload status and details

After the workload build process is complete, create a Knative service to run the workload. You can

view workload details at anytime in the process. Some details, such as the workload URL, are only

available after the workload is running.

Tanzu Application Platform v1.0

VMware, Inc 143

1. To check the workload details, run:

tanzu apps workload get pet-clinic

Where:

pet-clinic is the name of the workload you want details about.

2. You can now see the running workload. When the workload is created, tanzu apps

workload get includes the URL for the running workload. Some terminals allow you to

ctrl+click the URL to view it. You can also copy and paste the URL into your web browser to

see the workload.

Create a workload from local source code

You can create a workload using code from a local folder.

Inside the folder that contains the source code, run:

tanzu apps workload create pet-clinic --local-path . --source-image springio/pe

tclinic

Respond Y to the prompt about publishing local source code if the image needs to be

updated.

Where:

pet-clinic is the name of the workload.

--local-path points to the directory where the source code is located.

--source-image is the registry path for the local source code.

Bind a service to a workload

Multiple services can be configured for each workload. The cluster supply chain is in charge of

provisioning those services.

To bind a database service to a workload, run:

tanzu apps workload update pet-clinic --service-ref "database=services.tanzu.vm

ware.com/v1alpha1:MySQL:my-prod-db"

Where:

pet-clinic is the name of the workload to be updated.

--service-ref references the service using the format {name}={apiVersion}:{kind}:

{name}. For more details, refer to update command.

Next steps

You can add environment variables, export definitions, and use flags with these commands. The

following procedure includes example environment variables and flags.

Tanzu Application Platform v1.0

VMware, Inc 144

1. To add environment variables, run:

tanzu apps workload update pet-clinic --env foo=bar

2. To export the workload definition into git, or to migrate to another environment, run:

tanzu apps workload get pet-clinic --export

3. To see flags available for the workload commands, run:

tanzu apps workload -h

tanzu apps workload get -h

tanzu apps workload create -h

Command reference

Tanzu apps

Workload

Workload apply

Workload create

Workload update

Workload get

Workload delete

Workloads list

Workload tail

Cluster supply chain

List cluster supply chain

Tanzu apps

This topic includes a description of applications (apps) available on Kubernetes.

Options

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 -h, --help help for apps

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Cluster Supply Chain - Patterns for building and configuring workloads

Tanzu Apps Workload - Workload life cycle management

Tanzu Application Platform v1.0

VMware, Inc 145

Tanzu apps workload

This topic helps you with workload life cycle management.

A workload may run as a Knative service, Kubernetes deployment, or other runtime. Workloads can

be grouped together with other related resources, such as storage or credential objects as a logical

application for easier management.

Workload configuration includes:

Source code to build

Runtime resource limits

Environment variables

Services to bind

Options

 -h, --help help for workload

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu applications - Applications on Kubernetes

Tanzu apps workload apply - Apply configuration to a new or existing workload

Tanzu apps workload create - Create a workload with specified configuration

Tanzu apps workload delete - Delete workload(s)

Tanzu apps workload get - Get details from a workload

Tanzu apps workload list - Table listing of workloads

Tanzu apps workload tail - Watch workload-related logs

Tanzu apps workload update - Update configuration of an existing workload

Tanzu apps workload apply

This topic helps you apply configurations to a new or existing workload.

Synopsis

Tanzu Application Platform v1.0

VMware, Inc 146

Apply configurations to a new or existing workload. If the resource does not exist, it will be created.

Workload configuration options include:

source code to build

runtime resource limits

environment variables

services to bind

tanzu apps workload apply [name] [flags]

Examples

tanzu apps workload apply --file workload.yaml

Options

 --app name application name the workload is a part of

 --debug put the workload in debug mode, --debug=false t

o disable

 --dry-run print kubernetes resources to stdout rather tha

n apply them to the cluster, messages normally on stdout will be sent to stderr

 --env "key=value" pair environment variables represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 -f, --file file path file path containing the description of a singl

e workload, other flags are layered on top of this resource

 --git-branch branch branch within the git repo to checkout

 --git-commit SHA commit SHA within the git repo to checkout

 --git-repo url git url to remote source code

 --git-tag tag tag within the git repo to checkout

 -h, --help help for apply

 --image image pre-built image, skips the source resolution an

d build phases of the supply chain

 --label "key=value" pair label is represented as a "key=value" pair, or

"key-" to remove. This flag may be specified multiple times

 --limit-cpu cores the maximum amount of cpu allowed, in CPU cores

 (500m = .5 cores)

 --limit-memory bytes the maximum amount of memory allowed, in bytes

(500Mi = 500MiB = 500 * 1024 * 1024)

 --live-update put the workload in live update mode, --live-up

date=false to disable

 --local-path path path on the local file system to a directory of

 source code to build for the workload

 -n, --namespace name kubernetes namespace (defaulted from kube confi

g)

 --param "key=value" pair additional parameters represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 --request-cpu cores the minumum amount of cpu required, in CPU core

s (500m = .5 cores)

 --request-memory bytes the minumum amount of memory required, in bytes

 (500Mi = 500MiB = 500 * 1024 * 1024)

 --service-ref object reference object reference for a service to bind to the w

orkload "database=rabbitmq.com/v1beta1:RabbitmqCluster:[my-broker-ns]:my-broker", or "

database-" to delete. This flag may be specified multiple times.

Tanzu Application Platform v1.0

VMware, Inc 147

 --source-image image image containing source code to build

 --tail show logs while waiting for workload to become

ready

 --tail-timestamp show logs and add timestamp to each log line wh

ile waiting for workload to become ready

 --type type distinguish workload type

 --wait waits for workload to become ready

 --wait-timeout duration timeout for workload to become ready when waiti

ng (default 10m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload create

This topic helps you create a workload with the specified configuration.

Synopsis

Create a workload with the specified configuration.

Workload configuration options include:

Source code to build

Runtime resource limits

Environment variables

Services to bind

tanzu apps workload create [name] [flags]

Examples

tanzu apps workload create my-workload --git-repo https://example.com/my-workload.git

tanzu apps workload create my-workload --local-path . --source-image registry.example/

repository:tag

tanzu apps workload create --file workload.yaml

Options

Tanzu Application Platform v1.0

VMware, Inc 148

 --app name application name the workload is a part of

 --debug put the workload in debug mode, --debug=false t

o disable

 --dry-run print kubernetes resources to stdout rather tha

n apply them to the cluster, messages normally on stdout will be sent to stderr

 --env "key=value" pair environment variables represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 -f, --file file path file path containing the description of a singl

e workload, other flags are layered on top of this resource

 --git-branch branch branch within the git repo to checkout

 --git-commit SHA commit SHA within the git repo to checkout

 --git-repo url git url to remote source code

 --git-tag tag tag within the git repo to checkout

 -h, --help help for create

 --image image pre-built image, skips the source resolution an

d build phases of the supply chain

 --label "key=value" pair label is represented as a "key=value" pair, or

"key-" to remove. This flag may be specified multiple times

 --limit-cpu cores the maximum amount of cpu allowed, in CPU cores

 (500m = .5 cores)

 --limit-memory bytes the maximum amount of memory allowed, in bytes

(500Mi = 500MiB = 500 * 1024 * 1024)

 --live-update put the workload in live update mode, --live-up

date=false to disable

 --local-path path path on the local file system to a directory of

 source code to build for the workload

 -n, --namespace name kubernetes namespace (defaulted from kube confi

g)

 --param "key=value" pair additional parameters represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 --request-cpu cores the minumum amount of cpu required, in CPU core

s (500m = .5 cores)

 --request-memory bytes the minumum amount of memory required, in bytes

 (500Mi = 500MiB = 500 * 1024 * 1024)

 --service-ref object reference object reference for a service to bind to the w

orkload "database=rabbitmq.com/v1beta1:RabbitmqCluster:[my-broker-ns]:my-broker", or "

database-" to delete. This flag may be specified multiple times.

 --source-image image image containing source code to build

 --tail show logs while waiting for workload to become

ready

 --tail-timestamp show logs and add timestamp to each log line wh

ile waiting for workload to become ready

 --type type distinguish workload type

 --wait waits for workload to become ready

 --wait-timeout duration timeout for workload to become ready when waiti

ng (default 10m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

Tanzu Application Platform v1.0

VMware, Inc 149

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload update

This topic helps you update the configuration of an existing workload.

Synopsis

Update the configuration of an existing workload.

Workload configuration options include:

source code to build

runtime resource limits

environment variables

services to bind

tanzu apps workload update [name] [flags]

Examples

tanzu apps workload update my-workload --debug=false

tanzu apps workload update my-workload --local-path .

tanzu apps workload update my-workload --env key=value

tanzu apps workload update --file workload.yaml

Options

 --app name application name the workload is a part of

 --debug put the workload in debug mode, --debug=false t

o disable

 --dry-run print kubernetes resources to stdout rather tha

n apply them to the cluster, messages normally on stdout will be sent to stderr

 --env "key=value" pair environment variables represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 -f, --file file path file path containing the description of a singl

e workload, other flags are layered on top of this resource

 --git-branch branch branch within the git repo to checkout

 --git-commit SHA commit SHA within the git repo to checkout

 --git-repo url git url to remote source code

 --git-tag tag tag within the git repo to checkout

 -h, --help help for update

 --image image pre-built image, skips the source resolution an

d build phases of the supply chain

 --label "key=value" pair label is represented as a "key=value" pair, or

"key-" to remove. This flag may be specified multiple times

 --limit-cpu cores the maximum amount of cpu allowed, in CPU cores

 (500m = .5 cores)

 --limit-memory bytes the maximum amount of memory allowed, in bytes

(500Mi = 500MiB = 500 * 1024 * 1024)

Tanzu Application Platform v1.0

VMware, Inc 150

 --live-update put the workload in live update mode, --live-up

date=false to disable

 --local-path path path on the local file system to a directory of

 source code to build for the workload

 -n, --namespace name kubernetes namespace (defaulted from kube confi

g)

 --param "key=value" pair additional parameters represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 --request-cpu cores the minumum amount of cpu required, in CPU core

s (500m = .5 cores)

 --request-memory bytes the minumum amount of memory required, in bytes

 (500Mi = 500MiB = 500 * 1024 * 1024)

 --service-ref object reference object reference for a service to bind to the w

orkload "database=rabbitmq.com/v1beta1:RabbitmqCluster:[my-broker-ns]:my-broker", or "

database-" to delete. This flag may be specified multiple times.

 --source-image image image containing source code to build

 --tail show logs while waiting for workload to become

ready

 --tail-timestamp show logs and add timestamp to each log line wh

ile waiting for workload to become ready

 --type type distinguish workload type

 --wait waits for workload to become ready

 --wait-timeout duration timeout for workload to become ready when waiti

ng (default 10m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload get

This topic helps you get details from a workload.

tanzu apps workload get <name> [flags]

Examples

tanzu apps workload get my-workload

Options

 --export export workload in yaml format

Tanzu Application Platform v1.0

VMware, Inc 151

 -h, --help help for get

 -n, --namespace name kubernetes namespace (defaulted from kube config)

 -o, --output string output the Workload formatted. Supported formats: "json", "ya

ml"

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu apps workload - Workload life cycle management

Tanzu apps workload delete

This topic helps you delete one or more workloads by name or all workloads within a namespace.

Deleting a workload prevents new builds while preserving built images in the registry.

tanzu apps workload delete <name(s)> [flags]

Examples

tanzu apps workload delete my-workload

tanzu apps workload delete --all

Options

 --all delete all workloads within the namespace

 -f, --file file path file path containing the description of a single workl

oad, other flags are layered on top of this resource

 -h, --help help for delete

 -n, --namespace name kubernetes namespace (defaulted from kube config)

 --wait waits for workload to be deleted

 --wait-timeout duration timeout for workload to be deleted when waiting (defau

lt 1m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

Tanzu Application Platform v1.0

VMware, Inc 152

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload list

This topic will help you list workloads in a namespace or across all namespaces.

tanzu apps workload list [flags]

Examples

tanzu apps workload list

tanzu apps workload list --all-namespaces

Options

 --all-namespaces use all kubernetes namespaces

 --app name application name the workload is a part of

 -h, --help help for list

 -n, --namespace name kubernetes namespace (defaulted from kube config)

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload tail

This topic will help you to watch workload related logs.

You can stream logs for a workload until canceled. To cancel, press Ctl-c in the shell or stop the

process. As new workload pods are started, the logs are displayed. To show historical logs use –

since.

tanzu apps workload tail <name> [flags]

Examples

Tanzu Application Platform v1.0

VMware, Inc 153

tanzu apps workload tail my-workload

tanzu apps workload tail my-workload --since 1h

Options

 --component name workload component name (e.g. build)

 -h, --help help for tail

 -n, --namespace name kubernetes namespace (defaulted from kube config)

 --since duration time duration to start reading logs from (default 1s)

 -t, --timestamp print timestamp for each log line

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps cluster supply chain

This topic includes patterns for building and configuring workloads.

Options

 -h, --help help for cluster-supply-chain

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu applications - Applications on Kubernetes

Tanzu apps cluster supply chain list - Table listing of cluster supply chains

Tanzu apps cluster supply chain list

This topic helps you list cluster supply chains.

Tanzu Application Platform v1.0

VMware, Inc 154

tanzu apps cluster-supply-chain list [flags]

Examples

tanzu apps cluster-supply-chain list

Options

 -h, --help help for list

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu apps cluster supply chain - Patterns for building and configuring workloads

Usage and examples

Changing clusters

The Apps CLI plug-in refers to the default kubeconfig file to access a Kubernetes cluster. When a

tanzu apps command is run, the plug-in uses the default context that’s defined in that kubeconfig

file (located by default at $HOME/.kube/config).

There are two ways to change the target cluster:

1. Use kubectl config use-context <context-name> to change the default context. All

subsequent tanzu apps commands will target the cluster defined in the new default

kubeconfig context.

2. Include the --context <context-name> flag when running any tanzu apps command. All

subsequent tanzu apps commands without the --context <context-name> flag will continue

to use the default context set in the kubeconfig.

There are also two ways to override the default kubeconfig:

1. Set the env var KUBECONFIG=<path> to change the kubeconfig the Apps CLI plug-in should

reference. All subsequent tanzu apps commands will reference the non-default kubeconfig

assigned to the env var.

2. Include the --kubeconfig <path> flag when running any tanzu apps command. All

subsequent tanzu apps commands without the --kubeconfig <path> flag will continue to use

Tanzu Application Platform v1.0

VMware, Inc 155

the default kubeconfig.

For more information about kubeconfig, see Configure Access to Multiple Clusters.

Checking update status

You can use the Apps CLI plug-in to create or update a workload. After you’ve successfully

submitted your changes to the platform, the CLI command exits. Depending on the changes you

submitted, it might take time for them to be executed on the platform. Run tanzu apps workload

get to check the status of your changes. For more information on this command, see Tanzu Apps

Workload Get.

Working with YAML files

In many cases, you can manage workload life cycles through CLI commands. However, you might

find cases where you want to manage a workload by using a yaml file. The Apps CLI plug-in supports

using yaml files.

The plug-in is designed to manage one workload at a time. When you manage a workload using a

yaml file, that file must contain a single workload definition. Plug-in commands support only one file

per command.

For example, a valid file looks similar to the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: spring-petclinic

 labels:

 app.kubernetes.io/part-of: spring-petclinic

 apps.tanzu.vmware.com/workload-type: java

spec:

 source:

 git:

 url: https://github.com/spring-projects/spring-petclinic

 ref:

 branch: main

Autocompletion

To enable command autocompletion, the Tanzu CLI offers the tanzu completion command.

Add the following command to the shell config file according to the current setup. Use one of the

following options:

Bash

tanzu completion bash > $HOME/.tanzu/completion.bash.inc

Zsh

Tanzu Application Platform v1.0

VMware, Inc 156

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

echo "autoload -U compinit; compinit" >> ~/.zshrc

tanzu completion zsh > "${fpath[1]}/_tanzu"

Application Accelerator for VMware Tanzu

Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and

deploying them in a discoverable and repeatable way. Enterprise Architects author and publish

accelerator projects that provide developers and operators in their organization ready-made,

enterprise-conformant code and configurations.

To learn more about Application Accelerator, see:

Application Accelerator for VMware Tanzu Documentation

Application Accelerator in Tanzu Application Platform GUI

Install Application Accelerator

This document describes how to install Application Accelerator from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Flux SourceController on the cluster. See Install cert-manager, Contour, and FluxCD

Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Configure properties and resource usage

When you install the Application Accelerator, you can configure the following optional properties:

Property Default Description

registry.secret_ref registry.tanzu.vmware.com The secret used for accessing the registry where

the App-Accelerator images are located

server.service_type LoadBalancer The service type for the acc-ui-server service

including, LoadBalancer, NodePort, or ClusterIP

Note

Follow the steps in this topic if you do not want to use a profile to install Application

Accelerator. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 157

https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/index.html

Property Default Description

server.watched_namespa

ce

accelerator-system The namespace the server watches for accelerator

resources

server.engine_invocation

_url

http://acc-engine.accelerator-

system.svc.cluster.local/invocation

s

The URL to use for invoking the accelerator

engine

engine.service_type ClusterIP The service type for the acc-engine service

including, LoadBalancer, NodePort, or ClusterIP

engine.max_direct_mem

ory_size

32M The maximum size for the Java -

XX:MaxDirectMemorySize setting

samples.include True Whether to include the bundled sample

Accelerators in the installation

ingress.include False Whether to include the ingress configuration in

the installation

domain tap.example.com Top level domain to use for ingress configuration

tls.secretName tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invocati

on_events_for_no_days

30 The number of days to retain recorded invocation

events resources.

telemetry.record_invocati

on_events

true Should the system record each engine invocation

when generating files for an accelerator?

VMware recommends that you do not override the defaults for registry.secret_ref,

server.engine_invocation_url, or engine.service_type. These properties are only used to

configure non-standard installations.

The following table is the resource usage configurations for the components of Application

Accelerator.

Component Resource requests Resource limits

acc-controller cpu: 100m

memory: 20Mi

cpu: 100m

memory: 30Mi

acc-server cpu: 100m

memory:20Mi

cpu: 100m

memory: 30Mi

acc-engine cpu: 500m

memory: 1Gi

cpu: 500m

memory: 2Gi

Install

To install Application Accelerator:

1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

Tanzu Application Platform v1.0

VMware, Inc 158

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 accelerator.apps.tanzu.vmware.com 0.5.1 2021-12-02T00:00:00Z

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get accelerator.apps.tanzu.vmware.com/VERSION-NUMBER --

values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get accelerator.apps.tanzu.vmware.com/0.5.1 --values-

schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create an app-accelerator-values.yaml using the following example code:

server:

 service_type: "LoadBalancer"

 watched_namespace: "accelerator-system"

samples:

 include: true

Edit the values if needed or leave the default values.

Note: For clusters that do not support the LoadBalancer service type, override the default

value for server.service_type.

4. Install the package by running:

tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 1

.0.0 -n tap-install -f app-accelerator-values.yaml

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v

 1.0.0 -n tap-install -f app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

Tanzu Application Platform v1.0

VMware, Inc 159

5. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME: app-accelerator

PACKAGE-NAME: accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION: 1.0.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To see the IP address for the Application Accelerator API when the server.service_type is

set to LoadBalancer, run the following command:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the

Accelerator plug-in generate command.

Application Live View for VMware Tanzu

Application Live View is a lightweight insights and troubleshooting tool that helps app developers and

app operators to look inside running apps. It is based on the concept of Spring Boot Actuators.

To learn more about Application Live View, see:

Application Live View documentation

Application Live View in Tanzu Application Platform GUI

Install Application Live View

This document describes how to install Application Live View from the Tanzu Application Platform

package repository.

Application Live View installs two packages for full and light profiles.

Application Live View Package (run.appliveview.tanzu.vmware.com) contains Application

Live View back-end and connector components.

Application Live View Conventions Package (build.appliveview.tanzu.vmware.com) contains

Application Live View Convention Service only.

Use the instructions on this page if you do not want to use a profile to install packages. Both the full

and light profiles include Application Live View. For more information about profiles, see Installing

the Tanzu Application Platform Package and Profiles.

Prerequisites

Tanzu Application Platform v1.0

VMware, Inc 160

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/index.html

Before installing Application Live View:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Application Live View

To install Application Live View:

1. List version information for both packages by running:

tanzu package available list run.appliveview.tanzu.vmware.com --namespace tap-i

nstall

tanzu package available list build.appliveview.tanzu.vmware.com --namespace tap

-install

For example:

$ tanzu package available list run.appliveview.tanzu.vmware.com --namespace tap

-install

- Retrieving package versions for run.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 run.appliveview.tanzu.vmware.com 1.0.2 2022-02-07T00:00:00Z

$ tanzu package available list build.appliveview.tanzu.vmware.com --namespace t

ap-install

- Retrieving package versions for build.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 build.appliveview.tanzu.vmware.com 1.0.2 2022-02-07T00:00:00Z

2. Create app-live-view-values.yaml with the following details:

Note: The app-live-view-values.yaml section does not have any values schema for both

packages, therefore it is empty.

The Application Live View back-end and connector are deployed in app-live-view

namespace by default. The connector is deployed as a DaemonSet. There is one connector

instance per node in the Kubernetes cluster. This instance observes all the apps running on

that node. The Application Live View Convention Server is deployed in the alv-convention

namespace by default. The convention server enhances PodIntents with metadata including

labels, annotations, or application properties.

3. Install the Application Live View package by running:

tanzu package install appliveview -p run.appliveview.tanzu.vmware.com -v 1.0.2

-n tap-install -f app-live-view-values.yaml

For example:

$ tanzu package install appliveview -p run.appliveview.tanzu.vmware.com -v 1.0.

2 -n tap-install -f app-live-view-values.yaml

- Installing package 'run.appliveview.tanzu.vmware.com'

Tanzu Application Platform v1.0

VMware, Inc 161

| Getting package metadata for 'run.appliveview.tanzu.vmware.com'

| Creating service account 'app-live-view-tap-install-sa'

| Creating cluster admin role 'app-live-view-tap-install-cluster-role'

| Creating cluster role binding 'app-live-view-tap-install-cluster-role binding

'

| Creating secret 'app-live-view-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'appliveview' in namespace 'tap-install'

4. Install the Application Live View conventions package by running:

tanzu package install appliveview-conventions -p build.appliveview.tanzu.vmware

.com -v 1.0.2 -n tap-install -f app-live-view-values.yaml

For example:

$ tanzu package install appliveview-conventions -p build.appliveview.tanzu.vmwa

re.com -v 1.0.2 -n tap-install -f app-live-view-values.yaml

- Installing package 'build.appliveview.tanzu.vmware.com'

| Getting package metadata for 'build.appliveview.tanzu.vmware.com'

| Creating service account 'app-live-view-tap-install-sa'

| Creating cluster admin role 'app-live-view-tap-install-cluster-role'

| Creating cluster role binding 'app-live-view-tap-install-cluster-role binding

'

| Creating secret 'app-live-view-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'appliveview-conventions' in namespace 'tap-install'

For more information about Application Live View, see the Application Live View

documentation.

5. Verify the Application Live View package installation by running:

tanzu package installed get appliveview -n tap-install

For example:

tanzu package installed get appliveview -n tap-install

| Retrieving installation details for cc...

NAME: appliveview

PACKAGE-NAME: run.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.0.2

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

6. Verify the package install for Application Live View Conventions package by running:

tanzu package installed get appliveview-conventions -n tap-install

For example:

Tanzu Application Platform v1.0

VMware, Inc 162

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.0/docs/GUID-index.html

tanzu package installed get appliveview-conventions -n tap-install

| Retrieving installation details for cc...

NAME: appliveview-conventions

PACKAGE-NAME: build.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.0.2

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To access the

Application Live View UI, see Application Live View in Tanzu Application Platform GUI.

Convention Service

Overview

Convention Service provides a means for people in operational roles to express their hard-won

knowledge and opinions about how applications should run on Kubernetes as a convention.

Convention Service applies these opinions to fleets of developer workloads as they are deployed to

the platform, saving operator and developer time.

The service is composed of two components:

The convention controller: The convention controller provides the metadata to the

convention server and executes the updates to Pod Template Spec as per the convention

server’s requests.

The convention server: The convention server receives and evaluates metadata associated

with a workload and requests updates to the Pod Template Spec associated with that

workload. You can have one or more convention servers for a single convention controller

instance. Convention Service currently supports defining and applying conventions for Pods.

About applying conventions

The convention server uses criteria defined in the convention to determine whether the

configuration of a workload should be changed. The server receives the OCI metadata from the

convention controller. If the metadata meets the criteria defined by the convention server, the

conventions are applied. It is also possible for a convention to apply to all workloads regardless of

metadata.

Applying conventions by using image metadata

You can define conventions to target workloads by using properties of their OCI metadata.

Conventions can use this information to only apply changes to the configuration of workloads when

they match specific criteria (for example, Spring Boot or .Net apps, or Spring Boot v2.3+). Targeted

conventions can ensure uniformity across specific workload types deployed on the cluster.

You can use all the metadata details of an image when evaluating workloads. To see the metadata

details, use the docker CLI command docker image inspect IMAGE.

Tanzu Application Platform v1.0

VMware, Inc 163

Note: Depending on how the image was built, metadata might not be available to reliably identify the

image type and match the criteria for a given convention server. Images built with Cloud Native

Buildpacks reliably include rich descriptive metadata. Images built by some other process may not

include the same metadata.

Applying conventions without using image metadata

Conventions can also be defined to apply to workloads without targeting build service metadata.

Examples of possible uses of this type of convention include appending a logging/metrics sidecar,

adding environment variables, or adding cached volumes. Such conventions are a great way for you

to ensure infrastructure uniformity across workloads deployed on the cluster while reducing

developer toil.

Note: Adding a sidecar alone does not magically make the log/metrics collection work. This requires

collector agents to be already deployed and accessible from the Kubernetes cluster, and also

configuring required access through role-based access control (RBAC) policy.

Install Convention Service

This document describes how to install convention controller from the Tanzu Application Platform

package repository. Convention controller is a primary component of Convention Service.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include convention controller. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Convention Service allows app operators to enrich Pod Template Specs with operational knowledge

based on specific conventions they define. It includes the following components:

Convention controller: Provides metadata to the convention server. Implements update

requests from the convention server.

Convention server: Receives and evaluates metadata associated with a workload from

convention controller. Requests updates to the Pod Template Spec associated with that

workload. There can be one or more convention servers for a single convention controller

instance.

In the following procedure, you install convention controller. You install convention servers as part of

separate installation procedures. For example, you install an app-live-view convention server as

part of the app-live-view installation.

Prerequisites

Before installing convention controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Installing the Tanzu CLI.

Install cert-manager on the cluster. See Install Prerequisites.

Install

Tanzu Application Platform v1.0

VMware, Inc 164

#install-prereqs

To install convention controller:

1. List version information for the package by running:

tanzu package available list controller.conventions.apps.tanzu.vmware.com --nam

espace tap-install

For example:

$ tanzu package available list controller.conventions.apps.tanzu.vmware.com --n

amespace tap-install

- Retrieving package versions for controller.conventions.apps.tanzu.vmware.com.

..

 NAME VERSION RELEASED-AT

 controller.conventions.apps.tanzu.vmware.com 0.4.2 2021-09-16T00:00:00Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get controller.conventions.apps.tanzu.vmware.com/VERSIO

N-NUMBER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1.

For example:

$ tanzu package available get controller.conventions.apps.tanzu.vmware.com/0.4.

2 --values-schema --namespace tap-install

3. Install the package by running:

tanzu package install convention-controller -p controller.conventions.apps.tanz

u.vmware.com -v 0.4.2 -n tap-install

For example:

tanzu package install convention-controller -p controller.conventions.apps.tanz

u.vmware.com -v 0.4.2 -n tap-install

/ Installing package 'controller.conventions.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

- Getting package metadata for 'controller.conventions.apps.tanzu.vmware.com'

| Creating service account 'convention-controller-tap-install-sa'

| Creating cluster admin role 'convention-controller-tap-install-cluster-role'

| Creating cluster role binding 'convention-controller-tap-install-cluster-role

binding'

\ Creating package resource

| Package install status: Reconciling

Added installed package 'convention-controller' in namespace 'tap-install'

4. Verify the package install by running:

tanzu package installed get convention-controller -n tap-install

For example:

tanzu package installed get convention-controller -n tap-install

Retrieving installation details for convention-controller...

Tanzu Application Platform v1.0

VMware, Inc 165

NAME: convention-controller

PACKAGE-NAME: controller.conventions.apps.tanzu.vmware.com

PACKAGE-VERSION: 0.4.2

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n conventions-system

For example:

$ kubectl get pods -n conventions-system

NAME READY STATUS RESTARTS A

GE

conventions-controller-manager-596c65f75-j9dmn 1/1 Running 0 7

2s

Verify that STATUS is Running.

Creating conventions

This document describes how to create and deploy custom conventions to the Tanzu Application

Platform.

Introduction

Tanzu Application Platform helps developers transform their code into containerized workloads with

a URL. The Supply Chain Choreographer for Tanzu manages this transformation. For more

information, see Supply Chain Choreographer.

Convention Service is a key component of the supply chain compositions the choreographer calls

into action. Convention Service enables people in operational roles to efficiently apply their

expertise. They can specify the runtime best practices, policies, and conventions of their organization

to workloads as they are created on the platform. The power of this component becomes evident

when the conventions of an organization are applied consistently, at scale, and without hindering the

velocity of application developers.

Opinions and policies vary from organization to organization. Convention Service supports the

creation of custom conventions to meet the unique operational needs and requirements of an

organization.

Before jumping into the details of creating a custom convention, let’s look at two distinct components

of Convention Service: the convention controller and convention server.

Convention server

The convention server is the component that applies a convention already defined on the server.

Each convention server can host one or more conventions. The application of each convention by a

convention server can be controlled conditionally. The conditional criteria governing the application

of a convention is customizable and can be based on the evaluation of a custom Kubernetes

resource called PodIntent. PodIntent is the vehicle by which Convention Service as a whole delivers

Tanzu Application Platform v1.0

VMware, Inc 166

#GUID-convention-service-reference-pod-intent

its value.

A PodIntent is created, or updated if already existing, when a workload is run through a Tanzu

Application Platform supply chain. The custom resource includes both the PodTemplateSpec (see

the Kubernetes documentation) and the OCI image metadata associated with a workload. The

conditional criteria for a convention can be based on any property or value found in the

PodTemplateSpec or the Open Containers Initiative (OCI) image metadata available in the PodIntent.

If a convention’s criteria are met, the convention server enriches the PodTemplateSpec in the

PodIntent. The convention server also updates the status section of the PodIntent with the name of

the convention that’s been applied. So if needed, you can figure out after the fact which conventions

were applied to the workload.

To provide flexibility in how conventions are organized, you can deploy multiple convention servers.

Each server can contain a convention or set of conventions focused on a specific class of runtime

modifications, on a specific language framework, and so on. How the conventions are organized,

grouped, and deployed is up to you and the needs of your organization.

Convention servers deployed to the cluster will not take action unless triggered to do so by the

second component of Convention Service, the convention controller.

Convention controller

The convention controller is the orchestrator of one or many convention servers deployed to the

cluster. When the Supply Chain Choreographer creates or updates a PodIntent for a workload, the

convention controller retrieves the OCI image metadata from the repository containing the

workload’s images and sets it in the PodIntent.

The convention controller then uses a webhook architecture to pass the PodIntent to each

convention server deployed to the cluster. The controller orchestrates the processing of the

PodIntent by the convention servers sequentially, based on the priority value that’s set on the

convention server. For more information, see ClusterPodConvention.

After all convention servers are finished processing a PodIntent for a workload, the convention

controller updates the PodIntent with the latest version of the PodTemplateSpec and sets

PodIntent.status.conditions[].status=True where PodIntent.status.conditions[].type=Ready.

This status change signals the Supply Chain Choreographer that Convention Service is finished with

its work. The status change also executes whatever steps are waiting in the supply chain.

Getting started

With this high-level understanding of Convention Service components, let’s look at how to create

and deploy a custom convention.

Note: This document covers developing conventions using GOLANG, but this can be done using

other languages by following the specs.

Prerequisites

The following prerequisites must be met before a convention can be developed and deployed:

The Kubernetes command line tool (Kubectl) CLI is installed. For more information, see the

Kubernetes documentation.

Tanzu Application Platform v1.0

VMware, Inc 167

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
#GUID-convention-service-reference-cluster-pod-convention
https://golang.org/
https://kubernetes.io/docs/tasks/tools/

Tanzu Application Platform components and prerequisites are installed. For more

information, see the Installation guide.

The default supply chain is installed. Download Supply Chain Security Tools for VMware

Tanzu from Tanzu Network.

Your kubeconfig context is set to the Tanzu Application Platform-enabled cluster:

kubectl config use-context CONTEXT_NAME

The ko CLI is installed from GitHub. (These instructions use ko to build an image, but if there

is an existing image or build process, ko is optional.)

Define convention criteria

The server.go file contains the configuration for the server and the logic the server applies when a

workload matches the defined criteria. For example, adding a Prometheus sidecar to web

applications, or adding a workload-type=spring-boot label to any workload that has metadata,

indicating it is a Spring Boot app.

Note: For this example, the package model is used to define resources types.

1. The example server.go sets up the ConventionHandler to ingest the webhook

requests(PodConventionContext) from the convention controller. Here the handler must only

deal with the existing PodTemplateSpec and ImageConfig.

...

import (

 corev1 "k8s.io/api/core/v1"

)

...

func ConventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

 // Create custom conventions

}

...

Where:

template is the predefined PodTemplateSpec that the convention is going to modify.

For more information about PodTemplateSpec, see the Kubernetes documentation.

images are the ImageConfig used as reference to make decisions in the conventions.

In this example, the type was created within the model package.

2. The example server.go also configures the convention server to listen for requests:

...

import (

 "context"

 "fmt"

 "log"

 "net/http"

 "os"

 ...

Tanzu Application Platform v1.0

VMware, Inc 168

https://network.tanzu.vmware.com/products/supply-chain-security-tools/
https://github.com/google/ko
#GUID-convention-service-reference-pod-convention-context
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
#GUID-convention-service-reference-image-config
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
#GUID-convention-service-reference-image-config

)

...

func main() {

 ctx := context.Background()

 port := os.Getenv("PORT")

 if port == "" {

 port = "9000"

 }

 http.HandleFunc("/", webhook.ServerHandler(convention.ConventionHandler))

 log.Fatal(webhook.NewConventionServer(ctx, fmt.Sprintf(":%s", port)))

}

...

Where:

PORT is a possible environment variable, for this example, defined in the Deployment.

ServerHandler is the handler function called when any request comes to the server.

NewConventionServer is the function in charge of configure and create the http

webhook server.

port is the calculated port of the server to listen for requests. It needs to match the

Deployment if the PORT variable is not defined in it.

The path or pattern (default to /) is the convention server’s default path. If it is

changed, it must be changed in the ClusterPodConvention.

Note: The Server Handler (func ConventionHandler(...)) and the configure/start web server (func

NewConventionServer(...)) are defined in the convention controller within the webhook package, but

a custom one can be used.

1. Creating the Server Handler, which handles the request from the convention controller with

the PodConventionContext serialized to JSON.

package webhook

...

func ServerHandler(conventionHandler func(template *corev1.PodTemplateSpec, ima

ges []model.ImageConfig) ([]string, error)) http.HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request) {

 ...

 // Check request method

 ...

 // Decode the PodConventionContext

 podConventionContext := &model.PodConventionContext{}

 err = json.Unmarshal(body, &podConventionContext)

 if err != nil {

 w.WriteHeader(http.StatusBadRequest)

 return

 }

 // Validate the PodTemplateSpec and ImageConfig

 ...

 // Apply the conventions

 pts := podConventionContext.Spec.Template.DeepCopy()

 appliedConventions, err := conventionHandler(pts, podConventionContext.

Spec.Images)

 if err != nil {

 w.WriteHeader(http.StatusInternalServerError)

Tanzu Application Platform v1.0

VMware, Inc 169

#GUID-convention-service-reference-pod-convention-context

 return

 }

 // Update the applied conventions and status with the new PodTemplateSp

ec

 podConventionContext.Status.AppliedConventions = appliedConventions

 podConventionContext.Status.Template = *pts

 // Return the updated PodConventionContext

 w.Header().Set("Content-Type", "application/json")

 w.WriteHeader(http.StatusOK)

 json.NewEncoder(w).Encode(podConventionContext)

 }

}

...

2. Configure and start the web server by defining the NewConventionServer function, which

starts the server with the defined port and current context. The server uses the .crt and

.key files to handle TLS traffic.

package webhook

...

// Watch handles the security by certificates.

type certWatcher struct {

 CrtFile string

 KeyFile string

 m sync.Mutex

 keyPair *tls.Certificate

}

func (w *certWatcher) Load() error {

 // Creates a X509KeyPair from PEM encoded client certificate and private ke

y.

 ...

}

func (w *certWatcher) GetCertificate() *tls.Certificate {

 w.m.Lock()

 defer w.m.Unlock()

 return w.keyPair

}

...

func NewConventionServer(ctx context.Context, addr string) error {

 // Define a health check endpoint to readiness and liveness probes.

 http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {

 w.WriteHeader(http.StatusOK)

 })

 if err := watcher.Load(); err != nil {

 return err

 }

 // Defines the server with the TSL configuration.

 server := &http.Server{

 Addr: addr,

 TLSConfig: &tls.Config{

 GetCertificate: func(_ *tls.ClientHelloInfo) (*tls.Certificate, err

or) {

 cert := watcher.GetCertificate()

 return cert, nil

 },

Tanzu Application Platform v1.0

VMware, Inc 170

 PreferServerCipherSuites: true,

 MinVersion: tls.VersionTLS13,

 },

 BaseContext: func(_ net.Listener) context.Context {

 return ctx

 },

 }

 go func() {

 <-ctx.Done()

 server.Close()

 }()

 return server.ListenAndServeTLS("", "")

}

Define the convention behavior

Any property or value within the PodTemplateSpec or OCI image metadata associated with a

workload can be used to define the criteria for applying conventions. The following are a few

examples.

Matching criteria by labels or annotations

When using labels or annotations to define whether a convention should be applied, the server

checks the PodTemplateSpec of workloads.

PodTemplateSpec

```yaml

...

template:

  metadata:

    labels:

      awesome-label: awesome-value

    annotations:

      awesome-annotation: awesome-value

...

```

Handler

```go

package convention

...

func conventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

    c:= []string{}

    // This convention is applied if a specific label is present.

    if lv, le := template.Labels["awesome-label"]; le && lv == "awesome-value" 

{

        // DO COOl STUFF

        c = append(c, "awesome-label-convention")

    }

    // This convention is applied if a specific annotation is present.

    if av, ae := template.Annotations["awesome-annotation"]; ae && av == "aweso

me-value" {

Tanzu Application Platform v1.0

VMware, Inc 171

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


        // DO COOl STUFF

        c = append(c, "awesome-annotation-convention")

    }

    return c, nil

}

...

```

Where: + conventionHandler is the handler. + awesome-label is the label that we want to validate. +

awesome-annotation is the annotation that we want to validate. + awesome-value is the value that

must have the label/annotation.

Matching criteria by environment variables

When using environment variables to define whether the convention is applicable, it should be

present in the PodTemplateSpec.spec.containers[*].env. and we can validate the value.

PodTemplateSpec

```yaml

...

template:

  spec:

    containers:

      - name: awesome-container

        env:

...

```

Handler

```go

package convention

...

func conventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

    if len(template.Spec.Containers[0].Env) == 0 {

        template.Spec.Containers[0].Env = append(template.Spec.Containers[0].En

v, corev1.EnvVar{

            Name: "MY_AWESOME_VAR",

            Value: "MY_AWESOME_VALUE",

        })

        return []string{"awesome-envs-convention"}, nil

    }

    return []string{}, nil

    ...

}

```

Matching criteria by image metadata

For each image contained within the PodTemplateSpec, the convention controller fetches the OCI

image metadata and known bill of materials (BOMs) providing it to the convention server as

ImageConfig. This metadata can be introspected to make decisions about how to configure the

PodTemplateSpec.

Tanzu Application Platform v1.0

VMware, Inc 172

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#PodSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#Container
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#environment-variables
#GUID-convention-service-reference-bom
#GUID-convention-service-reference-image-config

Configure and install the convention server

The server.yaml defines the Kubernetes components that enable the convention server in the

cluster. The next definitions are within the file.

1. A namespace is created for the convention server components and has the required objects

to run the server. It’s used in the ClusterPodConvention section to indicate to the controller

where the server is.

...

apiVersion: v1

kind: Namespace

metadata:

 name: awesome-convention

...

2. (Optional) A certificate manager Issuer is created to issue the certificate needed for TLS

communication.

...

The following manifests contain a self-signed issuer CR and a certificate CR.

More document can be found at https://docs.cert-manager.io

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

 name: awesome-selfsigned-issuer

 namespace: awesome-convention

spec:

 selfSigned: {}

...

3. (Optional) A self-signed Certificate is created.

...

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: awesome-webhook-cert

 namespace: awesome-convention

spec:

 subject:

 organizations:

 - vmware

 organizationalUnits:

 - tanzu

 commonName: awesome-webhook.awesome-convention.svc

 dnsNames:

 - awesome-webhook.awesome-convention.svc

 - awesome-webhook.awesome-convention.svc.cluster.local

 issuerRef:

Tanzu Application Platform v1.0

VMware, Inc 173

 kind: Issuer

 name: awesome-selfsigned-issuer

 secretName: awesome-webhook-cert

 revisionHistoryLimit: 10

...

4. A Kubernetes Deployment is created for the webhook to run from. The Service uses the

container port defined by the Deployment to expose the server.

...

apiVersion: apps/v1

kind: Deployment

metadata:

 name: awesome-webhook

 namespace: awesome-convention

spec:

 replicas: 1

 selector:

 matchLabels:

 app: awesome-webhook

 template:

 metadata:

 labels:

 app: awesome-webhook

 spec:

 containers:

 - name: webhook

 # Set the prebuilt image of the convention or use ko to build an image

from code.

 # see https://github.com/google/ko

 image: ko://awesome-repo/awesome-user/awesome-convention

 env:

 - name: PORT

 value: "8443"

 ports:

 - containerPort: 8443

 name: webhook

 livenessProbe:

 httpGet:

 scheme: HTTPS

 port: webhook

 path: /healthz

 readinessProbe:

 httpGet:

 scheme: HTTPS

 port: webhook

 path: /healthz

 volumeMounts:

 - name: certs

 mountPath: /config/certs

 readOnly: true

 volumes:

 - name: certs

 secret:

 defaultMode: 420

 secretName: awesome-webhook-cert

Tanzu Application Platform v1.0

VMware, Inc 174

...

5. A Kubernetes Service to expose the convention deployment is also created. For this

example, the exposed port is the default 443, but if it is changed, the ClusterPodConvention

needs to be updated with the proper one.

...

apiVersion: v1

kind: Service

metadata:

 name: awesome-webhook

 namespace: awesome-convention

 labels:

 app: awesome-webhook

spec:

 selector:

 app: awesome-webhook

 ports:

 - protocol: TCP

 port: 443

 targetPort: webhook

...

6. Finally, the ClusterPodConvention adds the convention to the cluster to make it available for

the Convention Controller:

Note: The annotations block is only needed if you use a self-signed certificate. Otherwise,

check the cert-manager documentation.

...

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: ClusterPodConvention

metadata:

 name: awesome-convention

 annotations:

 conventions.apps.tanzu.vmware.com/inject-ca-from: "awesome-convention/aweso

me-webhook-cert"

spec:

 webhook:

 clientConfig:

 service:

 name: awesome-webhook

 namespace: awesome-convention

 # path: "/" # default

 # port: 443 # default

Deploy a convention server

To deploy a convention server:

1. Build and install the convention.

If the convention needs to be built and deployed, use the [ko] tool on GitHub

Tanzu Application Platform v1.0

VMware, Inc 175

#GUID-convention-service-reference-cluster-pod-convention
https://cert-manager.io/docs/

(https://github.com/google/ko). It compiles yout go code into a docker image and

pushes it to the registry(KO_DOCKER_REGISTRY).

ko apply -f dist/server.yaml

If a different tool is used to build the image, the configuration can be also be applied

using either kubectl or kapp, setting the correct image in the Deployment descriptor.

kubectl

kubectl apply -f server.yaml

kapp

kapp deploy -y -a awesome-convention -f server.yaml

2. Verify the convention server. To check the status of the convention server, check for the

running convention Pods:

If the server is running, kubectl get all -n awesome-convention returns something

like:

NAME READY STATUS RESTARTS A

GE

pod/awesome-webhook-1234567890-12345 1/1 Running 0 8

h

NAME TYPE CLUSTER-IP EXTERNAL-IP POR

T(S) AGE

service/awesome-webhook ClusterIP 10.56.12.49 <none> 443

/TCP 28h

NAME READY UP-TO-DATE AVAILABLE AG

E

deployment.apps/awesome-webhook 1/1 1 1 28

h

NAME DESIRED CURRENT READ

Y AGE

replicaset.apps/awesome-webhook-1234563213 0 0 0

 23h

replicaset.apps/awesome-webhook-5b79d5cb59 0 0 0

 28h

replicaset.apps/awesome-webhook-5bf557c9f8 1 1 1

 20h

replicaset.apps/awesome-webhook-77c647c987 0 0 0

 23h

replicaset.apps/awesome-webhook-79d9c6f74c 0 0 0

 23h

replicaset.apps/awesome-webhook-7d9d667b8d 0 0 0

 9h

replicaset.apps/awesome-webhook-8668664d75 0 0 0

 23h

replicaset.apps/awesome-webhook-9b6957476 0 0 0

 24h

To verify the conventions are being applied, check the PodIntent of a workload that

Tanzu Application Platform v1.0

VMware, Inc 176

matches the convention criteria:

kubectl -o yaml get podintents.conventions.apps.tanzu.vmware.co awesome-a

pp

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 creationTimestamp: "2021-10-07T13:30:00Z"

 generation: 1

 labels:

 app.kubernetes.io/component: intent

 carto.run/cluster-supply-chain-name: awesome-supply-chain

 carto.run/cluster-template-name: convention-template

 carto.run/component-name: config-provider

 carto.run/template-kind: ClusterConfigTemplate

 carto.run/workload-name: awesome-app

 carto.run/workload-namespace: default

 name: awesome-app

 namespace: default

ownerReferences:

- apiVersion: carto.run/v1alpha1

 blockOwnerDeletion: true

 controller: true

 kind: Workload

 name: awesome-app

 uid: "********" uid: "********"

resourceVersion: "********"

uid: "********"

spec:

imagePullSecrets:

 - name: registry-credentials

 serviceAccountName: default

 template:

 metadata:

 annotations:

 developer.conventions/target-containers: workload

 labels:

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: awesome-app

 carto.run/workload-name: awesome-app

 spec:

 containers:

 - image: awesome-repo.com/awesome-project/awesome-app@sha256:****

 name: workload

 resources: {}

 securityContext:

 runAsUser: 1000

status:

 conditions:

 - lastTransitionTime: "2021-10-07T13:30:00Z"

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "2021-10-07T13:30:00Z"

 status: "True"

 type: Ready

observedGeneration: 1

Tanzu Application Platform v1.0

VMware, Inc 177

template:

 metadata:

 annotations:

 awesome-annotation: awesome-value

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 awesome-label-convention

 awesome-annotation-convention

 awesome-envs-convention

 awesome-image-convention

 developer.conventions/target-containers: workload

 labels:

 awesome-label: awesome-value

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: awesome-app

 carto.run/workload-name: awesome-app

 conventions.apps.tanzu.vmware.com/framework: go

 spec:

 containers:

 - env:

 - name: MY_AWESOME_VAR

 value: "MY_AWESOME_VALUE"

 image: awesome-repo.com/awesome-project/awesome-app@sha256:********

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

 securityContext:

 runAsUser: 1000

Next Steps

Keep Exploring:

Try to use different matching criteria for the conventions or enhance the supply chain with

multiple conventions.

Troubleshoot Convention Service

No server in the cluster

Symptoms

When a PodIntent is submitted, no convention is applied.

Cause

When there are no convention servers (ClusterPodConvention) deployed in the cluster or none of

the existing convention servers applied any conventions, the PodIntent is not being mutated.

Solution

Deploy a convention server (ClusterPodConvention) in the cluster.

Tanzu Application Platform v1.0

VMware, Inc 178

#GUID-convention-service-reference-cluster-pod-convention
#GUID-convention-service-reference-cluster-pod-convention

Server with wrong certificates configured

Symptoms

When a PodIntent is submitted, the conventions are not applied.

The convention-controller logs reports an error failed to get CABundle as follows:

{"level":"error","ts":1638222343.6839523,"logger":"controllers.PodIntent.PodInt

ent.ResolveConventions","msg":"failed to get CABundle","ClusterPodConvention":"

base-convention","error":"unable to find valid certificaterequests for certific

ate \"convention-template/webhook-certificate\"","stacktrace":"reflect.Value.Ca

ll\n\treflect/value.go:339\ngithub.com/vmware-labs/reconciler-runtime/reconcile

rs.(*SyncReconciler).sync\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/r

econcilers/reconcilers.go:287\ngithub.com/vmware-labs/reconciler-runtime/reconc

ilers.(*SyncReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@

v0.3.0/reconcilers/reconcilers.go:276\ngithub.com/vmware-labs/reconciler-runtim

e/reconcilers.Sequence.Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v

0.3.0/reconcilers/reconcilers.go:815\ngithub.com/vmware-labs/reconciler-runtime

/reconcilers.(*ParentReconciler).reconcile\n\tgithub.com/vmware-labs/reconciler

-runtime@v0.3.0/reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/reconcil

er-runtime/reconcilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmware-labs/

reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/controlle

r-runtime/pkg/internal/controller.(*Controller).Reconcile\n\tsigs.k8s.io/contro

ller-runtime@v0.10.3/pkg/internal/controller/controller.go:114\nsigs.k8s.io/con

troller-runtime/pkg/internal/controller.(*Controller).reconcileHandler\n\tsigs.

k8s.io/controller-runtime@v0.10.3/pkg/internal/controller/controller.go:311\nsi

gs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextW

orkItem\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/internal/controller/contr

oller.go:266\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controll

er).Start.func2.2\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/internal/contro

ller/controller.go:227"}

Cause

convention server (ClusterPodConvention) is configured with wrong certificates. The convention-

controller cannot figure out the CA Bundle to perform the request to the server.

Solution

Ensure that the convention server (ClusterPodConvention) is configured with the correct

certificates. To do so, verify the value of annotation conventions.apps.tanzu.vmware.com/inject-

ca-from which must be set to the used Certificate.

Note: Do not set annotation conventions.apps.tanzu.vmware.com/inject-ca-from if no certificate is

used.

Server fails when processing a request

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports failed to apply convention error like this.

Tanzu Application Platform v1.0

VMware, Inc 179

#gathering-logs
#GUID-convention-service-reference-cluster-pod-convention
#GUID-convention-service-reference-cluster-pod-convention
#gathering-logs

{"level":"error","ts":1638205387.8813763,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Name":"

base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"service"

:{"namespace":"convention-template","name":"webhook","port":443},"caBundle":"..

."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout=30s\"

: EOF","stacktrace":"reflect.Value.call\n\treflect/value.go:543\nreflect.Value.

Call\n\treflect/value.go:339\ngithub.com/vmware-labs/reconciler-runtime/reconci

lers.(*SyncReconciler).sync\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0

/reconcilers/reconcilers.go:287\ngithub.com/vmware-labs/reconciler-runtime/reco

ncilers.(*SyncReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtim

e@v0.3.0/reconcilers/reconcilers.go:276\ngithub.com/vmware-labs/reconciler-runt

ime/reconcilers.Sequence.Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime

@v0.3.0/reconcilers/reconcilers.go:815\ngithub.com/vmware-labs/reconciler-runti

me/reconcilers.(*ParentReconciler).reconcile\n\tgithub.com/vmware-labs/reconcil

er-runtime@v0.3.0/reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/reconc

iler-runtime/reconcilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmware-lab

s/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/control

ler-runtime/pkg/internal/controller.(*Controller).Reconcile\n\tsigs.k8s.io/cont

roller-runtime@v0.10.0/pkg/internal/controller/controller.go:114\nsigs.k8s.io/c

ontroller-runtime/pkg/internal/controller.(*Controller).reconcileHandler\n\tsig

s.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:311\n

sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNex

tWorkItem\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/con

troller.go:266\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Contro

ller).Start.func2.2\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/cont

roller/controller.go:227"}

When a PodIntent status message is updated with failed to apply convention from

source base-convention: Post "https://webhook.convention-template.svc:443/?

timeout=30s": EOF.

Cause

An unmanaged error occurs in the convention server when processing a request.

Solution

1. Check the convention server logs to identify the cause of the error:

1. Use the following command to retrieve the convention server logs:

kubectl -n convention-template logs deployment/webhook

Where:

The convention server was deployed as a Deployment

webhook is the name of the convention server Deployment.

convention-template is the namespace where the convention server is

deployed.

2. Identify the error and deploy a fixed version of convention server.

Be aware that the new deployment is not applied to the existing PodIntents. It is only

applied to the new PodIntents.

To apply new deployment to exiting PodIntent, you must update the PodIntent, so

Tanzu Application Platform v1.0

VMware, Inc 180

the reconciler applies if it matches the criteria.

Connection refused due to unsecured connection

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports a connection refused error as follows:

{"level":"error","ts":1638202791.5734537,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Name":"

base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"service"

:{"namespace":"convention-template","name":"webhook","port":443},"caBundle":"..

."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout=30s\"

: dial tcp 10.56.13.206:443: connect: connection refused","stacktrace":"reflect

.Value.call\n\treflect/value.go:543\nreflect.Value.Call\n\treflect/value.go:339

\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconciler).sync\

n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:

287\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconciler).Re

concile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconci

lers.go:276\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.Sequence.Rec

oncile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcil

ers.go:815\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*ParentRecon

ciler).reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconciler

s/reconcilers.go:146\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*P

arentReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/

reconcilers/reconcilers.go:120\nsigs.k8s.io/controller-runtime/pkg/internal/con

troller.(*Controller).Reconcile\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/i

nternal/controller/controller.go:114\nsigs.k8s.io/controller-runtime/pkg/intern

al/controller.(*Controller).reconcileHandler\n\tsigs.k8s.io/controller-runtime@

v0.10.0/pkg/internal/controller/controller.go:311\nsigs.k8s.io/controller-runti

me/pkg/internal/controller.(*Controller).processNextWorkItem\n\tsigs.k8s.io/con

troller-runtime@v0.10.0/pkg/internal/controller/controller.go:266\nsigs.k8s.io/

controller-runtime/pkg/internal/controller.(*Controller).Start.func2.2\n\tsigs.

k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:227"}

The convention server fails to start due to server gave HTTP response to HTTPS client:

When checking the convention server events by running the following command:

kubectl -n convention-template describe pod webhook-594d75d69b-4w4s8

Where:

The convention server was deployed as a Deployment

webhook-594d75d69b-4w4s8 is the name of the convention server Pod.

convention-template is the namespace where the convention server is deployed.

For example:

Name: webhook-594d75d69b-4w4s8

Namespace: convention-template

...

Containers:

 webhook:

Tanzu Application Platform v1.0

VMware, Inc 181

#gathering-logs

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 14m default-scheduler Successfully assig

ned convention-template/webhook-594d75d69b-4w4s8 to pool

Normal Pulling 14m kubelet Pulling image "awe

some-repo/awesome-user/awesome-convention-..."

Normal Pulled 14m kubelet Successfully pulle

d image "awesome-repo/awesome-user/awesome-convention..." in 1.06032653s

Normal Created 13m (x2 over 14m) kubelet Created container

webhook

Normal Started 13m (x2 over 14m) kubelet Started container

webhook

Warning Unhealthy 13m (x9 over 14m) kubelet Readiness probe fa

iled: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to

 HTTPS client

Warning Unhealthy 13m (x6 over 14m) kubelet Liveness probe fai

led: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to

HTTPS client

Normal Killing 13m (x2 over 13m) kubelet Container webhook

failed liveness probe, will be restarted

Normal Pulled 9m13s (x6 over 13m) kubelet Container image "a

wesome-repo/awesome-user/awesome-convention" already present on machine

Warning BackOff 4m22s (x32 over 11m) kubelet Back-off restartin

g failed container

Cause

When a convention server is provided without using Transport Layer Security (TLS) but the

Deployment is configured to use TLS, Kubernetes fails to deploy the Pod because of the liveness

probe.

Solution

1. Deploy a convention server with TLS enabled.

2. Create ClusterPodConvention resource for the convention server with annotation

conventions.apps.tanzu.vmware.com/inject-ca-from as a pointer to the deployed

Certificate resource.

Convention Resources

The convention controller is open to extension. These resources are typically consumed by platform

developers and operators rather than by application developers.

Convention Service Resources

There are several resources involved in the application of conventions to workloads.

API Structure

The PodConventionContext API object in the webhooks.conventions.apps.tanzu.vmware.com API

group is the structure used for both request and response from the convention server.

Tanzu Application Platform v1.0

VMware, Inc 182

#GUID-convention-service-reference-pod-convention-context

Template Status

The enriched PodTemplateSpec is reflected at .status.template. For more information about

PodTemplateSpec, see the Kubernetes documentation.

Chaining Multiple Conventions

You can define multiple ClusterPodConventions and apply them to different types of workloads. You

can also apply multiple conventions to a single workload.

The PodIntent reconciler lists all ClusterPodConvention resources and applies them serially. To

ensure the consistency of enriched PodTemplateSpec, the list of ClusterPodConventionsis sorted

alphabetically by name before applying conventions. You can use strategic naming to control the

order in which the conventions are applied.

After the conventions are applied, the Ready status condition on the PodIntent resource is used to

indicate whether it is applied successfully. A list of all applied conventions is stored under the

annotation conventions.apps.tanzu.vmware.com/applied-conventions.

Collecting Logs from the Controller

The convention controller is a Kubernetes operator and can be deployed in a cluster with other

components. If you have trouble, you can retrieve and examine the logs from the controller to help

identify issues.

To retrieve Pod logs from the conventions-controller-manager running in the conventions-system

namespace:

kubectl -n conventions-system logs -l control-plane=controller-manager

For example:

...

{"level":"info","ts":1637073467.3334172,"logger":"controllers.PodIntent.PodIntent.Appl

yConventions","msg":"applied convention","diff":" interface{}(\n- \ts\"&PodTemplateSp

ec{ObjectMeta:{ 0 0001-01-01 00:00:00 +0000 UTC <nil> <nil> map[app.kubernetes.io

/component:run app.kubernetes.io/part-of:spring-petclinic-app-db carto.run/workload-na

me:spring-petclinic-app-db] map[developer.conventions/target-container\"...,\n+ \tv1.P

odTemplateSpec{\n+ \t\tObjectMeta: v1.ObjectMeta{\n+ \t\t\tLabels: map[string]string{\

n+ \t\t\t\t\"app.kubernetes.io/component\": \"run\",\n+ \t\t\t\t\"app.kubernetes.io/pa

rt-of\": \"spring-petclinic-app-db\",\n+ \t\t\t\t\"carto.run/workload-name\": \"

spring-petclinic-app-db\",\n+ \t\t\t\t\"tanzu.app.live.view\": \"true\",\n+ \t

\t\t\t...\n+ \t\t\t},\n+ \t\t\tAnnotations: map[string]string{\"developer.conventions/

target-containers\": \"workload\"},\n+ \t\t},\n+ \t\tSpec: v1.PodSpec{Containers: []v1

.Container{{...}}, ServiceAccountName: \"default\"},\n+ \t},\n)\n","convention":"app

liveview-sample"}

...

References

ImageConfig

Tanzu Application Platform v1.0

VMware, Inc 183

#GUID-convention-service-reference-pod-convention-context-status
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
#GUID-convention-service-reference-image-config

PodConventionContextSpec

PodConventionContextStatus

PodConventionContext

Cluster Pod Convention

PodIntent

BOM

cert-manager, Contour, and FluxCD Source Controller

cert-manager adds certificates and certificate issuers as resource types in Kubernetes clusters. It also

helps you to obtain, renew, and use those certificates. For more information about cert-manager,

see the cert-manager documentation.

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates and

multiteam ingress delegation. It provides the control plane for the Envoy edge and service proxy.​

For more information about Contour, see the Contour documentation.

FluxCD Source Controller is a Kubernetes operator that helps you acquire artifacts from external

sources such as Git, Helm repositories, and S3 buckets. For more information about FluxCD Source

Controller, see the fluxcd/source-controller project on GitHub.

Install cert-manager, contour, and FluxCD Source Controller

This document describes how to install cert-manager, contour, and FluxCD Source Controller from

the Tanzu Application Platform package repository.

Prerequisites

Before installing cert-manager, contour, and FluxCD Source Controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager

To install cert-manager from the Tanzu Application Platform package repository:

1. List version information for the package by running:

tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

Note

Follow the steps in this topic if you do not want to use a profile to install cert-

manager, contour, and FluxCD Source Controller. For more information about

profiles, see Components and installation profiles.

Tanzu Application Platform v1.0

VMware, Inc 184

#GUID-convention-service-reference-pod-convention-context-spec
#GUID-convention-service-reference-pod-convention-context-status
#GUID-convention-service-reference-pod-convention-context
#GUID-convention-service-reference-cluster-pod-convention
#GUID-convention-service-reference-pod-intent
#GUID-convention-service-reference-bom
https://cert-manager.io/next-docs/
https://projectcontour.io/docs/v1.20.0/
https://github.com/fluxcd/source-controller

For example:

$ tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

/ Retrieving package versions for cert-manager.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 cert-manager.tanzu.vmware.com 1.5.3+tap.1 2021-08-23T17:22:51Z

2. Create a cert-manager-rbac.yml using the following sample and apply the configuration.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: cert-manager-tap-install-cluster-admin-role

rules:

- apiGroups:

 - '*'

 resources:

 - '*'

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: cert-manager-tap-install-cluster-admin-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cert-manager-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

 name: cert-manager-tap-install-sa

 namespace: tap-install

apiVersion: v1

kind: ServiceAccount

metadata:

 name: cert-manager-tap-install-sa

 namespace: tap-install

For example:

kubectl apply -f cert-manager-rbac.yml

3. Create a cert-manager-install.yml using the following sample and apply the configuration.

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: cert-manager

 namespace: tap-install

spec:

 serviceAccountName: cert-manager-tap-install-sa

 packageRef:

 refName: cert-manager.tanzu.vmware.com

 versionSelection:

 constraints: "VERSION-NUMBER"

Tanzu Application Platform v1.0

VMware, Inc 185

 prereleases: {}

Where:

VERSION-NUMBER is the version of the package listed in step 1.

For example:

kubectl apply -f cert-manager-install.yml

4. Verify the package install by running:

tanzu package installed get cert-manager -n tap-install

For example:

$ tanzu package installed get cert-manager -n tap-install

/ Retrieving installation details for cert-manager...

NAME: cert-manager

PACKAGE-NAME: cert-manager.tanzu.vmware.com

PACKAGE-VERSION: 1.5.3+tap.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

kubectl get deployment cert-manager -n cert-manager

For example:

$ kubectl get deploy cert-manager -n cert-manager

NAME READY UP-TO-DATE AVAILABLE AGE

cert-manager 1/1 1 1 2m18s

Verify that STATUS is Running

Install Contour

To install Contour from the Tanzu Application Platform package repository:

1. List version information for the package by running:

tanzu package available list contour.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list contour.tanzu.vmware.com -n tap-install

- Retrieving package versions for contour.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 contour.tanzu.vmware.com 1.18.2+tap.1 2021-10-05T00:00:00Z

2. Create a contour-rbac.yml using the following sample and apply the configuration.

apiVersion: rbac.authorization.k8s.io/v1

Tanzu Application Platform v1.0

VMware, Inc 186

kind: ClusterRole

metadata:

 name: contour-tap-install-cluster-admin-role

rules:

- apiGroups:

 - '*'

 resources:

 - '*'

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: contour-tap-install-cluster-admin-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: contour-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

 name: contour-tap-install-sa

 namespace: tap-install

apiVersion: v1

kind: ServiceAccount

metadata:

 name: contour-tap-install-sa

 namespace: tap-install

3. Apply the configuration by running:

kubectl apply -f contour-rbac.yml

4. Create a contour-install.yml using the following sample and apply the configuration. The

following configuration installs the Contour package with default options. If you want to make

changes to the default installation settings, go to the next step.

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: contour

 namespace: tap-install

spec:

 serviceAccountName: tap-install-sa

 packageRef:

 refName: contour.tanzu.vmware.com

 versionSelection:

 constraints: "VERSION-NUMBER"

 prereleases: {}

Where VERSION-NUMBER is the version of the package listed in step 1.

5. (Optional) Make changes to the default installation settings:

1. Gather values schema by running:

tanzu package available get contour.tanzu.vmware.com/1.18.2+tap.1 --value

Tanzu Application Platform v1.0

VMware, Inc 187

s-schema -n tap-install

For example:

$ tanzu package available get contour.tanzu.vmware.com/1.18.2+tap.1 --val

ues-schema -n tap-install

| Retrieving package details for contour.tanzu.vmware.com/1.18.2+tap.1...

 KEY DEFAULT TYPE DES

CRIPTION

 certificates.duration 8760h string If

using cert-manager, how long the certificates should be valid for. If use

CertManager is false, this field is ignored.

 certificates.renewBefore 360h string If

using cert-manager, how long before expiration the certificates should be

 renewed. If useCertManager is false, this field is ignored.

 contour.configFileContents <nil> object The

 YAML contents of the Contour config file. See https://projectcontour.io/

docs/v1.18.2/configuration/#configuration-file for more information.

 contour.logLevel info string The

 Contour log level. Valid options are info and debug.

 contour.replicas 2 integer How

 many Contour pod replicas to have.

 contour.useProxyProtocol false boolean Whe

ther to enable PROXY protocol for all Envoy listeners.

 envoy.hostPorts.enable true boolean Whe

ther to enable host ports. If false, http and https are ignored.

 envoy.hostPorts.http 80 integer If

enable == true, the host port number to expose Envoy's HTTP listener on.

 envoy.hostPorts.https 443 integer If

enable == true, the host port number to expose Envoy's HTTPS listener on.

 envoy.logLevel info string The

 Envoy log level.

 envoy.service.annotations <nil> object Ann

otations to set on the Envoy service.

 envoy.service.aws.LBType classic string AWS

 loadbalancer type.

 envoy.service.externalTrafficPolicy Cluster string The

 external traffic policy for the Envoy service.

 envoy.service.nodePorts.http <nil> integer If

type == NodePort, the node port number to expose Envoy's HTTP listener on

. If not specified, a node port will be auto-assigned by Kubernetes.

 envoy.service.nodePorts.https <nil> integer If

type == NodePort, the node port number to expose Envoy's HTTPS listener o

n. If not specified, a node port will be auto-assigned by Kubernetes.

 envoy.service.type NodePort string The

 type of Kubernetes service to provision for Envoy.

 envoy.terminationGracePeriodSeconds 300 integer The

Tanzu Application Platform v1.0

VMware, Inc 188

 termination grace period, in seconds, for the Envoy pods.

 envoy.hostNetwork false boolean Whe

ther to enable host networking for the Envoy pods.

 infrastructure_provider vsphere string The

 infrastructure in which to deploy Contour and Envoy. example:- vsphere,

aws

 namespace tanzu-system-ingress string The

 namespace in which to deploy Contour and Envoy.

2. Create a contour-install.yaml file using the following sample as a guide. This

sample is for installation in an AWS public cloud with LoadBalancer services:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: contour

 namespace: tap-install

spec:

 serviceAccountName: contour-tap-install-sa

 packageRef:

 refName: contour.tanzu.vmware.com

 versionSelection:

 constraints: 1.18.2+tap.1

 prereleases: {}

 values:

 - secretRef:

 name: contour-values

apiVersion: v1

kind: Secret

metadata:

 name: contour-values

 namespace: tap-install

stringData:

 values.yaml: |

 envoy:

 service:

 type: LoadBalancer

 infrastructure_provider: aws

The LoadBalancer type is appropriate for most installations, but local clusters such as

kind or minikube can fail to complete the package install if LoadBalancer services are

not supported.

Contour provides an Ingress implementation by default. If you have another Ingress

implementation in your cluster, you must explicitly specify an IngressClass to select a

particular implementation.

Cloud Native Runtimes programs Contour HTTPRoutes are based on the installed

namespace. The default installation of CNR uses a single Contour to provide internet-

visible services. You can install a second Contour instance with service type

ClusterIP if you want to expose some services to only the local cluster. The second

instance must be installed in a separate namespace. You must set the CNR value

ingress.internal.namespace to point to this namespace.

Tanzu Application Platform v1.0

VMware, Inc 189

https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class
#install-cnr

6. Install the package by running:

kubectl apply -f contour-install.yaml

7. Verify the package install by running:

tanzu package installed get contour -n tap-install

For example:

$ tanzu package installed get contour -n tap-install

/ Retrieving installation details for contour...

NAME: contour

PACKAGE-NAME: contour.tanzu.vmware.com

PACKAGE-VERSION: 1.18.2+tap.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

8. Verify the installation by running:

kubectl get po -n tanzu-system-ingress

For example:

$ kubectl get po -n tanzu-system-ingress

NAME READY STATUS RESTARTS AGE

contour-857d46c845-4r6c5 1/1 Running 1 18d

contour-857d46c845-p6bbq 1/1 Running 1 18d

envoy-mxkjk 2/2 Running 2 18d

envoy-qlg8l 2/2 Running 2 18d

Ensure that all pods are Running with all containers ready.

Install FluxCD source-controller

To install FluxCD source-controller from the Tanzu Application Platform package repository:

1. List version information for the package by running:

tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap-i

nstall

For example:

$ tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap

-install

 \ Retrieving package versions for fluxcd.source.controller.tanzu.vmware.com

...

 NAME VERSION RELEASED-AT

 fluxcd.source.controller.tanzu.vmware.com 0.16.0 2021-10-27 19:00:00 -

0500 -05

Tanzu Application Platform v1.0

VMware, Inc 190

2. Install the package by running:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v VERSION-NUMBER -n tap-install

Where:

VERSION-NUMBER is the version of the package listed in step 1.

For example:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v 0.16.0 -n tap-install

\ Installing package 'fluxcd.source.controller.tanzu.vmware.com'

| Getting package metadata for 'fluxcd.source.controller.tanzu.vmware.com'

| Creating service account 'fluxcd-source-controller-tap-install-sa'

| Creating cluster admin role 'fluxcd-source-controller-tap-install-cluster-rol

e'

| Creating cluster role binding 'fluxcd-source-controller-tap-install-cluster-r

olebinding'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'fluxcd-source-controller'

| 'PackageInstall' resource install status: Reconciling

 Added installed package 'fluxcd-source-controller'

3. Verify the package install by running:

tanzu package installed get fluxcd-source-controller -n tap-install

For example:

tanzu package installed get fluxcd-source-controller -n tap-install

\ Retrieving installation details for fluxcd-source-controller...

NAME: fluxcd-source-controller

PACKAGE-NAME: fluxcd.source.controller.tanzu.vmware.com

PACKAGE-VERSION: 0.16.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

kubectl get pods -n flux-system

For example:

$ kubectl get pods -n flux-system

NAME READY STATUS RESTARTS AGE

source-controller-69859f545d-ll8fj 1/1 Running 0 3m38s

Verify that STATUS is Running

Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on

Tanzu Application Platform v1.0

VMware, Inc 191

Knative and runs on a single Kubernetes cluster.

To learn more about Cloud Native Runtimes, see Cloud Native Runtimes for VMware Tanzu.

Install Cloud Native Runtimes

This document describes how to install Cloud Native Runtimes from the Tanzu Application Platform

package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Cloud Native Runtimes. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Cloud Native Runtimes:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install

To install Cloud Native Runtimes:

1. List version information for the package by running:

tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for cnrs.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 cnrs.tanzu.vmware.com 1.0.3 2021-10-20T00:00:00Z

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get cnrs.tanzu.vmware.com/1.0.3 --values-schema -

n tap-install

For example:

$ tanzu package available get cnrs.tanzu.vmware.com/1.0.3 --values-schema

 -n tap-install

| Retrieving package details for cnrs.tanzu.vmware.com/1.0.3...

 KEY DEFAULT TYPE DESCRIPTION

 ingress.external.namespace <nil> string Optional: Only valid if a

 Contour instance is already present in the cluster. Specify a namespace

where an existing Contour is installed on your cluster (for external serv

ices) if you want CNR to use your Contour instance.

 ingress.internal.namespace <nil> string Optional: Only valid if a

 Contour instance is already present in the cluster. Specify a namespace

Tanzu Application Platform v1.0

VMware, Inc 192

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html

where an existing Contour is installed on your cluster (for internal serv

ices) if you want CNR to use your Contour instance.

 ingress.reuse_crds false boolean Optional: Only valid if a

 Contour instance is already present in the cluster. Set to "true" if you

 want CNR to re-use the cluster's existing Contour CRDs.

 local_dns.domain <nil> string Optional: Set a custom do

main for CoreDNS. Only applicable when "local_dns.enable" is set to "true

" and "provider" is set to "local" and running on Kind.

 local_dns.enable false boolean Optional: Only for when "

provider" is set to "local" and running on Kind. Set to true to enable lo

cal DNS.

 pdb.enable true boolean Optional: Set to true to

enable Pod Disruption Budget. If provider local is set to "local", the PD

B will be disabled automatically.

 provider <nil> string Optional: Kubernetes clus

ter provider. To be specified if deploying CNR on a local Kubernetes clus

ter provider.

2. Create a cnr-values.yaml by using the following sample as a guide:

Sample cnr-values.yaml for Cloud Native Runtimes:

if deploying on a local cluster such as Kind. Otherwise, you can remove

 this field

provider: local

Note: For most installations, you can leave the cnr-values.yaml empty, and use the

default values.

If you are running on a single-node cluster, such as kind or minikube, set the

provider: local option. This option reduces resource requirements by using a

HostPort service instead of a LoadBalancer and reduces the number of replicas.

Cloud Native Runtimes reuses the existing tanzu-system-ingress Contour installation

for external and internal access when installed in the light or full profile. If you

want to use a separate Contour installation for system-internal traffic, set

cnrs.ingress.internal.namespace to the empty string ("").

For more information about using Cloud Native Runtimes with kind, see the Cloud

Native Runtimes documentation. If you are running on a multinode cluster, do not set

provider.

If your environment has Contour packages, Contour might conflict with the Cloud

Native Runtimes installation.

For information about how to prevent conflicts, see Installing Cloud Native Runtimes

for Tanzu with an Existing Contour Installation in the Cloud Native Runtimes

documentation. Specify values for ingress.reuse_crds,

ingress.external.namespace, and ingress.internal.namespace in the cnr-

values.yaml file.

3. Install the package by running:

tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 1.0.3 -

n tap-install -f cnr-values.yaml --poll-timeout 30m

Tanzu Application Platform v1.0

VMware, Inc 193

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.1/tanzu-cloud-native-runtimes/GUID-local-dns.html#config-cluster
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.1/tanzu-cloud-native-runtimes/GUID-contour.html

For example:

$ tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 1.0.3

 -n tap-install -f cnr-values.yaml --poll-timeout 30m

- Installing package 'cnrs.tanzu.vmware.com'

| Getting package metadata for 'cnrs.tanzu.vmware.com'

| Creating service account 'cloud-native-runtimes-tap-install-sa'

| Creating cluster admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Creating cluster role binding 'cloud-native-runtimes-tap-install-cluster-role

binding'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'cloud-native-runtimes' in namespace 'tap-install'

Use an empty file for cnr-values.yaml if you want the default installation configuration.

Otherwise, see the previous step to learn more about setting installation configuration values.

4. Verify the package install by running:

tanzu package installed get cloud-native-runtimes -n tap-install

For example:

tanzu package installed get cloud-native-runtimes -n tap-install

| Retrieving installation details for cc...

NAME: cloud-native-runtimes

PACKAGE-NAME: cnrs.tanzu.vmware.com

PACKAGE-VERSION: 1.0.3

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

5. Configure a namespace to use Cloud Native Runtimes:

Note: This step covers configuring a namespace to run Knative services. If you rely on a

SupplyChain to deploy Knative services into your cluster, skip this step because namespace

configuration is covered in Set up developer namespaces to use installed packages.

Otherwise, you must complete the following steps for each namespace where you create

Knative services.

Service accounts that run workloads using Cloud Native Runtimes need access to the image

pull secrets for the Tanzu package. This includes the default service account in a

namespace, which is created automatically but not associated with any image pull secrets.

Without these credentials, attempts to start a service fail with a timeout and the pods report

that they are unable to pull the queue-proxy image.

1. Create an image pull secret in the current namespace and fill it from the tap-

registry secret mentioned in Add the Tanzu Application Platform package

repository. Run the following commands to create an empty secret and annotate it as

a target of the secretgen controller:

Tanzu Application Platform v1.0

VMware, Inc 194

kubectl create secret generic pull-secret --from-literal=.dockerconfigjso

n={} --type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secre

t=""

2. After you create a pull-secret secret in the same namespace as the service

account, run the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "

pull-secret"}]}'

3. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name: default

Namespace: default

Labels: <none>

Annotations: <none>

Image pull secrets: pull-secret

Mountable secrets: default-token-xh6p4

Tokens: default-token-xh6p4

Events: <none>

Note: The service account has access to the pull-secret image pull secret.

To learn more about using Cloud Native Runtimes, see Verify your Installation in the Cloud Native

Runtimes documentation.

Spring Boot conventions

This topic describes the Spring Boot convention server.

Overview

The Spring Boot convention server is a bundle of smaller conventions applied to any Spring Boot

application that is submitted to the supply chain in which the convention controller is configured.

Run the docker inspect command to make the Spring Boot convention server look inside the

image. Example command:

docker inspect springio/petclinic

Example output:

[

 {

 "Id": "sha256:...",

 "RepoTags": [

 "springio/petclinic:latest"

],

Tanzu Application Platform v1.0

VMware, Inc 195

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.1/tanzu-cloud-native-runtimes/GUID-verify-installation.html

 "RepoDigests": [

 "springio/petclinic@sha256:..."

],

 "Parent": "",

 "Container": "",

 ...

 "ContainerConfig": {

 "Hostname": "",

 "Domainname": "",

 "User": "",

 ...

 "Labels": null

 },

 "DockerVersion": "",

 "Author": "",

 "Config": {

...

]

The convention server searches inside the image for Config -> Labels ->

io.buildpacks.build.metadata to find the bom file. It looks inside the bom file for metadata to

evaluate whether the convention is to be applied. For the list of conventions, see Conventions.

Install Spring Boot conventions

This topic describes how to install Spring Boot conventions from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Spring Boot conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Ensure that Convention Service is installed on the cluster. For more information, see Install

Convention Service section.

Install Spring Boot conventions

To install Spring Boot conventions:

1. Get the exact name and version information for the Spring Boot conventions package to

install by running:

tanzu package available list spring-boot-conventions.tanzu.vmware.com --namespa

ce tap-install

Note

Follow the steps in this topic if you do not want to use a profile to install Spring Boot

conventions. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 196

For example:

$ tanzu package available list spring-boot-conventions.tanzu.vmware.com --names

pace tap-install

/ Retrieving package versions for spring-boot-conventions.tanzu.vmware.com...

NAME VERSION RELEASED-AT

...

spring-boot-conventions.tanzu.vmware.com 0.1.2 2021-10-28T00:00:00Z

...

2. Install the package by running:

tanzu package install spring-boot-conventions \

--package-name spring-boot-conventions.tanzu.vmware.com \

--version 0.1.2 \

--namespace tap-install

3. Verify that the package installed by running:

tanzu package installed get spring-boot-conventions --namespace tap-install

For example:

tanzu package installed get spring-boot-conventions -n tap-install

| Retrieving installation details for spring-boot-conventions...

NAME: spring-boot-conventions

PACKAGE-NAME: spring-boot-conventions.tanzu.vmware.com

PACKAGE-VERSION: 0.1.2

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Conventions

When submitting the following pod Pod Intent on each convention, the output can change

depending on the applied convention. The submitted pod intent looks similar to this YAML:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 name: spring-sample

spec:

 template:

 spec:

 containers:

 - name: workload

 image: springio/petclinic

Spring boot convention

In the bom file’s metadata, under dependencies, there is a dependency named spring-boot. The

Tanzu Application Platform v1.0

VMware, Inc 197

convention spring-boot adds a label to the PodTemplateSpec setting the framework used by running

conventions.apps.tanzu.vmware.com/framework, spring-boot. The convention spring-boot also

adds an annotation with the version of the dependency.

The docker inspect can look like:

[

{

 "Id": "sha256:...",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "1000:1000",

 "Labels": {

 "io.buildpacks.build.metadata": "{\"bom\":[{\"name\":\"helper\",\"metadata\":{\"

layer\":\"helper\",\"names\":[\"ca-certificates-helper\"],\"version\":\"2.2.0\"},\"bui

ldpack\":{\"id\":\"paketo-buildpacks/ca-certificates\",\"version\":\"2.2.0\"}},{\"name

\":\"dependencies\",\"metadata\":{\"dependencies\":[{\"name\":\"spring-beans\",\"sha25

6\":\"33331abcdd8acccea43666782a5807127a0d43ffc6abf1c3252fbb27fc3367b2\",\"version\":\

"5.3.6\"},{\"name\":\"spring-boot\",\"sha256\":\"2e46ae8796df9ca1b4ad74eab608b19f77125

5321e7d9fafb64561e7e030869e\",\"version\":\"2.4.5\"}

Convention output:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

 creationTimestamp: "..."

 generation: 1

 name: spring-sample

 namespace: default

 resourceVersion: "..."

 uid: ...

spec:

 serviceAccountName: default

 template:

 metadata: {}

 spec:

 containers:

 - image: springio/petclinic

 name: workload

 resources: {}

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

Tanzu Application Platform v1.0

VMware, Inc 198

 annotations:

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 resources: {}

Spring boot graceful shutdown convention

In the bom file’s metadata, under dependencies, if there are any of the following dependencies, the

convention is applied to the PodTemplateSpec object:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-reactor-netty

spring-boot-starter-undertow

tomcat-embed-core

The convention spring-boot-graceful-shutdown adds a property in the environment variable

JAVA_TOOL_OPTIONS. It adds key server.shutdown.grace-period and value, which is 80% of the set

value in target.Spec.TerminationGracePeriodSeconds (or 30 seconds).

docker inspect example:

[

{

 "Id": "sha256:...",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "1000:1000",

 "Labels": {

 "io.buildpacks.build.metadata": "{\"bom\":[{\"name\":\"helper\",\"metadata\":{\"

layer\":\"helper\",\"names\":[\"ca-certificates-helper\"],\"version\":\"2.2.0\"},\"bui

ldpack\":{\"id\":\"paketo-buildpacks/ca-certificates\",\"version\":\"2.2.0\"}},{\"name

\":\"dependencies\",\"metadata\":{\"dependencies\":[{\"name\":\"spring-beans\",\"sha25

6\":\"33331abcdd8acccea43666782a5807127a0d43ffc6abf1c3252fbb27fc3367b2\",\"version\":\

"5.3.6\"},{\"name\":\"spring-boot\",\"sha256\":\"2e46ae8796df9ca1b4ad74eab608b19f77125

5321e7d9fafb64561e7e030869e\",\"version\":\"2.4.5\"},{\"name\":\"tomcat-embed-core\",\

"sha256\":\"b65ee353868ffb331adbf338e55de3adc6a7907c0c5265f8ee2d7e5f7a2da92b\",\"versi

on\":\"9.0.45\"}

Convention output:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

Tanzu Application Platform v1.0

VMware, Inc 199

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

 creationTimestamp: "..."

 generation: 1

 name: spring-sample

 namespace: default

 resourceVersion: "..."

 uid: ...

spec:

 serviceAccountName: default

 template:

 metadata: {}

 spec:

 containers:

 - image: springio/petclinic

 name: workload

 resources: {}

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-graceful-shutdown

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dserver.shutdown.grace-period="24s"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 resources: {}

Spring Boot web convention

In the bom file’s metadata, under dependencies, if there are any of the following dependencies, the

convention is applied to the PodTemplateSpec object:

spring-boot

spring-boot-web

The convention spring-boot-web adds the default 8080 port to the PodTemplateSpec.

docker inspect example:

Tanzu Application Platform v1.0

VMware, Inc 200

[

{

 "Id": "sha256:...",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "1000:1000",

 "Labels": {

 "io.buildpacks.build.metadata": "{\"bom\":[{\"name\":\"helper\",\"metadata\":{\"

layer\":\"helper\",\"names\":[\"ca-certificates-helper\"],\"version\":\"2.2.0\"},\"bui

ldpack\":{\"id\":\"paketo-buildpacks/ca-certificates\",\"version\":\"2.2.0\"}},{\"name

\":\"dependencies\",\"metadata\":{\"dependencies\":[{\"name\":\"spring-beans\",\"sha25

6\":\"33331abcdd8acccea43666782a5807127a0d43ffc6abf1c3252fbb27fc3367b2\",\"version\":\

"5.3.6\"},{\"name\":\"spring-web\",\"sha256\":\"dd40db91f0ae291c451cb83b18787823249814

fe9499d8333972718e9e6edbf7\",\"version\":\"5.3.6\"},{\"name\":\"spring-boot\",\"sha256

\":\"2e46ae8796df9ca1b4ad74eab608b19f771255321e7d9fafb64561e7e030869e\",\"version\":\"

2.4.5\"}

Convention output:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

 creationTimestamp: "..."

 generation: 1

 name: spring-sample

 namespace: default

 resourceVersion: "..."

 uid: ...

spec:

 serviceAccountName: default

 template:

 metadata: {}

 spec:

 containers:

 - image: springio/petclinic

 name: workload

 resources: {}

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

Tanzu Application Platform v1.0

VMware, Inc 201

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

Spring Boot Actuator convention

In the bom file’s metadata, under dependencies, there is a dependency with the name spring-boot-

actuator. The convention spring-boot-actuator adds the management port and the base path to

the environment variable JAVA_TOOL_OPTIONS. It also adds an annotation (boot.spring.io/actuator)

where the actuator is accessed.

docker inspect example:

[

{

 "Id": "sha256:...",

 "Config": {

 "Hostname": "",

 "Domainname": "",

 "User": "1000:1000",

 "Labels": {

 "io.buildpacks.build.metadata": "{\"bom\":[{\"name\":\"helper\",\"metadata\":{\"

layer\":\"helper\",\"names\":[\"ca-certificates-helper\"],\"version\":\"2.2.0\"},\"bui

ldpack\":{\"id\":\"paketo-buildpacks/ca-certificates\",\"version\":\"2.2.0\"}},{\"name

\":\"dependencies\",\"metadata\":{\"dependencies\":[{\"name\":\"spring-beans\",\"sha25

6\":\"33331abcdd8acccea43666782a5807127a0d43ffc6abf1c3252fbb27fc3367b2\",\"version\":\

"5.3.6\"},{\"name\":\"spring-web\",\"sha256\":\"dd40db91f0ae291c451cb83b18787823249814

fe9499d8333972718e9e6edbf7\",\"version\":\"5.3.6\"},{\"name\":\"spring-boot\",\"sha256

\":\"2e46ae8796df9ca1b4ad74eab608b19f771255321e7d9fafb64561e7e030869e\",\"version\":\"

2.4.5\"},{\"name\":\"spring-boot-actuator\",\"sha256\":\"6bae019e7a8f400a1b98af65596bc

742c825e2ba3851cbedde38031e9699ebc0\",\"version\":\"2.4.5\"}

Convention output:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

 creationTimestamp: "..."

 generation: 1

 name: spring-sample

 namespace: default

Tanzu Application Platform v1.0

VMware, Inc 202

 resourceVersion: "..."

 uid: ...

spec:

 serviceAccountName: default

 template:

 metadata: {}

 spec:

 containers:

 - image: springio/petclinic

 name: workload

 resources: {}

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.server.p

ort="8080" -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

Service intent conventions

The Service intent conventions do not change the behavior of the final deployment but can be used

as added information to process in the supply chain. For example, when an application requires the

binding of a database service. This convention adds an annotation and a label to the

PodTemplateSpec for each detected dependency. It adds an annotation and a label to the

conventions.apps.tanzu.vmware.com/applied-conventions as well.

The list of the supported intents are:

MySQL

Name: service-intent-mysql

Tanzu Application Platform v1.0

VMware, Inc 203

Label: services.conventions.apps.tanzu.vmware.com/mysql

Dependencies: mysql-connector-java, r2dbc-mysql

PostgreSQL

Name: service-intent-postgres

Label: services.conventions.apps.tanzu.vmware.com/postgres

Dependencies: postgresql, r2dbc-postgresql

MongoDB

Name: service-intent-mongodb

Label: services.conventions.apps.tanzu.vmware.com/mongodb

Dependencies: mongodb-driver-core

RabbitMQ

Name: service-intent-rabbitmq

Label: services.conventions.apps.tanzu.vmware.com/rabbitmq

Dependencies: amqp-client

Redis

Name: service-intent-redis

Label: services.conventions.apps.tanzu.vmware.com/redis

Dependencies: jedis

Kafka

Name: service-intent-kafka

Label: services.conventions.apps.tanzu.vmware.com/kafka

Dependencies: kafka-clients

Kafka-streams

Name: service-intent-kafka-streams

Label: services.conventions.apps.tanzu.vmware.com/kafka-streams

Dependencies: kafka-streams

Example

When you apply the Pod Intent and the image contains a dependency, for example, of MySQL,

then the output of the convention is the following:

 apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

 kind: PodIntent

 metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent",

"metadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"te

mplate":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

Tanzu Application Platform v1.0

VMware, Inc 204

 creationTimestamp: "..."

 generation: 1

 name: spring-sample

 namespace: default

 resourceVersion: "..."

 uid: ...

 spec:

 serviceAccountName: default

 template:

 metadata: {}

 spec:

 containers:

 - image: springio/petclinic

 name: workload

 resources: {}

 status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 spring-boot-convention/service-intent-mysql

 services.conventions.apps.tanzu.vmware.com/mysql: mysql-connector-java/8.0.2

1

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 services.conventions.apps.tanzu.vmware.com/mysql: workload

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.server

.port="8080" -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

Troubleshoot Spring Boot Conventions

This topic describes how to troubleshoot Spring Boot conventions.

Collect logs

Tanzu Application Platform v1.0

VMware, Inc 205

If you have trouble, you can retrieve and examine logs from the Spring Boot convention server as

follows:

1. The Spring Boot convention server creates a namespace to contain all of the associated

resources. By default, the namespace is spring-boot-convention. To inspect the logs, run:

kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

For example:

$ kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot","c

omponent":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-gra

ceful-shutdown","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-web

","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-act

uator","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: service-intent-

mysql","component":"spring-boot-conventions"}

2. For all of the conventions that were applied successfully, a log entry is added. If an error

occurs, a log entry is added with a description.

Service Bindings for Kubernetes

Service Bindings for Kubernetes implements the Service Binding Specification for Kubernetes.

VMware is tracking changes to the specifications as it approaches a stable release, currently targeting

pre-RC3 in GitHub. Backwards and forwards compatibility should not be expected for alpha

versioned resources.

This implementation provides support for:

Provisioned Service

Workload Projection

Service Binding

Direct Secret Reference

Role-Based Access Control (RBAC)

The following are not supported:

Workload Resource Mapping

Extensions including:

Binding Secret Generation Strategies

Tanzu Application Platform v1.0

VMware, Inc 206

https://github.com/k8s-service-bindings/spec
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#provisioned-service
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-projection
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#service-binding
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#direct-secret-reference
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#role-based-access-control-rbac
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-resource-mapping
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#binding-secret-generation-strategies

Install Service Bindings

This document describes how to install Service Bindings from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Service Bindings:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Service Bindings

Use the following procedure to install Service Bindings:

1. List version information for the package by running:

tanzu package available list service-bindings.labs.vmware.com --namespace tap-i

nstall

For example:

$ tanzu package available list service-bindings.labs.vmware.com --namespace tap

-install

- Retrieving package versions for service-bindings.labs.vmware.com...

 NAME VERSION RELEASED-AT

 service-bindings.labs.vmware.com 0.5.0 2021-09-15T00:00:00Z

2. Install the package by running:

tanzu package install service-bindings -p service-bindings.labs.vmware.com -v 0

.5.0 -n tap-install

Example output:

/ Installing package 'service-bindings.labs.vmware.com'

| Getting namespace 'tap-install'

- Getting package metadata for 'service-bindings.labs.vmware.com'

| Creating service account 'service-bindings-tap-install-sa'

| Creating cluster admin role 'service-bindings-tap-install-cluster-role'

| Creating cluster role binding 'service-bindings-tap-install-cluster-rolebindi

ng'

\ Creating package resource

| Package install status: Reconciling

Note

Follow the steps in this topic if you do not want to use a profile to install PACKAGE-

NAME. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 207

 Added installed package 'service-bindings' in namespace 'tap-install'

3. Verify the package install by running:

tanzu package installed get service-bindings -n tap-install

Example output:

- Retrieving installation details for service-bindings...

NAME: service-bindings

PACKAGE-NAME: service-bindings.labs.vmware.com

PACKAGE-VERSION: 0.5.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

4. Run the following command:

kubectl get pods -n service-bindings

For example:

$ kubectl get pods -n service-bindings

NAME READY STATUS RESTARTS AGE

manager-6d85fffbcd-j4gvs 1/1 Running 0 22s

Verify that STATUS is Running

Troubleshoot Service Bindings

Collect logs

To help identify issues when troubleshooting, you can retrieve and examine logs from the service

binding manager.

To retrieve pod logs from the manager running in the service-bindings namespace, run:

kubectl -n service-bindings logs -l role=manager

For example:

$ kubectl -n service-bindings logs -l role=manager

2021/11/05 15:25:28 Registering 3 clients

2021/11/05 15:25:28 Registering 3 informer factories

2021/11/05 15:25:28 Registering 7 informers

2021/11/05 15:25:28 Registering 8 controllers

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483823208Z","caller":"logging/nfig

.go:116","message":"Successfully created the logger."}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.48392361Z","caller":"logging/confi

g.go:117","message":"Logging level set to: info"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483999911Z","caller":"logging/conf

ig.go:79","message":"Fetch GitHub commit ID from kodata failed","error":"open /var/run

/ko/HEAD: no such file or directory"}

Tanzu Application Platform v1.0

VMware, Inc 208

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.484035711Z","logger":"webhook","ca

ller":"profiling/server.go:64","message":"Profiling enabled: false"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.522884909Z","logger":"webhook","ca

ller":"leaderelection/context.go:46","message":"Running with Standard leader election"

}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.523358615Z","logger":"webhook","ca

ller":"provisionedservice/controller.go:31","message":"Setting up event handlers."}

...

{"severity":"ERROR","timestamp":"2021-11-17T12:30:24.557178813Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"276.504µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T12:47:04.558217679Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"249.103µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:03:44.558683121Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"177.403µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:20:24.559192644Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"223.203µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:37:04.559648412Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"173.003µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:53:44.56010516Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"182.402µs

","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev/

pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0

/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem\

n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nkn

ative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-2021033106

5221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:10:24.560536033Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"155.603µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

Tanzu Application Platform v1.0

VMware, Inc 209

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:27:04.560960243Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"171.002µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:43:44.56142548Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"179.203µs

","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev/

pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0

/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem\

n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nkn

ative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-2021033106

5221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T15:00:24.561881861Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"167.902µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

Resources

ServiceBinding (servicebinding.io/v1alpha3)

The ServiceBinding resource shape and behavior is defined by the following specification:

apiVersion: servicebinding.io/v1alpha3

kind: ServiceBinding

metadata:

 name: account-db

spec:

 service:

 apiVersion: mysql.example/v1alpha1

 kind: MySQL

 name: account-db

 workload:

 apiVersion: apps/v1

 kind: Deployment

 name: account-service

Services Toolkit

The Services Toolkit comprises the following Kubernetes native components which support the

management, lifecycle, discoverability and connectivity of Service Resources (databases, message

queues, DNS records, etc.) on Kubernetes:

Tanzu Application Platform v1.0

VMware, Inc 210

Service Offering

Service API Projection

Service Resource Replication

Service Resource Claims

To learn more about Services Toolkit, see the Services Toolkit for VMware Tanzu Product

Documentation

Install Services Toolkit

This topic describes how to install Services Toolkit from the Tanzu Application Platform package

repository.

Prerequisites

Before installing Services Toolkit:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Services Toolkit

To install Services Toolkit:

1. See what versions of Services Toolkit are available to install by running:

tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

- Retrieving package versions for services-toolkit.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 services-toolkit.tanzu.vmware.com 0.5.1 2022-03-08T09:00:00Z

2. Install Services Toolkit by running:

tanzu package install services-toolkit -n tap-install -p services-toolkit.tanzu

.vmware.com -v VERSION-NUMBER

Where VERSION-NUMBER is the Services Toolkit version you want to install. For example,

0.5.0.

Note

Follow the steps in this topic if you do not want to use a profile to install Services

Toolkit. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 211

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.5/svc-tlk/GUID-overview.html

3. Verify that the package installed by running:

tanzu package installed get services-toolkit -n tap-install

and checking that the STATUS value is Reconcile succeeded

For example:

$ tanzu package installed get services-toolkit -n tap-install

| Retrieving installation details for services-toolkit...

NAME: services-toolkit

PACKAGE-NAME: services-toolkit.tanzu.vmware.com

PACKAGE-VERSION: 0.5.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Source Controller

Tanzu Source Controller provides a common interface for artifact acquisition. With it, an

ImageRepository resource can resolve source from the contents of an image in an image registry.

This functionality enables app developers to create and update workloads from local source code or

from a code repository.

Tanzu Source Controller extends the functionality of the FluxCD Source Controller Kubernetes

operator. For more information about FluxCD Source Controller, see the fluxcd/source-controller

project on GitHub.

Install Source Controller

This document describes how to install Source Controller from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Source Controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager on the cluster. See Install Prerequisites.

Install

To install Source Controller:

Note

Follow the steps in this topic if you do not want to use a profile to install Source

Controller. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 212

https://github.com/fluxcd/source-controller
#install-prereqs

1. List version information for the package by running:

tanzu package available list controller.source.apps.tanzu.vmware.com --namespac

e tap-install

For example:

$ tanzu package available list controller.source.apps.tanzu.vmware.com --namesp

ace tap-install

- Retrieving package versions for controller.source.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 controller.source.apps.tanzu.vmware.com 0.2.0 2021-09-16T00:00:00Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get controller.source.apps.tanzu.vmware.com/VERSION-NUM

BER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get controller.source.apps.tanzu.vmware.com/0.2.0 --v

alues-schema --namespace tap-install

3. Install the package. Run:

tanzu package install source-controller -p controller.source.apps.tanzu.vmware.

com -v 0.2.0 -n tap-install

For example:

tanzu package install source-controller -p controller.source.apps.tanzu.vmware.

com -v 0.2.0 -n tap-install

/ Installing package 'controller.source.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

- Getting package metadata for 'controller.source.apps.tanzu.vmware.com'

| Creating service account 'source-controller-tap-install-sa'

| Creating cluster admin role 'source-controller-tap-install-cluster-role'

| Creating cluster role binding 'source-controller-tap-install-cluster-rolebind

ing'

\ Creating package resource

| Package install status: Reconciling

 Added installed package 'source-controller' in namespace 'tap-install'

4. Verify the package install by running:

tanzu package installed get source-controller -n tap-install

For example:

tanzu package installed get source-controller -n tap-install

Retrieving installation details for sourcer-controller...

NAME: sourcer-controller

Tanzu Application Platform v1.0

VMware, Inc 213

PACKAGE-NAME: controller.source.apps.tanzu.vmware.com

PACKAGE-VERSION: 0.2.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n source-system

For example:

$ kubectl get pods -n source-system

NAME READY STATUS RESTARTS AGE

source-controller-manager-f68dc7bb6-4lrn6 1/1 Running 0 45h

Verify that STATUS is Running.

Troubleshoot Source Controller

Collecting Logs from Source Controller Manager

To retrieve Pod logs from the controller-manager, run the following command in the source-system

namespace:

kubectl logs -n source-system -l control-plane=controller-manager

For example:

kubectl logs -n source-system -l control-plane=controller-manager

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g E v e n t

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g E v e n t

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g E v e n t

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g C o n t r

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository"}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Contr

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository"}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 3 8 9 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g w o r k e

Tanzu Application Platform v1.0

VMware, Inc 214

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "worker count": 1}

2021-11-18T17:59:43.391Z INFO controller.imagerepository Starting worke

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "worker count": 1}

Source Controller Reference

The following reference documentation exists.

ImageRepository

apiVersion: source.apps.tanzu.vmware.com/v1alpha1

kind: ImageRepository

spec:

 image: registry.example/image/repository:tag

 # optional fields

 interval: 5m

 imagePullSecrets: []

 serviceAccountName: default

ImageRepository resolves source code defined in an Open Container Initiative (OCI) image

repository, exposing the resulting source artifact at a URL defined by .status.artifact.url.

The interval determines how often to check tagged images for changes. Setting this value too high

will result in delays in discovering new sources, while setting it too low may trigger a registry’s rate

limits.

Repository credentials can be defined as image pull secrets. You can reference them either directly

from the resources at .spec.imagePullSecrets or attach them to a service account referenced at

.spec.serviceAccountName. The default service account name "default" is used if not otherwise

specified. The default credential helpers for the registry are also used, for example, pulling from

Google Container Registry (GCR) on a Google Kubernetes Engine (GKE) cluster.

Developer Conventions for Tanzu Application Platform

Overview

Developer Conventions is a set of conventions that enable your workloads to support live-update

and debug operations. It is used alongside the Tanzu CLI Apps plug-in and the Tanzu Dev Tools for

VSCode IDE extension.

Features

Enabling Live Updates

Developer Conventions modifies your workload to enable live updates in either of the following

situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --live-

update=true. For more information about how to deploy a workload with the CLI, see Tanzu

Tanzu Application Platform v1.0

VMware, Inc 215

apps workload apply.

You deploy a workload by using the Tanzu: Live Update Start option through the Tanzu

Dev Tools for VSCode extension. For more information about live updating with the Tanzu

Dev Tools extension, see Using Tanzu Dev Tools to get started.

When either of the preceding actions take place, the convention behaves as follows:

1. Looks for the apps.tanzu.vmware.com/live-update=true annotation on a PodTemplateSpec

associated with a workload.

2. Verifies that the image to which conventions are applied contains a process that can be live

updated.

3. Adds annotations to the PodTemplateSpec to modify the Knative properties minScale &

maxScale such that the minimum and maximum number of Pods is 1. This ensures the

eventual running Pod is not scaled down to 0 during a live update session.

After these changes are made, you can use the Tanzu Dev Tools extension or the Tilt CLI to make

live update changes to source code directly on the cluster.

Enabling debugging

Developer Conventions modifies your workload to enable debugging in either of the following

situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --

debug=true. For more information about how to deploy a workload with the CLI, see Tanzu

apps workload apply.

You deploy a workload by using the Tanzu Java Debug Start option through the Tanzu Dev

Tools for VSCode extension. For more information about debugging with the Tanzu Dev

Tools extension, see Using Tanzu Dev Tools to get started.

When either of the preceding actions take place, the convention behaves as follows:

1. It looks for the apps.tanzu.vmware.com/debug=true annotation on a PodTemplateSpec

associated with a workload.

2. It checks for the debug-8 or debug-9 labels on the image configuration’s bill of materials

(BOM).

3. It sets the TimeoutSeconds of the Liveness, Readiness, and Startup probes to 600 if

currently set to a lower number.

4. It adds annotations to the PodTemplateSpec to modify the Knative properties minScale &

maxScale such that the minimum and maximum number of Pods is 1. This ensures the

eventual running Pod won’t be scaled down to 0 during a debug session.

After these changes are made, you can use the Tanzu Dev Tools extension or other CLI-based

debuggers to debug your workload directly on the cluster.

Note

: Currently, Developer Conventions only supports debug operations for Java

applications.

Tanzu Application Platform v1.0

VMware, Inc 216

Next steps

Install Developer Conventions

Install Developer Conventions

This document describes how to install Developer Conventions from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Developer Conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Convention Service.

Install

To install Developer Conventions:

1. Get the exact name and version information for the Developer Conventions package to be

installed by running:

tanzu package available list developer-conventions.tanzu.vmware.com --namespace

 tap-install

For example:

$ tanzu package available list developer-conventions.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for developer-conventions.tanzu.vmware.com

 NAME VERSION RELEASED-AT

 developer-conventions.tanzu.vmware.com 0.3.0 2021-10-19T00:00:00Z

2. Install the package by running:

tanzu package install developer-conventions \

 --package-name developer-conventions.tanzu.vmware.com \

 --version 0.3.0 \

 --namespace tap-install

3. Verify the package install by running:

Note

Follow the steps in this topic if you do not want to use a profile to install Developer

Conventions. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 217

tanzu package installed get developer-conventions --namespace tap-install

For example:

tanzu package installed get developer-conventions -n tap-install

| Retrieving installation details for developer-conventions...

NAME: developer-conventions

PACKAGE-NAME: developer-conventions.tanzu.vmware.com

PACKAGE-VERSION: 0.3.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Resource limits

The following resource limits are set on the Developer Conventions service:

resources:

 limits:

 c p u : 1 0 0 m

 m e m o r y : 2 5 6 M i

 requests:

 c p u : 1 0 0 m

 m e m o r y : 2 0 M i

Uninstall

To uninstall Developer Conventions, follow the guide for Uninstalling Tanzu Application Platform

packages. The package name for developer conventions is developer-conventions.

Learning Center for Tanzu Application Platform

Overview

Learning Center provides a platform for creating and self-hosting workshops. It allows content

creators to create workshops from markdown files that are displayed to the learner in a terminal shell

environment with an instructional wizard UI. The UI can embed slide content, an integrated

development environment (IDE), a web console for accessing the Kubernetes cluster, and other

custom web applications.

Although Learning Center requires Kubernetes to run, and is used to teach users about Kubernetes,

you can use it to host training for other purposes as well. For example, you can use it to help train

users in web-based applications, use of databases, or programming languages, where the user has

no interest or need for Kubernetes.

Use cases

Use case scenarios that Learning Center supports include:

Tanzu Application Platform v1.0

VMware, Inc 218

Supervised workshops. For example, a workshop run at a conference, at a customer site, or

online. The workshop has a set time period and you know the maximum number of users to

expect. After the training is complete, the Kubernetes cluster created for the workshop is

destroyed.

Temporary learning portal. This is for when you must provide access to a small set of

workshops for a short duration for hands on demos at a conference vendor booth. Users

select which topic they want to learn about and do that workshop. The workshop instance is

created on demand. When they have finished the workshop, that workshop instance is

destroyed to free up resources. After the conference has finished, the Kubernetes cluster is

destroyed.

Permanent learning portal. Similar to the temporary learning portal, but runs on an extended

basis as a public website where anyone can come and learn at any time.

Personal training or demos. This is where anyone who wants to run a workshop on their own

Kubernetes cluster to learn that topic, or where a product demo was packaged up as a

workshop and they want to use it to demonstrate the product to a customer. The workshop

environment can be destroyed when complete, but there is no need for the cluster to be

destroyed.

When running workshops, wherever possible a shared Kubernetes cluster reduces the amount of

setup required. This works for developer-focused workshops as it is usually not necessary to provide

elevated access to the Kubernetes cluster, and role-based access controls (RBAC) can be used to

prevent users from interfering with each other. Quotas can also be set so that users are restricted to

how much resources they can use.

When needing to run workshops that deal with cluster operations, for which users need cluster

admin access, a separate cluster is created for each user. Learning Center doesn’t deal with

provisioning clusters, only with deploying a workshop environment in a cluster after it exists.

Use case requirements

In implementing to the preceding scenarios, the primary requirements related to creation of

workshop content, and what can be done at runtime, are as follows:

Everything for the workshop must be stored in a Git repository, with no dependency on

using a special web application or service to create a workshop.

Use GitHub as a means to distribute workshop content. Alternatively, you can distribute the

workshop as a container image. The latter is necessary if special tools must be installed for

use in a workshop.

Provide instructions to the user to complete the workshop as Markdown or AsciiDoc files.

Instructions can be annotated as executable commands so that when clicked in the workshop

dashboard, they execute for the user in the appropriate terminal to avoid mistakes when

commands are entered manually.

Text can be annotated as copyable so when clicked in the workshop dashboard, it is copied

into the browser paste buffer ready for pasting into the terminal or other web application.

Provide each user access to one or more namespaces in the Kubernetes cluster unique to

their session. For Kubernetes based workshops, this is where applications are deployed as

Tanzu Application Platform v1.0

VMware, Inc 219

part of the workshop.

Additional Kubernetes resources specific to a workshop session can be created in advance of

the session. This enables the deployment of applications for each user session.

Additional Kubernetes resources common to all workshop sessions can be deployed when

the workshop environment is first created. This enables deployment of applications shared by

all users.

Apply resource quotas on each workshop session to control how much resources users can

consume.

Apply role-based access control (RBAC) on each workshop session to control what users can

do.

Provide access to an editor (IDE) in the workshop dashboard in the web browser for users to

edit files during the workshop.

Provide access to a web-based console for accessing the Kubernetes cluster. Use of the

Kubernetes dashboard or Octant is supported.

Ability to integrate additional web-based applications into the workshop dashboard specific to

the topic of the workshop.

Ability for the workshop dashboard to display slides used by an instructor in support of the

workshop.

Platform architectural overview

The Learning Center relies on a Kubernetes Operator to perform the bulk of the work. The actions

of the operator are controlled by using a set of custom resources specific to the Learning Center.

There are multiple ways of using the custom resources to deploy workshops. The primary way is to

create a training portal, which in turn then triggers the setup of one or more workshop

environments, one for each distinct workshop. When users access the training portal and select the

workshop they want to do, the training portal allocates to that user a workshop session (creating one

if necessary) against the appropriate workshop environment, and the user is redirected to that

workshop session instance.

Tanzu Application Platform v1.0

VMware, Inc 220

You can associate each workshop session with one or more Kubernetes namespaces specifically for

use during that session. Role based access control (RBAC) applied to the unique Kubernetes service

account for that session ensures that the user can only access the namespaces and other resources

that they are allowed to for that workshop.

In this scenario, the custom resource types that come into play are:

Workshop - Provides the definition of a workshop. Preloaded by an admin into the cluster, it

defines where the workshop content is hosted, or the location of a container image which

bundles the workshop content and any additional tools required for the workshop. The

definition also lists additional resources that must be created which are to be shared between

all workshop sessions, or for each session, with details of resources quotas and access roles

required by the workshop.

TrainingPortal - Created by an admin in the cluster to trigger the deployment of a training

portal. The training portal can provide access to one or more distinct workshops defined by a

Workshop resource. The training portal provides a web based interface for registering for

workshops and accessing them. It also provides a REST API for requesting access to

workshops, allowing custom front ends to be created which integrate with separate identity

providers and which provide an alternate means for browsing and accessing workshops.

WorkshopEnvironment - Used by the training portal to trigger the creation of a workshop

environment for a workshop. This causes the operator to set up a namespace for the

workshop into which shared resources are deployed, and where the workshop sessions are

run.

WorkshopSession - Used by the training portal to trigger the creation of a workshop session

against a specific workshop environment. This causes the operator to set up any namespaces

specific to the workshop session and pre-create additional resources required for a workshop

session. Workshop sessions can either be created up front in reserve, to be handed out

when requested, or created on demand.

Next steps

Tanzu Application Platform v1.0

VMware, Inc 221

Learn more about:

Workshops

Getting Started with Learning Center

Installing Learning Center

Local Install Guides

Install Learning Center

Install Learning Center

This document describes how to install Learning Center from the Tanzu Application Platform

package repository.

To install Tanzu Learning Center, see the following sections.

For general information about Learning Center, see Learning Center. For information about

deploying Learning Center operator, see Learning Center operator.

Prerequisites

Before installing Learning Center:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

The cluster must have an ingress router configured. If you have installed the TAP package

through the full profile or light profile, it already deploys a contour ingress controller.

The operator, when deploying instances of the workshop environments, needs to be able to

expose them through an external URL for access. For the custom domain you are using,

DNS must have been configured with a wildcard domain to forward all requests for sub-

domains of the custom domain to the ingress router of the Kubernetes cluster.

By default, the workshop portal and workshop sessions are accessible over HTTP

connections. If you wish to use secure HTTPS connections, you must have access to a

wildcard SSL certificate for the domain under which you wish to host the workshops. You

cannot use a self-signed certificate.

Any ingress routes created use the default ingress class if you have multiple ingress class

types available and you need to override which is used.

Install

Note

Follow the steps in this topic if you do not want to use a profile to install Learning

Center. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 222

To install Learning Center:

1. List version information for the package by running:

tanzu package available list learningcenter.tanzu.vmware.com --namespace tap-in

stall

Example output:

 NAME VERSION RELEASED-AT

 learningcenter.tanzu.vmware.com 0.1.0 2021-12-01 08:18:48 -0500 EDT

2. (Optional) See all the configurable parameters on this package by running:

Remember to change the 0.x.x version

tanzu package available get learningcenter.tanzu.vmware.com/0.x.x --values-sche

ma --namespace tap-install

3. Create a config file named learning-center-config.yaml.

4. Add the parameter ingressDomain to learning-center-config.yaml, as in this example:

ingressDomain: YOUR-INGRESS-DOMAIN

Where YOUR-INGRESS-DOMAIN is the domain name for your Kubernetes cluster.

When deploying workshop environment instances, the operator must be able to expose the

instances through an external URL. This access is needed to discover the domain name that

can be used as a suffix to hostnames for instances.

For the custom domain you are using, DNS must have been configured with a wildcard

domain to forward all requests for sub-domains of the custom domain to the ingress router of

the Kubernetes cluster.

If you are running Kubernetes on your local machine using a system such as minikube and

you don’t have a custom domain name that maps to the IP for the cluster, you can use a

nip.io address. For example, if minikube ip returns 192.168.64.1, you can use the

192.168.64.1.nip.io domain. You cannot use an address of form 127.0.0.1.nip.io or

subdomain.localhost. This will cause a failure. Internal services needing to connect to each

other will connect to themselves instead because the address would resolve to the host

loopback address of 127.0.0.1.

5. Add the ingressSecret to learning-center-config.yaml, as in this example:

ingressSecret:

 certificate: |

 -----BEGIN CERTIFICATE-----

 MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

 ...

 dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

 -----END CERTIFICATE-----

 privateKey: |

 -----BEGIN PRIVATE KEY-----

 MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

Tanzu Application Platform v1.0

VMware, Inc 223

 ...

 IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

 -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshop: -

Create the learningcenter namespace manually or the one you defined - Copy the tls secret

to the learningcenter namespace or the one you defined and use the secretName property

as in this example:

ingressSecret:

 secretName: workshops.example.com-tls

By default, the workshop portal and workshop sessions are accessible over HTTP

connections.

To use secure HTTPS connections, you must have access to a wildcard SSL certificate for the

domain under which you want to host the workshops. You cannot use a self-signed

certificate.

Wildcard certificates can be created using letsencrypt https://letsencrypt.org/_. After you

have the certificate, you can define the certificate and privateKey properties under the

ingressSecret property to specify the certificate on the configuration yaml.

6. Any ingress routes created use the default ingress class. If you have multiple ingress class

types available, and you need to override which is used, define the ingressClass property in

learning-center-config.yaml before deploying any workshop:

ingressClass: contour

7. Install Learning Center operator by running:

Remember to change the 0.x.x version

tanzu package install learning-center --package-name learningcenter.tanzu.vmwar

e.com --version 0.x.x -f learning-center-config.yaml

The command above will create a default namespace in your Kubernetes cluster called

learningcenter, and the operator, along with any required namespaced resources, is

created in it. A set of custom resource definitions and a global cluster role binding are also

created.

You can check that the operator deployed successfully by running:

kubectl get all -n learningcenter

The pod for the operator should be marked as running.

Procedure to install the Self-Guided Tour Training Portal and
Workshop

To install the Self-Guided Tour Training Portal and Workshop:

1. Make sure you have the workshop package installed by running:

Tanzu Application Platform v1.0

VMware, Inc 224

https://letsencrypt.org/

tanzu package available list workshops.learningcenter.tanzu.vmware.com --namesp

ace tap-install

2. Install the Learning Center Training Portal with the Self-Guided Tour Workshop by running:

Remember to change the 0.x.x version

tanzu package install learning-center-workshop --package-name workshops.learnin

gcenter.tanzu.vmware.com --version 0.x.x -n tap-install

3. Check the Training Portals available in your environment by running:

kubectl get trainingportals

Example output:

Supported Learning Center Values Configuration

Admins are provided the following sample learning-center-config.yaml file to see the possible

configurations supported by Learning Center. These configurations are additional ones that admins

can provide to the operator resource but are by no means necessary for Learning Center to work. It

is enough to follow the previous instructions on this page for Learning Center to run.

It is important to note that Learning Center has default values in place for the learning-center-

config.yaml file. Admins only need to provide the values they want to override. As in the example

above, overriding the ingressDomain property is enough to get Learning Center to work.

#! The namespace in which to deploy Learning Center. For now this must be "learningcen

ter" as

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. This must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

 certificate: null

 privateKey: null

 secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. You might need to set storage group

#! where a cluster has pod security policies enabled, usually

#! to one. Set storage user and storage group in exceptional cases

#! where storage class uses maps to NFS storage and storage server requires

#! that a specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified,

#! random passwords are generated that you can obtain from the custom resource

#! for the training portal.

portalCredentials:

Tanzu Application Platform v1.0

VMware, Inc 225

 systemAdmin:

 username: learningcenter

 password: null

 clientAccess:

 username: robot@learningcenter

 password: null

#! Container image versions for various components of Learning Center. The Learning Ce

nter

#! operator needs to be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! Prepull images to nodes in cluster. Should be an empty list if no images

#! should be prepulled. Normally you would only want to prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

 networkMTU: 1500

 proxyCache:

 remoteURL: null

 username: null

 password: null

#! Used to restrict access to IP addresses or IP subnets. This must be a CIDR block ra

nge corresponding to the subnet or a portion of a

#! subnet you want to block. A Kubernetes `NetworkPolicy` is used to enforce the restr

iction. So the

#! Kubernetes cluster must use a network layer supporting network policies, and the ne

cessary Kubernetes

#! controllers supporting network policies must be enabled when the cluster is install

ed.

network:

 blockCIDRs:

 - 169.254.169.254/32

 - fd00:ec2::254/128

See Restricting Network Access for more information on blocking CIDRs.

Learning Center workshops

The Learning Center workshop dashboard comprises a set of workshop instructions on the left-hand

side and a series of tabbed views on the right-hand side. For workshops requiring commands to be

run, one or more terminal shells are provided. More detailed information about Workshops including

creating your own: Creating Learning Center Workshops

Tanzu Application Platform v1.0

VMware, Inc 226

The terminals provide access to the editors vi and nano. To provide a UI based editor, you can

enable the embedded editor view and use the embedded IDE based on VS Code.

To complement the workshop instructions, or to be available for use by the instructor, you can

include slides with a workshop. For slides you can use HTML based slide presentation tools such as

reveal.js, or you can embed a PDF file.

Tanzu Application Platform v1.0

VMware, Inc 227

If the workshop involves working with Kubernetes, you can enable a web console for accessing the

Kubernetes cluster. The default web console uses the Kubernetes dashboard.

Alternatively, you can enable Octant as the web console.

Tanzu Application Platform v1.0

VMware, Inc 228

Getting started with Learning Center

To view information about Learning Center, see Learning Center for Tanzu Application Platform.

Before deploying workshops, install a Kubernetes Operator for Learning Center. The operator

manages the setup of the environment for each workshop and deploys instances of a workshop for

each person.

For information about installing Learning Center, see Install Learning Center.

Other useful information about getting started with Learning Center:

Learning Center operator

Deleting an operator

Workshops

TrainingPortal

Learning Center operator

Before deploying workshops, install a Kubernetes operator for Learning Center. The operator

manages the setup of the environment for each workshop and deploys instances of a workshop for

each person.

For basic information about installing the operator, see Install Learning Center.

Installing and setting up Learning Center operator

The following is additional information about installing and setting up the Learning Center operator.

The Learning Center operator can be deployed to any Kubernetes cluster supporting custom

resource definitions and the concept of operators. The cluster must have an ingress router

configured, though only a basic deployment of the ingress controller is usually required. You do not

need to configure the ingress controller to handle cluster wide edge termination of secure HTTP

connections. Learning Center creates Kubernetes Ingress resources and supplies any secret for use

Tanzu Application Platform v1.0

VMware, Inc 229

with secure HTTP connections for each ingress.

For the ingress controller, VMware recommends the use of Contour over alternatives such as nginx.

An nginx-based ingress controller has a less than optimal design. Every time a new ingress is

created or deleted, the nginx config is reloaded. This causes websocket connections to terminate

after a period of time. Learning Center terminals reconnect automatically in the case of the

websocket connection being lost. However, not all applications you might use with specific

workshops can handle loss of websocket connections so gracefully, and they might be impacted due

to the use of an nginx ingress controller. This problem is not specific to Learning Center. It can

impact any application when an nginx ingress controller is used frequently and ingresses are created

or deleted frequently.

You can use a hosted Kubernetes solution from an IaaS provider such as Google, AWS, or Azure. If

you do, as needed, increase any HTTP request timeout specified on the inbound load balancer for

the ingress controller so that long-lived websocket connections can be used. In some cases, load

balancers of hosted Kubernetes solutions only have a 30-second timeout. If possible, configure the

timeout applying to websockets to be 1 hour.

If you deploy the web-based training portal, the cluster must have available persistent volumes of

type ReadWriteOnce (RWO). A default storage class should have been defined so that persistent

volume claims do not need to specify a storage class. For some Kubernetes distributions, including

from IBM, it is necessary to configure Learning Center as to what user and group must be used for

persistent volumes. If no default storage class is specified, or a specified storage class is required,

you can configure Learning Center with the name of the storage class.

To install the Learning Center operator, you must have cluster admin access.

Cluster pod security policies

The Learning Center operator defines pod security policies to limit what users can do from

workshops when deploying workloads to the cluster. The default policy prohibits running of images

as the root user or using a privileged pod. Specified workshops can relax these restrictions and

apply a policy that enables additional privileges required by the workshop.

VMware recommends that the pod security policy admission controller be enabled for the cluster to

ensure that the pod security policies are applied. If the admission controller is not enabled, users can

deploy workloads that run as the root user in a container, or run privileged pods.

If you are unable to enable the pod security policy admission controller, you should only provide

access to workshops deployed using the Learning Center operator to users you trust.

Whether the absence of the pod security policy admission controller causes issues with access to

persistent volumes depends on the cluster. Although minikube does not enable the pod security

policy admission controller, it works as persistent volumes when mounted to give write permissions

to all users.

No matter whether pod security policies are enabled, individual workshops must be reviewed as to

what added privileges they grant before allowing their use in a cluster.

Specifying the ingress domain

When deploying instances of workshop environments, the operator must expose the instances by

Tanzu Application Platform v1.0

VMware, Inc 230

using an external URL for access to define the domain name that is used as a suffix to host names for

instances.

Note: For the custom domain you are using, configure your DNS with a wildcard domain to forward

all requests for subdomains of the custom domain to the ingress router of the Kubernetes cluster.

Note: For the custom domain you are using, DNS must have been configured with a wildcard

domain to forward all requests for subdomains of the custom domain to the ingress router of the

Kubernetes cluster.

VMware recommends that you avoid using a .dev domain name because such domain names

require using HTTPS and not HTTP. Although you can provide a certificate for secure connections

under the domain name for use by Learning Center, this doesn’t extend to what a workshop may do.

If workshop instructions require that you create ingresses in Kubernetes using HTTP only, a .dev

domain name cannot work.

Note: If you are running Kubernetes on your local machine using a system such as minikube and

you don’t have a custom domain name that maps to the IP address for the cluster, you can use a

nip.io address. For example, if minikube ip returned 192.168.64.1, you can use the

192.168.64.1.nip.io domain. You cannot use an address of form 127.0.0.1.nip.io, or

subdomain.localhost. This causes a failure as internal services needing to connect to each other

end up connecting to themselves instead, because the address resolves to the host loopback

address of 127.0.0.1.

ingressDomain: learningcenter.my-domain.com

Set the environment variable manually

Set the INGRESS_DOMAIN environment variable on the operator deployment. To set the

INGRESS_DOMAIN environment variable, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=te

st

Where test is the domain name for your Kubernetes cluster.

Or if using a nip.io address:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

Use of environment variables to configure the operator is a shortcut for a simple use. VMware

recommends using Tanzu CLI, or for more complicated scenarios, you can use the SystemProfile

custom resource.

Enforcing secure connections

By default, the workshop portal and workshop sessions are accessible over HTTP connections. To

use secure HTTPS connections, you must have access to a wildcard SSL certificate for the domain

under which you want to host the workshops. You cannot use a self-signed certificate.

You can create Wildcard certificates by using letsencrypt <https://letsencrypt.org/>. After you

Tanzu Application Platform v1.0

VMware, Inc 231

have the certificate, you can define it as follows.

Configuration YAML

The easiest way to define the certificate is with the configuration passed to Tanzu CLI. So define the

certificate and privateKey properties under the ingressSecret property to specify the certificate

on the configuration YAML passed to Tanzu CLI:

ingressSecret:

 certificate: |

 -----BEGIN CERTIFICATE-----

 MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

 ...

 dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

 -----END CERTIFICATE-----

 privateKey: |

 -----BEGIN PRIVATE KEY-----

 MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

 ...

 IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

 -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshops:

1. Create the learningcenter namespace manually or the one you defined.

2. Copy the TLS secret to the learningcenter namespace or to the one you defined, and use

the secretName property as in this example:

ingressSecret:

 secretName: workshops.example.com-tls

Create the TLS secret manually

To add the certificate as a secret in the learningcenter namespace or in the one you defined, the

secret must be of type tls. You can create it using the kubectl create secret tls command:

kubectl create secret tls -n learningcenter workshops.example.com-tls --cert=workshops

.example.com/fullchain.pem --key=workshops.example.com/privkey.pem

Having created the secret, if it is the secret corresponding to the default ingress domain you

specified earlier, set the INGRESS_SECRET environment variable. This way you won’t use the

configuration passed to Tanzu CLI on the operator deployment. This ensures the secret is applied

automatically to any ingress created:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_SECRET=wo

rkshops.example.com-tls

If the certificate isn’t that of the default ingress domain, you can supply the domain name and name

of the secret when creating a workshop environment or training portal. In either case, you must

create secrets for the wildcard certificates in the learningcenter namespace or the one that you

defined.

Tanzu Application Platform v1.0

VMware, Inc 232

Specifying the ingress class

Any ingress routes created use the default ingress class. If you have multiple ingress class types

available, and you must override which is used, you can define the ingressClass property on the

configuration YAML as follows.

Configuration YAML

Define the ingressClass property on the configuration YAML passed to Tanzu CLI:

ingressClass: contour

Set the environment variable manually

Set the INGRESS_CLASS environment variable for the learningcenter operator:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_CLASS=con

tour

This applies only to the ingress created for the training portal and workshop sessions. It does not

apply to the any ingress created from a workshop as part of the workshop instructions.

This can be necessary when a specific ingress provider is not reliable in maintaining websocket

connections. For example, in the case of the nginx ingress controller when there are frequent

creation or deletions of ingresses occurring in the cluster. See the earlier section, Installing and

setting up Learning Center operator.

Trusting unsecured registries

One of the options available for workshops is to automatically deploy a container image registry each

workshop session. When the Learning Center operator is configured to use a secure ingress with

valid wildcard certificate, the image registry works out of the box.

If the Learning Center operator is not set up to use secure ingress, the image registry is accessed

over HTTP and is regarded as not secure.

When using the optional support for building container images using docker, the docker daemon

deployed for the workshop session is configured for the image registry being not secure yet pushing

images to the image registry still works.

In this case of an image registry that is not secure, deploying images from the image registry to the

Kubernetes cluster does not work unless the Kubernetes cluster is configured to trust the registry

that is not secure.

How you configure a Kubernetes cluster to trust an unsecured registry varies based on how the

Kubernetes cluster is deployed and what container runtime it uses.

If you are using minikube with dockerd, to ensure that the registry is trusted, you must set up the

trust the first time you create the minikube instance.

To do this, first determine which IP subnet minikube uses for the inbound ingress router of the

cluster. If you already have a minikube instance running, you can determine this by running

minikube ip. If, for example, this reported 192.168.64.1, the subnet used is 129.168.64.0/24.

Tanzu Application Platform v1.0

VMware, Inc 233

With this information, when you create a fresh minikube instance, you must supply the --insecure-

registry option with the subnet:

minikube start --insecure-registry="129.168.64.0/24"

This option tells dockerd to regard as not secure any image registry deployed in the Kubernetes

cluster and accessed through a URL exposed using an ingress route of the cluster itself.

Currently, there is no way to configure containerd to treat as not secure image registries that match

a wildcard subdomain or reside in a subnet. It is therefore not possible to run workshops that must

deploy images from the per session image registry when using containerd as the underlying

Kubernetes cluster container runtime. This is a limitation of containerd, and there are no known

plans for containerd to support this ability. This limits your ability to use Kubernetes clusters

deployed with a tool such as kind, which relies on using containerd.

Deleting Learning Center

Follow these steps to delete Learning Center:

1. Delete all current workshop environments by running:

kubectl delete workshops,trainingportals,workshoprequests,workshopsessions,work

shopenvironments --all

Note: Ensure the Learning Center operator is still running when running this command.

2. Verify you have deleted all current workshop environments by running:

kubectl get workshops,trainingportals,workshoprequests,workshopsessions,worksho

penvironments --all-namespaces

Note: This command does not delete the workshops in the

workshops.learningcenter.tanzu.vmware.com package.

3. Uninstall the Learning Center package by running:

tanzu package installed delete {NAME_OF_THE_PACKAGE} -n tap-install

Note: This command also removes the added custom resource definitions and the

learningcenter namespace.

Note: If you have installed the Tanzu Application Platform package, Learning Center will be

recreated.

4. To remove the Learning Center package, add the following lines to your tap-values file.

excluded_packages:

- learningcenter.tanzu.vmware.com

- workshops.learningcenter.tanzu.vmware.com

Learning Center Workshops

Tanzu Application Platform v1.0

VMware, Inc 234

Workshops are where you create your content. You can create a workshop for individual use or

group multiple workshops together with a Training Portal. The following helps you get started with

workshops. For more detailed instructions, go to Working with Learning Center Workshops

Creating the workshop environment

With the definition of a workshop already in existence, the first step to deploying a workshop is to

create the workshop environment.

To create the workshop environment run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-envi

ronment.yaml

This results in a custom resource being created called WorkshopEnvironment:

workshopenvironment.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

The custom resource created is cluster-scoped, and the command needs to be run as a cluster

admin or other appropriate user with permission to create the resource.

The Learning Center Operator reacts to the creation of this custom resource and initializes the

workshop environment.

For each distinct workshop environment, a separate namespace is created. This namespace is used

to hold the workshop instances. The namespace may also be used to provision any shared

application services the workshop definition describes which would be used across all workshop

instances. Such shared application services are automatically provisioned by the Learning Center

Operator when the workshop environment is created.

You can list the workshop environments which have been created by running:

kubectl get workshopenvironments

This results in the output:

NAME NAMESPACE WORKSHOP IMAGE

 URL

lab-k8s-fundamentals lab-k8s-fundamentals lab-k8s-fundamentals {YOUR-REGISTRY-UR

L}/lab-k8s-fundamentals:main {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

Additional fields give the name of the workshop environment, the namespace created for the

workshop environment, and the name of the workshop the environment was created from.

Requesting a workshop instance

To request a workshop instance, a custom resource of type WorkshopRequest needs to be created.

This is a namespaced resource allowing who can create them to be delegated using role-based

access controls. Further, in order to be able to request an instance of a specific workshop, you need

to know the secret token specified in the description of the workshop environment. If necessary,

raising requests against a specific workshop environment can also be constrained to a specific set of

namespaces on top of any defined role-based access control (RBAC) rules.

Tanzu Application Platform v1.0

VMware, Inc 235

In the context of an appropriate namespace, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-requ

est.yaml

This should result in the output:

workshoprequest.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

You can list the workshop requests in a namespace by running:

kubectl get workshoprequests

This displays output similar to:

NAME URL USERNAME PASSWORD

lab-k8s-fundamentals http://lab-k8s-fundamentals-cvh51.test learningcenter buQ

OgZvfHM7m

The additional fields provide the URL where the workshop instance can be accessed and the

username and password for you to provide when prompted by your web browser.

The user name and password only come into play when you use the lower-level resources to set up

workshops. If you use the TrainingPortal custom resource, you will see that these fields are empty.

This is because, for that case, the workshop instances are deployed so that they rely on user

registration and access mediated by the web-based training portal. Visiting the URL for a workshop

instance directly when using TrainingPortal, redirects you back to the web portal in order to log in

if necessary.

You can monitor the progress of this workshop deployment by listing the deployments in the

namespace created for the workshop environment:

kubectl get all -n lab-k8s-fundamentals

For each workshop instance a separate namespace is created for the session. This is linked to the

workshop instance, and is where any applications are deployed as part of the workshop. If the

definition of the workshop includes a set of resources that should be automatically created for each

session namespace, they are created by the Learning Center Operator. It is therefore possible to

pre-deploy applications for each session.

In this case, we used WorkshopRequest; whereas when using TrainingPortal, we created a

WorkshopSession. The workshop request does result in creating a WorkshopSession, but

TrainingPortal skips the workshop request and directly creates a WorkshopSession.

The purpose of having WorkshopRequest as a separate custom resource is to allow RBAC and other

controls to be used to allow non-cluster administrators to create workshop instances.

Deleting the workshop instance

When you have finished with the workshop instance, you can delete it by deleting the custom

resource for the workshop request:

Tanzu Application Platform v1.0

VMware, Inc 236

kubectl delete workshoprequest/lab-k8s-fundamentals

Deleting the workshop environment

If you want to delete the whole workshop environment, it is recommended to first delete all

workshop instances. Once this has been done, you can then delete the custom resource for the

workshop environment:

kubectl delete workshopenvironment/lab-k8s-fundamentals

If you don’t delete the custom resources for the workshop requests, the workshop instances are still

cleaned up and removed when the workshop environment is removed. The custom resources for

the workshop requests still remain, however,

and need to be deleted separately.

TrainingPortal

Working with multiple workshops

The quickest way to deploy a set of workshops to use in a training session is to deploy a

TrainingPortal. This deploys a set of workshops with one instance of each workshop for each

attendee. A web-based portal is provided for registering attendees and allocating them to

workshops.

The TrainingPortal custom resource provides a high-level mechanism for creating a set of

workshop environments and populating it with workshop instances. When the Learning Center

operator processes this custom resource, it creates other custom resources to trigger the creation of

the workshop environment and the workshop instances. If you want more control, you can use these

latter custom resources directly instead.

Loading the workshop definition

A custom resource of type Workshop describes each workshop. Before you can create a workshop

environment, you must load the definition of the workshop.

Here is an example Workshop custom resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-k8s-fundamentals

spec:

 title: Kubernetes Fundamentals

 description: Workshop on getting started with Kubernetes

 url: {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

 vendor: learningcenter.io

 authors:

 - Graham Dumpleton

 difficulty: intermediate

 duration: 1h

 tags:

Tanzu Application Platform v1.0

VMware, Inc 237

 - kubernetes

 content:

 image: projects.registry.vmware.com/learningcenter/lab-k8s-fundamentals:latest

 session:

 namespaces:

 budget: medium

 applications:

 terminal:

 enabled: true

 layout: split

 console:

 enabled: true

 editor:

 enabled: true

To load the definition of the workshop, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or

other appropriate user with permission to create the resource.

If successfully loaded, the command outputs:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

To list the workshop definitions that have been loaded and that can be deployed, run:

kubectl get workshops

For this workshop, this outputs:

NAME IMAGE FILES URL

lab-k8s-fundamentals {YOUR-REGISTRY-URL}/lab-k8s-fundamentals:main {YOUR-GIT-

REPO-URL}/lab-k8s-fundamentals

The added fields in this case give:

The name of the custom workshop container image deployed for the workshop.

A URL for more information about the workshop.

The definition of a workshop is loaded as a step of its own, rather than referring to a remotely hosted

definition. This allows a cluster admin to audit the workshop definition to ensure it isn’t doing

something the cluster admin doesn’t want to allow. After the cluster admin approves the workshop

definition, it can be used to create instances of the workshop.

Creating the workshop training portal

To deploy a workshop for one or more users, use the TrainingPortal custom resource. This custom

resource specifies a set of workshops to be deployed and the number of people taking the

workshops.

The TrainingPortal custom resource we use in this example is:

Tanzu Application Platform v1.0

VMware, Inc 238

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-k8s-fundamentals

spec:

 workshops:

 - name: lab-k8s-fundamentals

 capacity: 3

 reserved: 1

 expires: 1h

 orphaned: 5m

To create the custom resource, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/training-port

al.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or

other appropriate user with permission to create the resource.

This results in the output:

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

There is actually much more going on than this. To see all the resources created, run:

kubectl get learningcenter-training -o name

You should see:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

workshopenvironment.learningcenter.tanzu.vmware.comlab-k8s-fundamentals-w01

workshopsession.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals-w01-s001

In addition to the original Workshop custom resource providing the definition of the workshop, and

the TrainingPortal custom resource you just created, you’ve also created the WorkshopEnvironment

and WorkshopSession custom resources.

The WorkshopEnvironment custom resource sets up the environment for a workshop, including

deploying any application services that must exist and are shared by all workshop instances.

The WorkshopSession custom resource results in the creation of a single workshop instance.

To see a list of the workshop instances created and their details, run:

kubectl get workshopsessions

This yields output similar to:

NAME URL USERNAME

 PASSWORD

lab-k8s-fundamentals-w01-s001 http://lab-k8s-fundamentals-w01-s001.test

Only one workshop instance is created. Though the maximum capacity is set to three, the reserved

Tanzu Application Platform v1.0

VMware, Inc 239

number of instances (hot spares) is defined as one. Additional workshops instances are only created

as workshop sessions are allocated to users. One reserved instance is always maintained until

capacity is reached.

If you need a different number of workshop instances, set the portal.capacity field of the

TrainingPortal custom resource YAML input file before creating the resource. Changing the values

after the resource is created has no effect.

In this case, only one workshop is listed to be hosted by the training portal. You can deploy more

than one workshop at the same time by adding the names of other workshops to workshops.

The first time you deploy the workshop, it can take a few moments to pull down the workshop image

and start.

To access the workshops, attendees of a training session need to visit the web-based portal for the

training session. Find the URL for the web portal by running:

kubectl get trainingportals

This should yield output similar to:

NAME URL ADMINUSERNAME ADMINPASSWO

RD

lab-k8s-fundamentals https://lab-k8s-fundamentals-ui.test learningcenter mGI

2C1TkHEBoFgKiZetxMnwAldRU80aN

Attendees should only be given the URL. The password listed is only for use by the instructor of the

training session if required.

Accessing workshops via the web portal

Attendees can access workshops through the web portal by following two steps:

1. The attendee visits the web-based portal for the training session and is presented with a login

page. However, before logging in, the attendee must register for an account. The attendee

clicks the link to the registration page and fills it in.

Tanzu Application Platform v1.0

VMware, Inc 240

Registration is required so if the attendee’s web browser exits or the attendee needs to

switch web browsers, the attendee can log in again and access the same workshop instance.

2. Upon registering, the attendee is presented with a list of workshops available for the training

session.

An orange dot beside a workshop means that no instance for that workshop has

been allocated to the user as yet, but that some are available.

A red dot indicates there are no more workshop instances available.

A green dot indicates a workshop instance has already been reserved by the

attendee.

The attendee clicks the “Start workshop” button. This allocates a workshop instance if one

hasn’t yet been reserved and redirects the attendee to that workshop instance.

Tanzu Application Platform v1.0

VMware, Inc 241

Deleting the workshop training portal

The workshop training portal is intended for running workshops with a fixed time period where all

workshop instances are deleted when complete.

To delete all workshop instances and the web-based portal, run:

kubectl delete trainingportal/lab-k8s-fundamentals

Learning Center local install guides

The following guides tell you how to install Learning Center on your local environment:

Installing on Kind

Installing on Minikube

Installing on Kind

Kind was developed as a means to support development and testing of Kubernetes. Though it exists

primarily for that purpose, Kind clusters are often used for local development of user applications as

well. For Learning Center, you can use a local Kind cluster to develop workshop content or self-

learning when deploying other people’s workshops.

Because you are deploying to a local machine, you are unlikely to have access to your own custom

domain name and certificate you can use with the cluster. If you don’t, you can be restricted as to

the sorts of workshops you can develop or run using the Learning Center in Kind. Kind uses

containerd, which lacks certain features that allow you to trust any image registries hosted within a

subnet. This means you cannot readily run workshops that use a local container image registry for

each workshop session. If you must run workshops on your local computer that uses an image

registry for each session, VMware recommends you use minikube with dockerd instead. For more

information, see Installing on Minikube.

Also, since Kind has limited memory resources available, you may be prohibited from running

workshops that have large memory requirements. Workshops that demonstrate the use of third-

Tanzu Application Platform v1.0

VMware, Inc 242

party applications requiring a multinode cluster also do not work unless the Kind cluster is specifically

configured to be multinode rather than single node.

Requirements and setup instructions specific to Kind are detailed in this document. Otherwise, follow

normal installation instructions for the Learning Center operator.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Create a tanzunet account and have access to your tanzunet credentials.

Install Kind on your local machine.

Install tanzuCLI on your local machine.

Install kubectlCLI on your local machine.

Kind cluster creation

When initially creating the Kind cluster, you must configure it so that the ingress controller is

exposed. The Kind documentation provides the following command to do this, but check the

documentation in case the details have changed.

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

 kubeadmConfigPatches:

 - |

 kind: InitConfiguration

 nodeRegistration:

 kubeletExtraArgs:

 node-labels: "ingress-ready=true"

 extraPortMappings:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 - containerPort: 443

 hostPort: 443

 protocol: TCP

EOF

Once you have the Kind cluster up and running, you must install an ingress controller.

Ingress controller with DNS

The Kind documentation provides instructions for installing Ambassador, Contour, and Nginx-based

ingress controllers.

VMware recommends that you use Contour rather than Nginx, because Nginx drops websocket

connections whenever new ingresses are created. The Learning Center workshop environments do

include a workaround to re-establish websocket connections for the workshop terminals without

losing terminal state, but other applications used with workshops might not, such as terminals

Tanzu Application Platform v1.0

VMware, Inc 243

https://kind.sigs.k8s.io/docs/user/ingress#create-cluster
https://kind.sigs.k8s.io/docs/user/ingress#contour

available through Visual Studio Code.

Avoid using the Ambassador ingress controller, because it requires all ingresses created to be

annotated explicitly with an ingress class of “ambassador.” The Learning Center operator can be

configured to do this automatically for ingresses created for the training portal and workshop

sessions. However, any workshops that create ingresses as part of the workshop instructions do not

work unless they are written to have the user manually add the ingress class when required due to

the use of Ambassador.

If you have created a contour ingress controller, verify all pods have a running status. Run:

kubectl get pods -n projectcontour -o wide

Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly install

VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Note: Type “y” and enter to continue when prompted during installation of both kapp and secret-

gen controllers.

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

--username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

--server registry.tanzu.vmware.com \

--export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a vpackage repository to your cluster:

tanzu package repository add tanzu-tap-repository \

--url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:1.0.0 \

Tanzu Application Platform v1.0

VMware, Inc 244

--namespace tap-install

Note: We are currently on build 7. If this changes, we need to update the command with the

correct build version after the –url flag.

4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Wait for a reconciled successful status before attempting to install any other packages.

Create a configuration YAML file for Learning Center
package

To create a configuration YAML file:

See Supported yaml file configurations to see a list of configurations you can provide to Learning

Center.

1. Create a file called learningcenter-value.yaml in your current directory with the following

data:

#! The namespace in which to deploy Learning Center. For now this must be "lear

ningcenter" as

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. This must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

certificate: null

privateKey: null

secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. You might need to set storage group

#! where a cluster has pod security policies enabled, usually

#! to one. Set storage user and storage group in exceptional cases

#! where storage class uses maps to NFS storage and storage server requires

#! that a specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified,

#! random passwords are generated that you can obtain from the custom resource

#! for the training portal.

portalCredentials:

systemAdmin:

 username: learningcenter

 password: null

clientAccess:

 username: robot@learningcenter

 password: null

#! Primary image registry where Learning Center container images are stored. It

Tanzu Application Platform v1.0

VMware, Inc 245

#! is only necessary to define the host and credentials when that image

#! registry requires authentication to access images. This principally

#! exists to allow relocation of images through Carvel image bundles.

imageRegistry:

host: null

username: null

password: null

#! Container image versions for various components of Learning Center. The Lear

ning Center

#! operator needs to be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! https://github.com/eduk8s/eduk8s-operator/issues/112#! https://github.com/eduk8s/eduk8s-operator/issues/112

#! Prepull images to nodes in cluster. Should be an empty list if no images

#! should be prepulled. Normally you would only want to prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

networkMTU: 1500

proxyCache:

 remoteURL: null

 username: null

 password: null

#! Override operator image. Only used during development of Learning Center.

operatorImage: null

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details

about this are provided in the following section.

workshops.example.com with is <your-local-ip>.nip.io.

Using a nip.io DNS address

Before you can start deploying workshops, you must configure the operator to tell it what domain

name can be used to access anything deployed by the operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can

use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address for the ingress controller

exposed by Kind. This is usually the IP address of the local machine itself, even when you use

Docker for Mac.

How you get the IP address for your local machine depends on the operating system you are using.

For example on a Mac, you can find your IP address by searching for network using spotlight and

selecting the network option under system preferences. Here you can see your IP address under

status.

After you have the IP address, add this as a prefix to the domain name nip.io. For example, if the

address was 192.168.1.1, use the domain name of 192.168.1.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

Tanzu Application Platform v1.0

VMware, Inc 246

https://nip.io/

kubectl set env deployment/eduk8s-operator -n eduk8s INGRESS_DOMAIN=192.168.1.1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You can now

deploy workshops.

Note: Some home Internet gateways implement what is called rebind protection. These gateways do

not allow DNS names from the public Internet bind to local IP address ranges inside the home

network. If your home Internet gateway has such a feature and it is enabled, it blocks nip.io

addresses from working. In this case, you must configure your home Internet gateway to allow

*.nip.io names to be bound to local addresses. Also, you cannot use an address of form

127.0.0.1.nip.io or subdomain.localhost. This causes a failure, because when internal services

need to connect to each other, they connect to themselves instead. This happens because the

address resolves to the host loopback address of 127.0.0.1.

Install Learning Center package onto a Kubernetes cluster

To install Learning Center on a Kubernetes cluster:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-

value.yaml to install our Learning Center package.

Install workshop tutorial package onto a Kubernetes cluster

To install a workshop tutorial on a Kubernetes cluster:

tanzu package install learningcenter-tutorials --package-name workshops.learningcenter

.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and

successfully installed onto your cluster. In case of new versioning, to obtain package version

numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running our tutorial workshop using the Learning Center operator.

Trusting insecure registries

Tanzu Application Platform v1.0

VMware, Inc 247

Workshops can optionally deploy a container image registry for a workshop session. This image

registry is secured with a password specific to the workshop session and is exposed through a

Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Kind uses insecure ingress routes. Even were you to generate a self-signed

certificate to use for ingress, it is not trusted by containerd that runs within Kind. You must tell Kind

to trust any insecure registry running inside of Kind.

You must configure Kind to trust insecure registries when you first create the cluster. Kind, however,

is that it uses containerd and not dockerd. The containerd runtime doesn’t provide a way to trust

any insecure registry hosted within the IP subnet used by the Kubernetes cluster. Instead,

containerd requires that you enumerate every single host name or IP address on which an insecure

registry is hosted. Because each workshop session created by the Learning Center for a workshop

uses a different host name, this becomes cumbersome.

If you must used Kind, find out the image registry host name for a workshop deployment and

configure containerd to trust a set of host names corresponding to low-numbered sessions for that

workshop. This allows Kind to work, but once the host names for sessions go beyond the range of

host names you set up, you need to delete the training portal and recreate it, so you can use the

same host names again.

For example, if the host name for the image registry were of the form:

lab-docker-testing-wMM-sNNN-registry.192.168.1.1.nip.io

where NNN changes per session, you must use a command to create the Kind cluster. For example:

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

 kubeadmConfigPatches:

 - |

 kind: InitConfiguration

 nodeRegistration:

 kubeletExtraArgs:

 node-labels: "ingress-ready=true"

 extraPortMappings:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 - containerPort: 443

 hostPort: 443

 protocol: TCP

containerdConfigPatches:

- |

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s001-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s001-registry.192.168.1.1.nip.io"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s002-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s002-registry.192.168.1.1.nip.io"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s003-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s003-registry.192.168.1.1.nip.io"]

Tanzu Application Platform v1.0

VMware, Inc 248

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s004-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s004-registry.192.168.1.1.nip.io"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s005-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s005-registry.192.168.1.1.nip.io"]

EOF

This allows you to run five workshop sessions before you have to delete the training portal and

recreate it.

If you use this, you can use the feature of the training portal to automatically update when a

workshop definition is changed. This is because the wMM value identifying the workshop environment

changes any time you update the workshop definition.

There is no other known workaround for this limitation of containerd. As such, VMware

recommends you use minikube with dockerd instead. For more information, see Installing on

Minikube.

Installing on Minikube

Minikube enables local deployment of Kubernetes for developing workshop content or for self-

learning when deploying other people’s workshops.

Because you are deploying to a local machine, you are unlikely to have access to your own custom

domain name and certificate you can use with the cluster. You must take extra steps over a standard

install of Minikube to ensure you can run certain types of workshops.

Also, because Minikube generally has limited memory resources available and is only a single-node

cluster, you might be restricted from running workshops that have large memory requirements or

that demonstrate the use of third-party applications requiring a multinode cluster.

Requirements and setup instructions specific to Minikube are detailed in this document. Otherwise,

you can follow normal installation instructions for the Learning Center operator.

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image

registry is secured with a password specific to the workshop session and is exposed through a

Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Minikube uses insecure ingress routes. Even were you to generate a self-

signed certificate to use for ingress, it is not trusted by dockerd that runs within Minikube. You must

tell Minikube to trust any insecure registry running inside of Minikube.

You must configure Minikube to trust insecure registries the first time you start a new cluster with it.

That is, you must supply the details to minikube start, which means you must know the IP subnet

Minikube uses.

If you already have a cluster running using Minikube, run minikube ip to discover the IP address it

uses. From that you can discover the trusted subnet. For example, if minikube ip returned

192.168.64.1, the trusted subnet is 192.168.64.0/24.

With this information, when you start a new cluster with Minikube, run:

Tanzu Application Platform v1.0

VMware, Inc 249

minikube start --insecure-registry=192.168.64.0/24

If you already have a cluster started with Minikube, you cannot stop it and then provide this option

when it is restarted. You can only use this option for a completely new cluster.

Note: You must be using dockerd, not containerd, in the Minikube cluster. containerd does not

accept an IP subnet when defining insecure registries to be trusted. It allows only specific hosts or IP

addresses. Because you don’t know what IP address Minikube will use in advance, you can’t provide

the IP address on the command line when starting Minikube to create the cluster.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Create a tanzunet account and have access to your tanzunet credentials.

Install miniKube on your local machine.

Install tanzuCLI on your local machine.

Install kubectlCLI on your local machine.

Ingress controller with DNS

After the Minikube cluster is running, you must enable the ingress and ingress-dns add-ons for

Minikube. These deploy the nginx ingress controller along with support for integrating into DNS.

To enable these after the cluster has been created, run:

minikube addons enable ingress

minikube addons enable ingress-dns

You are now ready to install the Learning Center package.

Note: The ingress add-ons for Minikube do not work when using Minikube on top of Docker for Mac

or Docker for Windows. On macOS you must use the Hyperkit VM driver. On Windows you must

use the Hyper-V VM driver.

Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly install

VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Note: Type “y” and enter to continue when prompted during installation of both kapp and secret-

Tanzu Application Platform v1.0

VMware, Inc 250

gen controllers.

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu package repository add tanzu-tap-repository \

 --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:1.0.0

 \

 --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a package repository to your cluster:

tanzu package repository add tanzu-tap-repository \

 --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:1.0.0

 \

 --namespace tap-install

Note: We are currently on build 7; if this changes, we need to update the command with the

correct build version after the –url flag.

4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Wait for a reconciled sucessful status before attempting to install any other packages.

Create a configuration YAML file for the Learning Center
package

Create a file called learningcenter-value.yaml in your current directory with the following data:

#! The namespace in which to deploy Learning Center.

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. Must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

 certificate: null

 privateKey: null

 secretName: null

Tanzu Application Platform v1.0

VMware, Inc 251

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. Storage group might need to be

#! set where a cluster has pod security policies enabled, usually setting it

#! to one. Storage user and storage group can be set in exceptional cases

#! where storage class used maps to NFS storage and storage server requires that

#! specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified

#! random passwords are generated that can be obtained from the custom resource

#! for the training portal.

portalCredentials:

 systemAdmin:

 username: learningcenter

 password: null

 clientAccess:

 username: robot@learningcenter

 password: null

#! Primary image registry where Learning Center container images are stored. You

#! need only define the host and credentials when that image

#! registry requires authentication to access images. This principally

#! exists to allow relocation of images through Carvel image bundles.

imageRegistry:

 host: null

 username: null

 password: null

#! Container image versions for various components of Learning Center. The Learning Ce

nter

#! Operator must be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! https://github.com/eduk8s/eduk8s-operator/issues/112

#! Prepull images to nodes in cluster. This is an empty list if no images

#! are prepulled. Normally you only prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

 networkMTU: 1500

 proxyCache:

 remoteURL: null

 username: null

 password: null

#! Override operator image. Only used during development of Learning Center.

operatorImage: null

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details

about this are provided in the following section.

workshops.example.com is <your-local-ip>.nip.io

Using a nip.io DNS address

Tanzu Application Platform v1.0

VMware, Inc 252

After the Learning Center operator is installed, before you can start deploying workshops, you must

configure the operator to tell it what domain name can be used to access anything deployed by the

operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can

use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address of the cluster created by

Minikube by running minikube ip. Add this as a prefix to the domain name nip.io. For example, if

minikube ip returns 192.168.64.1, use the domain name of 192.168.64.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You should now

be able to start deploying workshops.

Note: Some home Internet gateways implement what is called rebind protection. These gateways do

not let DNS names from the public Internet bind to local IP address ranges inside the home network.

If your home Internet gateway has such a feature and it is enabled, it blocks nip.io addresses from

working. In this case, you must configure your home Internet gateway to allow *.nip.io names to

be bound to local addresses.

Install Learning Center package onto a minikube cluster

To install the Learning Center package onto a minikube cluster, run:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-

value.yaml to install the Learning Center package.

Install workshop tutorial package onto a minikube cluster

To install the workshop tutorial package onto a minikube cluster, run:

tanzu package install learningcenter-tutorials --package-name workshops.learningcenter

.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and

successfully installed onto your cluster. In case of new versioning, to obtain package version

numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

Tanzu Application Platform v1.0

VMware, Inc 253

https://nip.io/

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running the tutorial workshop using the Learning Center operator.

Working with large images

If you create or run workshops that work with the image registry created for a workshop session, and

you push images to that image registry that have large layers, you must configure the version of

nginx deployed for the ingress controller and increase the allowed size of request data for a HTTP

request.

To do this, run:

kubectl edit configmap nginx-load-balancer-conf -n kube-system

To the config map resource, add the following property under data:

proxy-body-size: 1g

If you don’t increase this, docker push fails when trying to push container images with large layers.

Limited resource availability

When deploying a cluster, by default Minikube only configures support for 2Gi of memory. This

usually isn’t adequate.

To view how much memory is available when a custom amount has been set as a default, run:

minikube config get memory

VMware recommends you configure Minikube to use 4Gi or more. This must be specified when the

cluster is first created. Do this by using the --memory option to minikube start or by specifying a

default memory value beforehand by using minikube config set memory.

In addition to increasing the memory available, you can increase the disk size, because fat container

images can quickly use disk space within the cluster.

Storage provisioner issue

v1.12.3 of Minikube introduced a bug in the storage provisioner that causes potential corruption of

data in persistent volumes where the same persistent volume claim name is used in two different

namespaces. This affects Learning Center when:

You deploy multiple training portals at the same time.

You run multiple workshops at the same time that have docker or image registry support

enabled.

The workshop session itself is backed by persistent storage and multiple sessions run at the

same time.

Tanzu Application Platform v1.0

VMware, Inc 254

https://github.com/kubernetes/minikube/issues/8987

This issue is supposed to be fixed in Minikube v1.13.0; however, you can still encounter issues when

deleting a training portal instance and recreating it immediately with the same name. This occurs

because reclaiming of the persistent volume by the Minikube storage provisioner can be slow, and

the new instance can grab the same original directory on disk with old data in it. After deleting a

training portal instance, wait before recreating one with the same name to allow the storage

provisioner to delete the old persistent volume.

Creating Learning Center workshops

This section includes information on creating Learning Center workshops.

Workshop configuration

Workshop images

Workshop content

Building an image

Workshop instructions

Workshop runtime

Workshop slides

Workshop configuration

There are two main parts to the configuration for a workshop. The first specifies the structure of the

workshop content and the second defines the runtime requirements for deploying the workshop.

Specifying structure of the content

There are multiple ways you can configure a workshop to specify the structure of the content. The

sample workshops use YAML files.

The workshop/modules.yaml file provides details about the list of available modules that make up

your workshop and data variables for use in content.

The list of available modules represents all of the modules available to you. You might not use all of

them. You might want to run variations of your workshop, such as for different programming

languages. As such, which modules are active and are used for a specific workshop are listed in the

separate workshop/workshop.yaml file. The active modules are listed with the name to be given to

that workshop.

By default the workshop.yaml file specifies what modules are used. When you want to deliver

different variations of the workshop content, you can provide multiple workshop files with different

names. For example, you can name the workshop files workshop-java.yaml and workshop-

python.yaml.

Where you have multiple workshop files and don’t have the default workshop.yaml file, you can

specify the default workshop file by setting the WORKSHOP_FILE environment variable in the runtime

configuration.

The format for listing the available modules in the workshop/modules.yaml file is:

Tanzu Application Platform v1.0

VMware, Inc 255

modules:

 workshop-overview:

 name: Workshop Overview

 exit_sign: Setup Environment

 setup-environment:

 name: Setup Environment

 exit_sign: Start Workshop

 exercises/01-sample-content:

 name: Sample Content

 workshop-summary:

 name: Workshop Summary

 exit_sign: Finish Workshop

Each available module is listed under modules, where the name used corresponds to the path to the

file containing the content for that module. Any extension identifying the content type is left off.

For each module, set the name field to the page title to be displayed for that module. If no fields are

provided and name is not set, the title for the module is derived from the name of the module file.

The corresponding workshop/workshop.yaml file, where all available modules are used, would have

the format:

name: Markdown Sample

modules:

 activate:

 - workshop-overview

 - setup-environment

 - exercises/01-sample-content

 - workshop-summary

The top-level name field in this file is the name of this variation of the workshop content.

The modules.activate field is a list of modules to be used for the workshop. The names in this list

must match the names as they appear in the modules file.

The order in which modules are listed under the modules.activate field in the workshop

configuration file dictates the order pages are traversed. The order in which modules appear in the

modules configuration file is not relevant.

At the bottom of each page, a Continue button is displayed to allow the user to go to the next page

in sequence. You can customize the label on this button by setting the exit_sign field in the entry

for the module in the modules configuration file.

In the last module in the workshop, a button is displayed, but where the user goes after clicking it

varies. If you want the user to go to a different website upon completion, you can set the exit_link

field of the final module to an external URL. Alternatively, you can set the RESTART_URL environment

variable in a workshop environment to control where the user goes. If a destination for the final page

is not provided, the user is redirected back to the starting page of the workshop.

When the user uses the training portal, the training portal overrides this environment variable so, at

the completion of a workshop, the user returns to the training portal.

VMware recommends that for the last page, the exit_sign be set to “Finish Workshop” and

exit_link not be specified. This enables the destination to be controlled from the workshop

environment or training portal.

Tanzu Application Platform v1.0

VMware, Inc 256

Specifying the runtime configuration

You can deploy workshop images directly to a container runtime. The Learning Center Operator is

provided to manage deployments into a Kubernetes cluster. You define the configuration for the

Learning Center Operator with a Workshop CRD in the resources/workshop.yaml file:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 vendor: learningcenter.tanzu.vmware.com

 title: Markdown Sample

 description: A sample workshop using Markdown

 url: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 duration: 15m

 session:

 namespaces:

 budget: small

 applications:

 console:

 enabled: true

 editor:

 enabled: true

Where:

YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

In this sample, a custom workshop image bundles the workshop content into its own container

image. The content.image setting specifies this. To instead download workshop content from a

GitHub repository at runtime, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 vendor: learningcenter.tanzu.vmware.com

 title: Markdown Sample

 description: A sample workshop using Markdown

 url: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 content:

 files: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 duration: 15m

 session:

 namespaces:

 budget: small

 applications:

 console:

 enabled: true

 editor:

 enabled: true

Tanzu Application Platform v1.0

VMware, Inc 257

Where:

YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

The difference is the use of the content.files setting. Here, the workshop content is overlaid on

top of the standard workshop base image. To use an alternate base image with additional

applications or packages installed, specify the alternate image against the content.image setting at

the same time you set content.files.

Next steps

Learn about configuration options for the workshop.yaml custom resource definitions (CRD)

in Workshop resource.

Workshop images

The workshop environment for the Learning Center is packaged as a container image. You can

execute the image with remote content pulled down from GitHub or a web server. Alternatively, you

can bundle your workshop content, including any extra tools required, in a new container image

derived from the workshop environment base image.

Templates for creating a workshop

To get you started with your own workshop content, VMware provides a number of sample

workshops. Different templates in Markdown or AsciiDoc are available to use depending on the

syntax you use to create the workshop. These templates are available in a zip file called LEARNING-

CENTER-WORKSHOP-SAMPLES.ZIP on the Tanzu Network TAP Product Page. The zip file contains the

following projects that you can upload to your own Git repository:

lab-markdown-sample

lab-asciidoc-sample

When creating your own workshops, a suggested convention is to prefix the directory name with the

Git repository name where it is hosted. For example, you can make the prefix lab-. This way it

stands out as a workshop or lab when you have a number of Git repositories on the same Git hosting

service account or organization.

Note: Do not make the name you use for a workshop too long. The DNS host name used for

applications deployed from the workshop, when using certain methods of deployment, might exceed

the 63 character limit. This is because the workshop deployment name is used as part of the

namespace for each workshop session. This is in turn used in the DNS host names generated for the

ingress host name. VMware suggests keeping the workshop name, and so your repository name, to

25 characters or less.

Workshop content directory layout

After creating a copy of the sample workshop content, you can see a number of files located in the

top-level directory and a number of subdirectories forming a hierarchy. The files in the top-level

directory are:

Tanzu Application Platform v1.0

VMware, Inc 258

https://network.tanzu.vmware.com/products/tanzu-application-platform

README.md - A file stating what the workshop in your Git repository is about and how to

deploy it. Replace the current content provided in the sample workshop with your own.

LICENSE - A license file so people are clear about how they can use your workshop content.

Replace this with what license you want to apply to your workshop content.

Dockerfile - Steps to build your workshop into an image ready for deployment. Leave this

as is, unless you want to customize it to install additional system packages or tools.

kustomization.yaml - A kustomize resource file for loading the workshop definition. The

Learning Center operator must be deployed before using this file.

.dockerignore - List of files to ignore when building the workshop content into an image.

.eduk8signore - List of files to ignore when downloading workshop content into the

workshop environment at runtime.

Key subdirectories and the files contained within them are:

workshop - Directory under which your workshop files reside.

workshop/modules.yaml - Configuration file with details of available modules that make up

your workshop and data variables for use in content.

workshop/workshop.yaml - Configuration file that gives the name of the workshop, the list of

active modules for the workshop, and any overrides for data variables.

workshop/content - Directory under which your workshop content resides, including images

to be displayed in the content.

resources - Directory under which Kubernetes custom resources are stored for deploying

the workshop using the Learning Center.

resources/workshop.yaml - The custom resources for the Learning Center, which describe

your workshop and requirements for deployment.

resources/training-portal.yaml - A sample custom resource for the Learning Center for

creating a training portal for the workshop, encompassing the workshop environment and a

workshop instance.

A workshop can include other configuration files and directories with other types of content, but this

is the minimal set of files to get you started.

Directory for workshop exercises

The number of files and directories can quickly add up at the top level of your repository. The same

is true of the home directory for the user when running the workshop environment. To help with this

proliferation of files, you can push files required for exercises during the workshop into the

exercises subdirectory under the root of the repository.

With an exercises subdirectory, the initial working directory for the embedded terminal when

created is set to $HOME/exercises instead of $HOME. If the embedded editor is enabled, the

subdirectory is opened as the workspace for the editor. Only directories and files in that subdirectory

are visible through the default view of the editor.

However, the exercises directory isn’t set as the home directory of the user. This means if a user

Tanzu Application Platform v1.0

VMware, Inc 259

inadvertently runs cd with no arguments from the terminal, they go back to the home directory.

To avoid confusion and help a user return to where they need to be, VMware recommends that

when you instruct users to change directories, provide a full path relative to the home directory. For

example, use a path of the form ~/exercises/example-1 rather than example-1 for the cd command

when changing directories. By using a full path, users can execute the command and be assured of

going to the required location.

Workshop content

Workshop content is either embedded in a custom workshop image or downloaded from a Git

repository or web server when the workshop session is created. There are several best practices for

speeding up the iterative loop of editing and testing a workshop when developing workshop content.

Deactivating reserved sessions

Deactivate the reserved sessions by setting the reserved field to 0 in your training portal instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-sample-workshop

spec:

 portal:

 sessions:

 maximum: 1

 workshops:

 - name: lab-sample-workshop

 reserved: 0

 expires: 120m

 orphaned: 15m

If you do not deactivate reserved sessions, a new session is always created ready for the next

workshop session when there is available capacity to do so. If you modify workshop content while

testing the current workshop session, terminate the session and start a new one, the workshop picks

up the reserved session. The reserved session has a copy of the old content.

By deactivating reserved sessions, a new workshop session is always created on demand. This

ensures the latest workshop content is used.

Because you might have to wait to create a new workshop, shut down the existing workshop session

first. The new workshop session might also take some time to start if an updated version of the

workshop image also has to be pulled down.

Live updates to the content

If you download workshop content from a Git repository or web server, and you are only doing

simple updates to workshop instructions, scripts, or files bundled with the workshop, you can update

the content in place without needing to restart the workshop session. To perform an update,

download the workshop content after you have pushed back any changes to the hosted Git

repository or updated the content available through the web server. From the workshop session

terminal, run:

Tanzu Application Platform v1.0

VMware, Inc 260

update-workshop

This command downloads any workshop content from the Git repository or web server, unpacks it

into the live workshop session, and re-runs any script files found in the workshop/setup.d directory.

Find the location where the workshop content is downloading by viewing the file:

cat ~/.eduk8s/workshop-files.txt

You can change the location saved in this file if, for example, it references a specific version of the

workshop content and you want to test with a different version.

Once the workshop content has been updated, reload the current page of the workshop instructions

by clicking the reload icon on the dashboard while holding down the shift key.

If additional pages are added to the workshop instructions or pages are renamed, you must restart

the workshop renderer process by running:

restart-workshop

If you didn’t rename the current pager or if the name changed, you can trigger a reload of the

current page. Click the home icon or refresh the webpage if the name of the first page didn’t

change.

If action blocks within the workshop instructions are broken, to change and test the workshop

instructions within the live workshop session, you can edit the appropriate page under

/opt/workshop/content. Navigate to the modified page or reload it to verify the change.

To change set up scripts that create files specific to a workshop session, edit the script under

/opt/workshop/setup.d directory.

To trigger running of any setup scripts, run:

rebuild-workshop

If local changes to the workshop session take effect, you can restore the file in the original Git

repository.

Updating workshop content in a live session in this way does not undo any deployments or changes

you make in the Kubernetes cluster for that session. To retest parts of the workshop instructions, you

might have to manually undo the changes in the cluster to replay them. This depends on your

specific workshop content.

Custom workshop image changes

If your workshop uses a custom workshop image to provide additional tools and you have included

the workshop instructions as part of the workshop image, you must use an image tag of main,

develop, or latest during the development of workshop content. Do not use a version image

reference.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.0

VMware, Inc 261

kind: Workshop

metadata:

 name: lab-sample-workshop

spec:

 title: Sample Workshop

 description: A sample workshop

 content:

 image: <YOUR-GIT-REPO>/lab-sample-workshop:main

When you use an image tag of main, develop, or latest, the image pull policy is set to Always to

ensure that the custom workshop image is pulled down again for a new workshop session if the

remote image changes. If the image tag is for a specific version, you must change the workshop

definition every time when the workshop image changes.

Custom workshop image overlay

For a custom workshop image, you can set up the workshop definition to pull down the workshop

content from the hosted Git repository or web server as the follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-sample-workshop

spec:

 title: Sample Workshop

 description: A sample workshop

 content:

 image: ghcr.io/eduk8s-labs/lab-sample-workshop:main

 files: <YOUR-GIT-REPO>/lab-sample-workshop

By pulling down the workshop content as an overlay of the custom workshop image when the

workshop session starts, you only need to rebuild the custom workshop image when you need to

make changes such as to include additional tools or to ensure the latest workshop instructions are

included in the final custom workshop image.

Because the location of the workshop files is known, you can live update the workshop content in

the session by following Live updates to the content.

If the additional set of tools required for a workshop is not specific to a workshop, VMware

recommends that you create a standalone workshop base image where you can add the tools. You

can always pull down content for a specific workshop from a Git repository or web server when the

workshop session starts.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-sample-workshop

spec:

 title: Sample Workshop

 description: A sample workshop

 content:

 image: ghcr.io/eduk8s-labs/custom-environment:main

 files: github.com/eduk8s-labs/lab-sample-workshop

This separates generic tooling from specific workshops and so you can use the custom workshop

Tanzu Application Platform v1.0

VMware, Inc 262

base image for multiple workshops on different, but related topics that require the same tooling.

Changes to workshop definition

By default, to modify the definition for a workshop, you need to delete the training portal instance,

update the workshop definition in the cluster, and recreate the training portal.

During the workshop content development, to change resource allocations, role access, or to specify

what resource objects to be automatically created for the workshop environment or a specific

workshop session, you can enable automatic updates in the training portal definition by setting

updates.workshop field as true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-sample-workshop

spec:

 portal:

 sessions:

 maximum: 1

 updates:

 workshop: true

 workshops:

 - name: lab-sample-workshop

 expires: 120m

 orphaned: 15m

With automatic updates enabled, if the workshop definition in the cluster is modified, the existing

workshop environment managed by the training portal for that workshop is shut down and replaced

with a new workshop environment by using the updated workshop definition.

When an active workshop session is running, the actual deletion of the old workshop environment is

delayed until that workshop session is terminated.

Local build of workshop image

If you do not package a workshop into a custom workshop image, VMware recommends to build a

custom workshop image locally on your own machine by using docker to avoid keeping pushing

changes to a hosted Git repository and using a Kubernetes cluster for local workshop content

development.

Furthermore, to avoid pushing the image to a public image registry on the Internet, you must deploy

an image registry to your local Kubernetes cluster where you run the Learning Center. In most

cases, a basic deployment of an image registry in a local cluster access is not secure. As a result, you

have to configure the Kubernetes cluster to trust the registry that is not secure. This can be difficult

to do depending on the Kubernetes cluster you use, but it can enable quicker turnaround because

you do not have to push or pull the custom workshop image across the public Internet.

After pushing the custom workshop image built locally to the local image registry, you can set the

image reference in the workshop definition to pull the custom workshop from the local registry in the

same cluster. To ensure that the custom workshop image is always pulled for a new workshop

session after update, use the latest tag when tagging and pushing the image to the local registry.

Tanzu Application Platform v1.0

VMware, Inc 263

Building an image

This topic explains how to include an extra system, third-party tool, or configuration in your image by

bundling workshop content from the Learning Center workshop base image. The following sample

workshop template provides a Dockerfile.

Structure of the Dockerfile

The structure of the Dockerfile in the sample workshop template is:

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:18882f91

6ff833872e658bdc00e7fe81b1b921fb3993ce761372805825b155e9

COPY --chown=1001:0 . /home/eduk8s/

RUN mv /home/eduk8s/workshop /opt/workshop

RUN fix-permissions /home/eduk8s

The default Dockerfile action is to:

Copy all files from a registry to the /home/eduk8s directory. You must build the custom

workshop images on the registry.tanzu.vmware.com/tanzu-application-platform/tap-

packages@sha256:18882f916ff833872e658bdc00e7fe81b1b921fb3993ce761372805825b155e9

workshop image. You can do this directly or you can also create an intermediate base image

to install extra packages required by a number of different workshops. The --chown=1001:0

option ensures that files are owned by the appropriate user and group.

The workshop subdirectory is moved to /opt/workshop so that it is not visible to the user. This

subdirectory is in an area searchable for workshop content, in addition to

/home/eduk8s/workshop.

To customize your Dockerfile:

You can ignore other files or directories from the repository, by listing them in the

.dockerignore file.

You can include RUN statements in the Dockerfile to run custom-build steps, but the USER

inherited from the base image has user ID 1001 and is not the root user.

Base images and version tags

The sample Dockerfile provided above and the GitHub repository workshop templates reference

the workshop base image as follows:

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:18882f916ff83

3872e658bdc00e7fe81b1b921fb3993ce761372805825b155e9

Custom workshop base images

The base-environment workshop images include language run times for Node.js and Python. If you

need a different language runtime or a different version of a language runtime, you must create a

Tanzu Application Platform v1.0

VMware, Inc 264

custom workshop base image which includes the environment you need. This custom workshop

image is derived from base-environment but includes extra runtime components.

The following Dockerfile example creates a Java JDK11-customized image:

ARG IMAGE_REPOSITORY=dev.registry.tanzu.vmware.com/learning-center

FROM ${IMAGE_REPOSITORY}/pkgs-java-tools as java-tools

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:18882f91

6ff833872e658bdc00e7fe81b1b921fb3993ce761372805825b155e9

COPY --from=java-tools --chown=1001:0 /opt/jdk11 /opt/java

COPY --from=java-tools --chown=1001:0 /opt/gradle /opt/gradle

COPY --from=java-tools --chown=1001:0 /opt/maven /opt/maven

COPY --from=java-tools --chown=1001:0 /opt/code-server/extensions/. /opt/code-server/

extensions/

COPY --from=java-tools --chown=1001:0 /home/eduk8s/. /home/eduk8s/

COPY --from=java-tools --chown=1001:0 /opt/eduk8s/. /opt/eduk8s/

ENV PATH=/opt/java/bin:/opt/gradle/bin:/opt/maven/bin:$PATH \

 JAVA_HOME=/opt/java \

 M2_HOME=/opt/maven

Installing extra system packages

Installing extra system packages requires that you run the installation as root. You must switch the

user commands before running the command, and then switch the user back to user ID of 1001.

USER root

RUN ... commands to install system packages

USER 1001

VMware recommends that you only use the root user to install extra system packages. Don’t use the

root user when adding anything under /home/eduk8s. Otherwise, you must ensure the user ID and

group for directories and files are set to 1001:0 and then run the fix-permissions command if

necessary.

When you run any command as root, you must temporarily override the value of the HOME

environment variable and set it to /root.

If you don’t do this the root user drops configuration files in /home/eduk8s, thinking it is the root

home directory, because the HOME environment variable is by default set to /home/eduk8s. This can

cause commands run later during the workshop to fail if they try to update the configuration files as

they have wrong permissions.

Fixing the file and group ownership and running fix-permissions can help with this problem, but

not in every case, because of permissions the root user may apply and how container image layers

work. VMware recommends that you use the following:

USER root

RUN HOME=/root && \

 ... commands to install system packages

USER 1001

Tanzu Application Platform v1.0

VMware, Inc 265

Installing third-party packages

If you are not using system packaging tools to install extra packages, but are manually downloading

packages and optionally compiling them to binaries, it is better to do this as the default user and not

root.

If compiling packages, VMware recommends working in a temporary directory under /tmp and

removing the directory as part of the same RUN statement when done.

If you are installing a binary, you can install it in /home/eduk8s/bin. This directory is in the application

search path defined by the PATH environment variable for the image.

To install a directory hierarchy of files, create a separate directory under /opt to install everything.

You can override the PATH environment variable in the Dockerfile to add an extra directory for

application binaries and scripts. You can override the LD_LIBRARY_PATH environment variable for the

location of shared libraries.

If installing any files from a RUN instruction into /home/eduk8s, VMware recommends that you run

fix-permissions as part of the same instruction to avoid copies of files being made into a new layer,

which applies to the case where fix-permissions is only run in a later RUN instruction. You can still

leave the final RUN instruction for fix-permissions as it is smart enough not to apply changes if the

file permissions are already set correctly and so it does not trigger a copy of a file when run more

than once.

Workshop instructions

Individual module files making up the workshop instructions can use either Markdown or AsciiDoc

markup formats. The extension used on the file should be .md or .adoc, corresponding to which

formatting markup style you use.

Annotation of executable commands

In conjunction with the standard Markdown and AsciiDoc, additional annotations can be applied to

code blocks. The annotations indicate that a user can click the code block and have it copied to the

terminal and executed.

If using Markdown, to annotate a code block so it is copied to the terminal and executed, use:

```execute

echo "Execute command."

```

When the user clicks the code block, the command is executed in the first terminal of the workshop

dashboard.

If using AsciiDoc, you can instead use the role annotation in an existing code block:

[source,bash,role=execute]

echo "Execute command."

Tanzu Application Platform v1.0

VMware, Inc 266

https://github.github.com/gfm/
http://asciidoc.org/

When the workshop dashboard is configured to display multiple terminals, you can qualify which

terminal the command must be executed in by adding a suffix to the execute annotation. For the first

terminal, use execute-1, for the second terminal execute-2, and so on:

```execute-1

echo "Execute command."

```

```execute-2

echo "Execute command."

```

To execute a command in all terminal sessions on the terminals tab of the dashboard, you can use

execute-all:

```execute-all

clear

```

In most cases, a command the user executes completes immediately. To run a command that never

returns, with the user needing to interrupt it to stop it, you can use the special string <ctrl+c> in a

subsequent code block.

```execute

<ctrl+c>

```

When the user clicks on this code block, the command running in the corresponding terminal is

interrupted.

Note: Using the special string <ctrl+c> is deprecated, and you must use the terminal:interrupt

clickable action instead.

Annotation of text to be copied

To copy the content of the code block into the paste buffer instead of running the command, you

can use:

```copy

echo "Text to copy."

```

After the user clicks this code block, they can then paste the content into another window.

If you have a situation where the text being copied must be modified before use, you can denote

this special case by using copy-and-edit instead of copy. The text is still copied to the paste buffer,

but is displayed in the browser in a way to highlight that it must be changed before use.

```copy-and-edit

echo "Text to copy and edit."

```

Tanzu Application Platform v1.0

VMware, Inc 267

For AsciiDoc, similar to execute, you can add the role of copy or copy-and-edit:

[source,bash,role=copy]

echo "Text to copy."

[source,bash,role=copy-and-edit]

echo "Text to copy and edit."

For copy only, to mark an inline code section within a paragraph of text as copyable when clicked,

you can append the special data variable reference {{copy}} immediately after the inline code block:

Text to `copy`{{copy}}.

Extensible clickable actions

The preceding means to annotate code blocks were the original methods used to indicate code

blocks to be executed or copied when clicked. To support a growing number of clickable actions

with different customizable purposes, annotation names are now name-spaced. The preceding

annotations are still supported, but the following are now recommended, with additional options

available to customize the way the actions are presented.

For code execution, instead of:

```execute

echo "Execute command."

```

you can use:

```terminal:execute

command: echo "Execute command."

```

The contents of the code block is YAML. The executable command must be set as the command

property. By default when the user clicks the command, it is executed in terminal session 1. To select

a different terminal session, you can set the session property.

```terminal:execute

command: echo "Execute command."

session: 1

```

To define a command the user clicks that executes in all terminal sessions on the terminals tab of the

dashboard, you can also use:

```terminal:execute-all

command: echo "Execute command."

```

Tanzu Application Platform v1.0

VMware, Inc 268

For terminal:execute or terminal:execute-all, to clear the terminal before the command is

executed, set the clear property to true:

```terminal:execute

command: echo "Execute command."

clear: true

```

This clears the full terminal buffer and not just the displayed portion of the buffer.

With the new clickable actions, to indicate that a running command in a terminal session must be

interrupted, use:

```terminal:interrupt

session: 1

```

(Optional) Set the session property within the code block to indicate an alternate terminal session to

session 1.

To allow the user to send an interrupt to all terminals sessions on the terminals tab of the dashboard,

use:

```terminal:interrupt-all

```

Where you want the user to enter input into a terminal rather than a command, such as when a

running command prompts for a password, use:

```terminal:input

text: password

```

To allow the user to run commands or interrupt a command, set the session property to indicate a

specific terminal to send it to if you don’t want to send it to terminal session 1:

```terminal:input

text: password

session: 1

```

When providing terminal input in this way, the text by default still has a newline appended to the

end, making it behave the same as using terminal:execute. If you do not want a newline appended,

set the endl property to false.

```terminal:input

text: input

endl: false

```

To allow the user to clear all terminal sessions on the terminals tab of the dashboard, use:

```terminal:clear-all

```

Tanzu Application Platform v1.0

VMware, Inc 269

This clears the full terminal buffer and not just the displayed portion of the terminal buffer. It does not

have any effect when an application is running in the terminal using visual mode. To clear only the

displayed portion of the terminal buffer when a command dialog box is displayed, use

terminal:execute and run the clear command.

To allow the user to copy content to the paste buffer, use:

```workshop:copy

text: echo "Text to copy."

```

or:

```workshop:copy-and-edit

text: echo "Text to copy and edit."

```

A benefit of using these over the original methods is that by using the appropriate YAML syntax, you

can control whether:

A multiline string value is concatenated into one line.

Line breaks are preserved.

Initial or terminating new lines are included.

In the original methods, the string was always trimmed before use. By using the different forms as

appropriate, you can annotate the displayed code block with a different message letting the user

know what will happen.

The method for using AsciiDoc is similar, using the role for the name of the annotation and YAML as

the content:

[source,bash,role=terminal:execute]

command: echo "Execute command."

Clickable actions for the dashboard

In addition to the clickable actions related to the terminal and copying of text to the paste buffer,

other actions are available for controlling the dashboard and opening URL links.

To allow the user to click in the workshop content to open a URL in a new browser, use:

```dashboard:open-url

url: https://www.example.com/

```

To allow the user to click in the workshop content to display a specific dashboard tab if hidden, use:

```dashboard:open-dashboard

name: Terminal

```

Tanzu Application Platform v1.0

VMware, Inc 270

To allow the user to create a new dashboard tab with a specific URL, use:

```dashboard:create-dashboard

name: Example

url: https://www.example.com/

```

To allow the user to create a new dashboard tab with a new terminal session, use:

```dashboard:create-dashboard

name: Example

url: terminal:example

```

The value must be of the form terminal:<session>, where <session> is replaced with the name you

want to give the terminal session. The terminal session name must be restricted to lowercase letters,

numbers, and ‘-‘. You must avoid using numeric terminal session names such as “1”, “2”, and “3”,

because these are used for the default terminal sessions.

To allow the user to reload an existing dashboard, using the URL it is currently targeting, use:

```dashboard:reload-dashboard

name: Example

```

If the dashboard is for a terminal session, there is no effect unless the terminal session was

disconnected, in which case it is reconnected.

To allow the user to change the URL target of an existing dashboard by entering the new URL when

reloading a dashboard, use:

```dashboard:reload-dashboard

name: Example

url: https://www.example.com/

```

The user cannot change the target of a dashboard that includes a terminal session.

To allow the user to delete a dashboard, use:

```dashboard:delete-dashboard

name: Example

```

The user cannot delete dashboards corresponding to builtin applications provided by the workshop

environment, such as the default terminals, console, editor, or slides.

Deleting a custom dashboard including a terminal session does not destroy the underlying terminal

session, and the user can reconnect it by creating a new custom dashboard for the same terminal

session name.

Clickable actions for the editor

If the embedded editor is enabled, special actions are available that control the editor.

Tanzu Application Platform v1.0

VMware, Inc 271

To allow the user to open an existing file you can use:

```editor:open-file

file: ~/exercises/sample.txt

```

You can use ~/ prefix to indicate the path relative to the home directory of the session. When the

user opens the file, if you want the insertion point left on a specific line, provide the line property.

Lines numbers start at 1.

```editor:open-file

file: ~/exercises/sample.txt

line: 1

```

To allow the user to highlight certain lines of a file based on an exact string match, use:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

```

The region of the match is highlighted by default. To allow the user to highlight any number of lines

before or after the line with the match, you can set the before and after properties:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

before: 1

after: 1

```

Setting both before and after to 0 causes the complete line that matched to be highlighted instead

of a region within the line.

To match based on a regular expression, rather than an exact match, set isRegex to true:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

```

When a regular expression is used, and subgroups are specified within the pattern, you can indicate

which subgroup is selected:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

group: 1

```

Where there are multiple possible matches in a file, and the one you want to match is not the first,

Tanzu Application Platform v1.0

VMware, Inc 272

you can set a range of lines to search:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

start: 8

stop: 12

```

Absence of start means start at the beginning of the file. Absence of stop means stop at the end of

the file. The line number given by stop is not included in the search.

For both an exact match and regular expression, the text to be matched must all be on one line. It is

not possible to match text that spans across lines.

To allow the user to replace text within the file, first match it exactly or use a regular expression so it

is marked as selected, then use:

```editor:replace-text-selection

file: ~/exercises/sample.txt

text: nginx:latest

```

To allow the user to append lines to the end of a file, use:

```editor:append-lines-to-file

file: ~/exercises/sample.txt

text: |

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

    do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

If the user runs the action editor:append-lines-to-file and the file doesn’t exist, it is created. You

can use this to create new files for the user.

To allow the user to insert lines before a specified line in the file, use:

```editor:insert-lines-before-line

file: ~/exercises/sample.txt

line: 8

text: |

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

    do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

To allow the user to insert lines after matching a line containing a specified string, use:

```editor:append-lines-after-match

file: ~/exercises/sample.txt

match: Lorem ipsum

text: |

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

    do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

Tanzu Application Platform v1.0

VMware, Inc 273

Where the file contains YAML, to allow the user to insert a new YAML value into an existing

structure, use:

```editor:insert-value-into-yaml

file: ~/exercises/deployment.yaml

path: spec.template.spec.containers

value:

- name: nginx

  image: nginx:latest

```

To allow the user to execute a registered VS code command, use:

```editor:execute-command

command: spring.initializr.maven-project

args:

- language: Java

  dependencies: [ "actuator", "webflux" ]

  artifactId: demo

  groupId: com.example

```

Clickable actions for file download

If file downloads are enabled for the workshop, you can use the files:download-file clickable

action:

```files:download-file

path: .kube/config

```

The action triggers saving the file to the user’s local computer, and the file is not displayed in the

user’s web browser.

Clickable actions for the examiner

If the test examiner is enabled, special actions are available to run verification checks to verify

whether a workshop user has performed a required step. You can trigger these verification checks

by clicking on the action, or you can configure them to start running when the page loads.

For a single verification check the user must click to run, use:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists.

args:

- one

```

The title field is displayed as the title of the clickable action and must describe the nature of the

test. If required, you can provide a description field for a longer explanation of the test. This is

displayed in the body of the clickable action but is shown as preformatted text.

There must be an executable program (script or compiled application) in the

Tanzu Application Platform v1.0

VMware, Inc 274

workshop/examiner/tests directory with name matching the value of the name field.

The list of program arguments against the args field is passed to the test program.

The executable program for the test must exit with a status of 0 if the test is successful, and nonzero

if the test is a failure. The test should aim to return as quickly as possible and should not be a

persistent program.

#!/bin/bash

kubectl get pods --field-selector=status.phase=Running -o name | egrep -e "^pod/1"

if ["$?" != "0"]; then

 exit 1

fi

exit 0

By default, the program for a test is stopped after a timeout of 15 seconds, and the test is deemed to

have failed. To adjust the timeout, you can set the timeout value, which is in seconds. A value of 0

causes the default 15 seconds timeout to be applied. It is not possible to deactivate stopping the test

program after running for the default or a specified timeout value.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

```

To apply the test multiple times, you can enable the retry when a failure occurs. For this you must

set the number of times to retry and the delay between retries. The value for the delay is in seconds.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: 10

delay: 1

```

When you use retries, the testing stops as soon as the test program returns that it was successful.

To have retries continue for as long as the page of the workshop instructions displays, set retries to

the special YAML value of .INF:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

Tanzu Application Platform v1.0

VMware, Inc 275



delay: 1

```

Rather than require a workshop user to click the action to run the test, you can have the test start as

soon as the page is loaded, or when a section the page is contained in is expanded. Do this by

setting autostart to true:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

```

When a test succeeds, to immediately start the next test in the same page, set cascade to true.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

cascade: true

```

```examiner:execute-test

name: test-that-pod-does-not-exist

title: Verify that pod named "one" does not exist

args:

- one

retries: .INF

delay: 1

```

Clickable actions for sections

For optional instructions, or instructions you want to hide until the workshop user is ready for them,

you can designate sections to be hidden. When the user clicks the appropriate action, the section

expands to show its content. You can use this for examples that initially hide a set of questions or a

test at the end of each workshop page.

In order to designate a section of content as hidden, you must use two separate action code blocks

marking the beginning and end of the section:

```section:begin

title: Questions

```

Tanzu Application Platform v1.0

VMware, Inc 276

To show you understand ...

```section:end

```

The title must be set to the text you want to include in the banner for the clickable action.

A clickable action is only shown for the beginning of the section, and the action for the end is always

hidden. Clicking the action for the beginning expands the section. The user can collapse the section

again by clicking the action.

To create nested sections, you must name the action blocks for the beginning and end so they can

be correctly matched:

```section:begin

name: questions

title: Questions

```

To show you understand ...

```section:begin

name: question-1

prefix: Question

title: 1

```

...

```section:end

name: question-1

```

```section:end

name: questions

```

The prefix attribute allows you to override the default Section prefix used on the title for the action.

If a collapsible section includes an examiner action block set to automatically run, it only starts when

the user expands the collapsible section.

In case you want a section header showing in the same style as other clickable actions, you can use:

```section:heading

title: Questions

```

When the user clicks on this, the action is still marked as completed, but it does not trigger any other

action.

Overriding title and description

Clickable action blocks default to use a title with the prefix dictated by what the action block does.

The body of the action block also defaults to use a value commensurate with the action.

Especially for complicated scenarios involving editing of files, the defaults might not be the most

Tanzu Application Platform v1.0

VMware, Inc 277

appropriate and be confusing, so you can override them. To override these defaults, set the prefix,

title, and description fields of a clickable action block:

```action:name

prefix: Prefix

title: Title

description: Description

```

The banner of the action block in this example displays “Prefix: Title”, with the body showing

“Description”.

Note: The description is always displayed as pre-formatted text within the rendered page.

Escaping of code block content

Because the Liquid template engine is applied to workshop content, you must escape content in

code blocks that conflict with the syntactic elements of the Liquid template engine. To escape such

elements, you can suspend processing by the template engine for that section of workshop content

to ensure it is rendered correctly. Do this by using a Liquid {% raw %}...{% endraw %} block.

{% raw %}

```execute

echo "Execute command."

```

{% endraw %}

This has the side effect of preventing interpolation of data variables, so restrict it to only the required

scope.

Interpolation of data variables

When creating page content, you can reference a number of predefined data variables. The values

of the data variables are substituted into the page when rendered in the user’s browser.

The workshop environment provides the following built-in data variables:

workshop_name: The name of the workshop.

workshop_namespace: The name of the namespace used for the workshop environment.

session_namespace: The name of the namespace the workshop instance is linked to and into

which any deployed applications run.

training_portal: The name of the training portal the workshop is hosted by.

ingress_domain: The host domain must be used in the any generated host name of ingress

routes for exposing applications.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

To use a data variable within the page content, surround it by matching pairs of brackets:

{{ session_namespace }}

Tanzu Application Platform v1.0

VMware, Inc 278

https://www.npmjs.com/package/liquidjs

Do this inside of code blocks, including clickable actions, as well as in URLs:

http://myapp-{{ session_namespace }}.{{ ingress_domain }}

When the workshop environment is hosted in Kubernetes and provides access to the underlying

cluster, the following data variables are also available.

kubernetes_token: The Kubernetes access token of the service account the workshop

session is running as.

kubernetes_ca_crt: The contents of the public certificate required when accessing the

Kubernetes API URL.

kubernetes_api_url: The URL for accessing the Kubernetes API. This is only valid when

used from the workshop terminal.

Note: An older version of the rendering engine required that data variables be surrounded on each

side with the character %. This is still supported for backwards compatibility, but VMware

recommends you use matched pairs of brackets instead.

Adding custom data variables

You can introduce your own data variables by listing them in the workshop/modules.yaml file. A data

variable is defined as having a default value, but the value is overridden if an environment variable of

the same name is defined.

The field under which the data variables must be specified is config.vars:

config:

 vars:

 - name: LANGUAGE

 value: undefined

To use a name for a data variable that is different from the environment variable name, add a list of

aliases:

config:

 vars:

 - name: LANGUAGE

 value: undefined

 aliases:

 - PROGRAMMING_LANGUAGE

The environment variables with names in the list of aliases are checked first, then the environment

variable with the same name as the data variable. If no environment variables with those names are

set, the default value is used.

You can override the default value for a data variable for a specific workshop by setting it in the

corresponding workshop file. For example, workshop/workshop-python.yaml might contain:

vars:

 LANGUAGE: python

For more control over setting the values of data variables, you can provide the file

Tanzu Application Platform v1.0

VMware, Inc 279

workshop/config.js. The form of this file is:

function initialize(workshop) {

 workshop.load_workshop();

 if (process.env['WORKSHOP_FILE'] == 'workshop-python.yaml') {

 workshop.data_variable('LANGUAGE', 'python');

 }

}

exports.default = initialize;

module.exports = exports.default;

This JavaScript code is loaded and the initialize() function called to set up the workshop

configuration. You can then use the workshop.data_variable() function to set up any data variables.

Because it is JavaScript, you can write any code to query process environment variables and set data

variables based on those. This might include creating composite values constructed from multiple

environment variables. You can even download data variables from a remote host.

Passing environment variables

You can pass environment variables, including remapping of variable names, by setting your own

custom data variables. If you don’t need to set default values or remap the name of an environment

variable, you can instead reference the name of the environment variable directly. You must prefix

the name with ENV_ when using it.

For example, to display the value of the KUBECTL_VERSION environment variable in the workshop

content, use ENV_KUBECTL_VERSION, as in:

{{ ENV_KUBECTL_VERSION }}

Handling embedded URL links

You can include URLs in workshop content. This can be the literal URL, or the Markdown or

AsciiDoc syntax for including and labelling a URL. What happens when a user clicks on a URL

depends on the specific URL.

In the case of the URL being an external website, when the URL is clicked, the URL opens in a new

browser tab or window. When the URL is a relative page referring to another page that is part of the

workshop content, the page replaces the current workshop page.

You can define a URL where components of the URL are provided by data variables. Data variables

useful for this are session_namespace and ingress_domain, because they can be used to create a

URL to an application deployed from a workshop:

https://myapp-{{ session_namespace }}.{{ ingress_domain }}

Conditional rendering of content

Rendering pages is in part handled by the Liquid template engine. So you can use any constructs

Tanzu Application Platform v1.0

VMware, Inc 280

https://www.npmjs.com/package/liquidjs

the template engine supports for conditional content:

{% if LANGUAGE == 'java' %}

....

{% endif %}

{% if LANGUAGE == 'python' %}

....

{% endif %}

Embedding custom HTML content

Custom HTML can be embedded in the workshop content by using the appropriate mechanism

provided by the content rendering engine used.

If using Markdown, HTML can be embedded directly without being marked as HTML:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

<div>

<table style="width:100%">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>50</td>

 </tr>

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

 </tr>

</table>

</div>

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

If using AsciiDoc, HTML can be embedded by using a passthrough block:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

++++

<div>

<table style="width:100%">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>50</td>

Tanzu Application Platform v1.0

VMware, Inc 281

 </tr>

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

 </tr>

</table>

</div>

++++

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

In both cases, VMware recommends that the HTML consist of only a single HTML element. If you

have more than one, include them all in a div element. The latter is necessary if any of the HTML

elements are marked as hidden and the embedded HTML is a part of a collapsible section. If you

don’t ensure the hidden HTML element is placed under the single top-level div element, the hidden

HTML element is visible when the collapsible section is expanded.

In addition to visual HTML elements, you can also include elements for embedded scripts or style

sheets.

If you have HTML markup that must be added to multiple pages, extract it into a separate file and

use the include file mechanism of the Liquid template engine. You can also use the partial render

mechanism of Liquid as a macro mechanism for expanding HTML content with supplied values.

Workshop runtime

Your workshop content can script the steps a user must run for a workshop. In some cases, you

must parameterize that content with information from the runtime environment. Data variables in

workshop content allow this to a degree, but you can automate this by using scripts executed in the

workshop container to set up configuration files.

Do this by supplying setup scripts that run when the container is started. You can also run persistent

background processes in the container that perform extra work for you while a workshop is being

run.

Predefined environment variables

When you create the workshop content, you can use data variables to automatically insert values

corresponding to the specific workshop session or environment. For example: the name of the

namespace used for the session and the ingress domain when creating an ingress route.

These data variables can display a YAML/JSON resource file in the workshop content with values

already filled out. You can have executable commands that have the data variables substituted with

values given as arguments to the commands.

For commands run in the shell environment, a number of predefined environment variables are also

available that can be referenced directly.

Key environment variables are:

WORKSHOP_NAMESPACE - The name of the namespace used for the workshop environment.

SESSION_NAMESPACE - The name of the namespace the workshop instance is linked to and

into which any deployed applications run.

Tanzu Application Platform v1.0

VMware, Inc 282

INGRESS_DOMAIN - The host domain that must be used in any generated host name of ingress

routes for exposing applications.

INGRESS_PROTOCOL - The protocol (http/https) used for ingress routes created for workshops.

Instead of having an executable command in the workshop content, use:

```execute

kubectl get all -n %session_namespace%

```

With the value of the session namespace filled out when the page is rendered, you can use:

```execute

kubectl get all -n $SESSION_NAMESPACE

```

The shell inserts the value of the environment variable.

Running steps on container start

To run a script that makes use of the earlier environment variables when the container is started, and

to perform tasks such as pre-create YAML/JSON resource definitions with values filled out, you can

add an executable shell script to the workshop/setup.d directory. The name of the executable shell

script must have a .sh suffix to be recognized and run.

If the container is restarted, the setup script runs again in the new container. If the shell script is

performing actions against the Kubernetes REST API using kubectl or by using another means, the

actions it performs must be tolerant of running more than once.

When using a setup script to fill out values in resource files, a useful utility is envsubst. You can use

this in a setup script as follows:

#!/bin/bash

envsubst < frontend/ingress.yaml.in > frontend/ingress.yaml

A reference of the form ${INGRESS_DOMAIN} in the input file is replaced with the value of the

INGRESS_DOMAIN environment variable.

Setup scripts have the /home/eduk8s directory as the current working directory.

If you are creating or updating files in the file system and using a custom workshop image, ensure

that the workshop image is created with correct file permissions to allow updates.

Running background applications

The setup scripts run once on container startup. You can use the script to start a background

application needed to run in the container for the life of the workshop, but if that application stops, it

does not restart.

If you must run a background application, you can integrate the management of the background

application with the supervisor daemon run within the container. To have the supervisor daemon

Tanzu Application Platform v1.0

VMware, Inc 283

manage the application for you, add a configuration file snippet for the supervisor daemon in the

workshop/supervisor directory. This configuration file must have a .conf extension.

The form of the configuration file snippet must be:

[program:myapplication]

process_name=myapplication

command=/opt/myapplication/sbin/start-myapplication

stdout_logfile=/proc/1/fd/1

stdout_logfile_maxbytes=0

redirect_stderr=true

The application must send any logging output to stdout or stderr, and the configuration snippet

must direct log output to /proc/1/fd/1 so it is captured in the container log file. If you must restart or

shut down the application within the workshop interactive terminal, you can use the supervisorctl

control script.

Terminal user shell environment

Neither the setup scripts that run when the container starts nor background applications affect the

user environment of the terminal shell. The shell environment makes use of bash and the

$HOME/.bash_profile script is read to perform added setup for the user environment. Because some

default setup is included in $HOME/.bash_profile, you must not replace it, because you can loose

that configuration.

To provide commands to initialize each shell environment, you can provide the file

workshop/profile. When this file exists, it is sourced at the end of the $HOME/.bash_profile file

when it is processed.

Overriding terminal shell command

The user starts each terminal session by using the bash terminal shell. A terminal prompt dialog box

displays, allowing the user to manually enter commands or perform clickable actions targetting the

terminal session.

To specify the command to run for a terminal session, you can supply an executable shell script file

in the workshop/terminal directory.

The name of the shell script file for a terminal session must be of the form <session>.sh, where

<session> is replaced with the name of the terminal session. The session names of the default

terminals configured to be displayed with the dashboard are 1, 2, and 3.

The shell script file might be used to run a terminal-based application such as k9s, or to create an

SSH session to a remote system.

#!/bin/bash

exec k9s

If the command that is run exits, the terminal session is marked as exited and you need to reload that

terminal session to start over again. Alternatively, you could write the shell script file as a loop so it

restarts the command you want to run if it ever exits.

Tanzu Application Platform v1.0

VMware, Inc 284

#!/bin/bash

while true; do

 k9s

 sleep 1

done

If you want to run an interactive shell and output a banner at the start of the session with special

information for the user, use a script file to output the banner and then run the interactive shell:

#!/bin/bash

echo

echo "Your session namespace is "$SESSION_NAMESPACE".

echo

exec bash

Presenter slides

If a workshop includes a presentation, include slides by placing them in the workshop/slides

directory. Anything in this directory is served up as static files through a HTTP web server. The

default webpage must be provided as index.html.

Using reveal.js presentation tool

To support the use of reveal.js, static media assets for that package are already bundled and

available at the standard URL paths that the package expects. You can drop your slide presentation

using reveal.js into the workshop/slides directory and it will work with no additional setup.

If you are using reveal.js for the slides and you have history enabled or are using section IDs to

support named links, you can use an anchor to a specific slide and that slide will be opened when

clicked on:

%slides_url%#/questions

When using embedded links to the slides in workshop content, if the workshop content is displayed

as part of the dashboard, the slides open in the tab to the right rather than as a separate browser

window or tab.

Using a PDF file for presenter slides

For slides bundled as a PDF file, add the PDF file to workshop/slides and then add an index.html

which displays the PDF embedded in the page.

Learning Center runtime environment

This section includes information about the Custom Resource Definitions (CRDs) that are part of the

Learning Center:

Custom resource overview

Tanzu Application Platform v1.0

VMware, Inc 285

https://revealjs.com/
https://stackoverflow.com/questions/291813/recommended-way-to-embed-pdf-in-html

Workshop resource

WorkshopEnvironment resource

WorkshopRequest resource

WorkshopSession resource

TrainingPortal resource

SystemProfile resource

Custom resources

You can deploy workshop images directly to a container runtime. Learning Center Operator enables

managing the deployments into a Kubernetes cluster. A set of Kubernetes custom resource

definitions (CRDs) controls the operation of the Learning Center Operator.

Note: The examples do not show all the possible fields of each custom resource type. Later

documentation will go in-depth on all the possible fields and their definitions.

Workshop definition resource

The Workshop custom resource defines a workshop. It specifies the title and description of the

workshop, the location of the workshop content or container image that you deploy, any resources

that you pre-create in the workshop environment or for each instance of the workshop.

You can also define environment variables for the workshop image, the amount of CPU and memory

resources for the workshop instance, any overall quota you will apply to the created namespaces and

what the workshop uses.

A minimal example of the Workshop custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

 session:

 namespaces:

 budget: small

 applications:

 console:

 enabled: true

 editor:

 enabled: true

When you create an instance of the Workshop custom resource, the Learning Center Operator does

not take any immediate action. This custom resource exists only to define the workshop.

Note: You create the Workshop custom resource at the cluster scope.

Tanzu Application Platform v1.0

VMware, Inc 286

Workshop environment resource

You must create a workshop environment first to deploy the instances of a workshop. The

WorkshopEnvironment custom resource defines the configuration of the workshop environment and

the details of the workshop that you deploy.

A minimal example of the WorkshopEnvironment custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 token: lab-markdown-sample

 session:

 username: learningcenter

When you create an instance of the WorkshopEnvironment custom resource, the Learning Center

Operator responds by creating a namespace to host the workshop instances. The Workshop resource

defines the workshop instance and the spec.workshop.name field specifies the name of the Workshop

resource. The namespace you create uses the same name as that of the metadata.name field in the

WorkshopEnvironment resource.

The spec.request.token field defines a token with which you must supply a request to create an

instance of a workshop in this workshop environment. If necessary, you can also specify the

namespaces from which a request for a workshop instance to initiate.

The Workshop defines a set of common resources that must exist for the workshop. Learning Center

Operator creates these common resources after you created the namespace for the workshop

environment. If necessary, these resources can include creation of separate namespaces with

specific resources that you create in those namespaces instead.

Note: You create the WorkshopEnvironment custom resource at the cluster scope.

Workshop request resource

To create an instance of the workshop under the workshop environment, the typical path is to create

an instance of the WorkshopRequest custom resource.

The WorkshopRequest custom resource is namespaced to allow who can create it. Role-based access

control (RBAC) controls the request to create a workshop instance. This means you can allow non-

privileged users to create workshops, although the deployment of the workshop instance might

require elevated privileges.

A minimal example of the WorkshopRequest custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

 name: lab-markdown-sample

spec:

Tanzu Application Platform v1.0

VMware, Inc 287

 environment:

 name: lab-markdown-sample

 token: lab-markdown-sample

Apart from appropriate access from RBAC, the user requesting a workshop instance must know the

name of the workshop environment and the secret token that permits workshop requests against

that specific workshop environment.

You do not need to create the WorkshopRequest resource when you use the TrainingPortal

resource to provide a web interface for accessing workshops. You only need to create the

WorkshopRequest resource when you create the WorkshopEnvironment resource manually and do not

use the training portal.

Workshop session resource

Although WorkshopRequest is the typical way to request workshop instances, the Learning Center

Operator itself creates an instance of a WorkshopSession custom resource when the request is

granted.

The WorkshopSession custom resource is the expanded definition of what the workshop instance is.

It combines details from Workshop and WorkshopEnvironment, and also links back to the

WorkshopRequest resource object that triggered the request. The Learning Center Operator reacts to

an instance of WorkshopSession and creates the workshop instance based on that definition.

Note: You create the WorkshopSession custom resource at the cluster scope.

Training portal resource

The TrainingPortal custom resource provides a high-level mechanism for creating a set of

workshop environments and populating them with workshop instances.

A minimal example of the TrainingPortal custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 1

You can set the capacity of the training room, which dictates how many workshop instances are

created for each workshop.

Note: You create the TrainingPortal custom resource at the cluster scope.

System profile resource

The SystemProfile custom resource provides a mechanism for configuring the Learning Center

Operator. This provides additional features that use environment variables to configure the operator.

A minimal example of the SystemProfile custom resource looks like this:

Tanzu Application Platform v1.0

VMware, Inc 288

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter-tanzu-vmware-com-tls

 class: nginx

 environment:

 secrets:

 pull:

 - cluster-image-registry-pull

The operator, by default, looks for a default system profile called default-system-profile. Setting

the SYSTEM_PROFILE environment variable on the deployment for the operator or using the

system.profile setting on TrainingPortal, WorkshopEnvironment, or WorkshopSession custom

resources for specific deployments can override the default name globally.

As only a global deployment of the operator is supported, the SystemProfile custom resource is

created at cluster scope.

You can make changes to instances of the SystemProfile custom resource. The Learning Center

Operator uses these changes without needing to redeploy the custom resource.

Note: You create the SystemProfile custom resource at the cluster scope.

Loading the workshop CRDs

The custom resource definitions for the custom resource described earlier are created in the

Kubernetes cluster when you deploy the Learning Center operator by using the Tanzu CLI.

This is because v1 versions of CRDs are only supported from Kubernetes v1.17. If you want to use the

v1 versions of the CRDs, you must create a copy of the Learning Center operator deployment

resources and override the configuration.

Workshop resource

The Workshop custom resource defines a workshop.

Workshop title and description

Each workshop must have the title and description fields. If you do not supply these fields, the

Workshop resource is rejected when you attempt to load it into the Kubernetes cluster.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

Tanzu Application Platform v1.0

VMware, Inc 289

 files: github.com/eduk8s/lab-markdown-sample

Where:

The title field has a single-line value specifying the subject of the workshop.

The description field has a longer description of the workshop.

You can also supply the following optional information for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 url: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 difficulty: beginner

 duration: 15m

 vendor: learningcenter.tanzu.vmware.com

 authors:

 - John Smith

 tags:

 - template

 logo: data:image/png;base64,....

 content:

 files: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The url field is the Git repository URL for lab-markdown-sample. For example,

https://github.com/eduk8s/lab-markdown-sample. It must be a URL you can use to get

more information about the workshop.

The difficulty field indicates the target audiences of the workshop. The value can be

beginner, intermediate, advanced, or extreme.

The duration field gives the maximum amount of time the workshop takes to complete. This

field provides informational value and does not guarantee how long a workshop instance

lasts. The field format is an integer number with s, m, or h suffix.

The vendor field must be a value that identifies the company or organization with which the

authors are affiliated. This is a company or organization name or a DNS host name under the

control of whoever has created the workshop.

The authors field must list the people who create the workshop.

The tags field must list labels identifying what the workshop is about. This is used in a

searchable catalog of workshops.

The logo field must be an image provided in embedded data URI format that depicts the

topic of the workshop. The image must be 400 by 400 pixels. You can use it in a searchable

catalog of workshops.

The files field is the Git repository URL for lab-markdown-sample. For example,

https://github.com/eduk8s/lab-markdown-sample.

Tanzu Application Platform v1.0

VMware, Inc 290

When referring to a workshop definition after you load it into a Kubernetes cluster, use the value of

the name field given in the metadata. To experiment with different variations of a workshop, copy the

original workshop definition YAML file and change the value of name. Make your changes and load it

into the Kubernetes cluster.

Downloading workshop content

You can download workshop content when you create the workshop instance. If the amount of

content is moderate, the download doesn’t increase startup time for the workshop instance. The

alternative is to bundle the workshop content in a container image you build from the Learning

Center workshop base image.

To download workshop content at the time the workshop instance starts, set the content.files field

to the location of the workshop content:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

The location is a GitHub or GitLab repository, a URL to a tarball hosted on a HTTP server, or a

reference to an OCI image artifact on a registry.

For a GitHub or GitLab repository, do not prefix the location with https:// as it uses symbolic

reference and is not a URL.

The format of the reference to a GitHub or GitLab repository is similar to what you use with

Kustomize when referencing remote repositories. For example:

github.com/organisation/project?ref=main or github.com/organisation/project?

ref=main: Use the workshop content you host at the root of the GitHub repository. Use the

main branch. Be sure to specify the ref branch, because not specifying the branch may lead

to content download errors.

github.com/organisation/project/subdir?ref=develop: Use the workshop content you

host at subdir of the GitHub repository. Use the develop branch.

gitlab.com/organisation/project: Use the workshop content you host at the root of the

GitLab repository. Use the main branch.

gitlab.com/organisation/project/subdir?ref=develop: Use the workshop content you

host at subdir of the GitLab repository. Use the develop branch.

For a URL to a tarball hosted on a HTTP server, the URL is in the following formats:

https://example.com/workshop.tar - Use the workshop content from the top-level directory

of the unpacked tarball.

https://example.com/workshop.tar.gz - Use the workshop content from the top-level

directory of the unpacked tarball.

Tanzu Application Platform v1.0

VMware, Inc 291

https://example.com/workshop.tar?path=subdir - Use the workshop content from the

subdirectory path of the unpacked tarball.

https://example.com/workshop.tar.gz?path=subdir - Use the workshop content from the

subdirectory path of the unpacked tarball.

The tarball referenced by the URL is either uncompressed or compressed.

For GitHub, instead of referencing the Git repository containing the workshop content, use a URL to

refer directly to the downloadable tarball for a specific version of the Git repository:

https://github.com/organization/project/archive/develop.tar.gz?path=project-

develop

You must reference the .tar.gz download and cannot use the .zip file. The base name of the

tarball file is the branch or commit name. You must enter the path query string parameter where the

argument is the name of the project and branch or project and commit. You must supply the path

because the contents of the repository are not returned at the root of the archive.

GitLab also provides a means of downloading a package as a tarball:

https://gitlab.com/organization/project/-/archive/develop/project-develop.tar.gz?

path=project-develop

If the GitHub or GitLab repository is private, you can generate a personal access token providing

read-only access to the repository and include the credentials in the URL:

https://username@token:github.com/organization/project/archive/develop.tar.gz?

path=project-develop

With this method, you supply a full URL to request a tarball of the repository and it does not refer to

the repository itself. You can also reference private enterprise versions of GitHub or GitLab and the

repository doesn’t need to be on the public github.com or gitlab.com sites.

The last case is a reference to an OCI image artifact stored on a registry. This is not a full container

image with the operating system, but an image containing only the files making up the workshop

content. The URI formats for this are:

imgpkg+https://harbor.example.com/organisation/project:version - Use the workshop

content from the top-level directory of the unpacked OCI artifact. The registry in this case

must support https.

imgpkg+https://harbor.example.com/organisation/project:version?path=subdir - Use

the workshop content from the subdirectory path of the unpacked OCI artifact you specify.

The registry in this case must support https.

imgpkg+http://harbor.example.com/organisation/project:version - Use the workshop

content from the top-level directory of the unpacked OCI artifact. The registry in this case

can only support http.

imgpkg+http://harbor.example.com/organisation/project:version?path=subdir - Use the

workshop content from the subdirectory path of the unpacked OCI artifact you specify. The

registry in this case can only support http.

You can use imgpkg:// instead of the prefix imgpkg+https://. The registry in this case must still

support https.

Tanzu Application Platform v1.0

VMware, Inc 292

For any of the formats, you can supply credentials as part of the URI:

imgpkg+https://username:password@harbor.example.com/organisation/project:version

Access to the registry using a secure connection of https must have a valid certificate.

You can create the OCI image artifact by using imgpkg from the Carvel tool set. For example, from

the top-level directory of the Git repository containing the workshop content, run:

imgpkg push -i harbor.example.com/organisation/project:version -f .

In all cases for downloading workshop content, the workshop subdirectory holding the actual

workshop content is relocated to /opt/workshop so that it is not visible to a user. If you want to

ignore other files so the user can not see them, you can supply a .eduk8signore file in your

repository or tarball and list patterns for the files in it.

The contents of the .eduk8signore file are processed as a list of patterns and each is applied

recursively to subdirectories. To ensure that a file is only ignored if it resides in the root directory,

prefix it with ./:

./.dockerignore

./.gitignore

./Dockerfile

./LICENSE

./README.md

./kustomization.yaml

./resources

Container image for the workshop

When you bundle the workshop content into a container image, the content.image field must

specify the image reference identifying the location of the container image that you will deploy for

the workshop instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

Even though you can download workshop content when the workshop environment starts, you

might still want to override the workshop image that is used as a base. You can do this when you

have a custom workshop base image that includes added language runtimes or tools that the

specialized workshops require.

For example, if running a Java workshop, you can enter the jdk11-environment for the workshop

image. The workshop content is still downloaded from GitHub:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.0

VMware, Inc 293

kind: Workshop

metadata:

 name: lab-spring-testing

spec:

 title: Spring Testing

 description: Playground for testing Spring development

 content:

 image: registry.tanzu.vmware.com/learning-center/jdk11-environment:latest

 files: github.com/eduk8s-tests/lab-spring-testing

If you want to use the latest version of an image, always include the :latest tag. This is important

because the Learning Center Operator looks for version tags :main, :develop, and :latest. When

using these tags, the Operator sets the image pull policy to Always to ensure that a newer version is

always pulled if available. Otherwise, the image is cached on the Kubernetes nodes and only pulled

when it is initially absent. Any other version tags are always assumed to be unique and are never

updated. Be aware of image registries that use a content delivery network (CDN) as front end. When

using these image tags, the CDN can still regard them as unique and not do pull through requests to

update an image even if it uses a tag of :latest.

When special custom workshop base images are available as part of the Learning Center project,

instead of specifying the full location for the image, including the image registry, you can specify a

short name. The Learning Center Operator then fills in the rest of the details:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-spring-testing

spec:

 title: Spring Testing

 description: Playground for testing Spring development

 content:

 image: jdk11-environment:latest

 files: github.com/eduk8s-tests/lab-spring-testing

The supported short versions of the names are:

base-environment:*: A tagged version of the base-environment workshop image matched

with the current version of the Learning Center Operator.

The * variants of the short names map to the most up-to-date version of the image available when

the version of the Learning Center Operator was released. That version is guaranteed to work with

that version of the Learning Center Operator. The latest version can be newer, with possible

incompatibilities.

If required, you can remap the short names in the SystemProfile configuration of the Learning

Center Operator. You can map additional short names to your own custom workshop base images

for your own deployment of the Learning Center Operator, and with any of your own workshops.

Setting environment variables

To set or override environment variables for the workshop instance, you can supply the session.env

field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.0

VMware, Inc 294

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

 session:

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The session.env field is a list of dictionaries with the name and value fields.

The value field is the Git repository for lab-markdown-sample. For example,

https://github.com/eduk8s/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session. A workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances. It is also the namespace where

the service account that the workshop instance runs.

service_account: The name of the service account that the workshop instance runs as. It has

access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for

workshops.

The syntax for referencing the parameters is $(parameter_name).

Use the session.env field to override environment variables only when they are required for the

workshop. To set or override an environment for a specific workshop environment, set environment

variables in the WorkshopEnvironment custom resource for the workshop environment instead.

Overriding the memory available

By default the container the workshop environment runs in is allocated 512Mi. If the editor is

enabled, a total of 1Gi is allocated.

The memory allocation is sufficient for the workshop that is mainly aimed at deploying workloads into

the Kubernetes cluster. If you run workloads in the workshop environment container and need more

Tanzu Application Platform v1.0

VMware, Inc 295

memory, you can override the default by setting memory under session.resources:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 resources:

 memory: 2Gi

Mounting a persistent volume

In circumstances where a workshop needs persistent storage to ensure no loss of work, you can

request a persistent volume be mounted into the workshop container after the workshop

environment container is stopped and restarted:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 resources:

 storage: 5Gi

The persistent volume is mounted on top of the /home/eduk8s directory. Because this hides any

workshop content bundled with the image, an init container is automatically configured and run,

which copies the contents of the home directory to the persistent volume before the persistent

volume is mounted on top of the home directory.

Resource budget for namespaces

In conjunction with each workshop instance, a namespace is created during the workshop. From the

terminal of the workshop, you can deploy dashboard applications into the namespace through the

Kubernetes REST API by using tools such as kubectl.

By default, this namespace has all the limit ranges and resource quotas the Kubernetes cluster can

enforce. In most cases, this means there are no limits or quotas.

To control how much resources you can use when you set no limit ranges and resource quotas, or

override any default limit ranges and resource quotas, you can set a resource budget for any

namespace of the workshop instance in the session.namespaces.budget field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.0

VMware, Inc 296

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 namespaces:

 budget: small

The resource budget sizings and quotas for CPU and memory are:

| Budget | CPU | Memory |

|-----------|-------|--------|

| small | 1000m | 1Gi |

| medium | 2000m | 2Gi |

| large | 4000m | 4Gi |

| x-large | 8000m | 8Gi |

| xx-large | 8000m | 12Gi |

| xxx-large | 8000m | 16Gi |

A value of 1000m is equivalent to 1 CPU.

Separate resource quotas for CPU and memory are applied for terminating and non-terminating

workloads.

Only the CPU and memory quotas are listed in the preceding table, but limits also apply to the

number of resource objects of certain types you can create, such as:

persistent volume claims

replication controllers

services

secrets

For each budget type, a limit range is created with fixed defaults. The limit ranges for CPU usage on

a container are as follows:

Budget Minimum Maximum Request Limit

small 50m 1000m 50m 250m

medium 50m 2000m 50m 500m

large 50m 4000m 50m 500m

x-large 50m 8000m 50m 500m

xx-large 50m 8000m 50m 500m

xxx-large 50m 8000m 50m 500m

The limit ranges for memory are as follows:

Budget Minimum Maximum Request Limit

Tanzu Application Platform v1.0

VMware, Inc 297

small 32Mi 1Gi 128Mi 256Mi

medium 32Mi 2Gi 128Mi 512Mi

large 32Mi 4Gi 128Mi 1Gi

x-large 32Mi 8Gi 128Mi 2Gi

xx-large 32Mi 12Gi 128Mi 2Gi

xxx-large 32Mi 16Gi 128Mi 2Gi

The request and limit values are the defaults of a container when there is no resources specification

in a pod specification.

You can supply overrides in session.namespaces.limits to override the limit ranges and defaults for

request and limit values when a budget sizing for CPU and memory is sufficient and there is no

resources specification in a pod specification:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 namespaces:

 budget: medium

 limits:

 min:

 cpu: 50m

 memory: 32Mi

 max:

 cpu: 1

 memory: 1Gi

 defaultRequest:

 cpu: 50m

 memory: 128Mi

 default:

 cpu: 500m

 memory: 1Gi

Although all the configurable properties are listed in this example, you only need to supply the

property for the value that you want to override.

If you need more control over the limit ranges and resource quotas, you can set the resource

budget to custom. This removes any default limit ranges and resource quota that might be applied to

the namespace. You can enter your own LimitRange and ResourceQuota resources as part of the list

of resources created for each session.

Before disabling the quota and limit ranges or contemplating any switch to using a custom set of

LimitRange and ResourceQuota resources, consider if that is what is really required.

The default requests defined by these for memory and CPU are fallbacks only. In most cases, instead

of changing the defaults, you can enter the memory and CPU resources in the pod template

Tanzu Application Platform v1.0

VMware, Inc 298

specification of your deployment resources used in the workshop to indicate what the application

requires. This allows you to control exactly what the application can use and so fit into the minimum

quota required for the task.

This budget setting and the memory values are distinct from the amount of memory the container

the workshop environment runs in. To change how much memory is available to the workshop

container, set the memory setting under session.resources.

Patching workshop deployment

In order to set or override environment variables, you can provide session.env. To make other

changes to the Pod template for the deployment used to create the workshop instance, provide an

overlay patch. You can use this patch to override the default CPU and memory limit applied to the

workshop instance or to mount a volume.

The patches are provided by setting session.patches. The patch is applied to the spec field of the

pod template:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-resource-testing

spec:

 title: Resource testing

 description: Play area for testing memory resources

 content:

 files: github.com/eduk8s-tests/lab-resource-testing

 session:

 patches:

 containers:

 - name: workshop

 resources:

 requests:

 memory: "1Gi"

 limits:

 memory: "1Gi"

In this example, the default memory limit of “512Mi” is increased to “1Gi”. Although memory is set

using a patch in this example, the session.resources.memory field is the preferred way to override

the memory allocated to the container the workshop environment is running in.

The patch works differently than overlay patches that you can find elsewhere in Kubernetes.

Specifically, when patching an array and the array contains a list of objects, a search is performed on

the destination array. If an object already exists with the same value for the name field, the item in the

source array is overlaid on top of the existing item in the destination array.

If there is no matching item in the destination array, the item in the source array is added to the end

of the destination array.

This means an array doesn’t outright replace an existing array, but a more intelligent merge is

performed of elements in the array.

Creation of session resources

Tanzu Application Platform v1.0

VMware, Inc 299

When a workshop instance is created, the deployment running the workshop dashboard is created

in the namespace for the workshop environment. When more than one workshop instance is

created under that workshop environment, all those deployments are in the same namespace.

For each workshop instance, a separate empty namespace is created with name corresponding to

the workshop session. The workshop instance is configured so that the service account that the

workshop instance runs under can access and create resources in the namespace created for that

workshop instance. Each separate workshop instance has its own corresponding namespace and

cannot see the namespace for another instance.

To pre-create additional resources within the namespace for a workshop instance, you can supply a

list of the resources against the session.objects field within the workshop definition. You might use

this to add additional custom roles to the service account for the workshop instance when working in

that namespace or to deploy a distinct instance of an application for just that workshop instance, such

as a private image registry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-registry-testing

spec:

 title: Registry Testing

 description: Play area for testing image registry

 content:

 files: github.com/eduk8s-tests/lab-registry-testing

 session:

 objects:

 - apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: registry

 spec:

 replicas: 1

 selector:

 matchLabels:

 deployment: registry

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 deployment: registry

 spec:

 containers:

 - name: registry

 image: registry.hub.docker.com/library/registry:2.6.1

 imagePullPolicy: IfNotPresent

 ports:

 - containerPort: 5000

 protocol: TCP

 env:

 - name: REGISTRY_STORAGE_DELETE_ENABLED

 value: "true"

 - apiVersion: v1

 kind: Service

 metadata:

 name: registry

Tanzu Application Platform v1.0

VMware, Inc 300

 spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 5000

 selector:

 deployment: registry

For namespaced resources, it is not necessary to enter the namespace field of the resource metadata.

When the namespace field is not present, the resource is created within the session namespace for

that workshop instance.

When resources are created, owner references are added, making the WorkshopSession custom

resource corresponding to the workshop instance the owner. This means that when the workshop

instance is deleted, any resources are deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

session_namespace: The namespace you create for and bound to the workshop instance.

This is the namespace unique to the session and where a workshop can create its own

resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances. It is also the namespace where

the service account that the workshop instance runs.

service_account: The name of the service account the workshop instance runs as and which

has access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for

workshops.

The syntax for referencing the parameter is $(parameter_name).

For cluster-scoped resources, you must set the name of the created resource so that it embeds the

value of $(session_namespace). This way the resource name is unique to the workshop instance,

and you do not get a clash with a resource for a different workshop instance.

For examples of making use of the available parameters, see the following sections.

Overriding default role-based access control (RBAC) rules

By default the service account created for the workshop instance has admin role access to the

session namespace created for that workshop instance. This enables the service account to be used

to deploy applications to the session namespace and manage secrets and service accounts.

Where a workshop doesn’t require admin access for the namespace, you can reduce the level of

Tanzu Application Platform v1.0

VMware, Inc 301

access it has to edit or view by setting the session.namespaces.role field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-role-testing

spec:

 title: Role Testing

 description: Play area for testing roles

 content:

 files: github.com/eduk8s-tests/lab-role-testing

 session:

 namespaces:

 role: view

To add additional roles to the service account, such as working with custom resource types added to

the cluster, you can add the appropriate Role and RoleBinding definitions to the session.objects

field described previously:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-kpack-testing

spec:

 title: Kpack Testing

 description: Play area for testing kpack

 content:

 files: github.com/eduk8s-tests/lab-kpack-testing

 session:

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: Role

 metadata:

 name: kpack-user

 rules:

 - apiGroups:

 - build.pivotal.io

 resources:

 - builds

 - builders

 - images

 - sourceresolvers

 verbs:

 - get

 - list

 - watch

 - create

 - delete

 - patch

 - update

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: RoleBinding

 metadata:

 name: kpack-user

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: kpack-user

Tanzu Application Platform v1.0

VMware, Inc 302

 subjects:

 - kind: ServiceAccount

 namespace: $(workshop_namespace)

 name: $(service_account)

Because the subject of a RoleBinding must specify the service account name and namespace it is

contained within, both of which are unknown in advance, references to parameters for the workshop

namespace and service account for the workshop instance are used when defining the subject.

You can add additional resources with session.objects to grant cluster-level roles and the service

account cluster-admin role:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-admin-testing

spec:

 title: Admin Testing

 description: Play area for testing cluster admin

 content:

 files: github.com/eduk8s-tests/lab-admin-testing

 session:

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRoleBinding

 metadata:

 name: $(session_namespace)-cluster-admin

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

 subjects:

 - kind: ServiceAccount

 namespace: $(workshop_namespace)

 name: $(service_account)

In this case, the name of the cluster role binding resource embeds $(session_namespace) so that its

name is unique to the workshop instance and doesn’t overlap with a binding for a different workshop

instance.

Running user containers as root

In addition to RBAC, which controls what resources a user can create and work with, Pod security

policies are applied to restrict what Pods/containers a user deploys can do.

By default the deployments that a workshop user can create are allowed only to run containers as a

non-root user. This means that many container images available on registries such as Docker Hub

cannot be used.

If you are creating a workshop where a user must run containers as the root user, you must override

the default nonroot security policy and select the anyuid security policy by using the

session.namespaces.security.policy setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.0

VMware, Inc 303

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing security policies

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 namespaces:

 security:

 policy: anyuid

This setting applies to the primary session namespace and any secondary namespaces created.

Creating additional namespaces

For each workshop instance, a primary session namespace is created. You can deploy or pre-deploy

applications into this namespace as part of the workshop.

If you need more than one namespace per workshop instance, you can create secondary

namespaces in a couple of ways.

If the secondary namespaces are to be created empty, you can list the details of the namespaces

under the property session.namespaces.secondary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 namespaces:

 role: admin

 budget: medium

 secondary:

 - name: $(session_namespace)-apps

 role: edit

 budget: large

 limits:

 default:

 memory: 512mi

When secondary namespaces are created, by default, the role, resource quotas, and limit ranges are

set the same as the primary session namespace. Each namespace has a separate resource budget

and it is not shared.

If required, you can override what role, budget, and limits are applied within the entry for the

namespace.

Similarly, you can override the security policy for secondary namespaces on a case-by-case basis by

adding the security.policy setting under the entry for the secondary namespace.

To create resources in the namespaces you create, create the namespaces by adding an appropriate

Tanzu Application Platform v1.0

VMware, Inc 304

Namespace resource to session.objects with the definitions of the resources you want to create in

the namespaces:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

When listing any other resources to be created within the added namespace, such as deployments,

ensure that the namespace is set in the metadata of the resource. For example,

$(session_namespace)-apps.

To override what role the service account for the workshop instance has in the added namespace,

you can set the learningcenter.tanzu.vmware.com/session.role annotation on the Namespace

resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

 annotations:

 learningcenter.tanzu.vmware.com/session.role: view

To have a different resource budget set for the additional namespace, you can add the annotation

learningcenter.tanzu.vmware.com/session.budget in the Namespace resource metadata and set the

value to the required resource budget:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

Tanzu Application Platform v1.0

VMware, Inc 305

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

 annotations:

 learningcenter.tanzu.vmware.com/session.budget: large

To override the limit range values applied corresponding to the budget applied, you can add

annotations starting with learningcenter.tanzu.vmware.com/session.limits. for each entry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

 annotations:

 learningcenter.tanzu.vmware.com/session.limits.min.cpu: 50m

 learningcenter.tanzu.vmware.com/session.limits.min.memory: 32Mi

 learningcenter.tanzu.vmware.com/session.limits.max.cpu: 1

 learningcenter.tanzu.vmware.com/session.limits.max.memory: 1Gi

 learningcenter.tanzu.vmware.com/session.limits.defaultrequest.cpu: 50m

 learningcenter.tanzu.vmware.com/session.limits.defaultrequest.memory: 128Mi

 learningcenter.tanzu.vmware.com/session.limits.request.cpu: 500m

 learningcenter.tanzu.vmware.com/session.limits.request.memory: 1Gi

You only must supply annotations for the values you want to override.

If you need more fine-grained control over the limit ranges and resource quotas, set the value of the

annotation for the budget to custom and add the LimitRange and ResourceQuota definitions to

session.objects.

In this case you must set the namespace for the LimitRange and ResourceQuota resource to the name

of the namespace, e.g., $(session_namespace)-apps so they are only applied to that namespace.

To set the security policy for a specific namespace other than the primary session namespace, you

can add the annotation learningcenter.tanzu.vmware.com/session.security.policy in the

Namespace resource metadata and set the value to nonroot, anyuid, or custom as necessary.

Shared workshop resources

Adding a list of resources to session.objects causes the given resources to be created for each

workshop instance, whereas namespaced resources default to being created in the session

Tanzu Application Platform v1.0

VMware, Inc 306

namespace for a workshop instance.

If instead you want to have one common shared set of resources created once for the whole

workshop environment, that is, used by all workshop instances, you can list them in the

environment.objects field.

This might, for example, be used to deploy a single container image registry used by all workshop

instances, with a Kubernetes job used to import a set of images into the container image registry,

which are then referenced by the workshop instances.

For namespaced resources, it is not necessary to enter the namespace field of the resource metadata.

When the namespace field is not present, the resource is created within the workshop namespace for

that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment

custom resource correspond to the workshop environment of the owner. This means that when the

workshop environment is deleted, any resources are also deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

workshop_name: The name of the workshop. This is the name of the Workshop definition the

workshop environment was created against.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

environment_token: The value of the token that must be used in workshop requests against

the workshop environment.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances, and their service accounts, are created. It

is the same namespace that shared workshop resources are created.

service_account: The name of a service account you can use when creating deployments in

the workshop namespace.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

ingress_secret: The name of the ingress secret stored in the workshop namespace when

secure ingress is used.

To create additional namespaces associated with the workshop environment, embed a reference to

$(workshop_namespace) in the name of the additional namespaces with an appropriate suffix. Be

careful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the

Deployment resource to $(service_account). This ensures the deployment makes use of a special

Pod security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more

strict default Pod security policy, your deployment might not work, especially if any image runs as

root.

Tanzu Application Platform v1.0

VMware, Inc 307

Workshop pod security policy

The pod for the workshop session is set up with a pod security policy that restricts what you can do

from containers in the pod. The nature of the applied pod security policy is adjusted when enabling

support for doing Docker builds. This in turn enables Docker builds inside the sidecar container

attached to the workshop container.

If you are customizing the workshop by patching the pod specification using session.patches to add

your own sidecar container, and that sidecar container must run as the root user or needs a custom

pod security policy, you must override the default security policy for the workshop container.

To allow a sidecar container to run as the root user with no extra privileges required, you can

override the default nonroot security policy and set it to anyuid:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing security policies

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 security:

 policy: anyuid

This is a different setting than described previously for changing the security policy for deployments

made by a workshop user to the session namespaces. This setting applies only to the workshop

container itself.

If you need more fine-grained control of the security policy, you must provide your own resources

for defining the Pod security policy and map it so it is used. The details of the pod security policy

must be in environment.objects and mapped by definitions added to session.objects. For this to

be used, you must deactivate the application of the inbuilt pod security policies. You can do this by

setting session.security.policy to custom:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing policy override

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 security:

 policy: custom

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: RoleBinding

 metadata:

 namespace: $(workshop_namespace)

 name: $(session_namespace)-podman

 roleRef:

Tanzu Application Platform v1.0

VMware, Inc 308

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: $(workshop_namespace)-podman

 subjects:

 - kind: ServiceAccount

 namespace: $(workshop_namespace)

 name: $(service_account)

 environment:

 objects:

 - apiVersion: policy/v1beta1

 kind: PodSecurityPolicy

 metadata:

 name: aa-$(workshop_namespace)-podman

 spec:

 privileged: true

 allowPrivilegeEscalation: true

 requiredDropCapabilities:

 - KILL

 - MKNOD

 hostIPC: false

 hostNetwork: false

 hostPID: false

 hostPorts: []

 runAsUser:

 rule: MustRunAsNonRoot

 seLinux:

 rule: RunAsAny

 fsGroup:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

 volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRole

 metadata:

 name: $(workshop_namespace)-podman

 rules:

 - apiGroups:

 - policy

 resources:

 - podsecuritypolicies

 verbs:

 - use

 resourceNames:

 - aa-$(workshop_namespace)-podman

By overriding the pod security policy, you are responsible for limiting what you can do from the

workshop pod. In other words, add only the extra capabilities you need. The pod security policy is

applied only to the pod the workshop session runs in. It does not change any pod security policy

applied to service accounts that exist in the session namespace or other namespaces you have

created.

Tanzu Application Platform v1.0

VMware, Inc 309

There is a better way to set the priority of applied Pod security policies when a default Pod security

policy is applied globally by mapping it to the system:authenticated group. This causes priority

falling back to the order of the names of the Pod security policies. VMware recommends you use

aa- as a prefix to the custom Pod security name you create. This ensures it takes precedence over

any global default Pod security policy such as restricted, pks-restricted or vmware-system-tmc-

restricted, no matter what the name of the global policy default.

Custom security policies for user containers

You can also set the value of the session.namespaces.security.policy setting as custom. This gives

you more fine-grained control of the security policy applied to the pods and containers that a user

deploys during a session. In this case you must provide your own resources that define and map the

pod security policy.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing policy override

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 namespaes:

 security:

 policy: custom

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: RoleBinding

 metadata:

 namespace: $(workshop_namespace)

 name: $(session_namespace)-security-policy

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: $(workshop_namespace)-security-policy

 subjects:

 - kind: Group

 namespace: $(workshop_namespace)

 name: system:serviceaccounts:$(workshop_namespace)

 environment:

 objects:

 - apiVersion: policy/v1beta1

 kind: PodSecurityPolicy

 metadata:

 name: aa-$(workshop_namespace)-security-policy

 spec:

 privileged: true

 allowPrivilegeEscalation: true

 requiredDropCapabilities:

 - KILL

 - MKNOD

 hostIPC: false

Tanzu Application Platform v1.0

VMware, Inc 310

 hostNetwork: false

 hostPID: false

 hostPorts: []

 runAsUser:

 rule: MustRunAsNonRoot

 seLinux:

 rule: RunAsAny

 fsGroup:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

 volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRole

 metadata:

 name: $(workshop_namespace)-security-policy

 rules:

 - apiGroups:

 - policy

 resources:

 - podsecuritypolicies

 verbs:

 - use

 resourceNames:

 - aa-$(workshop_namespace)-security-policy

You can also do this on secondary namespaces by either changing the

session.namespaces.secondary.security.policy setting to custom or using the

learningcenter.tanzu.vmware.com/session.security.policy: custom annotation.

Defining additional ingress points

If running additional background applications, by default they are only accessible to other processes

within the same container. For an application to be accessible to a user through their web browser,

an ingress must be created mapping to the port for the application.

You can do this by supplying a list of the ingress points and the internal container port they map to

by setting the session.ingresses field in the workshop definition:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

Tanzu Application Platform v1.0

VMware, Inc 311

 port: 8080

The form of the host name used in the URL to access the service is:

$(session_namespace)-application.$(ingress_domain)

This name cannot be terminal, console, slides, editor, or the name of any built-in dashboard.

These values are reserved for the corresponding built-in capabilities providing those features.

In addition to specifying ingresses for proxying to internal ports within the same Pod, you can enter a

host, protocol and port corresponding to a separate service running in the Kubernetes cluster:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 protocol: http

 host: service.namespace.svc.cluster.local

 port: 8080

You can use variables providing information about the current session within the host property if

required:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 protocol: http

 host: service.$(session_namespace).svc.cluster.local

 port: 8080

Available variables are:

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances and where the service account

Tanzu Application Platform v1.0

VMware, Inc 312

that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

If the service uses standard http or https ports, you can leave out the port property, and the port is

set based on the value of protocol.

When a request is proxied, you can specify additional request headers that must be passed to the

service:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 protocol: http

 host: service.$(session_namespace).svc.cluster.local

 port: 8080 port: 8080

 headers:

 - name: Authorization

 value: "Bearer $(kubernetes_token)"

The value of a header can reference the following variable:

kubernetes_token: The access token of the service account for the current workshop

session, used for accessing the Kubernetes REST API.

Access controls enforced by the workshop environment or training portal protect accessing any

service through the ingress. If you use the training portal, this must be transparent. Otherwise,

supply any login credentials for the workshop again when prompted by your web browser.

External workshop instructions

In place of using workshop instructions provided with the workshop content, you can use externally

hosted instructions instead. To do this set sessions.applications.workshop.url to the URL of an

external web site:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

Tanzu Application Platform v1.0

VMware, Inc 313

 workshop:

 url: https://www.example.com/instructions

The external web site must displayed in an HTML iframe, is shown as is and must provide its own

page navigation and table of contents if required.

The URL value can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances and where the service account

that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for

workshops.

These could be used, for example, to reference workshops instructions hosted as part of the

workshop environment:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 workshop:

 url: $(ingress_protocol)://$(workshop_namespace)-instructions.$(ingress_domain

)

 environment:

 objects:

 - ...

In this case environment.objects of the workshop spec must include resources to deploy the

application hosting the instructions and expose it through an appropriate ingress.

Disabling workshop instructions

The aim of the workshop environment is to provide instructions for a workshop that users can follow.

If you want instead to use the workshop environment as a development environment or as an

administration console that provides access to a Kubernetes cluster, you can deactivate the display of

workshop instructions provided with the workshop content. In this case, only the work area with the

terminals, console, and so on, is displayed. To deactivate display of workshop instructions, add a

session.applications.workshop section and set the enabled property to false:

Tanzu Application Platform v1.0

VMware, Inc 314

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 workshop:

 enabled: false

Enabling the Kubernetes console

By default the Kubernetes console is not enabled. To enable it and make it available through the

web browser when accessing a workshop, add a session.applications.console section to the

workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 console:

 enabled: true

The Kubernetes dashboard provided by the Kubernetes project is used. To use Octant as the

console, you can set the vendor property to octant:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 console:

 enabled: true

 vendor: octant

When vendor is not set, kubernetes is assumed.

Tanzu Application Platform v1.0

VMware, Inc 315

Enabling the integrated editor

By default the integrated web based editor is not enabled. To enable it and make it available through

the web browser when accessing a workshop, add a session.applications.editor section to the

workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 editor:

 enabled: true

The integrated editor used is based on Visual Studio Code. For more information about the editor,

see https://github.com/cdr/code-server in GitHub.

To install additional VS Code extensions, do this from the editor. Alternatively, if building a custom

workshop, you can install them from your Dockerfile into your workshop image by running:

code-server --install-extension vendor.extension

Replace vendor.extension with the name of the extension, where the name identifies the extension

on the VS Code extensions marketplace used by the editor or provide a path name to a local .vsix

file.

This installs the extensions into $HOME/.config/code-server/extensions.

If downloading extensions yourself and unpacking them or extensions are part of your Git repository,

you can instead locate them in the workshop/code-server/extensions directory.

Enabling workshop downloads

You can provide a way for a workshop user to download files as part of the workshop content.

Enable this by adding the session.applications.files section to the workshop definition and

setting the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

Tanzu Application Platform v1.0

VMware, Inc 316

https://github.com/cdr/code-server

 files:

 enabled: true

The recommended way of providing access to files from workshop instructions is using the

files:download-file clickable action block. This action ensures any file is downloaded to the local

machine and is not displayed in the browser in place of the workshop instructions.

By default the user can access any files located under the home directory of the workshop user

account. To restrict where the user can download files from, set the directory setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 files:

 enabled: true

 directory: exercises

When the specified directory is a relative path, it is evaluated relative to the home directory of the

workshop user.

Enabling the test examiner

The test examiner is a feature that allows a workshop to have verification checks that the workshop

instructions can trigger. The test examiner is deactivated by default. To enable it, add a

session.applications.examiner section to the workshop definition and set the enabled property to

true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 examiner:

 enabled: true

You must provide any executable test programs for verification checks in the

workshop/examiner/tests directory.

The test programs must return an exit status of 0 if the test is successful and nonzero if it fails. Test

programs must not be persistent programs that can run forever.

Tanzu Application Platform v1.0

VMware, Inc 317

Clickable actions for the test examiner are used within the workshop instructions to trigger the

verification checks. You can configure them to start when the page of the workshop instructions is

loaded.

Enabling session image registry

Workshops using tools such as kpack or tekton and which need a place to push container images

when built can enable a container image registry. A separate registry is deployed for each workshop

session.

The container image registry is currently fully usable only if workshops are deployed under a

Learning Center Operator configuration that uses secure ingress. This is because a registry that is

not secure is not trusted by the Kubernetes cluster as the source of container images when doing

deployments.

To enable the deployment of a registry per workshop session, add a

session.applications.registry section to the workshop definition and set the enabled property to

true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 registry:

 enabled: true

The registry mounts a persistent volume for storing of images. By default the size of that persistent

volume is 5Gi. To override the size of the persistent volume, add the storage property under the

registry section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 registry:

 enabled: true

 storage: 20Gi

The amount of memory provided to the registry defaults to 768Mi. To increase this, add the memory

property under the registry section.

Tanzu Application Platform v1.0

VMware, Inc 318

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 registry:

 enabled: true

 memory: 1Gi

The registry is secured with a user name and password unique to the workshop session, and must be

accessed over a secure connection.

To allow access from the workshop session, the file $HOME/.docker/config.json containing the

registry credentials are injected into the workshop session. This is used by tools such as docker.

For deployments in Kubernetes, a secret of type kubernetes.io/dockerconfigjson is created in the

namespace and applied to the default service account in the namespace. This means deployments

made using the default service account can pull images from the registry without additional

configuration. If creating deployments using other service accounts, add configuration to the service

account or deployment to add the registry secret for pulling images.

If you need access to the raw registry host details and credentials, they are provided as environment

variables in the workshop session. The environment variables are:

REGISTRY_HOST: Contains the host name for the registry for the workshop session.

REGISTRY_AUTH_FILE: Contains the location of the docker configuration file. Must be the

equivalent of $HOME/.docker/config.json.

REGISTRY_USERNAME: Contains the user name for accessing the registry.

REGISTRY_PASSWORD: Contains the password for accessing the registry. This is different for

each workshop session.

REGISTRY_SECRET: Contains the name of a Kubernetes secret of type

kubernetes.io/dockerconfigjson added to the session namespace, which contains the

registry credentials.

The URL for accessing the registry adopts the HTTP protocol scheme inherited from the

environment variable INGRESS_PROTOCOL. This is the same HTTP protocol scheme the workshop

sessions use.

To use any of the variables as data variables in workshop content, use the same variable name but in

lowercase: registry_host, registry_auth_file, registry_username, registry_password and

registry_secret.

Enabling ability to use Docker

To build container images in a workshop using docker, first enable it. Each workshop session is

Tanzu Application Platform v1.0

VMware, Inc 319

provided with its own separate Docker daemon instance running in a container.

Enabling support for running docker requires the use of a privileged container for running the

Docker daemon. Because of the security implications of providing access to Docker with this

configuration, VMware recommends that if you don’t trust the people taking the workshop, any

workshops that require Docker only be hosted in a disposable Kubernetes cluster that is destroyed at

the completion of the workshop. You must not enable Docker for workshops hosted on a public

service that is always kept running and where arbitrary users can access the workshops.

To enable support for using docker add a session.applications.docker section to the workshop

definition and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 docker:

 enabled: true

The container that runs the Docker daemon mounts a persistent volume for storing of images which

are pulled down or built locally. By default the size of that persistent volume is 5Gi. To override the

size of the persistent volume, add the storage property under the docker section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 docker:

 enabled: true

 storage: 20Gi

The amount of memory provided to the container running the Docker daemon defaults to 768Mi. To

increase this, add the memory property under the registry section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

Tanzu Application Platform v1.0

VMware, Inc 320

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 docker:

 enabled: true

 memory: 1Gi

Access to the Docker daemon from the workshop session uses a local UNIX socket shared with the

container running the Docker daemon. If it uses a local tool to access the socket connection for the

Docker daemon directly rather than by running docker, it must use the DOCKER_HOST environment

variable to set the location of the socket.

The Docker daemon is only available from within the workshop session and cannot be accessed

outside of the pod by any tools deployed separately to Kubernetes.

Enabling WebDAV access to files

You can access or update local files within the workshop session from the terminal command line or

editor of the workshop dashboard. The local files reside in the file system of the container the

workshop session is running in.

To access the files remotely, you can enable WebDAV support for the workshop session.

To enable support for accessing files over WebDAV, add a session.applications.webdav section to

the workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 webdav:

 enabled: true

This causes a WebDAV server running within the workshop session environment. A set of

credentials is also generated and are available as environment variables. The environment variables

are:

WEBDAV_USERNAME: Contains the user name that must be used when authenticating over

WebDAV.

WEBDAV_PASSWORD: Contains the password that must be used when authenticating over

WebDAV.

To use any of the environment variables related to the container image registry as data variables in

workshop content, declare this in the workshop/modules.yaml file in the config.vars section:

config:

 vars:

Tanzu Application Platform v1.0

VMware, Inc 321

 - name: WEBDAV_USERNAME

 - name: WEBDAV_PASSWORD

The URL endpoint for accessing the WebDAV server is the same as the workshop session, with

/webdav/ path added. This can be constructed from the terminal using:

$INGRESS_PROTOCOL://$SESSION_NAMESPACE.$INGRESS_DOMAIN/webdav/

In workshop content it can be constructed using:

{{ingress_protocol}}://{{session_namespace}}.{{ingress_domain}}/webdav/

You can use WebDAV client support provided by your operating system or by using a standalone

WebDAV client, such as CyberDuck.

Using WebDAV can make it easier to transfer files to or from the workshop session.

Customizing the terminal layout

By default a single terminal is provided in the web browser when accessing the workshop. If

required, you can enable alternate layouts which provide additional terminals. To set the layout, add

the session.applications.terminal section and include the layout property with the desired

layout:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 terminal:

 enabled: true

 layout: split

The options for the layout property are:

default: Single terminal.

split: Two terminals stacked above each other in ratio 60/40.

split/2: Three terminals stacked above each other in ratio 50/25/25.

lower: A single terminal is placed below any dashboard tabs, rather than being a tab of its

own. The ratio of dashboard tab to terminal is 70/30.

none: No terminal is displayed but can still be created from the drop down menu.

When adding the terminal section, you must include the enabled property and set it to true as it is a

required field when including the section.

If you don’t want a terminal displayed and also want to deactivate the ability to create terminals from

Tanzu Application Platform v1.0

VMware, Inc 322

https://cyberduck.io/

the drop-down menu, set enabled to false.

Adding custom dashboard tabs

Exposed applications, external sites and additional terminals, can be given their own custom

dashboard tab. This is done by specifying the list of dashboard panels and the target URL:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 port: 8080

 dashboards:

 - name: Internal

 url: "$(ingress_protocol)://$(session_namespace)-application.$(ingress_domain)/"

 - name: External

 url: http://www.example.com

The URL values can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances you create and where the service account

that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for

workshops.

The URL can reference an external web site, however, that web site must not prohibit being

embedded in an HTML iframe.

In the case of wanting to have a custom dashboard tab provide an additional terminal, the url

property must use the form terminal:<session>, where <session> is replaced with the name of the

terminal session. The name of the terminal session can be any name you choose, but must be

restricted to lowercase letters, numbers, and dashes. You should avoid using numeric terminal

session names such as “1”, “2”, and “3” as these are used for the default terminal sessions.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

Tanzu Application Platform v1.0

VMware, Inc 323

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 dashboards:

 - name: Example

 url: terminal:example

WorkshopEnvironment resource

The WorkshopEnvironment custom resource defines a workshop environment.

Specifying the workshop definition

The creation of a workshop environment is performed as a separate step to loading the workshop

definition. This is to allow multiple distinct workshop environments using the same workshop

definition to be created if necessary.

To specify which workshop definition is to be used for a workshop environment, set the

workshop.name field of the specification for the workshop environment.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

The name of the workshop environment specified in the metadata of the workshop environment does

not need to be the same and has to be different if you are creating multiple workshop environments

from the same workshop definition.

When the workshop environment is created, the namespace created for the workshop environment

uses the name of the workshop environment specified in the metadata. This name is also used in the

unique names of each workshop instance created under the workshop environment.

Overriding environment variables

A workshop definition can set a list of environment variables that must be set for all workshop

instances. To override an environment variable specified in the workshop definition or one which is

defined in the container image, you can supply a list of environment variables as session.env.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

Tanzu Application Platform v1.0

VMware, Inc 324

 session:

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

You might use this to set the location of a back end service, such as an image registry, to be used by

the workshop.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id - A unique ID for the workshop instance within the workshop environment.

session_namespace - The namespace created for and bound to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name - The name of the workshop environment. Currently this is the same as

the name of the namespace for the workshop environment. Don’t rely on their being the

same, and use the most appropriate to cope with any future change.

workshop_namespace - The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances are created and where the service account

that the workshop instance runs as exists.

service_account - The name of the service account the workshop instance runs as and

which has access to the namespace created for that workshop instance.

ingress_domain - The host domain under which host names can be created when creating

ingress routes.

ingress_protocol - The protocol (http/https) that is used for ingress routes which are

created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Overriding the ingress domain

To access a workshop instance using a public URL, you must specify an ingress domain. If an ingress

domain isn’t specified, the default ingress domain that the Learning Center operator configured with

is used.

When setting a custom domain, DNS must be configured with a wildcard domain to forward all

requests for sub domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

Tanzu Application Platform v1.0

VMware, Inc 325

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

If overriding the domain, by default, the workshop session is exposed using a HTTP connection. If

you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for the

domain. A secret of type tls must be created for the certificate in the learningcenter namespace or

the namespace where the Learning Center Operator is deployed. The name of that secret must then

be set in the session.ingress.secret field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

If HTTPS connections are being terminated using an external load balancer and not by specifying a

secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying

an ingress secret by setting the session.ingress.protocol field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 protocol: https

To override or set the ingress class, which dictates which ingress router is used when more than one

option is available, you can add session.ingress.class.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

 class: nginx

Tanzu Application Platform v1.0

VMware, Inc 326

Controlling access to the workshop

By default, requesting a workshop using the WorkshopRequest custom resource is deactivated and

must be enabled for a workshop environment by setting request.enabled to true.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

With this enabled, anyone who can create a WorkshopRequest custom resource can request the

creation of a workshop instance for the workshop environment.

To further control who can request a workshop instance in the workshop environment, you can first

set an access token, which a user must know and supply with the workshop request. This can be

done by setting the request.token field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

 token: lab-markdown-sample

In this example the same name as the workshop environment is used, which is probably not a good

practice. Use a random value instead. The token value can be multiline.

As a second measure of control, you can specify what namespaces the WorkshopRequest must be

created in to be successful. This means a user must have the specific ability to create

WorkshopRequest resources in one of those namespaces.

You can specify the list of namespaces from which workshop requests for the workshop environment

by setting request.namespaces.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

 token: lab-markdown-sample

 namespaces:

 - default

Tanzu Application Platform v1.0

VMware, Inc 327

To add the workshop namespace in the list, rather than list the literal name, you can reference a

predefined parameter specifying the workshop namespace by including $(workshop_namespace).

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

 token: lab-markdown-sample

 namespaces:

 - $(workshop_namespace)

Overriding the login credentials

When requesting a workshop by using WorkshopRequest, a login dialog box is presented to the user

when accessing the workshop instance URL. By default, the user name is learningcenter. The

password is a random value the user must query from the WorkshopRequest status after the custom

resource is created.

To override the user name, you can set the session.username field. To set the same fixed password

for all workshop instances, you can set the session.password field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 username: workshop

 password: lab-markdown-sample

Additional workshop resources

The workshop definition defined by the Workshop custom resource already declares a set of

resources to be created with the workshop environment. You can use this when you have shared

service applications needed by the workshop, such as an image registry or a Git repository server.

To deploy additional applications related to a specific workshop environment, you can declare them

by adding them into the environment.objects field of the WorkshopEnvironment custom resource.

You might use this deploy a web application used by attendees of a workshop to access their

workshop instances.

For namespaced resources, it is not necessary to set the namespace field of the resource metadata.

When the namespace field is not present, the resource is created within the workshop namespace for

that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment

Tanzu Application Platform v1.0

VMware, Inc 328

custom resource correspond to the owner of the workshop environment. This means that when the

workshop environment is deleted, any resources are also deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

workshop_name - The name of the workshop. This is the name of the Workshop definition the

workshop environment was created against.

environment_name - The name of the workshop environment. Currently, this is the same as

the name of the namespace for the workshop environment. Don’t rely on their being the

same, and use the most appropriate to cope with any future change.

environment_token - The value of the token which must be used in workshop requests

against the workshop environment.

workshop_namespace - The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances and their service accounts are created. It is

the same namespace that shared workshop resources are created.

service_account - The name of a service account that can be used when creating

deployments in the workshop namespace.

ingress_domain - The host domain under which host names can be created when creating

ingress routes.

ingress_protocol - The protocol (http/https) that is used for ingress routes which are

created for workshops.

ingress_secret - The name of the ingress secret stored in the workshop namespace when

secure ingress is being used.

To create additional namespaces associated with the workshop environment, embed a reference to

$(workshop_namespace) in the name of the additional namespaces, with an appropriate suffix. Be

mindful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the

Deployment resource to $(service_account). This ensures the deployment makes use of a special

Pod security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more

strict default Pod security policy, your deployment might not work, especially if any image expects to

run as root.

Creation of workshop instances

After a workshop environment is created you can create the workshop instances. You can request a

workshop instance by using the WorkshopRequest custom resource. This can be a separate step, or

you can use the trick of adding them as resources under environment.objects.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

Tanzu Application Platform v1.0

VMware, Inc 329

 request:

 token: lab-markdown-sample

 namespaces:

 - $(workshop_namespace)

 session:

 username: learningcenter

 password: lab-markdown-sample

 environment:

 objects:

 - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

 kind: WorkshopRequest

 metadata:

 name: user1

 spec:

 environment:

 name: $(environment_name)

 token: $(environment_token)

 - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

 kind: WorkshopRequest

 metadata:

 name: user2

 spec:

 environment:

 name: $(environment_name)

 token: $(environment_token)

Using this method, the workshop environment is automatically populated with workshop instances.

You can query the workshop requests from the workshop namespace to discover the URLs for

accessing each and the password if you didn’t set one and a random password was assigned.

If you needed more control over how the workshop instances were created using this method, you

can use the WorkshopSession custom resource instead.

WorkshopRequest resource

The WorkshopRequest custom resource defines a workshop request.

Specifying workshop environment

The WorkshopRequest custom resource is used to request a workshop instance. It does not provide

details needed to perform the deployment of the workshop instance. That information is sourced by

the Learning Center Operator from the WorkshopEnvironment and Workshop custom resources.

The minimum required information in the workshop request is the name of the workshop

environment. You supply this by setting the environment.name field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

Tanzu Application Platform v1.0

VMware, Inc 330

A request is successful only if requesting a workshop instance for a workshop environment is

enabled for that workshop. You can enable requests in the WorkshopEnvironment custom resource

for the workshop environment.

If multiple workshop requests, for the same workshop environment or different ones, are created in

the same namespace, the name defined in the metadata for the workshop request must be different

for each. The value of this name is not used to name workshop instances. You need the name value

to delete the workshop instance, which is done by deleting the workshop request.

Specifying required access token

If a workshop environment is configured to require an access token when making a workshop

request against that environment, you can specify decide the token by setting the

environment.token field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

 token: lab-markdown-sample

Even with the token, the request fails if the following is true:

The workshop environment has restricted the namespaces from which a workshop request

was made

The workshop request was not created in one of the permitted namespaces

TrainingPortal resource

The TrainingPortal custom resource triggers the deployment of a set of workshop environments

and a set number of workshop instances.

Specifying the workshop definitions

Running multiple workshop instances to perform training to a group of people is done by following

the step-wise process of creating the workshop environment and then creating each workshop

instance. The TrainingPortal workshop resource bundles that up as one step.

Before creating the training environment you still need to load the workshop definitions as a separate

step.

To specify the names of the workshops to be used for the training, list them under the workshops

field of the training portal specification. Each entry needs to define a name property, matching the

name of the Workshop resource which was created.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

Tanzu Application Platform v1.0

VMware, Inc 331

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 - name: lab-markdown-sample

When the training portal is created, it sets up the underlying workshop environments, creates any

workshop instances required to be created initially for each workshop, and deploys a web portal for

attendees of the training to access their workshop instances.

Limiting the number of sessions

When defining the training portal, you can set a limit on the workshop sessions that can be run

concurrently. This is done using the portal.sessions.maximum property.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 - name: lab-markdown-sample

When this is specified, the maximum capacity of each workshop is set to the same maximum value

for the portal as a whole. This means that any one workshop can have as many sessions as specified

by the maximum, but, to achieve that, only instances of that workshops can be created. In other

words the maximum applies to the total number of workshop instances created across all workshops.

If you do not set portal.sessions.maximum, you must set the capacity for each individual workshop

as detailed below. In only setting the capacities of each workshop and not an overall maximum for

sessions, you cannot share the overall capacity of the training portal across multiple workshops.

Capacity of individual workshops

When you have more than one workshop, you may want to limit how many instances of each

workshop you can have so that they cannot grow to the maximum number of sessions for the whole

training portal, but a lessor maximum. This means you can stop one specific workshop taking over all

the capacity of the whole training portal. To do this set the capacity field under the entry for the

workshop.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

Tanzu Application Platform v1.0

VMware, Inc 332

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 - name: lab-markdown-sample

 capacity: 6

The value of capacity caps the number of workshop sessions for the specific workshop at that value.

It should always be less than or equal to the maximum number of workshops sessions as the latter

always sets the absolute cap.

Set reserved workshop instances

By default, one instance of each of the listed workshops is created up front so that, when the initial

user requests that workshop, it is available for use immediately.

When such a reserved instance is allocated to a user, provided that the workshop capacity hasn’t

been reached, a new instance of the workshop is created as a reserve ready for the next user.

When a user ends a workshop, if the workshop had been at capacity, then, when the instance is

deleted, a new reserve is created. The total of allocated and reserved sessions for a workshop

cannot therefore exceed the capacity for that workshop.

If you want to override for a specific workshop how many reserved instances are kept on standby

ready for users, you can set the reserved setting against the workshop.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 reserved: 2

 - name: lab-markdown-sample

 capacity: 6

 reserved: 4

The value of reserved can be set to 0 if you do not ever want any reserved instances for a workshop

and you instead only want instances of that workshop created on demand when required for a user.

Only creating instances of a workshop on demand can result in a user needing to wait longer to

access a workshop session.

In this instance where workshop instances are always created on demand and also in other cases

where reserved instances tie up capacity which could be used for a new session of another

workshop, the oldest reserved instance is terminated to allow a new session of the desired workshop

to be created instead. This occurs as long as any caps for specific workshops are being satisfied.

Override initial number of sessions

Tanzu Application Platform v1.0

VMware, Inc 333

The initial number of workshop instances created for each workshop is specified by reserved or 1, if

the setting hasn’t been provided.

In the case where reserved is set in order to keep workshop instances on standby, you can indicate

that initially you want more than the reserved number of instances created. This is useful where

running a workshop for a set period of time. You might create up-front instances of the workshop

corresponding to 75% of the expected number of attendees, but with a smaller reserve number.

With this configuration, new reserve instances only start to be created when the total number

approaches 75% and all extra instances created up front have been allocated to users. This way you

ensure you have enough instances ready for when most people come but can create others if

necessary later.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: kubernetes-fundamentals

spec:

 portal:

 sessions:

 maximum: 100

 workshops:

 - name: lab-kubernetes-fundamentals

 initial: 75

 reserved: 5

Setting defaults for all workshops

If you have a list of workshops and they all need to be set with the same values for capacity,

reserved and initial, rather than add the settings to each, you can set defaults to apply to each

under the portal section instead.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 10

 capacity: 6

 reserved: 2

 initial: 4

 workshops:

 - name: lab-asciidoc-sample

 - name: lab-markdown-sample

Note that the location of these defaults in the training portal configuration will most likely change in a

future version.

Setting caps on individual users

By default a single user can run more than one workshop at a time. You can cap this though if you

Tanzu Application Platform v1.0

VMware, Inc 334

want to ensure that the workshops can run only one at a time. This avoids the problem of a user

wasting resources by starting more than one at the same time but only proceeding with one without

shutting down the other first.

The setting to apply a limit on how many concurrent workshop sessions a user can start is

portal.sessions.registered.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 registered: 1

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 reserved: 2

 - name: lab-markdown-sample

 capacity: 6

 reserved: 4

This limit also applies to anonymous users when anonymous access is enabled through the training

portal web interface or if sessions are being created via the REST API. If you want to set a distinct

limit on anonymous users, you can set portal.sessions.anonymous instead.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 anonymous: 1

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 reserved: 2

 - name: lab-markdown-sample

 capacity: 6

 reserved: 4

Expiring of workshop sessions

Once you reach the maximum capacity, no more workshops sessions can be created. Once a

workshop session has been allocated to a user, it cannot be re-assigned to another user.

If running a supervised workshop you need to ensure that you set the capacity higher than the

expected number in case you have extra users unexpectedly which you need to accomodate. You

can use the setting for the reserved number of instances so that, although a higher capacity is set,

workshop sessions are only created as required rather than all being created up front.

In supervised workshops, when the training is over you delete the whole training environment; all

Tanzu Application Platform v1.0

VMware, Inc 335

workshop sessions are then deleted.

If you need to host a training portal over an extended period but don’t know when users want to do

a workshop, you can set up workshop sessions to expire after a set time. When expired, the

workshop session is deleted, and a new workshop session can be created in its place.

The maximum capacity is therefore the maximum at any one point in time, with the number being

able to grow and shrink over time. In this way, over an extended time you could handle many more

sessions than to what the maximum capacity is set. The maximum capacity in this case ensures you

don’t try and allocate more workshop sessions than you have resources to handle at any one time.

Setting a maximum time allowed for a workshop session can be done using the expires setting.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 8

 reserved: 1

 expires: 60m

The value needs to be an integer, followed by a suffix of ‘s’, ‘m’ or ‘h’, corresponding to seconds,

minutes, or hours.

The time period is calculated from when the workshop session is allocated to a user. When the time

period is up, the workshop session is automatically deleted.

When an expiration period is specified or when a user finishes a workshop or restarts the workshop,

the workshop is also deleted.

To cope with users who claim a workshop session, but leave and don’t use it, you can also set a time

period for when a workshop session with no activity is deemed as being orphaned and so deleted.

This is done using the orphaned setting.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 8

 reserved: 1

 expires: 60m

 orphaned: 5m

For supervised workshops where the whole event only lasts a certain amount of time, you should

avoid this setting so that a user’s session is not deleted when the user takes breaks and the

computer goes to sleep.

The expires and orphaned settings can also be set against portal instead if you want them to apply

to all workshops.

Tanzu Application Platform v1.0

VMware, Inc 336

Updates to workshop environments

The list of workshops for an existing training portal can be changed by modifying the training portal

definition applied to the Kubernetes cluster.

If you remove a workshop from the list of workshops, the workshop environment is marked as

stopping and is deleted when all active workshop sessions have completed.

If you add a workshop to the list of workshops, a new workshop environment for it is created.

Changes to settings, such as the maximum number of sessions for the training portal or capacity

settings for individual workshops, are applied to existing workshop environments.

By default a workshop environment is left unchanged if the corresponding workshop definition is

changed. In the default configuration, therefore, you need to explicitly delete the workshop from the

list of workshops managed by the training portal and then add it back again if the workshop definition

changed.

If you prefer that workshop environments automatically be replaced when the workshop definition

changes, you can enable it by setting the portal.updates.workshop setting.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 sessions:

 maximum: 8

 updates:

 workshop: true

 workshops:

 - name: lab-markdown-sample

 reserved: 1

 expires: 60m

 orphaned: 5m

When using this option you use the portal.sessions.maximum setting to cap the number of

workshop sessions that can be run for the training portal as a whole. This is because, when replacing

the workshop environment, the old workshop environment is retained so long as there is still an

active workshop session being used. If the cap isn’t set, then the new workshop environment is still

able to grow to its specific capacity and is not limited based on how many workshop sessions are

running against old instances of the workshop environment.

Overall it is recommended to use the option to update workshop environments when workshop

definitions change only in development environments where working on workshop content, at least

until you are quite familiar with the mechanism for how the training portal replaces existing workshop

environments and the resource implications of when you have old and new instances of a workshop

environment running at the same time.

Overriding the ingress domain

In order to be able to access a workshop instance using a public URL, you need to specify an ingress

domain. If an ingress domain isn’t specified, the default ingress domain that the Learning Center

Tanzu Application Platform v1.0

VMware, Inc 337

Operator has been configured with will be used.

When setting a custom domain, DNS must have been configured with a wildcard domain to forward

all requests for sub-domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the portal.ingress.domain field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If overriding the domain, by default, the workshop session is exposed using a HTTP connection. If

you require a secure HTTPS connection, you need to have access to a wildcard SSL certificate for

the domain. A secret of type tls should be created for the certificate in the learningcenter

namespace or the namespace where the Learning Center Operator is deployed. The name of that

secret should then be set in the portal.ingress.secret field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If HTTPS connections are being terminated using an external load balancer and not by specifying a

secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying

an ingress secret by setting the portal.ingress.protocol field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 protocol: https

 workshops:

 - name: lab-markdown-sample

Tanzu Application Platform v1.0

VMware, Inc 338

 capacity: 3

 reserved: 1

If you need to override or set the ingress class, which dictates which ingress router is used when

more than one option is available, you can add portal.ingress.class.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 class: nginx

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Overriding the portal hostname

The default hostname given to the training portal will be the name of the resource with -ui suffix,

followed by the domain specified by the resource or the default inherited from the configuration of

the Learning Center Operator.

If you want to override the generated hostname, you can set portal.ingress.hostname.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 hostname: labs

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

This results in the hostname being labs.learningcenter.tanzu.vmware.com rather than the default

generated name for this example of lab-markdown-sample-ui.learningcenter.tanzu.vmware.com.

Setting extra environment variables

If you want to override any environment variables for workshop instances created for a specific work,

you can provide the environment variables in the env field of that workshop.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

Tanzu Application Platform v1.0

VMware, Inc 339

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id - A unique ID for the workshop instance within the workshop environment.

session_namespace - The namespace created for and bound to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name - The name of the workshop environment. For now this is the same as the

name of the namespace for the workshop environment. Don’t rely on them being the same,

and use the most appropriate to cope with any future change.

workshop_namespace - The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances are created and where the service account

that the workshop instance runs as exists.

service_account - The name of the service account the workshop instance runs as and

which has access to the namespace created for that workshop instance.

ingress_domain - The host domain under which hostnames can be created when creating

ingress routes.

ingress_protocol - The protocol (http/https) that is used for ingress routes which are

created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Overriding portal credentials

When a training portal is deployed, the username for the admin and robot accounts uses the defaults

of learningcenter and robot@learningcenter. The passwords for each account are randomly set.

For the robot account, the OAuth application client details used with the REST API are also randomly

generated.

You can see what the credentials and client details are by running kubectl describe against the

training portal resource. This will yield output which includes:

Status:

 learningcenter:

 Clients:

 Robot:

 Id: ACZpcaLIT3qr725YWmXu8et9REl4HBg1

Tanzu Application Platform v1.0

VMware, Inc 340

 Secret: t5IfXbGZQThAKR43apoc9usOFVDv2BLE

 Credentials:

 Admin:

 Password: 0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

 Username: learningcenter

 Robot:

 Password: QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

 Username: robot@learningcenter

If you wish to override any of these values in order to be able to set them to a pre-determined value,

you can add credentials and clients sections to the training portal specification.

To overload the credentials for the admin and robot accounts user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 credentials:

 admin:

 username: admin-user

 password: top-secret

 robot:

 username: robot-user

 password: top-secret

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

To override the application client details for OAuth access by the robot account user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 clients:

 robot:

 id: application-id

 secret: top-secret

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Controlling registration type

By default the training portal web interface presents a registration page for users to create an

account before selecting a workshop. If you only want to allow the administrator to log in, you can

disable the registration page. This is done if you are using the REST API to create and allocate

workshop sessions from a separate application.

Tanzu Application Platform v1.0

VMware, Inc 341

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 registration:

 type: one-step

 enabled: false

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If rather than requiring users to register, you want to allow anonymous access, you can switch the

registration type to anonymous.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 registration:

 type: anonymous

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

When a user visits the training portal home page in anonymous mode, an account for that user is

automatically created and the user is logged in.

Specifying an event access code

Where deploying the training portal with anonymous access or open registration, anyone who knows

the URL can access workshops. If you want to at least prevent access to those who know a common

event access code or password, you can set portal.password.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 password: workshops-2020-07-01

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

When the training portal URL is accessed, users are asked to enter an event access code before

they are redirected to the list of workshops (when anonymous access is enabled) or to the login

page.

Tanzu Application Platform v1.0

VMware, Inc 342

Making list of workshops public

By default the index page providing the catalog of available workshop images is only available once a

user has logged in, either through a registered account or as an anonymous user.

If you want to make the catalog of available workshops public so they can be viewed before logging

in, you can set the portal.catalog.visibility property.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 catalog:

 visibility: public

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

By default the catalog has visibility set to private. Use public to expose it.

Note that this will also make it possible to access the list of available workshops from the catalog, via

the REST API, without authenticating against the REST API.

Using an external list of workshops

If you are using the training portal with registration disabled and are using the REST API from a

separate web site to control creation of sessions, you can specify an alternate URL for providing the

list of workshops.

This helps in the situation where, for a session created by the REST API, cookies were deleted or a

session URL was shared with a different user, meaning the value for the index_url supplied with the

REST API request is lost.

The property to set the URL for the external site is portal.index.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 index: https://www.example.com/

 registration:

 type: one-step

 enabled: false

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If the property is supplied, passing the index_url when creating a workshop session using the REST

API is optional, and the value of this property is used. You may still want to supply index_url when

Tanzu Application Platform v1.0

VMware, Inc 343

using the REST API, however, if you want a user to be redirected back to a sub-category for

workshops on the site providing the list of workshops. The URL provided here in the training portal

definition then acts only as a fallback when the redirect URL becomes unavailable and directs the

user back to the top-level page for the external list of workshops.

IF a user has logged into the training portal as the admin user, the user is not redirected to the

external site and still sees the training portals own list of workshops.

Overriding portal title and logo

The web interface for the training portal displays a generic Learning Center logo by default, along

with a page title of “Workshops”. If you want to override these, you can set portal.title and

portal.logo.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 title: Workshops

 logo: data:image/png;base64,....

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

The logo field should be a graphical image provided in embedded data URI format which displays

the branding you desire. The image is displayed with a fixed height of “40px”. The field can also be a

URL for an image stored on a remote web server.

Allowing the portal in an iframe

By default if you try and display the web interface for the training portal in an iframe of another web

site, it will be prohibited due to content security policies applying to the training portal web site.

If you want to enable the ability to iframe the full training portal web interface or even a specific

workshop session created using the REST API, you need to provide the hostname of the site which

embeds it. Do this by using the portal.theme.frame.ancestors property.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 theme:

 frame:

 ancestors:

 - https://www.example.com

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Tanzu Application Platform v1.0

VMware, Inc 344

The property is a list of hosts, not a single value. If you need to use a URL for the training portal in an

iframe of a page, which, in turn, is embedded in another iframe of a page on a different site again,

you need to list the hostnames of all sites.

Because the sites which embed the iframes must be secure and use HTTPS, they cannot use plain

HTTP. This is because browser policies prohibit promoting of cookies to an insecure site when

embedding using an iframe. If cookies cannot be stored, a user cannot authenticate against the

workshop session.

Collecting analytics on workshops

To collect analytics data on usage of workshops, you can supply a webhook URL. When this is

supplied, events are posted to the webhook URL for events such as workshops being started, pages

of a workshop being viewed, expiration of a workshop, completion of a workshop, or termination of a

workshop.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 analytics:

 webhook:

 url: https://metrics.learningcenter.tanzu.vmware.com/?client=name&token=password

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

At present there is no metrics collection service compatible with the portal webhook reporting

mechanism, so you will need to create a custom service or integrate it with any existing web front

end for the portal REST API service.

If the collection service needs to be provided with a client ID or access token, it must accept using

query string parameters which would be set in the webhook URL.

The details of the event are subsequently included as HTTP POST data using the application/json

content type.

{

 "portal": {

 "name": "lab-markdown-sample",

 "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

 "generation": 3,

 "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

 },

 "event": {

 "name": "Session/Started",

 "timestamp": "2021-03-18T02:50:40.861392+00:00",

 "user": "c66db34e-3158-442b-91b7-25391042f037",

 "session": "lab-markdown-sample-w01-s001",

 "environment": "lab-markdown-sample-w01",

 "workshop": "lab-markdown-sample",

 "data": {}

Tanzu Application Platform v1.0

VMware, Inc 345

 }

}

Where an event has associated data, it is included in the data dictionary.

{

 "portal": {

 "name": "lab-markdown-sample",

 "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

 "generation": 3,

 "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

 },

 "event": {

 "name": "Workshop/View",

 "timestamp": "2021-03-18T02:50:44.590918+00:00",

 "user": "c66db34e-3158-442b-91b7-25391042f037",

 "session": "lab-markdown-sample-w01-s001",

 "environment": "lab-markdown-sample-w01",

 "workshop": "lab-markdown-sample",

 "data": {

 "current": "workshop-overview",

 "next": "setup-environment",

 "step": 1,

 "total": 4

 }

 }

}

The user field is the same portal user identity that is returned by the REST API when creating

workshop sessions.

The event stream only produces events for things as they happen. If you need a snapshot of all

current workshop sessions, you should use the REST API to request the catalog of available

workshop environments, enabling the inclusion of current workshop sessions.

Tracking using Google Analytics

If you want to record analytics data on usage of workshops using Google Analytics, you can enable

tracking by supplying a tracking ID for Google Analytics.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 analytics:

 google:

 trackingId: UA-XXXXXXX-1

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Custom dimensions are used in Google Analytics to record details about the workshop a user is

doing and through which training portal and cluster it was accessed. You can therefore use the same

Google Analytics tracking ID for multiple training portal instances running on different Kubernetes

Tanzu Application Platform v1.0

VMware, Inc 346

clusters if desired.

To support use of custom dimensions in Google Analytics you must configure the Google Analytics

property with the following custom dimensions. They must be added in the order shown as Google

Analytics doesn’t allow you to specify the index position for a custom dimension and allocates them

for you. You can’t already have custom dimensions defined for the property, as the new customfor you. You can’t already have custom dimensions defined for the property, as the new custom

dimensions must start at index of 1.

| Custom Dimension Name | Index |

|-----------------------|-------|

| workshop_name | 1 |

| session_namespace | 2 |

| workshop_namespace | 3 |

| training_portal | 4 |

| ingress_domain | 5 |

| ingress_protocol | 6 |

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

If a Google Analytics tracking ID is provided with the TrainingPortal resource definition, it takes

precedence over one set by the SystemProfile resource definition.

Note that Google Analytics is not a reliable way to collect data. This is because individuals or

corporate firewalls can block the reporting of Google Analytics data. For more precise statistics, you

use the webhook URL for collecting analytics with a custom data collection platform.

SystemProfile resource

The SystemProfile custom resource is used to configure the Learning Center Operator. The default

system profile can be used to set defaults for ingress and image pull secrets, with specific

deployments able to select an alternate profile if required.

Note: Changes made to the SystemProfile custom resource, or changes made by means of

environment variables, don’t take effect on already deployed TrainingPortals. You must recreate

those for the changes to be applied. Only the TrainingPortal resources must be re-created,

because this resource takes care of re-creating the WorkshopEnvironments with the new values.

Operator default system profile

The Learning Center Operator, by default, uses an instance of the SystemProfile custom resource if

it exists, named default-system-profile. You can override the name of the resource used by the

Learning Center Operator as the default, by setting the SYSTEM_PROFILE environment variable on the

deployment for the Learning Center Operator.

kubectl set env deployment/learningcenter-operator -e SYSTEM_PROFILE=default-system-pr

ofile -n learningcenter

Any changes to an instance of the SystemProfile custom are automatically detected and used by

Tanzu Application Platform v1.0

VMware, Inc 347

the Learning Center Operator. There is no need to redeploy the operator when changes are made.

Defining configuration for ingress

The SystemProfile custom resource replaces the use of environment variables to configure details

such as the ingress domain, secret, and class.

Instead of setting INGRESS_DOMAIN, INGRESS_SECRET, and INGRESS_CLASS environment variables,

create an instance of the SystemProfile custom resource named default-system-profile:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 class: nginx

If you terminate HTTPS connections by using an external load balancer and not by specifying a

secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying

an ingress secret:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 protocol: https

 class: nginx

Defining container image registry pull secrets

To work with custom workshop images stored in a private image registry, the system profile can

define a list of image pull secrets. Add this to the service accounts used to deploy and run the

workshop images. Set the environment.secrets.pull property to the list of secret names:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 environment:

 secrets:

 pull:

 - private-image-registry-pull

The secrets containing the image registry credentials must exist within the learningcenter

namespace or the namespace where the Learning Center Operator is deployed. The secret

Tanzu Application Platform v1.0

VMware, Inc 348

resources must be of type kubernetes.io/dockerconfigjson.

The secrets are added to the workshop namespace and are not visible to a user. No secrets are

added to the namespace created for each workshop session.

For container images used as part of Learning Center itself, such as the container image for the

training portal web interface and the builtin base workshop images, if you have copied these from

the public image registries and stored them in a local private registry, use the registry section

instead of the above setting as follows.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 registry:

 secret: learningcenter-image-registry-pull

The registry.secret is the name of the secret containing the image registry credentials. This must

be present in the learningcenter namespace or the namespace where the Learning Center

Operator is deployed.

Defining storage class for volumes

Deployments of the training portal web interface and the workshop sessions make use of persistent

volumes. By default the persistent volume claims do not specify a storage class for the volume and

instead rely on the Kubernetes cluster to specify a default storage class that works. If the Kubernetes

cluster doesn’t define a suitable default storage class or you need to override it, you can set the

storage.class property.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 storage:

 class: default

This only applies to persistent volume claims setup by the Learning Center Operator. If the steps in a

workshop which a user executes include making persistent volume claims, these are not

automatically adjusted.

Defining storage group for volumes

Where persistent volumes are used by Learning Center for the training portal web interface and

workshop environments, the application of pod security policies by the cluster is needed. These

security policies ensure that the permissions of persistent volumes are set correctly so that they can

be accessed by containers mounting the persistent volume. For instances where the pod security

policy admission controller is not enabled, the cluster institutes a fallback to enable access to

volumes by enabling group access using the group ID of 0.

In situations where the only class of persistent storage available is NFS or similar, it might be

Tanzu Application Platform v1.0

VMware, Inc 349

necessary to override the group ID applied and set it to an alternate ID dictated by the file system

storage provider. If this is required, you can set the storage.group property.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 storage:

 group: 1

Overriding the group ID to match the persistent storage relies on the group having write permission

to the volume. If only the owner of the volume has permission this does not work.

In this case, change the owner/group and permissions of the persistent volume such that the owner

matches the user ID a container runs at, or the group is set to a known ID which is added as a

supplemental group for the container and the persistent volume updated to be writable to this group.

This must be done by an init container running in the pod mounting the persistent volume.

To trigger this change of ownership and permissions, set the storage.user property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 storage:

 user: 1

 group: 1

This results in the init container being run as the root user, with the owner of the mount directory

of the persistent volume being set to storage.user, the group being set to storage.group, and the

directory being made group-writable. The group is then added as the supplemental group to

containers using the persistent volume so they can write to it, regardless of what user ID the

container runs as. To that end, the specific value of storage.user doesn’t matter, but you might

need to set it to a specific user ID based on requirements of the storage provider.

Both these variations on the settings only apply to the persistent volumes used by Learning Center

itself. If a workshop asks users to create persistent volumes, those instructions or the resource

definitions used might need to be modified to work where the storage class available requires access

as a specific user or group ID.

Further, the second method using the init container to fix permissions does not work if pod security

policies are enforced, as the ability to run a container as the root user is blocked in that case due to

the restricted PSP which is applied to workshop instances.

Restricting network access

Any processes run from the workshop container and any applications deployed to the session

namespaces associated with a workshop instance can contact any network IP addresses accessible

from the cluster. If you need to add restrictions on what IP addresses or IP subnets can be accessed,

you can set network.blockCIDRs. This must be a CIDR block range corresponding to the subnet or a

portion of a subnet you want to block. A Kubernetes NetworkPolicy will be used to enforce the

Tanzu Application Platform v1.0

VMware, Inc 350

restriction so the Kubernetes cluster must use a network layer supporting network policies and the

necessary Kubernetes controllers supporting network policies enabled when the cluster was

installed.

If deploying to AWS, it is important to block access to the AWS endpoint for querying EC2 metadata

as it can expose sensitive information that workshop users should not haves access to; by default,

Learning Center will block the AWS endpoint on the TAP SystemProfile. If you need to replicate this

block to other SystemProfiles, the configuration is:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 network:

 blockCIDRs:

 - 169.254.169.254/32

 - fd00:ec2::254/128

Running Docker daemon rootless

If docker is enabled for workshops, Docker-in-Docker is run using a sidecar container. Because of

the current state of running Docker-in-Docker and portability across Kubernetes environments, the

docker daemon by default runs as root. Because a privileged container is also being used, this

represents a security risk. Only run workshops requiring docker in disposable Kubernetes clusters or

for users whom you trust.

You can partly mediate the risks of running docker in the Kubernetes cluster by running the docker

daemon in rootless mode. However, not all Kubernetes clusters can support this due to the Linux

kernel configuration or other incompatibilities.

To enable rootless mode, you can set the dockerd.rootless property to true.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 rootless: true

Use of docker can be made even more secure by avoiding the use of a privileged container for the

docker daemon. This requires that you set up a specific configuration for nodes in the Kubernetes

cluster. If this configuration has been done, you can disable the use of a privileged container by

setting dockerd.privileged to false.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 rootless: true

Tanzu Application Platform v1.0

VMware, Inc 351

 privileged: false

For further details about the requirements for running rootless Docker-in-Docker and using a non-

privileged container, see the Docker documentation.

Overriding network packet size

When you enable support for building container images using docker for workshops, because of

network layering that occurs when doing docker build or docker run, You must adjust the network

packet size (mtu) used for containers run from dockerd hosted inside the workshop container.

The default mtu size for networks is 1500, but, when containers are run in Kubernetes, the size

available to containers is often reduced. To deal with this possibility, the mtu size used when dockerd

is run for a workshop is set as 1400 instead of 1500.

If you experience problems building or running images with the docker support, including errors or

timeouts in pulling images or when pulling software packages (PyPi, npm, etc) within a build, you

might need to override this value to an even lower value.

If this is required, you can set the dockerd.mtu property.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 mtu: 1400

You can discover what size may need to be by accessing the docker container run with a workshop

and run ifconfig eth0. This will yield something similar to:

eth0 Link encap:Ethernet HWaddr 02:42:AC:11:00:07

 inet addr:172.17.0.7 Bcast:172.17.255.255 Mask:255.255.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1350 Metric:1

 RX packets:270018 errors:0 dropped:0 overruns:0 frame:0

 TX packets:283882 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:86363656 (82.3 MiB) TX bytes:65183730 (62.1 MiB)

If the MTU size is less than 1400, then use the value given, or a smaller value, for the dockerd.mtu

setting.

Image registry pull through cache

When running or building container images with docker, if the container image is hosted on Docker

Hub, it is pulled down directly from the Docker Hub for each separate workshop session of that

workshop.

Because the image is pulled from Docker Hub, this can be slow for all users, especially for large

images. With Docker Hub introducing limits on how many images can be pulled anonymously from

an IP address within a set period, this also might result in the cap on image pulls being reached,

preventing the workshop from being used until the period expires.

Tanzu Application Platform v1.0

VMware, Inc 352

https://docs.docker.com/engine/security/rootless/

Docker Hub has a higher limit when pulling images as an authenticated user, but with the limit being

applied to the user rather than by IP address. For authenticated users with a paid plan on Docker

Hub, there is no limit.

To try and avoid the impact of the limit, the first thing you can do is enable an image registry mirror

with image pull-through. This is enabled globally and results in an instance of an image registry

mirror being created in the workshop environment of workshops which enable docker support. This

mirror will be used for all workshops sessions created against that workshop environment. When the

first user attempts to pull an image, it will be pulled down from Docker Hub and cached in the mirror.

Subsequent users will be served up from the image registry mirror, avoiding the need to pull the

image from Docker Hub again. The subsequent users will also see a speed up in pulling the image

because the mirror is deployed to the same cluster.

For enabling the use of an image registry mirror against Docker Hub, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 mirror:

 remote: https://registry-1.docker.io

For authenticated access to Docker Hub, create an access token under your Docker Hub account.

Then set the username and password using the access token as the password. Do not use the

password for the account itself. Using an access token makes it easier to revoke the token if

necessary.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 mirror:

 remote: https://registry-1.docker.io

 username: username

 password: access-token

An access token provides write access to Docker Hub. It is therefore also recommended you use a

separate robot account in Docker Hub which is not used to host images and doesn’t have write

access to any other organizations. In other words, use it purely for reading images from Docker Hub.

If this is a free account, the higher limit on image pulls then applies. If the account is paid, there

might be higher limits or no limit all all.

The image registry mirror is only used when running or building images using the support for

running docker. The mirror does not come into play when creating deployments in Kubernetes

which make use of images hosted on Docker Hub. Use of images from Docker Hub in deployments

is still subject to the limit for anonymous access unless you supply image registry credentials for the

deployment so an authenticated user was used.

Tanzu Application Platform v1.0

VMware, Inc 353

Setting default access credentials

When deploying a training portal using the TrainingPortal custom resource, the credentials for

accessing the portal are unique for each instance. Find the details of the credentials by viewing

status information added to the custom resources using kubectl describe.

To override the credentials for the portals so the same set of credentials are used for each, you can

override them by adding the desired values to the system profile.

To override the user name and password for the admin and robot accounts, use

portal.credentials.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 portal:

 credentials:

 admin:

 username: learningcenter

 password: admin-password

 robot:

 username: robot@learningcenter

 password: robot-password

To override the client ID and secret used for OAuth access by the robot account, use

portal.clients.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 portal:

 clients:

 robot:

 id: robot-id

 secret: robot-secret

If the TrainingPortal has specified credentials or client information, they still take precedence over

the values specified in the system profile.

Overriding the workshop images

When a workshop does not define a workshop image to use and instead downloads workshop

content from GitHub or a web server, it uses the base-environment workshop image. The workshop

content is then added to the container, overlaid on this image.

The version of the base-environment workshop image used is what was the most up-to-date

compatible version of the image available for that version of the Learning Center Operator when it

was released.

If necessary you can override what version of the base-environment workshop image is used by

defining a mapping under workshop.images. For workshop images supplied as part of the Learning

Tanzu Application Platform v1.0

VMware, Inc 354

Center project, you can override the short names used to refer to them.

The short versions of the names which are recognized are:

base-environment:* is a tagged version of the base-environment workshop image which was

matched with the current version of the Learning Center Operator.

jdk8-environment:* is a tagged version of the jdk8-environment workshop image which was

matched with the current version of the Learning Center Operator.

jdk11-environment:* is a tagged version of the jdk11-environment workshop image which

was matched with the current version of the Learning Center Operator.

conda-environment:* is a tagged version of the conda-environment workshop image which

was matched with the current version of the Learning Center Operator.

To override the version of the base-environment workshop image mapped to by the * tag, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 workshop:

 images:

 "base-environment:*": "registry.tanzu.vmware.com/learning-center/base-environmen

t:latest"

It is also possible to override where images are pulled from for any arbitrary image. This could be

used where you want to cache the images for a workshop in a local image registry and avoid going

outside of your network, or the cluster, to get them. This means you wouldn’t need to override the

workshop definitions for a specific workshop to change it.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 workshop:

 images:

 "quay.io/eduk8s-labs/lab-k8s-fundamentals:main": "registry.test/lab-k8s-fundamen

tals:main"

Tracking using Google Analytics

If you want to record analytics data on usage of workshops using Google Analytics, you can enable

tracking by supplying a tracking ID for Google Analytics.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 analytics:

 google:

 trackingId: UA-XXXXXXX-1

Tanzu Application Platform v1.0

VMware, Inc 355

Custom dimensions are used in Google Analytics to record details about the workshop a user is

doing and through which training portal and cluster it was accessed. You can therefore use the same

Google Analytics tracking ID with Learning Center running on multiple clusters.

To support use of custom dimensions in Google Analytics, you must configure the Google Analytics

property with the following custom dimensions. They must be added in the order shown, because

Google Analytics doesn’t allow you to specify the index position for a custom dimension and

allocates them for you. You can’t already have defined custom dimensions for the property, because

the new custom dimensions must start at index of 1.

Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

Google Analytics is not a reliable way to collect data. This is because individuals or corporate firewalls

can block the reporting of Google Analytics data. For more precise statistics, use the webhook URL

for collecting analytics with a custom data collection platform. Configuration of a webhook URL for

analytics can only be specified on the TrainingPortal definition and cannot be specified globally on

the SystemProfile configuration.

Overriding styling of the workshop

If using the REST API to create/manage workshop sessions and the workshop dashboard is then

embedded into an iframe of a separate site, you can perform minor styling changes of the

dashboard, workshop content, and portal to match the separate site. To do this, provide CSS styles

under theme.dashboard.style, theme.workshop.style and theme.portal.style. For dynamic styling

or for adding hooks to report on progress through a workshop to a separate service, supply

JavaScript as part of the theme under theme.dashboard.script, theme.workshop.script and

theme.portal.script.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 theme:

 dashboard:

Tanzu Application Platform v1.0

VMware, Inc 356

 script: |

 console.log("Dashboard theme overrides.");

 style: |

 body {

 font-family: "Comic Sans MS", cursive, sans-serif;

 }

 workshop:

 script: |

 console.log("Workshop theme overrides.");

 style: |

 body {

 font-family: "Comic Sans MS", cursive, sans-serif;

 }

 portal:

 script: |

 console.log("Portal theme overrides.");

 style: |

 body {

 font-family: "Comic Sans MS", cursive, sans-serif;

 }

Additional custom system profiles

If the default system profile is specified, it is used by all deployments managed by the Learning

Center Operator unless it was overridden by the system profile to use for a specific deployment. You

can set the name of the system profile for deployments by setting the system.profile property of

TrainingPortal, WorkshopEnvironment, and WorkshopSession custom resources.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 system:

 profile: learningcenter-tanzu-vmware-com-profile

 workshops:

 - name: lab-markdown-sample

 capacity: 1

Workshop session resource

The WorkshopSession custom resource defines a workshop session.

Specifying the session identity

When running training for multiple people, it is more typical to use the TrainingPortal custom

resource to set up a training environment. Alternatively you set up a workshop environment using

the WorkshopEnvironment custom resource, then create requests for workshop instances using the

WorkshopRequest custom resource. If you are creating requests for workshop instances and you

need more control over how the workshop instances are set up, you can use WorkshopSession

custom resource instead of WorkshopRequest.

To specify the workshop environment the workshop instance is created against, set the

Tanzu Application Platform v1.0

VMware, Inc 357

environment.name field of the specification for the workshop session. At the same time, you must

specify the session ID for the workshop instance. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample-user1

spec:

 environment:

 name: lab-markdown-sample

 session:

 id: user1

The name of the workshop specified in the metadata of the training environment must be globally

unique for the workshop instance being created. You must create a separate WorkshopSession

custom resource for each workshop instance you want.

The session ID must be unique within the workshop environment that the workshop instance is being

created against.

Specifying the login credentials

Access to each workshop instance can be controlled by using login credentials. This is so that a

workshop attendee cannot interfere with another.

To set login credentials for a workshop instance, set the session.username and session.password

fields. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 username: learningcenter

 password: lab-markdown-sample

If you do not specify login credentials, the workshop instance has no access controls and anyone can

access it.

Specifying the ingress domain

To be able to access the workshop instance using a public URL, you must specify an ingress domain.

If an ingress domain isn’t specified, use the default ingress domain that the Learning Center

Operator was configured with.

When setting a custom domain, DNS must be configured with a wildcard domain to forward all

requests for sub-domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field.

For example:

Tanzu Application Platform v1.0

VMware, Inc 358

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

You can create a full host name for the session by prefixing the ingress domain with a host name

constructed from the name of the workshop environment and the session ID.

If overriding the domain, by default, the workshop session is exposed using a HTTP connection. If

you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for the

domain.

A secret of type tls must be created for the certificate in the learningcenter namespace or the

namespace where Learning Center Operator is deployed. The name of that secret must then be set

in the session.ingress.secret field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

If HTTPS connections are being terminated using an external load balancer and not by specifying a

secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying

an ingress secret by setting the session.ingress.protocol field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 protocol: https

If you need to override or set the ingress class, add session.ingress.class. This dictates which

Tanzu Application Platform v1.0

VMware, Inc 359

ingress router is used when more than one option is available.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

 class: nginx

Setting the environment variables

To set the environment variables for the workshop instance, provide the environment variables in

the session.env field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

 session:

 id: user1

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id is a unique ID for the workshop instance within the workshop environment.

session_namespace is the namespace created for and bound to the workshop instance. This

is the namespace unique to the session and where a workshop can create their own

resources.

environment_name is the name of the workshop environment. For now this is the same as the

name of the namespace for the workshop environment. Don’t rely on them being the same,

and use the most appropriate to cope with any future change.

workshop_namespace is the namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances are created, and where the service

account that the workshop instance runs as exists.

service_account is the name of the service account the workshop instance runs as, and

Tanzu Application Platform v1.0

VMware, Inc 360

which has access to the namespace created for that workshop instance.

ingress_domain is the host domain under which host names can be created when creating

ingress routes.

ingress_protocol is the protocol (http/https) that is used for ingress routes which are created

for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

If the workshop environment had specified a set of extra environment variables to be set for

workshop instances, it is up to you to incorporate those in the set of environment variables you list

under session.env. That is, anything listed in session.env of the WorkshopEnvironment custom

resource of the workshop environment is ignored.

Learning Center Portal Rest API

This section includes information about the Portal Rest API that you can leverage to gain information

and manage your Learning Center instance.

Anonymous access

Workshop catalog

Session management

Client authentication

Anonymous access

The REST API with client authentication provides a means to have the portal create and manage

workshop sessions on your behalf but allow a separate system handle user authentication.

If you do not need to authenticate users but still want to provide your own front end from which

users select a workshop, such as when integrating workshops into an existing web property, you can

enable anonymous mode and redirect users to a URL for workshop session creation.

Note: Anonymous mode is only recommended for temporary deployments and not for a permanent

web site providing access to workshops.

Enabling anonymous access

Set the registration type to anonymous to enable full anonymous access to the training portal:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 registration:

 type: anonymous

 workshops:

 ...

Note: Users can still visit the training portal directly and view the catalog of available workshops, so

Tanzu Application Platform v1.0

VMware, Inc 361

instead of linking to the main page of the training portal, link from your custom index page to the

individual links for creating each workshop.

Triggering workshop creation

Direct users’ browsers to a URL that is specific to a workshop to trigger creation and allocation of the

workshop.

The URL format looks like this:

TRAINING-PORTAL-URL/workshops/environment/NAME/create/?index_url=INDEX

Where:

NAME is the name of the workshop environment corresponding to the workshop that you

creates.

INDEX is the URL of your custom index page that contains the workshops.

The user is redirected back to this index page when:

a user completes the workshop

an error occurs

When a user is redirected back to the index page, a query string parameter is supplied to display a

banner or other indication about why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment created is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be

created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist. This

can occur when the workshop dashboard is refreshed after the workshop session is expired

and deleted.

Workshop catalog

A single training portal can host one or more workshops. The REST API endpoints for the workshops

catalog provide a means to list the available workshops and get information about them.

Listing available workshops

The URL sub path for accessing the list of available workshop environments is

/workshops/catalog/environments/. When making the request, you must supply the access token

in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/

Tanzu Application Platform v1.0

VMware, Inc 362

The JSON response looks like this:

{

 "portal": {

 "name": "learningcenter-tutorials",

 "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

 "generation": 451,

 "url": "<training_portal_url>",

 "sessions": {

 "maximum": 10,

 "registered": 0,

 "anonymous": 0,

 "allocated": 0

 }

 },

 "environments": [

 {

 "name": "learningcenter-tutorials-w01",

 "state": "RUNNING",

 "workshop": {

 "name": "lab-et-self-guided-tour",

 "id": "15e5f1a569496f335049bb00c370ee20",

 "title": "Workshop Building Tutorial",

 "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

 "vendor": "",

 "authors": [],

 "difficulty": "",

 "duration": "",

 "tags": [],

 "logo": "",

 "url": "<workshop_repository_url>"

 },

 "duration": 1800,

 "capacity": 10,

 "reserved": 0,

 "allocated": 0,

 "available": 0

 }

]

}

For each workshop listed under environments, where a field listed under workshop has the same

name as appears in the Workshop custom resource, it has the same meaning. The id field is an

additional field that can uniquely identify a workshop based on the name of the workshop image, the

Git repository for the workshop, or the website hosting the workshop instructions. The value of the

id field does not rely on the name of the Workshop resource and must be the same if the same

workshop details are used but the name of the Workshop resource is different.

The duration field provides the time in seconds after which the workshop environment expires. The

value is null if there is no expiration time for the workshop.

The capacity field is the maximum number of workshop sessions that you can create for the

workshop.

The reserved field indicates how many instances of the workshop are reserved as hot spares. These

are used to service requests for a workshop session. If no reserved instances are available and

Tanzu Application Platform v1.0

VMware, Inc 363

capacity has not been reached, a new workshop session is created on demand.

The allocated field indicates how many workshop sessions are active and currently allocated to a

user.

The available field indicates how many workshop sessions are available for immediate allocation.

This is never more than the number of reserved instances.

Under portal.sessions, the allocated field indicates the total number of allocated sessions across

all workshops hosted by the portal.

Where maximum, registered, and anonymous are nonzero, they are the limit on the number of

workshops run.

The maximum is the total number of workshop sessions that can be run by the portal across all

workshops. If allocated for the whole portal has reached maximum, no more workshop

sessions are created.

The value of registered when nonzero indicates a cap on the number of workshop sessions

a single registered portal user can have running at the one time.

The value of anonymous when nonzero indicates a cap on the number of workshop sessions

an anonymous user can have running at the one time. Anonymous users are users created

as a result of the REST API being used or if anonymous access is enabled when the user

accesses the portal through the web interface.

By default, only workshop environments currently marked with a state of RUNNING are returned, that

is, those workshop environments which are taking new workshop session requests. If you also want

to see the workshop environments which are currently in the process of being shut down, you must

provide the state query string parameter to the REST API call and indicate which states workshop

environments to return for.

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/catalog/environments/?state=RUNNING&stat

e=STOPPING

You can include the state query string parameter more than once to see workshop environments in

both RUNNING and STOPPING states.

If anonymous access to the list of workshop environments is enabled and you are not authenticated

when using the REST API endpoint, only workshop environments in a running state are returned.

Session management

The REST API endpoints for session management allow you to request that a workshop session be

allocated.

Disabling portal user registration

When you use the REST API to trigger creation of workshop sessions, VMware recommends that

you disable user registration through the training portal web interface. This means that only the

admin user is able to directly access the web interface for the training portal.

Tanzu Application Platform v1.0

VMware, Inc 364

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: learningcenter-tutorials

spec:

 portal:

 registration:

 type: one-step

 enabled: false

 workshops:

 ...

Requesting a workshop session

The form of the URL sub path for requesting the allocation of a workshop environment using the

REST API is /workshops/environment/<name>/request/. The name segment must be replaced with

the name of the workshop environment. When making the request, the access token must be

supplied in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/environment/<name>/request/?index_url=https://hub.test

/

You can supply a query string parameter, index_url. When you restart the workshop session from

the workshop environment web interface, the session is deleted and the user is redirected to the

supplied URL. This URL is that of your front end web application that has requested the workshop

session, allowing users to select a different workshop.

The value of the index_url is not available if session cookies are cleared or a session URL is shared

with another user. In this case, a user is redirected back to the training portal URL instead. You can

override the global default for this case by specifying the index URL as part of the TrainingPortal

configuration.

When successful, the JSON response from the request is of the form:

{

 "name": "educaes-tutorials-w01-s001",

 "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

 "url": "/workshops/session/learningcenter-tutorials-w01-s001/activate/?token=6UIW4

D8Bhf0egVmsEKYlaOcTywrpQJGi&index_url=https%3A%2F%2Fhub.test%2F",

 "workshop": "learningcenter-tutorials",

 "environment": "learningcenter-tutorials-w01",

 "namespace": "learningcenter-tutorials-w01-s001"

}

This includes the name of the workshop session, an ID for identifying the user, and both a URL path

with an activation token and an index URL included as query string parameters.

Redirect the user’s browser to this URL path on the training portal host. Accessing the URL activates

the workshop session and then redirects the user to the workshop dashboard.

If the workshop session is not activated, which confirms allocation of the session, the session is

deleted after 60 seconds.

When a user is redirected back to the URL for the index page, a query string parameter is supplied

Tanzu Application Platform v1.0

VMware, Inc 365

to supply the reason the user is being returned. This can be used to display a banner or other

indication as to why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment supplied while

attempting to create the workshop is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be

created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist. This

can occur when the workshop dashboard is refreshed sometime after the workshop session

expired and was deleted.

In prior versions, the name of the session was returned through the “session” property, whereas the

“name” property is now used. To support older code using the REST API, the “session” property is

still returned, but it is deprecated.

Associating sessions with a user

When the workshop session is requested, a unique user account is created in the training portal

each time. This can if necessary be identified through the use of the user identifier returned in the

response.

If the front end using the REST API to create workshop sessions tracks user activity so that the

training portal associates all workshop sessions created by a same user, supply the user identifier

with subsequent requests by the same user in the request parameter:

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/environment/<name>/request/?index_url=ht

tps://hub.test/&user=<user>

If the supplied ID matches a user in the training portal, the training portal uses it internally and

returns the same value for user in the response.

When the user does match, and if there is already a workshop session allocated to the user for the

workshop being requested, the training portal returns a link to the existing workshop session rather

than create a new workshop session.

If the user is not a match, possibly because the training portal was completely redeployed since the

last time it was accessed, the training portal returns a new user identifier.

The first time you make a request to create a workshop session for a user where user is not

supplied, you can optionally supply request parameters for the following to set these as the user

details in the training portal.

email - The email address of the user.

first_name - The first name of the user.

last_name - The last name of the user.

These details will be accessible through the admin pages of the training portal.

Tanzu Application Platform v1.0

VMware, Inc 366

When sessions are associated with a user, you can query all active sessions for that user across the

different workshops hosted by the instance of the training portal:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/user/<user>/sessions/

The response is of the form:

{

 "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

 "sessions": [

 {

 "name": "learningcenter-tutorials-w01-s001",

 "workshop": "learningcenter-tutorials",

 "environment": "learningcenter-tutorials-w01",

 "namespace": "learningcenter-tutorials-w01-s001",

 "started": "2020-07-31T03:57:33.942Z",

 "expires": "2020-07-31T04:57:33.942Z",

 "countdown": 3353,

 "extendable": false

 }

]

}

Once a workshop has expired or has otherwise been shut down, the training portal no longer returns

an entry for the workshop.

Listing all workshop sessions

To get a list of all running workshops sessions allocated to users, provide the sessions=true flag to

the query string parameters of the REST API call to list the workshop environments available through

the training portal.

curl -v -H "Authorization: Bearer <access-token>" |

<training-portal-url>/workshops/catalog/environments/?sessions=true

The JSON response is of the form:

{

 "portal": {

 "name": "learningcenter-tutorials",

 "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

 "generation": 476,

 "url": "<training-portal-url>",

 "sessions": {

 "maximum": 10,

 "registered": 0,

 "anonymous": 0,

 "allocated": 1

 }

 },

 "environments": [

 {

 "name": "learningcenter-tutorials-w01",

 "state": "RUNNING",

Tanzu Application Platform v1.0

VMware, Inc 367

 "workshop": {

 "name": "lab-et-self-guided-tour",

 "id": "15e5f1a569496f335049bb00c370ee20",

 "title": "Workshop Building Tutorial",

 "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

 "vendor": "",

 "authors": [],

 "difficulty": "",

 "duration": "",

 "tags": [],

 "logo": "",

 "url": "<workshop-repository-url>"

 },

 "duration": 1800,

 "capacity": 10,

 "reserved": 0,

 "allocated": 1,

 "available": 0,

 "sessions": [

 {

 "name": "learningcenter-tutorials-w01-s002",

 "state": "RUNNING",

 "namespace": "learningcenter-tutorials-w01-s002",

 "user": "672338f3-4085-4782-8d9b-ae1637e1c28c",

 "started": "2021-11-05T15:50:04.824Z",

 "expires": "2021-11-05T16:20:04.824Z",

 "countdown": 1737,

 "extendable": false

 }

]

 }

]

}

No workshop sessions are returned if anonymous access to this REST API endpoint is enabled and

you are not authenticated against the training portal.

Only workshop environments with a state of RUNNING are returned by default. To see workshop

environments that are shut down and any workshop sessions that still haven’t been completed,

supply the state query string parameter with value STOPPING.

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/?sessions=true&state=RUNNING&stat

e=STOPPING

Include the state query string parameter more than once to see workshop environments in both

RUNNING and STOPPING states.

Client authentication

The training portal web interface is a quick way of providing access to a set of workshops when

running a supervised training workshop. For integrating access to workshops into an existing website

or for creating a custom web interface for accessing workshops hosted across one or more training

portals, you can use can use the portal REST API.

Tanzu Application Platform v1.0

VMware, Inc 368

The REST API gives you access to the list of workshops hosted by a training portal instance and allow

you to request and access workshop sessions. This bypasses the training portal’s own user

registration and log in so you can implement whatever access controls you need. This can include

anonymous access or access integrated into an organization’s single sign-on system.

Querying the credentials

To provide access to the REST API, a robot account is automatically provisioned. Obtain the login

credentials and details of the OAuth client endpoint used for authentication by querying the resource

definition for the training portal after it has been created and the deployment completed. If using

kubectl describe, use:

kubectl describe trainingportal.learningcenter.tanzu.vmware.com/<training-portal-name>

The status section of the output reads:

Status:

 learningcenter:

 Clients:

 Robot:

 Id: ACZpcaLIT3qr725YWmXu8et9REl4HBg1

 Secret: t5IfXbGZQThAKR43apoc9usOFVDv2BLE

 Credentials:

 Admin:

 Password: 0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

 Username: learningcenter

 Robot:

 Password: QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

 Username: robot@learningcenter

Use the admin login credentials when you log into the training portal web interface to access admin

pages.

Use the robot login credentials if you wish to access the REST API.

Requesting an access token

Before you can make requests against the REST API to query details on workshops or request a

workshop session, you need to login via the REST API to get an access token.

This is done from any front-end web application or provisioning system, but the step is equivalent to

making a REST API call by using curl of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=password&username=robot@learningcenter&password=<robot-password>" \

-u "<robot-client-id>:<robot-client-secret>" \

<training-portal-url>/oauth2/token/

The URL sub path is /oauth2/token/.

Upon success, the output is a JSON response consisting of:

{

Tanzu Application Platform v1.0

VMware, Inc 369

 "access_token": "tg31ied56fOo4axuhuZLHj5JpUYCEL",

 "expires_in": 36000,

 "token_type": "Bearer",

 "scope": "user:info",

 "refresh_token": "1ryXhXbNA9RsTRuCE8fDAyZToJmp30"

}

Refreshing the access token

The access token that is provided expires: it needs to be refreshed before it expires if in use by a

long-running application.

To refresh the access token, use the equivalent of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=refresh_token&refresh_token=<refresh-token>& \client_id=<robot-client-i

d>&client_secret=<robot-client-secret>" \

https://lab-markdown-sample-ui.test/oauth2/token/

As with requesting the initial access token, the URL sub path is /oauth2/token/.

The JSON response is of the same format as if a new token had been requested.

Troubleshoot Learning Center

This section includes a list of known issues with troubleshooting and recovery steps for Learning

Center.

Training portal stays in pending state

The training portal stays in a “pending” state.

Explanation

The TLS secret tls is not available.

Solution

1. Access the operator logs by running:

kubectl logs deployment/learningcenter-operator -n learningcenter

2. Observe that the TLS secret tls is not available. The TLS secret should be on the Learning

Center operator namespace. If the TLS secret is not on the Learning Center operator

namespace, the operator logs contain the following error:

ERROR:kopf.objects:Handler 'learningcenter' failed temporarily: TLS secret tls

is not available

3. Follow the steps in Enforcing Secure Connections in Learning Center Operator to create the

TLS secret.

4. Redeploy the trainingPortal resource.

Tanzu Application Platform v1.0

VMware, Inc 370

image-policy-webhook-service not found

You are installing a TAP profile and you get this error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.run.tanz

u.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.imag

e-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webho

ok-service" not found

Explanation

This is a race condition error among some packages.

Solution

To recover from this error you only need to redeploy the trainingPortal resource.

Cannot update parameters

The training portals do not work or do not show updated parameters.

Run one of the following commands to validate changes made to parameters provided to the

Learning Center Operator. These parameters include ingressDomain, TLS secret, ingressClass, and

others.

Command:

kubectl describe systemprofile

Command:

kubectl describe pod -n learningcenter

Explanation

By design, the training portal resources do not react to any changes on the parameters provided

when the training portals were created. This prevents any change on the trainingportal resource

from affecting any online user running a workshop.

Solution

Redeploy trainingportal in a maintenance window where Learning Center is unavailable while the

systemprofile is updated.

Increase your cluster’s resources

If you don’t have enough nodes or enough resources on nodes for deploying the workloads, node

pressure might occur. In this case, follow your cloud provider’s instructions on how to scale out or

scale up your cluster.

Supply Chain Choreographer for Tanzu

This topic introduces Supply Chain Choreographer.

Tanzu Application Platform v1.0

VMware, Inc 371

Overview

Supply Chain Choreographer is based on open source Cartographer. It allows App Operators to

create pre-approved paths to production by integrating Kubernetes resources with the elements of

their existing toolchains, for example, Jenkins.

Each pre-approved supply chain creates a paved road to production. Orchestrating supply chain

resources - test, build, scan, and deploy - allows developers to focus on delivering value to their

users and provides App Operators the assurance that all code in production has passed through all

the steps of an approved workflow.

Out of the Box Supply Chains

Out of the box supply chains are provided with Tanzu Application Platform.

The following three supply chains are included:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As auxiliary components, Tanzu Application Platform also includes:

Out of the Box Templates, for providing templates used by the supply chains to perform

common tasks like fetching source code, running tests, and building container images.

Out of the Box Delivery Basic, for delivering to a Kubernetes cluster the configuration built

throughout a supply chain

Both Templates and Delivery Basic are requirements for the Supply Chains.

Install Supply Chain Choreographer

This document describes how to install Supply Chain Choreographer from the Tanzu Application

Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Supply Chain Choreographer. For more information about profiles,

see Installing the Tanzu Application Platform Package and Profiles.

Supply Chain Choreographer provides the custom resource definitions the supply chain uses. Each

pre-approved supply chain creates a clear road to production and orchestrates supply chain

resources. You can test, build, scan, and deploy. Developers can focus on delivering value to users.

Application operators can rest assured that all code in production has passed through an approved

workflow.

For example, Supply Chain Choreographer passes the results of fetching source code to the

component that builds a container image of it, and then passes the container image to a component

that deploys the image.

Prerequisites

Tanzu Application Platform v1.0

VMware, Inc 372

https://cartographer.sh/docs/

Before installing Supply Chain Choreographer:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install

To install Supply Chain Choreographer:

1. Install v0.1.0 of the cartographer.tanzu.vmware.com package, naming the installation

cartographer.

tanzu package install cartographer \

 --namespace tap-install \

 --package-name cartographer.tanzu.vmware.com \

 --version 0.1.0

Example output:

| Installing package 'cartographer.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'cartographer.tanzu.vmware.com'

| Creating service account 'cartographer-tap-install-sa'

| Creating cluster admin role 'cartographer-tap-install-cluster-role'

| Creating cluster role binding 'cartographer-tap-install-cluster-rolebinding'

- Creating package resource

\ Package install status: Reconciling

Added installed package 'cartographer' in namespace 'tap-install'

Out of the Box Delivery Basic

This package provides a reusable ClusterDelivery object that is responsible for delivering to an

environment the Kubernetes configuration that has been produced by the Out of the Box Supply

Chains, including Basic, Testing, and Testing With Scanning.

Prerequisites

To make use of this package you must have installed:

Supply Chain Cartographer

Out of the Box Templates

Usage

Out of the Box Delivery Basic support both GitOps and local development workflows:

GITOPS

 Deliverable:

 points at a git repository where source code is found and

 kubernetes configuration is pushed to

Tanzu Application Platform v1.0

VMware, Inc 373

#install-scc

LOCAL DEVELOPMENT

 Deliverable:

 points at a container image registry where the supplychain

 pushes source code and configuration to

DELIVERY

 takes a Deliverable (local or gitops) and passes is through

 a series of resources:

 config-provider <---[config]--- deployer

 . .

 . .

 GitRepository/ImageRepository kapp-ctrl/App

 - knative/Service

 - ResourceClaim

 - ServiceBinding

 ...

As a prerequisite to the Basic, Testing, and Testing With Scanning Out of the Box Supply Chains, you

must install this package to have Workloads delivered properly.

Consumers do not interact directly with this package. Instead, this package is used once a

carto.run/Deliverable object is created by the supply chains to express the intention of having the

Workloads that go through them delivered to an environment. At this time, the environment is the

same Kubernetes cluster as the Supply Chains.

Install Out of the Box Delivery Basic

This document describes how to install Out of the Box Delivery Basic from the Tanzu Application

Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Delivery Basic. For more information about profiles,

see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Delivery Basic package is used by all the Out of the Box Supply Chains to deliver

the objects that have been produced by them to a Kubernetes environment.

Prerequisites

Before installing Out of the Box Delivery Basic:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Tanzu Application Platform v1.0

VMware, Inc 374

https://github.com/vmware-tanzu/cartographer

Install

To install Out of the Box Delivery Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-delivery-basic.tanzu.vmware.com/0.5.1 \

 --values-schema \

 -n tap-install

For example:

KEY DEFAULT TYPE DESCRIPTION

service_account default string Name of the service account in the

 namespace where the Deliverable is

 submitted to.

2. Create a file named ootb-delivery-basic-values.yaml that specifies the corresponding

values to the properties you want to change.

For example, the contents of the file might look like this:

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-delivery-basic \

 --package-name ootb-delivery-basic.tanzu.vmware.com \

 --version 0.5.1 \

 --namespace tap-install \

 --values-file ootb-delivery-basic-values.yaml

Example output:

\ Installing package 'ootb-delivery-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-delivery-basic.tanzu.vmware.com'

| Creating service account 'ootb-delivery-basic-tap-install-sa'

| Creating cluster admin role 'ootb-delivery-basic-tap-install-cluster-role'

| Creating cluster role binding 'ootb-delivery-basic-tap-install-cluster-rolebi

nding'

| Creating secret 'ootb-delivery-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-delivery-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-delivery-basic' in namespace 'tap-install'

Out of the Box Supply Chain Basic

This Cartographer Supply Chain ties together a series of Kubernetes resources which drive a

developer-provided Workload from source code to a Kubernetes configuration ready to be

deployed to a cluster.

This is the most basic supply chain that provides a quick path to deployment. It makes no use of

testing or scanning steps.

Tanzu Application Platform v1.0

VMware, Inc 375

SUPPLYCHAIN

 source-provider flux/GitRepository|vmware/ImageRepository

 <--[src]-- image-builder kpack/Image : kpack/Build

 <--[img]-- convention-applier convention/PodIntent

 <--[config]-- config-creator corev1/ConfigMap

 <--[config]-- config-pusher carto/Runnable : tekton/TaskRun

DELIVERY

 config-provider flux/GitRepository|vmware/ImageRepository

 <--[src]-- app-deployer kapp-ctrl/App

Watching a Git repository or local directory for changes

Building a container image out of the source code with Buildpacks

Applying operator-defined conventions to the container definition

Deploying the application to the same cluster

Prerequisites

To use this supply chain, you must:

Install Out of the Box Templates

Install Out of the Box Delivery Basic

Configure the Developer namespace with auxiliary objects that are used by the supply chain

as described below

Developer Namespace

The supply chains provide definitions of many of the objects that they create to transform the source

code to a container image and make it available as an application in the cluster.

The developer must provide or configure particular objects in the developer namespace so that the

supply chain can provide credentials and use permissions granted to a particular development team.

The objects that the developer must provide or configure include:

image secret: A Kubernetes secret of type kubernetes.io/dockerconfigjson that contains

credentials for pushing the container images built by the supply chain

service account: The identity to be used for any interaction with the Kubernetes API made

by the supply chain

role: The set of capabilities that you want to assign to the service account. It must provide the

ability to manage all of the resources that the supplychain is responsible for.

rolebinding: Binds the role to the service account. It grants the capabilities to the identity.

(Optional) git credentials secret: When using GitOps for managing the delivery of

applications or a private git source, this secret provides the credentials for interacting with the

git repository.

Image Secret

Tanzu Application Platform v1.0

VMware, Inc 376

#git-credentials-secret

Regardless of the supply chain that a Workload goes through, there must be a secret in the

developer namespace. This secret contains the credentials to be passed to:

Resources that push container images to image registries, such as Tanzu Build Service

Those resources that must pull container images from such image registry, such as

Convention Service and Knative.

Use the tanzu secret registry add command from the Tanzu CLI to provision a secret that

contains such credentials.

create a Secret object using the `dockerconfigjson` format using the

credentials provided, then a SecretExport (`secretgen-controller`

resource) so that it gets exported to all namespaces where a

placeholder secret can be found.

#

#

tanzu secret registry add image-secret \

 --server https://index.docker.io/v1/ \

 --username $REGISTRY_USERNAME \

 --password $REGISTRY_PASSWORD

- Adding image pull secret 'image-secret'...

 Added image pull secret 'image-secret' into namespace 'default'

With the command above, the secret image-secret of type kubernetes.io/dockerconfigjson is

created in the namespace. This makes the secret available for Workloads in this same namespace.

To export the secret to all namespaces, use the --export-to-all-namespaces flag.

ServiceAccount

In a Kubernetes cluster, a ServiceAccount provides a way of representing an identity within the

Kubernetes role base access control (RBAC) system. In the case of a developer namespace, this

represents a developer or development team.

You can directly attach secrets to the ServiceAccount as bind roles. This allows you to provide

indirect ways for resources to find credentials without them needing to know the exact name of the

secrets, as well as reduce the set of permissions that a group would have, through the use of Roles

and RoleBinding objects.

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: image-secret

imagePullSecrets:

 - name: image-secret

The ServiceAccount must have the secret created above linked to it. If it does not, services like

Tanzu Build Service (used in the supply chain) lack the necessary credentials for pushing the images

it builds for that Workload.

Role and RoleBinding

Tanzu Application Platform v1.0

VMware, Inc 377

As the Supply Chain takes action in the cluster on behalf of the users who created the Workload, it

needs permissions within Kubernetes’ RBAC system to do so.

To achieve that, you must first describe a set of permissions for particular resources, meaning create

a Role, and then bind those permissions to an actor. For example, creating a RoleBinding that binds

the Role to the ServiceAccount.

So, create a Role describing the permissions:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: default

rules:

- apiGroups: [source.toolkit.fluxcd.io]

 resources: [gitrepositories]

 verbs: ['*']

- apiGroups: [source.apps.tanzu.vmware.com]

 resources: [imagerepositories]

 verbs: ['*']

- apiGroups: [carto.run]

 resources: [deliverables, runnables]

 verbs: ['*']

- apiGroups: [kpack.io]

 resources: [images]

 verbs: ['*']

- apiGroups: [conventions.apps.tanzu.vmware.com]

 resources: [podintents]

 verbs: ['*']

- apiGroups: [""]

 resources: ['configmaps']

 verbs: ['*']

- apiGroups: [""]

 resources: ['pods']

 verbs: ['list']

- apiGroups: [tekton.dev]

 resources: [taskruns, pipelineruns]

 verbs: ['*']

- apiGroups: [tekton.dev]

 resources: [pipelines]

 verbs: ['list']

- apiGroups: [kappctrl.k14s.io]

 resources: [apps]

 verbs: ['*']

- apiGroups: [serving.knative.dev]

 resources: ['services']

 verbs: ['*']

- apiGroups: [servicebinding.io]

 resources: ['servicebindings']

 verbs: ['*']

- apiGroups: [services.apps.tanzu.vmware.com]

 resources: ['resourceclaims']

 verbs: ['*']

- apiGroups: [scanning.apps.tanzu.vmware.com]

 resources: ['imagescans', 'sourcescans']

 verbs: ['*']

Tanzu Application Platform v1.0

VMware, Inc 378

Then bind it to the ServiceAccount:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: default

subjects:

 - kind: ServiceAccount

 name: default

Developer workload

With the developer namespace setup with the objects above (image, secret, serviceaccount, role,

and rolebinding), you can create the Workload object.

Configure the Workload with three scenarios in mind:

local iteration: takes source code from the filesystem and drives is through the supply chain

making no use of external git repositories

local iteration with code from git: takes source code from a git repository and drives it

through the supply chain without persisting the final configuration in git (enabled only if the

installation did not include a default repository prefix for git-based workflows)

gitops: source code is provided by an external git repository (public or private), and the final

Kubernetes configuration to deploy the application is persisted in a repository

Local Iteration with Local Code

In this scenario, you need the source code (in the example below, assuming the current directory .

as the location of the source code you want to send through the supply chain), and a container

image registry to use as the mean for making the source code available inside the Kubernetes

cluster.

tanzu apps workload create tanzu-java-web-app \

 --local-path . \

 --source-image $REGISTRY/source \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | app.kubernetes.io/part-of: tanzu-java-web-app

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

Tanzu Application Platform v1.0

VMware, Inc 379

 11 + | source:

 12 + | image: 10.188.0.3:5000/source:latest@sha256:1cb23472fcdcce276c316d9bed6

055625fbc4ac3e50a971f8f8004b1e245981e

? Do you want to create this workload? Yes

Created workload "tanzu-java-web-app"

With the Workload submitted, you can track of the resulting series of Kubernetes objects created to

drive the source code all the way to a deployed application by making use of the tail command:

tanzu apps workload tail tanzu-java-web-app

Local Iteration with Code from Git

Similar to local iteration with local code, here we make use of the same type (web), but instead of

pointing at source code that we have locally, we can make use of a git repository to feed the supply

chain with new changes as they are pushed to a branch.

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | app.kubernetes.io/part-of: tanzu-java-web-app

 8 + | name: tanzu-java-web-app

Note

: If you plan to use a private git repository, skip to the next section, Private Source Git

Repository.

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

This scenario is only possible if the installation of the supply chain did not include a default git

repository prefix (gitops.repository_prefix).

Private Source Git Repository

In the example above, we make use of a public repository. To make use of a private repository

Tanzu Application Platform v1.0

VMware, Inc 380

instead, you create a Secret in the same namespace as the one where the Workload is being

submitted to named after the value of gitops.ssh_secret (the installation defaults the name to git-

ssh):

apiVersion: v1

kind: Secret

metadata:

 name: git-ssh

type: kubernetes.io/ssh-auth

stringData:

 known_hosts: string # git server public keys

 identity: string # private key with pull permissions

 identity.pub: string # public of the `identity` private key

If this is your first time setting up SSH credentials for your user, the following steps can serve as a

guide:

generate a new keypair.

#

- `identity` (private)

- `identity.pub` (public)

#

once done, head to your git provider and add the `identity.pub` as a

deployment key for the repository of interest or add to an account that has

access to it. for instance, for github:

#

https://github.com/<repository>/settings/keys/new

#

ssh-keygen -t rsa -q -b 4096 -f "identity" -N "" -C ""

gather public keys from the provider (e.g., github):

#

ssh-keyscan github.com > ./known_hosts

create the secret.

#

kubectl create secret generic git-ssh \

 --from-file=./identity \

 --from-file=./identity.pub \

 --from-file=./known_hosts

Note

: For a particular Workload, you can override the name of the secret by using the

gitops_ssh_secret parameter (--param gitops_ssh_secret) in the Workload.

Note

: When you create a Secret that provides credentials for accessing your private git

repository, you can create a deploy key if your Git Provider supports it (GitHub does).

Any Git secrets you apply to your cluster can potentially be viewed by others who

Tanzu Application Platform v1.0

VMware, Inc 381

With the namespace configured and having added the secret to be used for fetching source code

from a private repository, you can create the Workload:

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | app.kubernetes.io/part-of: tanzu-java-web-app

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

GitOps

Differently from local iteration, with the GitOps approach we end up at the end of the supply chain

having the configuration that got created by it pushed to a git repository where that is persisted and

used at the basis for further deployments.

SUPPLY CHAIN

 given a Workload

 watches sourcecode repo

 builds container image

 prepare configuration

 pushes config to git

DELIVERY

 given a Deliverable

 watches configurations repo

 deploys the kubernetes configurations

Given the extra capability of pushing to git, there must be in the developer namespace (i.e., same

namespace as the one where the Workload is submitted to) a Secret containing credentials to a git

provider (e.g., GitHub), regardless of whether the source code comes from a private git repository or

have access to that cluster. So, it is better to use Deploy keys or shared bot accounts

instead of adding personal Git Credentials.

Tanzu Application Platform v1.0

VMware, Inc 382

not.

Before proceeding, make sure you have a secret with following shape fields and annotations set:

apiVersion: v1

kind: Secret

metadata:

 name: git-ssh # `git-ssh` is the default name.

 # - operators can change the default using `gitops.ssh_secret`.

 # - developers can override using `gitops_ssh_secret`

 annotations:

 tekton.dev/git-0: github.com # git server host (!! required)

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: string # private key with push-permissions

 known_hosts: string # git server public keys

 identity: string # private key with pull permissions

 identity.pub: string # public of the `identity` private key

With the Secret created, we can move on to the Workload.

Workload Using Default Git Organization

During the installation of ootb-*, one of the values that operators can configure is one that dictates

what the prefix the supply chain should use when forming the name of the repository to push to the

Kubernetes configurations produced by the supply chains - gitops.repository_prefix.

That being set, all it takes to change the behavior towards using GitOps is setting the source of the

source code to a git repository and then as the supply chain progresses, configuration are pushed to

a repository named after $(gitops.repository_prefix) + $(workload.name).

e.g, having gitops.repository_prefix configured to git@github.com/foo/ and a Workload as such:

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | app.kubernetes.io/part-of: tanzu-java-web-app

 8 + | name: tanzu-java-web-app

Note

: Because of incompatibilities between Kubernetes resources ssh-privatekeys must

be set to the same value as identity.

Tanzu Application Platform v1.0

VMware, Inc 383

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

You see the Kubernetes configuration pushed to git@github.com/foo/tanzu-java-web-app.git.

Regardless of the setup, the repository where configuration is pushed to can be also manually

overridden by the developers by tweaking the following parameters:

gitops_ssh_secret: Name of the secret in the same namespace as the Workload where SSH

credentials exist for pushing the configuration produced by the supply chain to a git

repository. Example: “ssh-secret”

gitops_repository: SSH URL of the git repository to push the Kubernetes configuration

produced by the supply chain to. Example: “ssh://git@foo.com/staging.git”

gitops_branch: Name of the branch to push the configuration to. Example: “main”

gitops_commit_message: Message to write as the body of the commits produced for pushing

configuration to the git repository. Example: “ci bump”

gitops_user_name: Username to use in the commits. Example: “Alice Lee”

gitops_user_email: User email address to use for the commits. Example:

“foo@example.com”

Install Out of the Box Supply Chain Basic

This document describes how to install Out of the Box Supply Chain Basic from the Tanzu

Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Supply Chain Basic. For more information about

profiles, see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Supply Chain Basic package provides the most basic ClusterSupplyChain that

brings an application from source code to a deployed instance of it running in a Kubernetes

environment.

Prerequisites

Fulfill the following prerequisites:

Fulfill the prerequisites for installing Tanzu Application Platform.

Install Supply Chain Choreographer.

Install

To install Out of the Box Supply Chain Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

Tanzu Application Platform v1.0

VMware, Inc 384

tanzu package available get ootb-supply-chain-basic.tanzu.vmware.com/0.5.1 \

 --values-schema \

 -n tap-install

For example:

KEY DESCRIPTION

registry.repository Name of the repository in the image registry server w

here

 the application images from the workload should be pu

shed (required).

registry.server Name of the registry server where application images

should

 be pushed to (required).

gitops.username Default user name to be used for the commits produced

 by the

 supply chain.

gitops.branch Default branch to use for pushing Kubernetes configur

ation files

 produced by the supply chain.

gitops.commit_message Default git commit message to write when publishing K

ubernetes

 configuration files produces by the supply chain to g

it.

gitops.email Default user email to be used for the commits produce

d by the

 supply chain.

gitops.repository_prefix Default prefix to be used for forming Git SSH URLs fo

r pushing

 Kubernetes configuration produced by the supply chain

.

gitops.ssh_secret Name of the default Secret containing SSH credentials

 to lookup

 in the developer namespace for the supply chain to fe

tch source

 code from and push configuration to.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to

 use by default on image objects managed by the supply

 chain.

service_account Name of the service account in the namespace where th

e Workload

 is submitted to utilize for providing registry creden

tials to

Tanzu Application Platform v1.0

VMware, Inc 385

 Tanzu Build Service (TBS) Image objects as well as de

ploying the

 application.

2. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding

values to the properties you want to change. For example:

registry:

 server: REGISTRY-SERVER

 repository: REGISTRY-REPOSITORY

gitops:

 repository_prefix: git@github.com:vmware-tanzu/

 branch: main

 user_name: supplychain

 user_email: supplychain

 commit_message: supplychain@cluster.local

 ssh_secret: git-ssh

cluster_builder: default

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-basic \

 --package-name ootb-supply-chain-basic.tanzu.vmware.com \

 --version 0.5.1 \

 --namespace tap-install \

 --values-file ootb-supply-chain-basic-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-basic.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-basic-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-basic-tap-install-cluster-role

'

| Creating cluster role binding 'ootb-supply-chain-basic-tap-install-cluster-ro

lebinding'

| Creating secret 'ootb-supply-chain-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-supply-chain-basic' in namespace 'tap-install'

Out of the Box Supply Chain with Testing

This Cartographer Supply Chain ties a series of Kubernetes resources which, when working together,

drives a developer-provided Workload from source code all the way to a Kubernetes configuration

ready to be deployed to a cluster, passing forward the source code to image building if and only if

the testing pipeline supplied by the developers run successfully.

SUPPLYCHAIN

Tanzu Application Platform v1.0

VMware, Inc 386

 source-provider flux/GitRepository|vmware/ImageRepository

 <--[src]-- source-tester carto/Runnable : tekton/PipelineRun

 <--[src]-- image-builder kpack/Image : kpack/Build

 <--[img]-- convention-applier convention/PodIntent

 <--[config]-- config-creator corev1/ConfigMap

 <--[config]-- config-pusher carto/Runnable : tekton/TaskRun

DELIVERY

 config-provider flux/GitRepository|vmware/ImageRepository

 <--[src]-- app-deployer kapp-ctrl/App

It includes all the capabilities of the Out of the Box Supply Chain Basic, but adds on top testing with

Tekton:

Watching a Git Repository or local directory for changes

Running tests from a developer-provided Tekton or Pipeline

Building a container image out of the source code with Buildpacks

Applying operator-defined conventions to the container definition

Deploying the application to the same cluster

Prerequisites

To make use this supply chain, it is required that:

Out of the Box Templates is installed

Out of the Box Delivery Basic is installed

Out of the Box Supply Chain With Testing is installed

Out of the Box Supply Chain With Testing and Scanning is NOT installed

Developer namespace is configured with the objects per Out of the Box Supply Chain Basic

guidance. This supply chain is additive to the basic one.

You can verify that you have the right set of supply chains installed (i.e. the one with Scanning and

not the one with testing) by running the following command:

tanzu apps cluster-supply-chain list

NAME LABEL SELECTOR

source-test-to-url apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url apps.tanzu.vmware.com/workload-type=web

If you see source-test-scan-to-url in the list, the setup is wrong: you must not have the source-

test-scan-to-url installed at the same time as source-test-to-url.

Developer Namespace

As mentioned in the prerequisites section, this supply chain builds on the previous Out of the Box

Supply Chain, so only additions are included here.

To make sure you have configured the namespace correctly, it is important that the namespace has

Tanzu Application Platform v1.0

VMware, Inc 387

the following objects in it (including the ones marked with ‘new’ whose explanation and details are

provided below):

image secret: A Kubernetes secret of type kubernetes.io/dockerconfigjson filled with

credentials for pushing the container images built by the supply chain. For more information,

see Out of the Box Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made

by the supply chain. For more information, see Out of the Box Supply Chain Basic.

role: The set of capabilities that you want to assign to the service account. It must provide the

ability to manage all of the resources that the supplychain is responsible for. For more

information, see Out of the Box Supply Chain Basic.

rolebinding: Binds the role to the service account. It grants the capabilities to the identity.

For more information, see Out of the Box Supply Chain Basic.

(Optional) git credentials secret: When using GitOps for managing the delivery of

applications or a private git source, this secret provides the credentials for interacting with the

git repository. For more information, see Out of the Box Supply Chain Basic.

Tekton pipeline (new): A pipeline runs whenever the supply chain hits the stage of testing

the source code.

Below you will find details about the new objects compared to Out of the Box Supply Chain Basic.

Updates to the Developer Namespace

In order for source code testing to be present in the supply chain, a Tekton Pipeline must exist in the

same namespace as the Workload so that, at the right moment, the Tekton PipelineRun object that

gets created to run the tests can reference such developer-provided Pipeline.

So, aside from the objects previously defined in the Out of the Box Supply Chain Basic section, you

need to include one more:

tekton/Pipeline: the definition of a series of tasks to run against the source code that has

been found by earlier resources in the Supply Chain.

Tekton/Pipeline

Despite the full liberty around tasks to run, the Tekton or pipeline object must be labelled with

apps.tanzu.vmware.com/pipeline: test, and define that it expects to take two params:

source-url, an HTTP address where a .tar.gz file containing all the source code to be

tested can be found

source-revision, the revision of the commit or image reference (in case of

workload.spec.source.image being set instead of workload.spec.source.git)

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

Tanzu Application Platform v1.0

VMware, Inc 388

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

At this point, changes to the developer-provided Tekton Pipeline do not automatically trigger a re-

run of the pipeline. That is, a new Tekton PipelineRun is not automatically created if a field in the

Pipeline object is changed. As a workaround, the latest PipelineRun created can be deleted, which

triggers a re-run.

Developer Workload

With the Tekton Pipeline object submitted to the same namespace as the one where the Workload

will be submitted to, you can submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload configuration

details are the same as in Out of the Box Supply Chain Basic, except that you mark the Workload as

having tests enabled.

For example:

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | apps.tanzu.vmware.com/has-tests: "true"

 8 + | app.kubernetes.io/part-of: tanzu-java-web-app

Tanzu Application Platform v1.0

VMware, Inc 389

 9 + | name: tanzu-java-web-app

 10 + | namespace: default

 11 + |spec:

 12 + | source:

 13 + | git:

 14 + | ref:

 15 + | branch: main

 16 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

Install Out of the Box Supply Chain with Testing

This document describes how to install Out of the Box Supply Chain with Testing from the Tanzu

Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Supply Chain with Testing. For more information

about profiles, see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Supply Chain with Testing package provides a ClusterSupplyChain that brings an

application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Runs developer-provided tests in the form of Tekton/Pipeline objects to validate the source

code before building container images.

Prerequisites

Before installing Out of the Box Supply Chain with Testing:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install

Install by following these steps:

1. Ensure you do not have Out of the Box Supply Chain With Testing and Scanning (ootb-

supply-chain-testing-scanning.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing-scanning is in the output:

NAME PACKAGE-NAME

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.

Tanzu Application Platform v1.0

VMware, Inc 390

com

ootb-templates ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing-scanning in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing-scanning --names

pace tap-install

Example output:

Deleting installed package 'ootb-supply-chain-testing-scanning' in namesp

ace 'tap-install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing-scanning' from namespac

e 'tap-install'

\ Getting package install for 'ootb-supply-chain-testing-scanning'

- Deleting package install 'ootb-supply-chain-testing-scanning' from name

space 'tap-install'

| Deleting admin role 'ootb-supply-chain-testing-scanning-tap-install-clu

ster-role'

| Deleting role binding 'ootb-supply-chain-testing-scanning-tap-install-c

luster-rolebinding'

| Deleting secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-scanning-tap-instal

l-sa'

 Uninstalled package 'ootb-supply-chain-testing-scanning' from namespace

'tap-install'

2. Check the values of the package that can be configured by running:

KEY DESCRIPTION

registry.repository Name of the repository in the image registry server w

here

 the application images from the workload should be pu

shed (required).

registry.server Name of the registry server where application images

should

 be pushed to (required).

gitops.username Default user name to be used for the commits produced

 by the

 supply chain.

gitops.branch Default branch to use for pushing Kubernetes configur

ation files

 produced by the supply chain.

gitops.commit_message Default git commit message to write when publishing K

ubernetes

 configuration files produces by the supply chain to g

it.

Tanzu Application Platform v1.0

VMware, Inc 391

gitops.email Default user email to be used for the commits produce

d by the

 supply chain.

gitops.repository_prefix Default prefix to be used for forming Git SSH URLs fo

r pushing

 Kubernetes configuration produced by the supply chain

.

gitops.ssh_secret Name of the default Secret containing SSH credentials

 to lookup

 in the developer namespace for the supply chain to fe

tch source

 code from and push configuration to.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to

 use by default on image objects managed by the supply

 chain.

service_account Name of the service account in the namespace where th

e Workload

 is submitted to utilize for providing registry creden

tials to

 Tanzu Build Service (TBS) Image objects as well as de

ploying the

 application.

3. Create a file named ootb-supply-chain-testing-values.yaml that specifies the

corresponding values to the properties you want to change. For example:

registry:

 server: REGISTRY-SERVER

 repository: REGISTRY-REPOSITORY

gitops:

 repository_prefix: git@github.com:vmware-tanzu/

 branch: main

 user_name: supplychain

 user_email: supplychain

 commit_message: supplychain@cluster.local

 ssh_secret: git-ssh

cluster_builder: default

service_account: default

Note: it’s required that the gitops.repository_prefix field ends with a /.

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing \

 --package-name ootb-supply-chain-testing.tanzu.vmware.com \

 --version 0.5.1 \

 --namespace tap-install \

 --values-file ootb-supply-chain-testing-values.yaml

Tanzu Application Platform v1.0

VMware, Inc 392

Example output:

\ Installing package 'ootb-supply-chain-testing.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-testing-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-tap-install-cluster-ro

le'

| Creating cluster role binding 'ootb-supply-chain-testing-tap-install-cluster-

rolebinding'

| Creating secret 'ootb-supply-chain-testing-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing' in namespace 'tap-install'

Out of the Box Supply Chain with Testing and Scanning

This Cartographer Supply Chain ties a series of Kubernetes resources which, when working together,

drives a developer-provided Workload from source code all the way to a Kubernetes configuration

ready to be deployed to a cluster, having not only passed that source code through testing and

vulnerability scanning, but also the container image produced.

SUPPLYCHAIN

 source-provider flux/GitRepository|vmware/ImageRepository

 <--[src]-- source-tester carto/Runnable : tekton/PipelineRun

 <--[src]-- source-scanner scst/SourceScan : v1/Job

 <--[src]-- image-builder kpack/Image : kpack/Build

 <--[img]-- image-scanner scst/ImageScan : v1/Job

 <--[img]-- convention-applier convention/PodIntent

 <--[config]-- config-creator corev1/ConfigMap

 <--[config]-- config-pusher carto/Runnable : tekton/TaskRun

DELIVERY

 config-provider flux/GitRepository|vmware/ImageRepository

 <--[src]-- app-deployer kapp-ctrl/App

It includes all the capabilities of the Out of the Box Supply Chain With Testing, but adds on top

source and image scanning using Grype:

Watching a Git Repository or local directory for changes

Running tests from a developer-provided Tekton or Pipeline

Scanning the source code for known vulnerabilities using Grype

Building a container image out of the source code with Buildpacks

Scanning the image for known vulnerabilities

Applying operator-defined conventions to the container definition

Deploying the application to the same cluster

Prerequisites

To make use this supply chain, it is required that:

Tanzu Application Platform v1.0

VMware, Inc 393

Out of the Box Templates is installed

Out of the Box Delivery Basic is installed

Out of the Box Supply Chain With Testing is NOT installed

Out of the Box Supply Chain With Testing and Scanning is installed

Developer namespace is configured with the objects per Out of the Box Supply Chain With

Testing guidance (this supply chain is additive to the testing one)

You can verify that you have the right set of supply chains installed (i.e. the one with Scanning and

not the one with testing) by running the following command:

tanzu apps cluster-supply-chain list

NAME LABEL SELECTOR

source-test-scan-to-url apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url apps.tanzu.vmware.com/workload-type=web

If you see source-test-to-url in the list, the setup is wrong: you must not have the source-test-to-

url installed at the same time as source-test-scan-to-url.

Developer Namespace

As mentioned in the prerequisites section, this example builds on the previous Out of the Box

Supply Chain examples, so only additions are included here.

To ensure that you have configured the namespace correctly, it is important that the namespace has

the objects that you configured in the other supply chain setups:

image secret: A Kubernetes secret of type kubernetes.io/dockerconfigjson filled with

credentials for pushing the container images built by the supply chain. For more information,

see Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made

by the supply chain. For more information, see Supply Chain Basic.

role: The set of capabilities that you want to assign to the service account. It must provide the

ability to manage all of the resources that the supplychain is responsible for. For more

information, see Supply Chain Basic.

rolebinding: Binds the role to the service account, which grants the capabilities to the

identity. For more information, see Supply Chain Basic.

(Optional) git credentials secret: When using GitOps for managing the delivery of

applications or a private Git source, provides the required credentials for interacting with the

Git repository. For more information, see Supply Chain Basic.

tekton pipeline: A pipeline to be ran whenever the supply chain hits the stage of testing the

source code. For more information, see Supply Chain with Testing.

And the new ones, that you create here:

scan policy: Defines what to do with the results taken from scanning the source code and

Tanzu Application Platform v1.0

VMware, Inc 394

image produced. For more information, see ScanPolicy section.

source scan template: A template of how jobs are created for scanning the source code. For

more information, see ScanTemplate section.

image scan template: A template of how jobs are created for scanning the image produced

by the supply chain. For more information, see ScanTemplate section.

Below you will find details about the new objects (compared to Out of the Box Supply Chain With

Testing).

Updates to the Developer Namespace

For source and image scans to happen, scan templates and scan policies must exist in the same

namespace as the Workload. These define:

ScanTemplate: how to run a scan, allowing one to change details about the execution of the

scan (either for images or source code)

ScanPolicy: how to evaluate whether the artifacts scanned are compliant, for example

allowing one to be either very strict, or restrictive about particular vulnerabilities found.

Note that the names of the objects must match the ones in the example.

ScanPolicy

The ScanPolicy defines a set of rules to evaluate for a particular scan to consider the artifacts (image

or source code) either compliant or not.

When a ImageScan or SourceScan is created to run a scan, those reference a policy whose name

must match the one below (scan-policy):

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

 violatingSeverities := ["Critical","High","UnknownSeverity"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

Tanzu Application Platform v1.0

VMware, Inc 395

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

See Writing Policy Templates for more details.

ScanTemplate

A ScanTemplate defines the PodTemplateSpec to be used by a Job to run a particular scan (image

or source). When an ImageScan or SourceScan is instantiated by the supply chain, they reference

these templates which must live in the same namespace as the Workload with the names matching

the ones below:

source scanning (blob-source-scan-template)

image scanning (private-image-scan-template)

If you are targeting a namespace that does not match the one configured in the Tanzu Application

Platform profiles, for example if grype.namespace is not the same as the one you are writing the

workload to, you can install these in such namespace by making use of the tanzu package install

command as described in Install Supply Chain Security Tools - Scan:

1. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding

values to the properties you want to change. For example:

grype:

 namespace: YOUR-DEV-NAMESPACE

 targetImagePullSecret: registry-credentials

2. With the configuration ready, install the templates by running:

tanzu package install grype-scanner \

 --package-name grype.scanning.apps.tanzu.vmware.com \

 --version 1.0.0 \

 --namespace YOUR-DEV-NAMESPACE

Note: Although you can customize the templates, if you are just following the Getting Started guide

then it is recommended you stick with what is provided in the installation of

grype.scanning.apps.tanzu.vmware.com. This is created in the same namespace as configured by

using grype.namespace in either Tanzu Application Platform profiles or individual component

installation as in the earlier example. For more information, see About Source and Image Scans.

Developer Workload

With the ScanPolicy and ScanTemplate objects, with the required names set, submitted to the same

namespace where the Workload will be submitted to, you are ready to submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload configuration

details are the same as in Out of the Box Supply Chain Basic, except that you mark the Workload as

having tests enabled.

For example:

Tanzu Application Platform v1.0

VMware, Inc 396

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | apps.tanzu.vmware.com/has-tests: "true"

 8 + | app.kubernetes.io/part-of: tanzu-java-web-app

 9 + | name: tanzu-java-web-app

 10 + | namespace: default

 11 + |spec:

 12 + | source:

 13 + | git:

 14 + | ref:

 15 + | branch: main

 16 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

Install Out of the Box Supply Chain with Testing and
Scanning

This document describes how to install Out of the Box Supply Chain with Testing and Scanning from

the Tanzu Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. The full

profile includes Out of the Box Supply Chain with Testing and Scanning. For more information about

profiles, see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Supply Chain with Testing and Scanning package provides a ClusterSupplyChain

that brings an application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Performs validations in terms of running application tests.

Scans the source code and image for vulnerabilities.

Prerequisites

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Tanzu Application Platform v1.0

VMware, Inc 397

Install

To install Out of the Box Supply Chain with Testing and Scanning:

1. Ensure you do not have Out of The Box Supply Chain With Testing (ootb-supply-chain-

testing.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing is in the output:

NAME PACKAGE-NAME

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.

com

ootb-templates ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing --namespace tap-

install

Example output:

Deleting installed package 'ootb-supply-chain-testing' in namespace 'tap-

install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing' from namespace 'tap-in

stall'

\ Getting package install for 'ootb-supply-chain-testing'

- Deleting package install 'ootb-supply-chain-testing' from namespace 'ta

p-install'

| Deleting admin role 'ootb-supply-chain-testing-tap-install-cluster-role

'

| Deleting role binding 'ootb-supply-chain-testing-tap-install-cluster-ro

lebinding'

| Deleting secret 'ootb-supply-chain-testing-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-tap-install-sa'

 Uninstalled package 'ootb-supply-chain-testing' from namespace 'tap-inst

all'

2. Check the values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-testing-scanning.tanzu.vmware.com

/0.5.1 \

 --values-schema \

 -n tap-install

For example:

KEY DESCRIPTION

Tanzu Application Platform v1.0

VMware, Inc 398

registry.repository Name of the repository in the image registry server w

here

 the application images from the workload should be pu

shed (required).

registry.server Name of the registry server where application images

should

 be pushed to (required).

gitops.username Default user name to be used for the commits produced

 by the

 supply chain.

gitops.branch Default branch to use for pushing Kubernetes configur

ation files

 produced by the supply chain.

gitops.commit_message Default git commit message to write when publishing K

ubernetes

 configuration files produces by the supply chain to g

it.

gitops.email Default user email to be used for the commits produce

d by the

 supply chain.

gitops.repository_prefix Default prefix to be used for forming Git SSH URLs fo

r pushing

 Kubernetes configuration produced by the supply chain

.

gitops.ssh_secret Name of the default Secret containing SSH credentials

 to lookup

 for the supply chain to push configuration to.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to

 use by default on image objects managed by the supply

 chain.

service_account Name of the service account in the namespace where th

e Workload

 is submitted to utilize for providing registry creden

tials to

 Tanzu Build Service (TBS) Image objects as well as de

ploying the

 application.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to use by

 default on image objects managed by the supply chain.

3. Create a file named ootb-supply-chain-testing-scanning-values.yaml that specifies the

corresponding values to the properties you want to change. For example:

registry:

 server: REGISTRY-SERVER

Tanzu Application Platform v1.0

VMware, Inc 399

 repository: REGISTRY-REPOSITORY

gitops:

 repository_prefix: git@github.com:vmware-tanzu/

 branch: main

 user_name: supplychain

 user_email: supplychain

 commit_message: supplychain@cluster.local

 ssh_secret: git-ssh

cluster_builder: default

service_account: default

Note: The gitops.repository_prefix field must end with /.

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing-scanning \

 --package-name ootb-supply-chain-testing-scanning.tanzu.vmware.com \

 --version 0.5.1 \

 --namespace tap-install \

 --values-file ootb-supply-chain-testing-scanning-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing-scanning.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing-scanning.tanzu.vmware

.com'

| Creating service account 'ootb-supply-chain-testing-scanning-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-scanning-tap-install-c

luster-role'

| Creating cluster role binding 'ootb-supply-chain-testing-scanning-tap-install

-cluster-rolebinding'

| Creating secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing-sc

anning'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing-scanning' in namespace 'tap-

install'

Out of the Box Templates

In Cartographer, a supply chain is defined as a directed acyclic graph of resources choreographed

by the Cartographer controllers, with the definition of the shape of such resources defined by

templates.

This package contains a series of reusable templates used by:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As a prerequisite of the Out of the Box Supply Chains, you must install this package to have

Tanzu Application Platform v1.0

VMware, Inc 400

Workloads delivered properly.

Install Out of the Box Templates

This document describes how to install Out of the Box Templates from the Tanzu Application

Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Templates. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Templates package is used by all the Out of the Box Supply Chains to provide

the templates that are used by the Supply Chains to create the objects that drive source code all the

way to a deployed application in a cluster.

Prerequisites

Before installing Out of the Box Templates:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Tekton Pipelines.

Install

As this package has no extra configurations to be provided, to install use the following command:

tanzu package install ootb-templates \

 --package-name ootb-templates.tanzu.vmware.com \

 --version 0.5.1 \

 --namespace tap-install

Example output:

\ Installing package 'ootb-templates.tanzu.vmware.com'

| Getting package metadata for 'ootb-templates.tanzu.vmware.com'

| Creating service account 'ootb-templates-tap-install-sa'

| Creating cluster admin role 'ootb-templates-tap-install-cluster-role'

| Creating cluster role binding 'ootb-templates-tap-install-cluster-rolebinding'

| Creating package resource

/ Waiting for 'PackageInstall' reconciliation for 'ootb-templates'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-templates' in namespace 'tap-install'

Supply Chain Security Tools - Scan

Overview

Tanzu Application Platform v1.0

VMware, Inc 401

With Supply Chain Security Tools - Scan, Tanzu customers can build and deploy secure, trusted

software that complies with their corporate security requirements. To enable this, Supply Chain

Security Tools - Scan provides scanning and gatekeeping capabilities that Application and

DevSecOps teams can easily incorporate earlier in their path to production as it is a known industry

best practice for reducing security risk and ensuring more efficient remediation.

Use cases

The following use cases apply to Supply Chain Security Tools - Scan:

Using your scanner as a plug-in, scan source code repositories and images for known

Common Vulnerabilities and Exposures (CVEs) before deploying to a cluster.

Identify CVEs by continuously scanning each new code commit and/or each new image

built.

Analyze scan results against user-defined policies using Open Policy Agent.

Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store

from where they can be queried.

Supply Chain Security Tools - Scan features

The following Supply Chain Security Tools - Scan features make the use cases available:

Kubernetes controllers to run scan jobs.

Custom Resource Definitions (CRDs) for Image and Source Scan.

CRD for a scanner plug-in. Provided example using: Anchore’s Syft and Grype.

CRD for policy enforcement.

Enhanced scanning coverage by analyzing the Cloud Native Buildpack SBoMs provided by

TBS images.

Install Supply Chain Security Tools - Scan

This document describes how to install Supply Chain Security Tools - Scan from the Tanzu

Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. The full

profile includes Supply Chain Security Tools - Scan. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Supply Chain Security Tools - Scan:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Supply Chain Security Tools - Store must be installed on the cluster for scan results to persist.

Supply Chain Security Tools - Scan can be installed without Supply Chain Security Tools -

Store already installed. In this case, skip creating a values file. Once Supply Chain Security

Tanzu Application Platform v1.0

VMware, Inc 402

#install-scst-store

Tools - Store is installed, the Supply Chain Security Tools - Scan values file must be updated.

For usage instructions, see Using the Supply Chain Security Tools - Store.

Install Supply Chain Security Tools - Store CLI to query the Supply Chain Security Tools -

Store for CVE results. See Installing the CLI.

Scanner support

Out-Of-The-Box Scanner Version

Anchore Grype v0.33.0

Let us know if there’s a scanner you’d like us to support.

Install

The installation for Supply Chain Security Tools – Scan involves installing two packages:

Scan controller

Grype scanner

The Scan controller enables you to use a scanner, in this case, the Grype scanner. Ensure both the

Grype scanner and the Scan controller are installed.

To install Supply Chain Security Tools - Scan (Scan controller):

1. List version information for the package by running:

tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-ins

tall

For example:

$ tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-i

nstall

/ Retrieving package versions for scanning.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 scanning.apps.tanzu.vmware.com 1.0.0

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get scanning.apps.tanzu.vmware.com/1.0.0 --values-schem

a -n tap-install

3. Gather the values schema.

4. Install the package with default configuration by running:

tanzu package install scan-controller \

 --package-name scanning.apps.tanzu.vmware.com \

 --version 1.0.0 \

 --namespace tap-install

To install Supply Chain Security Tools - Scan (Grype scanner):

Tanzu Application Platform v1.0

VMware, Inc 403

https://github.com/anchore/grype

1. List version information for the package by running:

tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace

 tap-install

/ Retrieving package versions for grype.scanning.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 grype.scanning.apps.tanzu.vmware.com 1.0.0

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get grype.scanning.apps.tanzu.vmware.com/1.0.0 --values

-schema -n tap-install

For example:

$ tanzu package available get grype.scanning.apps.tanzu.vmware.com/1.0.0 --valu

es-schema -n tap-install

| Retrieving package details for grype.scanning.apps.tanzu.vmware.com/1.0.0...

 KEY DEFAULT TYPE DESCRIPTION

 namespace default string Deployment namespace for the Scan

 Templates

 resources.limits.cpu 1000m <nil> Limits describes the maximum amou

nt of cpu resources allowed.

 resources.requests.cpu 250m <nil> Requests describes the minimum am

ount of cpu resources required.

 resources.requests.memory 128Mi <nil> Requests describes the minimum am

ount of memory resources required.

 targetImagePullSecret <EMPTY> string Reference to the secret used for

pulling images from private registry.

 targetSourceSshSecret <EMPTY> string Reference to the secret containin

g SSH credentials for cloning private repositories.

3. (Optional) You can define the --values-file flag to customize the default configuration.

Create a grype-values.yml file by using the following configuration:

grype:

 namespace: DEV-NAMESPACE

 targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

Note: To use a namespace other than the default namespace, ensure the

namespace exists before you install. If the namespace does not exist, the Grype

scanner installation fails.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the

credentials to pull an image from the registry for scanning. If built images are pushed

to the same registry as the Tanzu Application Platform images, this can reuse the

Tanzu Application Platform v1.0

VMware, Inc 404

tap-registry secret created in step 3 of Add the Tanzu Application Platform

package repository.

TARGET-REPOSITORY-CREDENTIALS-SECRET is the name of the secret that contains the

credentials to pull source code from a private repository for scanning. This field is not

optional if the source code is located in a public repository.

4. VMware recommends using the default values for this package. To change the default

values, see the Scan controller instructions for more information.

5. Install the package by running:

tanzu package install grype-scanner \

 --package-name grype.scanning.apps.tanzu.vmware.com \

 --version 1.0.0 \

 --namespace tap-install

For example:

$ tanzu package install grype-scanner \

 --package-name grype.scanning.apps.tanzu.vmware.com \

 --version 1.0.0 \

 --namespace tap-install

/ Installing package 'grype.scanning.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'grype.scanning.apps.tanzu.vmware.com'

| Creating service account 'grype-scanner-tap-install-sa'

| Creating cluster admin role 'grype-scanner-tap-install-cluster-role'

| Creating cluster role binding 'grype-scanner-tap-install-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

 Added installed package 'grype-scanner' in namespace 'tap-install'

Spec reference

With the Scan Controller and Grype Scanner installed (see Install Supply Chain Security Tools - Scan

from Installing Individual Packages, the following Custom Resource Definitions (CRDs) are now

available:

$ kubectl get crds | grep scanning.apps.tanzu.vmware.com

imagescans.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

scanpolicies.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

scantemplates.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

sourcescans.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

About source and image scans

Both SourceScan (sourcescans.scanning.apps.tanzu.vmware.com) and ImageScan

(imagescans.scanning.apps.tanzu.vmware.com) define what will be scanned, and ScanTemplate

(scantemplates.scanning.apps.tanzu.vmware.com) will define how to run a scan. We have provided

five custom resources (CRs) pre-installed for use. You can either use them as-is or as samples to

create your own.

Tanzu Application Platform v1.0

VMware, Inc 405

#add-package-repositories-and-EULAs

To view the pre-installed Scan Template CRs, run:

kubectl get scantemplates

These are the possible scan templates:

CR Name Use Case

public-source-scan-

template

Clones and scans source code from a public repository.

private-source-scan-

template

Connects with SSH credentials to clone and scan source code from a private repository.

public-image-scan-

template

Pulls and scans images from a public registry.

private-image-scan-

template

Connects with the registry credentials to pull and scan images from a private registry.

blob-source-scan-

template

To be used in a Supply Chain. Gets a .tar.gz available file with wget, uncompresses it, and

scans the source code inside it.

By default, three scan templates are deployed (public-source-scan-template, public-image-scan-

template, and blob-source-scan-template).

If targetImagePullSecret is set in tap-values.yml, private-image-scan-template is also deployed.

If targetSourceSshSecret is set in tap-values.yml, private-source-scan-template is also deployed.

The private scan templates reference secrets created using the Docker server and credentials you

provided, which means they are ready to use immediately.

For more information about the SourceScan and ImageScan CRDs and how to customize your own,

refer to Configuring Code Repositories and Image Artifacts to be Scanned.

About policy enforcement around vulnerabilities found

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine.

ScanPolicy (scanpolicies.scanning.apps.tanzu.vmware.com) allows scan results to be validated for

company policy compliance and can prevent source code from being built or images from being

deployed.

For more information, see Configuring Policy Enforcement using Open Policy Agent (OPA).

Scan samples

This section provides samples on multiple use cases that you can copy to your cluster for testing

purposes.

Running a sample public image scan with compliance check

Running a sample public source scan with compliance check

Running a sample private image scan

Running a sample private source scan

Tanzu Application Platform v1.0

VMware, Inc 406

Running a sample public source scan of a blob/tar file

Sample public image scan with compliance check

Public image scan

The following example performs an image scan on an image in a public registry. This image revision

has 223 known vulnerabilities (CVEs), spanning a number of severities. ImageScan uses the

ScanPolicy to run a compliance check against the CVEs.

The policy in this example is set to only consider Critical severity CVEs as a violation, which returns

21 Critical Severity Vulnerabilities.

Note: This example ScanPolicy is deliberately constructed to showcase the features available and

must not be considered an acceptable base policy.

In this example, the scan does the following (currently):

Finds all 223 of the CVEs.

Ignores any CVEs with severities that are not critical.

Indicates in the Status.Conditions that 21 CVEs have violated policy compliance.

Define the ScanPolicy and ImageScan

Create sample-public-image-scan-with-compliance-check.yaml:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: sample-scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low", "Neglig

ible"

 violatingSeverities := ["Critical"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

Tanzu Application Platform v1.0

VMware, Inc 407

 isCompliant = isSafe(input.currentVulnerability)

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

 name: sample-public-image-scan-with-compliance-check

spec:

 registry:

 image: "nginx:1.16"

 scanTemplate: public-image-scan-template

 scanPolicy: sample-scan-policy

(Optional) Set up a watch

Before deploying, set up a watch in another terminal to view the process:

watch kubectl get scantemplates,scanpolicies,sourcescans,imagescans,pods,jobs

For more information about setting up a watch, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-public-image-scan-with-compliance-check.yaml

View the scan results

kubectl describe imagescan sample-public-image-scan-with-compliance-check

Note: The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy violated

because of 21 CVEs.

For more information about scan status conditions, see Viewing and Understanding Scan Status

Conditions.

Modify the ScanPolicy

To modify the Scan Policy, see Step 5: Sample Public Source Code Scan with Compliance Check.

Clean up

To clean up, run:

kubectl delete -f sample-public-image-scan-with-compliance-check.yaml

Sample public source code scan with compliance check

Public source scan

This example performs a source scan on a public repository. The source revision has 192 known

Tanzu Application Platform v1.0

VMware, Inc 408

Common Vulnerabilities and Exposures (CVEs), spanning several severities. SourceScan uses the

ScanPolicy to run a compliance check against the CVEs.

The example policy is set to only consider Critical severity CVEs as violations, which returns 7

Critical Severity Vulnerabilities.

Note: This example ScanPolicy is deliberately constructed to showcase the features available and

must not be considered an acceptable base policy.

For this example, the scan (at the time of writing):

Finds all 192 of the CVEs.

Ignores any CVEs that have severities that are not critical.

Indicates in the Status.Conditions that 7 CVEs have violated policy compliance.

Define the ScanPolicy and SourceScan

To perform an example source scan on a public repository:

1. Create sample-public-source-scan-with-compliance-check.yaml to define the ScanPolicy

and SourceScan:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: sample-scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low",

"Negligible"

 violatingSeverities := ["Critical"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

Tanzu Application Platform v1.0

VMware, Inc 409

metadata:

 name: sample-public-source-scan-with-compliance-check

spec:

 git:

 url: "https://github.com/houndci/hound.git"

 revision: "5805c650"

 scanTemplate: public-source-scan-template

 scanPolicy: sample-scan-policy

2. (Optional) Before deploying, set up a watch in another terminal to view processing by

running:

watch kubectl get scantemplates,scanpolicies,sourcescans,imagescans,pods,jobs

For more information, refer to Observing and Troubleshooting.

3. Deploy the resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml

4. When the scan completes, view the results by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy

violated because of 7 CVEs. For more information, see Viewing and Understanding Scan

Status Conditions.

5. If the failing CVEs are acceptable or the build needs to be deployed regardless of these

CVEs, the app is patched to remove the vulnerabilities. Update the ignoreCVEs array in the

ScanPolicy to include the CVEs to ignore:

...

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low",

"Negligible"

 violatingSeverities := ["Critical"]

 # Adding the failing CVEs to the ignore array

 ignoreCVEs := ["CVE-2018-14643", "GHSA-f2jv-r9rf-7988", "GHSA-w457-6q6x-cgp

9", "CVE-2021-23369", "CVE-2021-23383", "CVE-2020-15256", "CVE-2021-29940"]

...

6. Delete the SourceScan CR by running:

kubectl delete sourcescan sample-public-source-scan-with-compliance-check

7. Reapply the resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml

Tanzu Application Platform v1.0

VMware, Inc 410

8. Re-describe the SourceScan CR by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check

9. Check that Status.Conditions now includes a Reason: EvaluationPassed and No CVEs were

found that violated the policy. You can update the violatingSeverities array in the

ScanPolicy if desired. For reference, the Grype scan returns the following Severity spread of

vulnerabilities (currently):

Critical: 7

High: 88

Medium: 92

Low: 5

Negligible: 0

UnknownSeverity: 0

10. Clean up by running:

kubectl delete -f sample-public-source-scan-with-compliance-check.yaml

Sample private image scan

This example performs a scan against an image located in a private registry.

Define the resources

Create sample-image-source-scan.yaml and ensure you enter a valid docker config.json value in the

secret:

apiVersion: v1

kind: Secret

metadata:

 name: image-secret

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: <~/.docker/config.json base64 data>

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

 name: sample-image-source-scan

spec:

 registry:

 image: <url of an image in a private registry>

 scanTemplate: private-image-scan-template

(Optional) Set up a watch

Tanzu Application Platform v1.0

VMware, Inc 411

Before deploying, set up a watch in another terminal to see things process:

watch kubectl get scantemplates,scanpolicies,sourcescans,imagescans,pods,jobs

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-image-source-scan.yaml

View the scan results

When the scan completes, run:

kubectl describe imagescan sample-image-source-scan

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job

finished.

For more information, see Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f sample-image-source-scan.yaml

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability

results.

Sample private source scan

Define the resources

Create sample-private-source-scan.yaml and ensure you enter a valid private SSH key value in the

secret:

apiVersion: v1

kind: Secret

metadata:

 name: secret-ssh-auth

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: <insert your PEM-encoded ssh private key>

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

Tanzu Application Platform v1.0

VMware, Inc 412

 name: sample-private-source-scan

spec:

 git:

 url: <git clone via ssh>

 revision: <branch, tag or commit digest>

 knownHosts: |

 <known host>

 <another host etc>

 scanTemplate: private-source-scan-template

(Optional) Set up a watch

Before deploying, set up a watch in another terminal to see things process, which will be quick:

watch kubectl get scantemplates,scanpolicies,sourcescans,imagescans,pods,jobs

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-private-source-scan.yaml

View the scan status

Once the scan has completed, run:

kubectl describe sourcescan sample-private-source-scan

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job

finished.

For more information, see Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f sample-private-source-scan.yaml

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability

results.

Sample public source scan of a blob

This example performs a scan against source code in a .tar.gz file. This can be helpful in a Supply

Chain, where there can be a GitRepository step that handles cloning a repository and outputting the

source code as a compressed archive.

Tanzu Application Platform v1.0

VMware, Inc 413

Define the resources

Create public-blob-source-example.yaml:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanTemplate

metadata:

 name: public-blob-source-scan-template

spec:

 template:

 restartPolicy: Never

 imagePullSecrets:

 - name: scanner-secret-ref

 volumes:

 - name: workspace

 emptyDir: {}

 initContainers:

 - name: repo

 image: harbor-repo.vmware.com/supply_chain_security_tools/grype-templates@sha2

56:6d69a83d24e0ffbe2e527d8d414da7393137f00dd180437930a36251376a7912

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: workspace

 mountPath: /workspace

 readOnly: false

 command: ["/bin/bash"]

 args:

 - "-c"

 - "./source/untar-gitrepository.sh $REPOSITORY /workspace"

 containers:

 - name: scanner

 image: harbor-repo.vmware.com/supply_chain_security_tools/grype-templates@sha2

56:6d69a83d24e0ffbe2e527d8d414da7393137f00dd180437930a36251376a7912

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: workspace

 mountPath: /workspace

 readOnly: false

 command: ["/bin/bash"]

 args: ["-c", "grype dir:/workspace/source -o cyclonedx"]

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

 name: public-blob-source-example

spec:

 blob:

 url: "https://gitlab.com/nina-data/ckan/-/archive/master/ckan-master.tar.gz"

 scanTemplate: public-blob-source-scan-template

(Optional) Set up a watch

Before deploying, set up a watch in another terminal to see things process:

watch kubectl get scantemplates,scanpolicies,sourcescans,imagescans,pods,jobs

Tanzu Application Platform v1.0

VMware, Inc 414

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f public-blob-source-example.yaml

View the scan results

When the scan completes, perform:

kubectl describe sourcescan public-blob-source-example

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job

finished.

For more information, see Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f public-blob-source-example.yaml

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability

results.

Observe Supply Chain Security Tools - Scan

This section outlines observability and troubleshooting methods and issues for using the Supply

Chain Security Tools - Scan components.

Watching in-flight jobs

The scan will run inside the job, which creates a Pod. Both the job and Pod will be cleaned up

automatically after completion. You can set a watch on the job and Pod before applying a new scan

to observe the job deployment.

watch kubectl get scantemplates,scanpolicies,sourcescans,imagescans,pods,jobs

Troubleshooting Supply Chain Security Tools - Scan

If you run into any problems or face non-expected behavior, you can always address the logs to get

more feedback.

kubectl -n scan-link-system logs -f deployment/scan-link-controller-manager -c manager

Tanzu Application Platform v1.0

VMware, Inc 415

Missing target image pull secret

Scanning an image from a private registry requires an image pull secret to exist in the Scan CR’s

namespace and be referenced as grype.targetImagePullSecret in tap-values.yml. See Installing

the Tanzu Application Platform Package and Profiles for more information.

If a private image scan is triggered and the secret is not configured, the scan job will fail with the

error as follows:

Job.batch "scan-${app}-${id}" is invalid: [spec.template.spec.volumes[2].secret.secret

Name: Required value, spec.template.spec.containers[0].volumeMounts[2].name: Not found

: "registry-cred"]

Blob Source Scan is reporting wrong source URL

A Source Scan for a blob artifact can result in reporting in the status.artifact and

status.compliantArtifact for the wrong URL for the resource, passing the remote SSH URL

instead of the cluster local fluxcd one. One symptom of this issue is the image-builder failing with a

ssh:// is an unsupported protocol error message.

You can confirm you’re having this problem by running kubectl describe in the affected resource

and comparing the spec.blob.url value against the status.artifact.blob.url. The problem occurs

if they are different URLs. For example:

kubectl describe sourcescan SOURCE-SCAN-NAME -n DEV-NAMESPACE

Compare the output:

...

spec:

 blob:

 ...

 url: http://source-controller.flux-system.svc.cluster.local./gitrepository/sample/

repo/8d4cea98b0fa9e0112d58414099d0229f190f7f1.tar.gz

 ...

status:

 artifact:

 blob:

 ...

 url: ssh://git@github.com:sample/repo.git

 compliantArtifact:

 blob:

 ...

 url: ssh://git@github.com:sample/repo.git

Workaround: There are a few workarounds you can try to fix this issue:

1. This problem is resolved in Supply Chain Security Tools - Scan v1.2.0. Upgrade your Supply

Chain Security Tools - Scan and Grype Scanner deployment to version v1.2.0 or later.

2. Configure your SourceScan or Workload to connect to the repository by using HTTPS

instead of using SSH.

3. Edit the FluxCD GitRepository resource to not include the .git directory.

Tanzu Application Platform v1.0

VMware, Inc 416

Additional resources

Configure Code Repositories and Image Artifacts to be Scanned

Code and Image Compliance Policy Enforcement Using Open Policy Agent (OPA)

How to Create a ScanTemplate

Viewing and Understanding Scan Status Conditions

Configure code repositories and image artifacts to be
scanned

Prerequisite

Both the source and image scans require a ScanTemplate to be defined. Run kubectl get

scantemplates for the ScanTemplates provided with the scanner installation. These can be

referenced, or see How to create a ScanTemplate.

Deploy scan custom resources

The scan controller defines two custom resources to create scanning jobs:

SourceScan

ImageScan

SourceScan

The SourceScan custom resource helps you define and trigger a scan for a given repository. You can

deploy SourceScan with source code existing in a public repository or a private one:

1. Create the SourceScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

 # set the name of the source scan CR

 name: sample-source-scan

spec:

 # At least one of these fields (blob or git) must be defined.

 blob:

 # location to a file with the source code compressed (supported files: .tar

.gz)

 url:

 git:

 # A multiline string defining the known hosts that are going to be used for

 the SSH client on the container

 knownHosts:

 # Branch, tag, or commit digest

 revision:

 # The name of the kubernetes secret containing the private SSH key informat

Tanzu Application Platform v1.0

VMware, Inc 417

ion.

 sshKeySecret:

 # A string containing the repository URL.

 url:

 # The username needed to SSH connection. Default value is “git”

 username:

 # A string defining the name of an existing ScanTemplate custom resource. See

 "How To Create a ScanTemplate" section.

 scanTemplate: my-scan-template

 # A string defining the name of an existing ScanPolicy custom resource. See

"Enforcement Policies (OPA)" section.

 scanPolicy: my-scan-policy

2. Deploy the SourceScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yml -n <desired_na

mespace>

After the scanning completes, the following fields appear in the custom resource and are

filled by the scanner:

These fields are populated from the source scan results

status:

 # The source code information as provided in the CycloneDX `bom>metadata>comp

onent>*` fields

 artifact:

 blob:

 url:

 git:

 url:

 revision:

 # An array populated with information about the scanning status

 # and the policy validation. These conditions might change in the lifecycle

 # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

 conditions: []

 # The URL of the vulnerability scan results in the Metadata Store integration

.

 # Only available when the integration is configured.

 metadataUrl:

 # When the CRD is updated to point at new revisions, this lets you know

 # if the status reflects the latest one or not

 observedGeneration: 1

 observedPolicyGeneration: 1

 observedTemplateGeneration: 1

 # The latest datetime when the scanning was successfully finished.

 scannedAt:

 # Information about the scanner that was used for the latest image scan.

 # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

 scannedBy:

 scanner:

Tanzu Application Platform v1.0

VMware, Inc 418

 # The name of the scanner that was used.

 name: my-image-scanner

 # The name of the scanner's development company or team

 vendor: my-image-scanner-provider

 # The version of the scanner used.

 version: 1.0.0

ImageScan

The ImageScan custom resource helps you define and trigger a scan for a given image. You can

deploy ImageScan with an image existing in a public or private registry:

1. Create the ImageScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

 # set the name of the image scan CR

 name: sample-image-scan

spec:

 registry:

 # Required. A string containing the image name can additionally add its tag

 or its digest

 image: nginx:1.16

 # A string containing the secret needed to pull the image from a private re

gistry.

 # The secret needs to be deployed in the same namespace as the ImageScan

 imagePullSecret: my-image-pull-secret

 # A string defining the name of an existing ScanTemplate custom resource. See

 "How To Create a ScanTemplate" section.

 scanTemplate: my-scan-template

 # A string defining the name of an existing ScanPolicy custom resource. See "

Enforcement Policies (OPA)" section.

 scanPolicy: my-scan-policy

2. Deploy the ImageScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yml -n <desired_na

mespace>

After the scanning completes, the following fields appear in the custom resource and are

filled by the scanner:

 # These fields are populated from the image scan results

status:

 artifact:

 registry:

 # The image name with its digest as provided in the CycloneDX `bom>metada

ta>component>*` fields

 image:

Tanzu Application Platform v1.0

VMware, Inc 419

 imagePullSecret:

 # An array that is populated with information about the scanning status

 # and the policy validation. These conditions might change in the lifecycle

 # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

 conditions: []

 # The URL of the vulnerability scan results in the Metadata Store integration

.

 # Only available when the integration is configured.

 metadataUrl:

 # When the CRD is updated to point at new revisions, this lets you know

 # whether the status reflects the latest one

 observedGeneration: 1

 observedPolicyGeneration: 1

 observedTemplateGeneration: 1

 # The latest datetime when the scanning was successfully finished.

 scannedAt:

 # Information about the scanner used for the latest image scan.

 # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

 scannedBy:

 scanner:

 # The name of the scanner that was used.

 name: my-image-scanner

 # The name of the scanner's development company or team

 vendor: my-image-scanner-provider

 # The version of the scanner used.

 version: 1.0.0

Enforce compliance policy using Open Policy Agent

Writing a policy template

The Scan Policy custom resource (CR) allows you to define a Rego file for policy enforcement that

you can reuse across image scan and source scan CRs.

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine with

Rego files. This allows scan results to be validated for company policy compliance and can prevent

source code from being built or images from being deployed.

Rego file contract

To define a Rego file for an image scan or source scan, you must comply with the requirements

defined for every Rego file for the policy verification to work properly.

Package policies: The Rego file must define a package in its body called policies, because

the system looks for this package to verify the scan’s results compliance.

Input match: The Rego file evaluates one vulnerability match at a time, iterating as many

Tanzu Application Platform v1.0

VMware, Inc 420

times as different vulnerabilities are found in the scan. The match structure can be accessed

in the input.currentVulnerability object inside the Rego file and has the CycloneDX

format.

isCompliant rule: The Rego file must define inside its body an isCompliant rule. This must

be a Boolean type containing the result whether or not the vulnerability violates the security

policy. If isCompliant is true, the vulnerability is allowed in the Source or Image scan; false

is considered otherwise. Any scan that finds at least one vulnerability that evaluates to

isCompliant=false makes the PolicySucceeded condition set to false.

Define a Rego file for policy enforcement

Follow these steps to define a Rego file for policy enforcement that you can reuse across image scan

and source scan CRs:

1. Create a scan policy with a Rego file. Here is a sample scan policy resource:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scanpolicy-sample

spec:

 # A multiline string defining a valid Rego file for policy validation

 regoFile: |

 # Define the package policies

 package policies

 # Give default value to isCompliant to be returned

 # if no change to `true` is applied

 default isCompliant = false

 # Not fail on any CVE with this severities in it

 ignoreSeverities := ["Low"]

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 # Define the rule structure for evaluating CVEs

 isCompliant {

 # Check if the severity level in any of the ratings associated

 # with the current CVEs is present in the ignoreSeverities

 # array.

 ignore := contains(ignoreSeverities, input.currentVulnerability.Ratings.R

ating[_].Severity)

 # If the severity level is in the array, isCompliant will be true

 # since `ignore` is. isCompliant will have the default value if `ignore`

is false.

 ignore

 }

2. Deploy the scan policy to the cluster by running:

kubectl apply -f <path_to_scan_policy>/<scan_policy_filename>.yml -n

<desired_namespace>

Tanzu Application Platform v1.0

VMware, Inc 421

https://cyclonedx.org/docs/1.3/

Create a ScanTemplate

The ScanTemplate custom resource (CR) is where you define the Pod with the scanner image that

you use for vulnerability scanning. There’s a default scanner image you can use out-of-the-box.

Structure

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanTemplate

spec:

 # Required. This field must specify a valid pod.spec.

 # This has the instructions for the scan to be successfully executed.

 # See Pod Requirements section below for more details

 template:

Pod requirements

You can define any valid Kubernetes Pod into the ScanTemplate CR if you follow these requirements:

1. Scanner Container

The Pod scan must define a container named scanner to hold the scanning result.

stdout Logs

The scan result must be printed in the stdout of the scanner container having a valid

CycloneDX XML format.

2. XML Extra Fields

Component Name

For the scan controller to keep track of your report, provide the name of the scanned artifact

in the bom>metadata>component>name field of the XML generated as an output. Use the url

for a source repository. Use the image name for an image scan. Component Digest

For the Scan Controller to keep track of your report, provide the digest or most unique

identifier of your artifact into the bom>metadata>component>version field of the XML

generated as an output.

Scanner Name

Provide the name of the scanner you are using in the bom>metadata>tools>tool>name field of

the XML generated as an output.

Scanner Vendor

Provide the name of the vendor from the scanner that you are using in the

bom>metadata>tools>tool>vendor field of the XML generated as an output.

Scanner Version

Provide the version of the scanner you are using in bom>metadata>tools>tool>version field

of the XML generated as an output.

If the scanner Pod is not defined or the logs retrieved from the stdout do not have a valid format,

the scanning condition fails.

Best practices

1. SourceScan

Tanzu Application Platform v1.0

VMware, Inc 422

https://kubernetes.io/docs/concepts/workloads/pods/
https://cyclonedx.org/docs/1.3/

Init Container

If you’re doing a SourceScan, we recommend defining the cloning of the repository

in an init container named repo. Any output in stdout in this init container is

prompted out if an error occurs, so you can have more context about what failed

inside the job.

View scan status conditions

Viewing scan status

You can view the scan status using kubectl describe on a SourceScan or ImageScan. You can see

information about the scan status under the Status field for each scan CR.

Understanding conditions

The Status.Conditions array is populated with the scan status information during and after scanning

execution, and the policy validation (if defined for the scan) after the results are available.

Condition types for the scans

Scanning

The Condition with type Scanning indicates the execution of the scanning job. The Status field

indicates whether the scan is still running or has already finished (i.e., if Status: True, the scan job is

still running; if Status: False, the scan is done).

The Reason field is JobStarted while the scanning is running and JobFinished when it is done.

The Message field can either be The scan job is running or The scan job terminated depending

on the current Status and Reason.

Succeeded

The Condition with type Succeeded indicates the scanning job result. The Status field indicates

whether the scan finished successfully or encountered an error (i.e., the status is Status: True if it

completed successfully or Status: False otherwise).

The Reason field is JobFinished if the scanning was successful or Error if otherwise.

The Message and Error fields have more information about the last seen status of the scan job.

SendingResults

The condition with type SendingResults indicates sending the scan results to the metadata store. In

addition to a successful process of sending the results, the condition may also indicate that the

metadata store integration has not been configured or that there was an error sending. An error

would usually be a misconfigured metadata store url or that the metadata store is inaccessible. Check

the installation steps to ensure the configuration is correct regarding secrets being set within the

scan-link-system namespace.

Tanzu Application Platform v1.0

VMware, Inc 423

PolicySucceeded

The Condition with type PolicySucceeded indicates the compliance of the scanning results against

the defined policies (see Code Compliance Policy Enforcement using Open Policy Agent (OPA). The

Status field indicates whether the results are compliant or not (Status: True or Status: False

respectively) or Status: Unknown in case an error occurred during the policy verification.

The Reason field is EvaluationPassed if the scan complies with the defined policies. The Reason field

is EvaluationFailed if the scan is not compliant, or Error if something went wrong.

The Message and Error fields are populated with An error has occurred and an error message if

something went wrong during policy verification. Otherwise, the Message field displays No CVEs were

found that violated the policy if there are no non-compliant vulnerabilities found or Policy

violated because of X CVEs indicating the count of unique vulnerabilities found.

Understanding CVECount

The status.CVECount is populated with the number of CVEs in each category (CRITICAL, HIGH,

MEDIUM, LOW, UNKNOWN) and the total (CVETOTAL).

Note: You can also view scan CVE summary in print columns with kubectl get on a SourceScan or

ImageScan.

Understanding MetadataURL

The status.metadataURL is populated with the url of the vulnerability scan results in the metadata

store integration. This is only available when the integration is configured.

Understanding Phase

The status.phase field is populated with the current phase of the scan. The phases are: Pending,

Scanning, Completed, Failed, and Error.

Pending: initial phase of the scan.

Scanning: execution of the scan job is running.

Completed: scan completed and no CVEs were found that violated the scanpolicy.

Failed: scan completed but CVEs were found that violated the scan policy.

Error: indication of an error (e.g., an invalid scantemplate or scanpolicy).

Note: The PHASE print column also shows this with kubectl get on a SourceScan or ImageScan.

Understanding ScannedBy

The status.scannedBy field is populated with the name, vendor, and scanner version that generates

the security assessment report.

Understanding ScannedAt

Tanzu Application Platform v1.0

VMware, Inc 424

The status.scannedAt field is populated with the latest date when the scanning was successfully

finished.

Supply Chain Security Tools for VMware Tanzu - Sign

Supply Chain Security Tools - Sign provides an admission WebHook that:

Verifies signatures on container images used by Kubernetes resources.

Enforces policy by allowing or denying container images from running based on

configuration.

Adds metadata to verified resources according to their verification status.

It intercepts all resources that create Pods as part of their lifecycle:

Pods,

ReplicaSets

Deployments

Jobs

StatefulSets

DaemonSets

CronJobs.

This component uses cosign as its backend for signature verification and is compatible only with

cosign signatures. When cosign signs an image, it generates a signature in an OCI-compliant format

and pushes it to the same registry where the image is stored. The signature is identified by a tag in

the format sha256-<image-digest>.sig, where <image-digest> is the digest of the image that this

signature belongs to. The WebHook needs credentials to access this artifact when hosted in a

registry protected by authentication.

By default, once installed, this component does not include any policy resources and does not

enforce any policy. The operator must create a ClusterImagePolicy resource in the cluster before

the WebHook can perform any verifications. This ClusterImagePolicy resource contains all image

patterns the operator wants to verify, and their corresponding cosign public keys.

Typically, the WebHook gets credentials from running resources and their service accounts to

authenticate against private registries at admission time. There are other mechanisms that the

WebHook uses for finding credentials. For more information about providing credentials, see

Providing Credentials for the WebHook.

Install Supply Chain Security Tools - Sign

Supply Chain Security Tools - Sign is released as an individual Tanzu Application Platform

component and is not included in either the full or light profile.

Prerequisites

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Tanzu Application Platform v1.0

VMware, Inc 425

https://github.com/sigstore/cosign#cosign

During configuration for this component, you are asked to provide a cosign public key to use

to validate signed images. An example cosign public key is provided that can validate an

image from the public cosign registry. If you want to provide your own key and images,

follow the cosign quick start guide in GitHub to generate your own keys and sign an image.

Caution: This component rejects pods if the webhook fails or is incorrectly configured. If the

webhook is preventing the cluster from functioning, see Supply Chain Security Tools - Sign Known

Issues in the Tanzu Application Plantform release notes for recovery steps.

Install

Note: v1alpha1 api version of the ClusterImagePolicy is no longer supported as the group name has

been renamed from signing.run.tanzu.vmware.com to signing.apps.tanzu.vmware.com.

To install Supply Chain Security Tools - Sign:

1. List version information for the package by running:

tanzu package available list image-policy-webhook.signing.apps.tanzu.vmware.com

 --namespace tap-install

For example:

$ tanzu package available list image-policy-webhook.signing.apps.tanzu.vmware.c

om --namespace tap-install

- Retrieving package versions for image-policy-webhook.signing.apps.tanzu.vmwar

e.com...

 NAME VERSION RELEASED-A

T

 image-policy-webhook.signing.apps.tanzu.vmware.com 1.0.2 2022-02-24

 09:00:00 -0500 EST

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get image-policy-webhook.signing.apps.tanzu.vmware.com/

1.0.2 --values-schema --namespace tap-install

For example:

$ tanzu package available get image-policy-webhook.signing.apps.tanzu.vmware.co

m/1.0.2 --values-schema --namespace tap-install

| Retrieving package details for image-policy-webhook.signing.apps.tanzu.vmware

.com/1.0.2...

 KEY DEFAULT TYPE DESCRIPTION

 allow_unmatched_images false boolean Feature flag for enabling admission

 of images that do not match

 any patterns in the image policy co

nfiguration.

 Set to true to allow images that do

 not match any patterns into

 the cluster with a warning.

 quota.pod_number 5 string The maximum number of Image Policy

Webhook Pods allowed to be

 created with the priority class sys

Tanzu Application Platform v1.0

VMware, Inc 426

https://github.com/sigstore/cosign#quick-start

tem-cluster-critical. This

 value must be enclosed in quotes ("

"). If this value is not

 specified then the default value of

 5 is used.

 replicas 1 integer The number of replicas to be create

d for the Image Policy

 Webhook. This value must not be enc

losed in quotes. If this

 value is not specified then the def

ault value of 1 is used.

3. Create a file named scst-sign-values.yaml and add the settings you want to customize:

allow_unmatched_images:

For non-production environments: To warn the user when images do not

match any pattern in the policy, but still allow them into the cluster, set

allow_unmatched_images to true.

allow_unmatched_images: true

For production environments: To deny images that match no patterns in the

policy set allow_unmatched_images to false.

allow_unmatched_images: false

quota.pod_number: This setting is the maximum number of pods that are allowed in

the image-policy-system namespace with the system-cluster-critical priority

class. This priority class is added to the pods to prevent preemption of this

component’s pods in case of node pressure.

The default value for this property is 5. If your use case requires more than 5 pods

be deployed of this component, adjust this value to allow the number of replicas you

intend to deploy.

replicas: These settings controls the default amount of replicas that will get

deployed by this component. The default value is 1.

For production environments: VMware recommends you increase the

Note

: For a quicker installation process VMware recommends that

you set allow_unmatched_images to true initially. This setting

means that the webhook allows unsigned images to run if the

image does not match any pattern in the policy. To promote

to a production environment VMware recommends that you

re-install the webhook with allow_unmatched_images set to

false.

Tanzu Application Platform v1.0

VMware, Inc 427

number of replicas to 3 to ensure availability of the component for better

admission performance.

4. Install the package:

tanzu package install image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.0.2 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

For example:

$ tanzu package install image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.0.2 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

| Installing package 'image-policy-webhook.signing.apps.tanzu.vmware.com'

| Getting namespace 'default'

| Getting package metadata for 'image-policy-webhook.signing.apps.tanzu.vmware.

com'

| Creating service account 'image-policy-webhook-default-sa'

| Creating cluster admin role 'image-policy-webhook-default-cluster-role'

| Creating cluster role binding 'image-policy-webhook-default-cluster-rolebindi

ng'

| Creating secret 'image-policy-webhook-default-values'

/ Creating package resource

- Package install status: Reconciling

Added installed package 'image-policy-webhook' in namespace 'tap-install'

After you run the commands above your signing package will be running.

Note: This component requires extra configuration steps to work properly. See Configuring

Supply Chain Security Tools - Sign for instructions on how to apply the required

configuration.

Configure

The WebHook deployed by Supply Chain Security Tools - Sign requires extra input from the

operator before it starts enforcing policies.

To configure your installed component properly, see Configuring Supply Chains Security Tools -

Sign.

Known issues

See Supply Chain Security Tools - Sign Known Issues.

Configuring Supply Chain Security Tools - Sign

This component requires extra configuration steps to start verifying your container images properly.

Tanzu Application Platform v1.0

VMware, Inc 428

Create a ClusterImagePolicy resource

The cluster image policy is a custom resource containing the following properties:

spec.verification.exclude.resources.namespaces: A list of namespaces where this policy

is not enforced.

spec.verification.keys: A list of public keys complementary to the private keys that were

used to sign the images.

spec.verification.images[].namePattern: Image name patterns that the policy enforces.

Each image name pattern maps to the required public keys. (Optional) Use a secret to

authenticate the private registry where images and signatures matching a name pattern are

stored.

The following is an example ClusterImagePolicy:

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources:

 namespaces:

 - kube-system

 keys:

 - name: first-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 ...

 -----END PUBLIC KEY-----

 images:

 - namePattern: registry.example.org/myproject/*

 keys:

 - name: first-key

 - namePattern: registry.example.org/authproject/*

 secretRef:

 name: secret-name

 namespace: namespace-name

 keys:

 - name: first-key

The name for the ClusterImagePolicy resource must be image-policy.

Add any namespaces that run container images that are not signed in the

spec.verification.exclude.resources.namespaces section, such as the kube-system namespace.

If no ClusterImagePolicy resource is created all images are admitted into the cluster with the

following warning:

Warning: clusterimagepolicies.signing.apps.tanzu.vmware.com "image-policy" not found.

Image policy enforcement was not applied.

The patterns are evaluated using the any of operator to admit container images. For each Pod, the

Tanzu Application Platform v1.0

VMware, Inc 429

image policy WebHook iterates over the list of containers and init containers. The Pod is verified

when there is at least one key specified in spec.verification.images[].keys[] for each container

image that matches spec.verification.images[].namePattern.

For a simpler installation process in a non-production environment, use the manifest below to create

the ClusterImagePolicy resource. This manifest includes a cosign public key which signed the public

cosign v1.2.1 image. The cosign public key validates the specified cosign images. Container images

running in system namespaces are currently not signed. You must configure the image policy

WebHook to allow these unsigned images by adding system namespaces to the

spec.verification.exclude.resources.namespaces section.

cat <<EOF | kubectl apply -f -

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources:

 namespaces:

 - kube-system

 keys:

 - name: cosign-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

 IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

 -----END PUBLIC KEY-----

 images:

 - namePattern: gcr.io/projectsigstore/cosign*

 keys:

 - name: cosign-key

EOF

Provide credentials for the package

There are four ways the package reads credentials to authenticate to registries protected by

authentication, in order:

1. Reading imagePullSecrets directly from the resource being admitted.

2. Reading imagePullSecrets from the service account the resource is running as.

3. Reading a secretRef from the ClusterImagePolicy resource applied to the cluster for the

container image name pattern that matches the container being admitted.

4. Reading imagePullSecrets from the image-policy-registry-credentials service account in

the image-policy-system namespace.

Note: Authentication fails in the following scenario:

A valid credential is specified in the ClusterImagePolicy secretRef field, or in the image-

policy-registry-credentials service account.

An invalid credential is specified in the imagePullSecrets of the resource or in the service

Tanzu Application Platform v1.0

VMware, Inc 430

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#arranging-for-imagepullsecrets-to-be-automatically-attached

account the resource runs as.

To prevent this issue, choose a single authentication method to validate signatures for your

resources.

If you use containerd-configured registry credentials or another mechanism that causes your

resources and service accounts to not include an imagePullSecrets field, you must provide

credentials to the WebHook using one of the following mechanisms:

1. Create secret resources in any namespace of your preference that grants read access to the

location of your container images and signatures and include it as part of your policy

configuration.

2. Create secret resources and include them in the image-policy-registry-credentials

service account. The service account and the secrets must be created in the image-policy-

system namespace.

Provide secrets for authentication in your policy

You can provide secrets for authentication as part of the name pattern policy configuration provided

your use case meets the following conditions:

Your images and signatures reside in a registry protected by authentication.

You do not have imagePullSecrets configured in your runnable resources or in the

ServiceAccounts that your runnable resources use.

You want this WebHook to check these container images.

See the following example:

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources:

 namespaces:

 - kube-system

 keys:

 - name: first-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 ...

 -----END PUBLIC KEY-----

 images:

 - namePattern: registry.example.org/myproject/*

 # Your secret reference must be included here

 secretRef:

 name: your-secret

 namespace: your-namespace

 keys:

 - name: first-key

Tanzu Application Platform v1.0

VMware, Inc 431

https://github.com/containerd/containerd/blob/main/docs/cri/registry.md#configure-registry-credentials

VMware suggests the use of a set of credentials with the least amount of privilege that allows reading

the signature stored in your registry.

Provide secrets for authentication in the image-policy-registry-
credentials service account

If you prefer to provide your secrets in the image-policy-registry-credentials service account,

follow these steps:

1. Create the required secrets in the image-policy-system namespace (once per secret):

kubectl create secret docker-registry SECRET-1 \

 --namespace image-policy-system \

 --docker-server=<server> \

 --docker-username=<username> \

 --docker-password=<password>

2. Create the image-policy-registry-credentials in the image-policy-system namespace

and add the secret names from step 1 to the imagePullSecrets section:

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: image-policy-registry-credentials

 namespace: image-policy-system

imagePullSecrets:

- name: SECRET-1

EOF

Where SECRET-1 is a secret that allows the WebHook to pull signatures from the private

registry.

Add additional secrets to imagePullSecrets as required.

Image name patterns

The container image names can be matched exactly or use a wildcard (*) that matches any number

of characters.

Example name patterns:

Description Pattern Matches Image Name

Exact Match registry.example.org/myproject/my-

image:mytag

registry.example.org/myproject/my-image:mytag

Note

: You may need to grant the service account image-policy-controller-manager in

the namespace image-policy-system RBAC permissions for the verbs get and list

in the namespace that hosts your secrets.

Tanzu Application Platform v1.0

VMware, Inc 432

Description Pattern Matches Image Name

Any Tag registry.example.org/myproject/my-

image

registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/my-image:other-tag

Any Tag registry.example.org/myproject/my-

image:*

registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/my-image:other-tag

Any Image and

Tag

registry.example.org/myproject/* registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/anotherimage:anoth

ertag

Any Project registry.example.org/*/my-image:mytag registry.example.org/myproject/my-image:mytag

registry.example.org/anotherproject/my-

image:mytag

Any Project and

Tag

registry.example.org/*/my-image registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/my-

image:anothertag

Registry registry.example.org/* registry.example.org/myproject/my-image:mytag

registry.example.org/anotherproject/anotherimage:a

nothertag

Any Subdomain *.example.org/* my-registry.example.org/myproject/my-

image:mytag

registry.example.org/anotherproject/anotherimage:a

nothertag

Anything * my-registry.example.org/myproject/my-

image:mytag

registry.example.org/anotherproject/anotherimage:a

nothertag

registry.io/project/image:tag

Verify your configuration

If you are using the suggested key cosign-key shown in the previous section then you can run the

following commands to check your configuration:

1. Verify that a signed image, validated with a configured public key, launches. Run:

kubectl run cosign \

 --image=gcr.io/projectsigstore/cosign:v1.2.1 \

 --restart=Never \

 --command -- sleep 900

For example:

Note

: Providing a name pattern without specifying a tag acts as a wildcard for the tag even

if other wildcards are specified. The pattern registry.example.org/myproject/my-

image is the same as registry.example.org/myproject/my-image:*. In the same

way, *.example.org/project/image is equivalent to *.example.org/project/image:*

Tanzu Application Platform v1.0

VMware, Inc 433

$ kubectl run cosign \

 --image=gcr.io/projectsigstore/cosign:v1.2.1 \

 --restart=Never \

 --command -- sleep 900

pod/cosign created

2. Verify that an unsigned image does not launch. Run:

kubectl run bb --image=busybox --restart=Never

For example:

$ kubectl run bb --image=busybox --restart=Never

Warning: busybox did not match any image policies. Container will be created as

 AllowUnmatchedImages flag is true.

pod/bb created

3. Verify that an image signed with a key that does not match the configured public key will not

launch. Run:

kubectl run cosign-fail \

 --image=gcr.io/projectsigstore/cosign:v0.3.0 \

 --command -- sleep 900

For example:

$ kubectl run cosign-fail \

 --image=gcr.io/projectsigstore/cosign:v0.3.0 \

 --command -- sleep 900

Error from server (The image: gcr.io/projectsigstore/cosign:v0.3.0 is not signe

d.): admission webhook "image-policy-webhook.signing.apps.tanzu.com" denied the

 request: The image: gcr.io/projectsigstore/cosign:v0.3.0 is not signed.

Logs messages and reasons

The possible log messages the webhook emits and their explanations are summarized in the

following table:

Log Message Explanation

clusterimagepolicies.signing.apps.tanzu.vmware.com

“image-policy” not found. Image policy enforcement

was not applied.

The Image Policy was not created in the cluster and the

webhook did not check any container images for

signatures.

Tanzu Application Platform v1.0

VMware, Inc 434

Log Message Explanation

<namespace> is excluded. The ImagePolicy will not

be applied. An image policy is present in the cluster.

The namespace is present in the

verification.exclude.resources.namespaces

property of the policy.

Any container images trying to get created in

this namespace will not be checked for

signatures.

Could not verify against any image policies for

container image: <container image>. An image policy is present in the cluster.

The AllowUnMatchedImages flag is set to false

or is absent.

The namespace is not excluded.

Image of the container being installed does not

match any pattern present in the policy and

was rejected by the webhook.

<container image> did not match any image

policies. Container will be created as

AllowUnmatchedImages flag is true.
An image policy is present in the cluster.

The AllowUnMatchedImages flag is set to true.

The namespace you are installing your resource

in is not excluded.

Image of the container being installed does not

match any pattern present in the policy and

was allowed to be created.

failed to find signature for image.

An image policy is present in the cluster.

The namespace you are installing your resource

in is not excluded.

Image of the container being installed matches

a pattern in the policy.

The webhook was not able to verify the

signature.

Tanzu Application Platform v1.0

VMware, Inc 435

Log Message Explanation

The image: <container image> is not signed.

An image policy is present in the cluster.

The namespace you are installing your resource

in is not excluded.

Image of the container being installed matches

a pattern in the policy.

The image is not signed.

Supply Chain Security Tools for Tanzu – Store

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database and allows

you to query for image, source, package, and vulnerability relationships. It integrates with Supply

Chain Security Tools - Scan to automatically store the resulting source and image vulnerability

reports. It accepts any CycloneDX input and outputs in both human-readable and machine-readable

formats, including JSON, text, and CycloneDX.

The following is a four-minute demo of scanning an image for CVEs and querying the database for

CVEs and dependencies.

Tanzu Application Platform - Adding And Q…

Supply Chain Security Tools - Store has three components:

API details

CLI installation (Insight)

Postgres database

See Additional resources for more information about Supply Chain Security Tools for Tanzu – Store.

Install Supply Chain Security Tools - Store

This document describes how to install Supply Chain Security Tools - Store from the Tanzu

Application Platform package repository.

Tanzu Application Platform v1.0

VMware, Inc 436

https://www.youtube.com/channel/UCBeaxacdtOdZ18elkA6zAkQ?feature=emb_ch_name_ex
https://www.youtube.com/watch?v=UoWSsJBjFgc

Note: Use the instructions on this page if you do not want to use a profile to install packages. The full

profile includes Supply Chain Security Tools - Store. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Supply Chain Security Tools - Store:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager on the cluster. See Install Prerequisites.

See Deployment Details and Configuration to review what resources will be deployed. For

more information, see the overview.

Install

To install Supply Chain Security Tools - Store:

1. The deployment assumes the user has set up the Kubernetes cluster to provision persistent

volumes on demand. Make sure a default storage class is available in your cluster. Check

whether default storage class is set in your cluster by running:

kubectl get storageClass

For example:

$ kubectl get storageClass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE

 ALLOWVOLUMEEXPANSION AGE

standard (default) rancher.io/local-path Delete WaitForFirstConsum

er false 7s

2. List version information for the package by running:

tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace

 tap-install

- Retrieving package versions for metadata-store.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 metadata-store.apps.tanzu.vmware.com 1.0.2

3. (Optional) List out all the available deployment configuration options:

tanzu package available get metadata-store.apps.tanzu.vmware.com/1.0.2 --values

-schema -n tap-install

For example:

Tanzu Application Platform v1.0

VMware, Inc 437

#install-prereqs

$ tanzu package available get metadata-store.apps.tanzu.vmware.com/1.0.2 --valu

es-schema -n tap-install

| Retrieving package details for metadata-store.apps.tanzu.vmware.com/1.0.2...

 KEY DEFAULT TYPE DESCRIPTION

 app_service_type LoadBalancer string The type of s

ervice to use for the metadata app service. This can be set to 'NodePort' or 'L

oadBalancer'.

 auth_proxy_host 0.0.0.0 string The binding i

p address of the kube-rbac-proxy sidecar

 db_host metadata-store-db string The address t

o the postgres database host that the metdata-store app uses to connect. The de

fault is set to metadata-store-db which is the postgres service name. Changing

this does not change the postgres service name

 db_replicas 1 integer The number of

 replicas for the metadata-store-db

 db_sslmode verify-full string Determines th

e security connection between API server and Postgres database. This can be set

 to 'verify-ca' or 'verify-full'

 pg_limit_memory 4Gi string Memory limit

for postgres container in metadata-store-db deployment

 app_req_cpu 100m string CPU request f

or metadata-store-app container

 app_limit_memory 512Mi string Memory limit

for metadata-store-app container

 app_req_memory 128Mi string Memory reques

t for metadata-store-app container

 auth_proxy_port 8443 integer The external

port address of the of the kube-rbac-proxy sidecar

 db_name metadata-store string The name of t

he database to use.

 db_port 5432 string The database

port to use. This is the port to use when connecting to the database pod.

 api_port 9443 integer The internal

port for the metadata app api endpoint. This will be used by the kube-rbac-prox

y sidecar.

 app_limit_cpu 250m string CPU limit for

 metadata-store-app container

 app_replicas 1 integer The number of

 replicas for the metadata-store-app

 db_user metadata-store-user string The database

user to create and use for updating and querying. The metadata postgres section

 create this user. The metadata api server uses this username to connect to the

 database.

 pg_req_memory 1Gi string Memory reques

t for postgres container in metadata-store-db deployment

 priority_class_name string If specified,

 this value is the name of the desired PriorityClass for the metadata-store-db

deployment

 use_cert_manager true string Cert manager

is required to be installed to use this flag. When true, this creates certifica

tes object to be signed by cert manager for the API server and Postgres databas

e. If false, the certificate object have to be provided by the user.

 api_host localhost string The internal

hostname for the metadata api endpoint. This will be used by the kube-rbac-prox

y sidecar.

 db_password <auto-generated> string The database

user password. If not specified, the password will be auto-generated.

 storage_class_name string The storage c

lass name of the persistent volume used by Postgres database for storing data.

Tanzu Application Platform v1.0

VMware, Inc 438

The default value will use the default class name defined on the cluster.

 database_request_storage 10Gi string The storage r

equested of the persistent volume used by Postgres database for storing data.

 add_default_rw_service_account true string Adds a read-w

rite service account which can be used to obtain access token to use metadata-s

tore CLI

 log_level default string Sets the log

level. This can be set to "minimum", "less", "default", "more", "debug" or "tra

ce". "minimum" currently does not output logs. "less" outputs log configuration

 options only. "default" and "more" outputs API endpoint access information. "d

ebug" and "trace" outputs extended API endpoint access information(such as body

 payload) and other debug information.

4. (Optional) Modify one of the deployment configurations by creating a configuration YAML

with the custom configuration values you want. For example, if your environment does not

support LoadBalancer, and you want to use NodePort, then create a metadata-store-

values.yaml and configure the app_service_type property.

app_service_type: "NodePort"

See Deployment Details and Configuration for more detailed descriptions of configuration

options.

5. Install the package by running:

tanzu package install metadata-store \

 --package-name metadata-store.apps.tanzu.vmware.com \

 --version 1.0.2 \

 --namespace tap-install \

 --values-file metadata-store-values.yaml

The flag --values-file is optional and used only if you want to customize the deployment

configuration. For example:

$ tanzu package install metadata-store \

 --package-name metadata-store.apps.tanzu.vmware.com \

 --version 1.0.2 \

 --namespace tap-install \

 --values-file metadata-store-values.yaml

- Installing package 'metadata-store.apps.tanzu.vmware.com'

/ Getting namespace 'tap-install'

- Getting package metadata for 'metadata-store.apps.tanzu.vmware.com'

/ Creating service account 'metadata-store-tap-install-sa'

/ Creating cluster admin role 'metadata-store-tap-install-cluster-role'

/ Creating cluster role binding 'metadata-store-tap-install-cluster-rolebinding

'

/ Creating secret 'metadata-store-tap-install-values'

| Creating package resource

- Package install status: Reconciling

Added installed package 'metadata-store' in namespace 'tap-install'

Troubleshooting upgrading

Tanzu Application Platform v1.0

VMware, Inc 439

This topic describes upgrading issues and resolutions.

Database deployment does not exist

To prevent issues with the metadata store database, such as the ones described in this topic, as of

Tap v1.1 and Metadata Store v 1.1, the database deployment is now a StatefulSet. If you have scripts

searching for a metadata-store-db deployment, edit the scripts to instead search for StatefulSet.

Invalid checkpoint record

When using Tanzu to upgrade to a new version of the store, there is occasionally data corruption.

Here is an example of how this shows up in the log:

PostgreSQL Database directory appears to contain a database; Skipping initialization

2022-01-21 21:53:38.799 UTC [1] LOG: starting PostgreSQL 13.5 (Ubuntu 13.5-1.pgdg18.0

4+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0, 64-b

it

2022-01-21 21:53:38.799 UTC [1] LOG: listening on IPv4 address "0.0.0.0", port 5432

2022-01-21 21:53:38.799 UTC [1] LOG: listening on IPv6 address "::", port 5432

2022-01-21 21:53:38.802 UTC [1] LOG: listening on Unix socket "/var/run/postgresql/.s

.PGSQL.5432"

2022-01-21 21:53:38.807 UTC [14] LOG: database system was shut down at 2022-01-21 21:

21:12 UTC

2022-01-21 21:53:38.807 UTC [14] LOG: invalid record length at 0/1898BE8: wanted 24,

got 0

2022-01-21 21:53:38.807 UTC [14] LOG: invalid primary checkpoint record

2022-01-21 21:53:38.807 UTC [14] PANIC: could not locate a valid checkpoint record

2022-01-21 21:53:39.496 UTC [1] LOG: startup process (PID 14) was terminated by signa

l 6: Aborted

2022-01-21 21:53:39.496 UTC [1] LOG: aborting startup due to startup process failure

2022-01-21 21:53:39.507 UTC [1] LOG: database system is shut down

The log shows a database pod in a failure loop. For steps to fix the issue so that the upgrade can

proceed, see the SysOpsPro documentation.

Upgraded pod hanging

Because the default access mode in the PVC is ReadWriteOnce, if you are deploying in an

environment with multiple nodes then each pod might be on a different node. This causes the

upgraded pod to spin up but then get stuck initializing because the original pod does not stop. To

resolve this issue, manually delete the original pod so that the new pod can attach to the persistent

volume.

Find the pod name of the app pod that is not in a pending state and then delete it:

kubectl get pods -n metadata-store

kubectl delete pod <metadata-store-app-XXXXXXXXXXX> -n metadata-store

Additional resources

See Supply Chain Security Tools for Tanzu – Store for overview information.

Tanzu Application Platform v1.0

VMware, Inc 440

https://sysopspro.com/fix-postgresql-error-panic-could-not-locate-a-valid-checkpoint-record/

Install

Supply Chain Security Tools - Store is released as an individual Tanzu Application Platform

component.

To install, see Install Supply Chain Security Tools - Store. It will install the Postgres database and an

API backend.

Note: The Insight CLI requires a separate installation.

For more information, see Deployment Details and Configuration.

Querying the database

The following steps are required to use the API or CLI:

Creating service accounts and access tokens

Using encryption to connect to the database

The Insight CLI is the recommended means to query the database.

Note: The Insight CLI is in beta and is separate from the Tanzu CLI. It still works with the production

version of Supply Chain Security Tools - Store.

CLI installation

CLI configuration

CLI details

Adding & querying data

See Add data to post CycloneDX scan reports to the Supply Chain Security Tools - Store.

See Query data to understand vulnerability, image, and dependency relationships.

Auditing

The API server outputs logs when an endpoint is accessed, which can be used for auditing

purposes. For information about the logs generated, see Log configuration and usage.

Known issues

See Troubleshooting and Known Issues.

Security

See Security.

Backing up data

See Backup suggestions.

Tanzu Application Platform v1.0

VMware, Inc 441

#GUID-scst-store-known_issues

Failover and redundancy

See Failover, redundancy, and backups.

API details

See API walkthrough for a walkthrough and example.

Information

Version

0.0.1

Content negotiation

URI Schemes

http

https

Consumes

application/json

Produces

application/json

All endpoints

images

Method URI Name Summary

POST /api/imageReport create image

report

Create a new image report. Related packages and

vulnerabilities are also created.

GET /api/images get images Search image by id or digest.

GET /api/packages/{IDorNam

e}/images

get package

images

List the images that contain the given package.

GET /api/vulnerabilities/{CVEI

D}/images

get vulnerability

images

List the images that contain the given vulnerability.

Operations

Method URI Name Summary

GET /api/health health check

Tanzu Application Platform v1.0

VMware, Inc 442

#create-image-report
#get-package-images
#get-vulnerability-images

Packages

Method URI Name Summary

GET /api/images/{IDorDigest}/packages get image packages List the packages in an image.

GET /api/packages get packages Search packages by id, name and/or

version.

GET /api/sources/{IDorRepoorSha}/pack

ages

get source packages

GET /api/sources/packages get source packages

query

List packages of the given source.

GET /api/vulnerabilities/{CVEID}/packag

es

get vulnerability

packages

List packages that contain the given CVE

id.

Sources

Method URI Name Summary

POST /api/sourceReport create source

report

Create a new source report. Related packages and

vulnerabilities are also created.

GET /api/packages/{IDorNam

e}/sources

get package

sources

List the sources containing the given package.

GET /api/sources get sources Search for sources by ID, repository, commit sha and/or

organization.

GET /api/vulnerabilities/{CVEI

D}/sources

get vulnerability

sources

List sources that contain the given vulnerability.

Vulnerabilities

Method URI Name Summary

GET /api/images/{IDorDigest}/vulnerabiliti

es

get image vulnerabilities List vulnerabilities from the given

image.

GET /api/packages/{IDorName}/vulnerabili

ties

get package vulnerabilities List vulnerabilities from the given

package.

GET /api/sources/{IDorRepoorSha}/vulner

abilities

get source vulnerabilities

GET /api/sources/vulnerabilities get source vulnerabilities

query

List vulnerabilities of the given

source.

GET /api/vulnerabilities get vulnerabilities Search for vulnerabilities by CVE id.

Paths

Create a new image report. Related packages and vulnerabilities
are also created. (CreateImageReport)

Tanzu Application Platform v1.0

VMware, Inc 443

#get-image-packages
#get-packages
#get-source-packages
#get-source-packages-query
#get-vulnerability-packages
#create-source-report
#get-package-sources
#get-vulnerability-sources
#get-image-vulnerabilities
#get-package-vulnerabilities
#get-source-vulnerabilities
#get-source-vulnerabilities-query
#get-vulnerabilities

POST /api/imageReport

Parameters

Name Source Type Go type Separator Required Default Description

Image body Image models.Image ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

Create a new source report. Related packages and vulnerabilities
are also created. (CreateSourceReport)

POST /api/sourceReport

Parameters

Name Source Type Go type Separator Required Default Description

Image body Source models.Source ✓

All responses

Code Status Description Has headers Schema

Tanzu Application Platform v1.0

VMware, Inc 444

#create-image-report-200
#create-image-report-200-schema
#create-image-report-default
#create-image-report-default-schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

Source

Default Response

ErrorMessage

Schema

ErrorMessage

List the packages in an image. (GetImagePackages)

GET /api/images/{IDorDigest}/packages

Parameters

Name Source Type Go type Separator Required Default Description

IDorDigest path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Tanzu Application Platform v1.0

VMware, Inc 445

#create-source-report-200
#create-source-report-200-schema
#create-source-report-default
#create-source-report-default-schema
#get-image-packages-200
#get-image-packages-200-schema
#get-image-packages-default
#get-image-packages-default-schema

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities from the given image. (GetImageVulnerabilities)

GET /api/images/{IDorDigest}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorDigest path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

Search image by id or digest. (GetImages)

GET /api/images

Tanzu Application Platform v1.0

VMware, Inc 446

#get-image-vulnerabilities-200
#get-image-vulnerabilities-200-schema
#get-image-vulnerabilities-default
#get-image-vulnerabilities-default-schema

Parameters

Name Source Type Go type Separator Required Default Description

digest query string string

id query int64 (formatted integer) int64

responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given package.
(GetPackageImages)

GET /api/packages/{IDorName}/images

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

Tanzu Application Platform v1.0

VMware, Inc 447

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

[][Image](#image)

Default Response

ErrorMessage

Schema

ErrorMessage

List the sources containing the given package.
(GetPackageSources)

GET /api/packages/{IDorName}/sources

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

Tanzu Application Platform v1.0

VMware, Inc 448

#get-package-images-200
#get-package-images-200-schema
#get-package-images-default
#get-package-images-default-schema
#get-package-sources-200
#get-package-sources-200-schema
#get-package-sources-default
#get-package-sources-default-schema

[][Source](#source)

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities from the given package.
(GetPackageVulnerabilities)

GET /api/packages/{IDorName}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

Search packages by id, name and/or version. (GetPackages)

Tanzu Application Platform v1.0

VMware, Inc 449

#get-package-vulnerabilities-200
#get-package-vulnerabilities-200-schema
#get-package-vulnerabilities-default
#get-package-vulnerabilities-default-schema

GET /api/packages

Parameters

Name Source Type
Go

type
Separator Required Default Description

id query int64 (formatted

integer)

int64 Any of id or name must be

provided

name query string string Any of id or name must be

provided

versio

n

query string string

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

get source packages (GetSourcePackages)

GET /api/sources/{IDorRepoorSha}/packages

Parameters

Name Source Type Go type Separator Required Default Description

Tanzu Application Platform v1.0

VMware, Inc 450

#get-packages-200
#get-packages-200-schema
#get-packages-default-schema

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

List packages of the given source. (GetSourcePackagesQuery)

GET /api/sources/packages

Parameters

Name Source Type Go type Separator Required Default Description

id query uint64 (formatted integer) uint64

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Tanzu Application Platform v1.0

VMware, Inc 451

#get-source-packages-200
#get-source-packages-200-schema
#get-source-packages-default
#get-source-packages-default-schema
#get-source-packages-query-200
#get-source-packages-query-200-schema
#get-source-packages-query-default
#get-source-packages-query-default-schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

get source vulnerabilities (GetSourceVulnerabilities)

GET /api/sources/{IDorRepoorSha}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Tanzu Application Platform v1.0

VMware, Inc 452

#get-source-vulnerabilities-200
#get-source-vulnerabilities-200-schema
#get-source-vulnerabilities-default
#get-source-vulnerabilities-default-schema

Schema

ErrorMessage

List vulnerabilities of the given source.
(GetSourceVulnerabilitiesQuery)

GET /api/sources/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

id query uint64 (formatted integer) uint64

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

Search for sources by ID, repository, commit sha, and/or
organization. (GetSources)

GET /api/sources

Tanzu Application Platform v1.0

VMware, Inc 453

#get-source-vulnerabilities-query-200
#get-source-vulnerabilities-query-200-schema
#get-source-vulnerabilities-query-default
#get-source-vulnerabilities-query-default-schema

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[][Source](#source)

Default Response

ErrorMessage

Schema

ErrorMessage

Search for vulnerabilities by CVE id. (GetVulnerabilities)

GET /api/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

CVEID query string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Tanzu Application Platform v1.0

VMware, Inc 454

#get-vulnerabilities-200
#get-vulnerabilities-200-schema
#get-vulnerabilities-default
#get-vulnerabilities-default-schema

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given vulnerability.
(GetVulnerabilityImages)

GET /api/vulnerabilities/{CVEID}/images

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

[][Image](#image)

Default Response

ErrorMessage

Schema

ErrorMessage

Tanzu Application Platform v1.0

VMware, Inc 455

#get-vulnerability-images-200
#get-vulnerability-images-200-schema
#get-vulnerability-images-default
#get-vulnerability-images-default-schema

List packages that contain the given CVE id.
(GetVulnerabilityPackages)

GET /api/vulnerabilities/{CVEID}/packages

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

List sources that contain the given vulnerability.
(GetVulnerabilitySources)

GET /api/vulnerabilities/{CVEID}/sources

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

Tanzu Application Platform v1.0

VMware, Inc 456

#get-vulnerability-packages-200
#get-vulnerability-packages-200-schema
#get-vulnerability-packages-default
#get-vulnerability-packages-default-schema

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[][Source](#source)

Default Response

ErrorMessage

Schema

ErrorMessage

health check (HealthCheck)

GET /api/health

All responses

Code Status Description Has headers Schema

200 OK schema

default ErrorMessage schema

Responses

2 0 0

Status: OK

Schema

Default Response

ErrorMessage

Tanzu Application Platform v1.0

VMware, Inc 457

#get-vulnerability-sources-200
#get-vulnerability-sources-200-schema
#get-vulnerability-sources-default
#get-vulnerability-sources-default-schema
#health-check-200
#health-check-200-schema
#health-check-default
#health-check-default-schema

Schema

ErrorMessage

Models

DeletedAt

composed type NullTime

ErrorMessage

ErrorMessage wraps an error message in a struct so responses are properly marshalled as a JSON

object.

Properties

Name Type Go type Required Default Description Example

Message string string in: body something went wrong

Image

Properties

Name Type Go type Required Default Description Example

Digest string string ✓ 9n38274ods897fmay487gsdyfga

678wr82

ID uint64 (formatted

integer)

uint64

Name string string ✓ myorg/application

Packag

es

[][Package](#package) []*Packag

e

Registry string string ✓ docker.io

Sources [][Source](#source) []*Source

MethodType

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

Name string string

Tanzu Application Platform v1.0

VMware, Inc 458

Name Type Go type Required Default Description Example

Rating [][Rating](#rating) []*Rating

UpdatedAt date-time (formatted string) strfmt.DateTime

Model

Model a basic GoLang struct which includes the following fields: ID, CreatedAt, UpdatedAt,

DeletedAt It may be embedded into your model, or you may build your model without it type User

struct { gorm.Model }

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

UpdatedAt date-time (formatted string) strfmt.DateTime

NullTime

NullTime implements the Scanner interface to be used as a scan destination, similar to NullString.

Properties

Name Type Go type Required Default Description Example

Time date-time (formatted string) strfmt.DateTime

Valid boolean bool

Package

Properties

Name Type Go type Required Default Description Example

Homepage string string

ID uint64 (formatted integer) uint64

Images [][Image](#image) []*Image

Name string string

PackageManage

r

string string

Sources [][Source](#source) []*Source

Version string string

Tanzu Application Platform v1.0

VMware, Inc 459

Name Type Go type Required Default Description Example

Vulnerabilities [][Vulnerability]

(#vulnerability)

[]*Vulnerabilit

y

Rating

Properties

Name Type Go type Required Default Description Example

ID uint64 (formatted integer) uint64

MethodType MethodType MethodType

MethodTypeID uint64 (formatted integer) uint64

Score double (formatted number) float64

Severity string string

Vector string string

Source

Properties

Name Type Go type Required Default Description Example

DeletedAt DeletedAt DeletedAt

Host string string gitlab.com

ID uint64 (formatted integer) uint64

Images [][Image](#image) []*Image

Organization string string vmware

Packages [][Package](#package) []*Package

Repository string string ✓ myproject

Sha string string ✓ 0eb5fcd1

StringArray

[]string

Vulnerability

Properties

Name Type Go type Required Default Description Example

CNA string string

CVEID string string ✓ CVE-7467-2020

Tanzu Application Platform v1.0

VMware, Inc 460

Name Type Go type Required Default Description Example

Description string string

ID uint64 (formatted integer) uint64

Packages [][Package](#package) []*Package

Ratings [][Rating](#rating) []*Rating

References StringArray StringArray

URL string string

API walkthrough

This topic includes an example API call. For information about using the Supply Chain Security Tools

- Store API, see full API documentation.

Using CURL to POST an image report

The following procedure explains how to use CURL to POST an image report.

1. Port Forward the metadata-store-app. Run the following:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

2. Retrieve the metadata-store-read-write-client access token. Ensure the Service Account

is created. Run:

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o j

sonpath="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name

']=='metadata-store-read-write-client')].data.token}" | base64 -d)

3. Retrieve the CA Certificate and store it locally. Run the following:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.cr

t"' | base64 -d > /tmp/ca.crt

4. Run the Curl POST Command:

curl https://metadata-store-app:8443/api/imageReport \

 --resolve metadata-store-app:8443:127.0.0.1 \

 --cacert /tmp/ca.crt \

 -H "Authorization: Bearer ${METADATA_STORE_ACCESS_TOKEN}" \

 -H "Content-Type: application/json" \

 -X POST \

 --data "@<ABSOLUTE PATH TO THE POST BODY>"

5. Replace with the absolute path of the POST body.

6. The following is a sample POST body of a image report:

{

 "Name" : "burger-image-2",

Tanzu Application Platform v1.0

VMware, Inc 461

 "Registry" : "test-registry",

 "Digest" : "test-digest@45asd61asasssdfsdfddssghjkdfsdfasdfasdsdasdassdfghjdd

asfddfsadfadfgfshdasdfsdfsdfsdasdsdfsdfadsdassdfdasdfaasdsdfsddfsdasgsasddffdgf

dasddfgdfssdfakasdasdasdsdasddasdsd23",

 "Sources" : [

 {

 "Repository" : "aaaaoslfdfggo",

 "Organization" : "pivotal",

 "Sha" : "1235assdfssadfacfddxdf41",

 "Host" : "http://oslo.io",

 "Packages" : [

 {

 "Name" : "Source package5",

 "Version" : "v2sfsfdd34",

 "PackageManager" : "test-manager",

 "Vulnerabilities" : [

 {

 "CVEID" : "0011",

 "PrimaryURL" : "http://www.mynamejeff.comm",

 "Description" : "Bye",

 "CNA" : "NVD",

 "Ratings": [{

 "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

 "Score" : 0,

 "MethodTypeID" : 1,

 "Severity": "High"

 }],

 "References" : [""]

 }

]

 }

]

 }

],

 "Packages" : [

 {

 "Name" : "bob-dependency-35daasds56j",

 "Version" : "v2",

 "PackageManager" : "test-manager",

 "Vulnerabilities" : [

 {

 "CVEID" : "002",

 "PrimaryURL" : "http://www.mynamejeff.comm",

 "Description" : "Bye",

 "CNA" : "NVD",

 "Ratings": [{

 "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

 "Score" : 0,

 "MethodTypeID" : 1,

 "Severity": "High"

 }],

 "References" : [""]

 }

]

 }

]

}

Tanzu Application Platform v1.0

VMware, Inc 462

CLI installation

Note: The insight CLI is in beta and is separate from the tanzu CLI. It works with Tanzu Application

Platform v1.0.0.

This topic explains how to install the insight CLI.

1. Log in to Tanzu Network on your browser.

2. Search for and select Supply Chain Security Tools for VMware Tanzu.

3. Choose the file for your operating system.

Note: macOS is a Darwin-based platform.

4. Put the binary in a location that is either already in your PATH environment variable, or add

the location of the CLI to your PATH variable.

5. Rename the binary to make it easier to invoke with your command line. For example, mv

insight-1.0.1_darwin_amd64 insight.

macOS only:

CLI configuration

This topic explains how to configure the Insight CLI:

Note: All required setup must be completed in addition to configuring the CLI

Set the target and certificate authority certificate

Set the target endpoint and CA certificate by running:

insight config set-target https://metadata-store-app.metadata-store.svc.cluster.local:

PORT --ca-cert PATH

Where

PORT is the target endpoint port

PATH is the direct path to the CA certificate

For example:

$ insight config set-target https://metadata-store-app.metadata-store.svc.cluster.loca

l:8443 --ca-cert /tmp/ca.crt

Using config file: /Users/username/.insight/config.yaml

Setting endpoint in config to: https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443

Check the connection

Tanzu Application Platform v1.0

VMware, Inc 463

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/supply-chain-security-tools
#required-set-up

Check that your configuration is correct and you are able to make a connection.

insight health

For example:

$ insight health

{"message":"Successfully Reached Metadata Store!"}

Insight

This CLI is used to post data and query the metadata store.

Synopsis

This CLI is used to post data and query the metadata store through its secure REST API. Source and

Image reports can be uploaded using CycloneDX XML and JSON format. Source, image, package,

and vulnerabilities can be queried and outputted in CycloneDX XML, JSON, and human-readable

text formats.

Options

 -h, --help help for insight

See also

Insight config - Config commands

Insight health - Checks if endpoint is reachable

Insight image - Image commands

Insight package - Package commands

Insight source - Source commands

Insight version - Display insight version

Insight vulnerabilities - Vulnerabilities commands

Insight config

Config commands are as follows:

Options

 -h, --help help for config

See also

Tanzu Application Platform v1.0

VMware, Inc 464

Insight - This CLI is used to post data and make queries to the metadata store.

Insight config set-target - Set metadata store endpoint.

Insight health

Insight health

Checks if endpoint is reachable.

Synopsis

Checks if endpoint is reachable.

insight health [flags]

Examples

insight health

Options

 -h, --help help for health

See also

insight

Insight image

Image commands are as follows:

Options

 -h, --help help for image

See also

Insight - This CLI is used to post data and query the metadata store.

Insight image create - Create an image report.

Insight image get - Get image by digest.

Insight image packages - Get image packages.

Insight image vulnerabilities - Get image vulnerabilities.

Insight package

Tanzu Application Platform v1.0

VMware, Inc 465

#GUID-scst-store-cli_docs-insight_config_set-target
#GUID-scst-store-cli_docs-insight_image_create
#GUID-scst-store-cli_docs-insight_image_get
#GUID-scst-store-cli_docs-insight_image_packages
#GUID-scst-store-cli_docs-insight_image_vulnerabilities

Package commands are as follows:

Options

 -h, --help help for package

See also

Insight - This CLI is used to post data and query the metadata store.

Insight package get - Get package by name, version, and package manager.

Insight package images - Get images that contain the given package by name.

Insight package sources - Get sources that contain the given package by name.

Insight package vulnerabilities - Get package vulnerabilities.

Insight source

Source commands are as follows:

Options

 -h, --help help for source

See also

Insight - This CLI is used to post data and query the metadata store.

Insight source create - Create a source report.

Insight source get - Get sources by repository, commit, or organization.

Insight source packages - Get source packages.

Insight source vulnerabilities - Get source vulnerabilities.

Insight version

To display insight version:

insight version [flags]

Options

 -h, --help help for version

See also

Tanzu Application Platform v1.0

VMware, Inc 466

#GUID-scst-store-cli_docs-insight_package_get
#GUID-scst-store-cli_docs-insight_package_images
#GUID-scst-store-cli_docs-insight_package_sources
#GUID-scst-store-cli_docs-insight_package_vulnerabilities
#GUID-scst-store-cli_docs-insight_source_create
#GUID-scst-store-cli_docs-insight_source_get
#GUID-scst-store-cli_docs-insight_source_packages
#GUID-scst-store-cli_docs-insight_source_vulnerabilities

Insight - This CLI is used to post data and query the metadata store.

Insight vulnerabilities

Vulnerabilities commands are as follows:

Options

 -h, --help help for vulnerabilities

See also

Insight - This CLI is used to post data and query the metadata store.

Insight vulnerabilities get - Get vulnerability by CVE id.

Insight vulnerabilities images - Get images with a given vulnerability.

Insight vulnerabilities packages - Get packages with a given vulnerability.

Insight vulnerabilities sources - Get sources with a given vulnerability.

Deployment details and configuration

What is deployed

The installation creates the following in your Kubernetes cluster:

Two components — an API backend and a database. Each component includes:

service

deployment

replicaset

pod

Persistent volume and persistent volume claim.

External IP (based on a deployment configuration set to use LoadBalancer).

A Kubernetes secret to allow pulling Supply Chain Security Tools - Store images from a

registry.

A namespace called metadata-store.

A service account with read-write privileges named metadata-store-read-write-client. It’s

bound to a ClusterRole named metadata-store-read-write.

A read-only ClusterRole named metadata-store-read-only that isn’t bound to a service

account. See Service Accounts.

Deployment configuration

Tanzu Application Platform v1.0

VMware, Inc 467

#GUID-scst-store-cli_docs-insight_vulnerabilities_get
#GUID-scst-store-cli_docs-insight_vulnerabilities_images
#GUID-scst-store-cli_docs-insight_vulnerabilities_packages
#GUID-scst-store-cli_docs-insight_vulnerabilities_sources

Database configuration

The default database that ships with the deployment is meant to get users started using the metadata

store. The default database deployment does not support many enterprise production requirements,

including scaling, redundancy, or failover. However, it is still a secure deployment.

Using AWS RDS postgres database

Users can also configure the deployment to use their own RDS database instead of the default. See

AWS RDS Postgres Configuration.

Custom database password

By default, a database password is generated automatically upon deployment. To configure a custom

password, use the db_password property in the metadata-store-values.yaml during deployment.

db_password: "PASSWORD-0123"

If you’re deploying with TAP profiles, in tap-values.yaml, put:

metadata_store:

 db_password: "PASSWORD-0123"

Where PASSWORD-0123 is the same password used between deployments.

Note: there is a known issue related to changing database passwords Known Issues - Persistent

Volume Retains Data.

App service type

If your environment does not support LoadBalancer, and you want to use NodePort, configure the

app_service_type property in your metadata-store-values.yaml:

app_service_type: "LoadBalancer"

Service accounts

By default, a service account with read-write privileges to the metadata store app is installed. This

service account is a cluster-wide account that uses ClusterRole. If you don’t want the service account

and role, set the add_default_rw_service_account property to "false". To create a custom service

account, see create service account.

The store will automatically create a read-only cluster role, which may be bound to a service account

via ClusterRoleBinding. To create service accounts to bind to this cluster role, see create service

account.

Exporting certificates

Supply Chain Security Tools - Store creates Secret Export for exporting certificates to Supply Chain

Security Tools - Scan to securely post scan results. These certificates are exported to the

namespace where Supply Chain Security Tools - Scan is installed.

Tanzu Application Platform v1.0

VMware, Inc 468

#persistent-volume-retains-data
https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/secret-export.md

AWS RDS Postgres configuration

Prerequisites

AWS Account

AWS RDS

1. Create an Amazon RDS Postgres using the Amazon RDS Getting Started Guide

2. Once the database instance starts, retrieve the following information:

1. DB Instance Endpoint

2. Master Username

3. Master Password

4. Database Name

3. Create a security group to allow inbound connections from the cluster to the Postgres DB

4. Retrieve the corresponding CA Certificate that signed the Postgres TLS Certificate using the

following link

5. In the metadata-store-values.yaml fill the following settings:

db_host: "<DB Instance Endpoint>"

db_user: "<Master Username>"

db_password: "<Master Password>"

db_name: "<Database Name>"

db_port: "5432"

db_sslmode: "verify-full"

db_max_open_conns: 10

db_max_idle_conns: 100

db_conn_max_lifetime: 60

db_ca_certificate: |

 <Corresponding CA Certification>

 ...

 ...

 ...

deploy_internal_db: "false"

Note: If deploy_internal_db is set to false, an instance of Postgres will not be deployed in the

cluster.

Creating service accounts and access tokens

Service accounts are required to generate the access tokens.

The access token is a Bearer token used in the http request header Authorization. (ex.

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0...)

By default, Supply Chain Security Tools - Store comes with read-write service account installed. This

service account is cluster-wide.

Tanzu Application Platform v1.0

VMware, Inc 469

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Creating.PostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html

Service accounts

You can create two types of service accounts:

1. Read-only service account - only able to use GET API requests

2. Read-write service account - full access to the API requests

Read-only service account

As a part of the Store installation, the metadata-store-read-only cluster role is created by default.

This cluster role allows the bound user to have get access to all resources. To bind to this cluster

role, run the following command:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: metadata-store-ready-only

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: metadata-store-read-only

subjects:

- kind: ServiceAccount

 name: metadata-store-read-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

If you do not want to bind to a cluster role, create your own read-only role in the metadata-store

namespace with a service account. The following example command creates a service account

named metadata-store-read-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: metadata-store-ro

 namespace: metadata-store

rules:

- resources: ["all"]

 verbs: ["get"]

 apiGroups: ["metadata-store/v1"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: metadata-store-ro

 namespace: metadata-store

Tanzu Application Platform v1.0

VMware, Inc 470

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: metadata-store-ro

subjects:

- kind: ServiceAccount

 name: metadata-store-read-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

Read-write service account

To create a read-write service account, run the following command. The command creates a service

account called metadata-store-read-write-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: metadata-store-read-write

 namespace: metadata-store

rules:

- resources: ["all"]

 verbs: ["get", "create", "update"]

 apiGroups: ["metadata-store/v1"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: metadata-store-read-write

 namespace: metadata-store

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: metadata-store-read-write

subjects:

- kind: ServiceAccount

 name: metadata-store-read-write-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-write-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

Getting the Access Token

Tanzu Application Platform v1.0

VMware, Inc 471

To retrieve the read-only access token, run the following command:

kubectl get secret $(kubectl get sa -n metadata-store metadata-store-read-client -o js

on | jq -r '.secrets[0].name') -n metadata-store -o json | jq -r '.data.token' | base6

4 -d

To retrieve the read-write access token run the following command:

kubectl get secret $(kubectl get sa -n metadata-store metadata-store-read-write-client

 -o json | jq -r '.secrets[0].name') -n metadata-store -o json | jq -r '.data.token' |

 base64 -d

The access token is a “Bearer” token used in the http request header “Authorization.” (ex.

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0...)

Setting the Access Token

When using the CLI, you’ll need to set the METADATA_STORE_ACCESS_TOKEN environment variable, or

use the --access-token flag. It is not recommended to use the --access-token flag as the token will

appear in your shell history.

The following command will retrieve the access token from Kubernetes and store it in

METADATA_STORE_ACCESS_TOKEN where SERVICE-ACCOUNT-NAME is the name of the service account you

plan to use.

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpath

="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='SERVICE-A

CCOUNT-NAME')].data.token}" | base64 -d)

For example:

$ export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpa

th="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='metadat

a-store-read-write-client')].data.token}" | base64 -d)

Using encryption to connect to the database

The connection to the Store requires TLS encryption. Follow the instructions below to set up the TLS

connection depending on which type of service is being used:

1. Using LoadBalancer

2. Using NodePort — commonly used with local clusters such as kind, or minikube

Using LoadBalancer

If you are using a LoadBalancer configuration, you need to find the external IP of the metadata-

store-app service. You can use kubectl to do this.

Note

Tanzu Application Platform v1.0

VMware, Inc 472

kubectl get service/metadata-store-app --namespace metadata-store -o yaml

For example:

$ kubectl get service/metadata-store-app --namespace metadata-store -o yaml

...

spec:

 ports:

 - name: http

 nodePort: 32712

 port: 8443

 protocol: TCP

 targetPort: PORT

...

status:

 loadBalancer:

 ingress:

 - ip: IP-ADDRESS

Where:

IP-ADDRESS is your IP address.

PORT is your port number.

Obtaining the CA certificate

The CA certificate is generated by cert manager. Run the following command to get the CA

certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > PATH

Where:

PATH is the location where you want to save the CA certificate. This file is used later when you

configure the CLI.

Editing /etc/hosts

To add the IP entry mapping to metadata-store-app.metadata-store.svc.cluster.local in

/etc/hosts. Add this line:

IP metadata-store-app.metadata-store.svc.cluster.local

Where:

IP is the IP you got from the step Using LoadBalancer step above.

For example:

10.186.124.220 metadata-store-app.metadata-store.svc.cluster.local

: For all kubectl commands, use the --namespace metadata-store flag.

Tanzu Application Platform v1.0

VMware, Inc 473

Using NodePort

To use NodePort, obtain the CA cert, configure portforwarding, and modify the /etc/hosts file.

Obtaining the CA certificate

The CA certificate is generated by cert manager. Run the following command to get the CA

certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > PATH

Where:

PATH is the location where you want to save the CA certificate. This file is used later when you

configure the CLI.

Configuring port forwarding

When using NodePort, you need to configure port forwarding for the service for the CLI to access

the Supply Chain Security Tools - Store. Run:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Run this command in a separate terminal window.

Modifying your /etc/hosts file

Add the following entry to /etc/hosts by running:

127.0.0.1 metadata-store-app.metadata-store.svc.cluster.local

Add data

This topic describes how to add Software Bill of Materials (SBoM) files to Supply Chain Security Tools

- Store to understand your dependencies by querying. For instructions on querying, see Query

Data.

Methods

Add data by posting CycloneDX files using the following methods:

Supply Chain Security Tools - Scan

Supply Chain Security Tools - Store API

Add Data with the Insight CLI below

Supported Formats and File Types

Currently, only CycloneDX XML and JSON files are accepted.

Tanzu Application Platform v1.0

VMware, Inc 474

Source commits and image files are tested. Additional file types, for example, JAR, might work

because they are not fully tested.

Note: If using a non-source commit or image file type, you must ensure the component.version field

in the CycloneDX file is non-null, because the database expects a unique identifier.

Generate a CycloneDX File

A CycloneDX file is needed to post data. CycloneDX files can be generated using many tools. This

topic uses Grype. Additional tools can be found on the CycloneDX Tool Center.

To use Grype to scan an image and generate an image report in CycloneDX format:

1. Run:

grype REPO:TAG -o cyclonedx > IMAGE-CVE-REPORT

Where:

REPO is the name of your repository

TAG is the name of a tag

IMAGE-CVE-REPORT is the resulting file name of the Grype image scan report

For example:

$ grype docker.io/checkr/flagr:1.1.12 -o cyclonedx > image-cve-report

 ✔ Vulnerability DB [updated]

 ✔ Parsed image

 ✔ Cataloged packages [21 packages]

 ✔ Scanned image [8 vulnerabilities]

Add Data with the Insight CLI

Use the following commands to add data:

image create

source create

Note: If using a non-source commit or image file type, you can select either option.

Use insight -h in the terminal or see CLI details for more information.

Example #1: Create an Image Report

To use a CycloneDX-formatted image report:

1. Run:

insight image create --cyclonedxtype TYPE --path IMAGE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

Tanzu Application Platform v1.0

VMware, Inc 475

https://github.com/anchore/grype
https://cyclonedx.org/tool-center/

IMAGE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

$ insight image create --cyclonedxtype xml --path downloads/image-cve-report

Image report created.

Note: The Metadata Store only stores a subset of CycloneDX file data. Support for more data might

be added in the future.

Example #2: Create a Source Report

To use a CycloneDX-formatted source report:

1. Run:

insight source create --cyclonedxtype TYPE --path SOURCE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

SOURCE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

$ insight source create --cyclonedxtype json --path source-cve-report

Source report created.

Note: The Metadata Store only stores a subset of a CycloneDX file’s data. Support for more data

might be added in the future.

Query data

This topic describes how to query the database to understand vulnerability, image, and dependency

relationships.

Add data

Data must be added before querying. See Add Data.

Methods

There are two different ways of querying the database:

API

CLI

Supported use cases

The following are a few examples supported by the Supply Chain Security Tools - Store API and CLI:

What images contain a specific dependency?

Tanzu Application Platform v1.0

VMware, Inc 476

What dependencies are affected by a specific CVE?

How many CVEs does a specific image or dependency contain?

Query using the Insight CLI

See CLI installation if you have not previously installed the Insight CLI.

Use the following commands for querying:

image get

image package

image vulnerabilities

package get

package image

package source

package vulnerabilities

source get

source package

source vulnerabilities

vulnerabilities get

vulnerabilities image

vulnerabilities package

vulnerabilities source

Use insight -h in the terminal or see CLI details for more information.

Example #1: What images contain a specific dependency?

Use the following command:

insight image get --digest DIGEST

Where DIGEST is the component version or image digest.

For example:

$ insight image get --digest sha256:407d7099d6ce7e3632b6d00682a43028d75d3b088600797a83

3607bd629d1ed5

R e g i s t r y : d o c k e r . i o

Image Name: checkr/flagr:1.1.12

Digest: sha256:407d7099d6ce7e3632b6d00682a43028d75d3b088600797a833607bd629d1ed

5

Packages:

 1 . a l p i n e - b a s e l a y o u t @ 3 . 1 . 2 - r 0

 2 . a l p i n e - k e y s @ 2 . 1 - r 2

Tanzu Application Platform v1.0

VMware, Inc 477

 3 . a p k - t o o l s @ 2 . 1 0 . 4 - r 2

 C V E s :

 1 . C V E - 2 0 2 1 - 3 0 1 3 9 (H i g h)

 2 . C V E - 2 0 2 1 - 3 6 1 5 9 (C r i t i c a l)

 4 . b u s y b o x @ 1 . 3 0 . 1 - r 3

 C V E s :

 1 . C V E - 2 0 2 1 - 2 8 8 3 1 (H i g h)

...

Example #2: What dependencies are affected by a specific
CVE?

Use the following command:

insight vulnerabilities get --cveid CVE-IDENTIFIER

Where CVE-IDENTIFIER is the CVE identifier, for example, CVE-2021-30139.

For example:

$ insight vulnerabilities get --cveid CVE-2010-4051

1. CVE-2010-4051 (Low)

Packages:

 1 . l i b c - b i n @ 2 . 2 8 - 1 0

 2 . l i b c - l 1 0 n @ 2 . 2 8 - 1 0

 3 . l i b c 6 @ 2 . 2 8 - 1 0

 4 . l o c a l e s @ 2 . 2 8 - 1 0

Log configuration and usage

This topic covers configuring the Supply Chain Security Tools - Store to output detailed log

information and interpret them. re-boot

Log levels

There are six log levels that the Supply Chain Security Tools - Store supports.

Level Description

Trace Output extended debugging logs

Debug Output standard debugging log

More Output more verbose informational logs

Default Output standard informational logs

Less Outputs less verbose informational logs

Minimum Outputs a minimal set of informational logs

When the Store is deployed at a specific log level, all logs of that level and lower are outputted to the

console. For example, setting the log level to More outputs logs from Minimal to More, while Debug

and Trace logs are muted.

Tanzu Application Platform v1.0

VMware, Inc 478

Currently, the application logs output at these levels:

Minimum does not output any logs.

Less outputs a single log line indicating the current log level the Metadata Store is configured

to when the application starts.

Default outputs API endpoint access information.

Debug outputs API endpoint payload information, both for requests and responses.

Trace outputs verbose debug information about the actual SQL queries for the database.

Other log levels do not output any additional log information and are present for future extensibility.

If no log level is specified when the Store is installed, the log level is set to default.

Error Logs

Error logs are always outputted regardless of the log level, even when set to minimum.

Obtaining logs

Kubernetes pods emit logs. The deployment has two pods: one for the database and one for the API

back end.

Use kubectl get pods to obtain the names of the pods by running:

kubectl get pods -n metadata-store

For example:

$ kubectl get pods -n metadata-store

NAME READY STATUS RESTARTS AGE

metadata-store-app-67659bbc66-2rc6k 2/2 Running 0 4d3h

metadata-store-db-64d5b88587-8dns7 1/1 Running 0 4d3h

The database pod has prefix metadata-store-db- and the API backend pod has the prefix metadata-

store-app-. Use kubectl logs to get the logs from the pod you’re interested in. For example, to see

the logs of the database pod, run:

$ kubectl logs metadata-store-db-64d5b88587-8dns7 -n metadata-store

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

...

The API backend pod has two containers, one for kube-rbac-proxy, and the other for the API

server. Use the --all-containers flag to see logs from both containers. For example:

$ kubectl logs metadata-store-app-67659bbc66-2rc6k --all-containers -n metadata-store

I1206 18:34:17.686135 1 main.go:150] Reading config file: /etc/kube-rbac-proxy/c

onfig-file.yaml

I1206 18:34:17.784900 1 main.go:180] Valid token audiences:

...

Tanzu Application Platform v1.0

VMware, Inc 479

API endpoint log output

When an API endpoint handles a request, the Store generates two and five log lines. They are:

1. When the endpoint receives a request, it outputs a Processing request line. This logline is

shown at the default log level.

2. If the endpoint includes query or path parameters, it outputs a Request parameters line. This

line logs the parameters passed in the request. This line is shown at the default log level.

3. If the endpoint takes in a request body, it outputs a Request body line. This line outputs the

entire request body as a string. This line is shown at the debug log level.

4. When the endpoint returns a response, it outputs a Request response line. This line is shown

at the default log level.

5. If the endpoint returns a response body, it outputs a second Request response line with an

extra key payload, and its value is set to the entire response body. This line is shown at the

debug log level.

Format

When the Store handles a request, it outputs some API endpoint access information in the following

format:

I1122 20:30:21.869528 1 images.go:26] MetadataStore "msg"="Processing request" "

endpoint"="/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f

851d0f4bf57b0bab6" "hostname"="metadata-store-app-564f8995c8-r8d6n" "method"="GET"

The log is broken down into three sections: The header, name, and key/value pairs.

Log header

I1122 20:30:21.869528 1 images.go:26] is the logging header. The Logging header formats

section in GitHub explains each part in more detail.

Name

The string that follows the header is a name that helps identify what produced the log entry. For

Stores, the name always starts with MetadataStore.

For log lines that display the raw SQL queries being used, they will use the name

MetadataStore/gorm.

Key-value pairs

Key-value pairs compose the rest of the log output. The tables in the following sections list each key

and the meaning of their values.

Common to al l logs

The following key-value pairs are common for all logs.

Tanzu Application Platform v1.0

VMware, Inc 480

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md#logging-header-formats

Key Type
Log

Level
Description

msg strin

g

defau

lt

A short description of the logged event

endp

oint

strin

g

defau

lt

The API endpoint the Metadata Store attempts to handle the request. This also includes any

query and path parameters passed in.

host

name

strin

g

defau

lt

The Kubernetes hostname of the pod handling the request. This helps identify the specific

instance of the Store when you deploy multiple instances on a cluster.

funct

ion

strin

g

debu

g

The function name that handles the request

meth

od

strin

g

defau

lt

The HTTP verb to access the endpoint. For example, “GET” or “POST.”

code integ

er

defau

lt

The HTTP response code

respo

nse

strin

g

defau

lt

The HTTP response in human-readable format. For example, “OK”, “Bad Request”, or

“Internal Server Error.”

error strin

g

all The error message which is only available in error log entries

Logging query and path parameter values

Those endpoints that use query or path parameters are logged on the Request parameters logline as

key-value pairs. Afterward, they are appended to all other log lines of the same request as key-value

pairs.

The key names are the query or path parameter’s name, while the value is set to the value of those

parameters in string format.

For example, the following log line contains the digest and id key, which represents the respective

digest and id query parameters, as well as their values:

I1122 20:30:21.869791 1 images.go:34] MetadataStore "msg"="Request parameters" "

endpoint"="/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f

851d0f4bf57b0bab6" "hostname"="metadata-store-app-564f8995c8-r8d6n" "method"="GET" "di

gest"="sha256:20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f851d0f4bf57b0bab6" "id"=0

These key/value pairs show up in all subsequent log lines of the same call. For example:

I1122 20:30:21.878749 1 images.go:56] MetadataStore "msg"="Request response" "di

gest"="sha256:20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f851d0f4bf57b0bab6" "endpo

int"="/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f851d0

f4bf57b0bab6" "hostname"="metadata-store-app-564f8995c8-r8d6n" "id"=0 "method"="GET" "

code"=200 "response"="OK"

This is done to ensure:

The application interprets the values of the query or path parameters correctly.

Help figure out which log lines are associated with a particular API request. Since there can

be several simultaneous endpoint calls, this is a first attempt at grouping logs by specific calls.

Tanzu Application Platform v1.0

VMware, Inc 481

API payload log output

As mentioned at the start of this section, by setting the log level to debug, the Store logs the body

payload data for both the request and response of an API call.

The debug log level, instead of the default, is used to display this information instead of default

because:

Body payloads can be huge, containing full CycloneDX and SBOM information. Moving the

payload information at this level helps keep the production log output to a reasonable size.

Some information in these payloads may be sensitive, and the user may not want themSome information in these payloads may be sensitive, and the user may not want them

exposed in production environment logs.

SQL Query log output

Some Store logs display the executed SQL query commands when you set the log level to trace or

a failed SQL call occurs.

Note: Some information in these SQL Query trace logs might be sensitive, and the user might not

want them exposed in production environment logs.

Format

When the Store display SQL query logs, it uses the following format:

I0111 20:14:30.816833 1 connection.go:40] MetadataStore/gorm "msg"="Sql Call" "h

ostname"="metadata-store-app-56799fc4f9-phlv7" "rows"=1 "sql"="SELECT count(*) FROM in

formation_schema.tables WHERE table_schema = CURRENT_SCHEMA() AND table_name = 'images

' AND table_type = 'BASE TABLE'"

It is similar to the API endpoint log output format, but also uses the following key-value pairs:

Key Type
Log

Level
Description

row

s

integ

er

trace Indicates the number of rows affected by the SQL query

sql strin

g

trace Displays the raw SQL query for the database

dat

a#

strin

g

all Used in error log entries. You can replace # with an integer because multiples of these keys can

appear in the same log entry. These keys contain extra information related to the error.

Security details

Security Scans

See SCA Scanning Results for security scanning results for the API and CLI components.

Application security

Tanzu Application Platform v1.0

VMware, Inc 482

#api-endpoint-log-output

TLS encryption

Supply Chain Security Tools - Store requires TLS connection. If certificates are not provided, the

application will not start. It supports TLS v1.2 and TLS v1.3. It does not support TLS 1.0, so a

downgrade attack cannot happen. TLS 1.0 is prohibited under Payment Card Industry Data Security

Standard (PCI DSS).

Cryptographic algorithms:

Elliptic Curve:

CurveP521

CurveP384

CurveP256

Cipher Suites:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Access controls

Supply Chain Security Tools - Store uses kube-rbac-proxy as the only entry point to its API.

Authentication and Authorization must be completed successfully via the kube-rbac-proxy before its

API is accessible.

Authent icat ion

The kube-rbac-proxy uses Token Review to verify if the token is valid. Token Review is a Kubernetes

API to ensure a trusted vendor issued the access token provided by the user. To issue an access

token using Kubernetes, the user can create a Kubernetes Service Account and retrieve the

corresponding generated Secret for the access token.

To create an access token, please refer to the Create Service Account Access Token Docs

Author izat ion

The kube-rbac-proxy uses Subject Access Review to ensure users access certain operations.

Subject Access Review is a Kubernetes API that uses Kubernetes RBAC to determine if the user

can perform specific actions. Please refer to the Create Service Account Access Token doc.

There are only two supported roles: Read Only cluster role and Read and Write cluster role. These

cluster roles are deployed by default. Additionally, a service account is created and bound to the

Read and Write cluster role by default. If you do not want this service account, set

add_default_rw_service_account property to "false" in the metadata-store-values.yaml file

during deployment.

Tanzu Application Platform v1.0

VMware, Inc 483

https://github.com/brancz/kube-rbac-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
#install-scst-store

There is no default service account bound to the Read Only cluster role. The user will need to create

their own service account and cluster role binding to bind to the Read Only role.

Note: There is no support for roles with access to only specific types of resources (i.e., images,

packages, vulnerabilities, etc.)

Container security

Non-root user

All containers shipped do not use root user account, nor accounts with root access. Using

Kubernetes Security Context ensures that applications do not run with root user.

Security Context for the API server:

allowPrivilegeEscalation: false

runAsUser: 65532

fsGroup: 65532

Security Context for the Postgres DB pod:

allowPrivilegeEscalation: false

runAsUser: 999

fsGroup: 999

Note: 65532 is the uuid for the “nobody” user. 999 is the uuid for the “postgres” user.

Security scanning

There are two types of security scans that are performed before every release.

Static Application Security Testing (SAST)

A Coverity Scan is run on the source code of the API server, CLI, and all their dependencies. There

are no high or critical items outstanding at the time of release.

Software Composition Analysis (SCA)

A Black Duck scan is run on the compiled binary to check for vulnerabilities and license data. There

are no high or critical items outstanding at the time of release.

A Grype scan is run against the source code and the compiled container for dependencies

vulnerabilities. There are no high or critical items outstanding at the time of release.

SCA scanning results

1.0.2

Black Duck Binary Analysis (BDBA)

API backend

Tanzu Application Platform v1.0

VMware, Inc 484

Date: January 31, 2022

Results: no known vulnerabilities

CLI

Date: January 24, 2022

Results: no known vulnerabilities

Grype

Version: 0.32.0

API Backend Container Image

Date: February 2, 2022

Results: No high or critical vulnerabilities. Multiple medium and low vulnerabilities. For more

information, see the CycloneDX file content.

API Backend Code Repository

Date: February 2, 2022

Results: no known vulnerabilities

CLI Code Repository

Date: February 2, 2022

Results: no known vulnerabilities

1.0.0

Date: November 26, 2021

Scan Type:

Software Composition Analysis scanning

Source of Scan:

Black Duck Binary Analysis (BDBA)

Grype

Version of Source:

BDBA version 2021.9.0

Grype version 0.25.1

CVEs:

Tanzu Application Platform v1.0

VMware, Inc 485

#GUID-scst-store-sca_scans-cyclonedx-file-content

BDBA

No vulnerabilities were found in the API backend and CLI binaries.

See BDBA reports:

API backend report

CLI report

Grype

No vulnerabilities were found through scanning the API back end sources, client lib, and CLI.

The following CVEs were found through scanning the API back end image:

NAME INSTALLED FIXED-IN VULNERABILITY SEVERITY

libc6 2.27-3ubuntu1.4 CVE-2015-8985 Negligible

libc6 2.27-3ubuntu1.4 CVE-2016-10739 Low

libc6 2.27-3ubuntu1.4 CVE-2020-6096 Low

libc6 2.27-3ubuntu1.4 CVE-2021-3326 Low

libc6 2.27-3ubuntu1.4 CVE-2020-27618 Low

libc6 2.27-3ubuntu1.4 CVE-2019-25013 Low

libc6 2.27-3ubuntu1.4 CVE-2021-35942 Medium

libc6 2.27-3ubuntu1.4 CVE-2021-33574 Low

libc6 2.27-3ubuntu1.4 CVE-2021-38604 Medium

libc6 2.27-3ubuntu1.4 CVE-2016-10228 Negligible

libc6 2.27-3ubuntu1.4 CVE-2009-5155 Negligible

No high or critical CVEs present.

Backing up Supply Chain Security Tools – Store data

By default, the metadata store uses a PersistentVolume mounted on a Postgres instance, making it a

stateful component of Tanzu Application Platform. VMware recommends implementing a regular

backup strategy as part of your disaster recovery plan when using the provided Postgres instance.

Backup

You can use Velero to create regular backups.

Note: Backup support for PersistentVolume depends on the used StorageClass and existing

provider plug-ins is the noun or adjective. See the officially supported plugins here.

velero install --provider <provider> --bucket <bucket-name> --plugins <plugin-image-lo

cation> --secret-file <secrets-file>

For example:

velero install --provider gcp --bucket <gcs-bucket-name> --plugins velero/velero-plugi

n-for-gcp:v1.3.0 --secret-file <gcp-json-credentials>

Velero CLI can then be used to create a backup of all the resources in the metadata-store

namespace, including PersistentVolumeClaim and PersistentVolume.

Tanzu Application Platform v1.0

VMware, Inc 486

#Images/scst-store-sca_scans-store-bdba-scan-2021-11-26.jpg
#Images/scst-store-sca_scans-cli-bdba-scan-2021-11-26.jpg
https://velero.io/
https://velero.io/plugins/

velero backup create metadata-store-$(date '+%s') --include-namespaces=metadata-store

Restore

Velero CLI can restore the Store in the same or a different cluster. The same namespace can be

used to restore, but may collide with other Supply Chain Security Tools – Store installations.

Furthermore, restoring into the same namespace restores a fully functional instance of Supply Chain

Security Tools – Store; however, this instance is not managed by Tanzu Application Platform and can

cause conflicts with future installations.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store-$

timestamp --namespace-mappings metadata-store:metadata-store

Alternatively, a different namespace can be used to restore Supply Chain Security Tools – Store. In

this case, Supply Chain Security Tools – Store API is not available due to conflicting definitions in the

RBAC proxy configuration, causing all requests to fail with an Unauthorized error. In this scenario,

the postgres instance is still accessible, and tools such as pg_dump can be used to retrieve table

contents and restore in a new live installation of Supply Chain Security Tools – Store.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store-$

timestamp --namespace-mappings metadata-store:restored-metadata-store

Currently, mounting an existing PersistentVolume or PersistentVolumeClaim during installation is

not supported.

The minimum suggested resources for backups are PersistentVolume, PersistentVolumeClaim and

Secret. The database password Secret is needed to set up a Postgres instance with the correct

password to properly read data from the restored volume.

Failover, redundancy, and backups

API Server

By default the API server only has 1 replica. If the POD fails, the single instance restarts by normal

Kubernetes behavior, but there is downtime. If the user is upgrading, some downtime is expected in

most cases as well.

Users have the option to configure the number of replicas using the app_replicas field in the scst-

store-values.yaml file.

Database

By default, the database has 1 replica, and restarts with some downtime if it were to fail.

Although the field db_replicas exists and is configurable by the user in the scst-store-values.yaml

file, VMware discourages using it. The default internal database is not intended to be used in

production. For production use AWS RDS. See instructions here.

For the default postgres database deployment (set by default or by setting deploy_internal_db to

Tanzu Application Platform v1.0

VMware, Inc 487

true), Velero may be used as the backup method. Read more about using Velero as back up here.

VMware Tanzu Developer Tools for Visual Studio Code

Tanzu Developer Tools for VSCode is VMware Tanzu’s official IDE extension for VSCode to help you

develop with the Tanzu Application Platform (TAP). The Tanzu Dev Tools extension enables you to

rapidly iterate on your workloads on supported Kubernetes clusters with TAP installed.

This extension enables you to:

Debug workloads directly on your TAP-enabled Kubernetes cluster

Live update your workloads directly onto your TAP-enabled Kubernetes cluster

Generate snippets to quickly create TAP configuration files

Note: This extension currently only supports Java apps.

Installing Tanzu Dev Tools for Visual Studio Code

This topic explains how to install the VMware Tanzu Developer Tools for Visual Studio Code.

Prerequisites

Before installing the Tanzu Developer Tools IDE extension, you must have:

The Kubernetes command-line tool. For more information, see the Kubernetes

documentation.

Tilt v0.23.2 or later. You only need to install the Tilt component. Docker Desktop and local

Kubernetes are not prerequisites for VMware Tanzu Dev Tools for Visual Studio Code.

The Tanzu CLI. See Install the Tanzu CLI.

The Tanzu CLI apps plug-ins. See Install the Tanzu CLI plug-ins

A cluster with Tanzu Application Platform, the default Supply Chain, and their dependencies.

Download these from Tanzu Network. For installation instructions, see Installing the Tanzu

CLI.

VSCode

Installation

To install VMware Tanzu Developer Tools for Visual Studio Code:

1. Download Tanzu Developer Tools for Visual Studio Code from Tanzu Network.

2. Open VSCode. From the Command Palette (cmd + shift + P), run “Extensions: Install from

VSIX…”. Select the extension file, tanzu-vscode-extension.vsix.

3. When you do not already have a Java Development Kit(JDK) installed, the Java extension

pack prompts you to install one. Accept the dialog box to install the Extension Pack for Java

and the YAML Language Support by Red Hat. These are required to support debug and

code snippets, respectively.

4. Ensure Language Support for Java is running in Standard Mode.

Tanzu Application Platform v1.0

VMware, Inc 488

https://kubernetes.io/docs/tasks/tools/
https://docs.tilt.dev/install.html
https://code.visualstudio.com/download
https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode

When the JDK and Language Support for Java are configured correctly, you see that the integrated

development environment creates a directory “target” where the code is compiled.

Configuration

To configure VMware Tanzu Developer Tools for Visual Studio Code:

1. Ensure that you are targeting the correct cluster. For more information, see the Kubernetes

documentation.

2. Navigate to the Tanzu settings.

If on Windows, select File > Preferences > Settings > Extensions > Tanzu.

If on macOS, select Code > Preferences > Settings > Extensions > Tanzu.

3. Configure as follows:

Source Image (required): Set the location where an image containing source code is

published. For example, your-registry.io/project/tanzu-java-web-app-source.

Local Path (optional): Set the path on the local file system to a directory of source

code to build. The current directory is the default path.

Namespace (optional): Set the namespace to deploy workloads in. The namespace

specified in kubeconfig is the default namespace.

Quick Start

To quickly get started, use the sample application with the necessary configuration files. There are

two ways to get the sample application:

Application Accelerator

To get the sample application by using Application Accelerator:

1. Set up Application Accelerator.

2. Search for the Tanzu Java Web App.

3. Add the required configuration information and generate the application.

4. Unzip and open in VSCode.

Clone from GitHub

To clone the sample application from GitHub:

1. Use git clone to clone the tanzu-java-web-app repository from GitHub.

2. Go to the Tiltfile and replace your-registry.io/project with your registry server and

repository.

Note: To start with existing applications, see Code Snippets in the Tanzu Dev Tools Usage

documentation.

Uninstall

Tanzu Application Platform v1.0

VMware, Inc 489

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/index.html
https://github.com/sample-accelerators/tanzu-java-web-app

To uninstall the Tanzu Dev Tools extension:

1. Navigate to the extensions menu.

2. Right-click the Tanzu Dev Tools extension and select Uninstall.

Using Tanzu Dev Tools to Get Started

This topic explains how to use the VMware Tanzu Developer Tools for Visual Studio Code. For a

more detailed step-by-step walk-through, see Getting Started instructions.

Set Up with Snippets

Code snippets allow you to add the config files necessary to develop against the Tanzu Application

Platform (TAP) to existing projects. You must create three files. After you select a file, you will be

guided through the values requiring user input. You can use the Tab key to move through those

values.

The workload.yaml File

The workload.yaml file provides instructions to the Supply Chain Choreographer for how a workload

should be built and managed.

It can be triggered by creating a new file of type “YAML” and typing the keywords tanzu workload.

Note: To create your workload.yaml file manually, see Set Up Manually below.

The catalog.yaml File

The catalog-info.yaml file enables the workloads created with this project to be visible in the TAP

GUI.

It can be triggered by creating a new file of type “YAML” and typing the keywords tanzu catalog-

info or component.

Tiltfile

The Tiltfile provides the configuration for Tilt to enable your project to live update on the Tanzu

Application Platform.

It can be triggered by typing the keywords Tiltfile or tanzu tiltfile. This file should start as a

plaintext file, not a YAML file.

Note: To create your Tiltfile manually, see Create a Tiltfile below.

Set Up Manually

You can manually create a workload.yaml and Tiltfile.

Creating a workload.yaml File

Use the Tanzu CLI to create a workload.yaml file. For example:

Tanzu Application Platform v1.0

VMware, Inc 490

tanzu apps workload create my-workload --git-repo https://example.com/my-workload.git

> workload.yaml

For more information about this Tanzu CLI command, see Tanzu apps workload create in the Tanzu

CLI documentation.

Create a Tiltfile

The following is an example Tiltfile:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='<source-image>')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

k8s_custom_deploy(

 '<app-name>',

 apply_cmd="tanzu apps workload apply -f <path-to-workload> --live-update" +

 " --local-path " + LOCAL_PATH +

 " --source-image " + SOURCE_IMAGE +

 " --namespace " + NAMESPACE +

 " --yes >/dev/null" +

 " && kubectl get workload <app-name> --namespace " + NAMESPACE + " -o y

aml",

 delete_cmd="tanzu apps workload delete -f <path-to-workload> --namespace " + NAMES

PACE + " --yes",

 deps=['pom.xml', './target/classes'],

 container_selector='workload',

 live_update=[

 sync('./target/classes', '/workspace/BOOT-INF/classes')

]

)

k8s_resource(<app-name>, port_forwards=["8080:8080"],

 extra_pod_selectors=[{'serving.knative.dev/service': <app-name>}])

Update the following parameters in the preceding example:

1. <source-image>: Destination for an image containing source code to be published.

2. <app-name>: The name of the application.

3. <path-to-workload>: Path to a file containing the workload resource for your application.

If you target a remote cluster, add the following to the Tiltfile:

allow_k8s_contexts('context-name')

For more information, see the Tilt documentation.

Using Tanzu Dev Tools to iterate on your workload

Note: The Tanzu Developer Tools extension requires only one Tiltfile and workload.yaml per project.

These must be single-document YAML files rather than multi-document YAML files.

Debug your workload

Tanzu Application Platform v1.0

VMware, Inc 491

https://docs.tilt.dev/api.html#api.allow_k8s_contexts

Debugging requires a workload.yaml file in your project. For information about creating a

workload.yaml file, see workload.yaml in Using Tanzu Dev Tools to Get Started.

After you have a workload.yaml file in your project, you can debug:

1. Add a breakpoint in your code.

2. Right-click your workload.yaml.

3. Select Tanzu: Java Debug Start.

Live update your workload

Live update requires a workload.yaml file and a Tiltfile in your project.

For information about how to create these files, see Get set up with Snippets.

Starting Live Update

To start live update, do one of the following:

Right-click your project’s Tiltfile and select Tanzu: Live Update Start.

or

Start the Command Palette (⇧⌘P) and run the Tanzu: Live Update Start command.

Stopping Live Update

To stop live update, do one of the following:

Right-click your project’s Tiltfile and select Tanzu: Live Update Stop.

or

Start the Command Palette (⇧⌘P) and run the Tanzu: Live Update Stop command.

Note: When Live update stops, the application continues to run, but changes will not be present in

your running application unless you redeploy it.

Deactivate Live Update

To deactivate live update:

1. Start the Command Palette (⇧⌘P).

2. Run the Tanzu: Live Update Disable command.

3. Enter the name of the workload you want to deactivate live update for.

Note: This redeploys your workload to the cluster and removes the live update capability.

Switch a namespace

To switch the namespace that your workload is created in:

1. Navigate to the Nanzu settings: Preferences -> Settings -> Tanzu.

2. In the Namespace option, add the namespace you want to deploy to. This defaults to the

Tanzu Application Platform v1.0

VMware, Inc 492

default namespace.

Troubleshooting Tanzu Developer Tools for VS Code

Unable to to configure task

Symptom

After launching Extension Host, you cannot configure tasks in a workspace that does not contain

workload YAML files.

Solution

Re-install the Tanzu Developer Tools for VS Code extension.

Extension Pack for Java has not automatically installed

Symptom

The Extension Pack for Java (vscjava.vscode-java-pack) hasn’t automatically installed. This

prevents debugging from working after Tanzu Developer Tools for VS Code installs live-update.

Solution

Manually install vscjava.vscode-java-pack from the extension marketplace.

Tanzu API portal

API portal for VMware Tanzu enables API consumers to find APIs they can use in their own

applications. Consumers can view detailed API documentation and try out an API to see if it can

meet their needs. API portal assembles its dashboard and detailed API documentation views by

ingesting OpenAPI documentation from the source URLs. An API portal operator can add any

number of OpenAPI source URLs in a single instance.

For more information about Tanzu API portal, see API portal for VMware Tanzu.

Install Tanzu API portal

This document describes how to install Tanzu API portal from the Tanzu Application Platform

package repository.

Prerequisites

Note

Follow the steps in this topic if you do not want to use a profile to install API portal.

For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 493

https://docs.pivotal.io/api-portal

Before installing Tanzu API portal:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install

To install Tanzu API portal:

1. Check what versions of API portal are available to install by running:

tanzu package available list -n tap-install api-portal.tanzu.vmware.com

For example:

$ tanzu package available list api-portal.tanzu.vmware.com --namespace tap-inst

all

- Retrieving package versions for api-portal.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 api-portal.tanzu.vmware.com 1.0.3 2021-10-13T00:00:00Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get api-portal.tanzu.vmware.com/VERSION-NUMBER --values

-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1.

For example:

$ tanzu package available get api-portal.tanzu.vmware.com/1.0.3 --values-schema

 --namespace tap-install

For more information about values schema options, see the individual product

documentation.

3. Install API portal by running:

tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.com

-v 1.0.3

For example:

$ tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.co

m -v 1.0.3

/ Installing package 'api-portal.tanzu.vmware.com'

| Getting namespace 'api-portal'

| Getting package metadata for 'api-portal.tanzu.vmware.com'

| Creating service account 'api-portal-api-portal-sa'

| Creating cluster admin role 'api-portal-api-portal-cluster-role'

| Creating cluster role binding 'api-portal-api-portal-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

Tanzu Application Platform v1.0

VMware, Inc 494

Added installed package 'api-portal' in namespace 'tap-install'

Tanzu Application Platform GUI

See the following topics for information about Tanzu Application Platform GUI.

Overview of Tanzu Application Platform GUI

Installing Tanzu Application Platform GUI

Accessing Tanzu Application Platform GUI

Catalog operations

Authentication

Adding integrations

Database configuration

TechDocs

Tanzu Application Platform GUI plug-ins

Upgrading Tanzu Application Platform GUI

Troubleshoot Tanzu Application Platform GUI

Overview of Tanzu Application Platform GUI

Tanzu Application Platform GUI is a tool for your developers to view your organization’s running

applications and services. This portal provides a central location in which you can view

dependencies, relationships, technical documentation, and even service status.

Tanzu Application Platform GUI is built from the Cloud Native Computing Foundation’s project

Backstage.

Tanzu Application Platform GUI is comprised of the following components:

Your organization catalog: The catalog serves as the primary visual representation of your

running services (components) and applications (systems).

Tanzu Application Platform GUI plug-ins: These plug-ins expose capabilities regarding

specific Tanzu Application Platform tools. Initially the included plug-ins are:

Runtime Resources Visibility

Application Live View

Application Accelerator

TechDocs: This plug-in enables you to store your technical documentation in Markdown

format in a source-code repository and display it alongside the relevant catalog entries.

Tanzu Application Platform v1.0

VMware, Inc 495

https://www.cncf.io/
https://backstage.io/

A Git repository: Tanzu Application Platform GUI stores the following in a Git repository:

The structure for your application catalog.

Your technical documentation about the catalog items, if you enable Tanzu

Application Platform GUI TechDocs capabilities.

You can host the structure for your application catalog and your technical documentation in the

same repository as your source code.

Install Tanzu Application Platform GUI

This topic describes how to install Tanzu Application Platform GUI from the Tanzu Application

Platform package repository.

To install Tanzu Application Platform GUI, see the following sections.

Prerequisites

Before installing Tekton:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Git repository for Tanzu Application Platform GUI’s software catalogs, with a token allowing

read access. Supported Git infrastructure includes:

GitHub

GitLab

Note

Follow the steps in this topic if you do not want to use a profile to install Tanzu

Application Platform GUI. For more information about profiles, see About Tanzu

Application Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 496

Azure DevOps

Tanzu Application Platform GUI Blank Catalog from the Tanzu Application section of Tanzu

Network

To install, navigate to Tanzu Network. Under the list of available files to download,

there is a folder titled tap-gui-catalogs-latest. Inside that folder is a compressed

archive titled Tanzu Application Platform GUI Blank Catalog. You must extract

that catalog to the preceding Git repository of choice. This serves as the configuration

location for your Organization’s Catalog inside Tanzu Application Platform GUI.

The Tanzu Application Platform GUI catalog allows for two approaches towards storing

catalog information:

The default option uses an in-memory database and is suitable for test and

development scenarios. The in-memory database reads the catalog data from Git

URLs that you enter in the tap-values.yml file. This data is temporary, and any

operations that cause the server Pod in the tap-gui namespace to be re-created

also cause this data to be rebuilt from the Git location. This can cause issues when

you manually register entities by using the UI because they only exist in the database

and are lost when that in-memory database gets rebuilt.

For production use-cases, use a PostgreSQL database that exists outside the Tanzu

Application Platform packaging. The PostgreSQL database stores all the catalog data

persistently both from the Git locations and the UI manual entity registrations. For

more information, see Configuring the Tanzu Application Platform GUI database

Procedure

To install Tanzu Application Platform GUI:

1. List version information for the package by running:

tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tap-gui.tanzu.vmware.com 1.0.1 2022-01-10T13:14:23Z

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get tap-gui.tanzu.vmware.com/1.0.1 --values-schema --na

mespace tap-install

For more information about values schema options, see the individual product

documentation.

3. Create tap-gui-values.yaml using the following example code, replacing all placeholders

with your relevant values. The meanings of some placeholders are explained in this example:

service_type: ClusterIP

ingressEnabled: true

Tanzu Application Platform v1.0

VMware, Inc 497

https://network.tanzu.vmware.com/products/tanzu-application-platform/

ingressDomain: "INGRESS-DOMAIN"

app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-

shared-ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file from

either the included Blank catalog (provided as an additional download named Blank

Tanzu Application Platform GUI Catalog) or a Backstage-compliant catalog that

you’ve already built and posted on the Git infrastructure specified in the Integration

section.

4. Install the package by running:

tanzu package install tap-gui \

 --package-name tap-gui.tanzu.vmware.com \

 --version 1.0.1 -n tap-install \

 -f tap-gui-values.yaml

For example:

$ tanzu package install tap-gui -package-name tap-gui.tanzu.vmware.com --versio

n 1.0.1 -n tap-install -f tap-gui-values.yaml

- Installing package 'tap-gui.tanzu.vmware.com'

| Getting package metadata for 'tap-gui.tanzu.vmware.com'

| Creating service account 'tap-gui-default-sa'

| Creating cluster admin role 'tap-gui-default-cluster-role'

| Creating cluster role binding 'tap-gui-default-cluster-rolebinding'

| Creating secret 'tap-gui-default-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tap-gui' in namespace 'tap-install'

5. Verify that the package installed by running:

tanzu package installed get tap-gui -n tap-install

For example:

$ tanzu package installed get tap-gui -n tap-install

| Retrieving installation details for cc...

NAME: tap-gui

PACKAGE-NAME: tap-gui.tanzu.vmware.com

PACKAGE-VERSION: 1.0.1

Tanzu Application Platform v1.0

VMware, Inc 498

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

6. To access Tanzu Application Platform GUI, use the service you exposed in the service_type

field in the values file.

Accessing Tanzu Application Platform GUI

Use one of the following methods to access Tanzu Application Platform GUI:

Access with the LoadBalancer method (default)

Access with the shared Ingress method

Access with the LoadBalancer method (default)

1. Verify that you specified the service_type for Tanzu Application Platform GUI in tap-

values.yaml, as in this example:

tap_gui:

 service_type: LoadBalancer

Follow these steps:

1. Obtain the external IP address of your LoadBalancer by running:

kubectl get svc -n tap-gui

2. Access Tanzu Application Platform GUI by using the external IP address with the default port

of 7000. It has the following form:

http://EXTERNAL-IP:7000

Where EXTERNAL-IP is the external IP address of your LoadBalancer.

Access with the shared Ingress method

The Ingress method of access for Tanzu Application GUI uses the shared tanzu-system-ingress

instance of Contour that is installed as part of the Profile installation.

1. The Ingress method of access requires that you have a DNS host name that you can point at

the External IP address of the envoy service that the shared tanzu-system-ingress uses.

Retrieve this IP address by running:

kubectl get service envoy -n tanzu-system-ingress

This returns a value similar to this example:

$ kubectl get service envoy -n tanzu-system-ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

Tanzu Application Platform v1.0

VMware, Inc 499

 AGE

envoy LoadBalancer 10.0.242.171 40.118.168.232 80:31389/TCP,443:31780/T

CP 27h

The IP address in the EXTERNAL-IP field is the one that you point a DNS host record to. Tanzu

Application Platform GUI prepends tap-gui to your provided subdomain. This makes the

final host name tap-gui.YOUR-SUBDOMAIN. You use this host name in the appropriate fields in

the tap-values.yaml file mentioned later.

2. Specify parameters in tap-values.yaml related to Ingress. For example:

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: 'example.com' # This makes the host name tap-gui.example.com

3. Update your other host names in the tap_gui section of your tap-values.yaml with the new

host name. For example:

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: 'example.com' # This makes the host name tap-gui.example.com

Existing tap-values.yml above

 app_config:

 app:

 baseUrl: http://tap-gui.example.com # No port needed with Ingress

 integrations:

 github: # Other are integrations available

 - host: github.com

 token: GITHUB-TOKEN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.example.com # No port needed with Ingress

 cors:

 origin: http://tap-gui.example.com # No port needed with Ingress

This snippet is from a values file in the Configure Tanzu Application Platform GUI section of

the Profiles installation topic. The new host names are populated based on the example host

name tap-gui.example.com.

4. Update your package installation with your changed tap-values.yaml file by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --versio

n VERSION-NUMBER \

--values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

5. Use a web browser to access Tanzu Application Platform GUI at the host name that you

provided.

Tanzu Application Platform v1.0

VMware, Inc 500

#configure-tap-gui

Catalog operations

The software catalog setup procedures in this topic make use of Backstage. For more information

about Backstage, see the Backstage documentation.

Adding catalog entities

This section describes how you can format your own catalog. Creating catalogs consists of building

metadata YAML files stored together with the code. This information is read from a Git-compatible

repository consisting of these YAML catalog definition files. Changes made to the catalog definitions

on your Git infrastructure are automatically reflected every 200 seconds or when manually

registered.

For each catalog entity kind you create, there is a file format you must follow. For information about

all types of entities, see the Backstage documentation.

You can use the example blank catalog described in the Tanzu Application Platform GUI

prerequisites as a foundation for creating user, group, system, and main component YAML files.

Relationship Diagram:

Users and groups

A user entity describes a specific person and is used for identity purposes. Users are members of

one or more groups. A group entity describes an organizational team or unit.

Users and groups have different descriptor requirements in their descriptor files:

User descriptor files require apiVersion, kind, metadata.name, and spec.memberOf.

Group descriptor files require apiVersion, kind, and metadata.name. They also require

spec.type and spec.children where spec.children is another group.

To link a logged-in user to a user entity, include the optional spec.profile.email field.

Sample user entity:

apiVersion: backstage.io/v1alpha1

kind: User

metadata:

 name: default-user

Tanzu Application Platform v1.0

VMware, Inc 501

https://backstage.io/docs/features/software-catalog/software-catalog-overview
https://backstage.io/docs/features/software-catalog/descriptor-format

spec:

 profile:

 displayName: Default User

 email: guest@example.com

 picture: https://avatars.dicebear.com/api/avataaars/guest@example.com.svg?backgrou

nd=%23fff

 memberOf: [default-team]

Sample group entity:

apiVersion: backstage.io/v1alpha1

kind: Group

metadata:

 name: default-team

 description: Default Team

spec:

 type: team

 profile:

 displayName: Default Team

 email: team-a@example.com

 picture: https://avatars.dicebear.com/api/identicon/team-a@example.com.svg?backgro

und=%23fff

 parent: default-org

 children: []

More information about user entities and group entities is available in the Backstage documentation.

Systems

A system entity is a collection of resources and components.

System descriptor files require values for apiVersion, kind, metadata.name, and also spec.owner

where spec.owner is a user or group.

A system has components when components specify the system name in the field spec.system.

Sample system entity:

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

 name: backstage

 description: Tanzu Application Platform GUI System

spec:

 owner: default-team

More information about system entities is available in the Backstage documentation.

Components

A component describes a software component, or what might be described as a unit of software.

Component descriptor files require values for apiVersion, kind, metadata.name, spec.type,

spec.lifecycle, and spec.owner.

Some useful optional fields are spec.system and spec.subcomponentOf, both of which link a

component to an entity that it is part of.

Tanzu Application Platform v1.0

VMware, Inc 502

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-group
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-system

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: backstage-component

 description: Tanzu Application Platform GUI Component

 annotations:

 'backstage.io/kubernetes-label-selector': 'app=backstage' #Identifies the Kubernet

es objects that make up this component

 'backstage.io/techdocs-ref': dir:. #TechDocs label

spec:

 type: service

 lifecycle: alpha

 owner: default-team

 system: backstage

More information about component entities is available in the Backstage documentation.

Update software catalogs

The following procedures describe how to update software catalogs.

Register components

To update your software catalog with new entities without re-deploying the entire tap-gui package:

1. Go to your Software Catalog page.

2. Click Register Entity at the top-right of the page.

3. Enter the full path to link to an existing entity file and start tracking your entity.

4. Import the entities and view them in your Software Catalog page.

Deregister components

To deregister an entity:

1. Go to your Software Catalog page.

2. Select the entity to deregister, such as component, group, or user.

3. Click the three dots at the top-right of the page and then click Unregister….

Add or change organization catalog locations

1. Use static configuration to add or change catalog locations:

Update components by changing the catalog location in either the app_config

section of tap-gui-values.yaml or the custom values file you used when installing.

For example:

catalog:

locations:

- type: url

 target: UPDATED-CATALOG-LOCATION

Register components by adding the new catalog location in either the app_config

Tanzu Application Platform v1.0

VMware, Inc 503

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-component

section of tap-gui-values.yaml or the custom values file you used when installing.

For example:

catalog:

locations:

- type: url

 target: EXISTING-CATALOG-LOCATION

- type: url

 target: EXTRA-CATALOG-LOCATION

When targeting GitHub, don’t write the raw URL. Instead, use the URL that you see when

you navigate to the file in the browser. The catalog processor cannot set up the files properly

if you use the raw URL.

Example raw URL: https://raw.githubusercontent.com/user/repo/catalog.yaml

Example target URL: https://github.com/user/repo/blob/main/catalog.yaml

When targeting GitLab, use a scoped route to the catalog file. This is a route with the /-/

separator after the project name. If you don’t use a scoped route, your entity fails to appear

in the catalog.

Example unscoped URL:

https://gitlab.com/group/project/blob/main/catalog.yaml

Example target URL: https://gitlab.com/group/project/-

/blob/main/catalog.yaml

For more information about static catalog configuration, see the Backstage documentation.

2. Update the package to include the catalog by running:

tanzu package installed update backstage \

 --version PACKAGE-VERSION \

 -f VALUES-FILE

3. Verify the status of this update by running:

tanzu package installed list

Install demo apps and their catalogs

To set up one of the demos, you can choose a blank catalog or a sample catalog.

Yelb system

The Yelb demo catalog in Github includes all the components that make up the Yelb system and the

default Backstage components.

Install Yelb

1. Download the appropriate file for running the Yelb application itself from GitHub.

2. Install the application on the Kubernetes cluster that you used for Tanzu Application Platform.

Preserve the metadata labels on the Yelb application objects.

Tanzu Application Platform v1.0

VMware, Inc 504

https://docs.gitlab.com/ee/development/routing.html#project-routes
https://backstage.io/docs/features/software-catalog/configuration#static-location-configuration
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml

Install the Yelb catalog

1. From the Tanzu Application Platform downloads page, click tap-gui-catalogs-latest > Tanzu

Application Platform GUI Yelb Catalog.

2. Follow the earlier steps for Adding catalog entities to add catalog-info.yaml.

Setting up a Tanzu Application Platform GUI authentication
provider

Tanzu Application Platform GUI extends the current Backstage’s authentication plug-in so that you

can see a login page based on the authentication providers configured at installation. This feature is a

work in progress. It currently supports the following authentication providers as standard:

Auth0

Azure

Bitbucket

GitHub

GitLab

Google

Okta

OneLogin

Configure an authentication provider

Configure a supported authentication provider or a custom OpenID Connect (OIDC) provider:

To configure a supported authentication provider, see the Backstage authentication

documentation.

To configure a custom OpenID Connect (OIDC) provider, edit your tap-values.yaml file or

your custom configuration file to include an OIDC authentication provider. Configure the

OIDC provider with your OAuth App values. For example:

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: "INGRESS-DOMAIN"

 app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

Tanzu Application Platform v1.0

VMware, Inc 505

https://network.pivotal.io/products/tanzu-application-platform
https://backstage.io/docs/auth/auth0/provider
https://backstage.io/docs/auth/microsoft/provider
https://backstage.io/docs/auth/bitbucket/provider
https://backstage.io/docs/auth/github/provider
https://backstage.io/docs/auth/gitlab/provider
https://backstage.io/docs/auth/google/provider
https://backstage.io/docs/auth/okta/provider
https://backstage.io/docs/auth/onelogin/provider
https://backstage.io/docs/auth/

#Existing values file above

 auth:

 environment: development

 session:

 secret: custom session secret

 providers:

 oidc:

 development:

 metadataUrl: AUTH-OIDC-METADATA-URL

 clientId: AUTH-OIDC-CLIENT-ID

 clientSecret: AUTH-OIDC-CLIENT-SECRET

 tokenSignedResponseAlg: AUTH-OIDC-TOKEN-SIGNED-RESPONSE-ALG # defau

lt='RS256'

 scope: AUTH-OIDC-SCOPE # default='openid profile email'

 prompt: auto # default=none (allowed values: auto, none, consent, l

ogin)

Where AUTH-OIDC-METADATA-URL is a JSON file with generic OIDC provider configuration. It

contains authorizationUrl and tokenUrl. Tanzu Application Platform GUI reads these values

from metadataUrl, so you must not specify these values explicitly in the earlier authentication

configuration.

You must also the provide the redirect URI of the Tanzu Application Platform GUI instance to

your identity provider. The redirect URI is sometimes called the redirect URL, the callback

URL, or the callback URI. The redirect URI takes the following form:

SCHEME://tap-gui.INGRESS-DOMAIN/api/auth/oidc/handler/frame

Where:

SCHEME is the URI scheme, most commonly http or https

INGRESS-DOMAIN is the host name you selected for your Tanzu Application Platform

GUI instance

When using https and example.com as examples for the two placeholders respectively, the

redirect URI reads as follows:

https://tap-gui.example.com/api/auth/oidc/handler/frame

For more information, see this example in GitHub.

(Optional) Allow guest access

Enable guest access with other providers by adding the following flag under your authentication

configuration:

(Optional) Customize the login page

Change the card’s title or description for a specific provider with the following configuration:

auth:

 environment: development

 providers:

Tanzu Application Platform v1.0

VMware, Inc 506

https://github.com/backstage/backstage/blob/e4ab91cf571277c636e3e112cd82069cdd6fca1f/app-config.yaml#L333-L347

 ... # auth providers config

 loginPage:

 github:

 title: Github Login

 message: Enter with your GitHub account

For a provider to appear on the login page, ensure it is properly configured under the

auth.providers section of your values file.

Support menu customization

Overview

Many important pages of Tanzu Application Platform GUI have a “Support” button that displays a

pop-out menu. This menu contains a one-line description of the page the user is looking at, and a

list of support item groupings. For example, the default menu on the Catalog page looks like this:

Out of the box, there are two support item groupings:

Contact Support, which is marked with an “email” icon and contains a link to VMware Tanzu’s

support portal.

Documentation, which is marked with a “docs” icon and contains a link to the Tanzu

Application Platform documentation (which you are currently reading).

Customizing

The set of support item groupings is completely customizable; however, you may want to offer

custom in-house links for your Tanzu Application Platform users rather than simply sending them to

VMware support and documentation. You can provide this configuration via your tap-values-

file.yml. Here is a configuration snippet, which produces the default support menu:

tap_gui:

 app_config:

 app:

 support:

 url: https://tanzu.vmware.com/support

 items:

 - title: Contact Support

 icon: email

 links:

 - url: https://tanzu.vmware.com/support

 title: Tanzu Support Page

 - title: Documentation

 icon: docs

 links:

 - url: https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/inde

x.html

 title: Tanzu Application Platform Documentation

Structure of the support configuration

URL

Tanzu Application Platform v1.0

VMware, Inc 507

The url field under the support stanza, for example,

 support:

 url: https://tanzu.vmware.com/support

determines the address of the “contact support” link that appears on error pages like this one:

Items

The items field under the support stanza, for example,

determines the set of support item groupings to display when the support menu is expanded.

Title

The title field on a support item grouping, for example,

 items:

 - title: Contact Support

determines the label for the grouping.

Icon

The icon field on a support item grouping, for example,

 items:

 - icon: email

determines the icon to use for that grouping. The valid choices are:

brokenImage

catalog

chat

dashboard

docs

email

github

group

help

user

warning

Links

The links field on a support item grouping, for example,

Tanzu Application Platform v1.0

VMware, Inc 508

 items:

 - links:

 - url: https://tanzu.vmware.com/support

 title: Tanzu Support Page

is a list of YAML objects that render as links. Each link has the text given by the title field and links

to the value of the url field.

Adding Tanzu Application Platform GUI integrations

You can integrate Tanzu Application Platform GUI with several Git providers. To use an integration,

you must enable it and provide the necessary token or credentials in tap-values.yaml.

Add a GitHub provider integration

To add a GitHub provider integration, edit tap-values.yaml as in this example:

 app_config:

 app:

 baseUrl: http://EXTERNAL-IP:7000

 # Existing tap-values-file.yml above

 integrations:

 github: # Other integrations available see NOTE below

 - host: github.com

 token: GITHUB-TOKEN

Where:

EXTERNAL-IP is the external IP address.

GITHUB-TOKEN is a valid token generated from your Git infrastructure of choice. Ensure

GITHUB-TOKEN has the necessary read permissions for the catalog definition files you

extracted from the blank software catalog introduced in the Tanzu Application Platform GUI

prerequisites.

Add a Git-based provider integration that isn’t GitHub

To enable Tanzu Application Platform GUI to read Git-based non-GitHub repositories containing

component information:

Add the following YAML to tap-values.yaml:

 app_config:

 # Existing tap-values.yaml above

 backend:

 reading:

 allow:

 - host: "GIT-CATALOG-URL-1"

 - host: "GIT-CATALOG-URL-2" # Including more than one URL is optional

Where GIT-CATALOG-URL-1 and GIT-CATALOG-URL-2 are URLs in a list of URLs that Tanzu Application

Platform GUI can read when registering new components. For example, git.example.com. For more

information about registering new components, see Adding catalog entities.

Tanzu Application Platform v1.0

VMware, Inc 509

Add a non-Git provider integration

To add an integration for a provider that isn’t associated with GitHub, see the Backstage

documentation.

Update the package profile

After making changes to tap-values.yaml, update the package profile by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --version VERS

ION-NUMBER --values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is the Tanzu Application Platform version. For example, 1.0.1.

For example:

$ tanzu package installed update tap --package-name tap.tanzu.vmware.com --version 1.

0.1 --values-file tap-values-file.yml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

Configuring the Tanzu Application Platform GUI database

The Tanzu Application Platform GUI catalog allows for two approaches for storing catalog

information:

In-memory database: The default option uses an in-memory database and is suitable for test

and development scenarios only. The in-memory database reads the catalog data from Git

URLs that you write in tap-values.yaml.

This data is temporary. Any operations that cause the server pod in the tap-gui namespace

to be re-created also cause this data to be rebuilt from the Git location.

This can cause issues when you manually register entities by using the UI because they only

exist in the database and are lost when that in-memory database is rebuilt. If you choose this

method, you lose all user preferences and any manually registered entities when the Tanzu

Application Platform GUI server pod is re-created.

PostgreSQL database: For production use-cases, use a PostgreSQL database that exists

outside the Tanzu Application Platform packaging. The PostgreSQL database stores all the

catalog data persistently both from the Git locations and the UI manual entity registrations.

For production or general-purpose use-cases, VMware recommends using a PostgreSQL database.

Configure a PostgreSQL database

Tanzu Application Platform v1.0

VMware, Inc 510

https://backstage.io/docs/integrations/

To use a PostgreSQL database:

1. Use the following values in tap-values.yaml:

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

 # Existing tap-values.yml above

 database:

 client: pg

 connection:

 host: PG-SQL-HOSTNAME

 port: 5432

 user: PG-SQL-USERNAME

 password: PG-SQL-PASSWORD

 ssl: {rejectUnauthorized: false} # Set to true if using SSL

Where:

PG-SQL-HOSTNAME is the host name of your PostgreSQL database.

PG-SQL-USERNAME is the user name of your PostgreSQL database.

PG-SQL-PASSWORD is the password of your PostgreSQL database.

2. Update the package profile by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --versi

on 1.0.1 --values-file tap-values-file.yml -n tap-install

For example:

$ tanzu package installed update tap --package-name tap.tanzu.vmware.com --ver

sion 1.0.1 --values-file tap-values-file.yml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

TechDocs

This guide explains how to generate and publish TechDocs for catalogs. You can also leverage the

Backstage.io documentation as necessary.

Create an Amazon S3 bucket

1. Navigate to Amazon S3:

1. Click Create bucket.

Tanzu Application Platform v1.0

VMware, Inc 511

https://backstage.io/docs/features/techdocs/techdocs-overview
https://s3.console.aws.amazon.com/s3/home

2. Give the bucket a name.

3. Select the AWS region.

4. Keep Block all public access checked.

5. Click Create bucket.

Configure Amazon S3 access

The TechDocs are published to the S3 bucket that was just created. You need an AWS user’s access

key to read from the bucket when viewing TechDocs. To configure Amazon S3 access:

1. Create an AWS IAM User Group:

1. Click Create Group.

2. Give the group a name.

3. Click Create Group.

4. Click the new group and navigate to Permissions.

5. Click Add permissions and click Create Inline Policy.

6. Click the JSON tab and replace contents with this JSON replacing BUCKET-NAME with

the bucket name.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "ReadTechDocs",

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket",

 "s3:GetObject"

],

 "Resource": [

 "arn:aws:s3:::BUCKET-NAME",

 "arn:aws:s3:::BUCKET-NAME/*"

]

 }

]

}

7. Click Review policy.

8. Give the policy a name and click Create policy.

2. Create an AWS IAM User to add to this group:

1. Click Add users.

2. Give the user a name.

3. Check Access key - Programmatic access and click Next: Permissions.

4. Check the IAM Group to add the user to and click Next: Tags.

5. Click Next: Review then click Create user.

Tanzu Application Platform v1.0

VMware, Inc 512

https://console.aws.amazon.com/iamv2/home#/groups
https://console.aws.amazon.com/iamv2/home#/users

6. Record the Access key ID (AWS_READONLY_ACCESS_KEY_ID) and the Secret access key

(AWS_READONLY_SECRET_ACCESS_KEY) and click Close.

Find the catalog locations and their entities’
namespace/kind/name

TechDocs are generated for catalogs that have markdown source files for TechDocs. To find the

catalog locations and their entities’ namespace/kind/name:

1. The catalogs appearing in Tanzu Application Platform GUI are listed in the tap-gui-

values.yaml under catalog.locations.

2. For a given catalog, clone the catalog’s repository to the local file system.

3. Find the mkdocs.yml that is at the root of the catalog. There is a YAML file describing the

catalog at the same level called catalog-info.yaml.

Record the values for namespace, kind, and metadata.name, and the directory path

containing the YAML file.

4. Record the spec.targets in that file.

Find the namespace/kind for each of the targets:

1. Navigate to the target’s YAML file.

2. The namespace value is the value of namespace. If it is not specified, it has the

value default.

3. The kind value is the value of kind.

4. The name value is the value of metadata.name.

5. Record the directory path containing the YAML file.

Use the TechDocs CLI to generate and publish TechDocs

VMware uses npx to run the TechDocs CLI, which requires Node.js and npm. To generate and

publish TechDocs by using the TechDocs CLI:

1. Download and install Node.js and npm.

2. Install npx:

npm install -g npx

3. Generate the TechDocs for the root of the catalog by running:

npx @techdocs/cli generate --source-dir DIRECTORY-CONTAINING-THE-ROOT-YAML-FILE

 --output-dir ./site

This creates a temporary site directory in your current working directory that contains the

generated TechDocs files.

4. Review the contents of the site directory to verify the TechDocs were generated

successfully.

Tanzu Application Platform v1.0

VMware, Inc 513

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

5. Set environment variables for authenticating with AWS S3 with an account that has

read/write access:

export AWS_ACCESS_KEY_ID=AWS-ACCESS-KEY-ID

export AWS_SECRET_ACCESS_KEY=AWS-SECRET-ACCESS-KEY

export AWS_REGION=AWS-REGION

6. Publish the TechDocs for the root of the catalog to the Amazon S3 bucket you created

earlier.

The NAMESPACE/KIND/NAME are the values for namespace, kind, and metadata.name you

recorded earlier.

For example, default/location/yelb-catalog-info.

npx @techdocs/cli publish --publisher-type awsS3 --storage-name BUCKET-NAME --e

ntity NAMESPACE/KIND/NAME --directory ./site

7. For each of the spec.targets found earlier repeat the generate and publish commands.

Note: The generate command erases the contents of the site directory before creating new

TechDocs files so the publish command must follow the generate command for each target.

Update techdocs section in app-config.yaml to point to the
Amazon S3 bucket

Vmware updates the tap-gui-values.yaml you used at install-time to point to the Amazon S3 bucket

that has the published TechDocs files. To update the techdocs section app-config.yaml to point to

the Amazon S3 bucket:

1. Replace the techdocs section in tap-gui-values.yaml with the following YAML, substituting

appropriate values for the placeholders.

techdocs:

 builder: 'external'

 publisher:

 type: 'awsS3'

 awsS3:

 bucketName: BUCKET-NAME

 credentials:

 accessKeyId: AWS-READONLY-ACCESS-KEY-ID

 secretAccessKey: AWS-READONLY-SECRET-ACCESS-KEY

 region: AWS-REGION

 s3ForcePathStyle: false

2. Update your installation using the tanzu CLI:

tanzu package installed update tap-gui \

 --version <package-version> \

 -f <values-file>

3. Check the status of this update by running:

tanzu package installed list

Tanzu Application Platform v1.0

VMware, Inc 514

4. Navigate to the Docs section of your catalog and view the TechDocs pages to verify the

content is loaded from the S3 bucket successfully.

Tanzu Application Platform GUI plug-ins

Overview

The Tanzu Application Platform GUI has many pre-integrated plug-ins. You do not need to configure

the plug-ins. To use the plug-in, you must install the Tanzu Application Platform component.

Tanzu Application Platform includes the following GUI plug-ins:

Runtime Resources Visibility

Application Live View

Application Accelerator

Runtime resources visibility

The Runtime Resources tab shows developers the details and status of their component’s

Kubernetes resources to understand their structure and debug issues.

Prerequisites

To ensure your component and its resources are displayed, you need:

A YAML file describing your component.

All resources created for your application must have a label 'app.kubernetes.io/part-of'

with your application’s name.

Developers must follow these instructions to see their resources on the dashboard:

1. Define a Backstage component with a backstage.io/kubernetes-label-selector annotation.

See Components in the Catalog operations documentation.

You can use a tool to create this file, or you can do it manually:

Use Tanzu Developer Tools for Visual Studio Code to generate the component’s

YAML. For information about this file, see catalog-info.yaml.

Use Tanzu Application Platform Initializer in Application Accelerator to generate the

catalog-info.yaml file. For additional instructions, see Generate YAML files using

Tanzu Application Platform Initializer.

Create the file using your preferred IDE. For example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: petclinic name: petclinic

 description: Spring PetClinic

 annotations:

 'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=

Tanzu Application Platform v1.0

VMware, Inc 515

#catalog-infoyaml
https://github.com/sample-accelerators/tap-initialize/blob/main/README.md

petclinic-server'

spec:

 type: service

 lifecycle: demo

 owner: default-team

 system:

2. Commit and push the component definition created in the previous steps, to a Git repository

registered as a catalog location. See Adding catalog entities in the Catalog operations

documentation.

3. Create a Kubernetes resource with a label matching the component’s selector in a cluster

available to Tanzu Application Platform GUI. A resource is one of the following:

v1/Service

apps/v1/Deployment

serving.knative.dev/v1/Service

You can create the YAML file with the workload’s definition by using one of these options:

Use Tanzu Developer Tools for Visual Studio Codeto generate the workload’s

definition YAML. For information about this file, see workload.yaml.

Use Tanzu Application Platform Initializer in Application Accelerator to generate the

workload.yaml file. For additional instructions, see Generate YAML files using Tanzu

Application Platform Initializer.

Create the file manually with your preferred IDE. For example:

$ cat <<EOF | kubectl apply -f -

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: petclinic

 namespace: default

 labels:

 'app.kubernetes.io/part-of': petclinic-server

spec:

 template:

 metadata:

 labels:

 'app.kubernetes.io/part-of': petclinic-server

 spec:

 containers:

 - image: springcommunity/spring-framework-petclinic

EOF

Generate YAML files using Tanzu Application Platform
Initializer

Tanzu Application Platform Initializer is available in Application Accelerator. To learn more about the

package, see the README.md in GitHub.

You can follow these steps to generate YAML files by using Tanzu Application Platform Initializer:

Tanzu Application Platform v1.0

VMware, Inc 516

#adding-catalog-entities
https://github.com/sample-accelerators/tap-initialize/blob/main/README.md
https://github.com/sample-accelerators/tap-initialize/blob/main/README.md

Access the Tanzu Application Platform Project Configuration in the Accelerators page or

access it directly through Tanzu Application Platform GUI by using <TAP-GUI-

URL>/create/templates/tap-initialize.

Enter the required information and click Next.

Verify the parameters and click Generate Accelerator.

After the process is complete, download the package (a zip file that includes the generated

files), uncompress it and follow the instructions in the INSTRUCTIONS.md file.

Tanzu Application Platform v1.0

VMware, Inc 517

Navigate to the Runtime Resources visibility screen

You can view the list of running resources and details about their status, type, namespace, cluster,

and public URL if applicable for the resource type.

To view the list of your running resources:

1. Select your component from the Catalog index page.

2. Select the Runtime Resources tab.

Tanzu Application Platform v1.0

VMware, Inc 518

View details for a specific resource

The Resources index table shows Deployments, Pods, ReplicaSets and Services that match the label

indicated in the component’s definition. You can see a hierarchical structure showing the owner-

dependent relationship between the objects. Resources without an owner are listed in the table as

independent elements.

For information about owners and dependents, see Kubernetes documentation.

Here is an example of the expanded index table showing one of the owner resources and its

dependents.

Detail pages

The Runtime Resources visibility plug-in provides detail pages with the most relevant characteristics

Tanzu Application Platform v1.0

VMware, Inc 519

https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/

of many resources, including direct links to other ones.

These following sections explain the boxes included on all detail pages:

Overview section

The overview section is the first card in every detail page. Most of the information in it comes from

the metadata attribute in each object. Some attributes displayed here include:

1. .YAML button: When you click on the .YAML button, a side panel opens showing the

current object’s definition in YAML. You can copy the full content of the .YAML file by using

the icon in the top-right corner of the side panel..

2. Name

3. Namespace

4. Age or Creation date

5. Cluster: The value displayed corresponds to the name used in the cluster’s configuration.

6. URL: URL is available for Knative services and Kubernetes services.

Status section

The status section displays all of the conditions in the resource’s attribute status.conditions. Not all

resources have conditions, and they can be different for each resource.

See Concepts - Object Spec and Status in the Kubernetes documentation.

Tanzu Application Platform v1.0

VMware, Inc 520

https://kubernetes.io/docs/concepts/_print/#object-spec-and-status

Ownership section

Depending on the resource that you are viewing, the ownership section presents all the resources

specified in the metadata.ownerReferences. You can use this section to navigate between resources.

See Owners and Dependents in the Kubernetes documentation.

Tanzu Application Platform v1.0

VMware, Inc 521

https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/

Annotations and Labels

The Annotations and Labels sections show information about metadata.annotations and

metadata.labels.

Navigating to Pods

You can navigate directly to the Pod’s detail page from the Resources index table.

You can use the table listing Pods in each owner object’s detail page. Columns can be different on

each detail page.

Knative service details page

To view details about your Knative services, select any resource that has the “Knative Service” type.

In this page, additional information is available for Knative resources, including:

status

an ownership hierarchy

Tanzu Application Platform v1.0

VMware, Inc 522

incoming routes

revisions

Pod details

Pod details page

This page shows you most relevant information for a specific Pod including its containers and the

Application Live View information.

Tanzu Application Platform v1.0

VMware, Inc 523

Application Live View in Tanzu Application Platform GUI

Overview

The Application Live View features of the Tanzu Application Platform include sophisticated

components to give developers and operators a view into their running workloads on Kubernetes.

Application Live View shows an individual running process, for example, a Spring Boot application

deployed as a workload resulting in a JVM process running inside of a Pod. This is an important

concept of Application Live View: only running processes are recognized by Application Live View.

If there is not a running process inside of a running Pod, Application Live View does not show

anything.

Under the hood, Application Live View uses the concept of Spring Boot Actuators to gather data

from those running processes. It visualizes them in a semantically meaningful way and allows users to

interact with the inner workings of the running processes (within limited boundaries).

The actuator data serves as the source of truth. Application Live View provides a live view of the data

from inside of the running processes only. Application Live View does not store any of that data for

further analysis or historical views. This easy-to-use interface provides ways to troubleshoot, learn,

Tanzu Application Platform v1.0

VMware, Inc 524

and maintain an overview of certain aspects of the running processes. It gives a level of control to

the users to change some parameters, such as environment properties, without a restart (where the

Spring Boot application, for example, supports that).

Entry point to Application Live View plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To use the

Application Live View plug-in:

Select the relevant component under the Organization Catalog in Tanzu Application

Platform GUI

Select the desired service under Runtime Resources tab

Select the desired Pod from the Pods section under Runtime Resources tab

The user can see all the details, do some lightweight troubleshooting and interact with the

application in certain boundaries under the Live View section

Application Live View pages

Details page

This is the default page loaded in the Live View section. This page gives a tabular overview

containing the following information:

application name

instance id

location

actuator location

health endpoint

direct actuator access

framework

version

new patch version

new major version

build version

The user can navigate between Information Categories by selecting from the drop-down menu on

the top right corner of the page.

Tanzu Application Platform v1.0

VMware, Inc 525

Health page

To navigate to the health page, the user can select the Health option from the Information

Category drop-down menu. The health page provides detailed information about the health of the

application. It lists all the components that make up the health of the application such as readiness,

liveness and disk space. It displays the status, details associated with each of the components.

Environment page

To navigate to the Environment page, the user can select the Environment option from the

Information Category drop-down menu. The Environment page contains details of the applications’

environment. It contains properties including, but not limited to, system properties, environment

variables, and configuration properties (such as application.properties) in a Spring Boot application.

The page includes the following features:

The UI has search feature that enables the user to search for a property or values.

Each property has a search icon at the right corner which helps the user quickly see all the

occurrences of a specific property key without manually typing in the search field. Clicking

the search button trims down the page to that property name.

The Refresh Scope on the top right corner of the page probes the application to refresh all

the environment properties.

The user can edit existing property by clicking the Override in the row and editing the value.

After the value is saved, the user can see the updated property in the Applied overrides

section at the top of the page.

The Reset resets the environment property to the original state

The user can edit or remove the overridden environment variables in the Applied

Overrides section.

Tanzu Application Platform v1.0

VMware, Inc 526

The Applied Overrides section also enables the user to add new environment properties to

the application.

The management.endpoint.env.post.enabled=true has to be set in the application config properties

of the application and a corresponding, editable Environment has to be present in the application.

Log Levels page

To navigate to the Log Levels page, the user can select the Log Levels option from the Information

Category drop-down menu. The log levels page provides access to the application’s loggers and the

Tanzu Application Platform v1.0

VMware, Inc 527

configuration of their levels. The user can configure the log levels such as INFO, DEBUG, TRACE in

real time from the UI. The user can search for a package and edit its respective log level. The user

can configure the log levels at a specific class and package. They can deactivate all the log levels by

modifying the log level of root logger to OFF. The toggle Changes Only displays the changed log

levels. The search feature enables the user to search by logger name. The Reset resets the log

levels to the original state. The Reset All on top right corner of the page resets all the loggers to

default state.

Threads page

To navigate to the Threads page, the user can select the Threads option from the Information

Category drop-down menu. This page displays all details related to JVM threads and running

processes of the application. This tracks live threads and daemon threads real-time. It is a snapshot

of different thread states. Navigating to a thread state displays all the information about a particular

thread and its stack trace. The search feature enables the user to search for threads by thread ID or

state. The refresh icon refreshes to the latest state of the threads. The user can view more thread

details by clicking on the Thread ID. The page also has a feature to download thread dump for

analysis purposes.

Tanzu Application Platform v1.0

VMware, Inc 528

Memory page

To navigate to the Memory page, the user can select the Memory option from the Information

Category drop-down menu.

The memory page highlights the memory usage inside of the JVM. It displays a graphical

representation of the different memory regions within heap and non-heap memory. This

visualizes data from inside of the JVM (in case of Spring Boot apps running on a JVM) and

therefore provides memory insights into the application in contrast to “outside” information

about the Kubernetes Pod level.

Tanzu Application Platform v1.0

VMware, Inc 529

The real-time graphs displays a stacked overview of the different spaces in memory with the

total memory used and total memory size. The page contains graphs to display the GC

pauses and GC events. The Heap Dump on top right corner allows the user to download

heap dump data.

This graphical visualization happens in real time and shows real-time data only. As mentioned at the

top, the Application Live View features do not store any information. That means the graphs visualize

the data over time only for as long as you stay on that page.

Request Mappings page

To navigate to the Request Mappings page, the user should select the Request Mappings option from

the Information Category drop-down menu. This page provides information about the application’s

request mappings. For each of the mapping, it displays the request handler method. The user can

view more details of the request mapping such as header metadata of the application, i.e produces,

consumes and HTTP method by clicking on the mapping. The search feature enables the user to

search on the request mapping or the method. The toggle /actuator/** Request Mappings displays

the actuator related mappings of the application.

When the application actuator endpoint is exposed on management.server.port, the application does

not return any actuator request mappings data in the context. The application displays a message

when the actuator toggle is enabled.

Tanzu Application Platform v1.0

VMware, Inc 530

HTTP Requests page

To navigate to the HTTP Requests page, the user should select the HTTP Requests option from the

Information Category drop-down menu. The HTTP Requests page provides information about

HTTP request-response exchanges to the application. The graph visualizes the requests per second

indicating the response status of all the requests. The user can filter on the response statuses which

include info, success, redirects, client-errors, server-errors. The trace data is captured in detail in a

tabular format with metrics such as timestamp, method, path, status, content-type, length, time. The

search feature on the table filters the traces based on the search field value. The user can view more

details of the request such as method, headers, response of the application by clicking on the

timestamp. The refresh icon above the graph loads the latest traces of the application. The toggle

Tanzu Application Platform v1.0

VMware, Inc 531

‘/actuator/**’ on the top right corner of the page displays the actuator related traces of the

application.

When the application actuator endpoint is exposed on management.server.port, no actuator HTTP

Traces data is returned for the application. In this case, a message is displayed when the actuator

toggle is enabled.

Caches page

To navigate to the Caches page, the user can select the Caches option from the Information

Category drop-down menu.

Tanzu Application Platform v1.0

VMware, Inc 532

The Caches page provides access to the application’s caches. It gives the details of the cache

managers associated with the application including the fully qualified name of the native cache.

The search feature in the Caches Page enables the user to search for a specific cache/cache

manager. The user can clear individual caches by clicking Evict. The user can clear all the caches

completely by clicking Evict All. If there are no cache managers for the application, the message No

cache managers available for the application is displayed.

Configuration Properties page

To navigate to the Configuration Properties page, the user can select the Configuration

Properties option from the Information Category drop-down menu.

The configuration properties page provides information about the configuration properties of the

application. In case of Spring Boot, it displays application’s @ConfigurationProperties beans. It gives a

snapshot of all the beans and their associated configuration properties. The search feature allows the

user to look up for property’s key/value or the bean name.

Conditions page

To navigate to the Conditions page, the user can select the Conditions option from the Information

Category drop-down menu. The conditions evaluation report provides information about the

evaluation of conditions on configuration and auto-configuration classes.

In case of Spring Boot, this gives the user a view of all the beans configured in the application. When

the user clicks on the bean name, the conditions and the reason for the conditional match is

Tanzu Application Platform v1.0

VMware, Inc 533

displayed.

In case of not configured beans, it shows both the matched and unmatched conditions of the bean if

any. In addition to this, it also displays names of unconditional auto configuration classes if any. The

user can filter out on the beans and the conditions using the search feature.

Scheduled Tasks page

To navigate to the Scheduled Tasks page, the user can select the Scheduled Tasks option from the

Information Category drop-down menu.

The scheduled tasks page provides information about the application’s scheduled tasks. It includes

cron tasks, fixed delay tasks and fixed rate tasks, custom tasks and the properties associated with

them.

The user can search for a particular property or a task in the search bar to retrieve the task or

property details.

Beans page

Tanzu Application Platform v1.0

VMware, Inc 534

To navigate to the Beans page, the user can select the Beans option from the Information Category

drop-down menu. The beans page provides information about a list of all application beans and its

dependencies. It displays the information about the bean type, dependencies, and its resource. The

user can search by the bean name or its corresponding fields.

Metrics page

To navigate to the Metrics page, the user can select the Metrics option from the Information

Category drop-down menu.

The metrics page provides access to application metrics information. The user can choose from the

list of various metrics available for the application such as jvm.memory.used, jvm.memory.max,

http.server.request, and so on.

After the metric is chosen, the user can view the associated tags. The user can choose the value of

each of the tags based on filtering criteria. Clicking Add Metric adds the metric to the page which is

refreshed every 5 seconds by default.

The user can pause the auto refresh feature by deactivating the Auto Refresh toggle. The user can

also refresh the metrics manually by clicking Refresh All. The format of the metric value can be

changed according to the user’s needs. They can delete a particular metric by clicking the minus

symbol in the same row.

Tanzu Application Platform v1.0

VMware, Inc 535

Actuator page

To navigate to the Actuator page, the user can select the Actuator option from the Information

Category drop-down menu. The actuator page provides a tree view of the actuator data. The user

can choose from a list of actuator endpoints and parse through the raw actuator data.

Troubleshooting

You might run into cases where a workload running on your cluster does not show up in the

Application Live View overview, the detail pages do not load any information while running, or

similar issues. See Troubleshooting in the Application Live View documentation.

Application Accelerator in Tanzu Application Platform GUI

This topic describes how to use Application Accelerator in Tanzu Application Platform GUI.

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing and deploying your

applications in a discoverable and repeatable way.

Tanzu Application Platform v1.0

VMware, Inc 536

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.0/docs/GUID-troubleshooting.html

Enterprise architects author and publish accelerator projects that provide developers and operators

with ready-made, enterprise-conforming code and configurations. You can then use Application

Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and

generate new projects to download.

Access Application Accelerator

To open the Application Accelerator UI plug-in and select an accelerator:

1. Within Tanzu Application Platform, click Create in the left navigation pane to open the

Accelerators page.

Here you can view accelerators already registered with the system. Developers can add new

accelerators by registering them with Kubernetes.

2. Every accelerator has a title and short description. Click VIEW REPOSITORY to view an

accelerator definition. This opens the accelerator’s Git repository in a new browser tab.

3. Search and filter based on text and tags associated with the accelerators to find the

accelerator representing the project you want to create.

4. Click CHOOSE for the accelerator you want. This opens the Generate Accelerators page.

Configure project generation

To configure how projects are generated:

1. On the Generate Accelerators page, add any configuration values needed to generate the

project. The application architect defined these values in accelerator.yaml in the accelerator

definition. Filling some text boxes can cause other text boxes to appear. Fill them all in.

Tanzu Application Platform v1.0

VMware, Inc 537

2. Click EXPLORE to open the Explore Project page and view the project before it is

generated.

3. After configuring your project, click NEXT STEP to see the project summary page.

4. Review the values you specified for the configurable options.

5. Click BACK to make more changes, if necessary. Otherwise, proceed to create the project.

Create the project

Tanzu Application Platform v1.0

VMware, Inc 538

To create the project:

1. Click Create to start generating your project. See the progress on the Task Activity page. A

detailed log is displayed on the right.

2. After the project is generated, click EXPLORE ZIP FILE to open the Explore Project page to

verify configuration.

3. Click DOWNLOAD ZIP FILE to download the project in a ZIP file.

Develop your code

To develop your code:

1. Expand the ZIP file.

2. Open the project in your integrated development environment (IDE).

Tanzu Application Platform v1.0

VMware, Inc 539

Next steps

To learn more about Application Accelerator for VMware Tanzu, see the Application Accelerator

documentation.

Install Application Accelerator

This document describes how to install Application Accelerator from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Flux SourceController on the cluster. See Install cert-manager, Contour, and FluxCD

Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Configure properties and resource usage

When you install the Application Accelerator, you can configure the following optional properties:

Note

Follow the steps in this topic if you do not want to use a profile to install Application

Accelerator. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 540

https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/1.0/acc-docs/GUID-index.html

Property Default Description

registry.secret_ref registry.tanzu.vmware.com The secret used for accessing the registry where

the App-Accelerator images are located

server.service_type LoadBalancer The service type for the acc-ui-server service

including, LoadBalancer, NodePort, or ClusterIP

server.watched_namespa

ce

accelerator-system The namespace the server watches for accelerator

resources

server.engine_invocation

_url

http://acc-engine.accelerator-

system.svc.cluster.local/invocation

s

The URL to use for invoking the accelerator

engine

engine.service_type ClusterIP The service type for the acc-engine service

including, LoadBalancer, NodePort, or ClusterIP

engine.max_direct_mem

ory_size

32M The maximum size for the Java -

XX:MaxDirectMemorySize setting

samples.include True Whether to include the bundled sample

Accelerators in the installation

ingress.include False Whether to include the ingress configuration in

the installation

domain tap.example.com Top level domain to use for ingress configuration

tls.secretName tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invocati

on_events_for_no_days

30 The number of days to retain recorded invocation

events resources.

telemetry.record_invocati

on_events

true Should the system record each engine invocation

when generating files for an accelerator?

VMware recommends that you do not override the defaults for registry.secret_ref,

server.engine_invocation_url, or engine.service_type. These properties are only used to

configure non-standard installations.

The following table is the resource usage configurations for the components of Application

Accelerator.

Component Resource requests Resource limits

acc-controller cpu: 100m

memory: 20Mi

cpu: 100m

memory: 30Mi

acc-server cpu: 100m

memory:20Mi

cpu: 100m

memory: 30Mi

acc-engine cpu: 500m

memory: 1Gi

cpu: 500m

memory: 2Gi

Install

To install Application Accelerator:

Tanzu Application Platform v1.0

VMware, Inc 541

1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 accelerator.apps.tanzu.vmware.com 0.5.1 2021-12-02T00:00:00Z

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get accelerator.apps.tanzu.vmware.com/VERSION-NUMBER --

values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get accelerator.apps.tanzu.vmware.com/0.5.1 --values-

schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create an app-accelerator-values.yaml using the following example code:

server:

 service_type: "LoadBalancer"

 watched_namespace: "accelerator-system"

samples:

 include: true

Edit the values if needed or leave the default values.

Note: For clusters that do not support the LoadBalancer service type, override the default

value for server.service_type.

4. Install the package by running:

tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 1

.0.0 -n tap-install -f app-accelerator-values.yaml

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v

 1.0.0 -n tap-install -f app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

Tanzu Application Platform v1.0

VMware, Inc 542

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

5. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME: app-accelerator

PACKAGE-NAME: accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION: 1.0.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To see the IP address for the Application Accelerator API when the server.service_type is

set to LoadBalancer, run the following command:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the

Accelerator plug-in generate command.

Upgrade Tanzu Application Platform GUI

This topic describes how to upgrade Tanzu Application Platform GUI outside of a Tanzu Application

Platform profile installation. If you installed Tanzu Application Platform through a profile, see

Upgrading Tanzu Application Platform instead.

Considerations

As part of the upgrade, Tanzu Application Platform updates its container with the new version.

As a result, if you installed Tanzu Application Platform GUI without the support of a backing database,

you lose your in-memory data for any manual component registrations when the container restarts.

While the update is pulling the new pod from the registry, users might experience a short UI

interruption and might need to re-authenticate because the in-memory session data is rebuilt.

Upgrade within a Tanzu Application Platform profile

If you installed Tanzu Application Platform GUI as part of a Tanzu Application Platform profile, see

Upgrading Tanzu Application Platform.

Upgrade Tanzu Application Platform GUI individually

Tanzu Application Platform v1.0

VMware, Inc 543

These steps only apply to installing Tanzu Application Platform GUI individually, not as part of a Tanzu

Application Platform profile.

To upgrade Tanzu Application Platform GUI outside of a Tanzu Application Platform profile:

1. Make sure your repository has access to the new version of the package:

tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tap-gui.tanzu.vmware.com 1.0.1 2021-12-22 17:45:51 +0000 UTC

 tap-gui.tanzu.vmware.com 1.0.2 2022-01-25 01:57:19 +0000 UTC

2. Perform the package upgrade by using the targeted package update version:

tanzu package installed update tap -p tap-gui.tanzu.vmware.com -v VERSION --va

lues-file TAP_GUI_VALUES.yaml -n tap-install

Where:

VERSION is the desired target version of Tanzu Application Platform GUI.

TAP-GUI-VALUES is the configuration values file that contains the configuration used

when you installed Tanzu Application Platform GUI.

3. Verify that you upgraded your application by running:

tanzu package installed get tap-gui -n tap-install

Troubleshoot Tanzu Application Platform GUI

This topic describes troubleshooting information for problems with installing Tanzu Application

Platform GUI.

Tanzu Application Platform GUI does not work in Safari

Symptom

Tanzu Application Platform GUI does not work in the Safari web browser.

Solution

Currently there is no way to use Tanzu Application Platform GUI in Safari. Please use a different web

browser.

Catalog not found

Symptom

Tanzu Application Platform v1.0

VMware, Inc 544

When you pull up the Tanzu Application Platform UI, you get the error Catalog Not Found.

Cause

The catalog plug-in can’t read the Git location of your catalog definition files.

Solution

1. Ensure you have built your own Backstage-compatible catalog or that you have downloaded

one of the Tanzu Application Platform GUI catalogs from VMware Tanzu Network.

2. Ensure you defined the catalog in the values file that you input as part of installation. To

update this location, change the definition file:

Change the Tanzu Application Platform profile file if installed by using a profile.

Change the standalone Tanzu Application Platform GUI values file if you’re only

installing that package on its own.

 namespace: tap-gui

 service_type: SERVICE-TYPE

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

3. Provide the proper integration information for the Git location you specified earlier.

 namespace: tap-gui

 service_type: SERVICE-TYPE

 app_config:

 app:

 baseUrl: https://EXTERNAL-IP:PORT

 integrations:

 gitlab: # Other integrations available

 - host: GITLAB-HOST

 apiBaseUrl: https://GITLAB-URL/api/v4

 token: GITLAB-TOKEN

You can substitute for other integrations as defined in the Backstage documentation.

Issues updating the values file

Symptom

After updating the configuration of Tanzu Application Platform GUI, either by using a profile or as a

standalone package installation, you don’t know whether the configuration has reloaded.

Solution

1. Get the name you need by running:

kubectl get pods -n tap-gui

Tanzu Application Platform v1.0

VMware, Inc 545

https://backstage.io/
https://backstage.io/docs/integrations/

For example:

$ kubectl get pods -n tap-gui

NAME READY STATUS RESTARTS AGE

server-6b9ff657bd-hllq9 1/1 Running 0 13m

2. Read the log of the pod to see if the configuration reloaded by running:

kubectl logs NAME -n tap-gui

Where NAME is the value you recorded earlier, such as server-6b9ff657bd-hllq9.

3. Search for a line similar to this one:

2021-10-29T15:08:49.725Z backstage info Reloaded config from app-config.yaml, a

pp-config.yaml

4. If need be, delete and re-instantiate the pod.

Caution: Depending on your database configuration, deleting, and re-instantiating the pod

might cause the loss of user preferences and manually registered entities. If you have

configured an external PostgreSQL database, tap-gui pods are not stateful. In most cases,

state is held in ConfigMaps, Secrets, or the database. For more information, see Configuring

the Tanzu Application Platform GUI database and Register components.

To delete and re-instantiate the pod, run:

kubectl delete pod -l app=backstage -n tap-gui

Pull logs from Tanzu Application Platform GUI

Symptom

You have a problem with Tanzu Application Platform GUI, such as Catalog: Not Found, and don’t

have enough information to diagnose it.

Solution

Get timestamped logs from the running pod and review the logs:

1. Pull the logs by using the pod label by running:

kubectl logs -l app=backstage -n tap-gui

2. Review the logs.

Tanzu Build Service

VMware Tanzu Build Service automates container creation, management, and governance at

enterprise scale. Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn

application source code into container images. It executes reproducible builds aligned with modern

container standards and keeps images up to date. For more information about Tanzu Build Service,

Tanzu Application Platform v1.0

VMware, Inc 546

https://buildpacks.io/
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html

see the Tanzu Build Service Documentation.

Install Tanzu Build Service

This document describes how to install Tanzu Build Service from the Tanzu Application Platform

package repository by using the Tanzu CLI.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Tanzu Build Service. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Note: The following procedure might not include some configurations required for your specific

environment. For more advanced details on installing Tanzu Build Service, see Installing Tanzu Build

Service.

Prerequisites

Before installing Tanzu Build Service:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

You must have access to a Docker registry that Tanzu Build Service can use to create builder

images. Approximately 10 GB of registry space is required when using the full descriptor.

Your Docker registry must be accessible with username and password credentials.

Install Tanzu Build Service by using the Tanzu CLI

To install Tanzu Build Service by using the Tanzu CLI:

1. List version information for the package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

For example:

$ tanzu package available list buildservice.tanzu.vmware.com --namespace tap-in

stall

- Retrieving package versions for buildservice.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 buildservice.tanzu.vmware.com 1.4.2 2021-12-17T00:00:00Z

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get buildservice.tanzu.vmware.com/VERSION-NUMBER --valu

es-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get buildservice.tanzu.vmware.com/1.4.2 --values-sche

Tanzu Application Platform v1.0

VMware, Inc 547

https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html

ma --namespace tap-install

3. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/1.4.2 --values-schema

 --namespace tap-install

For example:

$ tanzu package available get buildservice.tanzu.vmware.com/1.4.2 --values-sche

ma --namespace tap-install

| Retrieving package details for buildservice.tanzu.vmware.com/1.4.2...

 KEY DEFAULT TYPE DESCRIPTION

 kp_default_repository <nil> string Docker repository used

for builder images and dependencies

 kp_default_repository_password <nil> string Username for kp_default

_repository

 kp_default_repository_username <nil> string Password for kp_default

_repository

 tanzunet_username <nil> string Optional: Tanzunet regi

stry username required for dependency import at install.

 tanzunet_password <nil> string Optional: Tanzunet regi

stry password required for dependency import at install.

 descriptor_name <nil> string Name of descriptor to i

mport (required for dependency updater feature)

 descriptor_version <nil> string Optional: Version of de

scriptor to use during install. This will override the version installed by def

ault.

 enable_automatic_dependency_updates <nil> bool Optional: Allow automat

ic import of new dependency updates from Tanzunet

 ca_cert_data <nil> string Optional: TBS registry

ca certificate

 http_proxy <nil> string Optional: the HTTP prox

y to use for network traffic.

 https_proxy <nil> string Optional: the HTTPS pro

xy to use for network traffic.

 no_proxy <nil> string Optional: A comma-separ

ated list of hostnames, IP addresses, or IP ranges in CIDR format that should n

ot use a proxy.

4. Create a tbs-values.yaml file.

kp_default_repository: REPOSITORY

kp_default_repository_username: REGISTRY-USERNAME

kp_default_repository_password: REGISTRY-PASSWORD

tanzunet_username: TANZUNET-USERNAME

tanzunet_password: TANZUNET-PASSWORD

descriptor_name: DESCRIPTOR-NAME

enable_automatic_dependency_updates: true/false # Optional

Where:

REPOSITORY is the fully qualified path to the Tanzu Build Service repository. This path

must be writable. For example:

Docker Hub: my-dockerhub-account/build-service

Tanzu Application Platform v1.0

VMware, Inc 548

Google Container Registry: gcr.io/my-project/build-service

Artifactory: artifactory.com/my-project/build-service

Harbor: harbor.io/my-project/build-service

REGISTRY-USERNAME and REGISTRY-PASSWORD are the user name and password for the

registry. The install requires a kp_default_repository_username and

kp_default_repository_password to write to the repository location.

TANZUNET-USERNAME and TANZUNET-PASSWORD are the email address and password that

you use to log in to VMware Tanzu Network. Your VMware Tanzu Network

credentials enable you to configure the dependencies updater. This resource

accesses and installs the build dependencies (buildpacks and stacks) Tanzu Build

Service needs on your cluster. It can also optionally keep these dependencies up to

date as new versions are released on VMware Tanzu Network.

DESCRIPTOR-NAME is the name of the descriptor to import automatically. The available

options at time of release are:

tap-1.0.0-full contains all dependencies and is for production use.

tap-1.0.0-lite has a smaller footprint that enables faster installations. It

requires Internet access on the cluster.

Note: By using the tbs-values.yaml configuration, enable_automatic_dependency_updates:

true causes the dependency updater to update Tanzu Build Service dependencies

(buildpacks and stacks) when they are released on VMware Tanzu Network. You can set

enable_automatic_dependency_updates as false to pause the automatic update of Build

Service dependencies. When automatic updates are paused, the pinned version of the

descriptor for TAP 1.0.2 is 100.0.267 If left undefined, this value is false.

5. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.4.2 -n tap-inst

all -f tbs-values.yaml --poll-timeout 30m

For example:

$ tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.4.2 -n tap-in

stall -f tbs-values.yaml --poll-timeout 30m

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

Note: Installing the buildservice.tanzu.vmware.com package with Tanzu Network credentials

automatically relocates buildpack dependencies to your cluster. This install process can take

some time and the --poll-timeout flag increases the timeout duration. Using the lite

Tanzu Application Platform v1.0

VMware, Inc 549

https://network.pivotal.io/products/tbs-dependencies#/releases/1053790

descriptor speeds this up significantly. If the command times out, periodically run the

installation verification step provided in the following optional step. Image relocation

continues in the background.

6. (Optional) Verify the clusterbuilders created by the Tanzu Build Service install by running:

tanzu package installed get tbs -n tap-install

Install Tanzu Build Service using the Tanzu CLI air-gapped

Tanzu Build Service can be installed to a Kubernetes Cluster and registry that are air-gapped from

external traffic.

These steps assume that you have installed the TAP packages in your air-gapped environment.

To install the Tanzu Build Service package air-gapped:

1. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/1.4.2 --values-schema

 --namespace tap-install

2. Create a tbs-values.yaml file. The required fields for an air-gapped installation are:

kp_default_repository: REPOSITORY

kp_default_repository_username: REGISTRY-USERNAME

kp_default_repository_password: REGISTRY-PASSWORD

ca_cert_data: CA-CERT-CONTENTS

Where:

REPOSITORY is the fully qualified path to the Tanzu Build Service repository. This path

must be writable. For example:

Harbor: harbor.io/my-project/build-service

Artifactory: artifactory.com/my-project/build-service

REGISTRY-USERNAME and REGISTRY-PASSWORD are the user name and password for the

internal registry.

CA-CERT-CONTENTS are the contents of the PEM-encoded CA certificate for the

internal registry

3. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.4.2 -n tap-inst

all -f tbs-values.yaml

For example:

$ tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.4.2 -n tap-in

stall -f tbs-values.yaml

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

Tanzu Application Platform v1.0

VMware, Inc 550

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

4. Keep Tanzu Build Service dependencies up-to-date.

When installing Tanzu Build Service to an air-gapped environment, dependencies cannot be

automatically pulled in from the external internet. So dependencies must be imported and kept up to

date manually. To import dependencies to an air-gapped Tanzu Build Service, follow the official

Tanzu Build Service docs.

Tekton

Tekton is a cloud-native, open-source framework for creating CI/CD systems. It allows developers to

build, test, and deploy across cloud providers and on-premise systems. For more information about

Tekton, see the Tekton documentation.

Install Tekton

This topic describes how to install Tekton Pipelines from the Tanzu Application Platform package

repository.

Prerequisites

Before installing Tekton Pipelines, complete all prerequisites to install Tanzu Application Platform.

Install Tekton Pipelines

To install Tekton Pipelines:

1. See what versions of Tekton Pipelines are available to install by running:

tanzu package available list -n tap-install tekton.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install tekton.tanzu.vmware.com

\ Retrieving package versions for tekton.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tekton.tanzu.vmware.com 0.30.0 2021-11-18 17:05:37Z

Note

Follow the steps in this topic if you do not want to use a profile to install Tekton

Pipelines. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.0

VMware, Inc 551

https://docs.vmware.com/en/Tanzu-Build-Service/1.4/vmware-tanzu-build-service/GUID-updating-deps.html#online-update
https://tekton.dev/docs/

2. Install Tekton Pipelines by running:

tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.co

m -v 0.30.0

For example:

$ tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.

com -v 0.30.0

- Installing package 'tekton.tanzu.vmware.com'

\ Getting package metadata for 'tekton.tanzu.vmware.com'

/ Creating service account 'tekton-pipelines-tap-install-sa'

/ Creating cluster admin role 'tekton-pipelines-tap-install-cluster-role'

/ Creating cluster role binding 'tekton-pipelines-tap-install-cluster-rolebindi

ng'

/ Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tekton-pipelines'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'tekton-pipelines'

3. Verify that the package installed by running:

tanzu package installed get tekton-pipelines -n tap-install

For example:

$ tanzu package installed get tekton-pipelines -n tap-install

\ Retrieving installation details for tekton...

NAME: tekton-pipelines

PACKAGE-NAME: tekton.tanzu.vmware.com

PACKAGE-VERSION: 0.30.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

STATUS should be Reconcile succeeded.

4. Configuring a namespace to use Tekton Pipelines:

Note: This step covers configuring a namespace to run Tekton Pipelines. If you rely on a

SupplyChain to create Tekton PipelineRuns in your cluster, then skip this step because

namespace configuration is covered in Set up developer namespaces to use installed

packages. Otherwise, you must complete the following steps for each namespace where you

create Tekton Pipeline/Tasks.

Service accounts that run Tekton workloads need access to the image pull secrets for the

Tanzu package. This includes the default service account in a namespace, which is created

automatically but not associated with any image pull secrets. Without these credentials,

PipelineRuns fail with a timeout and the pods report that they cannot pull images.

Create an image pull secret in the current namespace and fill it from the tap-registry

secret. Run the following commands to create an empty secret and annotate it as a target of

the secretgen controller:

Tanzu Application Platform v1.0

VMware, Inc 552

#add-package-repositories

kubectl create secret generic pull-secret --from-literal=.dockerconfigjson={} -

-type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secret=""

After you create a pull-secret secret in the same namespace as the service account, run

the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "pull-s

ecret"}]}'

Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name: default

Namespace: default

Labels: <none>

Annotations: <none>

Image pull secrets: pull-secret

Mountable secrets: default-token-xh6p4

Tokens: default-token-xh6p4

Events: <none>

Note: The service account has access to the pull-secret image pull secret.

For more details on Tekton Pipelines, see the Tekton documentation and the github repository.

You can also view the Tekton tutorial and getting started guide.

Note: Windows workloads have been deactivated and will error if any Tasks tries to use Windows

scripts.

Tanzu Application Platform v1.0

VMware, Inc 553

https://tekton.dev/docs/
https://github.com/tektoncd/pipeline
https://github.com/tektoncd/pipeline/blob/main/docs/tutorial.md
https://tekton.dev/docs/getting-started/

Workload types

Tanzu Application Platform allows you to quickly build and test applications regardless of your

familiarity with Kubernetes. You can turn source code into a workload that runs in a container with a

URL.

A workload allows you to choose application specifications, such as repository location, environment

variables, service binding, and so on. For more information about workload creation and

management, see Command Reference.

Tanzu Application Platform can support a range of workload types, including web applications,

serverless functions, or microservices that function as a logical application.

Web workloads

The web workload type allows you to deploy web applications on Tanzu Application Platform. Using

an application workload specification, you can turn source code into a web workload that runs in a

container with a URL.

Functions (Beta Feature)

Overview

The function experience on Tanzu Application Platform enables developers to deploy functions, use

starter templates to bootstrap their function and write only the code that matters to your business.

Developers can run a single CLI command to deploy their functions to an auto-scaled cluster.

This document describes how to create and deploy an HTTP function from an application accelerator

starter template.

Important: The functionality of beta features has been tested, but performance has not. Features

enter the beta stage for customers to gain early access to them and give feedback on their design

and behavior. Beta features might undergo changes based on that feedback before leaving beta.

VMware discourages running beta features in production. VMware doesn’t guarantee that any beta

feature can be upgraded in the future.

Prerequisites

Before using functions workloads on Tanzu Application Platform, complete the following

prerequisites:

Complete all steps described in Installing Tanzu Application Platform.

Download and install the kp CLI for your operating system from the Tanzu Build Service page

on Tanzu Network. For more information, see the kp CLI help text on GitHub.

Tanzu Application Platform v1.0

VMware, Inc 554

https://network.tanzu.vmware.com/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md

Set up developer namespaces to use installed packages.

Adding function buildpacks

To use the function buildpacks, you must upload their buildpackages to Build Service stores.

1. Add the function’s buildpackages to the default ClusterStore by running:

kp clusterstore add default \

-b registry.tanzu.vmware.com/python-function-buildpack-for-vmware-tanzu/python-

buildpack-with-deps:0.0.11 \

-b registry.tanzu.vmware.com/java-function-buildpack-for-vmware-tanzu/java-buil

dpack-with-deps:0.0.6

2. Create and save a new ClusterBuilder. Run one of the following commands depending on

the descriptor you used in the buildservice section of your tap-values.yaml file:

For the full descriptor, run:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python

 - id: kn-fn/python-function

- group:

 - id: tanzu-buildpacks/java-native-image

 - id: kn-fn/java-function

- group:

 - id: tanzu-buildpacks/java

 - id: kn-fn/java-function

EOF

If you still want to use default Java and Python buildpacks for non-functions

workloads, add optional: true flags for cluster builder groups. This does not enable

the full capability of non-function workloads provided by the default ClusterBuilder.

For example:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python

 - id: kn-fn/python-function

 optional: true

- group:

 - id: tanzu-buildpacks/java-native-image

 - id: kn-fn/java-function

 optional: true

- group:

 - id: tanzu-buildpacks/java

 - id: kn-fn/java-function

 optional: true

EOF

Tanzu Application Platform v1.0

VMware, Inc 555

https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-managing-stores.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-managing-builders.html

For the lite descriptor, run:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python-lite

 - id: kn-fn/python-function

- group:

 - id: tanzu-buildpacks/java-native-image-lite

 - id: kn-fn/java-function

- group:

 - id: tanzu-buildpacks/java-lite

 - id: kn-fn/java-function

EOF

If you still want to use default Java and Python buildpacks for non-functions

workloads, add optional: true flags for cluster builder groups. This does not enable

the full capability of non-function workloads provided by the default ClusterBuilder.

For example:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python-lite

 - id: kn-fn/python-function

 optional: true

- group:

 - id: tanzu-buildpacks/java-native-image-lite

 - id: kn-fn/java-function

 optional: true

- group:

 - id: tanzu-buildpacks/java-lite

 - id: kn-fn/java-function

 optional: true

EOF

3. After creating the ClusterBuilder, update your tap-values.yaml configuration to use the

cluster builder you created. See the following example:

ootb_supply_chain_basic:

 cluster_builder: function

 registry:

 server: "SERVER"

 repository: "REPO"

Where:

SERVER is your server. For example, index.docker.io.

REPO is your repository.

4. Apply the update by going to the directory containing tap-values.yaml and running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION --values-

file tap-values.yaml -n tap-install

Tanzu Application Platform v1.0

VMware, Inc 556

Where VERSION is the version of Tanzu Application Platform GUI you have installed. For

example, 1.0.2.

Add accelerators to Tanzu Application Platform GUI

Application Accelerator is a component of Tanzu Application Platform. An accelerator contains your

enterprise-conformant code and configurations that developers can use to create new projects that

automatically follow the standards defined in your accelerators.

The accelerator ZIP file contains a file called k8s-resource.yaml. This file contains the resource

manifest for the function accelerator.

1. Download the ZIP file for the appropriate accelerator:

Python HTTP Function on GitHub.

Java HTTP Function on GitHub.

2. Expand the accelerator ZIP file in your target cluster with Tanzu Application Platform GUI

installed.

3. To update the Application Accelerator templates in Tanzu Application Platform GUI, you

must apply the k8s-resource.yaml. Run the following command in your terminal in the folder

where you expanded the ZIP file:

kubectl apply -f k8s-resource.yaml --namespace accelerator-system

4. Refresh Tanzu Application Platform GUI to reveal functions accelerator(s).

It might take time for Tanzu Application Platform GUI to refresh the catalog to see your

added functions accelerators.

Create a functions project from an accelerator

1. From the Tanzu Application Platform GUI portal, click Create on the left navigation bar to see

the list of available accelerators.

Tanzu Application Platform v1.0

VMware, Inc 557

https://github.com/sample-accelerators/python-functions-accelerator
https://github.com/sample-accelerators/java-functions-accelerator

2. Locate the Function Buildpacks accelerator and click CHOOSE.

3. Provide a name for your function project and function. If creating a Java function, select a

project type*. Select HTTP for your event type. Provide a Git repository to store this

accelerator’s files. Click NEXT STEP, verify the provided information, and click CREATE.

4. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

5. After downloading the ZIP file, expand it in a workspace directory and follow your preferred

procedure for uploading the generated project files to a Git repository for your new project.

Deploy your function

1. Deploy the Function accelerator by running the tanzu apps workload create command:

tanzu apps workload create functions-accelerator-python \

--local-path . \

--source-image REGISTRY/IMAGE:TAG \

--type web \

Tanzu Application Platform v1.0

VMware, Inc 558

--yes

Where:

--source-image is a writable repository in your registry.

Harbor has the form: “my-harbor.io/my-project/functions-accelerator-python”.

Dockerhub has the form: “my-dockerhub-user/functions-accelerator-python”.

Google Cloud Registry has the form: “gcr.io/my-project/functions-accelerator-python”.

2. View the build and runtime logs for your application by running the tail command:

tanzu apps workload tail functions-accelerator-python --since 10m --timestamp

3. After the workload is built and running, you can view the web application in your browser. To

view the URL of the web application, run the following command and then ctrl-click the

Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get functions-accelerator-python

Tanzu Application Platform v1.0

VMware, Inc 559

	Tanzu Application Platform v1.0
	Overview of Tanzu Application Platform
	Installation profiles in Tanzu Application Platform v1.0
	About Tanzu Application Platform package profiles
	About installing the Tanzu Application Platform v1.0
	Notice of telemetry collection for Tanzu Application Platform

	Release notes
	v1.0.3
	Security issue
	Known issues
	Grype scanner
	Supply Chain Security Tools - Scan

	Resolved issues

	v1.0.2
	Security issue
	Known issues
	Grype scanner
	Supply Chain Security Tools – Scan

	Resolved issues
	Services Toolkit
	Supply Chain Security Tools – Scan

	v1.0.1
	Security issue
	Known issues
	Developer Conventions
	Grype scanner
	Application Accelerator
	Application Live View
	Tanzu Application Platform GUI

	Resolved issues
	Tanzu Developer Tools for VS Code
	Services Toolkit

	v1.0
	Known issues
	Installing
	Application Accelerator
	Application Live View
	Convention Service
	Developer Conventions
	Grype scanner
	Learning Center
	Supply Chain Choreographer
	Supply Chain Security Tools – Scan
	Supply Chain Security Tools - Sign
	Supply Chain Security Tools - Store
	Tanzu Application Platform GUI
	Tanzu CLI
	Tanzu Developer Tools for VS Code
	Services Toolkit

	Security issue
	Breaking changes
	Resolved issues
	Tanzu Developer Tools for VS Code
	Supply Chain Security Tools - Store

	Installing Tanzu Application Platform
	Installation process

	Prerequisites
	VMware Tanzu Network and container image registry requirements
	DNS Records
	Tanzu Application Platform GUI

	Kubernetes cluster requirements
	Resource requirements
	Tools and CLI requirements

	Installing the Tanzu CLI
	Accept the End User License Agreements
	Installing the Tanzu CLI
	Set Kubernetes cluster context
	Install Cluster Essentials for VMware Tanzu
	Install or update the Tanzu CLI and plug-ins
	Cleanly Install Tanzu CLI
	Linux: Install the Tanzu CLI
	Mac: Install the Tanzu CLI
	Windows: Install the Tanzu CLI

	Install/Update Tanzu CLI plug-ins
	Updating Tanzu CLI Installed for a Previous Tanzu Application Platform Release
	Updating Tanzu CLI Installed for Tanzu Application Platform v1.0.0 or v1.0.1
	Updating Tanzu CLI Installed for Tanzu Application Platform v0.4 or earlier

	Installing the Tanzu Application Platform Package and Profiles
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	Full Profile
	Light Profile
	View possible configuration settings for your package

	Install your Tanzu Application Platform package
	Configure LoadBalancer for Contour Ingress
	Access the Tanzu Application Platform GUI
	Exclude Packages from a Tanzu Application Platform Profile

	Opting out of telemetry collection
	Turn off telemetry collection

	Upgrading Tanzu Application Platform
	Prerequisites
	Add new package repository
	Perform upgrade of Tanzu Application Platform
	Upgrade instructions for Profile-based installation
	Upgrade instructions for component-specific installation

	Verify the upgrade

	Getting started with the Tanzu Application Platform
	Purpose
	Getting started prerequisites
	Section 1: Develop your first application on the Tanzu Application Platform
	About application accelerators
	Deploy your application
	Add your application to Tanzu Application Platform GUI Software Catalog
	Iterate on your application
	Live update your application
	Debug your application
	Monitor your running application

	Section 2: Create your application accelerator
	Create an application accelerator
	Using accelerator.yaml

	Section 3: Add Testing and Security Scanning to Your Application
	Introducing a Supply Chain
	A path to production
	Available Supply Chains
	1: OOTB Basic (default)
	2: OOTB Testing
	3: OOTB Testing+Scanning
	Install OOTB Testing
	Tekton pipeline config example
	Workload update

	Install OOTB Testing+Scanning
	Workload update
	Query for vulnerabilities

	Congratulations! You have successfully deployed your application on the Tanzu Application Platform.

	Section 4: Configure image signing and verification in your supply chain
	Configure your supply chain to sign your image builds
	Next steps

	Scan and Store: Introducing vulnerability scanning and metadata storage to your Supply Chain
	Next steps

	Section 5: Consuming Services on Tanzu Application Platform
	Overview
	Use cases enabled by Services Toolkit on Tanzu Application Platform
	Set up
	Use case 1: Binding an application to a pre-provisioned service instance running in the same namespace
	Use case 2 - Binding an application to a pre-provisioned service instance running in a different namespace on the same Kubernetes cluster
	Use case 3 - Binding an application to a service running outside Kubernetes
	Use case 4: Binding an application to a service instance running on a different Kubernetes cluster (Experimental).
	Prerequisites
	Steps

	Troubleshooting Tanzu Application Platform
	Troubleshoot installing Tanzu Application Platform
	Developer cannot be verified when installing Tanzu CLI on macOS
	Access .status.usefulErrorMessage details
	“Unauthorized to access” error
	“Serviceaccounts already exists” error
	After package installation, one or more packages fails to reconcile
	Failure to accept an End User License Agreement error

	Troubleshoot using Tanzu Application Platform
	Missing build logs after creating a workload
	“Workload already exists” error after updating the workload
	Workload creation fails due to authentication failure in Docker Registry
	Explanation
	Solution

	Telemetry component logs show errors fetching the “reg-creds” secret
	Debug convention may not apply
	Execute bit not set for App Accelerator build scripts
	“No live information for pod with ID” error
	“image-policy-webhook-service not found” error
	“Increase your cluster resources” error
	MutatingWebhookConfiguration prevents pod admission
	Priority class of webhook’s pods preempts less privileged pods
	CrashLoopBackOff from password authentication fails
	Password authentication fails
	metadata-store-db pod fails to start
	Missing persistent volume

	Uninstalling Tanzu Application Platform
	Delete the packages
	Delete the Tanzu Application Platform package repository
	Remove Tanzu CLI, plug-ins, and associated files

	Component documentation
	Installing individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Set up developer namespaces to use installed packages

	Apps CLI plug-in overview
	About workloads
	Command reference
	Usage and examples

	Install Apps CLI plug-in
	Prerequisites
	Install

	Create a workload
	Prerequisites
	Get started with an example workload
	Check build logs
	Get the workload status and details
	Create a workload from local source code
	Bind a service to a workload
	Next steps

	Command reference
	Tanzu apps
	Options
	See also

	Tanzu apps workload
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload apply
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload update
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload get
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload delete
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload list
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload tail
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps cluster supply chain
	Options
	Options inherited from parent commands
	See also

	Tanzu apps cluster supply chain list
	Examples
	Options
	Options inherited from parent commands
	See also

	Usage and examples
	Changing clusters
	Checking update status
	Working with YAML files
	Autocompletion
	Bash
	Zsh

	Application Accelerator for VMware Tanzu
	Install Application Accelerator
	Prerequisites
	Configure properties and resource usage
	Install

	Application Live View for VMware Tanzu
	Install Application Live View
	Prerequisites
	Install Application Live View

	Convention Service
	Overview
	About applying conventions
	Applying conventions by using image metadata
	Applying conventions without using image metadata

	Install Convention Service
	Prerequisites
	Install

	Creating conventions
	Introduction
	Convention server
	Convention controller

	Getting started
	Prerequisites

	Define convention criteria
	Define the convention behavior
	Matching criteria by labels or annotations
	Matching criteria by environment variables
	Matching criteria by image metadata

	Configure and install the convention server
	Deploy a convention server
	Next Steps

	Troubleshoot Convention Service
	No server in the cluster
	Symptoms
	Cause
	Solution

	Server with wrong certificates configured
	Symptoms
	Cause
	Solution

	Server fails when processing a request
	Symptoms
	Cause
	Solution

	Connection refused due to unsecured connection
	Symptoms
	Cause
	Solution

	Convention Resources
	Convention Service Resources
	API Structure
	Template Status

	Chaining Multiple Conventions
	Collecting Logs from the Controller
	References

	cert-manager, Contour, and FluxCD Source Controller
	Install cert-manager, contour, and FluxCD Source Controller
	Prerequisites
	Install cert-manager
	Install Contour
	Install FluxCD source-controller

	Cloud Native Runtimes
	Install Cloud Native Runtimes
	Prerequisites
	Install

	Spring Boot conventions
	Overview

	Install Spring Boot conventions
	Prerequisites
	Install Spring Boot conventions

	Conventions
	Spring boot convention
	Spring boot graceful shutdown convention
	Spring Boot web convention
	Spring Boot Actuator convention
	Service intent conventions
	Example

	Troubleshoot Spring Boot Conventions
	Collect logs

	Service Bindings for Kubernetes
	Install Service Bindings
	Prerequisites
	Install Service Bindings

	Troubleshoot Service Bindings
	Collect logs

	Resources
	ServiceBinding (servicebinding.io/v1alpha3)

	Services Toolkit
	Install Services Toolkit
	Prerequisites
	Install Services Toolkit

	Source Controller
	Install Source Controller
	Prerequisites
	Install

	Troubleshoot Source Controller
	Collecting Logs from Source Controller Manager

	Source Controller Reference
	ImageRepository

	Developer Conventions for Tanzu Application Platform
	Overview
	Features
	Enabling Live Updates
	Enabling debugging

	Next steps

	Install Developer Conventions
	Prerequisites
	Install
	Resource limits
	Uninstall

	Learning Center for Tanzu Application Platform
	Overview
	Use cases
	Use case requirements
	Platform architectural overview
	Next steps

	Install Learning Center
	Install Learning Center
	Prerequisites
	Install

	Procedure to install the Self-Guided Tour Training Portal and Workshop

	Learning Center workshops
	Getting started with Learning Center
	Learning Center operator
	Installing and setting up Learning Center operator
	Cluster pod security policies
	Specifying the ingress domain
	Set the environment variable manually

	Enforcing secure connections
	Configuration YAML
	Create the TLS secret manually

	Specifying the ingress class
	Configuration YAML
	Set the environment variable manually

	Trusting unsecured registries

	Deleting Learning Center
	Learning Center Workshops
	Creating the workshop environment
	Requesting a workshop instance
	Deleting the workshop instance
	Deleting the workshop environment

	TrainingPortal
	Working with multiple workshops
	Loading the workshop definition
	Creating the workshop training portal
	Accessing workshops via the web portal
	Deleting the workshop training portal

	Learning Center local install guides
	Installing on Kind
	Prerequisites
	Kind cluster creation
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a Kubernetes cluster
	Install workshop tutorial package onto a Kubernetes cluster
	Run the workshop
	Trusting insecure registries

	Installing on Minikube
	Trusting insecure registries
	Prerequisites
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for the Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a minikube cluster
	Install workshop tutorial package onto a minikube cluster
	Run the workshop
	Working with large images
	Limited resource availability
	Storage provisioner issue

	Creating Learning Center workshops
	Workshop configuration
	Specifying structure of the content
	Specifying the runtime configuration
	Next steps

	Workshop images
	Templates for creating a workshop
	Workshop content directory layout
	Directory for workshop exercises

	Workshop content
	Deactivating reserved sessions
	Live updates to the content
	Custom workshop image changes
	Custom workshop image overlay
	Changes to workshop definition
	Local build of workshop image

	Building an image
	Structure of the Dockerfile
	Base images and version tags
	Custom workshop base images
	Installing extra system packages
	Installing third-party packages

	Workshop instructions
	Annotation of executable commands
	Annotation of text to be copied
	Extensible clickable actions
	Clickable actions for the dashboard
	Clickable actions for the editor
	Clickable actions for file download
	Clickable actions for the examiner
	Clickable actions for sections
	Overriding title and description
	Escaping of code block content
	Interpolation of data variables
	Adding custom data variables
	Passing environment variables
	Handling embedded URL links
	Conditional rendering of content
	Embedding custom HTML content

	Workshop runtime
	Predefined environment variables
	Running steps on container start
	Running background applications
	Terminal user shell environment
	Overriding terminal shell command

	Presenter slides
	Using reveal.js presentation tool
	Using a PDF file for presenter slides

	Learning Center runtime environment
	Custom resources
	Workshop definition resource
	Workshop environment resource
	Workshop request resource
	Workshop session resource
	Training portal resource
	System profile resource
	Loading the workshop CRDs

	Workshop resource
	Workshop title and description
	Downloading workshop content
	Container image for the workshop
	Setting environment variables
	Overriding the memory available
	Mounting a persistent volume
	Resource budget for namespaces
	Patching workshop deployment
	Creation of session resources
	Overriding default role-based access control (RBAC) rules
	Running user containers as root
	Creating additional namespaces
	Shared workshop resources
	Workshop pod security policy
	Custom security policies for user containers
	Defining additional ingress points
	External workshop instructions
	Disabling workshop instructions
	Enabling the Kubernetes console
	Enabling the integrated editor
	Enabling workshop downloads
	Enabling the test examiner
	Enabling session image registry
	Enabling ability to use Docker
	Enabling WebDAV access to files
	Customizing the terminal layout
	Adding custom dashboard tabs

	WorkshopEnvironment resource
	Specifying the workshop definition
	Overriding environment variables
	Overriding the ingress domain
	Controlling access to the workshop
	Overriding the login credentials
	Additional workshop resources
	Creation of workshop instances

	WorkshopRequest resource
	Specifying workshop environment
	Specifying required access token

	TrainingPortal resource
	Specifying the workshop definitions
	Limiting the number of sessions
	Capacity of individual workshops
	Set reserved workshop instances
	Override initial number of sessions
	Setting defaults for all workshops
	Setting caps on individual users
	Expiring of workshop sessions
	Updates to workshop environments
	Overriding the ingress domain
	Overriding the portal hostname
	Setting extra environment variables
	Overriding portal credentials
	Controlling registration type
	Specifying an event access code
	Making list of workshops public
	Using an external list of workshops
	Overriding portal title and logo
	Allowing the portal in an iframe
	Collecting analytics on workshops
	Tracking using Google Analytics

	SystemProfile resource
	Operator default system profile
	Defining configuration for ingress
	Defining container image registry pull secrets
	Defining storage class for volumes
	Defining storage group for volumes
	Restricting network access
	Running Docker daemon rootless
	Overriding network packet size
	Image registry pull through cache
	Setting default access credentials
	Overriding the workshop images
	Tracking using Google Analytics
	Overriding styling of the workshop
	Additional custom system profiles

	Workshop session resource
	Specifying the session identity
	Specifying the login credentials
	Specifying the ingress domain
	Setting the environment variables

	Learning Center Portal Rest API
	Anonymous access
	Enabling anonymous access
	Triggering workshop creation

	Workshop catalog
	Listing available workshops

	Session management
	Disabling portal user registration
	Requesting a workshop session
	Associating sessions with a user
	Listing all workshop sessions

	Client authentication
	Querying the credentials
	Requesting an access token
	Refreshing the access token

	Troubleshoot Learning Center
	Training portal stays in pending state
	image-policy-webhook-service not found
	Cannot update parameters
	Increase your cluster’s resources

	Supply Chain Choreographer for Tanzu
	Overview

	Out of the Box Supply Chains
	Install Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Delivery Basic
	Prerequisites
	Usage

	Install Out of the Box Delivery Basic
	Prerequisites
	Install

	Out of the Box Supply Chain Basic
	Prerequisites
	Developer Namespace
	Image Secret
	ServiceAccount
	Role and RoleBinding

	Developer workload
	Local Iteration with Local Code
	Local Iteration with Code from Git
	Private Source Git Repository

	GitOps
	Workload Using Default Git Organization

	Install Out of the Box Supply Chain Basic
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing
	Prerequisites
	Developer Namespace
	Updates to the Developer Namespace
	Tekton/Pipeline

	Developer Workload

	Install Out of the Box Supply Chain with Testing
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Developer Namespace
	Updates to the Developer Namespace
	ScanPolicy
	ScanTemplate

	Developer Workload

	Install Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Install

	Out of the Box Templates
	Install Out of the Box Templates
	Prerequisites
	Install

	Supply Chain Security Tools - Scan
	Overview
	Use cases
	Supply Chain Security Tools - Scan features

	Install Supply Chain Security Tools - Scan
	Prerequisites
	Scanner support
	Install

	Spec reference
	About source and image scans
	About policy enforcement around vulnerabilities found

	Scan samples
	Sample public image scan with compliance check
	Public image scan
	Define the ScanPolicy and ImageScan
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Modify the ScanPolicy
	Clean up

	Sample public source code scan with compliance check
	Public source scan
	Define the ScanPolicy and SourceScan

	Sample private image scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Sample private source scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan status
	Clean up
	View vulnerability reports

	Sample public source scan of a blob
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Observe Supply Chain Security Tools - Scan
	Watching in-flight jobs

	Troubleshooting Supply Chain Security Tools - Scan
	Missing target image pull secret
	Blob Source Scan is reporting wrong source URL

	Additional resources
	Configure code repositories and image artifacts to be scanned
	Prerequisite
	Deploy scan custom resources
	SourceScan
	ImageScan

	Enforce compliance policy using Open Policy Agent
	Writing a policy template
	Rego file contract
	Define a Rego file for policy enforcement

	Create a ScanTemplate
	Structure
	Pod requirements
	Best practices

	View scan status conditions
	Viewing scan status
	Understanding conditions
	Condition types for the scans
	Scanning
	Succeeded
	SendingResults
	PolicySucceeded

	Understanding CVECount
	Understanding MetadataURL
	Understanding Phase
	Understanding ScannedBy
	Understanding ScannedAt

	Supply Chain Security Tools for VMware Tanzu - Sign
	Install Supply Chain Security Tools - Sign
	Prerequisites
	Install
	Configure
	Known issues

	Configuring Supply Chain Security Tools - Sign
	Create a ClusterImagePolicy resource
	Provide credentials for the package
	Provide secrets for authentication in your policy
	Provide secrets for authentication in the image-policy-registry-credentials service account

	Image name patterns
	Verify your configuration

	Logs messages and reasons
	Supply Chain Security Tools for Tanzu – Store
	Install Supply Chain Security Tools - Store
	Prerequisites
	Install

	Troubleshooting upgrading
	Database deployment does not exist
	Invalid checkpoint record
	Upgraded pod hanging

	Additional resources
	Install
	Querying the database
	Adding & querying data

	Auditing
	Known issues
	Security
	Backing up data
	Failover and redundancy

	API details
	Information
	Version

	Content negotiation
	URI Schemes
	Consumes
	Produces

	All endpoints
	images
	Operations
	Packages
	Sources
	Vulnerabilities

	Paths
	Create a new image report. Related packages and vulnerabilities are also created. (CreateImageReport)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	Create a new source report. Related packages and vulnerabilities are also created. (CreateSourceReport)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	List the packages in an image. (GetImagePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	List vulnerabilities from the given image. (GetImageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	Search image by id or digest. (GetImages)
	Parameters
	responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	List the images that contain the given package. (GetPackageImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	List the sources containing the given package. (GetPackageSources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	List vulnerabilities from the given package. (GetPackageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	Search packages by id, name and/or version. (GetPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	get source packages (GetSourcePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	List packages of the given source. (GetSourcePackagesQuery)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	get source vulnerabilities (GetSourceVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	Search for sources by ID, repository, commit sha, and/or organization. (GetSources)
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	Search for vulnerabilities by CVE id. (GetVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	List the images that contain the given vulnerability. (GetVulnerabilityImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	List packages that contain the given CVE id. (GetVulnerabilityPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	List sources that contain the given vulnerability. (GetVulnerabilitySources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	health check (HealthCheck)
	All responses
	Responses
	200
	Schema

	Default Response
	Schema

	Models
	DeletedAt
	ErrorMessage
	Image
	MethodType
	Model
	NullTime
	Package
	Rating
	Source
	StringArray
	Vulnerability

	API walkthrough
	Using CURL to POST an image report

	CLI installation
	CLI configuration
	Set the target and certificate authority certificate
	Check the connection

	Insight
	Synopsis
	Options
	See also

	Insight config
	Options
	See also

	Insight health
	Insight health
	Synopsis
	Examples
	Options
	See also

	Insight image
	Options
	See also

	Insight package
	Options
	See also

	Insight source
	Options
	See also

	Insight version
	Options
	See also

	Insight vulnerabilities
	Options
	See also

	Deployment details and configuration
	What is deployed
	Deployment configuration
	Database configuration
	Using AWS RDS postgres database
	Custom database password

	App service type
	Service accounts

	Exporting certificates

	AWS RDS Postgres configuration
	Prerequisites
	AWS RDS

	Creating service accounts and access tokens
	Service accounts
	Read-only service account
	Read-write service account

	Getting the Access Token
	Setting the Access Token

	Using encryption to connect to the database
	Using LoadBalancer
	Obtaining the CA certificate
	Editing /etc/hosts

	Using NodePort
	Obtaining the CA certificate
	Configuring port forwarding
	Modifying your /etc/hosts file

	Add data
	Methods
	Supported Formats and File Types
	Generate a CycloneDX File
	Add Data with the Insight CLI
	Example #1: Create an Image Report
	Example #2: Create a Source Report

	Query data
	Add data
	Methods
	Supported use cases
	Query using the Insight CLI
	Example #1: What images contain a specific dependency?
	Example #2: What dependencies are affected by a specific CVE?

	Log configuration and usage
	Log levels
	Error Logs

	Obtaining logs
	API endpoint log output
	Format
	Log header
	Name
	Key-value pairs
	Common to all logs
	Logging query and path parameter values
	API payload log output

	SQL Query log output
	Format

	Security details
	Security Scans
	Application security
	TLS encryption
	Cryptographic algorithms:

	Access controls
	Authentication
	Authorization

	Container security
	Non-root user

	Security scanning
	Static Application Security Testing (SAST)
	Software Composition Analysis (SCA)

	SCA scanning results
	1.0.2
	Black Duck Binary Analysis (BDBA)
	API backend
	CLI

	Grype
	API Backend Container Image
	API Backend Code Repository
	CLI Code Repository

	1.0.0
	Scan Type:
	Source of Scan:
	Version of Source:
	CVEs:
	BDBA
	Grype

	Backing up Supply Chain Security Tools – Store data
	Backup
	Restore

	Failover, redundancy, and backups
	API Server
	Database

	VMware Tanzu Developer Tools for Visual Studio Code
	Installing Tanzu Dev Tools for Visual Studio Code
	Prerequisites
	Installation
	Configuration
	Quick Start
	Uninstall

	Using Tanzu Dev Tools to Get Started
	Set Up with Snippets
	The workload.yaml File
	The catalog.yaml File
	Tiltfile

	Set Up Manually
	Creating a workload.yaml File
	Create a Tiltfile

	Using Tanzu Dev Tools to iterate on your workload
	Debug your workload
	Live update your workload
	Starting Live Update
	Stopping Live Update
	Deactivate Live Update

	Switch a namespace

	Troubleshooting Tanzu Developer Tools for VS Code
	Unable to to configure task
	Symptom
	Solution

	Extension Pack for Java has not automatically installed
	Symptom
	Solution

	Tanzu API portal
	Install Tanzu API portal
	Prerequisites
	Install

	Tanzu Application Platform GUI
	Overview of Tanzu Application Platform GUI
	Install Tanzu Application Platform GUI
	Prerequisites
	Procedure

	Accessing Tanzu Application Platform GUI
	Access with the LoadBalancer method (default)
	Access with the shared Ingress method

	Catalog operations
	Adding catalog entities
	Users and groups
	Systems
	Components

	Update software catalogs
	Register components
	Deregister components
	Add or change organization catalog locations

	Install demo apps and their catalogs
	Yelb system
	Install Yelb
	Install the Yelb catalog

	Setting up a Tanzu Application Platform GUI authentication provider
	Configure an authentication provider
	(Optional) Allow guest access
	(Optional) Customize the login page

	Support menu customization
	Overview
	Customizing
	Structure of the support configuration
	URL
	Items
	Title
	Icon
	Links

	Adding Tanzu Application Platform GUI integrations
	Add a GitHub provider integration
	Add a Git-based provider integration that isn’t GitHub
	Add a non-Git provider integration
	Update the package profile

	Configuring the Tanzu Application Platform GUI database
	Configure a PostgreSQL database

	TechDocs
	Create an Amazon S3 bucket
	Configure Amazon S3 access
	Find the catalog locations and their entities’ namespace/kind/name
	Use the TechDocs CLI to generate and publish TechDocs
	Update techdocs section in app-config.yaml to point to the Amazon S3 bucket

	Tanzu Application Platform GUI plug-ins
	Overview

	Runtime resources visibility
	Prerequisites
	Generate YAML files using Tanzu Application Platform Initializer
	Navigate to the Runtime Resources visibility screen
	View details for a specific resource

	Detail pages
	Overview section
	Status section
	Ownership section
	Annotations and Labels

	Navigating to Pods
	Knative service details page
	Pod details page

	Application Live View in Tanzu Application Platform GUI
	Overview
	Entry point to Application Live View plug-in
	Application Live View pages
	Details page
	Health page
	Environment page
	Log Levels page
	Threads page
	Memory page
	Request Mappings page
	HTTP Requests page
	Caches page
	Configuration Properties page
	Conditions page
	Scheduled Tasks page
	Beans page
	Metrics page
	Actuator page

	Troubleshooting

	Application Accelerator in Tanzu Application Platform GUI
	Overview
	Access Application Accelerator
	Configure project generation
	Create the project
	Develop your code
	Next steps

	Install Application Accelerator
	Prerequisites
	Configure properties and resource usage
	Install

	Upgrade Tanzu Application Platform GUI
	Considerations
	Upgrade within a Tanzu Application Platform profile
	Upgrade Tanzu Application Platform GUI individually

	Troubleshoot Tanzu Application Platform GUI
	Tanzu Application Platform GUI does not work in Safari
	Symptom
	Solution

	Catalog not found
	Symptom
	Cause
	Solution

	Issues updating the values file
	Symptom
	Solution

	Pull logs from Tanzu Application Platform GUI
	Symptom
	Solution

	Tanzu Build Service
	Install Tanzu Build Service
	Prerequisites
	Install Tanzu Build Service by using the Tanzu CLI
	Install Tanzu Build Service using the Tanzu CLI air-gapped

	Tekton
	Install Tekton
	Prerequisites
	Install Tekton Pipelines

	Workload types
	Web workloads
	Functions (Beta Feature)
	Overview
	Prerequisites
	Adding function buildpacks
	Add accelerators to Tanzu Application Platform GUI
	Create a functions project from an accelerator
	Deploy your function

