
Tanzu Application
Platform v1.1

VMware Tanzu Application Platform 1.1

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Tanzu Application Platform v1.1

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Tanzu Application Platform v1.1 49

Overview of Tanzu Application Platform 49

Installation profiles in Tanzu Application Platform v1.1 54

About Tanzu Application Platform package profiles 54

About installing the Tanzu Application Platform v1.1 55

Notice of telemetry collection for Tanzu Application Platform 55

Release notes 57

v1.1.2 57

Security fixes 57

Tanzu Application Platform GUI 57

Resolved issues 57

Application Live View 57

Grype scanner 57

Supply Chain Security Tools - Scan 57

Tanzu Application Platform GUI 58

Known issues 58

Grype scanner 58

Supply Chain Security Tools - Scan 58

Supply Chain Security Tools - Sign 59

v1.1.1 59

Resolved issues 59

Supply Chain Choreographer plug-in 59

Supply Chain Security Tools - Scan 59

Supply Chain Security Tools - Sign 59

Supply Chain Security Tools - Store 59

Grype Scanner 59

Tanzu Application Platform GUI 60

Known issues 60

Grype scanner 60

Supply Chain Choreographer for Tanzu 60

Supply Chain Security Tools - Scan 60

Supply Chain Security Tools - Store 60

Tanzu Application Platform GUI 60

Tanzu Application Platform v1.1

VMware, Inc 3

v1.1 61

Prerequisites 61

New features 61

Installing 61

Default roles for Tanzu Application Platform 61

Application Accelerator 62

Application Live View 62

Tanzu CLI - Apps plug-in 62

Service Bindings 62

Source Controller 63

Spring Boot Conventions 63

Supply Chain Choreographer 63

Supply Chain Security Tools - Scan 63

Supply Chain Security Tools - Sign 64

Supply Chain Security Tools - Store 64

Tanzu Application Platform GUI 64

Functions (Beta) 64

Breaking changes 65

Application Accelerator 65

Supply Chain Security Tools - Scan 65

Supply Chain Security Tools - Store 65

Resolved issues 65

Application Accelerator 65

Application Live View 65

Services Toolkit 65

Supply Chain Security Tools - Scan 65

Grype Scanner 66

Supply Chain Security Tools - Store 66

Tanzu CLI - Apps plug-in 66

Tanzu Application Platform GUI 66

Known issues 66

Tanzu Application Platform 67

Tanzu Cluster Essentials 67

Application Live View 67

Grype scanner 67

Supply Chain Choreographer plug-in 67

Supply Chain Security Tools - Scan 68

Supply Chain Security Tools - Store 68

Tanzu Application Platform GUI 69

Tanzu Application Platform v1.1

VMware, Inc 4

Installing Tanzu Application Platform 70

Installation process 70

Prerequisites 70

VMware Tanzu Network and container image registry requirements 70

DNS Records 71

Tanzu Application Platform GUI 71

Kubernetes cluster requirements 72

Resource requirements 73

Tools and CLI requirements 73

Accepting Tanzu Application Platform EULAs, installing Cluster
Essentials and the Tanzu CLI

73

Accept the End User License Agreements 74

Example of accepting the Tanzu Application Platform EULA 74

Set the Kubernetes cluster context 76

Install Cluster Essentials for Tanzu 77

Install or update the Tanzu CLI and plug-ins 77

Install Tanzu CLI: Linux or macOS 77

Install Tanzu CLI: Windows 78

Install/Update Tanzu CLI plug-ins 79

Installing the Tanzu Application Platform package and profiles 80

Relocate images to a registry 80

Install your Tanzu Application Platform profile 83

(Optional) Configure LoadBalancer for Contour ingress 84

Full profile 85

Light Profile 87

View possible configuration settings for your package 87

Identify the values for your package 88

Install your Tanzu Application Platform package 90

Access Tanzu Application Platform GUI 91

Exclude packages from a Tanzu Application Platform profile 91

Opting out of telemetry collection 91

Turn off telemetry collection 91

Upgrading Tanzu Application Platform 93

Prerequisites 93

Add new package repository 93

Perform upgrade of Tanzu Application Platform 94

Tanzu Application Platform v1.1

VMware, Inc 5

Upgrade instructions for Profile-based installation 94

Upgrade instructions for component-specific installation 94

Verify the upgrade 94

Migrate Tanzu Application Platform profiles 97

Prerequisites 97

Add new package repository 97

Edit the tap-values.yaml configuration file that was used during installation 97

Perform migration of Tanzu Application Platform profile 98

Getting started with the Tanzu Application Platform 99

Purpose 99

Getting started prerequisites 99

Section 1: Develop your first application on the Tanzu Application Platform 100

About application accelerators 100

Deploy your application 100

Add your application to Tanzu Application Platform GUI Software Catalog 102

Iterate on your application 104

Live update your application 104

Debug your application 105

Monitor your running application 105

Section 2: Create your application accelerator 105

Create an application accelerator 106

Publish the new accelerator 106

Working with accelerators 107

Updating an accelerator 107

Deleting an accelerator 107

Using an accelerator manifest 107

Section 3: Add Testing and Security Scanning to Your Application 108

Introducing a Supply Chain 108

A path to production 108

Available Supply Chains 109

1: OOTB Basic (default) 109

2: OOTB Testing 110

3: OOTB Testing+Scanning 111

Install OOTB Testing 111

Tekton pipeline config example 112

Workload update 113

Install OOTB Testing+Scanning 114

Tanzu Application Platform v1.1

VMware, Inc 6

Workload update 116

Query for vulnerabilities 117

Congratulations! You have successfully deployed your application on the
Tanzu Application Platform.

118

Section 4: Configure image signing and verification in your supply chain 118

Configure your supply chain to sign your image builds 118

Next steps 119

Scan and Store: Introducing vulnerability scanning and metadata storage to
your Supply Chain

119

Next steps 120

Section 5: Consuming services on Tanzu Application Platform 120

Key concepts 120

Service instances 120

Service bindings 120

Resource claims 120

Services you can use with Tanzu Application Platform 121

User roles and responsibilities 121

Walkthrough 122

Prerequisites 123

Set up a service 123

Create a service instance 125

Claim a service instance 126

Bind an application workload to the service instance 127

Advanced use cases and further reading 129

Overview of multicluster Tanzu Application Platform 130

Next steps 130

Install multicluster Tanzu Application Platform profiles 131

Prerequisites 131

Multicluster Installation Order of Operations 131

Install View cluster 131

Install Build clusters 132

Install Run clusters 132

Add Build and Run clusters to Tanzu Application Platform GUI 132

Next steps 132

Getting started with multicluster Tanzu Application Platform 132

Prerequisites 133

Start the workload on the Build profile cluster 133

Tanzu Application Platform v1.1

VMware, Inc 7

Build profile 135

Run profile 137

View profile 138

Troubleshooting Tanzu Application Platform 140

Troubleshoot installing Tanzu Application Platform 140

Developer cannot be verified when installing Tanzu CLI on macOS 140

Access .status.usefulErrorMessage details 140

“Unauthorized to access” error 141

“Serviceaccounts already exists” error 142

After package installation, one or more packages fails to reconcile 142

Failure to accept an End User License Agreement error 146

Troubleshoot using Tanzu Application Platform 146

Missing build logs after creating a workload 146

“Workload already exists” error after updating the workload 147

Workload creation fails due to authentication failure in Docker Registry 147

Explanation 148

Solution 148

Telemetry component logs show errors fetching the “reg-creds” secret 148

Debug convention may not apply 148

Execute bit not set for App Accelerator build scripts 149

“No live information for pod with ID” error 149

“image-policy-webhook-service not found” error 149

“Increase your cluster resources” error 150

MutatingWebhookConfiguration prevents pod admission 150

Priority class of webhook’s pods preempts less privileged pods 151

CrashLoopBackOff from password authentication fails 152

Password authentication fails 153

metadata-store-db pod fails to start 153

Missing persistent volume 154

Supply Chain Security Tools - Sign rejects images 154

Supply Chain Security Tools - Scan unable to decode CycloneDX 155

Troubleshoot Tanzu Application Platform components 155

Uninstalling Tanzu Application Platform 156

Delete the packages 156

Tanzu Application Platform v1.1

VMware, Inc 8

Delete the Tanzu Application Platform package repository 156

Remove Tanzu CLI, plug-ins, and associated files 157

Component documentation 158

Installing individual packages 158

Install pages for individual Tanzu Application Platform packages 158

Verify the installed packages 159

Set up developer namespaces to use installed packages 160

Enable single user access 160

Enable additional users access with Kubernetes RBAC 162

Tanzu CLI 164

Tanzu CLI plug-ins 164

Apps CLI plug-in overview 164

About workloads 164

Command reference 165

Usage and examples 165

Install Apps CLI plug-in 165

Prerequisites 165

Install 165

Create a workload 165

Prerequisites 166

Get started with an example workload 166

Check build logs 166

Get the workload status and details 167

Create a workload from local source code 167

Bind a service to a workload 167

Next steps 168

Command reference 168

Tanzu apps 168

Options 168

See also 169

Tanzu apps workload 169

Options 169

Tanzu Application Platform v1.1

VMware, Inc 9

Options inherited from parent commands 169

See also 169

Tanzu apps workload apply 170

Synopsis 170

Examples 170

Options 170

Options inherited from parent commands 171

See also 171

Tanzu apps workload create 171

Synopsis 171

Examples 172

Options 172

Options inherited from parent commands 173

See also 173

Tanzu apps workload update 173

Synopsis 173

Examples 173

Options 174

Options inherited from parent commands 175

See also 175

Tanzu apps workload get 175

Examples 175

Options 175

Options inherited from parent commands 175

See also 175

Tanzu apps workload delete 175

Examples 176

Options 176

Options inherited from parent commands 176

See also 176

Tanzu apps workload list 176

Examples 176

Options 176

Options inherited from parent commands 177

See also 177

Tanzu Application Platform v1.1

VMware, Inc 10

Tanzu apps workload tail 177

Examples 177

Options 177

Options inherited from parent commands 177

See also 177

Tanzu apps cluster supply chain 178

Options 178

Options inherited from parent commands 178

See also 178

Tanzu apps cluster supply chain list 178

Examples 178

Options 178

Options inherited from parent commands 178

See also 179

Usage and examples 179

Changing clusters 179

Checking update status 179

Working with YAML files 179

Autocompletion 180

Bash 180

Zsh 180

Tanzu Insight plug-in overview 180

Install the Tanzu Insight CLI plug-in 181

Configure the Tanzu Insight CLI plug-in 181

Set the target and certificate authority certificate 181

Check the connection 182

Configure target endpoint and certificate 182

Use Ingress 182

Not use Ingress 183

Use LoadBalancer 183

Use NodePort 183

Configure port forwarding 183

Modify your /etc/hosts file 184

Tanzu Application Platform v1.1

VMware, Inc 11

Configure access tokens 184

Service accounts 184

Read-only service account 184

Read-write service account 185

Getting the Access Token 186

Setting the Access Token 186

Query data 187

Supported use cases 187

Query using the Tanzu Insight CLI plug-in 187

Example #1: What packages & CVEs does a specific image contain? 187

Example #2: What packages & CVEs does my source code contain? 188

Example #3: What dependencies are affected by a specific CVE? 188

Add data 189

Add data 189

Supported formats and file types 189

Generate a CycloneDX file 189

Add data with the Tanzu Insight plug-in 190

Example #1: Add an image report 190

Example #2: Add a source report 190

Command reference 191

Synopsis 191

Options 191

See also 191

Tanzu insight config set-target 191

Tanzu insight config set-target 191

Synopsis 191

Examples 192

Options 192

See also 192

Tanzu insight config 192

Options 192

See also 192

Tanzu insight health 192

Tanzu insight health 192

Synopsis 192

Tanzu Application Platform v1.1

VMware, Inc 12

Examples 193

Options 193

See also 193

Tanzu insight image 193

Options 193

See also 193

Tanzu insight image add 193

Examples 193

Options 193

See also 194

Tanzu insight image get 194

Synopsis 194

Examples 194

Options 194

See Also 194

Tanzu insight image packages 194

Synopsis 194

Examples 194

Options 195

See also 195

Tanzu insight image vulnerabilities 195

Examples 195

Options 195

See also 195

Tanzu insight package 195

Options 195

See also 195

Tanzu insight package get 196

Synopsis 196

Examples 196

Options 196

See also 196

Tanzu insight Package Images 196

Tanzu Application Platform v1.1

VMware, Inc 13

Synopsis 196

Examples 196

Options 197

See also 197

Tanzu insight package sources 197

Synopsis 197

Examples 197

Options 197

See also 197

Tanzu insight Package Vulnerabilities 197

Synopsis 197

Examples 198

Options 198

See also 198

Tanzu insight source 198

Options 198

See also 198

Tanzu insight source add 198

Examples 198

Options 198

See also 199

Tanzu insight source get 199

Synopsis 199

Examples 199

Options 199

See also 199

Tanzu insight source packages 199

Synopsis 199

Examples 200

Options 200

See also 200

Tanzu insight source vulnerabilities 200

Synopsis 200

Examples 200

Tanzu Application Platform v1.1

VMware, Inc 14

Options 200

See also 200

Tanzu insight version 200

Options 201

See also 201

Tanzu insight vulnerabilities 201

Options 201

See also 201

Tanzu insight vulnerabilities get 201

Synopsis 201

Examples 201

Options 201

See also 202

Tanzu insight vulnerabilities images 202

Synopsis 202

Examples 202

Options 202

See also 202

Tanzu insight vulnerabilities packages 202

Synopsis 202

Examples 202

Options 203

See also 203

Tanzu insight vulnerabilities sources 203

Synopsis 203

Examples 203

Options 203

See also 203

Overview 203

Default roles 204

Working with roles using the RBAC CLI plug-in 204

Disclaimer 204

Setting up authentication for Tanzu Application Platform 204

Tanzu Kubernetes Grid 204

Tanzu Application Platform v1.1

VMware, Inc 15

Installing Pinniped on a single cluster 205

Prerequisites 205

Install Pinniped Supervisor 205

Create Certificates (letsencrypt/cert-manager) 205

Create Ingress resources 206

Create Pinniped-Supervisor configuration 207

Apply the resources 207

Install Pinniped Concierge 208

Log in to the cluster 209

Integrating Azure Active Directory 209

Integrate Azure AD with a new or existing AKS without Pinniped 209

Prerequisites 209

Set up a platform operator 209

Set up a Tanzu Application Platform default role group 210

Set up kubeconfig 210

Integrate Azure AD with Pinniped 211

Prerequisites 211

Set up the Azure AD app 211

Set up the Tanzu Application Platform default role group 212

Set up kubeconfig 213

Role descriptions 213

app-editor 213

app-viewer 214

app-operator 214

workload 214

deliverable 214

Detailed role permissions breakdown 214

Native Kubernetes Resources 214

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 214

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 215

App Accelerator 215

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 215

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 215

Cartographer 215

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 215

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 215

Tanzu Application Platform v1.1

VMware, Inc 16

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 216

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 216

Cloud Native Runtimes 216

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 216

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 216

Convention Service 216

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 216

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 217

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 217

Developer Conventions 217

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 217

OOTB Templates 217

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 217

apps.tanzu.vmware.com/aggregate-to-workload: "true" 218

apps.tanzu.vmware.com/aggregate-to-deliverable: "true" 218

Service Bindings 219

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 219

Services Toolkit 219

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 219

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 219

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 219

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 219

Source Controller 219

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 220

Supply Chain Security Tools — Store 220

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 220

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 220

Tanzu Build Service 220

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 220

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 220

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 220

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 220

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 220

Tekton 221

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 221

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 221

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 221

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 221

Tanzu Application Platform v1.1

VMware, Inc 17

Bind a user or group to a default role 221

Prerequisites 221

Install the Tanzu Application Platform RBAC CLI plug-in 222

Use a different kubeconfig location 222

Add the specified user or group to a role 222

Get a list of users and groups from a role 223

Remove the specified user or group from a role 223

Error logs 223

Troubleshooting 225

Login using Pinniped 225

Generate and distribute kubeconfig to users 225

Login with provided kubeconfig 225

Additional resources 226

Install 226

Install default roles independently 226

Prerequisites 226

Install 226

Application Accelerator for VMware Tanzu 227

Install Application Accelerator 227

Prerequisites 227

Configure properties and resource usage 228

Install 229

Application Live View for VMware Tanzu 230

Install Application Live View 231

Prerequisites 231

Install Application Live View 231

Install Application Live View Backend 231

Install Application Live View Connector 233

Install Application Live View Conventions 235

Convention Service 236

Overview 236

About applying conventions 237

Applying conventions by using image metadata 237

Tanzu Application Platform v1.1

VMware, Inc 18

Applying conventions without using image metadata 237

Install Convention Service 237

Prerequisites 238

Install 238

Creating conventions 240

Introduction 240

Convention server 240

Convention controller 241

Getting started 241

Prerequisites 241

Define convention criteria 242

Define the convention behavior 245

Matching criteria by labels or annotations 245

Matching criteria by environment variables 246

Matching criteria by image metadata 246

Configure and install the convention server 247

Deploy a convention server 249

Next Steps 252

Troubleshoot Convention Service 252

No server in the cluster 252

Symptoms 252

Cause 252

Solution 252

Server with wrong certificates configured 253

Symptoms 253

Cause 253

Solution 253

Server fails when processing a request 253

Symptoms 253

Cause 254

Solution 254

Connection refused due to unsecured connection 255

Symptoms 255

Cause 256

Solution 256

Convention Resources 256

Tanzu Application Platform v1.1

VMware, Inc 19

Convention Service Resources 256

API Structure 256

Template Status 257

Chaining Multiple Conventions 257

Collecting Logs from the Controller 257

References 257

ImageConfig 258

PodConventionContextSpec 259

PodConventionContextStatus 260

PodConventionContext 260

PodConventionContext Structure 261

ClusterPodConvention 262

PodIntent 262

BOM 262

cert-manager, Contour, and FluxCD Source Controller 263

Install cert-manager, Contour, and FluxCD Source Controller 263

Prerequisites 263

Install cert-manager 264

Install Contour 265

Install FluxCD source-controller 269

Cloud Native Runtimes 271

Install Cloud Native Runtimes 271

Prerequisites 271

Install 271

Spring Boot conventions 274

Overview 274

Install Spring Boot conventions 275

Prerequisites 275

Install Spring Boot conventions 276

Tanzu Application Platform v1.1

VMware, Inc 20

Conventions 276

Set a JAVA_TOOL_OPTIONS property for a workload 277

Spring Boot convention 278

Spring boot graceful shut down convention 279

Spring Boot web convention 280

Spring Boot Actuator convention 281

Spring Boot Actuator Probes convention 282

Service intent conventions 283

Example 284

Troubleshoot Spring Boot Conventions 286

Collect logs 286

Service Bindings for Kubernetes 286

Install Service Bindings 287

Prerequisites 287

Install Service Bindings 287

Troubleshoot Service Bindings 288

Collect logs 288

Resources 290

ServiceBinding (servicebinding.io/v1alpha3) 290

Services Toolkit 291

Install Services Toolkit 291

Prerequisites 291

Install Services Toolkit 291

Source Controller 292

Install Source Controller 292

Prerequisites 292

Install 293

Troubleshoot Source Controller 295

Collecting Logs from Source Controller Manager 295

Source Controller Reference 295

ImageRepository 295

Tanzu Application Platform v1.1

VMware, Inc 21

Developer Conventions for Tanzu Application Platform 296

Overview 296

Features 296

Enabling Live Updates 296

Enabling debugging 297

Next steps 297

Install Developer Conventions 297

Prerequisites 298

Install 298

Resource limits 299

Uninstall 299

Learning Center for Tanzu Application Platform 299

Overview 299

Use cases 299

Use case requirements 300

Platform architectural overview 301

Next steps 302

Install Learning Center 302

Prerequisites 302

Install 303

Procedure to install the Self-Guided Tour Training Portal and Workshop 305

Supported Learning Center Values Configuration 305

Learning Center workshops 307

Getting started with Learning Center 309

Learning Center operator 309

Installing and setting up Learning Center operator 309

Cluster pod security policies 310

Specifying the ingress domain 310

Set the environment variable manually 311

Enforcing secure connections 311

Configuration YAML 312

Create the TLS secret manually 312

Specifying the ingress class 312

Configuration YAML 313

Tanzu Application Platform v1.1

VMware, Inc 22

Set the environment variable manually 313

Trusting unsecured registries 313

Deleting Learning Center 314

Learning Center Workshops 314

Creating the workshop environment 315

Requesting a workshop instance 315

Deleting the workshop instance 316

Deleting the workshop environment 317

TrainingPortal 317

Working with multiple workshops 317

Loading the workshop definition 317

Creating the workshop training portal 318

Accessing workshops via the web portal 320

Deleting the workshop training portal 322

Learning Center local install guides 322

Installing on Kind 322

Prerequisites 323

Kind cluster creation 323

Ingress controller with DNS 323

Install carvel tools 324

Install Tanzu package repository 324

Create a configuration YAML file for Learning Center package 325

Using a nip.io DNS address 326

Install Learning Center package onto a Kubernetes cluster 327

Install workshop tutorial package onto a Kubernetes cluster 327

Run the workshop 327

Trusting insecure registries 327

Installing on Minikube 329

Trusting insecure registries 329

Prerequisites 330

Ingress controller with DNS 330

Install carvel tools 330

Install Tanzu package repository 331

Create a configuration YAML file for the Learning Center package 331

Using a nip.io DNS address 333

Tanzu Application Platform v1.1

VMware, Inc 23

Install Learning Center package onto a minikube cluster 333

Install workshop tutorial package onto a minikube cluster 333

Run the workshop 334

Working with large images 334

Limited resource availability 334

Storage provisioner issue 334

Creating Learning Center workshops 335

Workshop configuration 335

Specifying structure of the content 335

Specifying the runtime configuration 337

Next steps 338

Workshop images 338

Templates for creating a workshop 338

Workshop content directory layout 339

Directory for workshop exercises 339

Workshop content 340

Deactivating reserved sessions 340

Live updates to the content 340

Custom workshop image changes 341

Custom workshop image overlay 342

Changes to workshop definition 343

Local build of workshop image 343

Building an image 344

Structure of the Dockerfile 344

Base images and version tags 344

Custom workshop base images 345

Installing extra system packages 345

Installing third-party packages 346

Workshop instructions 346

Annotation of executable commands 346

Annotation of text to be copied 347

Extensible clickable actions 348

Clickable actions for the dashboard 350

Clickable actions for the editor 352

Clickable actions for file download 354

Tanzu Application Platform v1.1

VMware, Inc 24

Clickable actions for the examiner 354

Clickable actions for sections 356

Overriding title and description 357

Escaping of code block content 358

Interpolation of data variables 358

Adding custom data variables 359

Passing environment variables 360

Handling embedded URL links 360

Conditional rendering of content 361

Embedding custom HTML content 361

Workshop runtime 362

Predefined environment variables 362

Running steps on container start 363

Running background applications 363

Terminal user shell environment 364

Overriding terminal shell command 364

Presenter slides 365

Using reveal.js presentation tool 365

Using a PDF file for presenter slides 365

Learning Center runtime environment 365

Custom resources 366

Workshop definition resource 366

Workshop environment resource 367

Workshop request resource 367

Workshop session resource 368

Training portal resource 368

System profile resource 368

Loading the workshop CRDs 369

Workshop resource 369

Workshop title and description 369

Downloading workshop content 371

Container image for the workshop 373

Setting environment variables 375

Overriding the memory available 375

Mounting a persistent volume 376

Tanzu Application Platform v1.1

VMware, Inc 25

Resource budget for namespaces 376

Patching workshop deployment 379

Creation of session resources 380

Overriding default role-based access control (RBAC) rules 382

Running user containers as root 383

Creating additional namespaces 384

Shared workshop resources 387

Workshop pod security policy 388

Custom security policies for user containers 390

Defining additional ingress points 391

External workshop instructions 393

Disabling workshop instructions 395

Enabling the Kubernetes console 395

Enabling the integrated editor 396

Enabling workshop downloads 396

Enabling the test examiner 397

Enabling session image registry 398

Enabling ability to use Docker 400

Enabling WebDAV access to files 401

Customizing the terminal layout 402

Adding custom dashboard tabs 403

WorkshopEnvironment resource 404

Specifying the workshop definition 404

Overriding environment variables 404

Overriding the ingress domain 405

Controlling access to the workshop 407

Overriding the login credentials 408

Additional workshop resources 408

Creation of workshop instances 409

WorkshopRequest resource 410

Specifying workshop environment 410

Specifying required access token 411

TrainingPortal resource 411

Specifying the workshop definitions 411

Limit the number of sessions 412

Capacity of individual workshops 412

Set reserved workshop instances 413

Tanzu Application Platform v1.1

VMware, Inc 26

Override initial number of sessions 414

Setting defaults for all workshops 414

Set caps on individual users 415

Expiration of workshop sessions 415

Updates to workshop environments 417

Override the ingress domain 417

Override the portal host name 419

Set extra environment variables 419

Override portal credentials 420

Control registration type 421

Specify an event access code 422

Make a list of workshops public 423

Use an external list of workshops 423

Override portal title and logo 424

Allow the portal in an iframe 424

Collect analytics on workshops 425

Track using Google Analytics 426

SystemProfile resource 427

Operator default system profile 427

Defining configuration for ingress 428

Defining container image registry pull secrets 428

Defining storage class for volumes 429

Defining storage group for volumes 429

Restricting network access 431

Running Docker daemon rootless 431

Overriding network packet size 432

Image registry pull through cache 432

Setting default access credentials 434

Overriding the workshop images 434

Tracking using Google Analytics 435

Overriding styling of the workshop 436

Additional custom system profiles 437

WorkshopSession resource 437

Specifying the session identity 437

Specifying the login credentials 438

Specifying the ingress domain 438

Setting the environment variables 440

Tanzu Application Platform v1.1

VMware, Inc 27

Learning Center Portal Rest API 441

Anonymous access 441

Enabling anonymous access 441

Triggering workshop creation 441

Workshop catalog 442

Listing available workshops 442

Session management 444

Disabling portal user registration 444

Requesting a workshop session 445

Associating sessions with a user 446

Listing all workshop sessions 447

Client authentication 448

Querying the credentials 449

Requesting an access token 449

Refreshing the access token 450

Troubleshoot Learning Center 450

Training portal stays in pending state 450

image-policy-webhook-service not found 451

Cannot update parameters 451

Increase your cluster’s resources 451

Supply Chain Choreographer for Tanzu 452

Overview 452

Out of the Box Supply Chains 452

Install Supply Chain Choreographer 452

Prerequisites 453

Install 453

Out of the Box Delivery Basic 453

Prerequisites 453

Usage 453

Install Out of the Box Delivery Basic 454

Prerequisites 454

Install 455

Tanzu Application Platform v1.1

VMware, Inc 28

Out of the Box Supply Chain Basic 455

Prerequisites 456

Developer Namespace 456

Registries Secrets 456

ServiceAccount 457

RoleBinding 458

Developer workload 459

Install Out of the Box Supply Chain Basic 459

Prerequisites 459

Install 460

Out of the Box Supply Chain with Testing 462

Prerequisites 462

Developer Namespace 463

Updates to the developer Namespace 463

Tekton/Pipeline 463

Allow multiple Tekton pipelines in a namespace 464

Developer Workload 465

Install Out of the Box Supply Chain with Testing 466

Prerequisites 466

Install 467

Out of the Box Supply Chain with Testing and Scanning 469

Prerequisites 470

Developer Namespace 470

Updates to the developer Namespace 471

ScanPolicy 471

ScanTemplate 472

Allow multiple Tekton pipelines in a namespace 473

Developer workload 474

Install Out of the Box Supply Chain with Testing and Scanning 475

Prerequisites 475

Install 475

Out of the Box Templates 478

Install Out of the Box Templates 478

Tanzu Application Platform v1.1

VMware, Inc 29

Prerequisites 479

Install 479

Building from source 480

Git source 480

Private GitRepository 481

HTTP(S) Basic-auth / Token-based authentication 482

SSH auth 483

How it works 484

Workload parameters 484

Local source 485

Authentication 486

Developer 486

Supply chain components 486

How it works 486

Using a prebuilt image 487

Requirements for prebuilt images 487

Configure your workload to use a prebuilt image 488

Examples 489

Using a Dockerfile 489

Using Spring Boot’s build-image Maven target 490

About Out of the Box Supply Chains 491

Understanding the supply chain for a prebuilt image 492

Git authentication 493

HTTP 494

SSH 495

GitOps vs. RegistryOps 496

GitOps 497

Authentication 498

HTTP(S) Basic-auth / Token-based authentication 498

SSH 499

GitOps workload parameters 499

RegistryOps 501

Authoring supply chains 501

Providing your own supply chain 501

Providing your own templates 503

Modifying an Out of the Box Supply Chain 504

Tanzu Application Platform v1.1

VMware, Inc 30

Example 504

Modifying an Out of the Box Supply template 505

Example 506

Live modification of supply chains and templates 507

Supply Chain Security Tools - Scan 508

Overview 508

Use cases 508

Supply Chain Security Tools - Scan features 509

A Note on Vulnerability Scanners 509

Missed CVEs 509

False positives 509

Install Supply Chain Security Tools - Scan 510

Prerequisites 511

Scanner support 511

Install 511

Spec reference 514

About source and image scans 514

About policy enforcement around vulnerabilities found 515

Scan samples 515

Sample public image scan with compliance check 515

Public image scan 516

Define the ScanPolicy and ImageScan 516

(Optional) Set up a watch 517

Deploy the resources 517

View the scan results 517

Edit the ScanPolicy 517

Clean up 517

Sample public source code scan with compliance check 518

Public source scan 518

Run an example public source scan 518

Sample private image scan 520

Define the resources 520

Set up target image pull secret 520

Create the private image scan 521

Tanzu Application Platform v1.1

VMware, Inc 31

(Optional) Set up a watch 521

Deploy the resources 522

View the scan results 522

Clean up 522

View vulnerability reports 522

Sample private source scan 522

Define the resources 522

(Optional) Set up a watch 524

Deploy the resources 524

View the scan status 524

Clean up 525

View vulnerability reports 525

Sample public source scan of a blob 525

Define the resources 525

(Optional) Set up a watch 525

Deploy the resources 525

View the scan results 526

Clean up 526

View vulnerability reports 526

Observe Supply Chain Security Tools - Scan 526

Watching in-flight jobs 526

Troubleshooting Supply Chain Security Tools - Scan 526

Missing target image pull secret 527

Disable Supply Chain Security Tools - Store 527

Resolving Incompatible Syft Schema Version 527

Resolving “Unable to decode cyclonedx” 528

Blob Source Scan is reporting wrong source URL 528

Additional resources 529

Configure code repositories and image artifacts to be scanned 529

Prerequisite 529

Deploy scan custom resources 529

SourceScan 529

ImageScan 531

Enforce compliance policy using Open Policy Agent 532

Tanzu Application Platform v1.1

VMware, Inc 32

Writing a policy template 532

Rego file contract 533

Define a Rego file for policy enforcement 533

Create a ScanTemplate 534

Structure 534

Pod requirements 534

Best practices 535

View scan status conditions 535

Viewing scan status 535

Understanding conditions 535

Condition types for the scans 535

Scanning 535

Succeeded 535

SendingResults 536

PolicySucceeded 536

Understanding CVECount 536

Understanding MetadataURL 536

Understanding Phase 536

Understanding ScannedBy 537

Understanding ScannedAt 537

Supply Chain Security Tools for VMware Tanzu - Sign 537

Install Supply Chain Security Tools - Sign 538

Prerequisites 538

Install 538

Configure 542

Known issues 543

Configuring Supply Chain Security Tools - Sign 543

Create a ClusterImagePolicy resource 543

Provide credentials for the package 545

Provide secrets for authentication in your policy 546

Provide secrets for authentication in the image-policy-registry-credentials
service account

547

Image name patterns 548

Verify your configuration 548

Logs messages and reasons 549

Tanzu Application Platform v1.1

VMware, Inc 33

Supply Chain Security Tools for Tanzu – Store 552

Using the Tanzu Insight CLI plug-in 553

Multicluster configuration 553

Additional documentation 553

Install Supply Chain Security Tools - Store independent from Tanzu
Application Platform profiles

553

Prerequisites 553

Install 553

Configure target endpoint and certificate 556

Use Ingress 557

Not use Ingress 557

Use LoadBalancer 557

Use NodePort 558

Configure port forwarding 558

Modify your /etc/hosts file 558

Configure access tokens 558

Service accounts 559

Read-only service account 559

Read-write service account 560

Getting the Access Token 561

Setting the Access Token 561

Security details 561

Application security 561

TLS encryption 561

Cryptographic algorithms: 562

Access controls 562

Authentication 562

Authorization 562

Container security 562

Non-root user 563

Security scanning 563

Static Application Security Testing (SAST) 563

Software Composition Analysis (SCA) 563

Additional documentation 563

API details 564

Tanzu Application Platform v1.1

VMware, Inc 34

Information 564

Version 564

Content negotiation 564

URI Schemes 564

Consumes 564

Produces 564

All endpoints 564

images 564

Operations 564

Packages 564

Sources 565

Vulnerabilities 565

Paths 565

Create a new image report. Related packages and vulnerabilities are also
created. (CreateImageReport)

565

Parameters 566

All responses 566

Responses 566

200 - Image 566

Schema 566

Default Response 566

Schema 566

Create a new source report. Related packages and vulnerabilities are also
created. (CreateSourceReport)

566

Parameters 566

All responses 566

Responses 567

200 - Source 567

Schema 567

Default Response 567

Schema 567

List the packages in an image. (GetImagePackages) 567

Parameters 567

All responses 567

Responses 567

200 - Package 567

Schema 567

Default Response 568

Schema 568

List vulnerabilities from the given image. (GetImageVulnerabilities) 568

Tanzu Application Platform v1.1

VMware, Inc 35

Parameters 568

All responses 568

Responses 568

200 - Vulnerability 568

Schema 568

Default Response 568

Schema 568

Search image by id or digest. (GetImages) 568

Parameters 569

responses 569

Responses 569

200 - Image 569

Schema 569

Default Response 569

Schema 569

List the images that contain the given package. (GetPackageImages) 569

Parameters 569

All responses 569

Responses 570

200 - Image 570

Schema 570

Default Response 570

Schema 570

List the sources containing the given package. (GetPackageSources) 570

Parameters 570

All responses 570

Responses 570

200 - Source 570

Schema 570

Default Response 571

Schema 571

List vulnerabilities from the given package. (GetPackageVulnerabilities) 571

Parameters 571

All responses 571

Responses 571

200 - Vulnerability 571

Schema 571

Default Response 571

Schema 571

Tanzu Application Platform v1.1

VMware, Inc 36

Search packages by id, name and/or version. (GetPackages) 571

Parameters 572

All responses 572

Responses 572

200 - Package 572

Schema 572

Default Response 572

Schema 572

get source packages (GetSourcePackages) 572

Parameters 572

All responses 573

Responses 573

200 - Package 573

Schema 573

Default Response 573

Schema 573

List packages of the given source. (GetSourcePackagesQuery) 573

Parameters 573

All responses 573

Responses 573

200 - Package 574

Schema 574

Default Response 574

Schema 574

get source vulnerabilities (GetSourceVulnerabilities) 574

Parameters 574

All responses 574

Responses 574

200 - Vulnerability 574

Schema 574

Default Response 574

Schema 575

List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery) 575

Parameters 575

All responses 575

Responses 575

200 - Vulnerability 575

Schema 575

Default Response 575

Tanzu Application Platform v1.1

VMware, Inc 37

Schema 575

Search for sources by ID, repository, commit sha and/or organization.
(GetSourcs)

575

All responses 576

Responses 576

200 - Source 576

Schema 576

Default Response 576

Schema 576

Search for vulnerabilities by CVE id. (GetVulnerabilities) 576

Parameters 576

All responses 576

Responses 576

200 - Vulnerability 576

Schema 577

Default Response 577

Schema 577

List the images that contain the given vulnerability. (GetVulnerabilityImages) 577

Parameters 577

All responses 577

Responses 577

200 - Image 577

Schema 577

Default Response 577

Schema 577

List packages that contain the given CVE id. (GetVulnerabilityPackages) 578

Parameters 578

All responses 578

Responses 578

200 - Package 578

Schema 578

Default Response 578

Schema 578

List sources that contain the given vulnerability. (GetVulnerabilitySources) 578

Parameters 578

All responses 579

Responses 579

200 - Source 579

Schema 579

Default Response 579

Tanzu Application Platform v1.1

VMware, Inc 38

Schema 579

health check (HealthCheck) 579

All responses 579

Responses 579

200 579

Schema 579

Default Response 579

Schema 580

Models 580

DeletedAt 580

ErrorMessage 580

Image 580

MethodType 580

Model 581

NullTime 581

Package 581

Rating 582

Source 582

StringArray 582

Vulnerability 582

API walkthrough 583

Using CURL to POST an image report 583

Deployment details and configuration 584

What is deployed 585

Deployment configuration 585

Database configuration 585

Using AWS RDS postgres database 585

Custom database password 585

App service type 586

Service accounts 586

Exporting certificates 586

Ingress support 586

Install Supply Chain Security Tools - Store independent from Tanzu
Application Platform profiles

586

Prerequisites 587

Install 587

Tanzu Application Platform v1.1

VMware, Inc 39

AWS RDS Postgres configuration 590

Prerequisites 590

AWS RDS 590

Database backup recommendations 590

Backup 591

Restore 591

Log configuration and usage 592

Log levels 592

Error Logs 592

Obtaining logs 592

API endpoint log output 593

Format 594

Log header 594

Name 594

Key-value pairs 594

Common to all logs 594

Logging query and path parameter values 595

API payload log output 595

SQL Query log output 595

Format 596

Troubleshooting 596

Persistent volume retains data 596

Symptom 596

Solution 596

Missing persistent volume 597

Symptom 597

Solution 597

Multicluster Support: Error sending results to SCST - Store running in a different
cluster

597

Symptom 597

Solution 597

Certificate Expiries 597

Symptom 597

Explanation 598

Solution 598

Troubleshooting upgrading 598

Database deployment does not exist 598

Tanzu Application Platform v1.1

VMware, Inc 40

Invalid checkpoint record 599

Upgraded pod hanging 599

Failover, redundancy, and backups 599

API Server 599

Database 600

Ingress and multicluster support 600

Multicluster setup 601

TLS CA certificate 601

RBAC Auth token 601

Supply Chain Security Tools - Scan installation 602

Overview of VMware Tanzu Developer Tools for Visual Studio Code 603

Extension Features 603

Installing Tanzu Developer Tools for Visual Studio Code 603

Prerequisites 603

Install 604

Configure 604

Uninstall 605

Next steps 605

Getting started with Tanzu Developer Tools for Visual Studio Code 605

Prerequisite 605

Create the workload.yaml file 605

Create the catalog-info.yaml file 607

Create the Tiltfile file 607

Example project 609

Next steps 609

Using Tanzu Developer Tools for Visual Studio Code 610

Configure for multiple projects in the workspace 610

Debugging on the cluster 610

Start debugging on the cluster 610

Stop Debugging on the cluster 611

Live Update 612

Start Live Update 612

Stop Live Update 612

Deactivate Live Update 614

Live Update status 614

Tanzu Application Platform v1.1

VMware, Inc 41

Switch Namespace 614

Pinniped compatibility 615

Oauth 615

LDAP 615

Tanzu API portal 615

Install Tanzu API portal 615

Prerequisites 616

Install 616

Tanzu Application Platform GUI 617

Overview of Tanzu Application Platform GUI 617

Install Tanzu Application Platform GUI 618

Prerequisites 619

Procedure 619

Accessing Tanzu Application Platform GUI 621

Access with the LoadBalancer method (default) 621

Access with the shared Ingress method 621

Catalog operations 622

Adding catalog entities 623

Users and groups 623

Systems 624

Components 624

Update software catalogs 625

Register components 625

Deregister components 625

Add or change organization catalog locations 625

Install demo apps and their catalogs 626

Yelb system 626

Install Yelb 626

Install the Yelb catalog 626

Viewing resources on multiple clusters in Tanzu Application Platform
GUI

627

Set up a Service Account to view resources on a cluster 627

Update Tanzu Application Platform GUI to view resources on multiple clusters 629

Tanzu Application Platform v1.1

VMware, Inc 42

View resources on multiple clusters in the Runtime Resources Visibility plug-in 630

Setting up a Tanzu Application Platform GUI authentication provider 630

Configure an authentication provider 631

(Optional) Allow guest access 632

(Optional) Customize the login page 632

Support menu customization 633

Overview 633

Customizing 633

Structure of the support configuration 633

URL 633

Items 634

Title 634

Icon 634

Links 634

Adding Tanzu Application Platform GUI integrations 635

Add a GitHub provider integration 635

Add a Git-based provider integration that isn’t GitHub 635

Add a non-Git provider integration 636

Update the package profile 636

Configuring the Tanzu Application Platform GUI database 636

Configure a PostgreSQL database 637

TechDocs 638

Create an Amazon S3 bucket 638

Configure Amazon S3 access 638

Find the catalog locations and their entities’ namespace/kind/name 639

Use the TechDocs CLI to generate and publish TechDocs 639

Update techdocs section in app-config.yaml to point to the Amazon S3 bucket 640

Tanzu Application Platform GUI plug-ins 641

Overview 641

Runtime resources visibility 642

Introduction 642

Prerequisite 642

Visualize Workloads on Tanzu Application Platform GUI 642

Navigate to the Runtime Resources Visibility screen 642

Tanzu Application Platform v1.1

VMware, Inc 43

Knative service details page 643

View details for a specific resource 643

Detail pages 644

Overview card 644

Status card 645

Ownership card 645

Annotations and Labels 646

Navigating to Pod Details Page 646

Navigating to Application Live View 647

Application Live View in Tanzu Application Platform GUI 648

Overview 648

Entry point to Application Live View plug-in 649

Application Live View pages 649

Details page 649

Health page 650

Environment page 650

Log Levels page 651

Threads page 652

Memory page 653

Request Mappings page 654

HTTP Requests page 655

Caches page 656

Configuration Properties page 657

Conditions page 657

Scheduled Tasks page 658

Beans page 659

Metrics page 659

Actuator page 660

Troubleshooting 660

Install Application Live View 660

Prerequisites 661

Install Application Live View 661

Install Application Live View Backend 661

Install Application Live View Connector 663

Install Application Live View Conventions 665

Application Accelerator in Tanzu Application Platform GUI 666

Overview 666

Tanzu Application Platform v1.1

VMware, Inc 44

Access Application Accelerator 666

Configure project generation 667

Create the project 668

Develop your code 669

Next steps 669

Install Application Accelerator 670

Prerequisites 670

Configure properties and resource usage 670

Install 671

API documentation plug-in in Tanzu Application Platform GUI 673

Overview 673

Use the API documentation plug-in 673

Create a new API entry 676

Getting started with API documentation plug-in 677

Add your API entry to the Tanzu Application Platform GUI software catalog 677

About API entities 678

Add a demo API entity to Tanzu Application Platform GUI software catalog 678

Update your demo API entry 682

Supply Chain Choreographer in Tanzu Application Platform GUI 682

Overview 682

Prerequisites 683

Supply Chain Visibility 683

Upgrade Tanzu Application Platform GUI 684

Considerations 684

Upgrade within a Tanzu Application Platform profile 684

Upgrade Tanzu Application Platform GUI individually 684

Troubleshoot Tanzu Application Platform GUI 685

Tanzu Application Platform GUI does not work in Safari 685

Symptom 685

Solution 685

Catalog not found 685

Symptom 685

Cause 685

Solution 686

Issues updating the values file 686

Tanzu Application Platform v1.1

VMware, Inc 45

Symptom 686

Solution 686

Pull logs from Tanzu Application Platform GUI 687

Symptom 687

Solution 687

Runtime Resources tab 687

Error communicating with Tanzu Application Platform web server 687

Symptom 687

Causes 688

Solution 688

No data available 688

Symptom 688

Cause 688

Solution 688

Errors retrieving resources 688

Symptom 688

Accelerators page 689

No accelerators 689

Symptom 689

Cause 689

Solution 689

Tanzu Build Service 690

Tanzu Build Service Dependencies 690

Configuration 690

Descriptors 690

Automatic Dependency Updates 691

Manual Control of Dependency Updates 691

Install Tanzu Build Service 691

Prerequisites 691

Install Tanzu Build Service by using the Tanzu CLI 692

Install Tanzu Build Service using the Tanzu CLI air-gapped 694

Installation using Secret references for registry credentials 695

Descriptors 696

About descriptors 696

Lite descriptor 697

Full descriptor 697

Descriptor comparison 697

Tanzu Application Platform v1.1

VMware, Inc 46

Tekton 698

Install Tekton 698

Prerequisites 698

Install Tekton Pipelines 698

Configure a namespace to use Tekton Pipelines 699

Workload types 701

Using web workloads 701

Using TCP workloads (Beta) 701

Overview 701

Prerequisites 702

Create a tcp SupplyChain 702

Create supply chain templates 702

Add RBAC permissions 707

Define the ClusterSupplyChain 707

Use the tcp workload type 709

Using queue workloads (Beta) 710

Overview 710

Prerequisites 710

Create a queue SupplyChain 710

Create supply chain templates 711

Add RBAC permissions 714

Define the ClusterSupplyChain 715

Use the queue workload type 717

Functions (Beta) 717

Using functions (Beta) 717

Overview 717

Prerequisites 718

Adding function buildpacks 718

Add accelerators to Tanzu Application Platform GUI 720

Create a function project from an accelerator 721

Create a function project using the Tanzu CLI 722

Deploy your function 723

Iterating on your function 723

Tanzu Application Platform v1.1

VMware, Inc 47

Prerequisites 724

Configure the Tanzu Developer Tools extension 724

Live update your application 724

Debug your application 725

Tanzu Application Platform v1.1

VMware, Inc 48

Tanzu Application Platform v1.1

Overview of Tanzu Application Platform

VMware Tanzu Application Platform is an application development platform that provides a rich set of

developer tools. It offers developers a paved path to production to build and deploy software quickly

and securely on any compliant public cloud or on-premises Kubernetes cluster.

Tanzu Application Platform delivers a superior developer experience for enterprises building and

deploying cloud-native applications on Kubernetes. It enables application teams to get to production

faster by automating source-to-production pipelines. It clearly defines the roles of developers and

operators so they can work collaboratively and integrate their efforts.

Tanzu Application Platform includes elements that enable developers to quickly begin building and

testing applications regardless of their familiarity with Kubernetes.

Operations teams can create application scaffolding templates with built-in security and compliance

guardrails, making those considerations mostly invisible to developers. Starting with the templates,

developers turn source code into a container and get a URL to test their app in minutes.

After the container is built, it updates every time there’s a new code commit or dependency patch.

And connecting to other applications and data, regardless of how they’re built or what kind of

infrastructure they run on, has never been easier, thanks to an internal API management portal.

Customers can simplify workflows in both the inner loop and outer loop of Kubernetes-based app

development with Tanzu Application Platform while creating supply chains.

Inner Loop:

The inner loop describes a developer’s development cycle of iterating on code.

Tanzu Application Platform v1.1

VMware, Inc 49

Inner loop activities include coding, testing, and debugging before making a commit.

On cloud-native or Kubernetes platforms, developers in the inner loop often build

container images and connect their apps to all necessary services and APIs to deploy

them to a development environment.

Outer Loop:

The outer loop describes how operators deploy apps to production and maintain

them over time.

On a cloud-native platform, outer loop activities include building container images,

adding container security, and configuring continuous integration and continuous

delivery (CI/CD) pipelines.

Outer loop activities are challenging in a Kubernetes-based development

environment due to app delivery platforms being constructed from various third-

party and open source components with numerous configuration options.

Supply Chains and choreography:

Tanzu Application Platform uses the choreography pattern inherited from the context

of microservices^1 and applies it to continuous integration and continuous

deployment (CI/CD) to create a path to production.^2

Supply Chains provide a way of codifying all of the steps of your path to production, or what is more

commonly known as CI/CD. A supply chain differs from CI/CD in that you can add any and every

step that is necessary for an application to reach production or a lower environment.

To address the developer experience gap, the path to production allows users to create a unified

access point for all of the tools required for their applications to reach a customer-facing

environment.

Instead of having separate tools that are loosely coupled to each other for testing and building,

security, deploying, and running apps, a path to production defines all four tools in a single, unified

layer of abstraction. Where tools typically can’t integrate with one another and additional scripting or

webhooks are necessary, a unified automation tool codifies all the interactions between each of the

tools.

Tanzu Application Platform provides a default set of components that automates pushing an app to

staging and production on Kubernetes. This removes the pain points for both inner and outer loops.

It also allows operators to customize the platform by replacing Tanzu Application Platform

components with other products.

Tanzu Application Platform v1.1

VMware, Inc 50

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography
https://tanzu.vmware.com/developer/guides/supply-chain-choreography/

The following packages are part of the Tanzu Application Platform:

API portal for VMware Tanzu

API portal for VMware Tanzu enables API consumers to find APIs they can use in their own

applications.

Consumers can view detailed API documentation and try out an API to see if it meets their

needs. API portal assembles its dashboard and detailed API documentation views by

ingesting OpenAPI documentation from the source URLs. An API portal operator can add

any number of OpenAPI source URLs to be displayed in a single instance.

Application Accelerator for VMware Tanzu

The Application Accelerator component helps app developers and app operators through

the creation and generation of application accelerators.

Accelerators are templates that codify best practices and ensure important configurations

and structures are in place from the start. Developers can bootstrap their applications and get

started with feature development right away.

Application operators can create custom accelerators that reflect their desired architectures

and configurations and enable fleets of developers to use them, decreasing operator

concerns about whether developers are implementing their desired best practices.

Application Live View for VMware Tanzu

Application Live View is a lightweight insight and troubleshooting tool that helps application

developers and application operators look inside running applications.

It is based on the concept of Spring Boot Actuators. Fundamentally, the application provides

information from inside the running processes by using endpoints (in our case, HTTP

endpoints). Application Live View uses those endpoints to get the data from the application

and to interact with it.

Cloud Native Runtimes for VMware Tanzu

Tanzu Application Platform v1.1

VMware, Inc 51

https://docs.pivotal.io/api-portal
https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is

based on Knative and runs on a single Kubernetes cluster. For information about Knative,

see the Knative documentation.

Convention Service for VMware Tanzu

The convention service provides a means for people in operational roles to express their

hard-won knowledge and opinions about how apps should run on Kubernetes as a

convention. The convention service applies these opinions to fleets of developer workloads

as they are deployed to the platform, saving operator and developer time.

Default roles for Tanzu Application Platform

This package includes five default roles for users including app-editor, app-viewer, app-

operator, and service accounts including workload, and deliverable. These roles are available

to help operators limit the permissions that a user or service account requires on a cluster

that runs Tanzu Application Platform. They are built by using aggregated cluster roles in

Kubernetes role-based access control (RBAC).

Default roles only apply to a user interacting with the cluster using kubectl and Tanzu CLI.

Tanzu Application Platform GUI support for default roles is planned for a future release.

Developer Conventions

Developer conventions configure workloads to prepare them for inner loop development.

It’s meant to be a “deploy and forget” component for developers: after it is installed on the

cluster with the Tanzu Package CLI, developers do not need to directly interact with it.

Developers instead interact with the Tanzu Developer Tools for VS Code IDE Extension or

Tanzu CLI Apps plug-in, which rely on the Developer Conventions to modify the workload to

enable inner loop capabilities.

Flux Source Controller

The main role of the source management component is to provide a common interface for

artifact acquisition.

Grype

Grype is a vulnerability scanner for container images and file systems.

Services Toolkit

Services Toolkit comprises a number of Kubernetes-native components which support the

management, life cycle, discoverability, and connectivity of Service Resources (databases,

message queues, DNS records, etc) on Kubernetes.

Supply Chain Choreographer for VMware Tanzu

Supply Chain Choreographer is based on open-source Cartographer. It enables app

operators to create pre-approved paths to production by integrating Kubernetes resources

with the elements of their existing toolchains, such as Jenkins.

Each pre-approved supply chain creates a paved road to production. It orchestrates supply

chain resources - test, build, scan, and deploy - enabling developers to focus on delivering

value to their users while also providing app operators with the peace of mind that all code in

production has passed through all the steps of an approved workflow.

Tanzu Application Platform v1.1

VMware, Inc 52

https://knative.dev/docs/
https://fluxcd.io/docs/components/source/
https://github.com/anchore/grype
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/index.html
https://cartographer.sh/docs/

Supply Chain Security tools for Tanzu - Scan

With Supply Chain Security Tools for VMware Tanzu - Scan, Tanzu customers can build and

deploy secure trusted software that complies with their corporate security requirements.

To enable this, Supply Chain Security Tools - Scan provides scanning and gatekeeping

capabilities that Application and DevSecOps teams can incorporate earlier in their path to

production. This is an established industry best practice for reducing security risk and

ensuring more efficient remediation.

Supply Chain Security Tools - Sign

Supply Chain Security Tools - Sign provides an admission controller that allows a cluster

operator to specify a policy that allows or denies images from running based on signature

verification against public keys. It works with cosign signature format and allows for fine-

tuned configuration based on image source patterns.

Supply Chain Security Tools - Store

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database

and enables you to query for image, source, package, and vulnerability relationships. It

integrates with Supply Chain Security Tools - Scan to automatically store the resulting source

and image vulnerability reports.

Tanzu Application Platform GUI

Tanzu Application Platform GUI lets your developers view your organization’s running

applications and services. It provides a central location for viewing dependencies,

relationships, technical documentation, and even service status. Tanzu Application Platform

GUI is built from the Cloud Native Computing Foundation’s project Backstage.

Tanzu Build Service

Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application

source code into container images.

Build Service executes reproducible builds that align with modern container standards, and

keeps images up to date. It does so by leveraging Kubernetes infrastructure with kpack, a

Cloud Native Buildpacks Platform, to orchestrate the image life cycle.

The kpack CLI tool, kp, can aid in managing kpack resources. Build Service helps you

develop and automate containerized software workflows securely and at scale.

Tanzu Developer Tools for Visual Studio Code

Tanzu Developer Tools for Visual Studio Code is the official VMware Tanzu IDE extension for

VS Code to help you develop code using the Tanzu Application Platform. The VSCode

extension enables live updates of your application while it runs on the cluster and lets you

debug your application directly on the cluster.

Tanzu Learning Center

Learning Center provides a platform for creating and self-hosting workshops. With Learning

Center, content creators can create workshops from markdown files that learners can view in

a terminal shell environment with an instructional wizard UI. The UI can embed slide content,

an integrated development environment (IDE), a web console for accessing the Kubernetes

cluster, and other custom web applications.

Tanzu Application Platform v1.1

VMware, Inc 53

https://github.com/sigstore/cosign#quick-start

Although Learning Center requires Kubernetes to run, and it teaches users about

Kubernetes, you can use it to host training for other purposes as well. For example, you can

use it to train users on web-based applications, use of databases, or programming languages.

Tekton

Tekton is a powerful and flexible open-source framework for creating CI/CD systems,

enabling developers to build, test, and deploy across cloud providers and on-premise

systems.

Installation profiles in Tanzu Application Platform v1.1

Tanzu Application Platform can be deployed through predefined profiles or individual packages. The

profiles are designed to allow the Tanzu Application Platform to scale across an organization’s

multicluster, multicloud, or hybrid cloud infrastructure. These profiles are not meant to cover all

customer’s use cases, but rather serve as a starting point to allow for further customization.

The following profiles are available in Tanzu Application Platform:

Full: This profile contains all of the Tanzu Application Platform packages.

Iterate: This profile is intended for iterative application development.

Build: This profile is intended for the transformation of source revisions to workload

revisions. Specifically, hosting Workloads and SupplyChains.

Run: This profile is intended for the transformation of workload revisions to running Pods.

Specifically, hosting Deliveries and Deliverables.

View: This profile is intended for instances of applications related to centralized developer

experiences. Specifically, Tanzu Application Platform GUI and Metadata Store.

About Tanzu Application Platform package profiles

Tanzu Application Platform can be installed through predefined profiles or through individual

packages. This section explains how to install a profile.

Tanzu Application Platform contains the following five profiles:

Full (full)

Iterate (iterate)

Build (build)

Run (run)

View (view)

The following table lists the packages contained in each profile:

Capability Name Full Iterate Build Run View

API Portal ✓ ✓

Application Accelerator ✓ ✓

Application Live View (Build) ✓ ✓ ✓

Tanzu Application Platform v1.1

VMware, Inc 54

Application Live View (Run) ✓ ✓ ✓

Application Live View GUI Backend ✓ ✓

Cloud Native Runtimes ✓ ✓ ✓

Convention Controller ✓ ✓ ✓

Default Roles ✓ ✓ ✓ ✓ ✓

Developer Conventions ✓ ✓

Flux Source Controller ✓ ✓ ✓ ✓ ✓

Grype ✓ ✓

Image Policy Webhook ✓ ✓ ✓

Learning Center ✓ ✓

Out of the Box Delivery - Basic ✓ ✓ ✓

Out of the Box Supply Chain - Basic ✓ ✓ ✓

Out of the Box Supply Chain - Testing ✓ ✓ ✓

Out of the Box Supply Chain - Testing and Scanning ✓ ✓

Out of the Box Templates ✓ ✓ ✓ ✓

Service Bindings ✓ ✓ ✓

Services Toolkit ✓ ✓ ✓

Source Controller ✓ ✓ ✓ ✓ ✓

Spring Boot Convention ✓ ✓ ✓

Supply Chain Choreographer ✓ ✓ ✓ ✓

Supply Chain Security Tools - Scan ✓ ✓

Supply Chain Security Tools - Store ✓ ✓

Tanzu Build Service ✓ ✓ ✓

Tanzu Application Platform GUI ✓ ✓

Tekton Pipelines ✓ ✓ ✓

Telemetry ✓ ✓ ✓ ✓ ✓

* Only one supply chain should be installed at any given time. For information on switching from one

supply chain to another, see Getting Started with Tanzu Application Platform.

About installing the Tanzu Application Platform v1.1

To install the Tanzu Application Platform profiles, see Installing Tanzu Application Platform.

Notice of telemetry collection for Tanzu Application Platform

Tanzu Application Platform v1.1

VMware, Inc 55

Tanzu Application Platform participates in the VMware Customer Experience Improvement Program

(CEIP). As part of CEIP, VMware collects technical information about your organization’s use of

VMware products and services in association with your organization’s VMware license keys. For

information about CEIP, see the Trust & Assurance Center. You may join or leave CEIP at any time.

The CEIP Standard Participation Level provides VMware with information to improve its products and

services, identify and fix problems, and advise you on how to best deploy and use VMware products.

For example, this information can enable a proactive product deployment discussion with your

VMware account team or VMware support team to help resolve your issues. This information cannot

directly identify any individual.

You must acknowledge that you have read the VMware CEIP policy before you can proceed with

the installation. For more information, see Install your Tanzu Application Platform profile. To opt out

of telemetry participation after installation, see Opting out of telemetry collection.

Tanzu Application Platform v1.1

VMware, Inc 56

http://www.vmware.com/trustvmware/ceip.html

Release notes

This topic contains release notes for Tanzu Application Platform v1.1

v1.1.2

Release Date: June 14, 2022

Security fixes

Tanzu Application Platform GUI

CVE-2022-1664: Improper Limitation of a Pathname to a Restricted Directory

CVE-2022-1292: Improper Neutralization of Special Elements used in an OS Command

CVE-2022-25878: Improperly Controlled Modification of Object Prototype Attributes

Resolved issues

This release includes the following changes, listed by component and area.

Application Live View

Application Live View Connector package now supports values without quotes in sslDisabled

boolean flag.

Application Live View Convention Service sets tanzu.app.live.view.application.name to

carto.run/workload-name if not set in workload yaml.

Application Live View now supports environment editing for newer Spring Boot apps.

Grype scanner

Added useful error message when the Syft schema version embeded in images is not

compatible with the current Syft schema version supported by the Grype version.

zlib has been updated to 1.2.11-2.ph3

subversion has been updated to 1.10.8-2.ph3

Supply Chain Security Tools - Scan

Fixed SourceScans failing for a blob scan without sourcescan.spec.revision set and without

a .git folder in the source code.

Tanzu Application Platform v1.1

VMware, Inc 57

https://nvd.nist.gov/vuln/detail/CVE-2022-1664
https://nvd.nist.gov/vuln/detail/CVE-2022-1292
https://nvd.nist.gov/vuln/detail/CVE-2022-25878

Fixed the values schema to include an importFromNamespace key for the authentication token

needed to communicate to the Metadata Store.

Tanzu Application Platform GUI

CVE fixes

Various styling and bug fixes

Known issues

This release has the following known issues, listed by area and component.

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages using dependency lock files, such as Golang and Node.js, Grype uses the lock files to

check the dependencies for vulnerabilities.

For Java, dependency lock files are not guaranteed, so Grype uses the dependencies present in the

built binaries (.jar or .war files) instead.

Because VMware discourages committing binaries to source code repositories, Grype fails to find

vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan, after

the binaries are built and packaged as images.

Supply Chain Security Tools - Scan

Blob Source Scan is reporting wrong source URL: - When running a Source Scan of a blob

compressed file, SCST - Scan looks for a .git directory present in the files to extract useful

information for the report sent to the SCST - Store deployment.

Workaround - The following workarounds fix this issue:

1. This problem is resolved in SCST - Scan v1.2.0. Upgrade your SCST - Scan and

Grype Scanner deployment to version v1.2.0 or later.

2. Configure your SourceScan or Workload to connect using HTTPS to the repository

instead of using SSH.

3. Edit the FluxCD GitRepository resource to not include the .git directory.

Error: Unable to decode cyclonedx: Supply Chain Security Tools - Scan has a known issue where it

will set the phase to Error and show an unable to decode cyclonedx error in the Succeeded

condition. The root cause of the problem is not known, but it is an intermittent issue that cuts the

CycloneDX XML stream to the logs and then the scan controller can’t process the results properly.

Workaround: As this is an intermittent issue, if you’re applying the scan manually, you can delete the

scan and re-apply it again to retry the scan. If this problem happened while running a Supply Chain

from the OOTB Supply Chains, you can run kubectl get imagescans -n <workload namespace> or

kubectl get sourcescans -n <workload namespace> to get the scan name, delete it running

kubectl delete <imagescan or sourcescan> <scan name> -n <workload namespace> and the

Choreographer controller will recreate it for you.

Tanzu Application Platform v1.1

VMware, Inc 58

Supply Chain Security Tools - Sign

Supply Chain Security Tools - Sign rejects images from private registries when the image is deployed

to a non-default namespace. For a workaround, see Supply Chain Security Tools - Sign rejects

images.

v1.1.1

Release Date: May 10, 2022

Resolved issues

The following issues, listed by area and component, are resolved in this release.

Supply Chain Choreographer plug-in

ImageScan stage shows incorrect status

Workloads page does not show errors

Build stage shows error while building

Supply Chain Security Tools - Scan

Resolved edge case for scan phase to correctly indicate Error when error occurs during

scanning

Added missing SecretImport for the RBAC Auth token store-auth-token for multicluster

Resolved race condition involving reading Store secrets and exporting to the Scan Controller

namespace

Supply Chain Security Tools - Sign

Updated golang to v1.17.9 to address CVE-2022-27191

Supply Chain Security Tools - Store

Updated containerd version to v1.5.10 to resolve GHSA-crp2-qrr5-8pq7 in Github

Updated postgres image to resolve CVE-2018-25032

Updated brancz/kube-rbac-proxy image to 0.12.0 to resolve GHSA-c3h9-896r-86jm in

Github

Fixed the issue where new vulnerabilities are not appended to the existing packages

Fixed the issue where Insight CLI plug-in fails to start on Windows platforms

Grype Scanner

Removed package gnutls to address CVE-2021-20232 and CVE-2021-20231

Tanzu Application Platform v1.1

VMware, Inc 59

https://nvd.nist.gov/vuln/detail/CVE-2022-27191
https://github.com/advisories/GHSA-crp2-qrr5-8pq7
https://nvd.nist.gov/vuln/detail/CVE-2018-25032
https://github.com/advisories/GHSA-c3h9-896r-86jm
https://nvd.nist.gov/vuln/detail/CVE-2021-20232
https://nvd.nist.gov/vuln/detail/CVE-2021-20231
https://nvd.nist.gov/vuln/detail/CVE-2022-28805

Removed package lua to address CVE-2022-28805

Updated module golang.org/x/crypto to v0.0.0-20210220033148-5ea612d1eb83 to address

CVE-2022-27191

Tanzu Application Platform GUI

CVE fixes

Various styling fixes

TLS Certificate and Ingress bug fix

Supply Chain plug-in upgrade

Known issues

This release has the following known issues, listed by area and component.

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages using dependency lock files, such as Golang and Node.js, Grype uses the lock files to

check the dependencies for vulnerabilities.

For Java, dependency lock files are not guaranteed, so Grype uses the dependencies present in the

built binaries (.jar or .war files) instead.

Because VMware discourages committing binaries to source code repositories, Grype fails to find

vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan, after

the binaries are built and packaged as images.

Supply Chain Choreographer for Tanzu

SourceScan error when deploying Java functions workloads: Using Out of the Box Supply

Chain with Testing and Scanning to deploy Java functions workloads causes a SourceScan

error. The workload deployed shows an error for SourceScan because it cannot find the scan

template. You can receive enhanced scanning coverage for Java and Node.js workloads,

including application runtime layer dependencies, by using both Tanzu Build Service and

Grype in your Tanzu Application Platform supply chain. Python workloads are not supported.

Supply Chain Security Tools - Scan

The Supply Change Security Tools - Scan has the following CVEs at high severity from the kube-

rbac-proxy v0.11.0-vmware.1 image:

Supply Chain Security Tools - Store

The Supply Change Security Tools - Store has CVE-2022-21698 at high severity from brancz/kube-

rbac-proxy:0.12.0 image.

Tanzu Application Platform v1.1

VMware, Inc 60

https://nvd.nist.gov/vuln/detail/CVE-2022-28805
https://nvd.nist.gov/vuln/detail/CVE-2022-27191
https://nvd.nist.gov/vuln/detail/CVE-2022-21698

Tanzu Application Platform GUI

Accelerators not appearing on Accelerator page: If the app_config.backend.reading.allow

section is configured during the tap-gui package installation, no accelerators show on the

accelerator page. For more information, see Troubleshooting.

v1.1

Release Date: April 12, 2022

Prerequisites

Installation requires Kubernetes clusters v1.21, v1.22, or v1.23. See prerequisites for supported

Kubernetes platforms.

New features

This release includes the following changes, listed by component and area.

Installing

There are four new profiles available, and additions to the Full profile. The inclusion of new profiles

supports a multicluster deployment architecture.

Tanzu Application Platform profile - Iterate is intended for iterative development in

contrast to the path to production.

Tanzu Application Platform profile - Build is intended for the transformation of source

revisions to workload revisions. Specifically, it’s for hosting workloads and SupplyChains.

Tanzu Application Platform profile - Run is intended for the transformation of workload

revisions to running pods. Specifically, it’s for hosting deliveries and deliverables.

Tanzu Application Platform profile - View is intended for instances of applications related

to centralized developer experiences, such as Tanzu Application Platform GUI and Metadata

Store.

Tanzu Application Platform profile - Full contains all of the Tanzu Application Platform

packages. New packages in the Full profile:

Application Live View (Build)

Application Live View (Run)

Application Live View (GUI)

Default Roles

Telemetry

Default roles for Tanzu Application Platform

There are five new default roles and related permissions that apply to Kubernetes resources. These

roles help operators set up common sets of permissions to limit the access that users and service

accounts have on a cluster that runs Tanzu Application Platform.

Tanzu Application Platform v1.1

VMware, Inc 61

Three roles are for users, including app-editor, app-viewer and app-operator. Two roles are for

“robot” or system permissions, including workload and deliverable.

For more information, see Overview of Default Roles.

Application Accelerator

Option values can now be validated using regex

TLS for ingress is enabled using ingress.enable_tls flag during package install

Application Live View

Application Live View supports a multicluster setup now

Application Live View components are split into three bundles with new package reference

names (backend, connector, conventions)

Application Live View Convention Service is compatible with cert-manager v1.7.1

Application Live View Convention takes the management port setting from the Spring Boot

Convention into account

Structured JSON logging is integrated into Application Live View Backend and Application

Live View Convention

Updated Spring Native v0.10.5 to v0.10.6

Tanzu CLI - Apps plug-in

workload create/update/apply:

Accept workload.yaml from stdin (through --file -).

Enable providing spec.build.env values (through new –build.env flag).

When --git-repo and --git-tag are provided, git-branch is not required.

Add new --annotations flag. Annotations provided are propagated to the running

pod for the workload.

workload list:

Shorthand -A can be passed in for --all-namespaces.

workload get:

Service Claim details are returned in command output.

The existing STATUS value in the pods table in the output reflects when a pod is

terminating.

Deprecation

The namespace value you can pass for the --service-ref flag is deprecated.

A deprecation warning message is added to the workload create/update/apply...

when user specifies a namespace in the --service-ref object.

Service Bindings

Tanzu Application Platform v1.1

VMware, Inc 62

Applied RFC-3339 timestamps to service binding logs.

Added Tanzu Application Platform aggregate roles to support Tanzu Application Platform

Authentication and Authorization (new feature referenced above).

Added support for servicebinding.io/v1beta1

Corrected Postgres resource pluralization error.

Source Controller

Enable Source Controller to connect to image registries that use self-signed or private

certificate authorities to support air-gapped installations. This is an optional configuration. See

Source Controller Installation for details.

Applied RFC-3339 timestamps to source controller logs.

Added Tanzu Application Platform aggregate roles to support Tanzu Application Platform

Authentication and Authorization (new feature referenced above).

Spring Boot Conventions

Set the management port to 8081: This is instead of the default port 8080.

This change increases the security of Spring Boot apps running on the platform by

preventing access to actuator endpoints. Actuator endpoints can leak sensitive

information and allow access to trigger actions that can impact the app.

If the app explicitly sets the management port using the JAVA_TOOL_OPTIONS in the

workload.yaml, the Spring Boot conventions respect that setting and do not set the

management port to 8081. For more information, see Set the JAVA_TOOL_OPTIONS

property for a workload.

The convention overrides other common management port configuration methods

such as application.properties/yml and config server.

RFC-3339 timestamps: Applied RFC-3339 timestamps to service binding logs.

Added Kubernetes liveness and readiness probes by using Spring Boot health endpoints:

This convention is applied to Spring Boot v2.6 and later apps.

The probes are exposed on the main serving port for the app, which is port 8080 by

default.

Supply Chain Choreographer

All Supply Chains provided by Tanzu Application Platform support pre-built images for

workloads

Supply Chains can select workloads by fields and expressions in addition to labels

Supply Chains can select which template to stamp out based on optional criteria

Workloads include stamped resource references in their status

Supply Chain Security Tools - Scan

Tanzu Application Platform v1.1

VMware, Inc 63

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Support for configuring Supply Chain Security Tools - Scan to remotely connect to Supply Chain

Security Tools - Store in a different cluster.

Supply Chain Security Tools - Sign

Support configuring Webhook resources

Support configuring Namespace where webhook is installed

Support for registries with self-signed certificates

Supply Chain Security Tools - Store

Added Contour Ingress support with custom domain name

Created Tanzu CLI plug-in called insight. Currently, insight plug-in only supports macOS

and Linux.

Tanzu Application Platform GUI

Added improvements to the information presentation and filtering mechanisms of the

Runtime Resources tab

Added the new Supply Chain plug-in

Added the Backstage API Documentation plug-in

Updated overall theme to Clarity City

Added compatibility with v1beta3 Backstage Templates

Small security fixes

Various accessibility and styling fixes

Plug-in improvements and additions include:

Runtime Resources Visibility plug-in:

Textual and enumerated table column filters for ease of search

Meaningful error messages and paths forward to troubleshoot issues

Tags in Knative revision table on the details page

Kubernetes Service on the resources page to provide more insights into Kubernetes

service details

Improved UI components for a more accessible user experience

Supply Chain Choreographer plug-in:

Added a graphical representation of the execution of a workload by using an installed

supply chain. This includes CRDs in the supply chain, the source results of each

stage, and details to facilitate the troubleshooting of workloads on their path to

production.

Functions (Beta)

Tanzu Application Platform v1.1

VMware, Inc 64

Tanzu Application Platform enables developers to deploy functions, use starter templates to

bootstrap their functions and write only the code that matters to your business. Developers can run a

single CLI command to deploy their functions to an auto-scaled cluster. This feature is in beta and

subject to changes based on user feedback. It is intended for evaluation and test purposes only.

For more information, see Functions.

Breaking changes

This release has the following breaking changes, listed by area and component.

Application Accelerator

When enabling ingress, the TLS support must now be explicitly enabled using ingress.tls_enable.

Supply Chain Security Tools - Scan

API version scanning.apps.tanzu.vmware.com/v1alpha1 is deprecated.

Supply Chain Security Tools - Store

The independent insight CLI is deprecated. You can now use the Tanzu CLI plug-in Tanzu

Insight, which currently supports macOS and Linux only.

Renamed all instances of the create verb as add for all CLI commands.

Resolved issues

This following issues, listed by area and component, are resolved in this release.

Application Accelerator

Accelerator engine no longer fails with java.lang.OutOfMemoryError: Direct buffer memory when

processing very large Git repositories.

Application Live View

Updated Spring Boot to v2.5.12 to address CVE-2022-22965 and CVE-2020-36518

Services Toolkit

Resolved an issue with the tanzu services CLI plug-in that meant it was not compatible with

Kubernetes clusters running on GKE.

Fixed a potential race condition during reconciliation of ResourceClaims which might have

caused the Services Toolkit manager to stop responding.

Updated configuration of the Services Toolkit carvel Package to prevent an unwanted build

up of ConfigMap resources.

Supply Chain Security Tools - Scan

Tanzu Application Platform v1.1

VMware, Inc 65

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22965
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36518

Resolved two scan jobs and two scan pods that are created when reconciling ScanTemplates

and ScanPolicies

Updated package client_golang to v1.11.1 to address CVE-2022-21698

Grype Scanner

Updated golang to v1.17.8 to address CVE-2022-24921

Updated photon to address CVE-2022-23308 and CVE-2022-0778

Supply Chain Security Tools - Store

Fixed an issue where querying a source report with local path name returned the following

error: { "message": "Not found" }.

Return related packages when querying image and source vulnerabilities.

Ratings are updated when updating vulnerabilities.

Fixed CVE-2022-24407 and CVE-2022-0778 found in the PostgreSQL image.

Updated package client_golang to v1.17.8 to address CVE-2022-24921.

Tanzu CLI - Apps plug-in

Apps plug-in no longer fails when KUBECONFIG includes the colon (:) config file delimiter.

tanzu apps workload get: Passing in --output json and --export flags together exports the

workload in JSON rather than YAML.

tanzu apps workload tail: Duplicate log entries created for init containers are removed.

tanzu apps workload create/update/apply

When the --wait flag passed and the dialog box “Do you want to create this

workload?” is declined, the command immediately exits 0, rather than hanging and

continuing to wait.

Workload name is now validated when the workload values are passed in by using --

file workload.yaml.

When creating or applying a workload from –local-path, if user answers “No” to the

prompt “Are you sure you want to publish your local code to [registry name] where

others may be able to access it?”, the command now exits 0 immediately rather than

showing the workload diff and prompting to continue with workload creation.

.spec.build.env in workload YAML definition file is being removed when using

Tanzu apps workload apply command.

Tanzu Application Platform GUI

Applied a fix for CVE-2021-3918 from the json-schema package

Known issues

Tanzu Application Platform v1.1

VMware, Inc 66

https://nvd.nist.gov/vuln/detail/CVE-2022-21698
https://nvd.nist.gov/vuln/detail/CVE-2022-24921
https://nvd.nist.gov/vuln/detail/CVE-2022-23308
https://nvd.nist.gov/vuln/detail/CVE-2022-0778
https://nvd.nist.gov/vuln/detail/CVE-2022-24407
https://nvd.nist.gov/vuln/detail/CVE-2022-0778
https://nvd.nist.gov/vuln/detail/CVE-2022-24921
https://nvd.nist.gov/vuln/detail/CVE-2021-3918

This release has the following known issues, listed by area and component.

Tanzu Application Platform

Deprecated profile: Tanzu Application Platform light profile is deprecated.

Tanzu Cluster Essentials

Feature Disabled error: When adding Tanzu Application Platform clusters with pre-installed

Tanzu Cluster Essentials to a Tanzu Mission Control instance, the tanzunet-secret export

shows Feature Disabled.

–export-all-namespaces not properly observed: When deploying Tanzu Application

Platform on Google Kubernetes Engine (GKE) v1.23.5-gke.200 and running tanzu secret

registry add tanzunet-creds, the --export-all-namespaces is not properly observed.

Application Live View

Application Live View Connector sometimes does not connect to the back end: Search

the Application Live View Connector pod logs for issues with rsocket connection to the back

end. If you find any issues, delete the connector pod to recreate it:

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

Application Live View Convention auto-exposes all actuators: Application Live View

Convention exposes all Spring Boot actuator endpoints by default to whatever is configured

using the Spring Boot Convention for the management port. You can change this

configuration if it does not suit your needs. For more information, see Convention Server.

Frequent Application Live View Connector restarts: In some cases, the Application Live

View Connector component restarts frequently. This usually doesn’t cause problems when

using Application Live View.

No structured JSON logging on the connector: The format of the log output of the

Application Live View Connector component is not currently aligned with the standard Tanzu

Application Platform logging format. A fix is planned for Tanzu Application Platform v1.1.1.

Grype scanner

Scanning Java source code may not reveal vulnerabilities: Source Code Scanning only scans files

present in the source code repository. No network calls are made to fetch dependencies. For

languages using dependency lock files, such as Golang and Node.js, Grype uses the lock files to

check the dependencies for vulnerabilities.

For Java, dependency lock files are not guaranteed, so Grype instead uses the dependencies

present in the built binaries (.jar or .war files).

Because VMware discourages committing binaries to source code repositories, Grype fails to find

vulnerabilities during a Source Scan. The vulnerabilities are still found during the Image Scan, after

the binaries are built and packaged as images.

Supply Chain Choreographer plug-in

Tanzu Application Platform v1.1

VMware, Inc 67

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-convention-server.html

Details for ConfigMap CRD not appearing: The error Unable to retrieve conditions for

ConfigMap... appears in the details section after clicking on the ConfigMap stage in the

graph view of a supply chain. This error does not necessarily mean that the workload failed

its execution through the supply chain.

Scan results not shown: Current CVEs found during Image or Build scanning do not appear.

However, results are still present in the metadata store and are available by using the Tanzu

CLI.

Supply Chain Security Tools - Scan

Scan Phase indicates Scanning incorrectly: Scans have an edge case that when an error

occurs during scanning, the Scan Phase field is not updated to Error and remains in the

Scanning phase. Read the scan pod logs to verify the existence of an error.

Multicluster Support: Error sending results to SCST - Store running in a different cluster:

During installation, Supply Chain Security Tools - Scan (Scan) creates the SecretImport for

ingesting the TLS CA certificate secret, but misses the SecretImport for the RBAC Auth

token. See, Troubleshooting Supply Chain Security Tools - Store.

User sees error message indicating Supply Chain Security Tools - Store (Store) is not

configured even though configuration values were supplied: The Scan Controller

experiences a race-condition when deploying Store in the same cluster, that shows Store as

not configured, even when it is present and properly configured. This happens when the

Scan Controller is deployed and reconciled before the Store is reconciled and the

corresponding secrets are exported to the Scan Controller namespace. As a workaround,

after your Store is successfully reconciled, restart your Supply Chain Security Tools - Scan

deployment by running:

kubectl rollout restart deployment.apps/scan-link-controller-manager -n scan-li

nk-system

Note: If you deploy Supply Chain Security Tools - Scan to a different namespace than the

default one, replace -n scan-link-system with -n <my_custom_namespace>.

Supply Chain Security Tools - Store

Tanzu Insight CLI plug-in does not support Windows:

Currently, the Tanzu Insight plug-in only supports macOS and Linux.

Existing packages with new vulnerabilities not updated:

It is a known issue that Supply Chain Security Tools - Store does not correctly save new

vulnerabilities for a package that was already submitted in a previous report. This issue

causes new vulnerabilities not saved to the database.

Persistent volume retains data:

If Supply Chain Security Tools - Store is deployed, deleted, redeployed, and the database

password is changed during the redeployment, the metadata-store-db pod fails to start. The

cause is the persistent volume that PostgreSQL uses retaining old data, even though the

Tanzu Application Platform v1.1

VMware, Inc 68

retention policy is set to DELETE.

To resolve this issue, see solution.

Missing persistent volume:

After Supply Chain Security Tools - Store is deployed, metadata-store-db pod might fail for

missing volume while postgres-db-pv-claim pvc is in the PENDING state. This issue might

occur if the cluster where Supply Chain Security Tools - Store is deployed does not have

storageclass defined.

The provisioner of storageclass is responsible for creating the persistent volume after

metadata-store-db attaches postgres-db-pv-claim. To resolve this issue, see solution.

No support for installing in custom namespaces:

Supply Chain Security Tools — Store is deployed to the metadata-store namespace. There is

no support for configuring the namespace.

Tanzu Application Platform GUI

Tanzu Application Platform GUI doesn’t work in Safari: Tanzu Application Platform GUI

does not work in the Safari web browser.

Runtime Resources errors: The Runtime Resources tab shows cluster query errors when

attempting to retrieve Kubernetes object details from clusters that are not on the Full profile.

For more information, see Troubleshooting

Supply Chain displays incorrect data if there are workloads with same name and

namespace: When there are two workloads that have the same name and namespace, but

exist on different clusters, clicking either of them in the supply chain page always shows the

details for the first one. There is no way to access details for the second.

Back-end Kubernetes plug-in reporting failure in multicluster environments:

In a multicluster environment when one request to a Kubernetes cluster fails, backstage-

kubernetes-backend reports a failure to the front end. This is a known issue with upstream

Backstage and it applies to all released versions of Tanzu Application Platform GUI. For more

information, see this Backstage code in GitHub. This behavior arises from the API at the

Backstage level. There are currently no known workarounds. There are plans for upstream

commits to Backstage to resolve this issue.

Tanzu Application Platform v1.1

VMware, Inc 69

https://github.com/backstage/backstage/blob/c7f88d041b671185dc7a01e716f80dca0709e2a1/plugins/kubernetes-backend/src/service/KubernetesFanOutHandler.ts#L250-L271

Installing Tanzu Application Platform

This topic provides an overview to installing Tanzu Application Platform.

Installation process

The process of installing Tanzu Application Platform includes the following tasks:

Step Task Link

1. Review the prerequisites to ensure that you have set up everything

required before beginning the installation

Prerequisites

2. Accept the end-user license agreements Accept the EULAs

3. Install the Tanzu command line interface (CLI) and plug-ins for the

Tanzu CLI

Install the Tanzu CLI and plug-ins

4. Create a namespace, add a secret, and add the Tanzu Application

Platform package repository

Add the Tanzu Application Platform

Package Repository

5. Prepare your Tanzu Application Platform profile Prepare to install your Tanzu

Application Platform profile

6. Install the profile to the cluster Install your Tanzu Application

Platform package

7. (Optional) Install any additional packages that were not in the profile Installing Individual Packages

8. Install developer tools into your integrated development environment

(IDE)

Installing Tanzu Developer Tools for

Visual Studio Code

Prerequisites

The following are required to install Tanzu Application Platform:

VMware Tanzu Network and container image registry
requirements

Installation requires:

Access to VMware Tanzu Network:

A Tanzu Network account to download Tanzu Application Platform packages.

Network access to https://registry.tanzu.vmware.com.

Cluster-specific registry:

A container image registry, such as Harbor or Docker Hub for application images,

Tanzu Application Platform v1.1

VMware, Inc 70

#add-package-repositories
https://network.tanzu.vmware.com/
https://goharbor.io/
https://hub.docker.com/

base images, and runtime dependencies. When available, VMware recommends

using a paid registry account to avoid potential rate-limiting associated with some free

registry offerings.

If installing using the lite descriptor for Tanzu Build Service, 1 GB of available

storage is recommended.

If installing using the full descriptor for Tanzu Build Service, which is suitable for

offline environments, 10 GB of available storage is recommended.

Note: For production environments, the full descriptor is recommended to optimize

security and performance. For more information about Tanzu Build Service

descriptors, see About descriptors.

Registry credentials with read and write access made available to Tanzu Application Platform

to store images.

Network access to your chosen container image registry.

DNS Records

There are some optional but recommended DNS records you must allocate if you decide to use

these particular components:

Cloud Native Runtimes (knative) - Allocate a wildcard subdomain for your developer’s

applications. This is specified in the cnrs.domain_name key of the tap-values.yaml

configuration file that you input with the installation. This wildcard must be pointed at the

external IP address of the tanzu-system-ingress’s envoy service. See Access with the

shared Ingress method for more information about tanzu-system-ingress.

Tanzu Learning Center - Similar to Cloud Native Runtimes, allocate a wildcard subdomain for

your workshops and content. This is specified in the learningcenter.ingressDomain key of

the tap-values.yaml configuration file that you input with the installation. This wildcard must

be pointed at the external IP address of the tanzu-system-ingress’s envoy service.

Tanzu Application Platform GUI - If you decide to implement the shared ingress and include

Tanzu Application Platform GUI, allocate a fully Qualified Domain Name (FQDN) that can be

pointed at the tanzu-system-ingress service. The default host name consists of tap-gui and

an IngressDomain of your choice. For example, tap-gui.example.com.

Tanzu Application Platform GUI

Latest version of Chrome, Firefox, or Edge. Tanzu Application Platform GUI currently does

not support Safari browser.

Git repository for Tanzu Application Platform GUI’s software catalogs, with a token allowing

read access. For more information about how to use your Git repository, see the Using

accelerator.yaml section in Getting started with the Tanzu Application Platform. Supported Git

infrastructure includes:

GitHub

GitLab

Azure DevOps

Tanzu Application Platform v1.1

VMware, Inc 71

Tanzu Application Platform GUI Blank Catalog from the Tanzu Application section of VMware

Tanzu Network

To install, navigate to Tanzu Network. Under the list of available files to download,

there is a folder titled tap-gui-catalogs-latest. Inside that folder is a compressed

archive titled Tanzu Application Platform GUI Blank Catalog. You must extract

that catalog to the preceding Git repository of choice. This serves as the configuration

location for your Organization’s Catalog inside Tanzu Application Platform GUI.

The Tanzu Application Platform GUI catalog allows for two approaches towards storing

catalog information:

The default option uses an in-memory database and is suitable for test and

development scenarios. This reads the catalog data from Git URLs that you specify in

the tap-values.yaml file. This data is temporary, and any operations that cause the

server pod in the tap-gui namespace to be re-created also cause this data to be

rebuilt from the Git location. This can cause issues when you manually register

entities by using the UI because they only exist in the database and are lost when

that in-memory database gets rebuilt.

For production use-cases, use a PostgreSQL database that exists outside the Tanzu

Application Platform packaging. The PostgreSQL database stores all the catalog data

persistently both from the Git locations and the UI manual entity registrations. For

more information, see Configuring the Tanzu Application Platform GUI database

Kubernetes cluster requirements

Installation requires Kubernetes cluster v1.21, v1.22, or v1.23 on one of the following Kubernetes

providers:

Azure Kubernetes Service.

Amazon Elastic Kubernetes Service.

containerd must be used as the Container Runtime Interface (CRI). Some versions of

EKS default to Docker as the container runtime and must be changed to containerd.

EKS clusters on Kubernetes version 1.23 require the Amazon EBS CSI Driver due to

the CSIMigrationAWS is enabled by default in Kubernetes 1.23.

Users currently on EKS Kubernetes version 1.22 must install the Amazon EBS

CSI Driver before upgrading to Kubernetes version 1.23. See AWS

documentation for more information.

AWS Fargate is not supported.

Google Kubernetes Engine.

GKE Autopilot clusters do not have the required features enabled.

GKE clusters that are set up in zonal mode might detect Kubernetes API errors when

the GKE control plane is resized after traffic increases. Users can mitigate this by

creating a regional cluster with three control-plane nodes right from the start.

Minikube

Reference the following resource requirements

Hyperkit driver is supported on macOS only. Docker driver is not supported.

Tanzu Application Platform v1.1

VMware, Inc 72

https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi-migration-faq.html

Tanzu Kubernetes Grid multicloud

vSphere with Tanzu v7.0 U3a.

For vSphere with Tanzu, pod security policies must be configured so that Tanzu Application

Platform controller pods can run as root. For more information, see the Kubernetes

documentation.

To set the pod security policies, run:

kubectl create clusterrolebinding default-tkg-admin-privileged-binding --cluste

rrole=psp:vmware-system-privileged --group=system:authenticated

For more information about Pod Security Policies on Tanzu for vSphere, see Using Pod

Security Policies with Tanzu Kubernetes Clusters in VMware vSphere Product

Documentation.

Resource requirements

To deploy all Tanzu Application Platform packages, your cluster must have at least:

8 CPUs for i9 (or equivalent) available to Tanzu Application Platform components

12 CPUs for i7 (or equivalent) available to Tanzu Application Platform components

8 GB of RAM across all nodes available to Tanzu Application Platform

12 GB of RAM is available to build and deploy applications, including Minikube.

VMware recommends 16 GB of RAM for an optimal experience.

70 GB of disk space available per node

For the full profile or use of Security Chain Security Tools - Store, your cluster must have a

configured default StorageClass.

Pod Security Policies must be configured so that Tanzu Application Platform controller pods

can run as root. See Kubernetes documentation for more information.

Tools and CLI requirements

Installation requires:

The Kubernetes CLI, kubectl, v1.20, v1.21 or v1.22, installed and authenticated with admin

rights for your target cluster. See Install Tools in the Kubernetes documentation.

Accepting Tanzu Application Platform EULAs, installing
Cluster Essentials and the Tanzu CLI

This topic describes how to:

Accept Tanzu Application Platform EULAs

Set the Kubernetes cluster context

Install Cluster Essentials for Tanzu

Install or update the Tanzu CLI and plug-ins

Tanzu Application Platform v1.1

VMware, Inc 73

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-CD033D1D-BAD2-41C4-A46F-647A560BAEAB.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/tasks/tools/

Accept the End User License Agreements

Before downloading and installing Tanzu Application Platform packages, you must accept the End

User License Agreements (EULAs) as follows:

1. Sign in to VMware Tanzu Network.

2. Accept or confirm that you have accepted the EULAs for each of the following:

Cluster Essentials for VMware Tanzu

Tanzu Application Platform

Tanzu Build Service associated components:

Tanzu Build Service Dependencies

Buildpacks for VMware Tanzu

Stacks for VMware Tanzu

Example of accepting the Tanzu Application Platform EULA

To accept the Tanzu Application Platform EULA:

1. Go to Tanzu Application Platform.

2. Select the Click here to sign the EULA link in the yellow warning box under the release

drop-down menu. If the yellow warning box is not visible, the EULA has already been

accepted.

Tanzu Application Platform v1.1

VMware, Inc 74

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/#/releases/1011100
https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tanzu-buildpacks-suite
https://network.tanzu.vmware.com/products/tanzu-stacks-suite
https://network.tanzu.vmware.com/products/tanzu-application-platform/

3. Select Agree in the bottom-right of the dialog box as seen in the following screenshot.

Tanzu Application Platform v1.1

VMware, Inc 75

This example shows that you have now accepted the EULAs for Tanzu Application Platform. In

addition, you must accept the EULAs for Cluster Essentials for VMware Tanzu and for Tanzu Build

Services and its associated components as stated above.

Set the Kubernetes cluster context

To set the Kubernetes cluster context:

1. List the existing contexts by running:

kubectl config get-contexts

For example:

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO

 NAMESPACE

 aks-repo-trial aks-repo-trial clusterUser_aks-r

g-01_aks-repo-trial

* aks-tap-cluster aks-tap-cluster clusterUser_aks-r

g-01_aks-tap-cluster

2. Set the context to the cluster that you want to use for the Tanzu Application Platform

packages installation by running:

Tanzu Application Platform v1.1

VMware, Inc 76

kubectl config use-context CONTEXT

Where CONTEXT is the cluster that you want to use. For example, aks-tap-cluster.

For example:

$ kubectl config use-context aks-tap-cluster

Switched to context "aks-tap-cluster".

Install Cluster Essentials for Tanzu

Cluster Essentials for VMware Tanzu simplifies the process of installing the open-source Carvel tools

on your cluster. It includes a script to download and install supported versions of kapp-controller and

secretgen-controller on the target cluster. It also installs the kapp, imgpkg, ytt, and kbld CLIs on your

local machine. Currently, Cluster Essentials only supports macOS and Linux.

When you are using a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster

Essentials because the contents of Cluster Essentials are already installed on your cluster.

To install Cluster Essentials, see Deploying Cluster Essentials.

Install or update the Tanzu CLI and plug-ins

You use the Tanzu CLI and plug-ins to install and use the Tanzu Application Platform functions and

features.

To install the Tanzu CLI and plug-ins:

1. Sign in to VMware Tanzu Network.

2. Go to the Tanzu Application Platform product page.

3. Select Release 1.1.0 from the release drop-down menu.

4. Click and download the Tanzu framework bundle for your operating system.

5. (Optional) If an earlier upgrade attempt failed, you can uninstall the previous version of the

Tanzu CLI and associated plug-ins and files. See Remove Tanzu CLI, plug-ins, and associated

files for more information.

To install the Tanzu CLI and plug-ins:

For Windows installation instructions, see Install Tanzu CLI: Windows.

Install Tanzu CLI: Linux or macOS

1. Create a $HOME/tanzu directory on your local machine.

Note

Follow the steps in this topic if you do not want to use a profile to install the Tanzu

CLI and plug-ins. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 77

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/index.html
https://carvel.dev
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.1/cluster-essentials/GUID-deploy.html
https://network.tanzu.vmware.com
https://network.pivotal.io/products/tanzu-application-platform

2. Unpack the downloaded TAR file into the $HOME/tanzu directory by running:

For Linux:

tar -xvf tanzu-framework-linux-amd64.tar -C $HOME/tanzu

For macOS:

tar -xvf tanzu-framework-darwin-amd64.tar -C $HOME/tanzu

3. Set the environment variable TANZU_CLI_NO_INIT to true to ensure the local downloaded

versions of the CLI core and plug-ins are installed by running:

export TANZU_CLI_NO_INIT=true

4. Install or update the CLI core by running:

Note: Replace v0.11.2 with the version you’ve downloaded.

For Linux:

cd $HOME/tanzu

export VERSION=v0.11.2

sudo install cli/core/$VERSION/tanzu-core-linux_amd64 /usr/local/bin/tanz

u

For macOS:

cd $HOME/tanzu

export VERSION=v0.11.2

install cli/core/$VERSION/tanzu-core-darwin_amd64 /usr/local/bin/tanzu

5. Confirm the installation by running:

tanzu version

Expected outcome:

version: v0.11.4

...

6. Proceed to Install/Update Tanzu CLI plug-ins

Install Tanzu CLI: Windows

1. Open the Windows file browser.

2. Create a Program Files\tanzu directory on your local machine.

3. From the Downloads directory, right-click the tanzu-framework-windows.amd64.zip file, select

the Extract All… menu option, enter C:\Program files\tanzu in the Files are extracted to

this directory: text box, and click the Extract.

4. From the Program Files\tanzu directory, move and rename; the executable file from

Tanzu Application Platform v1.1

VMware, Inc 78

Program Files\tanzu\cli\core\v0.11.2\tanzu-core-windows_amd64.exe

to

Program Files\tanzu\tanzu.exe

5. From the Program Files directory, right-click the tanzu directory and select Properties >

Security.

6. Ensure that your user account has the Full Control permission.

7. Use Windows Search to search for env, select Edit the system environment variables, click

Environment Variables on the bottom right of the dialogue box.

8. Find and select the Path row under System variables, click Edit.

9. Click New, enter the path value, click OK.

Note: The path value must not include tanzu.exe. For example, C:\Program Files\tanzu.

10. Click New following the System Variables section, add a new environmental variable named

TANZU_CLI_NO_INIT with a variable value true, click OK.

11. Use Windows Search to search for cmd, select Command Prompt to open the command line

terminal.

12. Verify the Tanzu CLI installation by running:

tanzu version

Expected outcome:

version: v0.11.2

...

13. Proceed to Install/Update Tanzu CLI plug-ins

Install/Update Tanzu CLI plug-ins

To install or update Tanzu CLI plug-ins from your terminal, follow these steps:

1. Install plug-ins from the $HOME/tanzu directory (if on Linux or macOS) or Program

Files\tanzu directory (if on Windows) by running:

tanzu plugin install --local cli all

2. Verify that you installed the plug-ins by running:

tanzu plugin list

Expected outcome:

NAME DESCRIPTION

 SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Tanzu Application Platform v1.1

VMware, Inc 79

 Standalone default v0.11.6 not installed

management-cluster Kubernetes management-cluster operations

 Standalone default v0.11.6 not installed

package Tanzu package management

 Standalone default v0.11.6 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.11.6 not installed

secret Tanzu secret management

 Standalone default v0.11.6 installed

services Discover Service Types, Service Instances and manage Resour

ce Claims (ALPHA) Standalone v0.3.0-rc.2 installed

accelerator Manage accelerators in a Kubernetes cluster

 Standalone v1.2.0-build.1 insta

lled

apps Applications on Kubernetes

 Standalone v0.7.0-build.1 insta

lled

insight post & query image, package, source, and vulnerability data

 Standalone v1.2.1 installed

Note: Currently, insight plug-in only supports macOS and Linux.

You can now proceed with installing the Tanzu Application Platform Package and Profiles.

Installing the Tanzu Application Platform package and
profiles

This topic describes how to install Tanzu Application Platform packages from the Tanzu Application

Platform package repository.

Before installing the packages, ensure that you have completed the prerequisites, configured and

verified the cluster, accepted the EULA, and installed the Tanzu CLI with any required plug-ins. See

Accepting Tanzu Application Platform EULAs, installing Cluster Essentials and the Tanzu CLI for

more information.

Relocate images to a registry

VMware recommends relocating the images to your registry from VMware Tanzu Network registry

before attempting installation.

If you choose not to relocate images, Tanzu Application Platform depends directly on VMware Tanzu

Network for continued operation. VMware recommends relocating images because there are no

uptime guarantees for installations that depend directly on VMware Tanzu Network. The option to

skip relocation is documented for evaluation and proof-of-concept only.

The supported container registries are Harbor, Azure Container Registry, Google Container Registry,

and Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

Tanzu Application Platform v1.1

VMware, Inc 80

https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html

1. Log in to your image registry by running:

docker login MY-REGISTRY

Where MY-REGISTRY is your own container registry.

2. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network credentials

by running:

docker login registry.tanzu.vmware.com

3. Set up environment variables for installation use by running:

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

4. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-p

ackages

Where TARGET-REPOSITORY is your target repository

5. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

6. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

7. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-packages:$TAP_VERSIO

N \

 --namespace tap-install

Tanzu Application Platform v1.1

VMware, Inc 81

Where:

$TAP_VERSION is the Tanzu Application Platform version environment variable you

defined earlier.

TARGET-REPOSITORY is the necessary repository.

8. Get the status of the Tanzu Application Platform package repository, and ensure the status

updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: tapmdc.azurecr.io/mdc/1.0.2/tap-packages

TAG: 1.0.2

STATUS: Reconcile succeeded

REASON:

Note: The VERSION and TAG numbers differ from the earlier example if you are on Tanzu

Application Platform v1.0.2 or earlier.

9. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

 SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

 A unified user interface to e

nable search, discovery and try-out of API endpoints at ease.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 buildservice.tanzu.vmware.com Tanzu Build Service

 Tanzu Build Service enables t

he building and automation of containerized software workflows securely and at

scale.

 cartographer.tanzu.vmware.com Cartographer

 Kubernetes native Supply Chai

Tanzu Application Platform v1.1

VMware, Inc 82

n Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

 Cloud Native Runtimes is a se

rverless runtime based on Knative

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime configurations to fleets of w

orkloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

 Tanzu Source Controller enabl

es workload create/update from source code.

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 grype.scanning.apps.tanzu.vmware.com Grype Scanner for Supply

 Chain Security Tools - Scan Default scan templates using

Anchore Grype

 image-policy-webhook.signing.apps.tanzu.vmware.com Image Policy Webhook

 The Image Policy Webhook allo

ws platform operators to define a policy that will use cosign to verify signatu

res of container images

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native Supply Chains.

 metadata-store.apps.tanzu.vmware.com Tanzu Supply Chain Secur

ity Tools - Store The Metadata Store enables sa

ving and querying image, package, and vulnerability data.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

 The Services Toolkit enables

the management, lifecycle, discoverability and connectivity of Service Resource

s (databases, message queues, DNS records, etc.).

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use case.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Tanzu Application Platform v1.1

VMware, Inc 83

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile

settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Installation profiles in Tanzu Application Platform.

The following profiles are available for Tanzu Application Platform:

Full: This profile contains all of the Tanzu Application Platform packages.

Iterate: This profile is intended for iterative application development.

Build: This profile is intended for the transformation of source revisions to workload

revisions. Specifically, hosting workloads and SupplyChains.

Run: This profile is intended for the transformation of workload revisions to running pods.

Specifically, hosting deliveries and deliverables.

View: This profile is intended for instances of applications related to centralized developer

experiences. Specifically, the TAP GUI and Metadata Store.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile sample as a guide. These samples

have the minimum configuration required to deploy Tanzu Application Platform. The sample

values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package

Subordinate packages, or individual child packages

Important: Keep the values file for future configuration use.

3. (Optional) Configure LoadBalancer for Contour ingress

4. Proceed to the View possible configuration settings for your package section.

(Optional) Configure LoadBalancer for Contour ingress(Optional) Configure LoadBalancer for Contour ingress

Important: This section only applies when you use Tanzu Application Platform to deploy its own

shared Contour ingress controller in tanzu-system-ingress. It is not applicable when you use your

existing ingress.

Before defining other parameters for your Tanzu Application Platform installation, VMware

recommends defining your ingress because several components, including Tanzu Application

Platform GUI, rely on it.

You can share this ingress across Cloud Native Runtimes (cnrs), Tanzu Application Platform GUI

(tap_gui), and Learning Center (learningcenter).

By default, Contour uses NodePort as the service type. To set the service type to LoadBalancer, add

the following to your tap-values.yaml:

Tanzu Application Platform v1.1

VMware, Inc 84

contour:

 envoy:

 service:

 type: LoadBalancer

If you use AWS, the preceding section creates a classic LoadBalancer. To use the Network

LoadBalancer instead of the classic LoadBalancer for ingress, add the following to your tap-

values.yaml:

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

Full profile

The following is the YAML file sample for the full-profile:

profile: full

contour:

 envoy:

 service:

 type: LoadBalancer

shared:

 ingress_domain: INGRESS-DOMAIN

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 tanzunet_username: "TANZUNET-USERNAME"

 tanzunet_password: "TANZUNET-PASSWORD"

 descriptor_name: "DESCRIPTOR-NAME"

supply_chain: basic

cnrs:

 domain_name: INGRESS-DOMAIN

ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY"

learningcenter:

 ingressDomain: "INGRESS-DOMAIN"

tap_gui:

 service_type: ClusterIP

Tanzu Application Platform v1.1

VMware, Inc 85

 ingressEnabled: "true"

 ingressDomain: "INGRESS-DOMAIN"

 app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

metadata_store:

 app_service_type: LoadBalancer # (optional) Defaults to LoadBalancer. Change to Node

Port for distributions that don't support LoadBalancer

grype:

 namespace: "MY-DEV-NAMESPACE" # (optional) Defaults to default namespace.

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies

are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-

service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-

service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-

project/build-service"

KP-DEFAULT-REPO-USERNAME is the username that can write to KP-DEFAULT-REPO. You can

docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.

You can docker push to this location with this credential. You can also configure this

credential by using a secret reference. See Install Tanzu Build Service for details.

For Google Cloud Registry, use the contents of the service account JSON file.

TANZUNET-USERNAME and TANZUNET-PASSWORD are the email address and password to log in to

VMware Tanzu Network. Your VMware Tanzu Network credentials enable you to configure

the dependencies updater. This resource accesses and installs the build dependencies

(buildpacks and stacks) that Tanzu Build Service requires on your cluster. It can also

optionally keep these dependencies up to date as new versions are released on VMware

Tanzu Network. You can also configure this credential by using a secret reference. For more

information, see Install Tanzu Build Service.

DESCRIPTOR-NAME is the name of the descriptor to import. For more information, see

Overview of Tanzu Build Service. Available options are:

lite is the default if not set. It has a smaller footprint, which enables faster

Tanzu Application Platform v1.1

VMware, Inc 86

installations.

full is optimized to speed up builds and includes dependencies for all supported

workload types.

SERVER-NAME is the hostname of the registry server. Examples:

Harbor has the form server: "my-harbor.io"

Docker Hub has the form server: "index.docker.io"

Google Cloud Registry has the form server: "gcr.io"

REPO-NAME is where workload images are stored in the registry. Images are written to SERVER-

NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain"

Docker Hub has the form repository: "my-dockerhub-user"

Google Cloud Registry has the form repository: "my-project/supply-chain"

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to

fetch source code from and push configuration to.

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-

ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can

download either a blank or populated catalog file from the Tanzu Application Platform

product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built

and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the namespace where you want to deploy the ScanTemplates. This is

the namespace where the scanning feature runs.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the credentials

to pull an image from the registry for scanning. If built images are pushed to the same

registry as the Tanzu Application Platform images, this can reuse the tap-registry secret

created in Add the Tanzu Application Platform package repository.

Note: When you install Tanzu Application Platform, it is bootstrapped with a set of dependencies

(buildpacks and stacks) for application builds. For more information about buildpacks, see the

VMware Tanzu Buildpacks Documentation. You can find the buildpack and stack artifacts installed

with Tanzu Application Platform in the descriptor file on Tanzu Network. The current installed version

of the descriptor is 100.0.293. Sometimes the dependencies require updates. You can use a manual

process in a CI/CD context, or an automatic update process in the background by Tanzu Application

Platform.

Light Profile

The Light profile is deprecated. Although existing values files might still refer to the Light profile,

VMware recommends to migrate to one of the new profiles described in Install your Tanzu

Application Platform profile by following the procedures in Migrate Tanzu Application Platform

profiles.

View possible configuration settings for your package

Tanzu Application Platform v1.1

VMware, Inc 87

https://network.pivotal.io/products/tanzu-application-platform/#/releases/1239018
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://network.pivotal.io/products/tbs-dependencies
https://network.pivotal.io/products/tbs-dependencies#/releases/1086670
#dependencies-manual

To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you defined

earlier.

Note: The tap.tanzu.vmware.com package does not show all configuration settings for packages it

plans to install. The package only shows top-level keys. You can view individual package

configuration settings with the same tanzu package available get command. For example, use

tanzu package available get -n tap-install cnrs.tanzu.vmware.com/1.0.3 --values-schema for

Cloud Native Runtimes.

profile: full

...

e.g. CNRs specific values go under its name

cnrs:

 provider: local

e.g. App Accelerator specific values go under its name

accelerator:

 server:

 service_type: "ClusterIP"

Identify the values for your package

You can identify the values for your Tanzu package by running:

tanzu package available get PACKAGE-NAME.tanzu.vmware.com/VERSION --values-schema -n t

ap-install

Where:

VERSION is the version number of the package. For example, 0.5.1 for Supply Chain Basic

package.

PACKAGE-NAME is the value of Top-level Key for package-specific configuration within your

tap-values.yaml, as summarized in the following table:

Package Top-level Key

see table below shared

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View Connector appliveview_connector

Application Live View Conventions appliveview-conventions

Tanzu Application Platform v1.1

VMware, Inc 88

Package Top-level Key

Cartographer cartographer

Cloud Native Runtimes cnrs

Convention Controller convention_controller

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Image Policy Webhook image_policy_webhook

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

Shared Keys define values that configure multiple packages. These keys are defined under the

shared Top-level Key, as summarized in the following table:

Shared

Key
Used By Description

ca_cert_d

ata

convention_controller,

source_controller

Optional: PEM Encoded certificate data to trust TLS connections

with a private CA.

For information about package-specific configuration, see Installing individual packages.

For example, to identify the SSH secret keys for Supply Chain Basic, you can run:

tanzu package available get ootb-supply-chain-basic.tanzu.vmware.com/0.5.1 --values-sc

hema -n tap-install

Expect to see the following outputs that list the all the SSH secret keys and the descriptions

applicable to the package:

KEY DEFAULT TYPE DESCRIPTION

cluster_builder default string Name of the Tanzu Build S

ervice (TBS) ClusterBuilder to use by default on image objects managed by the supply c

hain.

gitops.branch main string Default branch to use for

 pushing Kubernetes configuration files produced by the supply chain.

gitops.commit_message bump configuration string Default git commit messag

Tanzu Application Platform v1.1

VMware, Inc 89

e to write when publishing Kubernetes configuration files produces by the supply chain

 to git.

gitops.email supplychain@cluster.local string Default user email to be

used for the commits produced by the supply chain.

gitops.repository_prefix <nil> string Default prefix to be used

 for forming Git SSH URLs for pushing Kubernetes configuration produced by the supply

chain.

gitops.ssh_secret git-ssh string Name of the default Secre

t containing SSH credentials to lookup in the developer namespace for the supply chain

 to fetch source code from and push configuration to.

gitops.username supplychain string Default user name to be u

sed for the commits produced by the supply chain.

registry.repository <nil> string Name of the repository in

 the image registry server where the application images from the workloads should be p

ushed to (required).

registry.server index.docker.io string Name of the registry serv

er where application images should be pushed to (required).

service_account default string Name of the service accou

nt in the namespace where the Workload is submitted to utilize for providing registry

credentials to Tanzu Build Service (TBS) Image objects as well as deploying the applic

ation.

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

 tap-values.yaml -n tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you

defined earlier.

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This may take 5-10 minutes because it installs several packages on your cluster.

3. Verify that all the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. (Optional) Install any additional packages not included in your profile.

Important: Ensure you have set up developer namespaces to use your installed packages.

After installing Full Profile on to your cluster, you can install the Tanzu Developer Tools for VSCode

extension to help you develop against it. For instructions, see Installing Tanzu Developer Tools for

Tanzu Application Platform v1.1

VMware, Inc 90

VS Code.

Access Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you can use the hostname that you configured earlier.

This hostname is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application

Platform GUI, see Accessing Tanzu Application Platform GUI.

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started topic

or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform profile

To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Important: If you exclude a package after performing a profile installation including that package,

you cannot see the accurate package states immediately after running tap package installed list

-n tap-install.

Warning: You can break package dependencies by removing a package. Allow 20 minutes to verify

that all packages have reconciled correctly while troubleshooting.

Opting out of telemetry collection

This topic describes how to opt out of the VMware Customer Experience Improvement Program

(CEIP). By default, when you install Tanzu Application Platform, you are opted into telemetry

collection. To turn off telemetry collection, complete following the instructions.

Note: If you opt out of telemetry collection, VMware cannot offer you proactive support and the

other benefits that accompany participation in the CEIP.

Turn off telemetry collection

To turn off telemetry collection on your Tanzu Application Platform installation:

1. Ensure your Kubernetes context is pointing to the cluster where Tanzu Application Platform

is installed.

2. Run the following kubectl command:

kubectl apply -f - <<EOF

apiVersion: v1

Tanzu Application Platform v1.1

VMware, Inc 91

kind: Namespace

metadata:

 name: vmware-system-telemetry

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: vmware-system-telemetry

 name: vmware-telemetry-cluster-ceip

data:

 level: disabled

EOF

3. If you already have Tanzu Application Platform installed, restart the telemetry collector to

pick up the change:

kubectl delete pods --namespace tap-telemetry --all

Your Tanzu Application Platform deployment no longer emits telemetry, and you are opted out of

the CEIP.

Tanzu Application Platform v1.1

VMware, Inc 92

Upgrading Tanzu Application Platform

This document describes how to upgrade Tanzu Application Platform.

You can perform fresh install of Tanzu Application Platform by following the instructions in Installing

Tanzu Application Platform.

Prerequisites

Before you upgrade Tanzu Application Platform:

Verify that you meet all the prerequisites of the target Tanzu Application Platform version. If

the target Tanzu Application Platform version does not support your existing Kubernetes

version, VMware recommends upgrading to a supported version before proceeding with the

upgrade.

For information about installing your Tanzu Application Platform, see Install your Tanzu

Application Platform profile

For information about installing or updating the Tanzu CLI and plug-ins, see Install or update

the Tanzu CLI and plug-ins

For information on Tanzu Application Platform GUI considerations, see Tanzu Application

Platform GUI Considerations

Verify all packages are reconciled by running tanzu package installed list -A

Add new package repository

Follow these steps to update to the new package repository:

1. Relocate the latest version of TAP images which you want to update with the Carvel tool

imgpkg by following the steps provided in document from Step 1 - Step 4.

tanzu package repository update tanzu-tap-repository \

 --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VER

SION \

 --namespace tap-install

Where VERSION is the target revision of Tanzu Application Platform you are migrating to.

Note: Make sure to Update the export TAP_VERSION=VERSION-NUMBER which you want to

update to

2. Add the target version of the Tanzu Application Platform package repository by running:

If Cluster Essentials 1.2 and above installed:

tanzu package repository add tanzu-tap-repository \

Tanzu Application Platform v1.1

VMware, Inc 93

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.2/tap/GUID-install.html#relocate-images-to-a-registry-0

--url ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-packages:$TAP_VE

RSION \

--namespace tap-install

Where VERSION is the target revision of Tanzu Application Platform you are migrating

to.

If Cluster Essentials 1.1 and 1.0 installed:

tanzu package repository update tanzu-tap-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-packages:$TAP_VE

RSION \

--namespace tap-install

Where $TAP_VERSION is the target revision of Tanzu Application Platform you are

updating to.For example, 1.3.0

Note: If you are using Cluster Essentials 1.0 or 1.1, expect to see the installed Tanzu

Application Platform packages in a temporary “Reconcile Failed” state, following a

“Package not found” warning. These warnings will disappear after you upgrade the

installed Tanzu Application Platform packages to version 1.2.0.

3. Verify you have added the new package repository by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Perform upgrade of Tanzu Application Platform

Upgrade instructions for Profile-based installation

Important: Before performing the upgrade, ensure descriptor_name is either unset or set to full, or

lite in the tap-values.yaml.

For Tanzu Application Platform that is installed by profile, you can perform the upgrade by running:

Note: Ensure you run the following command in the directory where the tap-values.yaml file

resides.

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION --values-file t

ap-values.yaml -n tap-install

Where VERSION is the target revision of Tanzu Application Platform you are migrating to.

Upgrade instructions for component-specific installation

For information about upgrading Tanzu Application Platform GUI, see upgrading Tanzu Application

Platform GUI.

Verify the upgrade

Verify the versions of packages after the upgrade by running:

Tanzu Application Platform v1.1

VMware, Inc 94

tanzu package installed list --namespace tap-install

Your output is similar, but probably not identical, to the following example output:

- Retrieving installed packages...

 NAME PACKAGE-NAME PACKAG

E-VERSION STATUS

 accelerator accelerator.apps.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 api-portal api-portal.tanzu.vmware.com 1.0.9

 Reconcile succeeded

 appliveview run.appliveview.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 appliveview-conventions build.appliveview.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 buildservice buildservice.tanzu.vmware.com 1.4.3

 Reconcile succeeded

 cartographer cartographer.tanzu.vmware.com 0.2.2

 Reconcile succeeded

 cert-manager cert-manager.tanzu.vmware.com 1.5.3+

tap.1 Reconcile succeeded

 cnrs cnrs.tanzu.vmware.com 1.1.1

 Reconcile succeeded

 contour contour.tanzu.vmware.com 1.18.2

+tap.1 Reconcile succeeded

 conventions-controller controller.conventions.apps.tanzu.vmware.com 0.5.1

 Reconcile succeeded

 developer-conventions developer-conventions.tanzu.vmware.com 0.5.0

 Reconcile succeeded

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com 0.16.3

 Reconcile succeeded

 grype grype.scanning.apps.tanzu.vmware.com 1.0.1

 Reconcile succeeded

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 learningcenter learningcenter.tanzu.vmware.com 0.1.1

 Reconcile succeeded

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com 0.1.1

 Reconcile succeeded

 metadata-store metadata-store.apps.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com 0.6.1

 Reconcile succeeded

 ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.6.1

 Reconcile succeeded

 ootb-templates ootb-templates.tanzu.vmware.com 0.6.1

 Reconcile succeeded

 scanning scanning.apps.tanzu.vmware.com 1.0.1

 Reconcile succeeded

 service-bindings service-bindings.labs.vmware.com 0.6.1

 Reconcile succeeded

 services-toolkit services-toolkit.tanzu.vmware.com 0.5.1

 Reconcile succeeded

 source-controller controller.source.apps.tanzu.vmware.com 0.2.1

 Reconcile succeeded

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com 0.3.0

 Reconcile succeeded

 tap tap.tanzu.vmware.com 1.0.2

 Reconcile succeeded

Tanzu Application Platform v1.1

VMware, Inc 95

 tap-gui tap-gui.tanzu.vmware.com 1.0.2

 Reconcile succeeded

 tap-telemetry tap-telemetry.tanzu.vmware.com 0.1.4

 Reconcile succeeded

 tekton-pipelines tekton.tanzu.vmware.com 0.30.1

 Reconcile succeeded

Tanzu Application Platform v1.1

VMware, Inc 96

Migrate Tanzu Application Platform profiles

This document describes how to migrate from one Tanzu Application Platform profile to another.

You can install Tanzu Application Platform by following the instructions in Installing Tanzu Application

Platform.

Prerequisites

To migrate from one Tanzu Application Platform profile to another ensure you do the following:

Install Tanzu Application Platform. See Install your Tanzu Application Platform profile

Install or update the Tanzu CLI and plug-ins. See Install or update the Tanzu CLI and plug-ins

If you install Tanzu Application Platform GUI verify the considerations. See Tanzu Application

Platform GUI Considerations

Verify all packages are reconciled by running tanzu package installed list -A

Note which packages are included in the original profile and the profile migrated to. If the

profile you are migrating to includes additional packages, those will be added and additional

cluster resources may be needed. If the profile migrated to doesn’t include a component,

the package is removed. If you do not want to add or remove a package, consider adding an

additional cluster instead of migrating.

Add new package repository

Follow these steps to add the new package repository:

1. Add the latest version of the Tanzu Application Platform package repository by running:

tanzu package repository update tanzu-tap-repository \

 --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:TAP

-VERSION \

 --namespace tap-install

Where TAP-VERSION is your Tanzu Application Platform version. For example, 1.1.0.

2. Add the new package repository by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Edit the tap-values.yaml configuration file that was used
during installation

During the Tanzu Application Platform installation, a configuration file is built that contains the

Tanzu Application Platform v1.1

VMware, Inc 97

necessary configuration values related to the Tanzu Application Platform cluster. See Installing the

Tanzu Application Platform package and profiles. To change the profile, edit the profile key in this

file, typically saved as tap-values.yaml by running:

profile: PROFILE-NAME

Where PROFILE-NAME is the desired target profile. Review the documentation on profiles to

determine the best fit.

Perform migration of Tanzu Application Platform profile

This step will execute the actual migration that will result in the addition or removal of components

based on the selected profile. Consideration should be given to backup any data that may be lost as

part of this operation.

To complete the Tanzu Application Platform profile migration, do the following:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION --values-fi

le tap-values.yaml -n tap-install

Where TAP-VERSION is your Tanzu Application Platform version. For example, 1.1.0.

Tanzu Application Platform v1.1

VMware, Inc 98

Getting started with the Tanzu Application
Platform

Purpose

Welcome to the Tanzu Application Platform. This document guides you through getting started on

the platform. Specifically, you are going to learn how to:

Develop and promote an application

Create an application accelerator

Add testing and security scanning to an application

Administer, set up, and manage supply chains

Before getting started, you must complete the prerequisites in the next section.

Getting started prerequisites

Verify you have successfully:

Installed the Tanzu Application Platform

See Installing Tanzu Application Platform.

Installed the Tanzu Application Platform on the target Kubernetes cluster

See Installing the Tanzu CLI and Installing the Tanzu Application Platform Package and

Profiles.

Set the default kubeconfig context to the target Kubernetes cluster

See Changing clusters.

Installed Out of The Box (OOTB) Supply Chain Basic

See Install Out of The Box Supply Chain Basic.

Note: If you used the default profiles provided in Installing the Tanzu Application Platform

Package and Profiles, you have already installed the Out of The Box (OOTB) Supply Chain

Basic.

Installed Tekton Pipelines

See Install Tekton Pipelines. If you used the default profiles provided in Installing the Tanzu

Application Platform Package and Profiles, you have already installed Tekton Pipelines.

Set up a developer namespace to accommodate the developer Workload

See Set up developer namespaces to use installed packages.

Installed Tanzu Application Platform GUI

See Install Tanzu Application Platform GUI.

Tanzu Application Platform v1.1

VMware, Inc 99

Installed the VS Code Tanzu Extension

See Install the Visual Studio Code Tanzu Extension for instructions.

When you have completed the prerequisites, you are ready to get started.

Section 1: Develop your first application on the Tanzu
Application Platform

In this section, you are going to:

Learn about application accelerators

Deploy your application

Add your application to Tanzu Application Platform GUI Software Catalog

Set up your integrated development environment (IDE)

Iterate on your application

Live update your application

Debug your application

Monitor your running application

About application accelerators

Application accelerators are templates that not only codify best practices, but also provide important

configuration and structures ready and available for use. Developers can create applications and get

started with feature development immediately. Admins can create custom application accelerators

that reflect desired architectures and configurations, enabling developer use according to the best

practices defined. The Application Accelerator plug-in of Tanzu Application Platform GUI assists both

application developers and admins with creating and generating application accelerators. To create

your own application accelerator, see Create your accelerator.

Deploy your application

To deploy your application, you must download an accelerator, upload it on your Git repository of

choice, and run a CLI command. VMware recommends using the accelerator called Tanzu-Java-

Web-App.

1. From Tanzu Application Platform GUI portal, click Create located on the left-hand side of the

navigation bar to see the list of available accelerators. For information about connecting to

Tanzu Application Platform GUI, see Accessing Tanzu Application Platform GUI.

Tanzu Application Platform v1.1

VMware, Inc 100

2. Locate the Tanzu Java Web App accelerator, which is a Spring Boot web app, and click

CHOOSE.

3. In the Generate Accelerators dialog box, replace the default value dev.local in the prefix

for container image registry field with the registry in the form of SERVER-NAME/REPO-NAME.

The SERVER-NAME/REPO-NAME must match what was specified for registry as part of the

installation values for ootb_supply_chain_basic. Click NEXT STEP, verify the provided

information, and click CREATE.

4. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

5. After downloading the ZIP file, expand it in a workspace directory and follow your preferred

procedure for uploading the generated project files to a Git repository for your new project.

6. Ensure you have set up developer namespaces to use installed packages.

7. Deploy the Tanzu Java Web App accelerator by running the tanzu apps workload create

command:

tanzu apps workload create tanzu-java-web-app \

--git-repo GIT-URL-TO-PROJECT-REPO \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--yes \

--namespace YOUR-DEVELOPER-NAMESPACE

Where GIT-URL-TO-PROJECT-REPO is the path you uploaded to in step 5 and YOUR-DEVELOPER-

NAMESPACE is the namespace configured in step 6.

If you bypassed step 5 or were unable to upload your accelerator to a Git repository, use the

following public version to test:

tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

Tanzu Application Platform v1.1

VMware, Inc 101

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--yes \

--namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured in step 6.

For more information, see Tanzu Apps Workload Create.

Note: This deployment uses an accelerator source from Git, but in later steps you use the

VSCode extension to debug and live-update this application.

8. View the build and runtime logs for your app by running the tail command:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp --namespace

 YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured in step 6.

9. After the workload is built and running, you can view the Web App in your browser. View

the URL of the Web App by running the command below, and then press ctrl-click on the

Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get tanzu-java-web-app --namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured in step 6.

Add your application to Tanzu Application Platform GUI Software
Catalog

1. Navigate to the home page of Tanzu Application Platform GUI and click Home, located on

the left-side navigation bar. Click REGISTER ENTITY.

Tanzu Application Platform v1.1

VMware, Inc 102

Alternatively, you can add a link to the catalog-info.yaml to the tap-values.yaml

configuration file in the tap_gui.app_config.catalog.locations section. See Installing the

Tanzu Application Platform Package and Profiles.

2. Register an existing component prompts you to type a repository URL. Type the link to the

catalog-info.yaml file of the tanzu-java-web-app in the Git repository field, for example,

https://github.com/USERNAME/PROJECTNAME/blob/main/catalog-info.yaml.

3. Click ANALYZE.

4. Review the catalog entities to be added and click IMPORT.

5. Navigate back to the home page. The catalog changes and entries are visible for further

inspection.

Tanzu Application Platform v1.1

VMware, Inc 103

#a-idfull-profilea-full-profile

Note: If your Tanzu Application Platform GUI instance does not have a PostgreSQL database

configured, the catalog-info.yaml location must be re-registered after the instance is restarted or

upgraded.

Iterate on your application

Now that you have a skeleton workload working, you are ready to iterate on your application and test

code changes on the cluster. Tanzu Developer Tools for Visual Studio Code, VMware Tanzu’s official

IDE extension for VSCode, helps you develop and receive fast feedback on your workloads running

on the Tanzu Application Platform.

The VSCode extension enables live updates of your application while running on the cluster and

allows you to debug your application directly on the cluster. For information about installing the

prerequisites and the Tanzu Developer Tools extension, see Install Tanzu Dev Tools for VSCode.

Note: Use Tilt v0.23.2 or a later version for the sample application.

1. Open the Tanzu Java Web App as a project within your VSCode IDE.

2. To ensure your extension assists you with iterating on the correct project, configure its

settings using the following instructions.

In Visual Studio Code, navigate to Preferences > Settings > Extensions > Tanzu.

In the Local Path field, provide the path to the directory containing the Tanzu Java

Web App. The current directory is the default.

In the Source Image field, provide the destination image repository to publish an

image containing your workload source code. For example, gcr.io/myteam/tanzu-

java-web-app-source.

You are now ready to iterate on your application.

Live update your application

Deploy the application to view it updating live on the cluster to demonstrate how code changes are

going to behave on a production cluster early in the development process.

Follow the following steps to live update your application:

1. From the Command Palette (⇧⌘P), type in and select Tanzu: Live Update Start. You can

view output from Tanzu Application Platform and from Tilt indicating that the container is

being built and deployed.

You see “Live Update starting…” in the status bar at the bottom right.

Live update can take 1 to 3 minutes while the workload deploys and the Knative

service becomes available.

Note: Depending on the type of cluster you use, you might see an error similar to the

following:

ERROR: Stop! cluster-name might be production. If you're sure you want to deploy

there, add: allow_k8s_contexts('cluster-name') to your Tiltfile. Otherwise, switch

k8scontexts and restart Tilt. Follow the instructions and add the line

allow_k8s_contexts('cluster-name') to your Tiltfile.

Tanzu Application Platform v1.1

VMware, Inc 104

2. When the Live Update status in the status bar is visible, resolve to “Live Update Started”,

navigate to http://localhost:8080 in your browser, and view your running application.

3. Enter to the IDE and make a change to the source code. For example, in

HelloController.java, edit the string returned to say Hello! and save.

4. The container is updated when the logs stop streaming. Navigate to your browser and

refresh the page.

5. View the changes to your workload running on the cluster.

6. Either continue making changes, or stop and deactivate the live update when finished. Open

the command palette (⇧⌘P), type Tanzu, and choose an option.

Debug your application

Debug your cluster either on the application or in your local environment.

Follow the following steps to debug your cluster:

1. Set a breakpoint in your code.

2. Right-click the file workload.yaml within the config directory, and select Tanzu: Java Debug

Start. In a few moments, the workload is redeployed with debugging enabled. You are going

to see the “Deploy and Connect” Task complete and the debug menu actions are available

to you, indicating that the debugger has attached.

3. Navigate to http://localhost:8080 in your browser. This hits the breakpoint within VSCode.

Play to the end of the debug session using VSCode debugging controls.

Monitor your running application

Inspect the runtime characteristics of your running application using the Application Live View UI to

monitor:

Resource consumption

Java Virtual Machine (JVM) status

Incoming traffic

Change log level

You can also troubleshoot environment variables and fine-tune the running application.

Follow the following steps to diagnose Spring Boot-based applications using Application Live View:

1. Confirm that the Application Live View components installed successfully. For instructions,

see Verify the Application Live View component.

2. Access the Application Live View Tanzu Application Platform GUI. For instructions, see Entry

point to Application Live View plug-in.

3. Select your running application to view the diagnostic options and inside the application. For

more information, see Product Features.

Section 2: Create your application accelerator

Tanzu Application Platform v1.1

VMware, Inc 105

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-installing.html#verify-alv-connector-component
https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-product-features.html

In this section, you are going to create an application accelerator by using Tanzu Application

Platform GUI and CLI.

Create an application accelerator

You can use any Git repository to create an accelerator. You need the repository URL to create an

accelerator.

The Git repository must be public and contain a README.md file. These options are available to

configure when you create repositories on GitHub.

To create a new application accelerator by using your Git repository, follow these steps:

1. Clone your Git repository.

2. Create a file named accelerator.yaml in the root directory of this Git repository.

3. Add the following content to the accelerator.yaml file:

accelerator:

 displayName: Simple Accelerator

 description: Contains just a README

 iconUrl: https://images.freecreatives.com/wp-content/uploads/2015/05/smiley-5

59124_640.jpg

 tags:

 - simple

 - getting-started

Note: You can use any icon with a reachable URL.

4. Add the new accelerator.yaml file, commit this change and push to your Git repository.

Publish the new accelerator

To publish the new application accelerator that is created in your Git repository, follow these steps:

1. Run the following command to publish the new application accelerator:

tanzu accelerator create simple --git-repository YOUR-GIT-REPOSITORY-URL --git-

branch YOUR-GIT-BRANCH

Where:

YOUR-GIT-REPOSITORY-URL is the URL of your Git repository.

YOUR-GIT-BRANCH is the name of the branch where you pushed the new

accelerator.yaml file.

2. Refresh Tanzu Application Platform GUI to reveal the newly published accelerator.

Tanzu Application Platform v1.1

VMware, Inc 106

Note: It might take a few seconds for Tanzu Application Platform GUI to refresh the catalog

and add an entry for new accelerator.

Working with accelerators

Updating an accelerator

After you push any changes to your Git repository, the Accelerator is refreshed based on the

git.interval setting for the Accelerator resource. The default value is 10 minutes. You can run the

following command to force an immediate reconciliation:

tanzu accelerator update ACCELERATOR-NAME --reconcile

Deleting an accelerator

When you no longer need your accelerator, you can delete it by using the Tanzu CLI:

tanzu accelerator delete ACCELERATOR-NAME

Using an accelerator manifest

You can also create a separate manifest file and apply it to the cluster by using the Tanzu CLI:

1. Create a simple-manifest.yaml file and add the following content:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: simple

 namespace: accelerator-system

spec:

 git:

 url: YOUR-GIT-REPOSITORY-URL

 ref:

 branch: YOUR-GIT-BRANCH

Tanzu Application Platform v1.1

VMware, Inc 107

Where:

YOUR-GIT-REPOSITORY-URL is the URL of your Git repository.

YOUR-GIT-BRANCH is the name of the branch.

2. Apply the simple-manifest.yaml by running the following command in the directory where

you created this file:

kubectl apply -f simple-manifest.yaml

Section 3: Add Testing and Security Scanning to Your
Application

In this section, you are going to:

Learn about supply chains

Discover available out of the box (OOTB) supply chains

OOTB Basic (default)

OOTB Testing

OOTB Testing+Scanning

Install OOTB Testing (optional)

Install OOTB Testing+Scanning (optional)

Introducing a Supply Chain

Supply Chains provide a way of codifying all of the steps of your path to production, more commonly

known as continuous integration/Continuous Delivery (CI/CD). CI/CD is a method to frequently

deliver applications by introducing automation into the stages of application development. The main

concepts attributed to CI/CD are continuous integration, continuous delivery, and continuous

deployment. CI/CD is the method used by supply chain to deliver applications through automation

where supply chain allows you to use CI/CD and add any other steps necessary for an application to

reach production, or a different environment such as staging.

A path to production

A path to production allows users to create a unified access point for all of the tools required for their

applications to reach a customer-facing environment. Instead of having four tools that are loosely

coupled to each other, a path to production defines all four tools in a single, unified layer of

abstraction, which may be automated and repeatable between teams for applications at scale.

Where tools typically are not able to integrate with one another and additional scripting or webhooks

are necessary, there would be a unified automation tool to codify all the interactions between each

of the tools. Supply chains used to codify the organization’s path to production are configurable,

allowing their authors to add all of the steps of their application’s path to production.

Tanzu Application Platform v1.1

VMware, Inc 108

Available Supply Chains

The Tanzu Application Platform provides three OOTB supply chains to work with the Tanzu

Application Platform components, and they include:

1: OOTB Basic (default)

The default OOTB Basic supply chain and its dependencies were installed on your cluster during the

Tanzu Application Platform install. The following table and diagrams provide descriptions for each of

the supply chains and dependencies provided with the Tanzu Application Platform.

Name Package

Name

Description Dependencies

Tanzu Application Platform v1.1

VMware, Inc 109

Out of the Box Basic

(Default - Installed

during Installing

Part 2)

ootb-supply-

chain-

basic.tanzu.

vmware.com

This supply chain monitors a repository that is identified

in the developer’s workload.yaml file. When any new

commits are made to the application, the supply chain:

Creates a new image.

Applies any predefined conventions.

Deploys the application to the cluster.

Flux/Sou

rce

Controlle

r

Tanzu

Build

Service

Conventi

on

Service

Tekton

Cloud

Native

Runtime

s

If using

Service

Referenc

es:

S

e

r

vi

c

e

B

i

n

d

i

n

g

s

S

e

r

vi

c

e

s

T

o

o

lk

it

2: OOTB Testing

The OOTB Testing supply chain runs a Tekton pipeline within the supply chain.

Tanzu Application Platform v1.1

VMware, Inc 110

Name Package Name Description Dependencie

s

Out of

the

Box

Testing

ootb-supply-

chain-

testing.tanzu.v

mware.com

The Out of the Box Testing contains all of the same elements as the

Source to URL. It allows developers to specify a Tekton pipeline that

runs as part of the CI step of the supply chain.

The application tests using the Tekton pipeline.

A new image is created.

Any predefined conventions are applied.

The application is deployed to the cluster.

All of the

Source to

URL

dependencies

3: OOTB Testing+Scanning

The OOTB Testing+Scanning supply chain includes integrations for secure scanning tools.

Name Package

Name

Description Dependencies

Out of

the Box

Testing

and

Scannin

g

ootb-supply-

chain-

testing-

scanning.tan

zu.vmware.co

m

The Out of the Box Testing and Scanning contains all of the

same elements as the Out of the Box Testing supply chains but

it also includes integrations out of the box with the secure

scanning components of Tanzu Application Platform.

The application is tested using the provided Tekton

pipeline.

The application source code is scanned for

vulnerabilities.

A new image is created.

The image is scanned for vulnerabilities.

Any predefined conventions are applied.

The application deploys to the cluster.

All of the Source to

URL dependencies,

and:

The secure

scanning

components

included

with Tanzu

Application

Platform

Install OOTB Testing

This section introduces how to install the OOTB Testing supply chain and provides a sample Tekton

pipeline that tests your sample application. The pipeline is configurable. Therefore, you can

customize the steps to perform either additional testing or other tasks with Tekton Pipelines.

Note: You can only have one Tekton pipeline per namespace.

To apply this install method, follow the following steps:

1. You can activate the Out of the Box Supply Chain with Testing by updating our profile to use

testing rather than basic as the selected supply chain for workloads in this cluster. Update

tap-values.yaml (the file used to customize the profile in Tanzu package install tap --

values-file=...) with the following changes:

- supply_chain: basic

+ supply_chain: testing

Tanzu Application Platform v1.1

VMware, Inc 111

- ootb_supply_chain_basic:

+ ootb_supply_chain_testing:

 registry:

 server: "<SERVER-NAME>"

 repository: "<REPO-NAME>"

2. Update the installed profile by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

Tekton pipeline config example

In this section, a Tekton pipeline is added to the cluster. In the next section, the workload is updated

to point to the pipeline and resolve any current errors.

Note: Developers can perform this step because they know how their application needs to be tested.

The operator can also add the Tekton supply chain to a cluster before the developer get access.

To add the Tekton supply chain to the cluster, apply the following YAML to the cluster:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

The preceding YAML defines a Tekton Pipeline with a single step. The step itself contained in the

steps pull the code from the repository indicated in the developers workload and run the tests within

Tanzu Application Platform v1.1

VMware, Inc 112

the repository. The steps of the Tekton pipeline are configurable and allow the developer to add any

additional items that is needed to test their code. Because this step is one of many in the supply

chain (and the next step is an image build in this case), the developer is free to focus on testing their

code. Any additional steps that the developer adds to the Tekton pipeline is independent for the

image being built and any subsequent steps of the supply chain being executed.

The params are templated by the Supply Chain Choreographer. Additionally, Tekton pipelines

require a Tekton pipelineRun in order to execute on the cluster. The Supply Chain Choreographer

handles creating the pipelineRun dynamically each time that step of the supply requires execution.

Workload update

To connect the new supply chain to the workload, the workload must be updated to point at your

Tekton pipeline.

1. Update the workload by running the following with the Tanzu CLI:

tanzu apps workload update tanzu-java-web-app \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --yes

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/has-tests: "true"

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

? Do you want to create this workload? Yes

Created workload "tanzu-java-web-app"

2. After accepting the workload creation, monitor the creation of new resources by the

workload by running:

kubectl get workload,gitrepository,pipelinerun,images.kpack,podintent,app,servi

ces.serving

You will see output similar to the following example that shows the objects that were created

by the Supply Chain Choreographer:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

Tanzu Application Platform v1.1

VMware, Inc 113

NAME URL

 READY STATUS

 AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

sample-accelerators/tanzu-java-web-app True Fetched revision: main/872ff44

c8866b7805fb2425130edb69a9853bfdf 109s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

 77s

NAME LATESTIMAGE

 READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME READY REASON

 AGE

podintent.conventions.apps.tanzu.vmware.com/tanzu-java-web-app True

 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

 LATESTCREATED LATESTREADY READY

 REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Install OOTB Testing+Scanning

Follow these steps to install the OOTB Testing+Scanning supply chain:

Note: When leveraging both Tanzu Build Service and Grype in your Tanzu Application Platform

supply chain, you can receive enhanced scanning coverage for Java and Node.js workloads that

includes application runtime layer dependencies.

Important: The grype must be installed for scanning.

1. Supply Chain Security Tools - Scan is installed as part of the profiles. Verify that both Scan

Link and Grype Scanner are installed by running:

tanzu package installed get scanning -n tap-install

tanzu package installed get grype -n tap-install

If the packages are not already installed, follow the steps in Supply Chain Security Tools -

Scan to install the required scanning components.

During installation of the Grype Scanner, sample ScanTemplates are installed into the

default namespace. If the workload is deployed into another namespace, these sample

ScanTemplates also must be present in the other namespace. One way to accomplish this is

Tanzu Application Platform v1.1

VMware, Inc 114

to install Grype Scanner again, and provide the namespace in the values file.

A ScanPolicy is required and the following code must be in the required namespace. You

can either add the namespace flag to the kubectl command or add the namespace field to

the template itself. Run:

kubectl apply -f - -o yaml << EOF

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

 violatingSeverities := ["Critical","High","UnknownSeverity"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

EOF

2. (optional) To persist and query the vulnerability results post-scan, ensure that Supply Chain

Security Tools - Store is installed using the following command. The Tanzu Application

Platform profiles install the package by default.

tanzu package installed get metadata-store -n tap-install

If the package is not installed, follow the installation instructions.

3. Update the profile to use the supply chain with testing and scanning by updating tap-

values.yaml (the file used to customize the profile in tanzu package install tap --values-

file=...) with the following changes:

- supply_chain: testing

+ supply_chain: testing_scanning

- ootb_supply_chain_testing:

+ ootb_supply_chain_testing_scanning:

Tanzu Application Platform v1.1

VMware, Inc 115

 registry:

 server: "<SERVER-NAME>"

 repository: "<REPO-NAME>"

4. Update the tap package:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

Workload update

To connect the new supply chain to the workload, update the workload to point to your Tekton

pipeline:

1. Update the workload by running the following using the Tanzu CLI:

tanzu apps workload create tanzu-java-web-app \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --yes

Example output:

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/has-tests: "true"

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

? Do you want to create this workload? Yes

Created workload "tanzu-java-web-app"

2. After accepting the workload creation, view the new resources that the workload created by

running:

kubectl get workload,gitrepository,sourcescan,pipelinerun,images.kpack,imagesca

n,podintent,app,services.serving

The following is an example output, which shows the objects that the Supply Chain

Choreographer created:

Tanzu Application Platform v1.1

VMware, Inc 116

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

 READY STATUS

 AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

sample-accelerators/tanzu-java-web-app True Fetched revision: main/872ff44

c8866b7805fb2425130edb69a9853bfdf 109s

NAME PHASE SCAN

NEDREVISION SCANNEDREPOSITORY

 AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 1878

50b39b754e425621340787932759a0838795 https://github.com/sample-accelerators/t

anzu-java-web-app 90s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

 77s

NAME LATESTIMAGE

 READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME PHASE SCANN

EDIMAGE

 AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOT

AL

imagescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 10.18

8.0.3:5000/foo/tanzu-java-web-app@sha256:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b8965

46e005f1efd98fbc4e79b7552c 14s

NAME READY REASON

 AGE

podintent.conventions.apps.tanzu.vmware.com/tanzu-java-web-app True

 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

 LATESTCREATED LATESTREADY READY

 REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

If the source or image scan has a “Failed” phase, then the scan has failed compliance and

the supply chain stops.

Query for vulnerabilities

Scan reports are automatically saved to the Supply Chain Security Tools - Store, and can be queried

Tanzu Application Platform v1.1

VMware, Inc 117

for vulnerabilities and dependencies. For example, open-source software (OSS) or third party

packages.

1. Query the tanzu-java-web-app image dependencies and vulnerabilities with the following

commands:

insight image get --digest DIGEST

insight image vulnerabilities --digest DIGEST

DIGEST is the component version, or image digest printed in the KUBECTL GET command.

Important: The Insight CLI is separate from the Tanzu CLI.

See Tanzu Insight plug-in overview additional information and examples.

Congratulations! You have successfully deployed your application
on the Tanzu Application Platform.

Through the next two sections to learn about recommended supply chain security best practices and

access to a powerful Services Journey experience on the Tanzu Application Platform by enabling

several advanced use cases.

Section 4: Configure image signing and verification in your
supply chain

In this section, you are about to:

Configure your supply chain to sign your image builds.

Configure an admission control policy to verify image signatures before admitting Pods to the

cluster.

Configure your supply chain to sign your image builds

1. Configure Tanzu Build Service to sign your container image builds by using cosign. See

Managing Image Resources and Builds for instructions.

2. Create a values.yaml file, and install the sign supply chain security tools and image policy

web-hook. See Install Supply Chain Security Tools - Sign for instructions.

3. Configure a ClusterImagePolicy resource to verify image signatures when deploying

resources. The resource must be named image-policy.

For example:

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources

 namespaces:

Tanzu Application Platform v1.1

VMware, Inc 118

https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-managing-images.html

 - kube-system

 - test-namespace

 keys:

 - name: first-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 <content ...>

 -----END PUBLIC KEY-----

 images:

 - namePattern: registry.example.org/myproject/*

 keys:

 - name: first-key

Note: System namespaces specific to your cloud provider might need to be excluded from the

policy.

To prevent the Image Policy Webhook from blocking components of Tanzu Application Platform,

VMware recommends configuring exclusions for Tanzu Application Platform system namespaces

listed in Create a ClusterImagePolicy resource.

When you apply the ClusterImagePolicy resource, your cluster requires valid signatures for all

images that match the namePattern: you define in the configuration. For more information about

configuring an image signature policy, see Configuring Supply Chain Security Tools - Sign.

Next steps

Overview for Supply Chain Security Tools - Sign

Configuring Supply Chain Security Tools - Sign

Supply Chain Security Tools - Sign known issues

Scan and Store: Introducing vulnerability scanning and metadata
storage to your Supply Chain

Overview

This feature set allows an application operator to introduce source code and image vulnerability

scanning, and scan-time rules, to their Tanzu Application Platform Supply Chain. The scan-time rules

prevent critical vulnerabilities from flowing to the supply chain unresolved.

Supply Chain Security Tools - Store takes the vulnerability scanning results and stores them. Users

can query for information about CVEs, images, packages, and their relationships by using the tanzu

insight CLI plug-in, or directly from the API.

Features

Scan source code repositories and images for known CVEs before deploying to a cluster

Identify CVEs by scanning continuously on each new code commit or each new image built

Analyze scan results against user-defined policies using Open Policy Agent

Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store

where they can be queried

Query the store for such use cases as:

Tanzu Application Platform v1.1

VMware, Inc 119

What images and packages are affected by a specific vulnerability?

What source code repos are affected by a specific vulnerability?

What packages and vulnerabilities does a particular image have?

To try the scan and store features as individual one-off scans, see Scan samples.

To try the scan and store features in a supply chain, see Section 3: Add testing and security scanning

to your application.

Next steps

Configure Code Repositories and Image Artifacts to be Scanned

Code and Image Compliance Policy Enforcement Using Open Policy Agent (OPA)

How to Create a ScanTemplate

Viewing and Understanding Scan Status Conditions

Observing and Troubleshooting

Tanzu Insight plug-in overview

Section 5: Consuming services on Tanzu Application Platform

In this section you will learn about working with backing services such as RabbitMQ, PostgreSQL and

MySQL as part of Tanzu Application Platform.

Particular focus will be given to binding application workloads to service instances, which is the most

common use case for services.

Key concepts

When working with services on Tanzu Application Platform you must be familiar with service

instances, service bindings and resource claims. This section provides a brief overview of each of

these key concepts.

Service instances

A service instance is any Kubernetes resource which exposes its capability through a well-defined

interface. For example, you could consider Kubernetes resources that have MySQL as the API Kind to

be MySQL service instances. These resources expose their capability over the MySQL protocol.

Other examples include resources that have PostgreSQL or RabbitmqCluster as the API Kind.

Service bindings

Service binding refers to a mechanism in which connectivity information such as service instance

credentials are automatically communicated to application workloads. Tanzu Application Platform

uses a standard named Service Binding for Kubernetes to implement this mechanism. To fully

understand the services aspect of Tanzu Application Platform, you must learn about this standard.

Resource claims

Tanzu Application Platform v1.1

VMware, Inc 120

https://servicebinding.io/

Resource claims are inspired in part by Persistent Volume Claims in Kubernetes. Resource Claims

provide a mechanism for users to “claim” service instance resources on a cluster, while also

decoupling the life cycle of application workloads and service instances.

Services you can use with Tanzu Application Platform

The following list of Kubernetes Operators expose APIs that integrate well with Tanzu Application

Platform:

1. RabbitMQ Cluster Operator for Kubernetes

2. VMware SQL with Postgres for Kubernetes

3. VMware SQL with MySQL for Kubernetes

Whether a service is compatible with Tanzu Application Platform is on a scale between fully

compatible and incompatible.

The minimum requirement for compatibility is that there must be a declarative, Kubernetes-based

API on which there is at least one API resource type adhering to the Provisioned Service duck type

defined by the Service Binding for Kubernetes standard. This duck type includes any resource type

with the following schema:

status:

 binding:

 name: # string

The value of .status.binding.name must point to a Secret in the same namespace. The Secret

contains required credentials and connectivity information for the resource.

Typically, APIs that include these resource types are installed onto the Tanzu Application Platform

cluster as Kubernetes Operators. These Kubernetes Operators provide CRDs and corresponding

controllers to reconcile the resources of the CRDs, as is the case with the three Kubernetes

Operators listed above.

User roles and responsibilities

It is important to understand the user roles for services on Tanzu Application Platform along with theIt is important to understand the user roles for services on Tanzu Application Platform along with the

responsibilities assumed of each. The following table describes each user role.

User role Exists as a default role in Tanzu

Application Platform?

Responsibilities

Service operator No (might be introduced in a future

release)

Namespace and cluster topology design

Life cycle management (CRUD) of

Kubernetes Operators

Life cycle management (CRUD) of Service

Instances

Life cycle management (CRUD) of Resource

Claim Policies

Application

operator

Yes - app-operator Life cycle management (CRUD) of Resource Claims

Tanzu Application Platform v1.1

VMware, Inc 121

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://www.rabbitmq.com/kubernetes/operator/operator-overview.html
https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/index.html
https://github.com/servicebinding/spec#provisioned-service
https://servicebinding.io/

Application

developer

Yes - app-editor and app-viewer Binding service instances to application workloads

Walkthrough

This section guides you through deploying two application workloads and learning how to configure

them to communicate over RabbitMQ. You will learn about the tanzu services CLI plug-in and the

most important APIs for working with services on Tanzu Application Platform. The following diagram

depicts a summary of what this section covers.

Bear the following observations in mind as you work through this section.

1. There is a clear separation of concerns across the various user roles:

The life cycle of workloads is determined by application developers.

The life cycle of resource claims is determined by application operators.

The life cycle of service instances is determined by service operators.

Tanzu Application Platform v1.1

VMware, Inc 122

The life cycle of service bindings is implicitly tied to lifecycle of workloads.

2. Resource claims and resource claim policies are the mechanism to enable cross-namespace

binding.

3. ProvisionedService is the contract allowing credentials and connectivity information to flow

from the service instance, to the resource claim, to the service binding, and ultimately to the

application workload.

4. Exclusivity of resource claims:

Resource claims are considered to be mutually exclusive, meaning that service

instances can be claimed by at most one resource claim.

Prerequisites

Before following this walkthrough, you must:

1. Have access to a cluster with Tanzu Application Platform installed.

2. Have downloaded and installed the tanzu CLI and the corresponding plug-ins.

3. Have setup the default namespace to use installed packages and use it as your developer

namespace. For more information, see Set up developer namespaces to use installed

packages).

4. Ensure your Tanzu Application Platform cluster can pull source code from GitHub.

5. Ensure your Tanzu Application Platform cluster can pull the images required by the

RabbitMQ Cluster Kubernetes Operator.

Set up a service

This section covers the following:

Installing the RabbitMQ Cluster Kubernetes Operator

Creating the RBAC rules to grant Tanzu Application Platform permission to interact with the

newly-installed APIs provided by the RabbitMQ Cluster Kubernetes Operator.

Creating the additional supporting resources to aid with discovery of services

For this part of the walkthrough, you assume the role of the service operator.

Note: Although this walkthrough uses the RabbitMQ Cluster Kubernetes Operator as an example,

the set up steps remain mostly the same for any compatible Operator.

To set up a service:

1. Use kapp to install the RabbitMQ Cluster Kubernetes Operator by running:

kapp -y deploy --app rmq-operator --file https://github.com/rabbitmq/cluster-op

erator/releases/download/v1.9.0/cluster-operator.yml

As a result, a new API Group (rabbitmq.com) and Kind (RabbitmqCluster) are now available

in the cluster.

2. Apply RBAC rules to grant Tanzu Application Platform permission to interact with the new

API.

Tanzu Application Platform v1.1

VMware, Inc 123

https://github.com/servicebinding/spec#provisioned-service
https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-components.html#setup
https://www.rabbitmq.com/kubernetes/operator/using-operator.html
https://www.rabbitmq.com/kubernetes/operator/using-operator.html

1. In a file named resource-claims-rmq.yaml, create a ClusterRole that defines the

rules and label it so that the rules are aggregated to the appropriate controller:

resource-claims-rmq.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: resource-claims-rmq

 labels:

 resourceclaims.services.apps.tanzu.vmware.com/controller: "true"

rules:

- apiGroups: ["rabbitmq.com"]

 resources: ["rabbitmqclusters"]

 verbs: ["get", "list", "watch", "update"]

2. Apply resource-claims-rmq.yaml by running:

kubectl apply -f resource-claims-rmq.yaml

3. In a file named rabbitmqcluster-app-operator-reader.yaml, define RBAC rules that

permit the users of the cluster to interact with the new APIs. For example, to permit

application operators to get, list, and watch for RabbitmqCluster service instances,

apply the following RBAC ClusterRole, labeled so that the rules are aggregated to

the app-operator role:

rabbitmqcluster-app-operator-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: rabbitmqcluster-app-operator-reader

 labels:

 apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true

"

rules:

- apiGroups: ["rabbitmq.com"]

 resources: ["rabbitmqclusters"]

 verbs: ["get", "list", "watch"]

4. Apply rabbitmqcluster-app-operator-reader.yaml by running:

kubectl apply -f rabbitmqcluster-app-operator-reader.yaml

3. Make the new API discoverable.

1. In a file named rabbitmqcluster-clusterresource.yaml, create a ClusterResource

that refers to the new service, and set any additional metadata. For example:

rabbitmqcluster-clusterresource.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterResource

metadata:

 name: rabbitmq

Tanzu Application Platform v1.1

VMware, Inc 124

spec:

 shortDescription: It's a RabbitMQ cluster!

 longDescription: A consistent and easy way to deploy RabbitMQ clusters

to Kubernetes and run them, including "day two" (continuous) operations.

 resourceRef:

 group: rabbitmq.com

 kind: RabbitmqCluster

2. Apply rabbitmqcluster-clusterresource.yaml by running:

kubectl apply -f rabbitmqcluster-clusterresource.yaml

After applying this resource, it will be listed in the output of the tanzu service types

list command, and is discoverable in the tanzu tooling.

Create a service instance

This section covers the following:

Using kubectl to create a RabbitmqCluster service instance.

Creating a resource claim policy that permits the service instance to be claimed.

For this part of the walkthrough, you assume the role of the service operator.

To create a service instance:

1. Create a dedicated namespace for service instances by running:

kubectl create namespace service-instances

Note: Using namespaces to separate service instances from application workloads allows for

greater separation of concerns, and means that you can achieve greater control over who

has access to what. However, this is not a strict requirement. You can create both service

instances and application workloads in the same namespace if desired.

2. Find the list of services that are available on your cluster by running:

tanzu service types list

Expected output:

Warning: This is an ALPHA command and may change without notice.

 NAME DESCRIPTION APIVERSION KIND

 rabbitmq It's a RabbitMQ cluster! rabbitmq.com/v1beta1 RabbitmqClus

ter

3. Create a RabbitmqCluster service instance.

Note

: If you see No service types found., ensure you have completed the steps

in Set up a service earlier in this walkthrough.

Tanzu Application Platform v1.1

VMware, Inc 125

1. Create a file named rmq-1-service-instance.yaml using the APIVERSION and KIND

from the output of the tanzu service types list command:

rmq-1-service-instance.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: rmq-1

 namespace: service-instances

2. Apply rmq-1-service-instance.yaml by running:

kubectl apply -f rmq-1-service-instance.yaml

4. Create a resource claim policy to define the namespaces the instance can be claimed and

bound from:

Note: By default, you can only claim and bind to service instances that are running in the

same namespace as the application workloads. To claim service instances that are running in

a different namespace, you must create a resource claim policy.

1. Create a file named rmq-claim-policy.yaml as follows:

rmq-claim-policy.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: rabbitmqcluster-cross-namespace

 namespace: service-instances

spec:

 consumingNamespaces:

 - '*'

 subject:

 group: rabbitmq.com

 kind: RabbitmqCluster

2. Apply rmq-claim-policy.yaml by running:

kubectl apply -f rmq-claim-policy.yaml

This policy states that any resource of kind RabbitmqCluster on the rabbitmq.com API group

in the service-instances namespace can be consumed from any namespace.

Claim a service instance

This section covers the following:

Using tanzu service instance list to view details about service instances.

Using tanzu service claim create to create a claim for the service instance.

For this part of the walkthrough you assume the role of the application operator.

Tanzu Application Platform v1.1

VMware, Inc 126

Resource claims in Tanzu Application Platform are a powerful concept that serve many purposes.

Arguably their most important role is to enable application operators to request services that they

can use with their application workloads without them having to create and manage the services

themselves. Resource claims provide a mechanism for application operators to say what they want,

without having to worry about anything that goes into providing what they want. For more

information, see Resource Claims.

In cases where service instances are running in the same namespace as application workloads, you

do not have to create a claim. You can bind to the service instance directly.

In this section you will use the tanzu service claim create command to create claim that the

RabbitmqCluster service instance you created earlier can fulfill. This command requires the following

information to create a claim successfully:

--resource-name

--resource-kind

--resource-api-version

--resource-namespace

To claim a service instance:

1. Find the information needed to make a resource claim by running:

tanzu service instance list -A

Expected output:

 Warning: This is an ALPHA command and may change without notice.

 NAMESPACE NAME KIND SERVICE TYPE AGE

 service-instances rmq-1 RabbitmqCluster rabbitmq 24h

2. Using the information from the previous command, create a claim for the service instance by

running:

tanzu service claim create rmq-1 \

 --resource-name rmq-1 \

 --resource-namespace service-instances \

 --resource-kind RabbitmqCluster \

 --resource-api-version rabbitmq.com/v1beta1

In the next section you will see how to inspect the claim and to then use it to bind to application

workloads.

Bind an application workload to the service instance

This section covers the following:

Using tanzu service claim list and tanzu service claim get to find information about

the claim to use for binding

Using tanzu apps workload create with the --service-ref flag to create a Workload and

bind it to the Service Instance

Tanzu Application Platform v1.1

VMware, Inc 127

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-service_resource_claims-terminology_and_apis.html

For this part of the walkthrough you assume the role of the application developer.

As a final step, you must create application workloads and to bind them to the service instance using

the claim.

In Tanzu Application Platform Service bindings are created when application workloads that specify

.spec.serviceClaims are created. In this section, you will see how to create such workloads using

the --service-ref flag of the tanzu apps workload create command.

To create an application workload:

1. Inspect the claims in the developer namespace to find the value to pass to --service-ref

command by running:

tanzu service claim list

Expected output:

 Warning: This is an ALPHA command and may change without notice.

 NAME READY REASON

 rmq-1 True

2. Retrieve detailed information about the claim by running:

tanzu service claim get rmq-1

Expected output:

 Warning: This is an ALPHA command and may change without notice.

Name: rmq-1

Status:

 Ready: True

Namespace: default

Claim Reference: services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:rmq-1

Resource to Claim:

 Name: rmq-1

 Namespace: service-instances

 Group: rabbitmq.com

 Version: v1beta1

 Kind: RabbitmqCluster

3. Record the value of Claim Reference from the previous command. This is the value to pass

to --service-ref to create the application workload.

4. Create the application workload by running:

tanzu apps workload create spring-sensors-consumer-web \

 --git-repo https://github.com/sample-accelerators/spring-sensors-rabbit \

 --git-branch main \

 --type web \

 --label app.kubernetes.io/part-of=spring-sensors \

 --annotation autoscaling.knative.dev/minScale=1 \

 --service-ref="rmq=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:rmq-

1"

Tanzu Application Platform v1.1

VMware, Inc 128

tanzu apps workload create \

 spring-sensors-producer \

 --git-repo https://github.com/tanzu-end-to-end/spring-sensors-sensor \

 --git-branch main \

 --type web \

 --label app.kubernetes.io/part-of=spring-sensors \

 --annotation autoscaling.knative.dev/minScale=1 \

 --service-ref="rmq=services.apps.tanzu.vmware.com/v1alpha1:ResourceClaim:rmq-

1"

Using the --service-ref flag instructs Tanzu Application Platform to bind the application

workload to the service provided in the ref.

Note: You are not passing a service ref to the RabbitmqCluster service instance directly, but

rather to the resource claim that has claimed the RabbitmqCluster service instance. See the

consuming services diagram at the beginning of this walkthrough.

5. After the workloads are ready, visit the URL of the spring-sensors-consumer-web app.

Confirm that sensor data, passing from the spring-sensors-producer workload to the create

spring-sensors-consumer-web workload using our RabbitmqCluster service instance, is

displayed.

Advanced use cases and further reading

There are a couple more advanced service use cases that not covered in the procedures in this

topic, such as Direct Secret References and Dedicated Service Clusters.

Advanced Use Case Short Description

Direct Secret References Binding to services running external to the cluster, for example, and in-house oracle

database.

Binding to services that are not conformant with the binding specification.

Dedicated Service

Clusters

Separates application workloads from service instances across dedicated clusters.

For more information about the APIs and concepts underpinning Services on Tanzu Application

Platform, see the Services Toolkit Component documentation

Tanzu Application Platform v1.1

VMware, Inc 129

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-reference-use_cases.html#direct-secret-references
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-reference-use_cases.html#dedicated-service-clusters-using-experimental-projection-and-replication-apis
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-overview.html

Overview of multicluster Tanzu Application
Platform

You can install Tanzu Application Platform in various topologies to reflect your existing landscape.

VMware has tested and recommends a multicluster topology for production use. Because flexibility

and choice are core to Tanzu Application Platform’s design, none of the implementation

recommendations are set in stone.

The multicluster topology uses the profile capabilities supported by Tanzu Application Platform. Each

cluster adopts one of three multicluster-aligned profiles:

Iterate: Intended for inner-loop iterative application development.

Build: Transforms source revisions to workload revisions; specifically, hosting workloads and

supply chains.

Run: Transforms workload revisions to running pods; specifically, hosting deliveries and

deliverables.

View: For applications related to centralized developer experiences; specifically, Tanzu

Application Platform GUI and metadata store.

The following diagram illustrates this topology.

Tanzu Application Platform v1.1

VMware, Inc 130

Next steps

To get started with installing a multicluster topology, see Install multicluster Tanzu Application

Platform profiles.

Install multicluster Tanzu Application Platform profiles

Prerequisites

Before installing multicluster Tanzu Application Platform profiles, you must meet the following

prerequisites:

All clusters must satisfy all the requirements to install Tanzu Application Platform. See

Prerequisites.

Accept Tanzu Application Platform EULA and install Tanzu CLI with any required plug-ins.

Install Tanzu Cluster Essentials on all clusters. For more information, see Deploy Cluster

Essentials.

Multicluster Installation Order of Operations

The installation order is flexible given the ability to update the installation with a modified values file

using the tanzu package installed update command. The following is an example of the order of

operations to be used:

1. Install View profile cluster

2. Install Build profile cluster

3. Install Run profile cluster

4. Add RBAC, cluster URL, and token from Build and Run clusters as documented in Viewing

resources on multiple clusters in Tanzu Application Platform GUI

5. Update the View cluster’s installation values file with the previous information and run the

following command to pass the updated config values to Tanzu Application Platform GUI:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION --val

ues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version you’ve installed

Install View cluster

Install the View profile cluster first, because some components must exist before installing the Run

clusters. For example, the Application Live View back end must be present before installing the Run

clusters. For more information about profiles, see About Tanzu Application Platform package

profiles.

To install the View cluster:

1. Follow the steps described in Installing the Tanzu Application Platform package and profiles

by using a reduced values file as shown in View profile.

Tanzu Application Platform v1.1

VMware, Inc 131

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.1/cluster-essentials/GUID-deploy.html
#install-view-cluster
#install-build-clusters
#install-run-cluster

2. Verify that you can access Tanzu Application Platform GUI by using the ingress that you set

up. The address must follow this format: http://tap-gui.INGRESS-DOMAIN, where INGRESS-

DOMAIN is the DNS domain you set to point to the shared Contour installation in the tanzu-

system-ingress namespace with the service envoy.

3. Verify that you followed Multicluster setup for the Supply Chain Security Tools - Store.

Install Build clusters

To install the Build profile cluster, follow the steps described in Installing the Tanzu Application

Platform package and profiles by using a reduced values file as shown in Build profile.

Install Run clusters

To install the Run profile cluster:

1. Follow the steps described in Install the Tanzu Application Platform package and profiles by

using a reduced values file as shown in Run profile.

2. To use Application Live View, set the INGRESS-DOMAIN for appliveview_connector to match

the value you set on the View profile for the appliveview in the values file.

Add Build and Run clusters to Tanzu Application Platform
GUI

After installing the Build, Run and Iterate clusters, follow the steps in View resources on multiple

clusters in Tanzu Application Platform GUI to:

1. Create the Service Accounts that Tanzu Application Platform GUI uses to read objects from

the clusters.

2. Add a remote cluster.

These steps create the necessary RBAC elements allowing you to pull the URL and token from the

Build, Run and Iterate clusters that allows them come back and add to the View cluster’s values file.

You must add the Build, Run and Iterate clusters to the View cluster for all plug-ins to function as

expected.

Next steps

After setting up the 3 profiles, you’re ready to run a workload by using the supply chain. See Getting

started with multicluster Tanzu Application Platform.

Getting started with multicluster Tanzu Application Platform

In this topic, you will validate the implementation of a multicluster topology by taking a sample

workload and passing it through the supply chains on the Build and Run clusters. You can take

various approaches to configuring the supply chain in this topology, but the following procedures

validate the most basic capabilities.

By following the steps in this topic, you will build an application on the Build profile clusters and run

Tanzu Application Platform v1.1

VMware, Inc 132

the application on the Run profile clusters. You will be able to view the workload and associated

objects from Tanzu Application Platform GUI interface on the View profile cluster.

Prerequisites

Before implementing a multicluster topology, complete the following:

1. Complete all installation steps for the 3 profiles: Build, Run, and View.

2. For the sample workload, VMware uses the same Application Accelerator - Tanzu Java Web

App in the non-multicluster Getting Started guide. You can download this accelerator to your

own Git infrastructure of choice. You might need to configure additional permissions.

Alternatively, you can also use the sample-accelerators GitHub repository.

3. The two supply chains are ootb-supply-chain-basic on the Build profile and ootb-delivery-

basic on the Run profile. For both the Build and Run profiled clusters, perform the steps

described in Setup Developer Namespace. This guide assumes that you use the default

namespace.

4. To set the value of DEVELOPER_NAMESPACE to the namespace you setup in the previous step,

run:

export DEVELOPER_NAMESPACE=YOUR-DEVELOPER-NAMESPACE

Where:

YOUR-DEVELOPER-NAMESPACE is the namespace you set up in Set up developer

namespaces to use installed packages. default is used in this example.

Start the workload on the Build profile cluster

The Build cluster starts by building the necessary bundle for the workload that is delivered to the Run

cluster.

1. Use the Tanzu CLI to start the workload down the first supply chain:

tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--yes \

--namespace ${DEVELOPER_NAMESPACE}

2. To monitor the progress of this process, run:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp --namespace

 ${DEVELOPER_NAMESPACE}

3. To exit the monitoring session, press CTRL + C.

4. Verify that your supply chain has produced the necessary Deliverable for the Workload by

running:

Tanzu Application Platform v1.1

VMware, Inc 133

https://github.com/sample-accelerators/tanzu-java-web-app

kubectl get deliverable --namespace ${DEVELOPER_NAMESPACE}

The output should look simiar to the following:

kubectl get deliverable --namespace default

NAME SOURCE

 DELIVERY READY

REASON AGE

tanzu-java-web-app tapmulticluster.azurecr.io/tap-multi-build-dev/tanzu-java-

web-app-default-bundle:xxxx-xxxx-xxxx-xxxx-xxxxx False DeliveryN

otFound 28h

The Deliverable contains the reference to the source. In this case, it is a bundle on the

image registry you specified for the supply chain. The supply chains can also leverage Git

repositories instead of ImageRepositories, but that’s beyond the scope of this tutorial.

5. Create a Deliverable after verifying there’s a Deliver on the build cluster. Copy its content

to a file that you can take to the Run profile clusters:

kubectl get deliverable tanzu-java-web-app --namespace ${DEVELOPER_NAMESPACE} -

oyaml > deliverable.yaml

6. Delete the ownerReferences and status sections from the deliverable.yaml.

After editing, the file will look like the following:

apiVersion: carto.run/v1alpha1

kind: Deliverable

metadata:

 creationTimestamp: "2022-03-10T14:35:52Z"

 generation: 1

 labels:

 app.kubernetes.io/component: deliverable

 app.kubernetes.io/part-of: tanzu-java-web-app

 app.tanzu.vmware.com/deliverable-type: web

 apps.tanzu.vmware.com/workload-type: web

 carto.run/cluster-template-name: deliverable-template

 carto.run/resource-name: deliverable

 carto.run/supply-chain-name: source-to-url

 carto.run/template-kind: ClusterTemplate

 carto.run/workload-name: tanzu-java-web-app

 carto.run/workload-namespace: default

 name: tanzu-java-web-app

 namespace: default

 resourceVersion: "635368"

 uid: xxxx-xxxx-xxxx-xxxx-xxxx

spec:

 source:

 image: tapmulticluster.azurecr.io/tap-multi-build-dev/tanzu-java-web-app-de

fault-bundle:xxxx-xxxx-xxxx-xxxx-xxxx

7. Take this Deliverable file to the Run profile clusters by running:

kubectl apply -f deliverable.yaml --namespace ${DEVELOPER_NAMESPACE}

8. Verify that this Deliverable is started and Ready by running:

Tanzu Application Platform v1.1

VMware, Inc 134

kubectl get deliverables --namespace ${DEVELOPER_NAMESPACE}

The output resembles the following:

kubectl get deliverables --namespace default

NAME SOURCE

 DELIVERY RE

ADY REASON AGE

tanzu-java-web-app tapmulticloud.azurecr.io/tap-multi-build-dev/tanzu-java-we

b-app-default-bundle:xxxx-xxxx-xxxx-xxxx-1a7beafd6389 delivery-basic True

 Ready 7m2s

9. To test the application, query the URL for the application. Look for the httpProxy by running:

kubectl get httpproxy --namespace ${DEVELOPER_NAMESPACE}

The output resembles the following:

kubectl get httpproxy --namespace default

NAME FQDN

 TLS SECRET STATUS STATUS DESC

RIPTION

tanzu-java-web-app-contour-a98df54e3629c5ae9c82a395501ee1fdtanz tanzu-java-we

b-app.default.svc.cluster.local valid Valid HTTPP

roxy

tanzu-java-web-app-contour-e1d997a9ff9e7dfb6c22087e0ce6fd7ftanz tanzu-java-we

b-app.default.apps.run.multi.kapplegate.com valid Valid HTTPP

roxy

tanzu-java-web-app-contour-tanzu-java-web-app.default tanzu-java-we

b-app.default valid Valid HTTPP

roxy

tanzu-java-web-app-contour-tanzu-java-web-app.default.svc tanzu-java-we

b-app.default.svc valid Valid HTTPP

roxy

Select the URL that corresponds to the domain you specified in your Run cluster’s profile

and enter it into a browser. Expect to see the message “Greetings from Spring Boot +

Tanzu!”.

10. View the component in Tanzu Application Platform GUI, by following these steps and using

the catalog file from the sample accelerator in GitHub.

Build profile

The following is the YAML file sample for the build-profile:

profile: build

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 tanzunet_username: "TANZUNET-USERNAME"

 tanzunet_password: "TANZUNET-PASSWORD"

Tanzu Application Platform v1.1

VMware, Inc 135

https://github.com/sample-accelerators/tanzu-java-web-app/blob/main/catalog/catalog-info.yaml

supply_chain: testing_scanning

ootb_supply_chain_testing_scanning:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY"

scanning:

 metadataStore:

 url: "METADATA-STORE-URL-ON-VIEW-CLUSTER"

 caSecret:

 name: store-ca-cert

 importFromNamespace: metadata-store-secrets

 authSecret:

 name: store-auth-token

grype:

 namespace: "MY-DEV-NAMESPACE" # (optional) Defaults to default namespace.

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies

are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-

service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-

service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-

project/build-service"

KP-DEFAULT-REPO-USERNAME is the user name that can write to KP-DEFAULT-REPO. You can

docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.

You can docker push to this location with this credential. This credential can also be

configured by using a Secret reference. For more information, see Install Tanzu Build

Service for details.

For Google Cloud Registry, use the contents of the service account JSON file.

TANZUNET-USERNAME and TANZUNET-PASSWORD are the email address and password that you use

to log in to VMware Tanzu Network. Your VMware Tanzu Network credentials enable you to

configure the dependencies updater. This resource accesses and installs the build

dependencies (buildpacks and stacks) Tanzu Build Service needs on your cluster. It can also

optionally keep these dependencies up to date as new versions are released on VMware

Tanzu Network. This credential can also be configured by using a Secret reference. For

more information, see Install Tanzu Build Service.

DESCRIPTOR-NAME is the name of the descriptor to import. For more information, see

Descriptors. Available options are:

lite is the default if not set. It has a smaller footprint, which enables faster

installations.

Tanzu Application Platform v1.1

VMware, Inc 136

full is optimized to speed up builds and includes dependencies for all supported

workload types.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to SERVER-

NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to

fetch source code from and push configuration to.

METADATA-STORE-URL-ON-VIEW-CLUSTER references the URL of the Supply Chain Security

Tools (SCST) - Store deployed on the View cluster. For more information, see SCST - Store’s

Ingress and multicluster support for additional details.

MY-DEV-NAMESPACE is the namespace where you want to deploy the ScanTemplates. This is

the namespace where the scanning feature runs.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the Secret that contains the credentials

to pull an image from the registry for scanning. If built images are pushed to the same

registry as Tanzu Application Platform images, you can reuse the tap-registry Secret

created in Add the Tanzu Application Platform package repository.

When you install Tanzu Application Platform, it is bootstrapped with a set of dependencies

(buildpacks and stacks) for application builds. For more information about buildpacks, see the

VMware Tanzu Buildpacks Documentation. You can find the buildpack and stack artifacts installed

with Tanzu Application Platform in the descriptor file on Tanzu Network. The current installed version

of the descriptor is 100.0.293. Sometimes the dependencies get out of date and require updates.

You can do this using a manual process in a CI/CD context, or an automatic update process in the

background by Tanzu Application Platform.

Run profile

The following is the YAML file sample for the run-profile:

profile: run

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

supply_chain: basic

cnrs:

 domain_name: INGRESS-DOMAIN

contour:

 envoy:

Tanzu Application Platform v1.1

VMware, Inc 137

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://network.pivotal.io/products/tbs-dependencies
https://network.pivotal.io/products/tbs-dependencies#/releases/1086670
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-tbs-in-ci.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-updating-deps.html

 service:

 type: LoadBalancer #NodePort can be used if your Kubernetes cluster doesn't supp

ort LoadBalancing

appliveview_connector:

 backend:

 sslDisabled: TRUE-OR-FALSE-VALUE

 host: appliveview.APP-LIVE-VIEW-INGRESS-DOMAIN

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-

ingress service’s external IP address.

APP-LIVE-VIEW-INGRESS-DOMAIN is the subdomain you setup on the View profile cluster. This

matches the value key appliveview.ingressDomain. Include the default host name

appliveview. ahead of the domain.

View profile

The following is the YAML file sample for the view-profile:

profile: view

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

contour:

 envoy:

 service:

 type: LoadBalancer #NodePort can be used if your Kubernetes cluster doesn't supp

ort LoadBalancing

learningcenter:

 ingressDomain: "DOMAIN-NAME"

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: "INGRESS-DOMAIN"

 app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

 kubernetes:

 serviceLocatorMethod:

 type: 'multiTenant'

 clusterLocatorMethods:

 - type: 'config'

 clusters:

 - url: CLUSTER_URL

Tanzu Application Platform v1.1

VMware, Inc 138

 name: CLUSTER_NAME

 authProvider: serviceAccount

 serviceAccountToken: CLUSTER_TOKEN

 skipTLSVerify: TRUE-OR-FALSE-VALUE

metadata_store:

 app_service_type: LoadBalancer # (optional) Defaults to LoadBalancer. Change to Node

Port for distributions that don't support LoadBalancer

appliveview:

 ingressEnabled: TRUE-OR-FALSE-VALUE

 ingressDomain: APP-LIVE-VIEW-INGRESS-DOMAIN

Where:

DOMAIN-NAME has a value such as learningcenter.example.com.

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-

ingress service’s external IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can

download either a blank or populated catalog file from the Tanzu Application Platform

product page. Otherwise, use a Backstage-compliant catalog you’ve already built and posted

on the Git infrastructure in the Integration section.

CLUSTER_URL, CLUSTER_NAME and CLUSTER_TOKEN are described in the Viewing resources on

multiple clusters in Tanzu Application Platform GUI. Observe the order of operations laid out

in the previous steps.

APP-LIVE-VIEW-INGRESS-DOMAIN is the subdomain you setup to communicate with the App

Live View Connectors on your Run-profile servers. This corresponds to the value key

appliveview_connector.backend.host.

Tanzu Application Platform v1.1

VMware, Inc 139

https://network.pivotal.io/products/tanzu-application-platform/#/releases/1239018

Troubleshooting Tanzu Application Platform

These topics provide troubleshooting information to help resolve issues with Tanzu Application

Platform:

Troubleshoot installing Tanzu Application Platform

Troubleshoot using Tanzu Application Platform

Troubleshoot Tanzu Application Platform components

Troubleshoot installing Tanzu Application Platform

In this topic, you’ll find troubleshooting information to help resolve issues installing Tanzu Application

Platform.

Developer cannot be verified when installing Tanzu CLI on
macOS

You see the following error when you run Tanzu CLI commands, for example tanzu version, on

macOS:

"tanzu" cannot be opened because the developer cannot be verified

Explanation

Security settings are preventing installation.

Solution

To resolve this issue:

1. Click Cancel in the macOS prompt window.

2. Open System Preferences > Security & Privacy.

3. Click General.

4. Next to the warning message for the Tanzu binary, click Allow Anyway.

5. Enter your system username and password in the macOS prompt window to confirm the

changes.

6. In the terminal window, run:

tanzu version

7. In the macOS prompt window, click Open.

Tanzu Application Platform v1.1

VMware, Inc 140

Access .status.usefulErrorMessage details

When installing Tanzu Application Platform, you receive an error message that includes the

following:

(message: Error (see .status.usefulErrorMessage for details))

Explanation

A package fails to reconcile and you must access the details in .status.usefulErrorMessage.

Solution

Access the details in .status.usefulErrorMessage by running:

kubectl get PACKAGE-NAME grype -n tap-install -o yaml

Where PACKAGE-NAME is the name of the package to target.

“Unauthorized to access” error

When running the tanzu package install command, you receive an error message that includes

the error:

UNAUTHORIZED: unauthorized to access repository

Example:

$ tanzu package install app-live-view -p appliveview.tanzu.vmware.com -v 0.1.0 -n tap-

install -f ./app-live-view.yml

Error: package reconciliation failed: vendir: Error: Syncing directory '0':

 Syncing directory '.' with imgpkgBundle contents:

 Imgpkg: exit status 1 (stderr: Error: Checking if image is bundle: Collecting imag

es: Working with registry.tanzu.vmware.com/app-live-view/application-live-view-install

-bundle@sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: GET h

ttps://registry.tanzu.vmware.com/v2/app-live-view/application-live-view-install-bundle

/manifests/sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: UN

AUTHORIZED: unauthorized to access repository: app-live-view/application-live-view-ins

tall-bundle, action: pull: unauthorized to access repository: app-live-view/applicatio

n-live-view-install-bundle, action: pull

Note: This example shows an error received when with Application Live View as the package. This

error can also occur with other packages.

Explanation

The Tanzu Network credentials needed to access the package may be missing or incorrect.

Solution

To resolve this issue:

1. Repeat the step to create a secret for the namespace. For instructions, see Add the Tanzu

Application Platform Package Repository in Installing the Tanzu Application Platform Package

and Profiles. Ensure that you provide the correct credentials.

Tanzu Application Platform v1.1

VMware, Inc 141

When the secret has the correct credentials, the authentication error should resolve itself

and the reconciliation succeed. Do not reinstall the package.

2. List the status of the installed packages to confirm that the reconcile has succeeded. For

instructions, see Verify the Installed Packages in Installing Individual Packages.

“Serviceaccounts already exists” error

When running the tanzu package install command, you receive the following error:

failed to create ServiceAccount resource: serviceaccounts already exists

Example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 0.2.0

-n tap-install -f app-accelerator-values.yaml

Error: failed to create ServiceAccount resource: serviceaccounts "app-accelerator-tap-

install-sa" already exists

Note: This example shows an error received with App Accelerator as the package. This error can

also occur with other packages.

Explanation

The tanzu package install command may be executed again after failing.

Solution

To update the package, run the following command after the first use of the tanzu package install

command

tanzu package installed update

After package installation, one or more packages fails to
reconcile

You run the tanzu package install command and one or more packages fails to install. For

example:

tanzu package install tap -p tap.tanzu.vmware.com -v 0.4.0 --values-file tap-values.ya

ml -n tap-install

- Installing package 'tap.tanzu.vmware.com'

\ Getting package metadata for 'tap.tanzu.vmware.com'

| Creating service account 'tap-tap-install-sa'

/ Creating cluster admin role 'tap-tap-install-cluster-role'

| Creating cluster role binding 'tap-tap-install-cluster-rolebinding'

| Creating secret 'tap-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tap'

/ 'PackageInstall' resource install status: Reconciling

| 'PackageInstall' resource install status: ReconcileFailed

Please consider using 'tanzu package installed update' to update the installed package

Tanzu Application Platform v1.1

VMware, Inc 142

 with correct settings

Error: resource reconciliation failed: kapp: Error: waiting on reconcile packageinstal

l/tap-gui (packaging.carvel.dev/v1alpha1) namespace: tap-install:

 Finished unsuccessfully (Reconcile failed: (message: Error (see .status.usefulError

Message for details))). Reconcile failed: Error (see .status.usefulErrorMessage for de

tails)

Error: exit status 1

Explanation

Often, the cause is one of the following:

Your infrastructure provider takes longer to perform tasks than the timeout value allows.

A race-condition between components exists. For example, a package that uses Ingress

completes before the shared Tanzu ingress controller becomes available.

The VMware Carvel tools kapp-controller continues to try in a reconciliation loop in these cases.

However, if the reconciliation status is failed then there might be a configuration issue in the

provided tap-config.yml file.

Solution

1. Verify if the installation is still in progress by running:

tanzu package installed list -A

If the installation is still in progress, the command produces output similar to the following

example, and the installation is likely to finish successfully.

\ Retrieving installed packages...

 NAME PACKAGE-NAME

PACKAGE-VERSION STATUS NAMESPACE

 accelerator accelerator.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 api-portal api-portal.tanzu.vmware.com

1.0.6 Reconcile succeeded tap-install

 appliveview run.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconciling tap-install

 appliveview-conventions build.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconcile succeeded tap-install

 buildservice buildservice.tanzu.vmware.com

1.4.0-build.1 Reconciling tap-install

 cartographer cartographer.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 cert-manager cert-manager.tanzu.vmware.com

1.5.3+tap.1 Reconcile succeeded tap-install

 cnrs cnrs.tanzu.vmware.com

1.1.0 Reconcile succeeded tap-install

 contour contour.tanzu.vmware.com

1.18.2+tap.1 Reconcile succeeded tap-install

 conventions-controller controller.conventions.apps.tanzu.vmware.com

0.4.2 Reconcile succeeded tap-install

 developer-conventions developer-conventions.tanzu.vmware.com

0.4.0-build1 Reconcile succeeded tap-install

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

Tanzu Application Platform v1.1

VMware, Inc 143

0.16.0 Reconcile succeeded tap-install

 grype grype.scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

1.0.0-beta.3 Reconcile succeeded tap-install

 learningcenter learningcenter.tanzu.vmware.com

0.1.0-build.6 Reconcile succeeded tap-install

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.1.0-build.7 Reconcile succeeded tap-install

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-templates ootb-templates.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 scanning scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 metadata-store metadata-store.apps.tanzu.vmware.com

1.0.2 Reconcile succeeded tap-install

 service-bindings service-bindings.labs.vmware.com

0.6.0 Reconcile succeeded tap-install

 services-toolkit services-toolkit.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 source-controller controller.source.apps.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 tap tap.tanzu.vmware.com

0.4.0-build.12 Reconciling tap-install

 tap-gui tap-gui.tanzu.vmware.com

1.0.0-rc.72 Reconcile succeeded tap-install

 tap-telemetry tap-telemetry.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 tekton-pipelines tekton.tanzu.vmware.com

0.30.0 Reconcile succeeded tap-install

If the installation has stopped running, one or more reconciliations have likely failed, as seen

in the following example:

NAME PACKAGE NAME

 PACKAGE VERSION DESCRIPTION

 AGE

accelerator accelerator.apps.tanzu.vmware.com

 1.0.1 Reconcile succeeded

 109m

api-portal api-portal.tanzu.vmware.com

 1.0.9 Reconcile succeeded

 119m

appliveview run.appliveview.tanzu.vmware.com

 1.0.2-build.2 Reconcile succeeded

 109m

appliveview-conventions build.appliveview.tanzu.vmware.com

 1.0.2-build.2 Reconcile succeeded

 109m

buildservice buildservice.tanzu.vmware.com

 1.5.0 Reconcile succeeded

 119m

cartographer cartographer.tanzu.vmware.com

 0.2.1 Reconcile succeeded

Tanzu Application Platform v1.1

VMware, Inc 144

 117m

cert-manager cert-manager.tanzu.vmware.com

 1.5.3+tap.1 Reconcile succeeded

 119m

cnrs cnrs.tanzu.vmware.com

 1.1.0 Reconcile succeeded

 109m

contour contour.tanzu.vmware.com

 1.18.2+tap.1 Reconcile succeeded

 117m

conventions-controller controller.conventions.apps.tanzu.vmware.com

 0.5.0 Reconcile succeeded

 117m

developer-conventions developer-conventions.tanzu.vmware.com

 0.5.0 Reconcile succeeded

 109m

fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

 0.16.1 Reconcile succeeded

 119m

grype grype.scanning.apps.tanzu.vmware.com

 1.0.0 Reconcile failed: Error (see .status.usefulErrorMessage for

details) 109m

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

 1.0.1 Reconcile succeeded

 117m

learningcenter learningcenter.tanzu.vmware.com

 0.1.0 Reconcile succeeded

 109m

learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

 0.1.0 Reconcile succeeded

 103m

metadata-store metadata-store.apps.tanzu.vmware.com

 1.0.2 Reconcile succeeded

 117m

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

 0.6.1 Reconcile succeeded

 103m

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

 0.6.1 Reconcile succeeded

 103m

ootb-templates ootb-templates.tanzu.vmware.com

 0.6.1 Reconcile succeeded

 109m

scanning scanning.apps.tanzu.vmware.com

 1.0.0 Reconcile succeeded

 119m

service-bindings service-bindings.labs.vmware.com

 0.6.0 Reconcile succeeded

 119m

services-toolkit services-toolkit.tanzu.vmware.com

 0.5.1 Reconcile succeeded

 119m

source-controller controller.source.apps.tanzu.vmware.com

 0.2.0 Reconcile succeeded

 119m

spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

 0.3.0 Reconcile succeeded

 109m

tap tap.tanzu.vmware.com

Tanzu Application Platform v1.1

VMware, Inc 145

 1.0.1 Reconcile failed: Error (see .status.usefulErrorMessage for

details) 119m

tap-gui tap-gui.tanzu.vmware.com

 1.0.2 Reconcile succeeded

 109m

tap-telemetry tap-telemetry.tanzu.vmware.com

 0.1.3 Reconcile succeeded

 119m

tekton-pipelines tekton.tanzu.vmware.com

 0.30.0 Reconcile succeeded

 119m

In this example, packageinstall/grype and packageinstall/tap have reconciliation errors.

2. To get more details on the possible cause of a reconciliation failure, run:

kubectl describe packageinstall/NAME -n tap-install

Where NAME is the name of the failing package. For this example it would be grype.

3. Use the displayed information to search for a relevant troubleshooting issue in this topic. If

none exists, and you are unable to fix the described issue yourself, please contact support.

4. Repeat these diagnosis steps for any other packages that failed to reconcile.

Failure to accept an End User License Agreement error

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu

Network.

Explanation

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu

Network before accepting the relevant EULA in VMware Tanzu Network.

Solution

Follow the steps in Accept the End User License Agreements in Installing the Tanzu CLI.

Troubleshoot using Tanzu Application Platform

In this topic, you’ll find troubleshooting information to help resolve issues using Tanzu Application

Platform.

Missing build logs after creating a workload

You create a workload, but no logs appear when you check for logs by running the following

command:

tanzu apps workload tail workload-name --since 10m --timestamp

Explanation

Common causes include:

Misconfigured repository

Tanzu Application Platform v1.1

VMware, Inc 146

https://tanzu.vmware.com/support

Misconfigured service account

Misconfigured registry credentials

Solution

To resolve this issue, run each of the following commands to receive the relevant error message:

kubectl get clusterbuilder.kpack.io -o yaml

kubectl get image.kpack.io <workload-name> -o yaml

kubectl get build.kpack.io -o yaml

“Workload already exists” error after updating the workload

When you update the workload, you receive the following error:

Error: workload "default/APP-NAME" already exists

Error: exit status 1

Where APP-NAME is the name of the app.

For example, when you run:

$ tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/dbuchko/tanzu-java-web-app \

--git-branch main \

--type web \

--label apps.tanzu.vmware.com/has-tests=true \

--yes

You receive the following error

Error: workload "default/tanzu-java-web-app" already exists

Error: exit status 1

Explanation

The app is running before performing a live update using the same app name.

Solution

To resolve this issue, either delete the app or use a different name for the app.

Workload creation fails due to authentication failure in
Docker Registry

You might encounter an error message similar to the following when creating or updating a workload

by using IDE or apps CLI plug-in:

Error: Writing 'index.docker.io/shaileshp2922/build-service/tanzu-java-web-app:latest'

Tanzu Application Platform v1.1

VMware, Inc 147

: Error while preparing a transport to talk with the registry: Unable to create round

tripper: GET https://auth.ipv6.docker.com/token?scope=repository%3Ashaileshp2922%2Fbui

ld-service%2Ftanzu-java-web-app%3Apush%2Cpull&service=registry.docker.io: unexpected s

tatus code 401 Unauthorized: {"details":"incorrect username or password"}

Explanation

This type of error frequently occurs when the URL set for source image (IDE) or --source-image flag

(apps CLI plug-in) is not Docker registry compliant.

Solution

1. Verify that you can authenticate directly against the Docker registry and resolve any failures

by running:

docker login -u USER-NAME

2. Verify your --source-image URL is compliant with Docker.

The URL in this example index.docker.io/shaileshp2922/build-service/tanzu-java-web-

app includes nesting. Docker registry, unlike many other registry solutions, does not support

nesting.

3. To resolve this issue, you must provide an unnested URL. For example,

index.docker.io/shaileshp2922/tanzu-java-web-app

Telemetry component logs show errors fetching the “reg-
creds” secret

When you view the logs of the tap-telemetry controller by running kubectl logs -n tap-

telemetry <tap-telemetry-controller-<hash> -f, you see the following error:

"Error retrieving secret reg-creds on namespace tap-telemetry","error":"secrets \"reg-

creds\" is forbidden: User \"system:serviceaccount:tap-telemetry:controller\" cannot g

et resource \"secrets\" in API group \"\" in the namespace \"tap-telemetry\""

Explanation

The tap-telemetry namespace misses a Role that allows the controller to list secrets in the tap-

telemetry namespace. For more information about Roles, see Role and ClusterRole in Using RBAC

Authorization in the Kubernetes documentation.

Solution

To resolve this issue, run:

kubectl patch roles -n tap-telemetry tap-telemetry-controller --type='json' -p='[{"op"

: "add", "path": "/rules/-", "value": {"apiGroups": [""],"resources": ["secrets"],"ver

bs": ["get", "list", "watch"]} }]'

Debug convention may not apply

Tanzu Application Platform v1.1

VMware, Inc 148

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole

If you upgrade from Tanzu Application Platform v0.4, the debug convention may not apply to the

app run image.

Explanation

The Tanzu Application Platform v0.4 lacks SBOM data.

Solution

Delete existing app images that were built using Tanzu Application Platform v0.4.

Execute bit not set for App Accelerator build scripts

You cannot execute a build script provided as part of an accelerator.

Explanation

Build scripts provided as part of an accelerator do not have the execute bit set when a new project is

generated from the accelerator.

Solution

Explicitly set the execute bit by running the chmod command:

chmod +x BUILD-SCRIPT-NAME

Where BUILD-SCRIPT-NAME is the name of the build script.

For example, for a project generated from the “Spring PetClinic” accelerator, run:

chmod +x ./mvnw

“No live information for pod with ID” error

After deploying Tanzu Application Platform workloads, Tanzu Application Platform GUI shows a “No

live information for pod with ID” error.

Explanation

The connector must discover the application instances and render the details in Tanzu Application

Platform GUI.

Solution

Recreate the Application Live View Connector pod by running:

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

This allows the connector to discover the application instances and render the details in Tanzu

Application Platform GUI.

“image-policy-webhook-service not found” error

When installing a Tanzu Application Platform profile, you receive the following error:

Tanzu Application Platform v1.1

VMware, Inc 149

Internal error occurred: failed calling webhook "image-policy-webhook.signing.apps.tan

zu.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.ima

ge-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webh

ook-service" not found

Explanation

The “image-policy-webhook-service” service cannot be found.

Solution

Redeploy the trainingPortal resource.

“Increase your cluster resources” error

You receive an “Increase your cluster’s resources” error.

Explanation

Node pressure may be caused by an insufficient number of nodes or a lack of resources on nodes

necessary to deploy the workloads that you have.

Solution

Follow instructions from your cloud provider to scale out or scale up your cluster.

MutatingWebhookConfiguration prevents pod admission

Admission of all pods is prevented when the image-policy-controller-manager deployment pods

do not start before the MutatingWebhookConfiguration is applied to the cluster.

Explanation

Pods can be prevented from starting if nodes in a cluster are scaled to zero and the webhook is

forced to restart at the same time as other system components. A deadlock can occur when some

components expect the webhook to verify their image signatures and the webhook is not yet

running.

A known rare condition during Tanzu Application Platform profiles installation can cause this. If so,

you may see a message similar to one of the following in component statuses:

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 4m28s replicaset-controller Error creati

ng: Internal error occurred: failed calling webhook "image-policy-webhook.signing.apps

.tanzu.vmware.com": Post "https://image-policy-webhook-service.image-policy-system.svc

:443/signing-policy-check?timeout=10s": no endpoints available for service "image-poli

cy-webhook-service"

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 10m replicaset-controller Error creating: Internal error occurr

ed: failed calling webhook "image-policy-webhook.signing.apps.tanzu.vmware.com": Post

Tanzu Application Platform v1.1

VMware, Inc 150

"https://image-policy-webhook-service.image-policy-system.svc:443/signing-policy-check

?timeout=10s": service "image-policy-webhook-service" not found

Solution

Delete the MutatingWebhookConfiguration resource to resolve the deadlock and enable the system

to restart. After the system is stable, restore the MutatingWebhookConfiguration resource to re-

enable image signing enforcement.

Important: These steps temporarily disable signature verification in your cluster.

1. Back up MutatingWebhookConfiguration to a file by running:

kubectl get MutatingWebhookConfiguration image-policy-mutating-webhook-configur

ation -o yaml > image-policy-mutating-webhook-configuration.yaml

2. Delete MutatingWebhookConfiguration by running:

kubectl delete MutatingWebhookConfiguration image-policy-mutating-webhook-confi

guration

3. Wait until all components are up and running in your cluster, including the image-policy-

controller-manager pods (namespace image-policy-system).

4. Re-apply MutatingWebhookConfiguration by running:

kubectl apply -f image-policy-mutating-webhook-configuration.yaml

Priority class of webhook’s pods preempts less privileged
pods

When viewing the output of kubectl get events, you see events similar to the following:

$ kubectl get events

LAST SEEN TYPE REASON OBJECT MESSAGE

28s Normal Preempted pod/testpod Preempted by image-polic

y-system/image-policy-controller-manager-59dc669d99-frwcp on node test-node

Explanation

The Supply Chain Security Tools - Sign component uses a privileged PriorityClass to start its pods

to prevent node pressure from preempting its pods. This can cause less privileged components to

have their pods preempted or evicted instead.

Solution

Solution 1: Reduce the number of pods deployed by the Sign component: If your

deployment of the Sign component runs more pods than necessary, scale down the

deployment down as follows:

1. Create a values file named scst-sign-values.yaml with the following contents:

replicas: N

Tanzu Application Platform v1.1

VMware, Inc 151

Where N is an integer indicating the lowest number of pods you necessary for your

current cluster configuration.

2. Apply the new configuration by running:

tanzu package installed update image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.0.0-beta.3 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

3. Wait a few minutes for your configuration to take effect in the cluster.

Solution 2: Increase your cluster’s resources: Node pressure may be caused by an

insufficient number of nodes or a lack of resources on nodes necessary to deploy the

workloads that you have. Follow instructions from your cloud provider to scale out or scale

up your cluster.

CrashLoopBackOff from password authentication fails

Supply Chain Security Tools - Store does not start. You see the following error in the metadata-

store-app Pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation

The database password has been changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow these steps below to erase the

data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* Pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the Pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

Tanzu Application Platform v1.1

VMware, Inc 152

6. Deploy the metadata-store app with kapp.

Password authentication fails

Supply Chain Security Tools - Store does not start. You see the following error in the metadata-

store-app Pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation

The database password has been changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow these steps below to erase the

data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* Pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the Pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

metadata-store-db pod fails to start

When Supply Chain Security Tools - Store is deployed, deleted, and then redeployed, the metadata-

store-db Pod fails to start if the database password changed during redeployment.

Explanation

The persistent volume used by postgres retains old data, even though the retention policy is set to

DELETE.

Solution

Redeploy the app either with the original database password or follow these steps below to erase the

Tanzu Application Platform v1.1

VMware, Inc 153

data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* Pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the Pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Missing persistent volume

After Supply Chain Security Tools - Store is deployed, metadata-store-db Pod fails for missing

volume while postgres-db-pv-claim pvc is in the PENDING state.

Explanation

The cluster where Supply Chain Security Tools - Store is deployed does not have storageclass

defined. The provisioner of storageclass is responsible for creating the persistent volume after

metadata-store-db attaches postgres-db-pv-claim.

Solution

1. Verify that your cluster has storageclass by running:

kubectl get storageclass

2. Create a storageclass in your cluster before deploying Supply Chain Security Tools - Store.

For example:

This is the storageclass that Kind uses

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Supply Chain Security Tools - Sign rejects images

Supply Chain Security Tools - Sign rejects images from private registries.

Explanation

Tanzu Application Platform v1.1

VMware, Inc 154

The image is deployed to a non-default namespace.

Solution

Make the private registry secret available to the default namespace.

Supply Chain Security Tools - Scan unable to decode
CycloneDX

Supply Chain Security Tools - Scan has a known issue where it sets the phase of a scan to Error with

the message unable to decode cyclonedx. This is an intermittent issue that cuts the CycloneDX XML

stream to the logs such that the scan controller is unable to process the results properly.

Explanation The root cause of the problem is unknown.

Workaround: See the Troubleshooting Guide for how to exit this error state.

Troubleshoot Tanzu Application Platform components

For component-level troubleshooting, see these topics:

Troubleshoot Tanzu Application Platform GUI

Troubleshoot Convention Service

Troubleshoot Learning Center

Troubleshoot Service Bindings

Troubleshoot Source Controller

Troubleshoot Spring Boot Conventions

Troubleshoot Supply Chain Security Tools - Scan

Troubleshoot Supply Chain Security Tools - Store

Troubleshoot Application Live View for VMware Tanzu

Troubleshoot Cloud Native Runtimes for Tanzu

Troubleshoot Tanzu Build Service (FAQ)

Tanzu Application Platform v1.1

VMware, Inc 155

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-troubleshooting.html
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.2/tanzu-cloud-native-runtimes/GUID-troubleshooting.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-faq.html

Uninstalling Tanzu Application Platform

This document describes how to uninstall Tanzu Application Platform packages from the Tanzu

Application Platform package repository.

The process for uninstalling Tanzu Application Platform is made up of three tasks:

Delete the Packages

Delete the Tanzu Application Platform Package Repository

Remove Tanzu CLI, plug-ins, and associated files

Delete the packages

To delete the installed packages:

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

2. Remove a package by running:

tanzu package installed delete PACKAGE-NAME --namespace tap-install

For example:

$ tanzu package installed delete cloud-native-runtimes --namespace tap-install

| Uninstalling package 'cloud-native-runtimes' from namespace 'tap-install'

/ Getting package install for 'cloud-native-runtimes'

\ Deleting package install 'cloud-native-runtimes' from namespace 'tap-install'

\ Package uninstall status: Reconciling

/ Package uninstall status: Deleting

| Deleting admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Deleting role binding 'cloud-native-runtimes-tap-install-cluster-rolebinding'

| Deleting secret 'cloud-native-runtimes-tap-install-values'

/ Deleting service account 'cloud-native-runtimes-tap-install-sa'

 Uninstalled package 'cloud-native-runtimes' from namespace 'tap-install'

Where PACKAGE-NAME is the name of a package listed in step 1.

3. Repeat step 2 for each package installed.

Delete the Tanzu Application Platform package repository

To delete the Tanzu Application Platform package repository:

1. Retrieve the name of the Tanzu Application Platform package repository by running:

Tanzu Application Platform v1.1

VMware, Inc 156

tanzu package repository list --namespace tap-install

For example:

$ tanzu package repository list --namespace tap-install

- Retrieving repositories...

 NAME REPOSITORY

 STATUS DETAILS

 tanzu-tap-repository registry.tanzu.vmware.com/tanzu-application-platform/ta

p-packages:0.2.0 Reconcile succeeded

2. Remove the Tanzu Application Platform package repository by running:

tanzu package repository delete PACKAGE-REPO-NAME --namespace tap-install

Where PACKAGE-REPO-NAME is the name of the packageRepository from the earlier step.

For example:

$ tanzu package repository delete tanzu-application-platform-package-repository

 --namespace tap-install

- Deleting package repository 'tanzu-application-platform-package-repository'..

.

 Deleted package repository 'tanzu-application-platform-package-repository' in

namespace 'tap-install'

Remove Tanzu CLI, plug-ins, and associated files

To completely remove the Tanzu CLI, plug-ins, and associated files, run the script for your OS:

For Linux or MacOS, run:

#!/bin/zsh

rm -rf $HOME/tanzu/cli # Remove previously downloaded cli files

sudo rm /usr/local/bin/tanzu # Remove CLI binary (executable)

rm -rf ~/.config/tanzu/ # current location # Remove config directory

rm -rf ~/.tanzu/ # old location # Remove config directory

rm -rf ~/.cache/tanzu # remove cached catalog.yaml

rm -rf ~/Library/Application\ Support/tanzu-cli/* # Remove plug-ins

Tanzu Application Platform v1.1

VMware, Inc 157

Component documentation

Tanzu Application Platform is a modular, composable platform consisting of various components.

Most of the Tanzu Application Platform components are documented in this section. In some cases,

a component’s documentation is hosted on a separate site, and you’ll find a link to it in this section.

Installing individual packages

You can install Tanzu Application Platform through predefined profiles or through individual

packages. This page provides links to install instructions for each of the individual packages. For

more information about installing through profiles, see Installing the Tanzu Application Platform

Package and Profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile

to install packages or if you want to install additional packages after installing a profile. Before

installing the packages, be sure to complete the prerequisites, configure and verify the cluster,

accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see

Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API portal

Install Application Accelerator

Install Application Live View

Install cert-manager, Contour, and FluxCD

Install Cloud Native Runtimes

Install Convention Service

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Tanzu Application Platform v1.1

VMware, Inc 158

Install Source Controller

Install Spring Boot Conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Sign

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.0

.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.0

.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.0

.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.0

.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.1

.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.0

.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.4

.2 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.3

.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.0

.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.1

.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.0

.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.5

.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.5

.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.0

.0 Reconcile succeeded

Tanzu Application Platform v1.1

VMware, Inc 159

service-bindings service-bindings.labs.vmware.com 0.5

.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.6

.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.2

.0 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.3

.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.5

.0 Reconcile succeeded

Set up developer namespaces to use installed packages

You can choose either one of the following two approaches to create a Workload for your application

by using the registry credentials specified, add credentials and Role-Based Access Control (RBAC)

rules to the namespace that you plan to create the Workload in:

Enable single user access.

Enable additional users access with Kubernetes RBAC.

Enable single user access

Follow these steps to enable your current user to submit jobs to the Supply Chain:

1. To add read/write registry credentials to the developer namespace, run:

tanzu secret registry add registry-credentials --server REGISTRY-SERVER --usern

ame REGISTRY-USERNAME --password REGISTRY-PASSWORD --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you give to the developer namespace. For example, use

default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be

https://index.docker.io/v1/. Specifically, it must have the leading https://, the v1

path, and the trailing /. For Google Container Registry (GCR), this is gcr.io. Based on

the information used in Installing the Tanzu Application Platform Package and

Profiles, you can use the same registry server as in ootb_supply_chain_basic -

registry - server.

REGISTRY-PASSWORD is the password of the registry. For GCR or Google Artifact

Registry, this must be the concatenated version of the JSON key. For example:

"$(cat ~/gcp-key.json)".

If you observe the following issue with the above command:

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x128 pc=0x2bcce00]

Use kubectl to create the secret:

Tanzu Application Platform v1.1

VMware, Inc 160

kubectl create secret docker-registry registry-credentials --docker-server=REGI

STRY-SERVER --docker-username=REGISTRY-USERNAME --docker-password=REGISTRY-PASS

WORD -n YOUR-NAMESPACE

Note: This step is not required if you install Tanzu Application Platform on AWS with EKS and

use IAM Roles for Kubernetes Service Accounts instead of secrets. You can specify the Role

Amazon Resource Name (ARN) in the next step.

2. To add secrets, a service account to execute the supply chain, and RBAC rules to authorize

the service account to the developer namespace, run:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-deliverable

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: deliverable

subjects:

 - kind: ServiceAccount

 name: default

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

subjects:

 - kind: ServiceAccount

 name: default

EOF

Tanzu Application Platform v1.1

VMware, Inc 161

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

Note: If you install Tanzu Application Platform on AWS with EKS and use IAM Roles for

Kubernetes Service Accounts, you must annotate the ARN of the IAM Role and remove the

registry-credentials secret. Your service account entry then looks like the following:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: <Role ARN>

imagePullSecrets:

 - name: tap-registry

Enable additional users access with Kubernetes RBAC

Follow these steps to enable additional users by using Kubernetes RBAC to submit jobs to the Supply

Chain:

1. Enable single user access.

2. Choose either of the following options to give developers namespace-level access and view

access to appropriate cluster-level resources:

Option 1: Use the Tanzu Application Platform RBAC CLI plug-in (beta).

To use the tanzu rbac plug-in to grant app-viewer and app-editor roles to an

identity provider group, run:

tanzu rbac binding add -g GROUP-FOR-APP-VIEWER -n YOUR-NAMESPACE -r app-v

iewer

tanzu rbac binding add -g GROUP-FOR-APP-EDITOR -n YOUR-NAMESPACE -r app-e

ditor

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider

that requires access to app-viewer resources on the current namespace and

cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider

that requires access to app-editor resources on the current namespace and

cluster.

For more information about tanzu rbac, see Bind a user or group to a default role.

VMware recommends creating a user group in your identity provider’s grouping

system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to

federate user groups appropriately with your cluster. For an example of how to set

up Azure Active Directory (AD) with your cluster, see Integrating Azure Active

Directory.

Option 2: Use the native Kubernetes YAML.

Tanzu Application Platform v1.1

VMware, Inc 162

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

To apply the RBAC policy, run:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

EOF

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

Tanzu Application Platform v1.1

VMware, Inc 163

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider

that requires access to app-viewer resources on the current namespace and

cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider

that requires access to app-editor resources on the current namespace and

cluster.

VMware recommends creating a user group in your identity provider’s grouping

system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to

federate user groups appropriately with your cluster. For an example of how to set

up Azure Active Directory (AD) with your cluster, see Integrating Azure Active

Directory.

Rather than granting roles directly to individuals, VMware recommends using your

identity provider’s user groups system to grant access to a group of developers. For

an example of how to set up Azure AD with your cluster, see Integrating Azure

Active Directory.

3. (Optional) Log in as a non-admin user, such as a developer, to see the effects of RBAC after

the bindings are applied.

Tanzu CLI

Tanzu CLI plug-ins

apps - This Tanzu CLI plug-in provides the ability to create, view, update, and delete

application workloads on any Kubernetes cluster that has the Tanzu Application Platform

components installed.

insight - The Tanzu Insight CLI plug-in enables querying vulnerability, image, and package

data.

Apps CLI plug-in overview

This Tanzu CLI plug-in provides the ability to create, view, update, and delete application workloads

on any Kubernetes cluster that has the Tanzu Application Platform components installed.

About workloads

Tanzu Application Platform enables developers to quickly build and test applications regardless of

their familiarity with Kubernetes. Developers can turn source code into a workload that runs in a

container with a URL.

A workload enables developers to choose application specifications, such as repository location,

environment variables, service binding, and more. For more information on workload creation and

management, see Command Reference.

Tanzu Application Platform can support a range of workloads, including a serverless process that

Tanzu Application Platform v1.1

VMware, Inc 164

starts on demand, a constellation of microservices that functions as a logical application, or a small

hello-world test app.

Command reference

For information about available commands, see Command Reference.

Usage and examples

For information about how to use the Apps CLI plug-in, see Usage and Examples.

Install Apps CLI plug-in

This document describes how to install the Apps CLI plug-in.

Prerequisites

Before you install the Apps CLI plug-in:

Follow the instructions to Install or update the Tanzu CLI and plug-ins.

Install

To install the Apps CLI plug-in:

1. From the HOME/tanzu directory, run:

tanzu plugin install --local ./cli apps

2. To verify that the CLI is installed correctly, run:

tanzu apps version

A version is displayed in the output.

Verify that there is an apps entry in the cli/manifest.yaml file:

plugins:

...

 - name: apps

 description: Applications on Kubernetes

 versions: []

Note

Follow the steps in this topic if you do not want to use a profile to install Apps CLI

plug-in. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 165

Create a workload

This document describes how to create a workload from example source code with Tanzu

Application Platform.

Prerequisites

The following prerequisites are required to use workloads with Tanzu Application Platform:

Install Kubernetes command line tool (kubectl). For information about installing kubectl, see

Install Tools in the Kubernetes documentation.

Install Tanzu Application Platform components on a Kubernetes cluster. See Installing Tanzu

Application Platform.

Set your kubeconfig context to the prepared cluster kubectl config use-context

CONTEXT_NAME.

Install Tanzu CLI. See Install or update the Tanzu CLI and plug-ins.

Install the apps plug-in. See the Install Apps plug-in.

Set up developer namespaces to use installed packages.

Get started with an example workload

Here is how you can get started with an example workload.

To name the workload and specify a source code location to create the workload from, run:

tanzu apps workload create pet-clinic --git-repo https://github.com/sample-acce

lerators/spring-petclinic --git-tag tap-1.1 --type web

Respond Y to prompts to complete process.

Where:

pet-clinic is the name of the workload.

--git-repo is the location of the code to build the workload from.

--git-branch (optional) specifies which branch in the repository to pull the code

from.

--type is used to distinguish the workload type.

You can find the options available for specifying the workload in the command reference for

workload create, or you can run tanzu apps workload create --help.

Check build logs

Once the workload is created, you can tail the workload to view the build and runtime logs.

Check logs by running:

tanzu apps workload tail pet-clinic --since 10m --timestamp

Tanzu Application Platform v1.1

VMware, Inc 166

https://kubernetes.io/docs/tasks/tools/

Where:

pet-clinic is the name you gave the workload.

--since (optional) the amount of time to go back to begin streaming logs. The default

is 1 second.

--timestamp (optional) prints the timestamp with each log line.

Get the workload status and details

After the workload build process is complete, create a Knative service to run the workload. You can

view workload details at anytime in the process. Some details, such as the workload URL, are only

available after the workload is running.

1. To check the workload details, run:

tanzu apps workload get pet-clinic

Where:

pet-clinic is the name of the workload you want details about.

2. You can now see the running workload. When the workload is created, tanzu apps

workload get includes the URL for the running workload. Some terminals allow you to

ctrl+click the URL to view it. You can also copy and paste the URL into your web browser to

see the workload.

Create a workload from local source code

You can create a workload using code from a local folder.

Inside the folder that contains the source code, run:

tanzu apps workload create pet-clinic --local-path . --source-image springio/pe

tclinic

Respond Y to the prompt about publishing local source code if the image needs to be

updated.

Where:

pet-clinic is the name of the workload.

--local-path points to the directory where the source code is located.

--source-image is the registry path for the local source code.

Bind a service to a workload

Multiple services can be configured for each workload. The cluster supply chain is in charge of

provisioning those services.

To bind a database service to a workload, run:

Tanzu Application Platform v1.1

VMware, Inc 167

tanzu apps workload update pet-clinic --service-ref "database=services.tanzu.vm

ware.com/v1alpha1:MySQL:my-prod-db"

Where:

pet-clinic is the name of the workload to be updated.

--service-ref references the service using the format {name}={apiVersion}:{kind}:

{name}. For more details, refer to update command.

Next steps

You can add environment variables, export definitions, and use flags with these commands. The

following procedure includes example environment variables and flags.

1. To add environment variables, run:

tanzu apps workload update pet-clinic --env foo=bar

2. To export the workload definition into git, or to migrate to another environment, run:

tanzu apps workload get pet-clinic --export

3. To see flags available for the workload commands, run:

tanzu apps workload -h

tanzu apps workload get -h

tanzu apps workload create -h

Command reference

Tanzu apps

Workload

Workload apply

Workload create

Workload update

Workload get

Workload delete

Workloads list

Workload tail

Cluster supply chain

List cluster supply chain

Tanzu apps

This topic includes a description of applications (apps) available on Kubernetes.

Tanzu Application Platform v1.1

VMware, Inc 168

Options

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 -h, --help help for apps

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Cluster Supply Chain - Patterns for building and configuring workloads

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload

This topic helps you with workload life cycle management.

A workload may run as a Knative service, Kubernetes deployment, or other runtime. Workloads can

be grouped together with other related resources, such as storage or credential objects as a logical

application for easier management.

Workload configuration includes:

Source code to build

Runtime resource limits

Environment variables

Services to bind

Options

 -h, --help help for workload

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu applications - Applications on Kubernetes

Tanzu apps workload apply - Apply configuration to a new or existing workload

Tanzu apps workload create - Create a workload with specified configuration

Tanzu Application Platform v1.1

VMware, Inc 169

Tanzu apps workload delete - Delete workload(s)

Tanzu apps workload get - Get details from a workload

Tanzu apps workload list - Table listing of workloads

Tanzu apps workload tail - Watch workload-related logs

Tanzu apps workload update - Update configuration of an existing workload

Tanzu apps workload apply

This topic helps you apply configurations to a new or existing workload.

Synopsis

Apply configurations to a new or existing workload. If the resource does not exist, it will be created.

Workload configuration options include:

source code to build

runtime resource limits

environment variables

services to bind

tanzu apps workload apply [name] [flags]

Examples

tanzu apps workload apply --file workload.yaml

Options

 --annotation "key=value" pair annotation is represented as a "key=value" pair

, or "key-" to remove. This flag may be specified multiple times

 --app name application name the workload is a part of

 --build-env "key=value" pair build environment variables represented as a "k

ey=value" pair, or "key-" to remove. This flag may be specified multiple times

 --debug put the workload in debug mode, --debug=false t

o disable

 --dry-run print kubernetes resources to stdout rather tha

n apply them to the cluster, messages normally on stdout will be sent to stderr

 --env "key=value" pair environment variables represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 -f, --file file path file path containing the description of a singl

e workload, other flags are layered on top of this resource. Use value "-" to read fro

m stdin

 --git-branch branch branch within the git repo to checkout

 --git-commit SHA commit SHA within the git repo to checkout

 --git-repo url git url to remote source code

 --git-tag tag tag within the git repo to checkout

 -h, --help help for apply

 --image image pre-built image, skips the source resolution an

Tanzu Application Platform v1.1

VMware, Inc 170

d build phases of the supply chain

 --label "key=value" pair label is represented as a "key=value" pair, or

"key-" to remove. This flag may be specified multiple times

 --limit-cpu cores the maximum number CPU cores allowed (500m = .5

 cores)

 --limit-memory bytes the maximum amount of memory allowed, in bytes

(500Mi = 500MiB = 500 * 1024 * 1024)

 --live-update put the workload in live update mode, --live-up

date=false to disable

 --local-path path path on the local file system to a directory of

 source code to build for the workload

 -n, --namespace name kubernetes namespace (defaulted from kube confi

g)

 --param "key=value" pair additional parameters represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 --request-cpu cores the minimum number of CPU cores required (500m

= .5 cores)

 --request-memory bytes the minimum amount of memory required, in bytes

 (500Mi = 500MiB = 500 * 1024 * 1024)

 --service-ref object reference object reference for a service to bind to the w

orkload "database=rabbitmq.com/v1beta1:RabbitmqCluster:[my-broker-ns]:my-broker", or "

database-" to delete. This flag may be specified multiple times.

 --source-image image destination image repository where source code

is staged before being built

 --tail show logs while waiting for workload to become

ready

 --tail-timestamp show logs and add timestamp to each log line wh

ile waiting for workload to become ready

 --type type distinguish workload type

 --wait waits for workload to become ready

 --wait-timeout duration timeout for workload to become ready when waiti

ng (default 10m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload create

This topic helps you create a workload with the specified configuration.

Synopsis

Create a workload with the specified configuration.

Workload configuration options include:

Tanzu Application Platform v1.1

VMware, Inc 171

Source code to build

Runtime resource limits

Environment variables

Services to bind

tanzu apps workload create [name] [flags]

Examples

tanzu apps workload create my-workload --git-repo https://example.com/my-workload.git

tanzu apps workload create my-workload --local-path . --source-image registry.example/

repository:tag

tanzu apps workload create --file workload.yaml

Options

 --annotation "key=value" pair annotation is represented as a "key=value" pair

, or "key-" to remove. This flag may be specified multiple times

 --app name application name the workload is a part of

 --build-env "key=value" pair build environment variables represented as a "k

ey=value" pair, or "key-" to remove. This flag may be specified multiple times

 --debug put the workload in debug mode, --debug=false t

o disable

 --dry-run print kubernetes resources to stdout rather tha

n apply them to the cluster, messages normally on stdout will be sent to stderr

 --env "key=value" pair environment variables represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 -f, --file file path file path containing the description of a singl

e workload, other flags are layered on top of this resource. Use value "-" to read fro

m stdin

 --git-branch branch branch within the git repo to checkout

 --git-commit SHA commit SHA within the git repo to checkout

 --git-repo url git url to remote source code

 --git-tag tag tag within the git repo to checkout

 -h, --help help for create

 --image image pre-built image, skips the source resolution an

d build phases of the supply chain

 --label "key=value" pair label is represented as a "key=value" pair, or

"key-" to remove. This flag may be specified multiple times

 --limit-cpu cores the maximum number of CPU cores allowed (500m =

 .5 cores)

 --limit-memory bytes the maximum amount of memory allowed, in bytes

(500Mi = 500MiB = 500 * 1024 * 1024)

 --live-update put the workload in live update mode, --live-up

date=false to disable

 --local-path path path on the local file system to a directory of

 source code to build for the workload

 -n, --namespace name kubernetes namespace (defaulted from kube confi

g)

 --param "key=value" pair additional parameters represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 --request-cpu cores the minimum amount of cpu required, in CPU core

s (500m = .5 cores)

Tanzu Application Platform v1.1

VMware, Inc 172

 --request-memory bytes the minimum amount of memory required, in bytes

 (500Mi = 500MiB = 500 * 1024 * 1024)

 --service-ref object reference object reference for a service to bind to the w

orkload "database=rabbitmq.com/v1beta1:RabbitmqCluster:[my-broker-ns]:my-broker", or "

database-" to delete. This flag may be specified multiple times.

 --source-image image destination image repository where source code

is staged before being built

 --tail show logs while waiting for workload to become

ready

 --tail-timestamp show logs and add timestamp to each log line wh

ile waiting for workload to become ready

 --type type distinguish workload type

 --wait waits for workload to become ready

 --wait-timeout duration timeout for workload to become ready when waiti

ng (default 10m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload update

This topic helps you update the configuration of an existing workload.

Synopsis

Update the configuration of an existing workload.

Workload configuration options include:

source code to build

runtime resource limits

environment variables

services to bind

tanzu apps workload update [name] [flags]

Examples

tanzu apps workload update my-workload --debug=false

tanzu apps workload update my-workload --local-path .

tanzu apps workload update my-workload --env key=value

Tanzu Application Platform v1.1

VMware, Inc 173

tanzu apps workload update my-workload --build-env key=value

tanzu apps workload update --file workload.yaml

Options

 --annotation "key=value" pair annotation is represented as a "key=value" pair

, or "key-" to remove. This flag may be specified multiple times

 --app name application name the workload is a part of

 --build-env "key=value" pair build environment variables represented as a "k

ey=value" pair, or "key-" to remove. This flag may be specified multiple times

 --debug put the workload in debug mode, --debug=false t

o disable

 --dry-run print kubernetes resources to stdout rather tha

n apply them to the cluster, messages normally on stdout will be sent to stderr

 --env "key=value" pair environment variables represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 -f, --file file path file path containing the description of a singl

e workload, other flags are layered on top of this resource. Use value "-" to read fro

m stdin

 --git-branch branch branch within the git repo to checkout

 --git-commit SHA commit SHA within the git repo to checkout

 --git-repo url git url to remote source code

 --git-tag tag tag within the git repo to checkout

 -h, --help help for update

 --image image pre-built image, skips the source resolution an

d build phases of the supply chain

 --label "key=value" pair label is represented as a "key=value" pair, or

"key-" to remove. This flag may be specified multiple times

 --limit-cpu cores the maximum number of CPU cores allowed (500m =

 .5 cores)

 --limit-memory bytes the maximum amount of memory allowed, in bytes

(500Mi = 500MiB = 500 * 1024 * 1024)

 --live-update put the workload in live update mode, --live-up

date=false to disable

 --local-path path path on the local file system to a directory of

 source code to build for the workload

 -n, --namespace name kubernetes namespace (defaulted from kube confi

g)

 --param "key=value" pair additional parameters represented as a "key=val

ue" pair, or "key-" to remove. This flag may be specified multiple times

 --request-cpu cores the minimum number of CPU cores required (500m

= .5 cores)

 --request-memory bytes the minimum amount of memory required, in bytes

 (500Mi = 500MiB = 500 * 1024 * 1024)

 --service-ref object reference object reference for a service to bind to the w

orkload "database=rabbitmq.com/v1beta1:RabbitmqCluster:[my-broker-ns]:my-broker", or "

database-" to delete. This flag may be specified multiple times.

 --source-image image destination image repository where source code

is staged before being built

 --tail show logs while waiting for workload to become

ready

 --tail-timestamp show logs and add timestamp to each log line wh

ile waiting for workload to become ready

 --type type distinguish workload type

 --wait waits for workload to become ready

 --wait-timeout duration timeout for workload to become ready when waiti

ng (default 10m0s)

 -y, --yes accept all prompts

Tanzu Application Platform v1.1

VMware, Inc 174

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload get

This topic helps you get details from a workload.

tanzu apps workload get <name> [flags]

Examples

tanzu apps workload get my-workload

Options

 --export export workload in yaml format

 -h, --help help for get

 -n, --namespace name kubernetes namespace (defaulted from kube config)

 -o, --output string output the Workload formatted. Supported formats: "json", "ya

ml"

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu apps workload - Workload life cycle management

Tanzu apps workload delete

This topic helps you delete one or more workloads by name or all workloads within a namespace.

Tanzu Application Platform v1.1

VMware, Inc 175

Deleting a workload prevents new builds while preserving built images in the registry.

tanzu apps workload delete <name(s)> [flags]

Examples

tanzu apps workload delete my-workload

tanzu apps workload delete --all

Options

 --all delete all workloads within the namespace

 -f, --file file path file path containing the description of a single workl

oad; other flags are layered on top of this resource. Use value "-" to read from stdin

 -h, --help help for delete

 -n, --namespace name kubernetes namespace (defaulted from kube config)

 --wait waits for workload to be deleted

 --wait-timeout duration timeout for workload to be deleted when waiting (defau

lt 1m0s)

 -y, --yes accept all prompts

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload list

This topic will help you list workloads in a namespace or across all namespaces.

tanzu apps workload list [flags]

Examples

tanzu apps workload list

tanzu apps workload list --all-namespaces

Options

 -A, --all-namespaces use all kubernetes namespaces

Tanzu Application Platform v1.1

VMware, Inc 176

 --app name application name the workload is a part of

 -h, --help help for list

 -n, --namespace name kubernetes namespace (defaulted from kube config)

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Apps Workload - Workload life cycle management

Tanzu apps workload tail

This topic will help you to watch workload related logs.

You can stream logs for a workload until canceled. To cancel, press Ctl-c in the shell or stop the

process. As new workload pods are started, the logs are displayed. To show historical logs use –

since.

tanzu apps workload tail <name> [flags]

Examples

tanzu apps workload tail my-workload

tanzu apps workload tail my-workload --since 1h

Options

 --component name workload component name (e.g. build)

 -h, --help help for tail

 -n, --namespace name kubernetes namespace (defaulted from kube config)

 --since duration time duration to start reading logs from (default 1s)

 -t, --timestamp print timestamp for each log line

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu Application Platform v1.1

VMware, Inc 177

Tanzu Apps Workload - Workload life cycle management

Tanzu apps cluster supply chain

This topic includes patterns for building and configuring workloads.

Options

 -h, --help help for cluster-supply-chain

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

See also

Tanzu applications - Applications on Kubernetes

Tanzu apps cluster supply chain list - Table listing of cluster supply chains

Tanzu apps cluster supply chain list

This topic helps you list cluster supply chains.

tanzu apps cluster-supply-chain list [flags]

Examples

tanzu apps cluster-supply-chain list

Options

 -h, --help help for list

Options inherited from parent commands

 --context name name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

 --kubeconfig file kubeconfig file (default is $HOME/.kube/config)

 --no-color disable color output in terminals

 -v, --verbose int32 number for the log level verbosity (default 1)

Tanzu Application Platform v1.1

VMware, Inc 178

See also

Tanzu apps cluster supply chain - Patterns for building and configuring workloads

Usage and examples

Changing clusters

The Apps CLI plug-in refers to the default kubeconfig file to access a Kubernetes cluster. When a

tanzu apps command is run, the plug-in uses the default context that’s defined in that kubeconfig

file (located by default at $HOME/.kube/config).

There are two ways to change the target cluster:

1. Use kubectl config use-context <context-name> to change the default context. All

subsequent tanzu apps commands will target the cluster defined in the new default

kubeconfig context.

2. Include the --context <context-name> flag when running any tanzu apps command. All

subsequent tanzu apps commands without the --context <context-name> flag will continue

to use the default context set in the kubeconfig.

There are also two ways to override the default kubeconfig:

1. Set the env var KUBECONFIG=<path> to change the kubeconfig the Apps CLI plug-in should

reference. All subsequent tanzu apps commands will reference the non-default kubeconfig

assigned to the env var.

2. Include the --kubeconfig <path> flag when running any tanzu apps command. All

subsequent tanzu apps commands without the --kubeconfig <path> flag will continue to use

the default kubeconfig.

For more information about kubeconfig, see Configure Access to Multiple Clusters.

Checking update status

You can use the Apps CLI plug-in to create or update a workload. After you’ve successfully

submitted your changes to the platform, the CLI command exits. Depending on the changes you

submitted, it might take time for them to be executed on the platform. Run tanzu apps workload

get to check the status of your changes. For more information on this command, see Tanzu Apps

Workload Get.

Working with YAML files

In many cases, you can manage workload life cycles through CLI commands. However, you might

find cases where you want to manage a workload by using a yaml file. The Apps CLI plug-in supports

using yaml files.

The plug-in is designed to manage one workload at a time. When you manage a workload using a

yaml file, that file must contain a single workload definition. Plug-in commands support only one file

per command.

Tanzu Application Platform v1.1

VMware, Inc 179

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

For example, a valid file looks similar to the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: spring-petclinic

 labels:

 app.kubernetes.io/part-of: spring-petclinic

 apps.tanzu.vmware.com/workload-type: java

spec:

 source:

 git:

 url: https://github.com/sample-accelerators/spring-petclinic

 ref:

 tag: tap-1.1

Autocompletion

To enable command autocompletion, the Tanzu CLI offers the tanzu completion command.

Add the following command to the shell config file according to the current setup. Use one of the

following options:

Bash

tanzu completion bash > $HOME/.tanzu/completion.bash.inc

Zsh

echo "autoload -U compinit; compinit" >> ~/.zshrc

tanzu completion zsh > "${fpath[1]}/_tanzu"

Tanzu Insight plug-in overview

The Tanzu Insight CLI plug-in enables querying vulnerability, image, and package data.

Follow the below steps to install, configure, and use the Tanzu Insight CLI plug-in.

Note: Prior to using the CLI plug-in, you must install the Supply Chain Security Tools - Store, either

as its own package, or as part of Tanzu Application Platform Build profile or Tanzu Application

Platform View profile.

1. Install the Tanzu Insight CLI plug-in

2. Configure target endpoint and certificate

3. Configure access tokens

Once tanzu insight CLI plug-in is set up:

1. Add data

2. Query data

Tanzu Application Platform v1.1

VMware, Inc 180

Install the Tanzu Insight CLI plug-in

Note:

By following the instructions to install the Tanzu CLI and all the plug-ins, the Tanzu Insight

plug-in is also installed.

Currently, the Tanzu Insight plug-in only supports macOS and Linux.

This topic explains how to install the Tanzu Insight plug-in by itself, after the user has installed the

Tanzu CLI.

1. From your tanzu directory, install the local version of the Tanzu Insight plug-in you

downloaded by running:

cd $HOME/tanzu

tanzu plugin install insight --local cli

2. Follow the steps in Configure the Tanzu Insight CLI plug-in.

Configure the Tanzu Insight CLI plug-in

This topic explains how to configure the Tanzu Insight plug-in.

Note: All required setup must be completed in addition to configuring the CLI.

Set the target and certificate authority certificate

Set the target endpoint and CA certificate by running:

tanzu insight config set-target https://metadata-store-app.metadata-store.svc.cluster.

local:PORT --ca-cert PATH

Where

PORT is the target endpoint port

PATH is the direct path to the CA certificate

For example:

$ tanzu insight config set-target https://metadata-store-app.metadata-store.svc.cluste

r.local:8443 --ca-cert /tmp/ca.crt

 Using config file: /Users/username/.config/tanzu/insight/config.yaml

 Setting trustedcacert in config

 Setting endpoint in config to: https://metadata-store-app.metadata-store.svc.cluste

Note

Follow the steps in this topic if you do not want to use a profile to install the Tanzu

Insight CLI plug-in. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 181

r.local:8443

✔ Success: Set Metadata Store endpoint

Check the connection

Check that your configuration is correct and you are able to make a connection.

tanzu insight health

For example:

$ tanzu insight health

Success: Reached Metadata Store!

Configure target endpoint and certificate

The connection to the Store requires TLS encryption, the configuration depends on the kind of

installation. Use the following instructions to set up the TLS connection according to the type of your

setup:

Use Ingress

Not use Ingress

Use LoadBalancer

Use NodePort

Note: NodePortis commonly used with local clusters such as kind or minikube.

Use Ingress

When using an Ingress setup, the Store creates a specific TLS Certificate for HTTPS communications

under the metadata-store namespace.

To get such certificate, run the following command:

kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

The endpoint host is set to metadata-store.<ingress-domain>, for example, metadata-

store.example.domain.com). This value matches the value of ingress_domain.

If no accessible DNS record exists for such domain, edit the /etc/hosts file to add a local record:

ENVOY_IP=$(kubectl get svc envoy -n tanzu-system-ingress -o jsonpath="{.status.loadBal

ancer.ingress[0].ip}")

replace with your domain

METADATA_STORE_DOMAIN="metadata-store.example.domain.com"

delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

Tanzu Application Platform v1.1

VMware, Inc 182

echo "$ENVOY_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN --ca-cert insight-ca.cr

t

Not use Ingress

If you install the Store without using the Ingress alternative, you must use a different Certificate

resource for HTTPS communication. In this case, query the app-tls-cert to get the CA Certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Use LoadBalancer

To use a LoadBalancer configuration, you must find the external IP address of the metadata-store-

app service by using kubectl.

METADATA_STORE_IP=$(kubectl get service/metadata-store-app --namespace metadata-store

-o jsonpath="{.status.loadBalancer.ingress[0].ip}")

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$METADATA_STORE_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Use NodePort

To use NodePort, you must obtain the CA certificate by following the instructions in Not use Ingress,

then Configure port forwarding and Modify your /etc/hosts file.

Configure port forwarding

When using NodePort, configure port forwarding for the service so the CLI can access Supply Chain

Security Tools - Store. Run:

Note

: For all kubectl commands, use the --namespace metadata-store flag.

Tanzu Application Platform v1.1

VMware, Inc 183

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Note: You must run this command in a separate terminal window.

Modify your /etc/hosts file

Use the following script to add a new local entry to /etc/hosts:

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "127.0.0.1 $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Configure access tokens

Service accounts are required to generate the access tokens.

The access token is a Bearer token used in the http request header Authorization. (ex.

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0...)

By default, Supply Chain Security Tools - Store comes with read-write service account installed. This

service account is cluster-wide.

Service accounts

You can create two types of service accounts:

1. Read-only service account - only able to use GET API requests

2. Read-write service account - full access to the API requests

Read-only service account

As a part of the Store installation, the metadata-store-read-only cluster role is created by default.

This cluster role allows the bound user to have get access to all resources. To bind to this cluster

role, run the following command:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: metadata-store-ready-only

roleRef:

 apiGroup: rbac.authorization.k8s.io

Tanzu Application Platform v1.1

VMware, Inc 184

 kind: ClusterRole

 name: metadata-store-read-only

subjects:

- kind: ServiceAccount

 name: metadata-store-read-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

If you do not want to bind to a cluster role, create your own read-only role in the metadata-store

namespace with a service account. The following example command creates a service account

named metadata-store-read-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: metadata-store-ro

 namespace: metadata-store

rules:

- resources: ["all"]

 verbs: ["get"]

 apiGroups: ["metadata-store/v1"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: metadata-store-ro

 namespace: metadata-store

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: metadata-store-ro

subjects:

- kind: ServiceAccount

 name: metadata-store-read-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

Read-write service account

To create a read-write service account, run the following command. The command creates a service

account called metadata-store-read-write-client:

Tanzu Application Platform v1.1

VMware, Inc 185

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: metadata-store-read-write

 namespace: metadata-store

rules:

- resources: ["all"]

 verbs: ["get", "create", "update"]

 apiGroups: ["metadata-store/v1"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: metadata-store-read-write

 namespace: metadata-store

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: metadata-store-read-write

subjects:

- kind: ServiceAccount

 name: metadata-store-read-write-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-write-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

Getting the Access Token

To retrieve the read-only access token, run the following command:

kubectl get secret $(kubectl get sa -n metadata-store metadata-store-read-client -o js

on | jq -r '.secrets[0].name') -n metadata-store -o json | jq -r '.data.token' | base6

4 -d

To retrieve the read-write access token run the following command:

kubectl get secret $(kubectl get sa -n metadata-store metadata-store-read-write-client

 -o json | jq -r '.secrets[0].name') -n metadata-store -o json | jq -r '.data.token' |

 base64 -d

The access token is a “Bearer” token used in the http request header “Authorization.” (ex.

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0...)

Setting the Access Token

When using the CLI, you’ll need to set the METADATA_STORE_ACCESS_TOKEN environment variable, or

use the --access-token flag. It is not recommended to use the --access-token flag as the token will

appear in your shell history.

Tanzu Application Platform v1.1

VMware, Inc 186

The following command will retrieve the access token from Kubernetes and store it in

METADATA_STORE_ACCESS_TOKEN where SERVICE-ACCOUNT-NAME is the name of the service account you

plan to use.

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpath

="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='SERVICE-A

CCOUNT-NAME')].data.token}" | base64 -d)

For example:

$ export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpa

th="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='metadat

a-store-read-write-client')].data.token}" | base64 -d)

Query data

This topic describes how to query the database to understand vulnerability, image, and dependency

relationships. The Tanzu Insight CLI plug-in queries the database for vulnerability scan reports or

Software Bill of Materials (SBoM) files.

Supported use cases

The following are a few use cases supported by the CLI:

What packages and CVEs exist in a particular image? (image)

What packages and CVEs exist in my source code? (source)

What dependencies are affected by a specific CVE? (vulnerabilities)

Query using the Tanzu Insight CLI plug-in

Install the Tanzu Insight CLI plug-in if you have not already done so.

There are four commands for querying and adding data.

image - Post an image SBOM or query images for packages and vulnerabilities.

package - Query packages for vulnerabilities or by image or source code.

source - Post a source code SBOM or query source code for packages and vulnerabilties.

vulnerabilities - Query vulnerabilities by image, package, or source code.

Use tanzu insight -h or see Tanzu Insight Details for more information.

Example #1: What packages & CVEs does a specific image
contain?

Run:

tanzu insight image get --digest DIGEST

Tanzu Application Platform v1.1

VMware, Inc 187

Where:

DIGEST is the component version or image digest.

For example:

$ tanzu insight image get --digest sha256:407d7099d6ce7e3632b6d00682a43028d75d3b088600

797a833607bd629d1ed5

R e g i s t r y : d o c k e r . i o

Image Name: checkr/flagr:1.1.12

Digest: sha256:407d7099d6ce7e3632b6d00682a43028d75d3b088600797a833607bd629d1ed

5

Packages:

 1 . a l p i n e - b a s e l a y o u t @ 3 . 1 . 2 - r 0

 2 . a l p i n e - k e y s @ 2 . 1 - r 2

 3 . a p k - t o o l s @ 2 . 1 0 . 4 - r 2

 C V E s :

 1 . C V E - 2 0 2 1 - 3 0 1 3 9 (H i g h)

 2 . C V E - 2 0 2 1 - 3 6 1 5 9 (C r i t i c a l)

 4 . b u s y b o x @ 1 . 3 0 . 1 - r 3

 C V E s :

 1 . C V E - 2 0 2 1 - 2 8 8 3 1 (H i g h)

...

Example #2: What packages & CVEs does my source code
contain?

Run:

tanzu insight source get --repo REPO --org ORG

Where:

REPO specifies XML or JSON, the two supported file types

ORG is the source code’s organization

You may also use tanzu insight source get --commit COMMIT where COMMIT is the commit sha. --

repo and --org must be used together.

For example, to get a recent scan for https://github.com/pivotal/kpack.git:

$ tanzu insight source get --repo kpack --org pivotal

I D : 2

Repository: kpack

Commit: b66668e

Organization: pivotal

Packages:

 1 . c l o u d . g o o g l e . c o m / g o / k m s @ v 1 . 0 . 0

 2 . g i t h u b . c o m / B u r n t S u s h i / t o m l @ v 3 . 1 . 1

 C V E s :

 1 . C V E - 2 0 2 1 - 3 0 9 9 9 (L o w)

 3 . g i t h u b . c o m / M i c r o s o f t / g o - w i n i o @ v 0 . 5 . 2

Example #3: What dependencies are affected by a specific

Tanzu Application Platform v1.1

VMware, Inc 188

CVE?

Run:

tanzu insight vulnerabilities get --cveid CVE-IDENTIFIER

Where:

CVE-IDENTIFIER is the CVE identifier, for example, CVE-2021-30139.

For example:

$ tanzu insight vulnerabilities get --cveid CVE-2010-4051

1. CVE-2010-4051 (Low)

Packages:

 1 . l i b c - b i n @ 2 . 2 8 - 1 0

 2 . l i b c - l 1 0 n @ 2 . 2 8 - 1 0

 3 . l i b c 6 @ 2 . 2 8 - 1 0

 4 . l o c a l e s @ 2 . 2 8 - 1 0

Add data

See Add Data for more information about manually adding data.

Add data

This topic describes how to add vulnerability scan reports or Software Bill of Materials (SBoM) files to

the Supply Chain Security Tools - Store.

Supported formats and file types

Currently, only CycloneDX XML and JSON files are accepted.

Source commits and image files have been tested. Additional file types may work, but are not fully

supported (for example, JAR files).

Note: If you are not using a source commit or image file, you must ensure the component.version

field in the CycloneDX file is non-null.

Generate a CycloneDX file

A CycloneDX file is needed to post data. Supply Chain Security Tools - Scan outputs CycloneDX files

automatically. For more information, see Supply Chain Security Tools - Scan.

To generate a file to post manually, use Grype or another tool in the CycloneDX Tool Center.

To use Grype to scan an image and generate an image report in CycloneDX format:

1. Install Grype.

2. Scan the image and generate a report by running:

grype REPO:TAG -o cyclonedx > IMAGE-CVE-REPORT

Tanzu Application Platform v1.1

VMware, Inc 189

https://cyclonedx.org/tool-center/
https://github.com/anchore/grype

Where:

REPO is the name of your repository

TAG is the name of a tag

IMAGE-CVE-REPORT is the resulting file name of the Grype image scan report

For example:

$ grype docker.io/checkr/flagr:1.1.12 -o cyclonedx > image-cve-report

 ✔ Vulnerability DB [updated]

 ✔ Parsed image

 ✔ Cataloged packages [21 packages]

 Scanned image [8 vulnerabilities] ✔ Scanned image [8 vulnerabilities]

Add data with the Tanzu Insight plug-in

Use the following commands to add data:

image add

source add

Note: If you are not using a source commit or image file, you can select either option.

Example #1: Add an image report

To use a CycloneDX-formatted image report:

1. Run:

tanzu insight image add --cyclonedxtype TYPE --path IMAGE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

IMAGE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

$ tanzu insight image add --cyclonedxtype xml --path downloads/image-cve-report

Image report created.

Note: The Metadata Store only stores a subset of CycloneDX file data. Support for more data might

be added in the future.

Example #2: Add a source report

To use a CycloneDX-formatted source report:

1. Run:

tanzu insight source add --cyclonedxtype TYPE --path SOURCE-CVE-REPORT

Tanzu Application Platform v1.1

VMware, Inc 190

Where:

TYPE specifies XML or JSON, the two supported file types

SOURCE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

$ tanzu insight source add --cyclonedxtype json --path source-cve-report

Source report created.

Note: Supply Chain Security Tools - Store only stores a subset of a CycloneDX file’s data. Support for

more data might be added in the future.

Command reference

The Tanzu Insight CLI plug-in is used to post data and query the Supply Chain Security Tools - Store

database.

Synopsis

This CLI plug-in is used to post data and query the Supply Chain Security Tools - Store through its

secure REST API. Source commit and image vulnerability reports can be uploaded using CycloneDX

XML and JSON format. Source commit, image, package, and vulnerabilities can be queried and

outputted in CycloneDX XML, JSON, and human-readable text formats.

Options

 -h, --help help for tanzu insight

See also

Tanzu insight config - Config commands

Tanzu insight health - Checks if endpoint is reachable

Tanzu insight image - Image commands

Tanzu insight package - Package commands

Tanzu insight source - Source commands

Tanzu insight version - Display Tanzu Insight version

Tanzu insight vulnerabilities - Vulnerabilities commands

Tanzu insight config set-target

Tanzu insight config set-target

Set the metadata store endpoint.

Tanzu Application Platform v1.1

VMware, Inc 191

Synopsis

Set the target endpoint for the metadata store.

tanzu insight config set-target <endpoint> [--ca-cert <ca certificate path to verify p

eer against>] [--access-token <kubernetes service account access token>] [flags]

Examples

tanzu insight config set-target https://localhost:8443 --ca-cert=/tmp/ca.crt --access-

token eyJhbGc...

Options

 --access-token string Kubernetes access token. It is recommended to use the En

vironment Variable METADATA_STORE_ACCESS_TOKEN during the API calls, this will overrid

e access token flag. Note: using the the access-token flag stores the token on disk, t

he Environment Variable is retrieved at the time of the API call

 --ca-cert string trusted ca certificate

 -h, --help help for set-target

See also

Tanzu insight config - Config commands

Tanzu insight config

Config commands are as follows:

Options

 -h, --help help for config

See also

Tanzu insight - This CLI is used to post data and make queries to the metadata store.

Tanzu insight config set-target - Set metadata store endpoint.

Tanzu insight health

Tanzu insight health

Checks if endpoint is reachable.

Synopsis

Checks if endpoint is reachable.

Tanzu Application Platform v1.1

VMware, Inc 192

tanzu insight health [flags]

Examples

tanzu insight health

Options

 -h, --help help for health

See also

Tanzu insight

Tanzu insight image

Image commands are as follows:

Options

 -h, --help help for image

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight image add - Add an image report.

Tanzu insight image get - Get image by digest.

Tanzu insight image packages - Get image packages.

Tanzu insight image vulnerabilities - Get image vulnerabilities.

Tanzu insight image add

Add an image report from a report file:

tanzu insight image add [flags]

Examples

tanzu insight image add --cyclonedxtype json --path /path/to/file.json

Options

 --cyclonedxtype string cyclonedx file type(xml/json)

 -h, --help help for add

Tanzu Application Platform v1.1

VMware, Inc 193

 --path string path to file

See also

Tanzu insight image - Image commands

Tanzu insight image get

Get image by digest.

Synopsis

Get image by digest.

tanzu insight image get --digest <image-digest> [--format <image-format>] [flags]

Examples

tanzu insight image get --digest sha256:a86859ac1946065d93df9ecb5cb7060adeeb0288fad610

b1b659907 --format json

Options

 -d, --digest string image digest

 -f, --format string output format (default "text")

 -h, --help help for get

See Also

Tanzu insight image - Image commands

Tanzu insight image packages

Get image packages.

Synopsis

Get image packages.

tanzu insight image packages [--digest <image-digest>] [--name <name>] [--format <imag

e-format>] [flags]

Examples

tanzu insight image packages --digest sha256:a86859ac1946065d93df9ecb5cb7060adeeb0288f

ad610b1b659907 --format json

Tanzu Application Platform v1.1

VMware, Inc 194

Options

 -d, --digest string image digest

 -f, --format string output format (default "text")

 -h, --help help for packages

 -n, --name string image name

See also

Tanzu insight image - Image commands

Tanzu insight image vulnerabilities

Get image vulnerabilities:

tanzu insight image vulnerabilities --digest <image-digest> [--format <image-format>]

[flags]

Examples

tanzu insight image vulnerabilities --digest sha256:a86859ac1946065d93df9ecb5cb7060ade

eb0288fad610b1b659907 --format json

Options

 -d, --digest string image digest

 -f, --format string output format (default "text")

 -h, --help help for vulnerabilities

See also

Tanzu insight image - Image commands

Tanzu insight package

Package commands are as follows:

Options

 -h, --help help for package

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight package get - Get package by name, version, and package manager.

Tanzu Application Platform v1.1

VMware, Inc 195

Tanzu insight package images - Get images that contain the given package by name.

Tanzu insight package sources - Get sources that contain the given package by name.

Tanzu insight package vulnerabilities - Get package vulnerabilities.

Tanzu insight package get

Get package by name, version, and package manager.

Synopsis

Get package by name, version, and package manager.

tanzu insight package get --name <package name> --version <package version> --pkgmngr

Unknown [--format <format>] [flags]

Examples

tanzu insight package get --name client --version 1.0.0a --pkgmngr Unknown

Options

 -f, --format string output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

 -h, --help help for get

 -n, --name string name of the package

 -p, --pkgmngr string Package manager of the dependency. 'Unknown' is currently the

 only supported value (default "Unknown")

 -v, --version string version of the package

See also

Tanzu insight package - Package commands

Tanzu insight Package Images

Get images that contain the given package by name.

Synopsis

Get images that contain the given package by name.

tanzu insight package images --name <package name> [flags]

Examples

tanzu insight package images --name client

Tanzu Application Platform v1.1

VMware, Inc 196

Options

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for images

 -n, --name string name of the package

See also

Tanzu insight package - Package commands

Tanzu insight package sources

Get sources that contain the given package by name.

Synopsis

Get sources that contain the given package by name.

tanzu insight package sources --name <package name> [flags]

Examples

tanzu insight package sources --name client

Options

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for sources

 -n, --name string name of the package

See also

Tanzu insight package - Package commands

Tanzu insight Package Vulnerabilities

Get package vulnerabilities.

Synopsis

Get package vulnerabilities.

tanzu insight package vulnerabilities --name <package name> [flags]

Tanzu Application Platform v1.1

VMware, Inc 197

Examples

tanzu insight package vulnerabilities --name client

Options

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for vulnerabilities

 -n, --name string name of the package

See also

Tanzu insight package - Package commands

Tanzu insight source

Source commands are as follows:

Options

 -h, --help help for source

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight source add - Add a source report.

Tanzu insight source get - Get sources by repository, commit, or organization.

Tanzu insight source packages - Get source packages.

Tanzu insight source vulnerabilities - Get source vulnerabilities.

Tanzu insight source add

Add a source report from a report file:

tanzu insight source add [flags]

Examples

tanzu insight source add --cyclonedxtype json --path /path/to/file.json

Options

Tanzu Application Platform v1.1

VMware, Inc 198

 --cyclonedxtype string cyclonedx file type (xml/json)

 -h, --help help for add

 --path string path to file

See also

Tanzu insight source - Source commands

Tanzu insight source get

Get sources by repository, commit, or organization.

Synopsis

Get sources by repository, commit, or organization.

tanzu insight source get --repo <repository> --commit <commit-hash> --org <organizatio

n-name> [--format <format>] [flags]

Examples

tanzu insight source get --repo github.com/org/example --commit b33dfee51 --org compan

y

Options

 -c, --commit string commit hash

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for get

 -o, --org string organization that owns the source

 -r, --repo string repository name

See also

Tanzu insight source - Source commands

Tanzu insight source packages

Get source packages.

Synopsis

Get source packages.

tanzu insight source packages [--commit <commit-hash>] [--repo <repo-url>] [--format <

format>] [flags]

Tanzu Application Platform v1.1

VMware, Inc 199

Examples

tanzu insight sources packages --commit 0b1b659907 --format json

Options

 -c, --commit string commit hash

 -f, --format string output format (default "text")

 -h, --help help for packages

 -r, --repo string source repository url

See also

Tanzu insight source - Source commands

Tanzu insight source vulnerabilities

Get source vulnerabilities.

Synopsis

Get source vulnerabilities. You can specify either commit or repo.

tanzu insight source vulnerabilities [--commit <commit-hash>] [--repo <repo-url>] [--f

ormat <format>] [flags]

Examples

tanzu insight sources vulnerabilities --commit eb55fc13

Options

 -c, --commit string commit hash

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for vulnerabilities

 -r, --repo string source repository url

See also

Tanzu insight source - Source commands

Tanzu insight version

To display tanzu insight version:

Tanzu Application Platform v1.1

VMware, Inc 200

tanzu insight version [flags]

Options

 -h, --help help for version

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight vulnerabilities

Vulnerabilities commands are as follows:

Options

 -h, --help help for vulnerabilities

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight vulnerabilities get - Get vulnerability by CVE id.

Tanzu insight vulnerabilities images - Get images with a given vulnerability.

Tanzu insight vulnerabilities packages - Get packages with a given vulnerability.

Tanzu insight vulnerabilities sources - Get sources with a given vulnerability.

Tanzu insight vulnerabilities get

Get vulnerability by CVE id.

Synopsis

Get vulnerability by CVE id.

tanzu insight vulnerabilities get --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities get --cveid CVE-123123-2021

Options

 -c, --cveid string CVE id

Tanzu Application Platform v1.1

VMware, Inc 201

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for get

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

Tanzu insight vulnerabilities images

Get images with a given vulnerability.

Synopsis

Get images with a given vulnerability.

tanzu insight vulnerabilities images --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities images --cveid CVE-123123-2021

Options

 -c, --cveid string CVE id

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for images

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

Tanzu insight vulnerabilities packages

Get packages with a given vulnerability.

Synopsis

Get packages with a given vulnerability.

tanzu insight vulnerabilities packages --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities packages --cveid CVE-123123-2021

Tanzu Application Platform v1.1

VMware, Inc 202

Options

 -c, --cveid string CVE id

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for packages

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

Tanzu insight vulnerabilities sources

Get sources with a given vulnerability.

Synopsis

Get sources with a given vulnerability.

tanzu insight vulnerabilities sources --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities sources --cveid CVE-123123-2021

Options

 -c, --cveid string CVE id

 -f, --format string output format which can be in 'json' or 'text'. If not present

, defaults to text. (default "text")

 -h, --help help for sources

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

Overview

Tanzu Application Platform v1.1 includes:

Five new default roles to help you set up permissions for users and service accounts within a

namespace on a cluster that runs one of the Tanzu Application Platform profiles.

A Tanzu CLI RBAC (role-based access control) plug-in for role binding. For more

information, see Bind a user or group to a default role.

Documentation for integrating with your existing identity management solution.

Tanzu Application Platform v1.1

VMware, Inc 203

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Default roles

Three roles are for users:

app-editor

app-viewer

app-operator

Two roles are for service accounts associated with the Tanzu Supply Chain:

workload

deliverable

The default roles provide an opinionated starting point for the most common permissions that users

need when using Tanzu Application Platform. However, as described in the Kubernetes

documentation about RBAC, you can create customized roles and permissions that better meet your

needs. Aggregated cluster roles are used to build VMware Tanzu Application Platform default roles.

Cluster admins must be careful when creating Roles or ClusterRoles. When changing roles or adding

new roles that carry one of the labels used by the default roles, the roles are automatically updated

to the aggregation state. It can lead to unintentional changes in functions and permissions to all

users.

The default roles are installed with every Tanzu Application Platform profile except for view. For an

overview of the different roles and their permissions, see Role Descriptions.

Working with roles using the RBAC CLI plug-in

For more information about working with roles, see Bind a user or group to a default role.

Disclaimer

Tanzu Application Platform GUI does not make use of the described roles. Instead, it provides the

user with view access for each cluster.

Setting up authentication for Tanzu Application Platform

There are multiple ways to set up authentication for your Tanzu Application Platform deployment.

You can manage authentication at the infrastructure level with your Kubernetes provider, such as

Tanzu Kubernetes Grid, EKS, AKS, or GKE.

VMware recommends Pinniped for integrating your identity management into Tanzu Application

Platform on multicloud. It provides many supported integrations for widely used identity providers.

To use Pinniped, see Installing Pinniped on a single cluster and Logging in using Pinniped.

See Integrating Azure Active Directory for Azure Active Directory Integration

Tanzu Kubernetes Grid

For Tanzu Kubernetes Grid clusters, Pinniped is the default identity solution and is installed as a core

package. For more information, see Core Packages and Enable Identity Management in an Existing

Tanzu Application Platform v1.1

VMware, Inc 204

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-packages-core-index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-cluster-lifecycle-enable-identity-management.html

Deployment in the Tanzu Kubernetes Grid documentation.

Installing Pinniped on a single cluster

Pinniped is used to support authentication on Tanzu Application Platform. This topic introduces how

to install Pinniped on a single cluster of Tanzu Application Platform. You will deploy two Pinniped

components into the cluster.

The Pinniped Supervisor is an OIDC server which allows users to authenticate with an external

identity provider (IDP). It hosts an API for the concierge component to fulfill authentication requests.

The Pinniped Concierge is a credential exchange API that takes a credential from an identity

source, for example, Pinniped Supervisor, proprietary IDP, as input. The Pinniped Concierge

authenticates the user by using the credential, and returns another credential that is parsable by the

host Kubernetes cluster or by an impersonation proxy that acts on behalf of the user.

Prerequisites

Meet these prerequisites:

Install the package certmanager. This is included in Tanzu Application Platform.

Install the package contour. This is included in Tanzu Application Platform.

Create a workspace directory to function as your workspace.

Install Pinniped Supervisor

Follow these steps to install pinniped-supervisor:

1. Create the necessary certificate files.

2. Create the Ingress resources.

3. Create the pinniped-supervisor configuration.

4. Apply these resources to the cluster.

Create Certificates (letsencrypt/cert-manager)

Create a ClusterIssuer for letsencrypt and a TLS certificate resource for Pinniped Supervisor by

creating the following resources and save them into workspace/pinniped-

supervisor/certificates.yaml.

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-staging

 namespace: cert-manager

spec:

 acme:

 email: your-mail@example.com

 privateKeySecretRef:

 name: letsencrypt-staging

Tanzu Application Platform v1.1

VMware, Inc 205

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-cluster-lifecycle-enable-identity-management.html
https://pinniped.dev/

 server: https://acme-staging-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: pinniped-supervisor-cert

 namespace: pinniped-supervisor

spec:

 secretName: pinniped-supervisor-tls-cert

 dnsNames:

 - pinniped-supervisor.example.com

 issuerRef:

 name: letsencrypt-staging

 kind: ClusterIssuer

Create Ingress resources

Create a Service and Ingress resource to make the pinniped-supervisor accessible from outside the

cluster.

To do so, create the following resources and save them into workspace/pinniped-

supervisor/ingress.yaml.

apiVersion: v1

kind: Service

metadata:

 name: pinniped-supervisor

 namespace: pinniped-supervisor

spec:

 ports:

 - name: pinniped-supervisor

 port: 8443

 protocol: TCP

 targetPort: 8080

 selector:

 app: pinniped-supervisor

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

 name: pinniped-supervisor

spec:

 virtualhost:

 fqdn: pinniped-supervisor.example.com

 tls:

 secretName: pinniped-supervisor-tls-cert

 routes:

 - services:

 - name: pinniped-supervisor

 port: 8443

Tanzu Application Platform v1.1

VMware, Inc 206

Create Pinniped-Supervisor configuration

Create a FederationDomain to link the concierge to the supervisor instance and configure an

OIDCIdentityProvider to connect the supervisor to your OIDC Provider. In the following example,

you will use auth0. See the Pinniped documentation to learn how to configure different identity

providers, including OKTA, GitLab, OpenLDAP, Dex, Microsoft AD, and more.

To create Pinniped-Supervisor configuration, create the following resources and save them in

workspace/pinniped-supervisor/oidc_identity_provider.yaml.

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

 namespace: pinniped-supervisor

 name: auth0

spec:

 # Specify the upstream issuer URL.

 issuer: https://dev-xyz.us.auth0.com/

 # Specify how to form authorization requests to GitLab.

 authorizationConfig:

 additionalScopes: ["openid", "email"]

 allowPasswordGrant: false

 # Specify how claims are mapped to Kubernetes identities.

 claims:

 username: email

 groups: groups

 # Specify the name of the Kubernetes Secret that contains your

 # application's client credentials (created below).

 client:

 secretName: auth0-client-credentials

apiVersion: v1

kind: Secret

metadata:

 namespace: pinniped-supervisor

 name: auth0-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

 clientID: "<auth0-client-id>"

 clientSecret: "<auth0-client-secret>"

apiVersion: config.supervisor.pinniped.dev/v1alpha1

kind: FederationDomain

metadata:

 name: pinniped-supervisor-federation-domain

 namespace: pinniped-supervisor

spec:

 issuer: https://pinniped-supervisor.example.com

 tls:

 secretName: pinniped-supervisor-tls-cert

Tanzu Application Platform v1.1

VMware, Inc 207

https://pinniped.dev/docs/howto/

Apply the resources

After creating the resource files, you can install them into the cluster. Follow these steps to deploy

them as a kapp application:

1. Install the supervisor by running:

kapp deploy -y --app pinniped-supervisor --into-ns pinniped-supervisor -f pinni

ped-supervisor -f https://get.pinniped.dev/v0.12.0/install-pinniped-supervisor.

yaml

2. Get the external IP address of Ingress by running:

kubectl -n tanzu-system-ingress get svc/envoy -o jsonpath='{.status.loadBalance

r.ingress[0].ip}'

3. Bind the Ingress DNS to the IP address by running:

*.example.com A 35.222.xxx.yyy

Install Pinniped Concierge

To install Pinniped Concierge:

1. Deploy the Pinniped Concierge by running:

kapp deploy -y --app pinniped-concierge \

 -f https://get.pinniped.dev/v0.12.0/install-pinniped-concierge-crds.yaml \

 -f https://get.pinniped.dev/v0.12.0/install-pinniped-concierge.yaml

2. Get the CA certificate of the supervisor by running:

kubectl get secret pinniped-supervisor-tls-cert -n pinniped-supervisor -o 'go-t

emplate={{index .data "tls.crt"}}'

Note the tls.crt contains the entire certificate chain including the CA certificate for

letsencrypt generated certificates

3. Create the following resource to workspace/pinniped-concierge/jwt_authenticator.yaml.

apiVersion: authentication.concierge.pinniped.dev/v1alpha1

kind: JWTAuthenticator

metadata:

 name: pinniped-jwt-authenticator

spec:

 issuer: https://pinniped-supervisor.example.com

 audience: concierge

 tls:

 certificateAuthorityData: # insert the CA certificate data here

4. Deploy the resource by running:

kapp deploy -y --app pinniped-concierge-jwt --into-ns pinniped-concierge -f pin

niped-concierge/jwt_authenticator.yaml

Tanzu Application Platform v1.1

VMware, Inc 208

https://carvel.dev/kapp/

Log in to the cluster

See Login using Pinniped.

Integrating Azure Active Directory

This topic describes how to integrate the Azure Active Directory (AD).

Integrate Azure AD with a new or existing AKS without
Pinniped

Perform the following procedures to integrate Azure AD with a new or existing AKS without

Pinniped.

Prerequisites

Meet these prerequisites:

Download and install the Azure CLI

Download and install the Tanzu CLI

Download and install the Tanzu CLI RBAC plug-in

Set up a platform operator

To set up a platform operator:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create an admin group for the AKS cluster.

4. Retrieve the object ID of the admin group.

5. Take one of the following actions.

Create an AKS Cluster with Azure AD enabled by running:

az group create --name RESOURCE-GROUP --location LOCATION

az aks create -g RESOURCE-GROUP -n MANAGED-CLUSTER --enable-aad --aad-adm

in-group-object-ids OBJECT-ID

Where:

RESOURCE-GROUP is your resource group

LOCATION is your location

MANAGED-CLUSTER is your managed cluster

OBJECT-ID is the object ID

Enable Azure AD integration on the existing cluster by running:

Tanzu Application Platform v1.1

VMware, Inc 209

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
#-install-or-update-the-tanzu-cli-and-plug-ins

az aks update -g RESOURCE-GROUP -n MANAGED-CLUSTER --enable-aad --aad-adm

in-group-object-ids OBJECT-ID

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

OBJECT-ID is the object ID

6. Add Platform Operators to the admin group.

7. Log in to the AKS cluster by running:

az aks get-credentials --resource-group RESOURCE-GROUP --name MANAGED-CLUSTER -

-admin

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

Set up a Tanzu Application Platform default role group

To set up a Tanzu Application Platform default role group:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create a list of groups in the Azure AD for each of the Tanzu Application Platform

default roles (app-operator, app-viewer, and app-editor).

4. Retrieve the corresponding object IDs for each group.

5. Add users to the groups accordingly.

6. For each object ID retrieved earlier, use the Tanzu CLI RBAC plug-in to bind the object id

group to a role by running:

tanzu rbac binding add -g OBJECT-ID -r TAP-ROLE -n NAMESPACE

Where:

OBJECT-ID is the object ID

TAP-ROLE is the Tanzu Application Platform role

NAMESPACE is the namespace

Set up kubeconfig

To set up kubeconfig:

1. Set up the kubeconfig to point to the AKS cluster by running:

az aks get-credentials --resource-group RESOURCE-GROUP --name MANAGED-CLUSTER

Tanzu Application Platform v1.1

VMware, Inc 210

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

2. Run any kubectl command to trigger a browser login. For example:

kubectl get pods

Integrate Azure AD with Pinniped

Perform the following procedures to set up Azure AD with Pinniped.

Prerequisites

Meet these prerequisites:

Download and install the Tanzu CLI

Download and install the Tanzu CLI RBAC plug-in

Install Pinniped supervisor and concierge on the cluster without setting up the

OIDCIdentityProvider and secret yet.

Set up the Azure AD app

To set up the Azure AD app:

1. Navigate to the Azure Active Directory Overview page.

2. Select App registrations under the Manage side menu.

3. Select New Registration.

4. Enter the name of the application. For example, gke-pinniped-supervisor-app.

5. Under Supported account types, select Accounts in this organisational directory only

(VMware, Inc. only - Single tenant).

6. Under Redirect URI, select Web as the platform.

7. Enter the call URI to the supervisor. For example, https://pinniped-

supervisor.example.com/callback.

8. Select Register to create the app.

9. If not already redirected, navigate to the app settings page.

10. Select Token configuration under the Manage menu.

11. Select Add groups claim > All groups (includes distribution lists but not groups assigned

to the application).

12. Select Add to create the group claim.

13. Select the app name in the breadcrumb navigation to return to the app settings page.

14. Select the Endpoints tab and record the value in the OpenID Connect metadata document

field.

Tanzu Application Platform v1.1

VMware, Inc 211

#-install-or-update-the-tanzu-cli-and-plug-ins
#create-pinniped-supervisor-configuration

15. Return to the app settings page.

16. Record the Application (client) ID.

17. Select Certificates & secrets under the Manage menu.

18. Create a new client secret and record this value.

19. Add the following YAML to oidc_identity_provider.yaml.

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

 namespace: pinniped-supervisor

 name: azure-ad

spec:

 # Specify the upstream issuer URL.

 issuer: ISSUER-URL

 authorizationConfig:

 additionalScopes: ["openid", "email"]

 allowPasswordGrant: false

 # Specify how claims are mapped to Kubernetes identities.

 claims:

 username: email

 groups: groups

 # Specify the name of the Kubernetes Secret that contains your

 # application's client credentials (created below).

 client:

 secretName: azure-ad-client-credentials

apiVersion: v1

kind: Secret

metadata:

 namespace: pinniped-supervisor

 name: azure-ad-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

 clientID: "AZURE-AD-CLIENT-ID"

 clientSecret: "AZURE-AD-CLIENT-SECRET"

Where:

ISSUER-URL is the OpenID Connect metadata document URL you recorded earlier,

but without the trailing /.well-known/openid-configuration

AZURE-AD-CLIENT-ID is the Azure AD client ID you recorded earlier

AZURE-AD-CLIENT-SECRET is the Azure AD client secret you recorded earlier

20. Apply your changes from the kubectl CLI by running:

kubectl apply workspace/pinniped-supervisor/oidc_identity_provider.yaml

Set up the Tanzu Application Platform default role group

Tanzu Application Platform v1.1

VMware, Inc 212

To set up a Tanzu Application Platform default role group:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create a list of groups in the Azure AD for each of the Tanzu Application Platform

default roles (app-operator, app-viewer, and app-editor).

4. Retrieve the corresponding object IDs for each group.

5. Add users to the groups accordingly.

6. For each object ID retrieved earlier, use the Tanzu CLI RBAC plug-in to bind the object id

group to a role by running:

tanzu rbac binding add -g OBJECT-ID -r TAP-ROLE -n NAMESPACE

Where:

OBJECT-ID is the object ID

TAP-ROLE is the Tanzu Application Platform role

NAMESPACE is the namespace

Set up kubeconfig

Follow these steps to set up kubeconfig:

1. Set up kubeconfig using the Pinniped CLI by running:

pinniped get kubeconfig --kubeconfig-context YOUR-KUBECONFIG-CONTEXT > /tmp/con

cierge-kubeconfig

Where YOUR-KUBECONFIG-CONTEXT is your your kubeconfig context.

2. Run any kubectl command to trigger a browser login. For example:

export KUBECONFIG="/tmp/concierge-kubeconfig"

kubectl get pods

Role descriptions

This topic is a high level overview of each default role. For more information about the specific

permissions of each role for every component, see Detailed Role Permissions Breakdown.

app-editor

The app-editor role can create, edit, and delete a Tanzu workload or deliverable.

Assign this role to a user, for example an app developer, to give permissions to create running

workloads on the cluster. This allows them to deploy their applications. This role allows the user to:

View, create, update, or delete a Tanzu workload or deliverable. This includes viewing the

logs of the pods spun up through the Tanzu workload and tracing a commit through the build

process.

Tanzu Application Platform v1.1

VMware, Inc 213

Download the images associated with their Tanzu workload so they can test images locally, or

create a Tanzu workload from it instead of starting from source code in a repository.

View and use Application Accelerator templates.

View, create, update, or delete a Tanzu workload binding with an existing service.

app-viewer

The app-viewer role cannot create, edit, or delete a Tanzu workload or deliverable.

This role has a subset of the permissions of the app-editor role. Use it if you do not want a user to

create, edit, or delete a Tanzu workload or deliverable, but they need to view its status. For example,

give these permissions to an application developer that requires visibility into the state of their Tanzu

workload or micro-service, but does not have the permissions to deploy it, such as to production or

staging environments. This role cannot bind services with a Tanzu workload.

app-operator

The app-operator role can create, edit, and delete supply chain resources.

Assign this role to a user who defines the activities within a supply chain or the path to production.

For example, building, testing, or scanning. This role can view, create, update, or delete Tanzu

supply chain resources, including Tanzu Build Service control plane resources such as:

kpack’s builder, stack, and store

Scanning resources

Grype

The metadata store

If this person must create Tanzu workloads, you can bind the user with the app-editor role as well.

workload

This role provides the service account associated with the Tanzu workload the permissions needed

to execute the activities in the supply chain. This role is for a "robot” versus a user.

deliverable

This role gives the delivery “robot” service account the permissions neeeded to create running

workloads. This role is not for a user.

Detailed role permissions breakdown

Native Kubernetes Resources

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: [""]

Tanzu Application Platform v1.1

VMware, Inc 214

 resources: ["configmaps","endpoints","events","persistentvolumeclaims","pods","pods/

log","resourcequotas","services"]

 verbs: ["get","list","watch"]

- apiGroups: ["apps"]

 resources: ["deployments","replicasets","statefulsets"]

 verbs: ["get","list","watch"]

- apiGroups: ["batch"]

 resources: ["cronjobs","jobs"]

 verbs: ["get","list","watch"]

- apiGroups: ["events.k8s.io"]

 resources: ["events"]

 verbs: ["get","list","watch"]

- apiGroups: ["networking.k8s.io"]

 resources: ["ingresses"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: [""]

 resources: ["configmaps","secrets"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

App Accelerator

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["accelerator.apps.tanzu.vmware.com"]

 resources: ["accelerators"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["accelerator.apps.tanzu.vmware.com"]

 resources: ["accelerators"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Cartographer

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: ["carto.run"]

 resources: ["deliverables","workloads"]

 verbs: ["create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["carto.run"]

 resources: ["deliverables","runnables","workloads"]

 verbs: ["get","list","watch"]

Tanzu Application Platform v1.1

VMware, Inc 215

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["carto.run"]

 resources: ["clusterconfigtemplates","clusterconfigtemplates","clusterdeliveries","c

lusterdeploymenttemplates","clusterimagetemplates","clusterruntemplates","clustersourc

etemplates","clustersupplychains","clustertemplates"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["carto.run"]

 resources: ["clusterconfigtemplates","clusterconfigtemplates","clusterdeliveries","c

lusterdeploymenttemplates","clusterimagetemplates","clusterruntemplates","clustersourc

etemplates","clustersupplychains","clustertemplates"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Cloud Native Runtimes

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["apps"]

 resources: ["deployments","replicasets","statefulsets"]

 verbs: ["get","list","watch"]

- apiGroups: ["batch"]

 resources: ["cronjobs","jobs"]

 verbs: ["get","list","watch"]

- apiGroups: ["networking.k8s.io"]

 resources: ["ingresses"]

 verbs: ["get","list","watch"]

- apiGroups: ["eventing.knative.dev"]

 resources: ["brokers","triggers"]

 verbs: ["get","list","watch"]

- apiGroups: ["serving.knative.dev"]

 resources: ["configurations","services","revisions","routes"]

 verbs: ["get","list","watch"]

- apiGroups: ["sources.*"]

 resources: ["(many)"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["eventing.knative.dev"]

 resources: ["brokers"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["sources.*"]

 resources: ["(many)"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Convention Service

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

Tanzu Application Platform v1.1

VMware, Inc 216

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

 resources: ["podintents"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

 resources: ["clusterpodconventions"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

 resources: ["clusterpodconventions"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Developer Conventions

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get","list","watch"]

- apiGroups: [""]

 resources: ["pods/exec","pods/portforward"]

 verbs: ["get","list","create"]

- apiGroups: ["carto.run"]

 resources: ["workloads"]

 verbs: ["get","list","watch"]

OOTB Templates

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: [""]

 resources: ["configmaps"]

 verbs: ["get","list","watch"]

- apiGroups: ["carto.run"]

 resources: ["deliverables","runnables"]

 verbs: ["get","list","watch"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

 resources: ["podintents"]

 verbs: ["get","list","watch"]

- apiGroups: ["kappctrl.k14s.io"]

 resources: ["apps"]

 verbs: ["get","list","watch"]

- apiGroups: ["kpack.io"]

 resources: ["images"]

 verbs: ["get","list","watch"]

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

Tanzu Application Platform v1.1

VMware, Inc 217

 resources: ["imagescans","sourcescans"]

 verbs: ["get","list","watch"]

- apiGroups: ["servicebinding.io"]

 resources: ["servicebindings"]

 verbs: ["get","list","watch"]

- apiGroups: ["services.apps.tanzu.vmware.com"]

 resources: ["resourceclaims"]

 verbs: ["get","list","watch"]

- apiGroups: ["serving.knative.dev"]

 resources: ["services"]

 verbs: ["get","list","watch"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

 resources: ["imagerepositories"]

 verbs: ["get","list","watch"]

- apiGroups: ["source.toolkit.fluxcd.io"]

 resources: ["gitrepositories"]

 verbs: ["get","list","watch"]

- apiGroups: ["tekton.dev"]

 resources: ["pipelineruns","taskruns"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-workload: "true"

- apiGroups: ["carto.run"]

 resources: ["deliverables","runnables"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

 resources: ["podintents"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["kpack.io"]

 resources: ["images"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

 resources: ["imagescans","sourcescans"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

 resources: ["imagerepositories"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.toolkit.fluxcd.io"]

 resources: ["gitrepositories"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["tekton.dev"]

 resources: ["pipelineruns","taskruns"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

- apiGroups: [""]

 resources: ["configmaps"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["kappctrl.k14s.io"]

 resources: ["apps"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["servicebinding.io"]

 resources: ["servicebindings"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["services.apps.tanzu.vmware.com"]

Tanzu Application Platform v1.1

VMware, Inc 218

 resources: ["resourceclaims"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["serving.knative.dev"]

 resources: ["services"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

 resources: ["imagerepositories"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.toolkit.fluxcd.io"]

 resources: ["gitrepositories"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Service Bindings

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["servicebinding.io"]

 resources: ["servicebindings"]

 verbs: ["get","list","watch"]

Services Toolkit

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

 resources: ["resourceclaims"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

 resources: ["clusterresources"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

 resources: ["resourceclaims"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["services.apps.tanzu.vmware.com"]

 resources: ["clusterresources"]

 verbs: ["get","list","watch"]

Source Controller

Tanzu Application Platform v1.1

VMware, Inc 219

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["source.apps.tanzu.vmware.com"]

 resources: ["imagerepositories"]

 verbs: ["get","list","watch"]

Supply Chain Security Tools — Store

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

 resources: ["imagescans","scanpolicies","scantemplates","sourcescans"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

 resources: ["scanpolicies","scantemplates"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Build Service

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: ["kpack.io"]

 resources: ["builds"]

 verbs: ["patch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["kpack.io"]

 resources: ["builds","builders","images"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["kpack.io"]

 resources: ["clusterbuilders","clusterstacks","clusterstores"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["kpack.io"]

 resources: ["builders"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

Tanzu Application Platform v1.1

VMware, Inc 220

- apiGroups: ["kpack.io"]

 resources: ["clusterbuilders","clusterstacks","clusterstores"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tekton

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["tekton.dev"]

 resources: ["pipelineresources","pipelineruns","pipelines","taskruns","tasks"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["tekton.dev"]

 resources: ["clustertasks"]

 verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["tekton.dev"]

 resources: ["pipelineresources","pipelines","tasks"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["tekton.dev"]

 resources: ["clustertasks"]

 verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Bind a user or group to a default role

You can choose one of the following two approaches to bind a user or group to a default role:

Use the Tanzu Application Platform RBAC CLI plug-in, which only supports binding Tanzu

Application Platform default roles.

Use Kubernetes role-based access control (RBAC) role binding.

VMware recommends that you use the Tanzu Application Platform RBAC CLI plug-in. This CLI plug-

in simplifies the process by binding the cluster-scoped resource permissions at the same time as the

namespace-scoped resource permissions, where applicable, for each default role. The following

sections cover the Tanzu Application Platform RBAC CLI plug-in.

Prerequisites

1. Download the latest Tanzu CLI version.

2. Download the Tanzu Application Platform RBAC CLI plug-in tar.gz file from Tanzu Network.

Tanzu Application Platform v1.1

VMware, Inc 221

https://network.tanzu.vmware.com/products/tap-auth

3. Ensure you have admin access to the cluster.

4. Ensure you have configured an authentication solution for the cluster. You can use Pinniped

or the authentication service native to your Kubernetes distribution.

Install the Tanzu Application Platform RBAC CLI plug-in

Follow these steps to install the Tanzu Application Platform RBAC CLI plug-in:

Caution: The Tanzu Application Platform RBAC CLI plug-in is currently in beta and is intended for

evaluation and test purposes only.

1. Untar the tar.gz file:

tar -zxvf NAME-OF-THE-TAR

2. Install the Tanzu Application Platform RBAC CLI plug-in locally on your operating system:

macOS

tanzu plugin install rbac --local darwin-amd64

Linux

tanzu plugin install rbac --local linux-amd64

Windows

tanzu plugin install rbac --local windows-amd64

Use a different kubeconfig location

Use a different kubeconfig location by running:

tanzu rbac --kubeconfig PATH-OF-KUBECONFIG binding add --user USER --role ROLE --names

pace NAMESPACE

Note: The environment variable KUBECONFIG is not implemented. You must use the --kubeconfig

flag to enter a different location.

For example:

$ tanzu rbac --kubeconfig /tmp/pinniped_kubeconfig.yaml binding add --user username@vm

ware.com --role app-editor --namespace user-ns

Add the specified user or group to a role

Add a user or group to a role by running:

Tanzu Application Platform v1.1

VMware, Inc 222

https://pinniped.dev/

tanzu rbac binding add --user USER --role ROLE --namespace NAMESPACE

tanzu rbac binding add --group GROUP --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding add --user username@vmware.com --role app-editor --namespace user

-ns

Get a list of users and groups from a role

Get a list of users and groups from a role by running:

tanzu rbac binding get --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding get --role app-editor --namespace user-ns

Remove the specified user or group from a role

Remove a user or group from a role by running:

tanzu rbac binding delete --user USER --role ROLE --namespace NAMESPACE

tanzu rbac binding delete --group GROUP --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding delete --user username@vmware.com --role app-editor --namespace u

ser-ns

Error logs

Authorization error logs might include the following errors:

Permission Denied:

The current user does not have permissions to create or edit rolebinding objects. Use an

admin account when using the RBAC CLI.

Error: rolebindings.rbac.authorization.k8s.io "app-operator" is forbidden: User

 "<subject>" cannot get resource "rolebindings" in API group "rbac.authorizatio

n.k8s.io" in the namespace "namespace"n.k8s.io" in the namespace "namespace"

Usage:

tanzu rbac binding add [flags]

Flags:

-g, --group string User Group

-h, --help help for add

-n, --namespace string Namespace

-r, --role string Role

Tanzu Application Platform v1.1

VMware, Inc 223

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Already Bound Error:

Adding a subject, user or group, to a role that already has the subject produces the following

error:

Error: User ‘test-user’ is already bound to 'app-operator' role

Usage:

tanzu rbac binding add [flags]

Flags:

-g, --group string User Group

-h, --help help for add

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Could Not Find Error:

When removing a subject from a role, this error can occur in the following two scenarios:

1. The rolebinding does not exist.

2. The subject does not exist in the rolebinding.

Ensure the rolebinding exists and that the subject name is correctly spelled.

Error: Did not find User 'test-user' in RoleBinding 'app-operator'

Usage:

tanzu rbac binding delete [flags]

Flags:

-g, --group string User Group

-h, --help help for delete

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Object Has Been Modified Error:

This error is a race condition caused by running multiple RBAC CLI actions at the same time.

Rerunning the RBAC CLI might fix the issue.

Removed User 'test-user' from RoleBinding 'app-operator'

Removed User 'test-user' from ClusterRoleBinding 'app-operator-cluster-access'

Error: Operation cannot be fulfilled on rolebindings.rbac.authorization.k8s.io

"app-operator": the object has been modified; please apply your changes to the

latest version and try again

Usage:

tanzu rbac binding delete [flags]

Tanzu Application Platform v1.1

VMware, Inc 224

Flags:

-g, --group string User Group

-h, --help help for delete

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Troubleshooting

1. Get a list of permissions for a user or a group:

export NAME=SUBJECT-NAME

kubectl get rolebindings,clusterrolebindings -A -o json | jq -r ".items[] | sel

ect(.subjects[]?.name == \"${NAME}\") | .roleRef.name" | xargs -n1 kubectl desc

ribe clusterroles

2. Get a list of user or group for a specific role:

tanzu rbac binding get --role ROLE --namespace NAMESPACE

Login using Pinniped

As a prerequisite, the administrator needs to provide users access to resources via rolebindings. It

can be done with the tanzu rbac plug-in. See Bind a user or group to a default role.

To login to your cluster by using Pinniped, follow these steps:

1. Generate and distribute kubeconfig to users

2. Login with provided kubeconfig

Generate and distribute kubeconfig to users

As an administrator, you can generate the kubeconfig by using the following command:

pinniped get kubeconfig --kubeconfig-context <your-kubeconfig-context> > /tmp/concier

ge-kubeconfig

...

"level"=0 "msg"="validated connection to the cluster"

Distribute this kubeconfig to your users so they can login by using pinniped.

Login with provided kubeconfig

As a user of the cluster, you will need the kubeconfig provided by your administrator to login.

Logging in is a part of requesting information from the cluster. You can execute any resource

request with kubectl to get into the authentication flow. For example:

kubectl --kubeconfig /tmp/concierge-kubeconfig get pods

If you do not want to explicitly use --kubeconfig in every command, you can also export an

Tanzu Application Platform v1.1

VMware, Inc 225

environment variable to set the kubeconfig path in your shell session.

export KUBECONFIG="/tmp/concierge-kubeconfig"

kubectl get pods

This command enables pinniped to print a URL for you visit in the browser. You can then log in,

copy the auth code and paste it back to the terminal. After the login succeeds, you will either see the

resources or get a message that you have no permission to access the resources.

Additional resources

This topic includes additional information about Authentication and Authorization for Tanzu

Application Platform. Read the Overview page first to get started.

Install

Defaults roles are released as part of Tanzu Application Platform. Alternatively, you can also Install

default roles independently.

Note: The tanzu rbac CLI plug-in requires a separate installation.

Install default roles independently

This document describes how to install default roles for Tanzu Application Platform without deploying

a Tanzu Application Platform profile.

Prerequisites

Before installing default roles, complete all prerequisites to install Tanzu Application Platform. For

more information, see Prerequisites.

Install

To install default roles:

1. List version information for the package by running:

tanzu package available list tap-auth.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-auth.tanzu.vmware.com --namespace tap-instal

l

Note

Follow the steps in this topic if you do not want to use a profile to install default roles.

For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 226

- Retrieving package versions for tap-auth.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tap-auth.tanzu.vmware.com 1.0.1

2. Install the package by running:

tanzu package install tap-auth \

 --package-name tap-auth.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install

Where:

VERSION is the package version number. For example, 1.0.1.

For example:

$ tanzu package install tap-auth \

 --package-name tap-auth.tanzu.vmware.com \

 --version 1.0.1 \

 --namespace tap-install

Application Accelerator for VMware Tanzu

Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and

deploying them in a discoverable and repeatable way. Enterprise Architects author and publish

accelerator projects that provide developers and operators in their organization ready-made,

enterprise-conformant code and configurations.

To learn more about Application Accelerator, see:

Application Accelerator for VMware Tanzu Documentation

Application Accelerator in Tanzu Application Platform GUI

Install Application Accelerator

This document describes how to install Application Accelerator from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Note

Follow the steps in this topic if you do not want to use a profile to install Application

Accelerator. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 227

https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/index.html

Install Flux SourceController on the cluster. See Install cert-manager, Contour, and FluxCD

Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Configure properties and resource usage

When you install the Application Accelerator, you can configure the following optional properties:

Property Default Description

registry.secret_ref registry.tanzu.vmware.com The secret used for accessing the registry where

the App-Accelerator images are located

server.service_type LoadBalancer The service type for the acc-ui-server service

including LoadBalancer, NodePort, or ClusterIP

server.watched_namespa

ce

accelerator-system The namespace the server watches for accelerator

resources

server.engine_invocation

_url

http://acc-engine.accelerator-

system.svc.cluster.local/invocation

s

The URL to use for invoking the accelerator

engine

engine.service_type ClusterIP The service type for the acc-engine service

including LoadBalancer, NodePort, or ClusterIP

engine.max_direct_mem

ory_size

32M The maximum size for the Java -

XX:MaxDirectMemorySize setting

samples.include True Option to include the bundled sample

Accelerators in the installation

ingress.include False Option to include the ingress configuration in the

installation

ingress.enable_tls False Option to include TLS for the ingress

configuration

domain tap.example.com Top-level domain to use for ingress configuration

tls.secretName tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invocatio

n_events_for_no_days

30 The number of days to retain recorded invocation

events resources.

telemetry.record_invocati

on_events

true Should the system record each engine invocation

when generating files for an accelerator?

VMware recommends that you do not override the defaults for registry.secret_ref,

server.engine_invocation_url, or engine.service_type. These properties are only used to

configure non-standard installations.

The following table is the resource usage configurations for the components of Application

Accelerator.

Component Resource requests Resource limits

Tanzu Application Platform v1.1

VMware, Inc 228

acc-controller cpu: 100m

memory: 20Mi

cpu: 100m

memory: 30Mi

acc-server cpu: 100m

memory:20Mi

cpu: 100m

memory: 30Mi

acc-engine cpu: 500m

memory: 1Gi

cpu: 500m

memory: 2Gi

Install

To install Application Accelerator:

1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 accelerator.apps.tanzu.vmware.com 0.5.1 2021-12-02T00:00:00Z

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get accelerator.apps.tanzu.vmware.com/VERSION-NUMBER --

values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get accelerator.apps.tanzu.vmware.com/0.5.1 --values-

schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create an app-accelerator-values.yaml using the following example code:

server:

 service_type: "LoadBalancer"

 watched_namespace: "accelerator-system"

samples:

 include: true

Edit the values if needed or leave the default values.

Note: For clusters that do not support the LoadBalancer service type, override the default

value for server.service_type.

4. Install the package by running:

Tanzu Application Platform v1.1

VMware, Inc 229

tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v V

ERSION-NUMBER -n tap-install -f app-accelerator-values.yaml

Where VERSION-NUMBER is the version included in the Tanzu Application Platform installation.

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v

 1.0.0 -n tap-install -f app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

5. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME: app-accelerator

PACKAGE-NAME: accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION: 1.0.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To see the IP address for the Application Accelerator API when the server.service_type is

set to LoadBalancer, run the following command:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the

Accelerator plug-in generate command.

Application Live View for VMware Tanzu

Application Live View is a lightweight insights and troubleshooting tool that helps app developers and

app operators to look inside running apps. It is based on the concept of Spring Boot Actuators.

To learn more about Application Live View, see:

Application Live View documentation

Application Live View in Tanzu Application Platform GUI

Tanzu Application Platform v1.1

VMware, Inc 230

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/index.html

Install Application Live View

This topic describes how to install Application Live View from the Tanzu Application Platform

package repository.

Application Live View installs three packages for full, light, and iterate profiles:

For the view profile, Application Live View installs Application Live View Backend package

(backend.appliveview.tanzu.vmware.com). This installs the Application Live View Backend

component with Tanzu Application Platform GUI in app-live-view namespace.

For the run profile, Application Live View installs Application Live View Connector package

(connector.appliveview.tanzu.vmware.com). This installs the Application Live View

Connector component as DaemonSet in app-live-view-connector namespace.

For the build profile, Application Live View installs Application Live View Conventions

package (conventions.appliveview.tanzu.vmware.com). This installs the Application Live

View Convention Service in app-live-view-conventions namespace.

Use the instructions on this page if you do not want to use a profile to install packages. For more

information about profiles, see Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Application Live View, complete all prerequisites to install Tanzu Application

Platform. For more information, see Prerequisites.

Install Application Live View

You can install Application Live View in single cluster or multicluster environment:

Single cluster: All Application Live View components are deployed in a single cluster. The

user can access Application Live View plug-in information of the applications across all the

namespaces in the Kubernetes cluster. This is the default mode of Application Live View.

Multicluster: In a multicluster environment, the Application Live View Backend component

is installed only once in a single cluster and exposes a RSocket registration for the other

clusters using Tanzu shared ingress. Each cluster continues to install the connector as a

DaemonSet. The connectors are configured to connect to the central instance of the

Application Live View Backend.

Install Application Live View Backend

To install Application Live View Backend:

1. List version information for the package by running:

tanzu package available list backend.appliveview.tanzu.vmware.com --namespace t

ap-install

For example:

Tanzu Application Platform v1.1

VMware, Inc 231

$ tanzu package available list backend.appliveview.tanzu.vmware.com --namespace

 tap-install

- Retrieving package versions for backend.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 backend.appliveview.tanzu.vmware.com 1.1.1 2022-04-22T00:00:10Z

2. (Optional) Change the default installation settings by running:

tanzu package available get backend.appliveview.tanzu.vmware.com/VERSION-NUMBER

 --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package available get backend.appliveview.tanzu.vmware.com/1.1.1 --valu

es-schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create app-live-view-backend-values.yaml with the following details:

For single cluster environment, use the following values:

ingressEnabled: "false"

For a multicluster environment, use the following values:

ingressEnabled: "true"

ingressDomain: ${INGRESS-DOMAIN}

Where INGRESS-DOMAIN is the top level domain you use for the tanzu-shared-ingress

service’s external IP address. The appliveview subdomain is prepended to the value

provided.

To configure TLS certificate delegation information for the domain, add the following values

to app-live-view-backend-values.yaml:

tls:

 namespace: "NAMESPACE"

 secretName: "SECRET NAME"

Where:

NAMESPACE is the targeted namespace of TLS secret for the domain.

SECRET NAME is the name of TLS secret for the domain.

You can edit the values to suit your project needs or leave the default values as is.

4. Install the Application Live View Backend package by running:

tanzu package install appliveview -p backend.appliveview.tanzu.vmware.com -v VE

RSION-NUMBER -n tap-install -f app-live-view-backend-values.yaml

Where VERSION-NUMBER is the version of the package listed.

Tanzu Application Platform v1.1

VMware, Inc 232

For example:

$ tanzu package install appliveview -p backend.appliveview.tanzu.vmware.com -v

1.1.1 -n tap-install -f app-live-view-backend-values.yaml

- Installing package 'backend.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'backend.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-tap-install-sa'

| Creating cluster admin role 'appliveview-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-tap-install-cluster-rolebinding'

| Creating package resource

| Package install status: Reconciling

Added installed package 'appliveview' in namespace 'tap-install'

The Application Live View Backend component is deployed in app-live-view namespace by

default.

5. Verify the Application Live View Backend package installation by running:

tanzu package installed get appliveview -n tap-install

For example:

tanzu package installed get appliveview -n tap-install

\ Retrieving installation details for appliveview...

NAME: appliveview

PACKAGE-NAME: backend.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.1.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View Connector

To install Application Live View Connector:

1. List version information for the package by running:

tanzu package available list connector.appliveview.tanzu.vmware.com --namespace

 tap-install

For example:

$ tanzu package available list connector.appliveview.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for connector.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 connector.appliveview.tanzu.vmware.com 1.1.1 2022-04-22T00:00:10Z

2. (Optional) Change the default installation settings by running:

tanzu package available get connector.appliveview.tanzu.vmware.com/VERSION-NUMB

Tanzu Application Platform v1.1

VMware, Inc 233

ER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package available get connector.appliveview.tanzu.vmware.com/1.1.1 --va

lues-schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create app-live-view-connector-values.yaml with the following details:

For single cluster environment, use the following values:

backend:

 sslDisabled: "true"

The Application Live View Connector connects to the cluster-local back end to register

the applications.

For a multicluster environment, use the following values:

backend:

 sslDisabled: "false"

 host: appliveview.INGRESS-DOMAIN

Where INGRESS-DOMAIN is the top level domain the Application Live View Backend exposes

by using tanzu-shared-ingress for the Connectors in other clusters to reach the back end.

Prepend the appliveview subdomain to the provided value.

The sslDisabled boolean flag is treated as a string in Kubernetes YAML. Therefore it must

be specified in double-quotes for the configuration to be picked up.

You can edit the values to suit your project needs or leave the default values as is.

Using the HTTP proxy either on 80 or 443 based on SSL config exposes the Backend

service running on port 7000. The connector connects to the Backend on port 80/443 by

default. Therefore, you are not required to explicitly configure the port field.

4. Install the Application Live View Connector package by running:

tanzu package install appliveview-connector -p connector.appliveview.tanzu.vmwa

re.com -v VERSION-NUMBER -n tap-install -f app-live-view-connector-values.yaml

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package install appliveview-connector -p connector.appliveview.tanzu.vm

ware.com -v 1.1.1 -n tap-install -f app-live-view-connector-values.yaml

| Installing package 'connector.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'connector.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-connector-tap-install-sa'

| Creating cluster admin role 'appliveview-connector-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-connector-tap-install-cluster-role

Tanzu Application Platform v1.1

VMware, Inc 234

binding'

- Creating package resource

/ Package install status: Reconciling

Added installed package 'appliveview-connector' in namespace 'tap-install'

Each cluster installs the connector as a DaemonSet. The connector is configured to connect

to the central instance of the Backend. The Application Live View Connector component is

deployed in app-live-view-connector namespace by default.

5. Verify the Application Live View Connector package installation by running:

tanzu package installed get appliveview-connector -n tap-install

For example:

tanzu package installed get appliveview-connector -n tap-install

 5s

| Retrieving installation details for appliveview-connector...

NAME: appliveview-connector

PACKAGE-NAME: connector.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.1.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Install Application Live View Conventions

To install Application Live View Conventions:

1. List version information for the package by running:

tanzu package available list conventions.appliveview.tanzu.vmware.com --namespa

ce tap-install

For example:

$ tanzu package available list conventions.appliveview.tanzu.vmware.com --names

pace tap-install

- Retrieving package versions for conventions.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 conventions.appliveview.tanzu.vmware.com 1.1.1 2022-04-22T00:00:00Z

2. Install the Application Live View Conventions package by running:

tanzu package install appliveview-conventions -p conventions.appliveview.tanzu.

vmware.com -v VERSION-NUMBER -n tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package install appliveview-conventions -p conventions.appliveview.tanz

Tanzu Application Platform v1.1

VMware, Inc 235

u.vmware.com -v 1.1.1 -n tap-install

- Installing package 'conventions.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'conventions.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-conventions-tap-install-sa'

| Creating cluster admin role 'appliveview-conventions-tap-install-cluster-role

'

| Creating cluster role binding 'appliveview-conventions-tap-install-cluster-ro

lebinding'

- Creating package resource

\ Package install status: Reconciling

Added installed package 'appliveview-conventions' in namespace 'tap-install'

3. Verify the package install for Application Live View Conventions package by running:

tanzu package installed get appliveview-conventions -n tap-install

For example:

tanzu package installed get appliveview-conventions -n tap-install

| Retrieving installation details for appliveview-conventions...

NAME: appliveview-conventions

PACKAGE-NAME: conventions.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.1.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

For more information about Application Live View, see the Application Live View documentation.

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To access the

Application Live View UI, see Application Live View in Tanzu Application Platform GUI.

Convention Service

Overview

Convention Service provides a means for people in operational roles to express their hard-won

knowledge and opinions about how applications should run on Kubernetes as a convention.

Convention Service applies these opinions to fleets of developer workloads as they are deployed to

the platform, saving operator and developer time.

The service is composed of two components:

The convention controller: The convention controller provides the metadata to the

convention server and executes the updates to Pod Template Spec as per the convention

server’s requests.

The convention server: The convention server receives and evaluates metadata associated

with a workload and requests updates to the Pod Template Spec associated with that

workload. You can have one or more convention servers for a single convention controller

Tanzu Application Platform v1.1

VMware, Inc 236

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-index.html

instance. Convention Service currently supports defining and applying conventions for Pods.

About applying conventions

The convention server uses criteria defined in the convention to determine whether the

configuration of a workload should be changed. The server receives the OCI metadata from the

convention controller. If the metadata meets the criteria defined by the convention server, the

conventions are applied. It is also possible for a convention to apply to all workloads regardless of

metadata.

Applying conventions by using image metadata

You can define conventions to target workloads by using properties of their OCI metadata.

Conventions can use this information to only apply changes to the configuration of workloads when

they match specific criteria (for example, Spring Boot or .Net apps, or Spring Boot v2.3+). Targeted

conventions can ensure uniformity across specific workload types deployed on the cluster.

You can use all the metadata details of an image when evaluating workloads. To see the metadata

details, use the docker CLI command docker image inspect IMAGE.

Note: Depending on how the image was built, metadata might not be available to reliably identify the

image type and match the criteria for a given convention server. Images built with Cloud Native

Buildpacks reliably include rich descriptive metadata. Images built by some other process may not

include the same metadata.

Applying conventions without using image metadata

Conventions can also be defined to apply to workloads without targeting build service metadata.

Examples of possible uses of this type of convention include appending a logging/metrics sidecar,

adding environment variables, or adding cached volumes. Such conventions are a great way for you

to ensure infrastructure uniformity across workloads deployed on the cluster while reducing

developer toil.

Note: Adding a sidecar alone does not magically make the log/metrics collection work. This requires

collector agents to be already deployed and accessible from the Kubernetes cluster, and also

configuring required access through role-based access control (RBAC) policy.

Install Convention Service

This document describes how to install convention controller from the Tanzu Application Platform

package repository. Convention controller is a primary component of Convention Service.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include convention controller. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Convention Service allows app operators to enrich Pod Template Specs with operational knowledge

based on specific conventions they define. It includes the following components:

Convention controller: Provides metadata to the convention server. Implements update

requests from the convention server.

Tanzu Application Platform v1.1

VMware, Inc 237

Convention server: Receives and evaluates metadata associated with a workload from

convention controller. Requests updates to the Pod Template Spec associated with that

workload. There can be one or more convention servers for a single convention controller

instance.

In the following procedure, you install convention controller. You install convention servers as part of

separate installation procedures. For example, you install an app-live-view convention server as

part of the app-live-view installation.

Prerequisites

Before installing convention controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager.

Install

To install convention controller:

1. List version information for the package by running:

tanzu package available list controller.conventions.apps.tanzu.vmware.com --nam

espace tap-install

For example:

$ tanzu package available list controller.conventions.apps.tanzu.vmware.com --n

amespace tap-install

- Retrieving package versions for controller.conventions.apps.tanzu.vmware.com.

..

 NAME VERSION RELEASED-AT

 controller.conventions.apps.tanzu.vmware.com 0.6.3 2022-03-08T00:00:00Z

2. (Optional) Gather values schema:

tanzu package available get controller.conventions.apps.tanzu.vmware.com/VERSIO

N-NUMBER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1.

For example:

$ tanzu package available get controller.conventions.apps.tanzu.vmware.com/0.6.

3 --values-schema --namespace tap-install

KEY DEFAULT TYPE DESCRIPTION

ca_cert_data string Optional: PEM Encoded certificate data for image

 registries with private CA.

3. (Optional) Enable Convention Controller to connect to image registries that use self-signed or

private certificate authorities. If a certificate error x509: certificate signed by unknown

Tanzu Application Platform v1.1

VMware, Inc 238

authority occurs, this option can be used to trust additional certificate authorities.

To provide custom cert, create a file named convention-controller-values.yaml that

includes the PEM-encoded CA cert data.

For example:

ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 MIICpTCCAYUCBgkqhkiG9w0BBQ0wMzAbBgkqhkiG9w0BBQwwDgQIYg9x6gkCAggA

 ...

 9TlA7A4FFpQqbhAuAVH6KQ8WMZIrVxJSQ03c9lKVkI62wQ==

 -----END CERTIFICATE-----

4. Install the package by running:

tanzu package install convention-controller -p controller.conventions.apps.tanz

u.vmware.com -v VERSION-NUMBER -f VALUES-FILE -n tap-install

Where:

VERSION-NUMBER is the version of the package listed in the earlier step.

VALUES-FILE is the path to the file created in the earlier step.

For example:

tanzu package install convention-controller -p controller.conventions.apps.tanz

u.vmware.com -v 0.6.3 -f VALUES-FILE convention-controller-values.yaml -n tap-i

nstall

/ Installing package 'controller.conventions.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

- Getting package metadata for 'controller.conventions.apps.tanzu.vmware.com'

| Creating service account 'convention-controller-tap-install-sa'

| Creating cluster admin role 'convention-controller-tap-install-cluster-role'

| Creating cluster role binding 'convention-controller-tap-install-cluster-role

binding'

\ Creating package resource

| Package install status: Reconciling

Added installed package 'convention-controller' in namespace 'tap-install'

5. Verify the package install by running:

tanzu package installed get conventions-controller -n tap-install

For example:

tanzu package installed get conventions-controller -n tap-install

Retrieving installation details for conventions-controller...

NAME: conventions-controller

PACKAGE-NAME: controller.conventions.apps.tanzu.vmware.com

PACKAGE-VERSION: 0.6.3

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded:

Tanzu Application Platform v1.1

VMware, Inc 239

kubectl get pods -n conventions-system

For example:

$ kubectl get pods -n conventions-system

NAME READY STATUS RESTARTS A

GE

conventions-controller-manager-596c65f75-j9dmn 1/1 Running 0 7

2s

Verify that STATUS is Running.

Creating conventions

This document describes how to create and deploy custom conventions to the Tanzu Application

Platform.

Introduction

Tanzu Application Platform helps developers transform their code into containerized workloads with

a URL. The Supply Chain Choreographer for Tanzu manages this transformation. For more

information, see Supply Chain Choreographer.

Convention Service is a key component of the supply chain compositions the choreographer calls

into action. Convention Service enables people in operational roles to efficiently apply their

expertise. They can specify the runtime best practices, policies, and conventions of their organization

to workloads as they are created on the platform. The power of this component becomes evident

when the conventions of an organization are applied consistently, at scale, and without hindering the

velocity of application developers.

Opinions and policies vary from organization to organization. Convention Service supports the

creation of custom conventions to meet the unique operational needs and requirements of an

organization.

Before jumping into the details of creating a custom convention, let’s look at two distinct components

of Convention Service: the convention controller and convention server.

Convention server

The convention server is the component that applies a convention already defined on the server.

Each convention server can host one or more conventions. The application of each convention by a

convention server can be controlled conditionally. The conditional criteria governing the application

of a convention is customizable and can be based on the evaluation of a custom Kubernetes

resource called PodIntent. PodIntent is the vehicle by which Convention Service as a whole delivers

its value.

A PodIntent is created, or updated if already existing, when a workload is run through a Tanzu

Application Platform supply chain. The custom resource includes both the PodTemplateSpec (see

the Kubernetes documentation) and the OCI image metadata associated with a workload. The

conditional criteria for a convention can be based on any property or value found in the

PodTemplateSpec or the Open Containers Initiative (OCI) image metadata available in the PodIntent.

Tanzu Application Platform v1.1

VMware, Inc 240

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec

If a convention’s criteria are met, the convention server enriches the PodTemplateSpec in the

PodIntent. The convention server also updates the status section of the PodIntent with the name of

the convention that’s been applied. So if needed, you can figure out after the fact which conventions

were applied to the workload.

To provide flexibility in how conventions are organized, you can deploy multiple convention servers.

Each server can contain a convention or set of conventions focused on a specific class of runtime

modifications, on a specific language framework, and so on. How the conventions are organized,

grouped, and deployed is up to you and the needs of your organization.

Convention servers deployed to the cluster will not take action unless triggered to do so by the

second component of Convention Service, the convention controller.

Convention controller

The convention controller is the orchestrator of one or many convention servers deployed to the

cluster. When the Supply Chain Choreographer creates or updates a PodIntent for a workload, the

convention controller retrieves the OCI image metadata from the repository containing the

workload’s images and sets it in the PodIntent.

The convention controller then uses a webhook architecture to pass the PodIntent to each

convention server deployed to the cluster. The controller orchestrates the processing of the

PodIntent by the convention servers sequentially, based on the priority value that’s set on the

convention server. For more information, see ClusterPodConvention.

After all convention servers are finished processing a PodIntent for a workload, the convention

controller updates the PodIntent with the latest version of the PodTemplateSpec and sets

PodIntent.status.conditions[].status=True where PodIntent.status.conditions[].type=Ready.

This status change signals the Supply Chain Choreographer that Convention Service is finished with

its work. The status change also executes whatever steps are waiting in the supply chain.

Getting started

With this high-level understanding of Convention Service components, let’s look at how to create

and deploy a custom convention.

Note: This document covers developing conventions using GOLANG, but this can be done using

other languages by following the specs.

Prerequisites

The following prerequisites must be met before a convention can be developed and deployed:

The Kubernetes command line tool (Kubectl) CLI is installed. For more information, see the

Kubernetes documentation.

Tanzu Application Platform prerequisites are installed. For more information, see

Prerequisites

Tanzu Application Platform components are installed. For more information, see the Installing

the Tanzu CLI.

The default supply chain is installed. Download Supply Chain Security Tools for VMware

Tanzu from Tanzu Network.

Tanzu Application Platform v1.1

VMware, Inc 241

https://golang.org/
https://kubernetes.io/docs/tasks/tools/
https://network.tanzu.vmware.com/products/supply-chain-security-tools/

Your kubeconfig context is set to the Tanzu Application Platform-enabled cluster:

kubectl config use-context CONTEXT_NAME

The ko CLI is installed from GitHub. (These instructions use ko to build an image, but if there

is an existing image or build process, ko is optional.)

Define convention criteria

The server.go file contains the configuration for the server and the logic the server applies when a

workload matches the defined criteria. For example, adding a Prometheus sidecar to web

applications, or adding a workload-type=spring-boot label to any workload that has metadata,

indicating it is a Spring Boot app.

1. The example server.go sets up the ConventionHandler to ingest the webhook

requests(PodConventionContext) from the convention controller. Here the handler must only

deal with the existing PodTemplateSpec and ImageConfig.

...

import (

 corev1 "k8s.io/api/core/v1"

)

...

func ConventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

 // Create custom conventions

}

...

Where:

template is the predefined PodTemplateSpec that the convention is going to modify.

For more information about PodTemplateSpec, see the Kubernetes documentation.

images are the ImageConfig used as reference to make decisions in the conventions.

In this example, the type was created within the model package.

2. The example server.go also configures the convention server to listen for requests:

...

import (

 "context"

 "fmt"

 "log"

 "net/http"

 "os"

 ...

)

Important

For this example, the package model defines resource types.

Tanzu Application Platform v1.1

VMware, Inc 242

https://github.com/google/ko
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec

...

func main() {

 ctx := context.Background()

 port := os.Getenv("PORT")

 if port == "" {

 port = "9000"

 }

 http.HandleFunc("/", webhook.ServerHandler(convention.ConventionHandler))

 log.Fatal(webhook.NewConventionServer(ctx, fmt.Sprintf(":%s", port)))

}

...

Where:

PORT is a possible environment variable, for this example, defined in the Deployment.

ServerHandler is the handler function called when any request comes to the server.

NewConventionServer is the function in charge of configure and create the http

webhook server.

port is the calculated port of the server to listen for requests. It needs to match the

Deployment if the PORT variable is not defined in it.

The path or pattern (default to /) is the convention server’s default path. If it is

changed, it must be changed in the ClusterPodConvention.

Note: The Server Handler (func ConventionHandler(...)) and the configure/start web server (func

NewConventionServer(...)) are defined in the convention controller within the webhook package, but

a custom one can be used.

1. Creating the Server Handler, which handles the request from the convention controller with

the PodConventionContext serialized to JSON.

package webhook

...

func ServerHandler(conventionHandler func(template *corev1.PodTemplateSpec, ima

ges []model.ImageConfig) ([]string, error)) http.HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request) {

 ...

 // Check request method

 ...

 // Decode the PodConventionContext

 podConventionContext := &model.PodConventionContext{}

 err = json.Unmarshal(body, &podConventionContext)

 if err != nil {

 w.WriteHeader(http.StatusBadRequest)

 return

 }

 // Validate the PodTemplateSpec and ImageConfig

 ...

 // Apply the conventions

 pts := podConventionContext.Spec.Template.DeepCopy()

 appliedConventions, err := conventionHandler(pts, podConventionContext.

Spec.Images)

 if err != nil {

 w.WriteHeader(http.StatusInternalServerError)

 return

Tanzu Application Platform v1.1

VMware, Inc 243

 }

 // Update the applied conventions and status with the new PodTemplateSp

ec

 podConventionContext.Status.AppliedConventions = appliedConventions

 podConventionContext.Status.Template = *pts

 // Return the updated PodConventionContext

 w.Header().Set("Content-Type", "application/json")

 w.WriteHeader(http.StatusOK)

 json.NewEncoder(w).Encode(podConventionContext)

 }

}

...

2. Configure and start the web server by defining the NewConventionServer function, which

starts the server with the defined port and current context. The server uses the .crt and

.key files to handle TLS traffic.

package webhook

...

// Watch handles the security by certificates.

type certWatcher struct {

 CrtFile string

 KeyFile string

 m sync.Mutex

 keyPair *tls.Certificate

}

func (w *certWatcher) Load() error {

 // Creates a X509KeyPair from PEM encoded client certificate and private ke

y.

 ...

}

func (w *certWatcher) GetCertificate() *tls.Certificate {

 w.m.Lock()

 defer w.m.Unlock()

 return w.keyPair

}

...

func NewConventionServer(ctx context.Context, addr string) error {

 // Define a health check endpoint to readiness and liveness probes.

 http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {

 w.WriteHeader(http.StatusOK)

 })

 if err := watcher.Load(); err != nil {

 return err

 }

 // Defines the server with the TSL configuration.

 server := &http.Server{

 Addr: addr,

 TLSConfig: &tls.Config{

 GetCertificate: func(_ *tls.ClientHelloInfo) (*tls.Certificate, err

or) {

 cert := watcher.GetCertificate()

 return cert, nil

 },

 PreferServerCipherSuites: true,

Tanzu Application Platform v1.1

VMware, Inc 244

 MinVersion: tls.VersionTLS13,

 },

 BaseContext: func(_ net.Listener) context.Context {

 return ctx

 },

 }

 go func() {

 <-ctx.Done()

 server.Close()

 }()

 return server.ListenAndServeTLS("", "")

}

Define the convention behavior

Any property or value within the PodTemplateSpec or OCI image metadata associated with a

workload can be used to define the criteria for applying conventions. The following are a few

examples.

Matching criteria by labels or annotations

When using labels or annotations to define whether a convention should be applied, the server

checks the PodTemplateSpec of workloads.

PodTemplateSpec

```yaml

...

template:

  metadata:

    labels:

      awesome-label: awesome-value

    annotations:

      awesome-annotation: awesome-value

...

```

Handler

```go

package convention

...

func conventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

    c:= []string{}

    // This convention is applied if a specific label is present.

    if lv, le := template.Labels["awesome-label"]; le && lv == "awesome-value" 

{

        // DO COOl STUFF

        c = append(c, "awesome-label-convention")

    }

    // This convention is applied if a specific annotation is present.

    if av, ae := template.Annotations["awesome-annotation"]; ae && av == "aweso

me-value" {

        // DO COOl STUFF

Tanzu Application Platform v1.1

VMware, Inc 245

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


        c = append(c, "awesome-annotation-convention")

    }

    return c, nil

}

...

```

Where: + conventionHandler is the handler. + awesome-label is the label that we want to validate. +

awesome-annotation is the annotation that we want to validate. + awesome-value is the value that

must have the label/annotation.

Matching criteria by environment variables

When using environment variables to define whether the convention is applicable, it should be

present in the PodTemplateSpec.spec.containers[*].env. and we can validate the value.

PodTemplateSpec

```yaml

...

template:

  spec:

    containers:

      - name: awesome-container

        env:

...

```

Handler

```go

package convention

...

func conventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

    if len(template.Spec.Containers[0].Env) == 0 {

        template.Spec.Containers[0].Env = append(template.Spec.Containers[0].En

v, corev1.EnvVar{

            Name: "MY_AWESOME_VAR",

            Value: "MY_AWESOME_VALUE",

        })

        return []string{"awesome-envs-convention"}, nil

    }

    return []string{}, nil

    ...

}

```

Matching criteria by image metadata

For each image contained within the PodTemplateSpec, the convention controller fetches the OCI

image metadata and known bill of materials (BOMs) providing it to the convention server as

ImageConfig. This metadata can be introspected to make decisions about how to configure the

PodTemplateSpec.

Tanzu Application Platform v1.1

VMware, Inc 246

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#PodSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#Container
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#environment-variables

Configure and install the convention server

The server.yaml defines the Kubernetes components that enable the convention server in the

cluster. The next definitions are within the file.

1. A namespace is created for the convention server components and has the required objects

to run the server. It’s used in the ClusterPodConvention section to indicate to the controller

where the server is.

...

apiVersion: v1

kind: Namespace

metadata:

 name: awesome-convention

...

2. (Optional) A certificate manager Issuer is created to issue the certificate needed for TLS

communication.

...

The following manifests contain a self-signed issuer CR and a certificate CR.

More document can be found at https://docs.cert-manager.io

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

 name: awesome-selfsigned-issuer

 namespace: awesome-convention

spec:

 selfSigned: {}

...

3. (Optional) A self-signed Certificate is created.

...

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: awesome-webhook-cert

 namespace: awesome-convention

spec:

 subject:

 organizations:

 - vmware

 organizationalUnits:

 - tanzu

 commonName: awesome-webhook.awesome-convention.svc

 dnsNames:

 - awesome-webhook.awesome-convention.svc

 - awesome-webhook.awesome-convention.svc.cluster.local

 issuerRef:

 kind: Issuer

Tanzu Application Platform v1.1

VMware, Inc 247

 name: awesome-selfsigned-issuer

 secretName: awesome-webhook-cert

 revisionHistoryLimit: 10

...

4. A Kubernetes Deployment is created for the webhook to run from. The Service uses the

container port defined by the Deployment to expose the server.

...

apiVersion: apps/v1

kind: Deployment

metadata:

 name: awesome-webhook

 namespace: awesome-convention

spec:

 replicas: 1

 selector:

 matchLabels:

 app: awesome-webhook

 template:

 metadata:

 labels:

 app: awesome-webhook

 spec:

 containers:

 - name: webhook

 # Set the prebuilt image of the convention or use ko to build an image

from code.

 # see https://github.com/google/ko

 image: ko://awesome-repo/awesome-user/awesome-convention

 env:

 - name: PORT

 value: "8443"

 ports:

 - containerPort: 8443

 name: webhook

 livenessProbe:

 httpGet:

 scheme: HTTPS

 port: webhook

 path: /healthz

 readinessProbe:

 httpGet:

 scheme: HTTPS

 port: webhook

 path: /healthz

 volumeMounts:

 - name: certs

 mountPath: /config/certs

 readOnly: true

 volumes:

 - name: certs

 secret:

 defaultMode: 420

 secretName: awesome-webhook-cert

...

Tanzu Application Platform v1.1

VMware, Inc 248

5. A Kubernetes Service to expose the convention deployment is also created. For this

example, the exposed port is the default 443, but if it is changed, the ClusterPodConvention

needs to be updated with the proper one.

...

apiVersion: v1

kind: Service

metadata:

 name: awesome-webhook

 namespace: awesome-convention

 labels:

 app: awesome-webhook

spec:

 selector:

 app: awesome-webhook

 ports:

 - protocol: TCP

 port: 443

 targetPort: webhook

...

6. The ClusterPodConvention adds the convention to the cluster to make it available for the

Convention Controller:

...

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: ClusterPodConvention

metadata:

 name: awesome-convention

 annotations:

 conventions.apps.tanzu.vmware.com/inject-ca-from: "awesome-convention/aweso

me-webhook-cert"

spec:

 webhook:

 clientConfig:

 service:

 name: awesome-webhook

 namespace: awesome-convention

 # path: "/" # default

 # port: 443 # default

Deploy a convention server

To deploy a convention server:

Important

The annotations block is only needed if you use a self-signed certificate. See

the cert-manager documentation.

Tanzu Application Platform v1.1

VMware, Inc 249

https://cert-manager.io/docs/

1. Build and install the convention.

If the convention needs to be built and deployed, use the [ko] tool on GitHub

(https://github.com/google/ko). It compiles yout go code into a docker image and

pushes it to the registry(KO_DOCKER_REGISTRY).

ko apply -f dist/server.yaml

If a different tool is used to build the image, the configuration can be also be applied

using either kubectl or kapp, setting the correct image in the Deployment descriptor.

kubectl

kubectl apply -f server.yaml

kapp

kapp deploy -y -a awesome-convention -f server.yaml

2. Verify the convention server. To check the status of the convention server, check for the

running convention Pods:

If the server is running, kubectl get all -n awesome-convention returns something

like:

NAME READY STATUS RESTARTS A

GE

pod/awesome-webhook-1234567890-12345 1/1 Running 0 8

h

NAME TYPE CLUSTER-IP EXTERNAL-IP POR

T(S) AGE

service/awesome-webhook ClusterIP 10.56.12.49 <none> 443

/TCP 28h

NAME READY UP-TO-DATE AVAILABLE AG

E

deployment.apps/awesome-webhook 1/1 1 1 28

h

NAME DESIRED CURRENT READ

Y AGE

replicaset.apps/awesome-webhook-1234563213 0 0 0

 23h

replicaset.apps/awesome-webhook-5b79d5cb59 0 0 0

 28h

replicaset.apps/awesome-webhook-5bf557c9f8 1 1 1

 20h

replicaset.apps/awesome-webhook-77c647c987 0 0 0

 23h

replicaset.apps/awesome-webhook-79d9c6f74c 0 0 0

 23h

replicaset.apps/awesome-webhook-7d9d667b8d 0 0 0

 9h

replicaset.apps/awesome-webhook-8668664d75 0 0 0

 23h

replicaset.apps/awesome-webhook-9b6957476 0 0 0

Tanzu Application Platform v1.1

VMware, Inc 250

 24h

To verify the conventions are being applied, check the PodIntent of a workload that

matches the convention criteria:

kubectl -o yaml get podintents.conventions.apps.tanzu.vmware.co awesome-a

pp

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 creationTimestamp: "2021-10-07T13:30:00Z"

 generation: 1

 labels:

 app.kubernetes.io/component: intent

 carto.run/cluster-supply-chain-name: awesome-supply-chain

 carto.run/cluster-template-name: convention-template

 carto.run/component-name: config-provider

 carto.run/template-kind: ClusterConfigTemplate

 carto.run/workload-name: awesome-app

 carto.run/workload-namespace: default

 name: awesome-app

 namespace: default

ownerReferences:

- apiVersion: carto.run/v1alpha1

 blockOwnerDeletion: true

 controller: true

 kind: Workload

 name: awesome-app

 uid: "********"

resourceVersion: "********"

uid: "********"

spec:

imagePullSecrets:

 - name: registry-credentials

 serviceAccountName: default

 template:

 metadata:

 annotations:

 developer.conventions/target-containers: workload

 labels:

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: awesome-app

 carto.run/workload-name: awesome-app

 spec:

 containers:

 - image: awesome-repo.com/awesome-project/awesome-app@sha256:****

 name: workload

 resources: {}

 securityContext:

 runAsUser: 1000

status:

 conditions:

 - lastTransitionTime: "2021-10-07T13:30:00Z"

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "2021-10-07T13:30:00Z"

Tanzu Application Platform v1.1

VMware, Inc 251

 status: "True"

 type: Ready

observedGeneration: 1

template:

 metadata:

 annotations:

 awesome-annotation: awesome-value

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 awesome-label-convention

 awesome-annotation-convention

 awesome-envs-convention

 awesome-image-convention

 developer.conventions/target-containers: workload

 labels:

 awesome-label: awesome-value

 app.kubernetes.io/component: run

 app.kubernetes.io/part-of: awesome-app

 carto.run/workload-name: awesome-app

 conventions.apps.tanzu.vmware.com/framework: go

 spec:

 containers:

 - env:

 - name: MY_AWESOME_VAR

 value: "MY_AWESOME_VALUE"

 image: awesome-repo.com/awesome-project/awesome-app@sha256:********

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

 securityContext:

 runAsUser: 1000

Next Steps

Keep Exploring:

Try to use different matching criteria for the conventions or enhance the supply chain with

multiple conventions.

Troubleshoot Convention Service

No server in the cluster

Symptoms

When a PodIntent is submitted, no convention is applied.

Cause

When there are no convention servers (ClusterPodConvention) deployed in the cluster or none of

the existing convention servers applied any conventions, the PodIntent is not being mutated.

Solution

Tanzu Application Platform v1.1

VMware, Inc 252

Deploy a convention server (ClusterPodConvention) in the cluster.

Server with wrong certificates configured

Symptoms

When a PodIntent is submitted, the conventions are not applied.

The convention-controller logs reports an error failed to get CABundle as follows:

{"level":"error","ts":1638222343.6839523,"logger":"controllers.PodIntent.PodInt

ent.ResolveConventions","msg":"failed to get CABundle","ClusterPodConvention":"

base-convention","error":"unable to find valid certificaterequests for certific

ate \"convention-template/webhook-certificate\"","stacktrace":"reflect.Value.Ca

ll\n\treflect/value.go:339\ngithub.com/vmware-labs/reconciler-runtime/reconcile

rs.(*SyncReconciler).sync\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/r

econcilers/reconcilers.go:287\ngithub.com/vmware-labs/reconciler-runtime/reconc

ilers.(*SyncReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@

v0.3.0/reconcilers/reconcilers.go:276\ngithub.com/vmware-labs/reconciler-runtim

e/reconcilers.Sequence.Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v

0.3.0/reconcilers/reconcilers.go:815\ngithub.com/vmware-labs/reconciler-runtime

/reconcilers.(*ParentReconciler).reconcile\n\tgithub.com/vmware-labs/reconciler

-runtime@v0.3.0/reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/reconcil

er-runtime/reconcilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmware-labs/

reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/controlle

r-runtime/pkg/internal/controller.(*Controller).Reconcile\n\tsigs.k8s.io/contro

ller-runtime@v0.10.3/pkg/internal/controller/controller.go:114\nsigs.k8s.io/con

troller-runtime/pkg/internal/controller.(*Controller).reconcileHandler\n\tsigs.

k8s.io/controller-runtime@v0.10.3/pkg/internal/controller/controller.go:311\nsi

gs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextW

orkItem\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/internal/controller/contr

oller.go:266\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controll

er).Start.func2.2\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/internal/contro

ller/controller.go:227"}

Cause

convention server (ClusterPodConvention) is configured with wrong certificates. The convention-

controller cannot figure out the CA Bundle to perform the request to the server.

Solution

Ensure that the convention server (ClusterPodConvention) is configured with the correct

certificates. To do so, verify the value of annotation conventions.apps.tanzu.vmware.com/inject-

ca-from which must be set to the used Certificate.

Note: Do not set annotation conventions.apps.tanzu.vmware.com/inject-ca-from if no certificate is

used.

Server fails when processing a request

Symptoms

When a PodIntent is submitted, the convention is not applied.

Tanzu Application Platform v1.1

VMware, Inc 253

#gathering-logs

The convention-controller logs reports failed to apply convention error like this.

{"level":"error","ts":1638205387.8813763,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Name":"

base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"service"

:{"namespace":"convention-template","name":"webhook","port":443},"caBundle":"..

."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout=30s\"

: EOF","stacktrace":"reflect.Value.call\n\treflect/value.go:543\nreflect.Value.

Call\n\treflect/value.go:339\ngithub.com/vmware-labs/reconciler-runtime/reconci

lers.(*SyncReconciler).sync\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0

/reconcilers/reconcilers.go:287\ngithub.com/vmware-labs/reconciler-runtime/reco

ncilers.(*SyncReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtim

e@v0.3.0/reconcilers/reconcilers.go:276\ngithub.com/vmware-labs/reconciler-runt

ime/reconcilers.Sequence.Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime

@v0.3.0/reconcilers/reconcilers.go:815\ngithub.com/vmware-labs/reconciler-runti

me/reconcilers.(*ParentReconciler).reconcile\n\tgithub.com/vmware-labs/reconcil

er-runtime@v0.3.0/reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/reconc

iler-runtime/reconcilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmware-lab

s/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/control

ler-runtime/pkg/internal/controller.(*Controller).Reconcile\n\tsigs.k8s.io/cont

roller-runtime@v0.10.0/pkg/internal/controller/controller.go:114\nsigs.k8s.io/c

ontroller-runtime/pkg/internal/controller.(*Controller).reconcileHandler\n\tsig

s.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:311\n

sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNex

tWorkItem\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/con

troller.go:266\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Contro

ller).Start.func2.2\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/cont

roller/controller.go:227"}

When a PodIntent status message is updated with failed to apply convention from

source base-convention: Post "https://webhook.convention-template.svc:443/?

timeout=30s": EOF.

Cause

An unmanaged error occurs in the convention server when processing a request.

Solution

1. Check the convention server logs to identify the cause of the error:

1. Use the following command to retrieve the convention server logs:

kubectl -n convention-template logs deployment/webhook

Where:

The convention server was deployed as a Deployment

webhook is the name of the convention server Deployment.

convention-template is the namespace where the convention server is

deployed.

2. Identify the error and deploy a fixed version of convention server.

Be aware that the new deployment is not applied to the existing PodIntents. It is only

Tanzu Application Platform v1.1

VMware, Inc 254

#gathering-logs

applied to the new PodIntents.

To apply new deployment to exiting PodIntent, you must update the PodIntent, so

the reconciler applies if it matches the criteria.

Connection refused due to unsecured connection

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports a connection refused error as follows:

{"level":"error","ts":1638202791.5734537,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Name":"

base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"service"

:{"namespace":"convention-template","name":"webhook","port":443},"caBundle":"..

."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout=30s\"

: dial tcp 10.56.13.206:443: connect: connection refused","stacktrace":"reflect

.Value.call\n\treflect/value.go:543\nreflect.Value.Call\n\treflect/value.go:339

\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconciler).sync\

n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:

287\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconciler).Re

concile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconci

lers.go:276\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.Sequence.Rec

oncile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcil

ers.go:815\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*ParentRecon

ciler).reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconciler

s/reconcilers.go:146\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*P

arentReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/

reconcilers/reconcilers.go:120\nsigs.k8s.io/controller-runtime/pkg/internal/con

troller.(*Controller).Reconcile\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/i

nternal/controller/controller.go:114\nsigs.k8s.io/controller-runtime/pkg/intern

al/controller.(*Controller).reconcileHandler\n\tsigs.k8s.io/controller-runtime@

v0.10.0/pkg/internal/controller/controller.go:311\nsigs.k8s.io/controller-runti

me/pkg/internal/controller.(*Controller).processNextWorkItem\n\tsigs.k8s.io/con

troller-runtime@v0.10.0/pkg/internal/controller/controller.go:266\nsigs.k8s.io/

controller-runtime/pkg/internal/controller.(*Controller).Start.func2.2\n\tsigs.

k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:227"}

The convention server fails to start due to server gave HTTP response to HTTPS client:

When checking the convention server events by running the following command:

kubectl -n convention-template describe pod webhook-594d75d69b-4w4s8

Where:

The convention server was deployed as a Deployment

webhook-594d75d69b-4w4s8 is the name of the convention server Pod.

convention-template is the namespace where the convention server is deployed.

For example:

Name: webhook-594d75d69b-4w4s8

Namespace: convention-template

Tanzu Application Platform v1.1

VMware, Inc 255

#gathering-logs

...

Containers:

 webhook:

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 14m default-scheduler Successfully assig

ned convention-template/webhook-594d75d69b-4w4s8 to pool

Normal Pulling 14m kubelet Pulling image "awe

some-repo/awesome-user/awesome-convention-..."

Normal Pulled 14m kubelet Successfully pulle

d image "awesome-repo/awesome-user/awesome-convention..." in 1.06032653s

Normal Created 13m (x2 over 14m) kubelet Created container

webhook

Normal Started 13m (x2 over 14m) kubelet Started container

webhook

Warning Unhealthy 13m (x9 over 14m) kubelet Readiness probe fa

iled: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to

 HTTPS client

Warning Unhealthy 13m (x6 over 14m) kubelet Liveness probe fai

led: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to

HTTPS client

Normal Killing 13m (x2 over 13m) kubelet Container webhook

failed liveness probe, will be restarted

Normal Pulled 9m13s (x6 over 13m) kubelet Container image "a

wesome-repo/awesome-user/awesome-convention" already present on machine

Warning BackOff 4m22s (x32 over 11m) kubelet Back-off restartin

g failed container

Cause

When a convention server is provided without using Transport Layer Security (TLS) but the

Deployment is configured to use TLS, Kubernetes fails to deploy the Pod because of the liveness

probe.

Solution

1. Deploy a convention server with TLS enabled.

2. Create ClusterPodConvention resource for the convention server with annotation

conventions.apps.tanzu.vmware.com/inject-ca-from as a pointer to the deployed

Certificate resource.

Convention Resources

The convention controller is open to extension. These resources are typically consumed by platform

developers and operators rather than by application developers.

Convention Service Resources

There are several resources involved in the application of conventions to workloads.

API Structure

Tanzu Application Platform v1.1

VMware, Inc 256

The PodConventionContext API object in the webhooks.conventions.apps.tanzu.vmware.com API

group is the structure used for both request and response from the convention server.

Template Status

The enriched PodTemplateSpec is reflected at .status.template. For more information about

PodTemplateSpec, see the Kubernetes documentation.

Chaining Multiple Conventions

You can define multiple ClusterPodConventions and apply them to different types of workloads. You

can also apply multiple conventions to a single workload.

The PodIntent reconciler lists all ClusterPodConvention resources and applies them serially. To

ensure the consistency of enriched PodTemplateSpec, the list of ClusterPodConventionsis sorted

alphabetically by name before applying conventions. You can use strategic naming to control the

order in which the conventions are applied.

After the conventions are applied, the Ready status condition on the PodIntent resource is used to

indicate whether it is applied successfully. A list of all applied conventions is stored under the

annotation conventions.apps.tanzu.vmware.com/applied-conventions.

Collecting Logs from the Controller

The convention controller is a Kubernetes operator and can be deployed in a cluster with other

components. If you have trouble, you can retrieve and examine the logs from the controller to help

identify issues.

To retrieve Pod logs from the conventions-controller-manager running in the conventions-system

namespace:

kubectl -n conventions-system logs -l control-plane=controller-manager

For example:

...

{"level":"info","ts":1637073467.3334172,"logger":"controllers.PodIntent.PodIntent.Appl

yConventions","msg":"applied convention","diff":" interface{}(\n- \ts\"&PodTemplateSp

ec{ObjectMeta:{ 0 0001-01-01 00:00:00 +0000 UTC <nil> <nil> map[app.kubernetes.io

/component:run app.kubernetes.io/part-of:spring-petclinic-app-db carto.run/workload-na

me:spring-petclinic-app-db] map[developer.conventions/target-container\"...,\n+ \tv1.P

odTemplateSpec{\n+ \t\tObjectMeta: v1.ObjectMeta{\n+ \t\t\tLabels: map[string]string{\

n+ \t\t\t\t\"app.kubernetes.io/component\": \"run\",\n+ \t\t\t\t\"app.kubernetes.io/pa

rt-of\": \"spring-petclinic-app-db\",\n+ \t\t\t\t\"carto.run/workload-name\": \"

spring-petclinic-app-db\",\n+ \t\t\t\t\"tanzu.app.live.view\": \"true\",\n+ \t

\t\t\t...\n+ \t\t\t},\n+ \t\t\tAnnotations: map[string]string{\"developer.conventions/

target-containers\": \"workload\"},\n+ \t\t},\n+ \t\tSpec: v1.PodSpec{Containers: []v1

.Container{{...}}, ServiceAccountName: \"default\"},\n+ \t},\n)\n","convention":"app

liveview-sample"}

...

Tanzu Application Platform v1.1

VMware, Inc 257

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec

References

ImageConfig

PodConventionContextSpec

PodConventionContextStatus

PodConventionContext

Cluster Pod Convention

PodIntent

BOM

ImageConfig

The image configuration object holds the name of the image, the BOM, and the OCI image

configuration with image metadata from the repository.

OCI image configuration contains the metadata from the image repository.

The BOM represents the content of the image and may be zero or more per image.

{

 "name": "oci-image-name",

 "boms": [{

 "name": "bom-name",

 "raw": "`a byte array`"

 }],

 "config": {

 {

 "created": "2015-10-31T22:22:56.015925234Z",

 "author": "Alyssa P. Hacker <alyspdev@example.com>",

 "architecture": "amd64",

 "os": "linux",

 "config": {

 "User": "alice",

 "ExposedPorts": {

 "8080/tcp": {}

 },

 "Env": [

 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

 "FOO=oci_is_a",

 "BAR=well_written_spec"

],

 "Entrypoint": [

 "/bin/my-app-binary"

],

 "Cmd": [

 "--foreground",

 "--config",

 "/etc/my-app.d/default.cfg"

],

 "Volumes": {

 "/var/job-result-data": {},

 "/var/log/my-app-logs": {}

 },

Tanzu Application Platform v1.1

VMware, Inc 258

https://github.com/opencontainers/image-spec/blob/main/config.md
https://github.com/opencontainers/image-spec/blob/main/config.md

 "WorkingDir": "/home/alice",

 "Labels": {

 "com.example.project.git.url": "https://example.com/project.git",

 "com.example.project.git.commit": "45a939b2999782a3f005621a8d0f29aa387

e1d6b"

 }

 },

 "rootfs": {

 "diff_ids": [

 "sha256:c6f988f4874bb0add23a778f753c65efe992244e148a1d2ec2a8b664fb66bbd1",

 "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"

],

 "type": "layers"

 },

 "history": [

 {

 "created": "2015-10-31T22:22:54.690851953Z",

 "created_by": "/bin/sh -c #(nop) ADD file:a3bc1e842b69636f9df5256c49c5374f

b4eef1e281fe3f282c65fb853ee171c5 in /"

 },

 {

 "created": "2015-10-31T22:22:55.613815829Z",

 "created_by": "/bin/sh -c #(nop) CMD [\"sh\"]",

 "empty_layer": true

 },

 {

 "created": "2015-10-31T22:22:56.329850019Z",

 "created_by": "/bin/sh -c apk add curl"

 }

]

 }

 }

}

PodConventionContextSpec

The Pod convention context specification is a wrapper of the PodTemplateSpec and the ImageConfig

provided in the request body of the server. It represents the original PodTemplateSpec. For more

information on PodTemplateSpec, see the Kubernetes documentation.

{

"template": {

 "metadata": {

 ...

 },

 "spec": {

 ...

 }

},

"imageConfig": {

 ...

 "name": "oci-image-name",

 "config": {

 ...

 }

 }

}

Tanzu Application Platform v1.1

VMware, Inc 259

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec

PodConventionContextStatus

The Pod convention context status type is used to represent the current status of the context

retrieved by the request. It holds the applied conventions by the server and the modified version of

the PodTemplateSpec. For more information about PodTemplateSpec, see the Kubernetes

documentation.

The field .template is populated with the enriched PodTemplateSpec. The field

.appliedConventions is populated with the names of any applied conventions.

{

 "template": {

 "metadata": {

 ...

 },

 "spec": {

 ...

 }

 },

 "appliedConventions": [

 "convention-1",

 "convention-2",

 "convention-4"

]

}

yaml version:

apiVersion: webhooks.conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodConventionContext

metadata:

 name: sample # the name of the ClusterPodConvention

spec: # the request

 imageConfig:

 template:

 <corev1.PodTemplateSpec>

status: # the response

 appliedConventions: # list of names of conventions applied

 - my-convention

 template:

 spec:

 containers:

 - name : workload

 image: helloworld-go-mod

PodConventionContext

The Pod convention context is the body of the webhook request and response. The specification is

provided by the convention controller and the status is set by the convention server.

The context is a wrapper of the individual object description in an API (TypeMeta), the persistent

metadata of a resource (ObjectMeta), the PodConventionContextSpec and the

Tanzu Application Platform v1.1

VMware, Inc 260

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/object-meta/#ObjectMeta

PodConventionContextStatus.

In the PodConventionContext API resource:

Object path .spec.template field defines the PodTemplateSpec to be enriched by

conventions. For more information about PodTemplateSpec, see the Kubernetes

documentation.

Object path .spec.imageConfig[] field defines ImageConfig. Each entry of it is populated

with the name of the image(.spec.imageConfig[].image) and its OCI metadata

(.spec.imageConfig[].config). These entries are generated for each image referenced in

PodTemplateSpec (.spec.template).

The following is an example of a PodConventionContext resource request received by the

convention server. This resource is generated for a Go language-based application image in GitHub.

It is built with Cloud Native Paketo Buildpacks that use Go mod for dependency management.

apiVersion: webhooks.conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodConventionContext

metadata:

 name: sample # the name of the ClusterPodConvention

spec: # the request

 imageConfig: # one entry per image referenced by the PodTemplateSpec

 - image: sample/go-based-image

 boms:

 - name: cnb-app:.../sbom.cdx.json

 raw: ...

 config:

 entrypoint:

 - "/cnb/process/web"

 domainname: ""

 architecture: "amd64"

 image: "sha256:05b698a4949db54fdb36ea431477867abf51054abd0cbfcfd1bb81cda1842288"

 labels:

 "io.buildpacks.stack.distro.version": "18.04"

 "io.buildpacks.stack.homepage": "https://github.com/paketo-buildpacks/stacks"

 "io.buildpacks.stack.id": "io.buildpacks.stacks.bionic"

 "io.buildpacks.stack.maintainer": "Paketo Buildpacks"

 "io.buildpacks.stack.distro.name": "Ubuntu"

 "io.buildpacks.stack.metadata": `{"app":[{"sha":"sha256:ea4ec23266a3af1204fd64

3de0f3572dd8dbb5697a5ef15bdae844777c19bf8f"}],

 "buildpacks":[{"key":"paketo-buildpac`...,

 "io.buildpacks.build.metadata": `{"bom":[{"name":"go","metadata":{"licenses":[

],"name":"Go","sha256":"7fef8ba6a0786143efcce66b0bbfbfbab02afeef522b4e09833c5b550d7`..

.

 template:

 spec:

 containers:

 - name : workload

 image: helloworld-go-mod

PodConventionContext Structure

This section introduces more information about the image configuration in PodConventionContext.

The convention-controller passes this information for each image in good faith. The controller is not

Tanzu Application Platform v1.1

VMware, Inc 261

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://github.com/paketo-buildpacks/samples/tree/main/go/mod

the source of the metadata, and there is no guarantee that the information is correct.

The config field in the image configuration passes through the OCI Image metadata in GitHub

loaded from the registry for the image.

The boms field in the image configuration passes through the BOMs of the image. Conventions might

parse the BOMs they want to inspect. There is no guarantee that an image contains a BOM or that

the BOM is in a certain format.

ClusterPodConvention

ClusterPodConvention defines a way to connect to convention servers. It provides a way to apply a

set of conventions to a PodTemplateSpec and the artifact metadata. A convention will typically focus

on a particular application framework, but may be cross cutting. Applied conventions must be pure

functions.

Webhook servers are currently the only way to define conventions.

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: ClusterPodConvention

metadata:

 name: base-convention

 annotations:

 conventions.apps.tanzu.vmware.com/inject-ca-from: "convention-template/webhook-cer

t"

spec:

 webhook:

 clientConfig:

 service:

 name: webhook

 namespace: convention-template

PodIntent

PodIntent applies conventions to a workload. The .spec.template’s PodTemplateSpec is enriched

by the conventions and exposed as the .status.templates PodTemplateSpec. A log of which

sources and conventions applied is captured with the

conventions.apps.tanzu.vmware.com/applied-conventions annotation on the PodTemplateSpec.

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 name: sample

spec:

 template:

 spec:

 containers:

 - name: workload

 image: ubuntu

BOM

The BOM is a type/structure wrapping a Software Bill of Materials (SBOM) describing the software

Tanzu Application Platform v1.1

VMware, Inc 262

https://github.com/opencontainers/image-spec/blob/main/config.md

components and their dependencies.

The structure of the BOM is defined as follows:

{

 "name": "bom-name",

 "raw": "`some byte array`"

}

Where:

name: For a cloud native buildpack SBOM, it starts with prefix cnb-sbom: and is followed by

the location of the BOM definition in the layer. For example: cnb-

sbom:/layers/sbom/launch/paketo-buildpacks_executable-jar/sbom.cdx.json. For any

non CNB-SBOM, the name might change.

raw: The content of the BOM. The content may be in any format or encoding. Consult the

name to infer how the content is structured.

The convention controller will forward BOMs to the convention servers that it can discover from

known sources, including:

CNB-SBOM

cert-manager, Contour, and FluxCD Source Controller

cert-manager adds certificates and certificate issuers as resource types in Kubernetes clusters. It also

helps you to obtain, renew, and use those certificates. For more information about cert-manager,

see the cert-manager documentation.

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates and

multiteam ingress delegation. It provides the control plane for the Envoy edge and service proxy.

For more information about Contour, see the Contour documentation.

FluxCD Source Controller is a Kubernetes operator that helps you acquire artifacts from external

sources such as Git, Helm repositories, and S3 buckets. For more information about FluxCD Source

Controller, see the fluxcd/source-controller project on GitHub.

Install cert-manager, Contour, and FluxCD Source Controller

This document describes how to install cert-manager, Contour, and FluxCD Source Controller from

the Tanzu Application Platform package repository.

Prerequisites

Before installing cert-manager, Contour, and FluxCD Source Controller:

Note

Follow the steps in this topic if you do not want to use a profile to install cert-

manager, contour, and FluxCD Source Controller. For more information about

profiles, see Components and installation profiles.

Tanzu Application Platform v1.1

VMware, Inc 263

https://github.com/buildpacks/rfcs/blob/main/text/0095-sbom.md
https://cert-manager.io/next-docs/
https://projectcontour.io/docs/v1.20.0/
https://github.com/fluxcd/source-controller

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager

To install cert-manager from the Tanzu Application Platform package repository:

1. List version information for the package by running:

tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

/ Retrieving package versions for cert-manager.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 cert-manager.tanzu.vmware.com 1.5.3+tap.1 2021-08-23T17:22:51Z

2. Create a file named cert-manager-rbac.yaml using the following sample and apply the

configuration.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: cert-manager-tap-install-cluster-admin-role

rules:

- apiGroups:

 - '*'

 resources:

 - '*'

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: cert-manager-tap-install-cluster-admin-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cert-manager-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

 name: cert-manager-tap-install-sa

 namespace: tap-install

apiVersion: v1

kind: ServiceAccount

metadata:

 name: cert-manager-tap-install-sa

 namespace: tap-install

For example:

kubectl apply -f cert-manager-rbac.yaml

Tanzu Application Platform v1.1

VMware, Inc 264

3. Create a file named cert-manager-install.yaml using the following sample and apply the

configuration.

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: cert-manager

 namespace: tap-install

spec:

 serviceAccountName: cert-manager-tap-install-sa

 packageRef:

 refName: cert-manager.tanzu.vmware.com

 versionSelection:

 constraints: "VERSION-NUMBER"

 prereleases: {}

Where:

VERSION-NUMBER is the version of the package listed in step 1.

For example:

kubectl apply -f cert-manager-install.yaml

4. Verify the package install by running:

tanzu package installed get cert-manager -n tap-install

For example:

$ tanzu package installed get cert-manager -n tap-install

/ Retrieving installation details for cert-manager...

NAME: cert-manager

PACKAGE-NAME: cert-manager.tanzu.vmware.com

PACKAGE-VERSION: 1.5.3+tap.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

kubectl get deployment cert-manager -n cert-manager

For example:

$ kubectl get deploy cert-manager -n cert-manager

NAME READY UP-TO-DATE AVAILABLE AGE

cert-manager 1/1 1 1 2m18s

Verify that STATUS is Running

Install Contour

To install Contour from the Tanzu Application Platform package repository:

Tanzu Application Platform v1.1

VMware, Inc 265

1. List version information for the package by running:

tanzu package available list contour.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list contour.tanzu.vmware.com -n tap-install

- Retrieving package versions for contour.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 contour.tanzu.vmware.com 1.18.2+tap.1 2021-10-05T00:00:00Z

2. Create a file named contour-rbac.yaml using the following sample and apply the

configuration.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: contour-tap-install-cluster-admin-role

rules:

- apiGroups:

 - '*'

 resources:

 - '*'

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: contour-tap-install-cluster-admin-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: contour-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

 name: contour-tap-install-sa

 namespace: tap-install

apiVersion: v1

kind: ServiceAccount

metadata:

 name: contour-tap-install-sa

 namespace: tap-install

3. Apply the configuration by running:

kubectl apply -f contour-rbac.yaml

4. Create a file named contour-install.yaml using the following sample and apply the

configuration. The following configuration installs the Contour package with default options. If

you want to make changes to the default installation settings, go to the next step.

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

Tanzu Application Platform v1.1

VMware, Inc 266

 name: contour

 namespace: tap-install

spec:

 serviceAccountName: tap-install-sa

 packageRef:

 refName: contour.tanzu.vmware.com

 versionSelection:

 constraints: "VERSION-NUMBER"

 prereleases: {}

Where VERSION-NUMBER is the version of the package listed in step 1.

5. (Optional) Make changes to the default installation settings:

1. Gather values schema by running:

tanzu package available get contour.tanzu.vmware.com/1.18.2+tap.1 --value

s-schema -n tap-install

For example:

$ tanzu package available get contour.tanzu.vmware.com/1.18.2+tap.1 --val

ues-schema -n tap-install

| Retrieving package details for contour.tanzu.vmware.com/1.18.2+tap.1...

 KEY DEFAULT TYPE DES

CRIPTION

 certificates.duration 8760h string If

using cert-manager, how long the certificates should be valid for. If use

CertManager is false, this field is ignored.

 certificates.renewBefore 360h string If

using cert-manager, how long before expiration the certificates should be

 renewed. If useCertManager is false, this field is ignored.

 contour.configFileContents <nil> object The

 YAML contents of the Contour config file. See https://projectcontour.io/

docs/v1.18.2/configuration/#configuration-file for more information.

 contour.logLevel info string The

 Contour log level. Valid options are info and debug.

 contour.replicas 2 integer How

 many Contour pod replicas to have.

 contour.useProxyProtocol false boolean Whe

ther to enable PROXY protocol for all Envoy listeners.

 envoy.hostPorts.enable true boolean Whe

ther to enable host ports. If false, http and https are ignored.

 envoy.hostPorts.http 80 integer If

enable == true, the host port number to expose Envoy's HTTP listener on.

 envoy.hostPorts.https 443 integer If

enable == true, the host port number to expose Envoy's HTTPS listener on.

 envoy.logLevel info string The

 Envoy log level.

 envoy.service.annotations <nil> object Ann

otations to set on the Envoy service.

Tanzu Application Platform v1.1

VMware, Inc 267

 envoy.service.aws.LBType classic string AWS

 loadbalancer type.

 envoy.service.externalTrafficPolicy Cluster string The

 external traffic policy for the Envoy service.

 envoy.service.nodePorts.http <nil> integer If

type == NodePort, the node port number to expose Envoy's HTTP listener on

. If not specified, a node port will be auto-assigned by Kubernetes.

 envoy.service.nodePorts.https <nil> integer If

type == NodePort, the node port number to expose Envoy's HTTPS listener o

n. If not specified, a node port will be auto-assigned by Kubernetes.

 envoy.service.type NodePort string The

 type of Kubernetes service to provision for Envoy.

 envoy.terminationGracePeriodSeconds 300 integer The

 termination grace period, in seconds, for the Envoy pods.

 envoy.hostNetwork false boolean Whe

ther to enable host networking for the Envoy pods.

 infrastructure_provider vsphere string The

 infrastructure in which to deploy Contour and Envoy. example:- vsphere,

aws

 namespace tanzu-system-ingress string The

 namespace in which to deploy Contour and Envoy.

2. Create a contour-install.yaml file using the following sample as a guide. This

sample is for installation in an AWS public cloud with LoadBalancer services:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: contour

 namespace: tap-install

spec:

 serviceAccountName: contour-tap-install-sa

 packageRef:

 refName: contour.tanzu.vmware.com

 versionSelection:

 constraints: 1.18.2+tap.1

 prereleases: {}

 values:

 - secretRef:

 name: contour-values

apiVersion: v1

kind: Secret

metadata:

 name: contour-values

 namespace: tap-install

stringData:

 values.yaml: |

 envoy:

 service:

 type: LoadBalancer

 infrastructure_provider: aws

Tanzu Application Platform v1.1

VMware, Inc 268

The LoadBalancer type is appropriate for most installations, but local clusters such as

kind or minikube can fail to complete the package install if LoadBalancer services are

not supported.

Contour provides an Ingress implementation by default. If you have another Ingress

implementation in your cluster, you must explicitly specify an IngressClass to select a

particular implementation.

Cloud Native Runtimes programs Contour HTTPRoutes are based on the installed

namespace. The default installation of CNR uses a single Contour to provide internet-

visible services. You can install a second Contour instance with service type

ClusterIP if you want to expose some services to only the local cluster. The second

instance must be installed in a separate namespace. You must set the CNR value

ingress.internal.namespace to point to this namespace.

6. Install the package by running:

kubectl apply -f contour-install.yaml

7. Verify the package install by running:

tanzu package installed get contour -n tap-install

For example:

$ tanzu package installed get contour -n tap-install

/ Retrieving installation details for contour...

NAME: contour

PACKAGE-NAME: contour.tanzu.vmware.com

PACKAGE-VERSION: 1.18.2+tap.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

8. Verify the installation by running:

kubectl get po -n tanzu-system-ingress

For example:

$ kubectl get po -n tanzu-system-ingress

NAME READY STATUS RESTARTS AGE

contour-857d46c845-4r6c5 1/1 Running 1 18d

contour-857d46c845-p6bbq 1/1 Running 1 18d

envoy-mxkjk 2/2 Running 2 18d

envoy-qlg8l 2/2 Running 2 18d

Ensure that all pods are Running with all containers ready.

Install FluxCD source-controller

To install FluxCD source-controller from the Tanzu Application Platform package repository:

Tanzu Application Platform v1.1

VMware, Inc 269

https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class
#install-cnr

1. List version information for the package by running:

tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap-i

nstall

For example:

$ tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap

-install

 \ Retrieving package versions for fluxcd.source.controller.tanzu.vmware.com

...

 NAME VERSION RELEASED-AT

 fluxcd.source.controller.tanzu.vmware.com 0.16.0 2021-10-27 19:00:00 -

0500 -05

2. Install the package by running:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v VERSION-NUMBER -n tap-install

Where:

VERSION-NUMBER is the version of the package listed in step 1.

For example:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v 0.16.0 -n tap-install

\ Installing package 'fluxcd.source.controller.tanzu.vmware.com'

| Getting package metadata for 'fluxcd.source.controller.tanzu.vmware.com'

| Creating service account 'fluxcd-source-controller-tap-install-sa'

| Creating cluster admin role 'fluxcd-source-controller-tap-install-cluster-rol

e'

| Creating cluster role binding 'fluxcd-source-controller-tap-install-cluster-r

olebinding'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'fluxcd-source-controller'

| 'PackageInstall' resource install status: Reconciling

 Added installed package 'fluxcd-source-controller'

3. Verify the package install by running:

tanzu package installed get fluxcd-source-controller -n tap-install

For example:

tanzu package installed get fluxcd-source-controller -n tap-install

\ Retrieving installation details for fluxcd-source-controller...

NAME: fluxcd-source-controller

PACKAGE-NAME: fluxcd.source.controller.tanzu.vmware.com

PACKAGE-VERSION: 0.16.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Tanzu Application Platform v1.1

VMware, Inc 270

Verify that STATUS is Reconcile succeeded

kubectl get pods -n flux-system

For example:

$ kubectl get pods -n flux-system

NAME READY STATUS RESTARTS AGE

source-controller-69859f545d-ll8fj 1/1 Running 0 3m38s

Verify that STATUS is Running

Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on

Knative and runs on a single Kubernetes cluster.

To learn more about Cloud Native Runtimes, see Cloud Native Runtimes for VMware Tanzu.

Install Cloud Native Runtimes

This document describes how to install Cloud Native Runtimes from the Tanzu Application Platform

package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Cloud Native Runtimes. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Cloud Native Runtimes:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install

To install Cloud Native Runtimes:

1. List version information for the package by running:

tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for cnrs.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 cnrs.tanzu.vmware.com 1.0.3 2021-10-20T00:00:00Z

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

Tanzu Application Platform v1.1

VMware, Inc 271

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html

tanzu package available get cnrs.tanzu.vmware.com/1.0.3 --values-schema -

n tap-install

For example:

$ tanzu package available get cnrs.tanzu.vmware.com/1.0.3 --values-schema

 -n tap-install

| Retrieving package details for cnrs.tanzu.vmware.com/1.0.3...

 KEY DEFAULT TYPE DESCRIPTION

 ingress.external.namespace <nil> string Optional: Only valid if a

 Contour instance is already present in the cluster. Specify a namespace

where an existing Contour is installed on your cluster (for external serv

ices) if you want CNR to use your Contour instance.

 ingress.internal.namespace <nil> string Optional: Only valid if a

 Contour instance is already present in the cluster. Specify a namespace

where an existing Contour is installed on your cluster (for internal serv

ices) if you want CNR to use your Contour instance.

 ingress.reuse_crds false boolean Optional: Only valid if a

 Contour instance is already present in the cluster. Set to "true" if you

 want CNR to re-use the cluster's existing Contour CRDs.

 local_dns.domain <nil> string Optional: Set a custom do

main for CoreDNS. Only applicable when "local_dns.enable" is set to "true

" and "provider" is set to "local" and running on Kind.

 local_dns.enable false boolean Optional: Only for when "

provider" is set to "local" and running on Kind. Set to true to enable lo

cal DNS.

 pdb.enable true boolean Optional: Set to true to

enable Pod Disruption Budget. If provider local is set to "local", the PD

B will be disabled automatically.

 provider <nil> string Optional: Kubernetes clus

ter provider. To be specified if deploying CNR on a local Kubernetes clus

ter provider.

2. Create a cnr-values.yaml by using the following sample as a guide:

Sample cnr-values.yaml for Cloud Native Runtimes:

if deploying on a local cluster such as Kind. Otherwise, you can remove

 this field

provider: local

Note: For most installations, you can leave the cnr-values.yaml empty, and use the

default values.

If you are running on a single-node cluster, such as kind or minikube, set the

provider: local option. This option reduces resource requirements by using a

HostPort service instead of a LoadBalancer and reduces the number of replicas.

Cloud Native Runtimes reuses the existing tanzu-system-ingress Contour installation

for external and internal access when installed in the light or full profile. If you

want to use a separate Contour installation for system-internal traffic, set

cnrs.ingress.internal.namespace to the empty string ("").

For more information about using Cloud Native Runtimes with kind, see the Cloud

Native Runtimes documentation. If you are running on a multinode cluster, do not set

Tanzu Application Platform v1.1

VMware, Inc 272

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.2/tanzu-cloud-native-runtimes/GUID-local-dns.html#config-cluster

provider.

If your environment has Contour packages, Contour might conflict with the Cloud

Native Runtimes installation.

For information about how to prevent conflicts, see Installing Cloud Native Runtimes

for Tanzu with an Existing Contour Installation in the Cloud Native Runtimes

documentation. Specify values for ingress.reuse_crds,

ingress.external.namespace, and ingress.internal.namespace in the cnr-

values.yaml file.

3. Install the package by running:

tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 1.0.3 -

n tap-install -f cnr-values.yaml --poll-timeout 30m

For example:

$ tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 1.0.3

 -n tap-install -f cnr-values.yaml --poll-timeout 30m

- Installing package 'cnrs.tanzu.vmware.com'

| Getting package metadata for 'cnrs.tanzu.vmware.com'

| Creating service account 'cloud-native-runtimes-tap-install-sa'

| Creating cluster admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Creating cluster role binding 'cloud-native-runtimes-tap-install-cluster-role

binding'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'cloud-native-runtimes' in namespace 'tap-install'

Use an empty file for cnr-values.yaml if you want the default installation configuration.

Otherwise, see the previous step to learn more about setting installation configuration values.

4. Verify the package install by running:

tanzu package installed get cloud-native-runtimes -n tap-install

For example:

tanzu package installed get cloud-native-runtimes -n tap-install

| Retrieving installation details for cc...

NAME: cloud-native-runtimes

PACKAGE-NAME: cnrs.tanzu.vmware.com

PACKAGE-VERSION: 1.0.3

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

5. Configure a namespace to use Cloud Native Runtimes:

Important

This step covers configuring a namespace to run Knative services. If you rely

Tanzu Application Platform v1.1

VMware, Inc 273

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.2/tanzu-cloud-native-runtimes/GUID-contour.html

Service accounts that run workloads using Cloud Native Runtimes need access to the image

pull secrets for the Tanzu package. This includes the default service account in a

namespace, which is created automatically but not associated with any image pull secrets.

Without these credentials, attempts to start a service fail with a timeout and the pods report

that they are unable to pull the queue-proxy image.

1. Create an image pull secret in the current namespace and fill it from the tap-

registry secret mentioned in Add the Tanzu Application Platform package

repository. Run the following commands to create an empty secret and annotate it as

a target of the secretgen controller:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjso

n={} --type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secre

t=""

2. After you create a pull-secret secret in the same namespace as the service

account, run the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "

pull-secret"}]}'

3. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name: default

Namespace: default

Labels: <none>

Annotations: <none>

Image pull secrets: pull-secret

Mountable secrets: default-token-xh6p4

Tokens: default-token-xh6p4

Events: <none>

Note: The service account has access to the pull-secret image pull secret.

Spring Boot conventions

This topic describes the Spring Boot convention server.

Overview

on a SupplyChain to deploy Knative services into your cluster, skip this step

because namespace configuration is covered in Set up developer

namespaces to use installed packages. Otherwise, you must complete the

following steps for each namespace where you create Knative services.

Tanzu Application Platform v1.1

VMware, Inc 274

#add-package-repositories

The Spring Boot convention server is a bundle of smaller conventions applied to any Spring Boot

application that is submitted to the supply chain in which the convention controller is configured.

Run the docker inspect command to make the Spring Boot convention server look inside the

image. Example command:

docker inspect springio/petclinic

Example output:

[

 {

 "Id": "sha256:...",

 "RepoTags": [

 "springio/petclinic:latest"

],

 "RepoDigests": [

 "springio/petclinic@sha256:..."

],

 "Parent": "",

 "Container": "",

 ...

 "ContainerConfig": {

 "Hostname": "",

 "Domainname": "",

 "User": "",

 ...

 "Labels": null

 },

 "DockerVersion": "",

 "Author": "",

 "Config": {

...

]

The convention server searches inside the image for Config -> Labels ->

io.buildpacks.build.metadata to find the bom file. It looks inside the bom file for metadata to

evaluate whether the convention is to be applied.

For the list of conventions, see Conventions.

Install Spring Boot conventions

This topic describes how to install Spring Boot conventions from the Tanzu Application Platform

package repository.

Prerequisites

Note

Follow the steps in this topic if you do not want to use a profile to install Spring Boot

conventions. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 275

Before installing Spring Boot conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Ensure that Convention Service is installed on the cluster. For more information, see Install

Convention Service section.

Install Spring Boot conventions

To install Spring Boot conventions:

1. Get the exact name and version information for the Spring Boot conventions package to

install by running:

tanzu package available list spring-boot-conventions.tanzu.vmware.com --namespa

ce tap-install

For example:

$ tanzu package available list spring-boot-conventions.tanzu.vmware.com --names

pace tap-install

/ Retrieving package versions for spring-boot-conventions.tanzu.vmware.com...

NAME VERSION RELEASED-AT

...

spring-boot-conventions.tanzu.vmware.com 0.1.2 2021-10-28T00:00:00Z

...

2. Install the package by running:

tanzu package install spring-boot-conventions \

--package-name spring-boot-conventions.tanzu.vmware.com \

--version 0.1.2 \

--namespace tap-install

3. Verify the package install by running:

tanzu package installed get spring-boot-conventions --namespace tap-install

For example:

$ tanzu package installed get spring-boot-conventions -n tap-install

| Retrieving installation details for spring-boot-conventions...

NAME: spring-boot-conventions

PACKAGE-NAME: spring-boot-conventions.tanzu.vmware.com

PACKAGE-VERSION: 0.1.2

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Conventions

Tanzu Application Platform v1.1

VMware, Inc 276

When submitting the following pod Pod Intent on each convention, the output can change

depending on the applied convention.

Before any spring boot conventions are applied, the pod intent looks similar to this YAML:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 name: spring-sample

spec:

 template:

 spec:

 containers:

 - name: workload

 image: springio/petclinic

Most of the Spring Boot conventions either edit or add properties to the environment variable

JAVA_TOOL_OPTIONS. You can override those conventions by providing the JAVA_TOOL_OPTIONS value

you want using the Tanzu CLI or workload.yaml file.

When a JAVA_TOOL_OPTIONS property already exists for a workload, the convention uses the existing

value rather than the value that the convention applies by default. The property value that you

provide is used for the pod specification mutation.

Set a JAVA_TOOL_OPTIONS property for a workload

Do one of the following actions to set JAVA_TOOL_OPTIONS property and values:

Use the Tanzu CLI apps plug-in

When creating or updating a workload, set a JAVA_TOOL_OPTIONS property using the --env flag by

running:

tanzu apps workload create APP-NAME --env JAVA_TOOL_OPTIONS="-DPROPERTY-NAME=VALUE"

For example, to set the management port to 8080 rather than the spring-boot-actuator-

convention default port 8081, run:

tanzu apps workload create APP-NAME --env JAVA_TOOL_OPTIONS="-Dmanagement.server.por

t=8080"

Use workload.yaml

Follow these steps:

1. Provide one or more values for the JAVA_TOOL_OPTIONS property in the workload.yaml.

For example:

apiVersion: carto.run/v1alpha1

kind: Workload

...

spec:

 env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dmanagement.server.port=8082

Tanzu Application Platform v1.1

VMware, Inc 277

#spring-boot-actuator-convention

 source:

...

2. Apply the workload.yaml file by running the command:

tanzu apps workload create -f workload.yaml

Spring Boot convention

If the spring-boot dependency is in the metadata within the SBOM file under dependencies, the

Spring Boot convention is applied to the PodTemplateSpec object.

The Spring Boot convention adds a label (conventions.apps.tanzu.vmware.com/framework: spring-

boot) to the PodTemplateSpec that describes the framework associated with the workload, and adds

an annotation (boot.spring.io/version: VERSION-NO) that describes the Spring Boot version of the

dependency.

The label and annotation are added for informational purposes only.

Example of PodIntent after applying the convention:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","me

tadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"templ

ate":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 resources: {}

Tanzu Application Platform v1.1

VMware, Inc 278

Spring boot graceful shut down convention

If any of the following dependencies are in the metadata within the SBOM file under dependencies, the

Spring Boot graceful shutdown convention is applied to the PodTemplateSpec object:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-reactor-netty

spring-boot-starter-undertow

tomcat-embed-core

The graceful shutdown convention spring-boot-graceful-shutdown adds a property in the

environment variable JAVA_TOOL_OPTIONS with the key server.shutdown.grace-period. The key

value is calculated to be 80% of the value set in .target.Spec.TerminationGracePeriodSeconds. The

default value for .target.Spec.TerminationGracePeriodSeconds is 30 seconds.

Example of PodIntent after applying the convention:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-graceful-shutdown

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dserver.shutdown.grace-period="24s"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

Tanzu Application Platform v1.1

VMware, Inc 279

 resources: {}

Spring Boot web convention

If any of the following dependencies are in the metadata within the SBOM file under dependencies, the

Spring Boot web convention is applied to the PodTemplateSpec object:

spring-boot

spring-boot-web

The web convention spring-boot-web obtains the server.port property from the

JAVA_TOOL_OPTIONS environment variable and sets it as a port in PodTemplateSpec. If the

JAVA_TOOL_OPTIONS environment variable does not contain a server.port property or value, the

convention adds the property and sets the value to 8080, which is the Spring Boot default.

Example of PodIntent after applying the convention:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

Tanzu Application Platform v1.1

VMware, Inc 280

 resources: {}

Spring Boot Actuator convention

If the spring-boot-actuator dependency is in the metadata within the SBOM file under dependencies,

the Spring Boot actuator convention is applied to the PodTemplateSpec object.

The Spring Boot Actuator convention the following actions:

Sets the management port in the JAVA_TOOL_OPTIONS environment variable to 8081.

Sets the base path in the JAVA_TOOL_OPTIONS environment variable to /actuator.

Adds an annotation, boot.spring.io/actuator, to where the actuator is accessed.

The management port is set to port 8081 for security reasons. Although you can prevent public

access to the actuator endpoints that are exposed on the management port when it is set to the

default 8080, the threat of exposure through internal access remains. The best practice for security is

to set the management port to something other than 8080.

However, if a management port number value is provided using the -Dmanagement.server.port

property in JAVA_TOOL_OPTIONS, the Spring Boot actuator convention uses that value rather than the

default 8081 as the management port.

You can access the management context of a Spring Boot application by creating a service pointing

to port 8081 and base path /actuator.

Important: To override the management port setting applied by this convention, see How to set a

JAVA_TOOL_OPTIONS property for a workload earlier in this topic. Any alternative methods for

setting the management port are overwritten. For example, if you configure the management port

using application.properties/yml or config server, the Spring Boot Actuator convention

overrides your configuration.

Example of PodIntent after applying the convention:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

Tanzu Application Platform v1.1

VMware, Inc 281

 metadata:

 annotations:

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.server.p

ort="8081" -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

Spring Boot Actuator Probes convention

The Spring Boot Actuator Probes convention is applied only if all of the following conditions are met:

The spring-boot-actuator dependency exists and is greater than or equal to 2.6.

The JAVA_TOOL_OPTIONS environment variable does not include the following properties or, if

either of the properties is included, it is set to the value true:

-Dmanagement.health.probes.enabled

-Dmanagement.endpoint.health.probes.add-additional-paths

The Spring Boot Actuator Probes convention does the following actions:

Uses the main server port, which is the server.port value on JAVA_TOOL_OPTIONS, to set the

liveness and readiness probes. For more information see the Kubernetes documentation

Adds the following properties and values to the JAVA_TOOL_OPTIONS environment variable:

-Dmanagement.health.probes.enabled="true"

-Dmanagement.endpoint.health.probes.add-additional-paths="true"

When this convention is applied, the probes are exposed as follows:

Liveness probe: /livez

Readiness probe: /readyz

Example of PodIntent after applying the convention:

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: PodIntent

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

Tanzu Application Platform v1.1

VMware, Inc 282

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent","m

etadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"temp

late":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.6.0

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoints.web.base-path="/actuator" -Dmanagement.health.probes.enabled="true"

-Dmanagement.server.port="8081" -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 livenessProbe:

 httpGet:

 path: /livez

 port: 8080

 scheme: HTTP

 ports:

 - containerPort: 8080

 protocol: TCP

 readinessProbe:

 httpGet:

 path: /readyz

 port: 8080

 scheme: HTTP

 resources: {}

Service intent conventions

The Service intent conventions do not change the behavior of the final deployment, but you can use

them as added information to process in the supply chain, such as when an app requires to be

bound to a database service. This convention adds an annotation and a label to PodTemplateSpec for

each detected dependency. It also adds an annotation and a label to

conventions.apps.tanzu.vmware.com/applied-conventions.

Tanzu Application Platform v1.1

VMware, Inc 283

The list of the supported intents are:

MySQL

Name: service-intent-mysql

Label: services.conventions.apps.tanzu.vmware.com/mysql

Dependencies: mysql-connector-java, r2dbc-mysql

PostgreSQL

Name: service-intent-postgres

Label: services.conventions.apps.tanzu.vmware.com/postgres

Dependencies: postgresql, r2dbc-postgresql

MongoDB

Name: service-intent-mongodb

Label: services.conventions.apps.tanzu.vmware.com/mongodb

Dependencies: mongodb-driver-core

RabbitMQ

Name: service-intent-rabbitmq

Label: services.conventions.apps.tanzu.vmware.com/rabbitmq

Dependencies: amqp-client

Redis

Name: service-intent-redis

Label: services.conventions.apps.tanzu.vmware.com/redis

Dependencies: jedis

Kafka

Name: service-intent-kafka

Label: services.conventions.apps.tanzu.vmware.com/kafka

Dependencies: kafka-clients

Kafka-streams

Name: service-intent-kafka-streams

Label: services.conventions.apps.tanzu.vmware.com/kafka-streams

Dependencies: kafka-streams

Example

When you apply the Pod Intent and the image contains a dependency, for example, of MySQL,

then the output of the convention is:

Tanzu Application Platform v1.1

VMware, Inc 284

 apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

 kind: PodIntent

 metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"conventions.apps.tanzu.vmware.com/v1alpha1","kind":"PodIntent",

"metadata":{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"te

mplate":{"spec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

 creationTimestamp: "..."

 generation: 1

 name: spring-sample

 namespace: default

 resourceVersion: "..."

 uid: ...

 spec:

 serviceAccountName: default

 template:

 metadata: {}

 spec:

 containers:

 - image: springio/petclinic

 name: workload

 resources: {}

 status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

 status: "True"

 type: ConventionsApplied

 - lastTransitionTime: "..."

 status: "True"

 type: Ready

 observedGeneration: 1

 template:

 metadata:

 annotations:

 boot.spring.io/actuator: http://:8080/actuator

 boot.spring.io/version: 2.3.3.RELEASE

 conventions.apps.tanzu.vmware.com/applied-conventions: |-

 spring-boot-convention/spring-boot

 spring-boot-convention/spring-boot-web

 spring-boot-convention/spring-boot-actuator

 spring-boot-convention/service-intent-mysql

 services.conventions.apps.tanzu.vmware.com/mysql: mysql-connector-java/8.0.2

1

 labels:

 conventions.apps.tanzu.vmware.com/framework: spring-boot

 services.conventions.apps.tanzu.vmware.com/mysql: workload

 spec:

 containers:

 - env:

 - name: JAVA_TOOL_OPTIONS

 value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.server

.port="8081" -Dserver.port="8080"

 image: index.docker.io/springio/petclinic@sha256:...

 name: workload

 ports:

 - containerPort: 8080

 protocol: TCP

 resources: {}

Tanzu Application Platform v1.1

VMware, Inc 285

Troubleshoot Spring Boot Conventions

This topic describes how to troubleshoot Spring Boot conventions.

Collect logs

If you have trouble, you can retrieve and examine logs from the Spring Boot convention server as

follows:

1. The Spring Boot convention server creates a namespace to contain all of the associated

resources. By default the namespace is spring-boot-convention. To inspect the logs, run:

kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

For example:

$ kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot","c

omponent":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-gra

ceful-shutdown","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-web

","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-act

uator","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: service-intent-

mysql","component":"spring-boot-conventions"}

2. For all of the conventions that were applied successfully, a log entry is added. If an error

occurs, a log entry is added with a description.

Service Bindings for Kubernetes

Service Bindings for Kubernetes implements the Service Binding Specification for Kubernetes.

VMware is tracking changes to the specifications as it approaches a stable release, currently targeting

pre-RC3 in GitHub. Backwards and forwards compatibility should not be expected for alpha

versioned resources.

This implementation provides support for:

Provisioned Service

Workload Projection

Service Binding

Direct Secret Reference

Role-Based Access Control (RBAC)

Tanzu Application Platform v1.1

VMware, Inc 286

https://github.com/k8s-service-bindings/spec
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#provisioned-service
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-projection
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#service-binding
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#direct-secret-reference
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#role-based-access-control-rbac

The following are not supported:

Workload Resource Mapping

Extensions including:

Binding Secret Generation Strategies

Install Service Bindings

This document describes how to install Service Bindings from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Service Bindings:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Service Bindings

Use the following procedure to install Service Bindings:

1. List version information for the package by running:

tanzu package available list service-bindings.labs.vmware.com --namespace tap-i

nstall

For example:

$ tanzu package available list service-bindings.labs.vmware.com --namespace tap

-install

- Retrieving package versions for service-bindings.labs.vmware.com...

 NAME VERSION RELEASED-AT

 service-bindings.labs.vmware.com 0.5.0 2021-09-15T00:00:00Z

2. Install the package by running:

tanzu package install service-bindings -p service-bindings.labs.vmware.com -v 0

.5.0 -n tap-install

Example output:

/ Installing package 'service-bindings.labs.vmware.com'

| Getting namespace 'tap-install'

Note

Follow the steps in this topic if you do not want to use a profile to install Service

Bindings. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 287

https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-resource-mapping
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#binding-secret-generation-strategies

- Getting package metadata for 'service-bindings.labs.vmware.com'

| Creating service account 'service-bindings-tap-install-sa'

| Creating cluster admin role 'service-bindings-tap-install-cluster-role'

| Creating cluster role binding 'service-bindings-tap-install-cluster-rolebindi

ng'

\ Creating package resource

| Package install status: Reconciling

 Added installed package 'service-bindings' in namespace 'tap-install'

3. Verify the package install by running:

tanzu package installed get service-bindings -n tap-install

Example output:

- Retrieving installation details for service-bindings...

NAME: service-bindings

PACKAGE-NAME: service-bindings.labs.vmware.com

PACKAGE-VERSION: 0.5.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

4. Run the following command:

kubectl get pods -n service-bindings

For example:

$ kubectl get pods -n service-bindings

NAME READY STATUS RESTARTS AGE

manager-6d85fffbcd-j4gvs 1/1 Running 0 22s

Verify that STATUS is Running

Troubleshoot Service Bindings

Collect logs

To help identify issues when troubleshooting, you can retrieve and examine logs from the service

binding manager.

To retrieve pod logs from the manager running in the service-bindings namespace, run:

kubectl -n service-bindings logs -l role=manager

For example:

$ kubectl -n service-bindings logs -l role=manager

2021/11/05 15:25:28 Registering 3 clients

2021/11/05 15:25:28 Registering 3 informer factories

2021/11/05 15:25:28 Registering 7 informers

Tanzu Application Platform v1.1

VMware, Inc 288

2021/11/05 15:25:28 Registering 8 controllers

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483823208Z","caller":"logging/nfig

.go:116","message":"Successfully created the logger."}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.48392361Z","caller":"logging/confi

g.go:117","message":"Logging level set to: info"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483999911Z","caller":"logging/conf

ig.go:79","message":"Fetch GitHub commit ID from kodata failed","error":"open /var/run

/ko/HEAD: no such file or directory"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.484035711Z","logger":"webhook","ca

ller":"profiling/server.go:64","message":"Profiling enabled: false"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.522884909Z","logger":"webhook","ca

ller":"leaderelection/context.go:46","message":"Running with Standard leader election"

}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.523358615Z","logger":"webhook","ca

ller":"provisionedservice/controller.go:31","message":"Setting up event handlers."}

...

{"severity":"ERROR","timestamp":"2021-11-17T12:30:24.557178813Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"276.504µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T12:47:04.558217679Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"249.103µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:03:44.558683121Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"177.403µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:20:24.559192644Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"223.203µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:37:04.559648412Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"173.003µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:53:44.56010516Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"182.402µs

","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev/

Tanzu Application Platform v1.1

VMware, Inc 289

pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0

/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem\

n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nkn

ative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-2021033106

5221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:10:24.560536033Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"155.603µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:27:04.560960243Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"171.002µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:43:44.56142548Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"179.203µs

","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev/

pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0

/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem\

n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nkn

ative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-2021033106

5221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T15:00:24.561881861Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"167.902µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.dev

/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb

0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkItem

\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\nk

native.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-202103310

65221-952fdd90dbb0/controller/controller.go:468"}

Resources

ServiceBinding (servicebinding.io/v1alpha3)

The ServiceBinding resource shape and behavior is defined by the following specification:

apiVersion: servicebinding.io/v1alpha3

kind: ServiceBinding

metadata:

 name: account-db

spec:

 service:

 apiVersion: mysql.example/v1alpha1

 kind: MySQL

 name: account-db

 workload:

 apiVersion: apps/v1

 kind: Deployment

 name: account-service

Tanzu Application Platform v1.1

VMware, Inc 290

Services Toolkit

The Services Toolkit comprises the following Kubernetes native components which support the

management, lifecycle, discoverability and connectivity of Service Resources (databases, message

queues, DNS records, etc.) on Kubernetes:

Service OfferingService Offering

Service API Projection

Service Resource Replication

Service Resource Claims

To learn more about Services Toolkit, see the Services Toolkit for VMware Tanzu Product

Documentation

Install Services Toolkit

This topic describes how to install Services Toolkit from the Tanzu Application Platform package

repository.

Prerequisites

Before installing Services Toolkit:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Services Toolkit

To install Services Toolkit:

1. See what versions of Services Toolkit are available to install by running:

tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

- Retrieving package versions for services-toolkit.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 services-toolkit.tanzu.vmware.com 0.6.0 2022-04-12T00:00:00Z

2. Install Services Toolkit by running:

Note

Follow the steps in this topic if you do not want to use a profile to install Services

Toolkit. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 291

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.6/svc-tlk/GUID-overview.html

tanzu package install services-toolkit -n tap-install -p services-toolkit.tanzu

.vmware.com -v VERSION-NUMBER

Where VERSION-NUMBER is the Services Toolkit version you want to install. For example,

0.6.0.

3. Verify that the package installed by running:

tanzu package installed get services-toolkit -n tap-install

and checking that the STATUS value is Reconcile succeeded

For example:

$ tanzu package installed get services-toolkit -n tap-install

| Retrieving installation details for services-toolkit...

NAME: services-toolkit

PACKAGE-NAME: services-toolkit.tanzu.vmware.com

PACKAGE-VERSION: 0.6.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Source Controller

Tanzu Source Controller provides a common interface for artifact acquisition. With it, an

ImageRepository resource can resolve source from the contents of an image in an image registry.

This functionality enables app developers to create and update workloads from local source code or

from a code repository.

Tanzu Source Controller extends the functionality of the FluxCD Source Controller Kubernetes

operator. For more information about FluxCD Source Controller, see the fluxcd/source-controller

project on GitHub.

Install Source Controller

This document describes how to install Source Controller from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Source Controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Note

Follow the steps in this topic if you do not want to use a profile to install Source

Controller. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 292

https://github.com/fluxcd/source-controller

Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager, Contour.

Install

To install Source Controller:

1. List version information for the package by running:

tanzu package available list controller.source.apps.tanzu.vmware.com --namespac

e tap-install

For example:

$ tanzu package available list controller.source.apps.tanzu.vmware.com --namesp

ace tap-install

- Retrieving package versions for controller.source.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 controller.source.apps.tanzu.vmware.com 0.3.1 2022-01-23 19:00:00 -0500 -

05

 controller.source.apps.tanzu.vmware.com 0.3.2 2022-02-21 19:00:00 -0500 -

05

 controller.source.apps.tanzu.vmware.com 0.3.3 2022-03-03 19:00:00 -0500 -

05

2. (Optional) Gather values schema:

tanzu package available get controller.source.apps.tanzu.vmware.com/VERSION-NUM

BER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get controller.source.apps.tanzu.vmware.com/0.3.3 --v

alues-schema --namespace tap-install

 Retrieving package details for controller.source.apps.tanzu.vmware.com/0.3.3..

.

 KEY DEFAULT TYPE DESCRIPTION

 ca_cert_data string Optional: PEM Encoded certificate data for imag

e registries with private CA.

3. (Optional) Enable Source Controller to connect to image registries that use self-signed or

private certificate authorities. If a certificate error x509: certificate signed by unknown

authority occurs, this option can be used to trust additional certificate authorities.

To provide a custom certificate, create a file named source-controller-values.yaml that

includes the PEM-encoded CA certificate data.

For example:

ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 MIICpTCCAYUCBgkqhkiG9w0BBQ0wMzAbBgkqhkiG9w0BBQwwDgQIYg9x6gkCAggA

 ...

Tanzu Application Platform v1.1

VMware, Inc 293

 9TlA7A4FFpQqbhAuAVH6KQ8WMZIrVxJSQ03c9lKVkI62wQ==

 -----END CERTIFICATE-----

4. Install the package:

tanzu package install source-controller -p controller.source.apps.tanzu.vmware.

com -v VERSION-NUMBER -n tap-install -f VALUES-FILE

Where:

VERSION-NUMBER is the version of the package listed in step 1 above.

VALUES-FILE is the path to the file created in step 3.

For example:

tanzu package install source-controller -p controller.source.apps.tanzu.vmware.

com -v 0.3.3 -n tap-install -f source-controller-values.yaml

\ Installing package 'controller.source.apps.tanzu.vmware.com'

| Getting package metadata for 'controller.source.apps.tanzu.vmware.com'

| Creating service account 'source-controller-default-sa'

| Creating cluster admin role 'source-controller-default-cluster-role'

| Creating cluster role binding 'source-controller-default-cluster-rolebinding'

| Creating secret 'source-controller-default-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'source-controller'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'source-controller'

5. Verify the package installation by running:

tanzu package installed get source-controller -n tap-install

For example:

tanzu package installed get source-controller -n tap-install

- Retrieving installation details for source-controller...

NAME: source-controller

PACKAGE-NAME: controller.source.apps.tanzu.vmware.com

PACKAGE-VERSION: 0.3.3

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n source-system

For example:

$ kubectl get pods -n source-system

NAME READY STATUS RESTARTS AGE

source-controller-manager-f68dc7bb6-4lrn6 1/1 Running 0 100s

Tanzu Application Platform v1.1

VMware, Inc 294

Verify that STATUS is Running.

Troubleshoot Source Controller

Collecting Logs from Source Controller Manager

To retrieve Pod logs from the controller-manager, run the following command in the source-system

namespace:

kubectl logs -n source-system -l control-plane=controller-manager

For example:

kubectl logs -n source-system -l control-plane=controller-manager

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g E v e n t

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g E v e n t

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g E v e n t

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 1 5 2 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g C o n t r

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository"}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Contr

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository"}

2 0 2 1 - 1 1 - 1 8 T 1 7 : 5 9 : 4 3 . 3 8 9 Z I N F O c o n t r o l l e r . m e t a r e p o s i t o r y S t a r t i n g w o r k e

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "worker count": 1}

2021-11-18T17:59:43.391Z INFO controller.imagerepository Starting worke

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "worker count": 1}

Source Controller Reference

The following reference documentation exists.

ImageRepository

apiVersion: source.apps.tanzu.vmware.com/v1alpha1

kind: ImageRepository

Tanzu Application Platform v1.1

VMware, Inc 295

spec:

 image: registry.example/image/repository:tag

 # optional fields

 interval: 5m

 imagePullSecrets: []

 serviceAccountName: default

ImageRepository resolves source code defined in an Open Container Initiative (OCI) image

repository, exposing the resulting source artifact at a URL defined by .status.artifact.url.

The interval determines how often to check tagged images for changes. Setting this value too high

will result in delays in discovering new sources, while setting it too low may trigger a registry’s rate

limits.

Repository credentials can be defined as image pull secrets. You can reference them either directly

from the resources at .spec.imagePullSecrets or attach them to a service account referenced at

.spec.serviceAccountName. The default service account name "default" is used if not otherwise

specified. The default credential helpers for the registry are also used, for example, pulling from

Google Container Registry (GCR) on a Google Kubernetes Engine (GKE) cluster.

Developer Conventions for Tanzu Application Platform

Overview

Developer Conventions is a set of conventions that enable your workloads to support live-update

and debug operations. It is used alongside the Tanzu CLI Apps plug-in and the Tanzu Developer

Tools for Visual Studio Code IDE extension.

Features

Enabling Live Updates

Developer Conventions modifies your workload to enable live updates in either of the following

situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --live-

update=true. For more information about how to deploy a workload with the CLI, see Tanzu

apps workload apply.

You deploy a workload by using the Tanzu: Live Update Start option through the Tanzu

Developer Tools for VS Code extension. For more information about live updating with the

extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. Looks for the apps.tanzu.vmware.com/live-update=true annotation on a PodTemplateSpec

associated with a workload.

2. Verifies that the image to which conventions are applied contains a process that can be live

updated.

3. Adds annotations to the PodTemplateSpec to modify the Knative properties minScale &

maxScale such that the minimum and maximum number of pods is 1. This ensures the

Tanzu Application Platform v1.1

VMware, Inc 296

eventual running pod is not scaled down to 0 during a live update session.

After these changes are made, you can use the Tanzu Dev Tools extension or the Tilt CLI to make

live update changes to source code directly on the cluster.

Enabling debugging

Developer Conventions modifies your workload to enable debugging in either of the following

situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --

debug=true. For more information about how to deploy a workload with the CLI, see Tanzu

apps workload apply.

You deploy a workload by using the Tanzu Java Debug Start option through the Tanzu

Developer Tools for VS Code extension. For more information about debugging with the

extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. It looks for the apps.tanzu.vmware.com/debug=true annotation on a PodTemplateSpec

associated with a workload.

2. It checks for the debug-8 or debug-9 labels on the image configuration’s bill of materials

(BOM).

3. It sets the TimeoutSeconds of the Liveness, Readiness, and Startup probes to 600 if

currently set to a lower number.

4. It adds annotations to the PodTemplateSpec to modify the Knative properties minScale &

maxScale such that the minimum and maximum number of pods is 1. This ensures the

eventual running pod won’t be scaled down to 0 during a debug session.

After these changes are made, you can use the Tanzu Dev Tools extension or other CLI-based

debuggers to debug your workload directly on the cluster.

Next steps

Install Developer Conventions

Install Developer Conventions

This document describes how to install Developer Conventions from the Tanzu Application Platform

package repository.

Note

: Currently, Developer Conventions only supports debug operations for Java

applications.

Note

Follow the steps in this topic if you do not want to use a profile to install Developer

Tanzu Application Platform v1.1

VMware, Inc 297

Prerequisites

Before installing Developer Conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Convention Service.

Install

To install Developer Conventions:

1. Get the exact name and version information for the Developer Conventions package to be

installed by running:

tanzu package available list developer-conventions.tanzu.vmware.com --namespace

 tap-install

For example:

$ tanzu package available list developer-conventions.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for developer-conventions.tanzu.vmware.com

 NAME VERSION RELEASED-AT

 developer-conventions.tanzu.vmware.com 0.3.0 2021-10-19T00:00:00Z

2. Install the package by running:

tanzu package install developer-conventions \

 --package-name developer-conventions.tanzu.vmware.com \

 --version 0.3.0 \

 --namespace tap-install

3. Verify the package install by running:

tanzu package installed get developer-conventions --namespace tap-install

For example:

tanzu package installed get developer-conventions -n tap-install

| Retrieving installation details for developer-conventions...

NAME: developer-conventions

PACKAGE-NAME: developer-conventions.tanzu.vmware.com

PACKAGE-VERSION: 0.3.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Conventions. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 298

Resource limits

The following resource limits are set on the Developer Conventions service:

resources:

 limits:

 cpu: 100m

 memory: 256Mi

 requests:

 cpu: 100m

 memory: 20Mi

Uninstall

To uninstall Developer Conventions, follow the guide for Uninstalling Tanzu Application Platform

packages. The package name for developer conventions is developer-conventions.

Learning Center for Tanzu Application Platform

Overview

Learning Center provides a platform for creating and self-hosting workshops. It allows content

creators to create workshops from markdown files that are displayed to the learner in a terminal shell

environment with an instructional wizard UI. The UI can embed slide content, an integrated

development environment (IDE), a web console for accessing the Kubernetes cluster, and other

custom web applications.

Although Learning Center requires Kubernetes to run, and is used to teach users about Kubernetes,

you can use it to host training for other purposes as well. For example, you can use it to help train

users in web-based applications, use of databases, or programming languages, where the user has

no interest or need for Kubernetes.

Use cases

Use case scenarios that Learning Center supports include:

Supervised workshops. For example, a workshop run at a conference, at a customer site, or

online. The workshop has a set time period and you know the maximum number of users to

expect. After the training is complete, the Kubernetes cluster created for the workshop is

destroyed.

Temporary learning portal. This is for when you must provide access to a small set of

workshops for a short duration for hands on demos at a conference vendor booth. Users

select which topic they want to learn about and do that workshop. The workshop instance is

created on demand. When they have finished the workshop, that workshop instance is

destroyed to free up resources. After the conference has finished, the Kubernetes cluster is

destroyed.

Permanent learning portal. Similar to the temporary learning portal, but runs on an extended

basis as a public website where anyone can come and learn at any time.

Tanzu Application Platform v1.1

VMware, Inc 299

Personal training or demos. This is where anyone who wants to run a workshop on their own

Kubernetes cluster to learn that topic, or where a product demo was packaged up as a

workshop and they want to use it to demonstrate the product to a customer. The workshop

environment can be destroyed when complete, but there is no need for the cluster to be

destroyed.

When running workshops, wherever possible a shared Kubernetes cluster reduces the amount of

setup required. This works for developer-focused workshops as it is usually not necessary to provide

elevated access to the Kubernetes cluster, and role-based access controls (RBAC) can be used to

prevent users from interfering with each other. Quotas can also be set so that users are restricted to

how much resources they can use.

When needing to run workshops that deal with cluster operations, for which users need cluster

admin access, a separate cluster is created for each user. Learning Center doesn’t deal with

provisioning clusters, only with deploying a workshop environment in a cluster after it exists.

Use case requirements

In implementing to the preceding scenarios, the primary requirements related to creation of

workshop content, and what can be done at runtime, are as follows:

Everything for the workshop must be stored in a Git repository, with no dependency on

using a special web application or service to create a workshop.

Use GitHub as a means to distribute workshop content. Alternatively, you can distribute the

workshop as a container image. The latter is necessary if special tools must be installed for

use in a workshop.

Provide instructions to the user to complete the workshop as Markdown or AsciiDoc files.

Instructions can be annotated as executable commands so that when clicked in the workshop

dashboard, they execute for the user in the appropriate terminal to avoid mistakes when

commands are entered manually.

Text can be annotated as copyable so when clicked in the workshop dashboard, it is copied

into the browser paste buffer ready for pasting into the terminal or other web application.

Provide each user access to one or more namespaces in the Kubernetes cluster unique to

their session. For Kubernetes based workshops, this is where applications are deployed as

part of the workshop.

Additional Kubernetes resources specific to a workshop session can be created in advance of

the session. This enables the deployment of applications for each user session.

Additional Kubernetes resources common to all workshop sessions can be deployed when

the workshop environment is first created. This enables deployment of applications shared by

all users.

Apply resource quotas on each workshop session to control how much resources users can

consume.

Apply role-based access control (RBAC) on each workshop session to control what users can

do.

Provide access to an editor (IDE) in the workshop dashboard in the web browser for users to

Tanzu Application Platform v1.1

VMware, Inc 300

edit files during the workshop.

Provide access to a web-based console for accessing the Kubernetes cluster. Use of the

Kubernetes dashboard or Octant is supported.

Ability to integrate additional web-based applications into the workshop dashboard specific to

the topic of the workshop.

Ability for the workshop dashboard to display slides used by an instructor in support of the

workshop.

Platform architectural overview

The Learning Center relies on a Kubernetes Operator to perform the bulk of the work. The actions

of the operator are controlled by using a set of custom resources specific to the Learning Center.

There are multiple ways of using the custom resources to deploy workshops. The primary way is to

create a training portal, which in turn then triggers the setup of one or more workshop

environments, one for each distinct workshop. When users access the training portal and select the

workshop they want to do, the training portal allocates to that user a workshop session (creating one

if necessary) against the appropriate workshop environment, and the user is redirected to that

workshop session instance.

You can associate each workshop session with one or more Kubernetes namespaces specifically for

use during that session. Role based access control (RBAC) applied to the unique Kubernetes service

account for that session ensures that the user can only access the namespaces and other resources

that they are allowed to for that workshop.

In this scenario, the custom resource types that come into play are:

Workshop - Provides the definition of a workshop. Preloaded by an admin into the cluster, it

defines where the workshop content is hosted, or the location of a container image which

bundles the workshop content and any additional tools required for the workshop. The

definition also lists additional resources that must be created which are to be shared between

all workshop sessions, or for each session, with details of resources quotas and access roles

Tanzu Application Platform v1.1

VMware, Inc 301

required by the workshop.

TrainingPortal - Created by an admin in the cluster to trigger the deployment of a training

portal. The training portal can provide access to one or more distinct workshops defined by a

Workshop resource. The training portal provides a web based interface for registering for

workshops and accessing them. It also provides a REST API for requesting access to

workshops, allowing custom front ends to be created which integrate with separate identity

providers and which provide an alternate means for browsing and accessing workshops.

WorkshopEnvironment - Used by the training portal to trigger the creation of a workshop

environment for a workshop. This causes the operator to set up a namespace for the

workshop into which shared resources are deployed, and where the workshop sessions are

run.

WorkshopSession - Used by the training portal to trigger the creation of a workshop session

against a specific workshop environment. This causes the operator to set up any namespaces

specific to the workshop session and pre-create additional resources required for a workshop

session. Workshop sessions can either be created up front in reserve, to be handed out

when requested, or created on demand.

Next steps

Learn more about:

Workshops

Getting Started with Learning Center

Installing Learning Center

Local Install Guides

Install Learning Center

This document describes how to install Learning Center from the Tanzu Application Platform

package repository.

To install Tanzu Learning Center, see the following sections.

For general information about Learning Center, see Learning Center. For information about

deploying Learning Center operator, see Learning Center operator.

Prerequisites

Before installing Learning Center:

Note

Follow the steps in this topic if you do not want to use a profile to install Learning

Center. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 302

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

The cluster must have an ingress router configured. If you have installed the TAP package

through the full profile or light profile, it already deploys a contour ingress controller.

The operator, when deploying instances of the workshop environments, needs to be able to

expose them through an external URL for access. For the custom domain you are using,

DNS must have been configured with a wildcard domain to forward all requests for sub-

domains of the custom domain to the ingress router of the Kubernetes cluster.

By default, the workshop portal and workshop sessions are accessible over HTTP

connections. If you wish to use secure HTTPS connections, you must have access to a

wildcard SSL certificate for the domain under which you wish to host the workshops. You

cannot use a self-signed certificate.

Any ingress routes created use the default ingress class if you have multiple ingress class

types available and you need to override which is used.

Install

To install Learning Center:

1. List version information for the package by running:

tanzu package available list learningcenter.tanzu.vmware.com --namespace tap-in

stall

Example output:

 NAME VERSION RELEASED-AT

 learningcenter.tanzu.vmware.com 0.1.0 2021-12-01 08:18:48 -0500 EDT

2. (Optional) See all the configurable parameters on this package by running:

Remember to change the 0.x.x version

tanzu package available get learningcenter.tanzu.vmware.com/0.x.x --values-sche

ma --namespace tap-install

3. Create a config file named learning-center-config.yaml.

4. Add the parameter ingressDomain to learning-center-config.yaml, as in this example:

ingressDomain: YOUR-INGRESS-DOMAIN

Where YOUR-INGRESS-DOMAIN is the domain name for your Kubernetes cluster.

When deploying workshop environment instances, the operator must be able to expose the

instances through an external URL. This access is needed to discover the domain name that

can be used as a suffix to hostnames for instances.

For the custom domain you are using, DNS must have been configured with a wildcard

domain to forward all requests for sub-domains of the custom domain to the ingress router of

the Kubernetes cluster.

Tanzu Application Platform v1.1

VMware, Inc 303

If you are running Kubernetes on your local machine using a system such as minikube and

you don’t have a custom domain name that maps to the IP for the cluster, you can use a

nip.io address. For example, if minikube ip returns 192.168.64.1, you can use the

192.168.64.1.nip.io domain. You cannot use an address of form 127.0.0.1.nip.io or

subdomain.localhost. This will cause a failure. Internal services needing to connect to each

other will connect to themselves instead because the address would resolve to the host

loopback address of 127.0.0.1.

5. Add the ingressSecret to learning-center-config.yaml, as in this example:

 ingressSecret:

 certificate: |

 -----BEGIN CERTIFICATE-----

 MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

 ...

 dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

 -----END CERTIFICATE-----

 privateKey: |

 -----BEGIN PRIVATE KEY-----

 MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

 ...

 IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

 -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshop: -

Create the learningcenter namespace manually or the one you defined - Copy the tls secret

to the learningcenter namespace or the one you defined and use the secretName property

as in this example:

ingressSecret:

 secretName: workshops.example.com-tls

By default, the workshop portal and workshop sessions are accessible over HTTP

connections.

To use secure HTTPS connections, you must have access to a wildcard SSL certificate for the

domain under which you want to host the workshops. You cannot use a self-signed

certificate.

Wildcard certificates can be created using letsencrypt https://letsencrypt.org/_. After you

have the certificate, you can define the certificate and privateKey properties under the

ingressSecret property to specify the certificate on the configuration yaml.

6. Any ingress routes created use the default ingress class. If you have multiple ingress class

types available, and you need to override which is used, define the ingressClass property in

learning-center-config.yaml before deploying any workshop:

ingressClass: contour

7. Install Learning Center operator by running:

Remember to change the 0.x.x version

tanzu package install learning-center --package-name learningcenter.tanzu.vmwar

Tanzu Application Platform v1.1

VMware, Inc 304

https://letsencrypt.org/

e.com --version 0.x.x -f learning-center-config.yaml

The command above will create a default namespace in your Kubernetes cluster called

learningcenter, and the operator, along with any required namespaced resources, is

created in it. A set of custom resource definitions and a global cluster role binding are also

created.

You can check that the operator deployed successfully by running:

kubectl get all -n learningcenter

The pod for the operator should be marked as running.

Procedure to install the Self-Guided Tour Training Portal and
Workshop

To install the Self-Guided Tour Training Portal and Workshop:

1. Make sure you have the workshop package installed by running:

tanzu package available list workshops.learningcenter.tanzu.vmware.com --namesp

ace tap-install

2. Install the Learning Center Training Portal with the Self-Guided Tour Workshop by running:

Remember to change the 0.x.x version

tanzu package install learning-center-workshop --package-name workshops.learnin

gcenter.tanzu.vmware.com --version 0.x.x -n tap-install

3. Check the Training Portals available in your environment by running:

kubectl get trainingportals

Example output:

NAME URL ADMINU

SERNAME ADMINPASSWORD STATUS

 learningcenter-tutorials http://learningcenter-tutorials.example.com le

arningcenter QGBaM4CF01toPiZLW5NrXTcIYSpw2UJK Running

Supported Learning Center Values Configuration

Admins are provided the following sample learning-center-config.yaml file to see the possible

configurations supported by Learning Center. These configurations are additional ones that admins

can provide to the operator resource but are by no means necessary for Learning Center to work. It

is enough to follow the previous instructions on this page for Learning Center to run.

It is important to note that Learning Center has default values in place for the learning-center-

config.yaml file. Admins only need to provide the values they want to override. As in the example

above, overriding the ingressDomain property is enough to get Learning Center to work.

Tanzu Application Platform v1.1

VMware, Inc 305

#! The namespace in which to deploy Learning Center. For now this must be "learningcen

ter" as

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. This must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

 certificate: null

 privateKey: null

 secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. You might need to set storage group

#! where a cluster has pod security policies enabled, usually

#! to one. Set storage user and storage group in exceptional cases

#! where storage class uses maps to NFS storage and storage server requires

#! that a specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified,

#! random passwords are generated that you can obtain from the custom resource

#! for the training portal.

portalCredentials:

 systemAdmin:

 username: learningcenter

 password: null

 clientAccess:

 username: robot@learningcenter

 password: null

#! Container image versions for various components of Learning Center. The Learning Ce

nter

#! operator needs to be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! Prepull images to nodes in cluster. Should be an empty list if no images

#! should be prepulled. Normally you would only want to prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

 networkMTU: 1500

 proxyCache:

 remoteURL: null

 username: null

 password: null

#! Used to restrict access to IP addresses or IP subnets. This must be a CIDR block ra

nge corresponding to the subnet or a portion of a

#! subnet you want to block. A Kubernetes `NetworkPolicy` is used to enforce the restr

iction. So the

#! Kubernetes cluster must use a network layer supporting network policies, and the ne

cessary Kubernetes

#! controllers supporting network policies must be enabled when the cluster is install

ed.

Tanzu Application Platform v1.1

VMware, Inc 306

network:

 blockCIDRs:

 - 169.254.169.254/32

 - fd00:ec2::254/128

See Restricting Network Access for more information on blocking CIDRs.

Learning Center workshops

The Learning Center workshop dashboard comprises a set of workshop instructions on the left-hand

side and a series of tabbed views on the right-hand side. For workshops requiring commands to be

run, one or more terminal shells are provided. More detailed information about Workshops including

creating your own: Creating Learning Center Workshops

The terminals provide access to the editors vi and nano. To provide a UI based editor, you can

enable the embedded editor view and use the embedded IDE based on VS Code.

Tanzu Application Platform v1.1

VMware, Inc 307

To complement the workshop instructions, or to be available for use by the instructor, you can

include slides with a workshop. For slides you can use HTML based slide presentation tools such as

reveal.js, or you can embed a PDF file.

If the workshop involves working with Kubernetes, you can enable a web console for accessing the

Kubernetes cluster. The default web console uses the Kubernetes dashboard.

Alternatively, you can enable Octant as the web console.

Tanzu Application Platform v1.1

VMware, Inc 308

Getting started with Learning Center

To view information about Learning Center, see Learning Center for Tanzu Application Platform.

Before deploying workshops, install a Kubernetes Operator for Learning Center. The operator

manages the setup of the environment for each workshop and deploys instances of a workshop for

each person.

For information about installing Learning Center, see Install Learning Center.

Other useful information about getting started with Learning Center:

Learning Center operator

Deleting an operator

Workshops

TrainingPortal

Learning Center operator

Before deploying workshops, install a Kubernetes operator for Learning Center. The operator

manages the setup of the environment for each workshop and deploys instances of a workshop for

each person.

For basic information about installing the operator, see Install Learning Center.

Installing and setting up Learning Center operator

The following is additional information about installing and setting up the Learning Center operator.

The Learning Center operator can be deployed to any Kubernetes cluster supporting custom

resource definitions and the concept of operators. The cluster must have an ingress router

configured, though only a basic deployment of the ingress controller is usually required. You do not

need to configure the ingress controller to handle cluster wide edge termination of secure HTTP

connections. Learning Center creates Kubernetes Ingress resources and supplies any secret for use

Tanzu Application Platform v1.1

VMware, Inc 309

with secure HTTP connections for each ingress.

For the ingress controller, VMware recommends the use of Contour over alternatives such as nginx.

An nginx-based ingress controller has a less than optimal design. Every time a new ingress is

created or deleted, the nginx config is reloaded. This causes websocket connections to terminate

after a period of time. Learning Center terminals reconnect automatically in the case of the

websocket connection being lost. However, not all applications you might use with specific

workshops can handle loss of websocket connections so gracefully, and they might be impacted due

to the use of an nginx ingress controller. This problem is not specific to Learning Center. It can

impact any application when an nginx ingress controller is used frequently and ingresses are created

or deleted frequently.

You can use a hosted Kubernetes solution from an IaaS provider such as Google, AWS, or Azure. If

you do, as needed, increase any HTTP request timeout specified on the inbound load balancer for

the ingress controller so that long-lived websocket connections can be used. In some cases, load

balancers of hosted Kubernetes solutions only have a 30-second timeout. If possible, configure the

timeout applying to websockets to be 1 hour.

If you deploy the web-based training portal, the cluster must have available persistent volumes of

type ReadWriteOnce (RWO). A default storage class should have been defined so that persistent

volume claims do not need to specify a storage class. For some Kubernetes distributions, including

from IBM, it is necessary to configure Learning Center as to what user and group must be used for

persistent volumes. If no default storage class is specified, or a specified storage class is required,

you can configure Learning Center with the name of the storage class.

To install the Learning Center operator, you must have cluster admin access.

Cluster pod security policies

The Learning Center operator defines pod security policies to limit what users can do from

workshops when deploying workloads to the cluster. The default policy prohibits running of images

as the root user or using a privileged pod. Specified workshops can relax these restrictions and

apply a policy that enables additional privileges required by the workshop.

VMware recommends that the pod security policy admission controller be enabled for the cluster to

ensure that the pod security policies are applied. If the admission controller is not enabled, users can

deploy workloads that run as the root user in a container, or run privileged pods.

If you are unable to enable the pod security policy admission controller, you should only provide

access to workshops deployed using the Learning Center operator to users you trust.

Whether the absence of the pod security policy admission controller causes issues with access to

persistent volumes depends on the cluster. Although minikube does not enable the pod security

policy admission controller, it works as persistent volumes when mounted to give write permissions

to all users.

No matter whether pod security policies are enabled, individual workshops must be reviewed as to

what added privileges they grant before allowing their use in a cluster.

Specifying the ingress domain

When deploying instances of workshop environments, the operator must expose the instances by

Tanzu Application Platform v1.1

VMware, Inc 310

using an external URL for access to define the domain name that is used as a suffix to host names for

instances.

Note: For the custom domain you are using, configure your DNS with a wildcard domain to forward

all requests for subdomains of the custom domain to the ingress router of the Kubernetes cluster.

Note: For the custom domain you are using, DNS must have been configured with a wildcard

domain to forward all requests for subdomains of the custom domain to the ingress router of the

Kubernetes cluster.

VMware recommends that you avoid using a .dev domain name because such domain names

require using HTTPS and not HTTP. Although you can provide a certificate for secure connections

under the domain name for use by Learning Center, this doesn’t extend to what a workshop may do.

If workshop instructions require that you create ingresses in Kubernetes using HTTP only, a .dev

domain name cannot work.

Note: If you are running Kubernetes on your local machine using a system such as minikube and

you don’t have a custom domain name that maps to the IP address for the cluster, you can use a

nip.io address. For example, if minikube ip returned 192.168.64.1, you can use the

192.168.64.1.nip.io domain. You cannot use an address of form 127.0.0.1.nip.io, or

subdomain.localhost. This causes a failure as internal services needing to connect to each other

end up connecting to themselves instead, because the address resolves to the host loopback

address of 127.0.0.1.

ingressDomain: learningcenter.my-domain.com

Set the environment variable manually

Set the INGRESS_DOMAIN environment variable on the operator deployment. To set the

INGRESS_DOMAIN environment variable, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=te

st

Where test is the domain name for your Kubernetes cluster.

Or if using a nip.io address:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

Use of environment variables to configure the operator is a shortcut for a simple use. VMware

recommends using Tanzu CLI, or for more complicated scenarios, you can use the SystemProfile

custom resource.

Enforcing secure connections

By default, the workshop portal and workshop sessions are accessible over HTTP connections. To

use secure HTTPS connections, you must have access to a wildcard SSL certificate for the domain

under which you want to host the workshops. You cannot use a self-signed certificate.

You can create Wildcard certificates by using letsencrypt <https://letsencrypt.org/>. After you

Tanzu Application Platform v1.1

VMware, Inc 311

have the certificate, you can define it as follows.

Configuration YAML

The easiest way to define the certificate is with the configuration passed to Tanzu CLI. So define the

certificate and privateKey properties under the ingressSecret property to specify the certificate

on the configuration YAML passed to Tanzu CLI:

ingressSecret:

 certificate: |

 -----BEGIN CERTIFICATE-----

 MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

 ...

 dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

 -----END CERTIFICATE-----

 privateKey: |

 -----BEGIN PRIVATE KEY-----

 MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

 ...

 IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

 -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshops:

1. Create the learningcenter namespace manually or the one you defined.

2. Copy the TLS secret to the learningcenter namespace or to the one you defined, and use

the secretName property as in this example:

ingressSecret:

 secretName: workshops.example.com-tls

Create the TLS secret manually

To add the certificate as a secret in the learningcenter namespace or in the one you defined, the

secret must be of type tls. You can create it using the kubectl create secret tls command:

kubectl create secret tls -n learningcenter workshops.example.com-tls --cert=workshops

.example.com/fullchain.pem --key=workshops.example.com/privkey.pem

Having created the secret, if it is the secret corresponding to the default ingress domain you

specified earlier, set the INGRESS_SECRET environment variable. This way you won’t use the

configuration passed to Tanzu CLI on the operator deployment. This ensures the secret is applied

automatically to any ingress created:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_SECRET=wo

rkshops.example.com-tls

If the certificate isn’t that of the default ingress domain, you can supply the domain name and name

of the secret when creating a workshop environment or training portal. In either case, you must

create secrets for the wildcard certificates in the learningcenter namespace or the one that you

defined.

Tanzu Application Platform v1.1

VMware, Inc 312

Specifying the ingress class

Any ingress routes created use the default ingress class. If you have multiple ingress class types

available, and you must override which is used, you can define the ingressClass property on the

configuration YAML as follows.

Configuration YAML

Define the ingressClass property on the configuration YAML passed to Tanzu CLI:

ingressClass: contour

Set the environment variable manually

Set the INGRESS_CLASS environment variable for the learningcenter operator:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_CLASS=con

tour

This applies only to the ingress created for the training portal and workshop sessions. It does not

apply to the any ingress created from a workshop as part of the workshop instructions.

This can be necessary when a specific ingress provider is not reliable in maintaining websocket

connections. For example, in the case of the nginx ingress controller when there are frequent

creation or deletions of ingresses occurring in the cluster. See the earlier section, Installing and

setting up Learning Center operator.

Trusting unsecured registries

One of the options available for workshops is to automatically deploy a container image registry each

workshop session. When the Learning Center operator is configured to use a secure ingress with

valid wildcard certificate, the image registry works out of the box.

If the Learning Center operator is not set up to use secure ingress, the image registry is accessed

over HTTP and is regarded as not secure.

When using the optional support for building container images using docker, the docker daemon

deployed for the workshop session is configured for the image registry being not secure yet pushing

images to the image registry still works.

In this case of an image registry that is not secure, deploying images from the image registry to the

Kubernetes cluster does not work unless the Kubernetes cluster is configured to trust the registry

that is not secure.

How you configure a Kubernetes cluster to trust an unsecured registry varies based on how the

Kubernetes cluster is deployed and what container runtime it uses.

If you are using minikube with dockerd, to ensure that the registry is trusted, you must set up the

trust the first time you create the minikube instance.

To do this, first determine which IP subnet minikube uses for the inbound ingress router of the

cluster. If you already have a minikube instance running, you can determine this by running

minikube ip. If, for example, this reported 192.168.64.1, the subnet used is 129.168.64.0/24.

Tanzu Application Platform v1.1

VMware, Inc 313

With this information, when you create a fresh minikube instance, you must supply the --insecure-

registry option with the subnet:

minikube start --insecure-registry="129.168.64.0/24"

This option tells dockerd to regard as not secure any image registry deployed in the Kubernetes

cluster and accessed through a URL exposed using an ingress route of the cluster itself.

Currently, there is no way to configure containerd to treat as not secure image registries that match

a wildcard subdomain or reside in a subnet. It is therefore not possible to run workshops that must

deploy images from the per session image registry when using containerd as the underlying

Kubernetes cluster container runtime. This is a limitation of containerd, and there are no known

plans for containerd to support this ability. This limits your ability to use Kubernetes clusters

deployed with a tool such as kind, which relies on using containerd.

Deleting Learning Center

Follow these steps to delete Learning Center:

1. Delete all current workshop environments by running:

kubectl delete workshops,trainingportals,workshoprequests,workshopsessions,work

shopenvironments --all

Note: Ensure the Learning Center operator is still running when running this command.

2. Verify you have deleted all current workshop environments by running:

kubectl get workshops,trainingportals,workshoprequests,workshopsessions,worksho

penvironments --all-namespaces

Note: This command does not delete the workshops in the

workshops.learningcenter.tanzu.vmware.com package.

3. Uninstall the Learning Center package by running:

tanzu package installed delete {NAME_OF_THE_PACKAGE} -n tap-install

Note: This command also removes the added custom resource definitions and the

learningcenter namespace.

Note: If you have installed the Tanzu Application Platform package, Learning Center will be

recreated.

4. To remove the Learning Center package, add the following lines to your tap-values file.

excluded_packages:

- learningcenter.tanzu.vmware.com

- workshops.learningcenter.tanzu.vmware.com

Learning Center Workshops

Tanzu Application Platform v1.1

VMware, Inc 314

Workshops are where you create your content. You can create a workshop for individual use or

group multiple workshops together with a Training Portal. The following helps you get started with

workshops. For more detailed instructions, go to Working with Learning Center Workshops

Creating the workshop environment

With the definition of a workshop already in existence, the first step to deploying a workshop is to

create the workshop environment.

To create the workshop environment run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-envi

ronment.yaml

This results in a custom resource being created called WorkshopEnvironment:

workshopenvironment.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

The custom resource created is cluster-scoped, and the command needs to be run as a cluster

admin or other appropriate user with permission to create the resource.

The Learning Center Operator reacts to the creation of this custom resource and initializes the

workshop environment.

For each distinct workshop environment, a separate namespace is created. This namespace is used

to hold the workshop instances. The namespace may also be used to provision any shared

application services the workshop definition describes which would be used across all workshop

instances. Such shared application services are automatically provisioned by the Learning Center

Operator when the workshop environment is created.

You can list the workshop environments which have been created by running:

kubectl get workshopenvironments

This results in the output:

NAME NAMESPACE WORKSHOP IMAGE

 URL

lab-k8s-fundamentals lab-k8s-fundamentals lab-k8s-fundamentals {YOUR-REGISTRY-UR

L}/lab-k8s-fundamentals:main {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

Additional fields give the name of the workshop environment, the namespace created for the

workshop environment, and the name of the workshop the environment was created from.

Requesting a workshop instance

To request a workshop instance, a custom resource of type WorkshopRequest needs to be created.

This is a namespaced resource allowing who can create them to be delegated using role-based

access controls. Further, in order to be able to request an instance of a specific workshop, you need

to know the secret token specified in the description of the workshop environment. If necessary,

raising requests against a specific workshop environment can also be constrained to a specific set of

namespaces on top of any defined role-based access control (RBAC) rules.

Tanzu Application Platform v1.1

VMware, Inc 315

In the context of an appropriate namespace, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-requ

est.yaml

This should result in the output:

workshoprequest.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

You can list the workshop requests in a namespace by running:

kubectl get workshoprequests

This displays output similar to:

NAME URL USERNAME PASSWORD

lab-k8s-fundamentals http://lab-k8s-fundamentals-cvh51.test learningcenter buQ

OgZvfHM7m

The additional fields provide the URL where the workshop instance can be accessed and the

username and password for you to provide when prompted by your web browser.

The user name and password only come into play when you use the lower-level resources to set up

workshops. If you use the TrainingPortal custom resource, you will see that these fields are empty.

This is because, for that case, the workshop instances are deployed so that they rely on user

registration and access mediated by the web-based training portal. Visiting the URL for a workshop

instance directly when using TrainingPortal, redirects you back to the web portal in order to log in

if necessary.

You can monitor the progress of this workshop deployment by listing the deployments in the

namespace created for the workshop environment:

kubectl get all -n lab-k8s-fundamentals

For each workshop instance a separate namespace is created for the session. This is linked to the

workshop instance, and is where any applications are deployed as part of the workshop. If the

definition of the workshop includes a set of resources that should be automatically created for each

session namespace, they are created by the Learning Center Operator. It is therefore possible to

pre-deploy applications for each session.

In this case, we used WorkshopRequest; whereas when using TrainingPortal, we created a

WorkshopSession. The workshop request does result in creating a WorkshopSession, but

TrainingPortal skips the workshop request and directly creates a WorkshopSession.

The purpose of having WorkshopRequest as a separate custom resource is to allow RBAC and other

controls to be used to allow non-cluster administrators to create workshop instances.

Deleting the workshop instance

When you have finished with the workshop instance, you can delete it by deleting the custom

resource for the workshop request:

Tanzu Application Platform v1.1

VMware, Inc 316

kubectl delete workshoprequest/lab-k8s-fundamentals

Deleting the workshop environment

If you want to delete the whole workshop environment, it is recommended to first delete all

workshop instances. Once this has been done, you can then delete the custom resource for the

workshop environment:

kubectl delete workshopenvironment/lab-k8s-fundamentals

If you don’t delete the custom resources for the workshop requests, the workshop instances are still

cleaned up and removed when the workshop environment is removed. The custom resources for

the workshop requests still remain, however,

and need to be deleted separately.

TrainingPortal

Working with multiple workshops

The quickest way to deploy a set of workshops to use in a training session is to deploy a

TrainingPortal. This deploys a set of workshops with one instance of each workshop for each

attendee. A web-based portal is provided for registering attendees and allocating them to

workshops.

The TrainingPortal custom resource provides a high-level mechanism for creating a set of

workshop environments and populating it with workshop instances. When the Learning Center

operator processes this custom resource, it creates other custom resources to trigger the creation of

the workshop environment and the workshop instances. If you want more control, you can use these

latter custom resources directly instead.

Loading the workshop definition

A custom resource of type Workshop describes each workshop. Before you can create a workshop

environment, you must load the definition of the workshop.

Here is an example Workshop custom resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-k8s-fundamentals

spec:

 title: Kubernetes Fundamentals

 description: Workshop on getting started with Kubernetes

 url: {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

 vendor: learningcenter.io

 authors:

 - Graham Dumpleton

 difficulty: intermediate

 duration: 1h

 tags:

Tanzu Application Platform v1.1

VMware, Inc 317

 - kubernetes

 content:

 image: projects.registry.vmware.com/learningcenter/lab-k8s-fundamentals:latest

 session:

 namespaces:

 budget: medium

 applications:

 terminal:

 enabled: true

 layout: split

 console:

 enabled: true

 editor:

 enabled: true

To load the definition of the workshop, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or

other appropriate user with permission to create the resource.

If successfully loaded, the command outputs:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

To list the workshop definitions that have been loaded and that can be deployed, run:

kubectl get workshops

For this workshop, this outputs:

NAME IMAGE FILES URL

lab-k8s-fundamentals {YOUR-REGISTRY-URL}/lab-k8s-fundamentals:main {YOUR-GIT-

REPO-URL}/lab-k8s-fundamentals

The added fields in this case give:

The name of the custom workshop container image deployed for the workshop.

A URL for more information about the workshop.

The definition of a workshop is loaded as a step of its own, rather than referring to a remotely hosted

definition. This allows a cluster admin to audit the workshop definition to ensure it isn’t doing

something the cluster admin doesn’t want to allow. After the cluster admin approves the workshop

definition, it can be used to create instances of the workshop.

Creating the workshop training portal

To deploy a workshop for one or more users, use the TrainingPortal custom resource. This custom

resource specifies a set of workshops to be deployed and the number of people taking the

workshops.

The TrainingPortal custom resource we use in this example is:

Tanzu Application Platform v1.1

VMware, Inc 318

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-k8s-fundamentals

spec:

 workshops:

 - name: lab-k8s-fundamentals

 capacity: 3

 reserved: 1

 expires: 1h

 orphaned: 5m

To create the custom resource, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/training-port

al.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or

other appropriate user with permission to create the resource.

This results in the output:

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

There is actually much more going on than this. To see all the resources created, run:

kubectl get learningcenter-training -o name

You should see:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

workshopenvironment.learningcenter.tanzu.vmware.comlab-k8s-fundamentals-w01

workshopsession.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals-w01-s001

In addition to the original Workshop custom resource providing the definition of the workshop, and

the TrainingPortal custom resource you just created, you’ve also created the WorkshopEnvironment

and WorkshopSession custom resources.

The WorkshopEnvironment custom resource sets up the environment for a workshop, including

deploying any application services that must exist and are shared by all workshop instances.

The WorkshopSession custom resource results in the creation of a single workshop instance.

To see a list of the workshop instances created and their details, run:

kubectl get workshopsessions

This yields output similar to:

NAME URL USERNAME

 PASSWORD

lab-k8s-fundamentals-w01-s001 http://lab-k8s-fundamentals-w01-s001.test

Only one workshop instance is created. Though the maximum capacity is set to three, the reserved

Tanzu Application Platform v1.1

VMware, Inc 319

number of instances (hot spares) is defined as one. Additional workshops instances are only created

as workshop sessions are allocated to users. One reserved instance is always maintained until

capacity is reached.

If you need a different number of workshop instances, set the portal.capacity field of the

TrainingPortal custom resource YAML input file before creating the resource. Changing the values

after the resource is created has no effect.

In this case, only one workshop is listed to be hosted by the training portal. You can deploy more

than one workshop at the same time by adding the names of other workshops to workshops.

The first time you deploy the workshop, it can take a few moments to pull down the workshop image

and start.

To access the workshops, attendees of a training session need to visit the web-based portal for the

training session. Find the URL for the web portal by running:

kubectl get trainingportals

This should yield output similar to:

NAME URL ADMINUSERNAME ADMINPASSWO

RD

lab-k8s-fundamentals https://lab-k8s-fundamentals-ui.test learningcenter mGI

2C1TkHEBoFgKiZetxMnwAldRU80aN

Attendees should only be given the URL. The password listed is only for use by the instructor of the

training session if required.

Accessing workshops via the web portal

Attendees can access workshops through the web portal by following two steps:

1. The attendee visits the web-based portal for the training session and is presented with a login

page. However, before logging in, the attendee must register for an account. The attendee

clicks the link to the registration page and fills it in.

Tanzu Application Platform v1.1

VMware, Inc 320

Registration is required so if the attendee’s web browser exits or the attendee needs to

switch web browsers, the attendee can log in again and access the same workshop instance.

2. Upon registering, the attendee is presented with a list of workshops available for the training

session.

An orange dot beside a workshop means that no instance for that workshop has

been allocated to the user as yet, but that some are available.

A red dot indicates there are no more workshop instances available.

A green dot indicates a workshop instance has already been reserved by the

attendee.

The attendee clicks the “Start workshop” button. This allocates a workshop instance if one

hasn’t yet been reserved and redirects the attendee to that workshop instance.

Tanzu Application Platform v1.1

VMware, Inc 321

Deleting the workshop training portal

The workshop training portal is intended for running workshops with a fixed time period where all

workshop instances are deleted when complete.

To delete all workshop instances and the web-based portal, run:

kubectl delete trainingportal/lab-k8s-fundamentals

Learning Center local install guides

The following guides tell you how to install Learning Center on your local environment:

Installing on Kind

Installing on Minikube

Installing on Kind

Kind was developed as a means to support development and testing of Kubernetes. Though it exists

primarily for that purpose, Kind clusters are often used for local development of user applications as

well. For Learning Center, you can use a local Kind cluster to develop workshop content or self-

learning when deploying other people’s workshops.

Because you are deploying to a local machine, you are unlikely to have access to your own custom

domain name and certificate you can use with the cluster. If you don’t, you can be restricted as to

the sorts of workshops you can develop or run using the Learning Center in Kind. Kind uses

containerd, which lacks certain features that allow you to trust any image registries hosted within a

subnet. This means you cannot readily run workshops that use a local container image registry for

each workshop session. If you must run workshops on your local computer that uses an image

registry for each session, VMware recommends you use minikube with dockerd instead. For more

information, see Installing on Minikube.

Also, since Kind has limited memory resources available, you may be prohibited from running

workshops that have large memory requirements. Workshops that demonstrate the use of third-

Tanzu Application Platform v1.1

VMware, Inc 322

party applications requiring a multinode cluster also do not work unless the Kind cluster is specifically

configured to be multinode rather than single node.

Requirements and setup instructions specific to Kind are detailed in this document. Otherwise, follow

normal installation instructions for the Learning Center operator.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Create a tanzunet account and have access to your tanzunet credentials.

Install Kind on your local machine.

Install tanzuCLI on your local machine.

Install kubectlCLI on your local machine.

Kind cluster creation

When initially creating the Kind cluster, you must configure it so that the ingress controller is

exposed. The Kind documentation provides the following command to do this, but check the

documentation in case the details have changed.

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

 kubeadmConfigPatches:

 - |

 kind: InitConfiguration

 nodeRegistration:

 kubeletExtraArgs:

 node-labels: "ingress-ready=true"

 extraPortMappings:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 - containerPort: 443

 hostPort: 443

 protocol: TCP

EOF

Once you have the Kind cluster up and running, you must install an ingress controller.

Ingress controller with DNS

The Kind documentation provides instructions for installing Ambassador, Contour, and Nginx-based

ingress controllers.

VMware recommends that you use Contour rather than Nginx, because Nginx drops websocket

connections whenever new ingresses are created. The Learning Center workshop environments do

include a workaround to re-establish websocket connections for the workshop terminals without

losing terminal state, but other applications used with workshops might not, such as terminals

Tanzu Application Platform v1.1

VMware, Inc 323

https://kind.sigs.k8s.io/docs/user/ingress#create-cluster
https://kind.sigs.k8s.io/docs/user/ingress#contour

available through Visual Studio Code.

Avoid using the Ambassador ingress controller, because it requires all ingresses created to be

annotated explicitly with an ingress class of “ambassador.” The Learning Center operator can be

configured to do this automatically for ingresses created for the training portal and workshop

sessions. However, any workshops that create ingresses as part of the workshop instructions do not

work unless they are written to have the user manually add the ingress class when required due to

the use of Ambassador.

If you have created a contour ingress controller, verify all pods have a running status. Run:

kubectl get pods -n projectcontour -o wide

Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly install

VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Note: Type “y” and enter to continue when prompted during installation of both kapp and secret-

gen controllers.

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

--username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

--server registry.tanzu.vmware.com \

--export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a vpackage repository to your cluster:

tanzu package repository add tanzu-tap-repository \

--url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VERSION

Tanzu Application Platform v1.1

VMware, Inc 324

-NUMBER \

--namespace tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

Note: We are currently on build 7. If this changes, we need to update the command with the

correct build version after the –url flag.

4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Wait for a reconciled successful status before attempting to install any other packages.

Create a configuration YAML file for Learning Center
package

To create a configuration YAML file:

See Supported yaml file configurations to see a list of configurations you can provide to Learning

Center.

1. Create a file called learningcenter-value.yaml in your current directory with the following

data:

#! The namespace in which to deploy Learning Center. For now this must be "lear

ningcenter" as

namespace: learningcenternamespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. This must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

certificate: null

privateKey: null

secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. You might need to set storage group

#! where a cluster has pod security policies enabled, usually

#! to one. Set storage user and storage group in exceptional cases

#! where storage class uses maps to NFS storage and storage server requires

#! that a specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified,

#! random passwords are generated that you can obtain from the custom resource

#! for the training portal.

portalCredentials:

systemAdmin:

 username: learningcenter

 password: null

clientAccess:

 username: robot@learningcenter

Tanzu Application Platform v1.1

VMware, Inc 325

 password: null

#! Primary image registry where Learning Center container images are stored. It

#! is only necessary to define the host and credentials when that image

#! registry requires authentication to access images. This principally

#! exists to allow relocation of images through Carvel image bundles.

imageRegistry:

host: null

username: null

password: null

#! Container image versions for various components of Learning Center. The Lear

ning Center

#! operator needs to be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! https://github.com/eduk8s/eduk8s-operator/issues/112

#! Prepull images to nodes in cluster. Should be an empty list if no images

#! should be prepulled. Normally you would only want to prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

networkMTU: 1500

proxyCache:

 remoteURL: null

 username: null

 password: null

#! Override operator image. Only used during development of Learning Center.

operatorImage: null

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details

about this are provided in the following section.

workshops.example.com with is <your-local-ip>.nip.io.

Using a nip.io DNS address

Before you can start deploying workshops, you must configure the operator to tell it what domain

name can be used to access anything deployed by the operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can

use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address for the ingress controller

exposed by Kind. This is usually the IP address of the local machine itself, even when you use

Docker for Mac.

How you get the IP address for your local machine depends on the operating system you are using.

For example on a Mac, you can find your IP address by searching for network using spotlight and

selecting the network option under system preferences. Here you can see your IP address under

status.

After you have the IP address, add this as a prefix to the domain name nip.io. For example, if the

address was 192.168.1.1, use the domain name of 192.168.1.1.nip.io.

Tanzu Application Platform v1.1

VMware, Inc 326

https://nip.io/

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/eduk8s-operator -n eduk8s INGRESS_DOMAIN=192.168.1.1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You can now

deploy workshops.

Note: Some home Internet gateways implement what is called rebind protection. These gateways do

not allow DNS names from the public Internet bind to local IP address ranges inside the home

network. If your home Internet gateway has such a feature and it is enabled, it blocks nip.io

addresses from working. In this case, you must configure your home Internet gateway to allow

*.nip.io names to be bound to local addresses. Also, you cannot use an address of form

127.0.0.1.nip.io or subdomain.localhost. This causes a failure, because when internal services

need to connect to each other, they connect to themselves instead. This happens because the

address resolves to the host loopback address of 127.0.0.1.

Install Learning Center package onto a Kubernetes cluster

To install Learning Center on a Kubernetes cluster:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-

value.yaml to install our Learning Center package.

Install workshop tutorial package onto a Kubernetes cluster

To install a workshop tutorial on a Kubernetes cluster:

tanzu package install learningcenter-tutorials --package-name workshops.learningcenter

.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and

successfully installed onto your cluster. In case of new versioning, to obtain package version

numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running our tutorial workshop using the Learning Center operator.

Tanzu Application Platform v1.1

VMware, Inc 327

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image

registry is secured with a password specific to the workshop session and is exposed through a

Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Kind uses insecure ingress routes. Even were you to generate a self-signed

certificate to use for ingress, it is not trusted by containerd that runs within Kind. You must tell Kind

to trust any insecure registry running inside of Kind.

You must configure Kind to trust insecure registries when you first create the cluster. Kind, however,

is that it uses containerd and not dockerd. The containerd runtime doesn’t provide a way to trust

any insecure registry hosted within the IP subnet used by the Kubernetes cluster. Instead,

containerd requires that you enumerate every single host name or IP address on which an insecure

registry is hosted. Because each workshop session created by the Learning Center for a workshop

uses a different host name, this becomes cumbersome.

If you must used Kind, find out the image registry host name for a workshop deployment and

configure containerd to trust a set of host names corresponding to low-numbered sessions for that

workshop. This allows Kind to work, but once the host names for sessions go beyond the range of

host names you set up, you need to delete the training portal and recreate it, so you can use the

same host names again.

For example, if the host name for the image registry were of the form:

lab-docker-testing-wMM-sNNN-registry.192.168.1.1.nip.io

where NNN changes per session, you must use a command to create the Kind cluster. For example:

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

 kubeadmConfigPatches:

 - |

 kind: InitConfiguration

 nodeRegistration:

 kubeletExtraArgs:

 node-labels: "ingress-ready=true"

 extraPortMappings:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 - containerPort: 443

 hostPort: 443

 protocol: TCP

containerdConfigPatches:

- |

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s001-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s001-registry.192.168.1.1.nip.io"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s002-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s002-registry.192.168.1.1.nip.io"]

Tanzu Application Platform v1.1

VMware, Inc 328

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s003-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s003-registry.192.168.1.1.nip.io"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s004-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s004-registry.192.168.1.1.nip.io"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s005-r

egistry.192.168.1.1.nip.io"]

 endpoint = ["http://lab-docker-testing-w01-s005-registry.192.168.1.1.nip.io"]

EOF

This allows you to run five workshop sessions before you have to delete the training portal and

recreate it.

If you use this, you can use the feature of the training portal to automatically update when a

workshop definition is changed. This is because the wMM value identifying the workshop environment

changes any time you update the workshop definition.

There is no other known workaround for this limitation of containerd. As such, VMware

recommends you use minikube with dockerd instead. For more information, see Installing on

Minikube.

Installing on Minikube

Minikube enables local deployment of Kubernetes for developing workshop content or for self-

learning when deploying other people’s workshops.

Because you are deploying to a local machine, you are unlikely to have access to your own custom

domain name and certificate you can use with the cluster. You must take extra steps over a standard

install of Minikube to ensure you can run certain types of workshops.

Also, because Minikube generally has limited memory resources available and is only a single-node

cluster, you might be restricted from running workshops that have large memory requirements or

that demonstrate the use of third-party applications requiring a multinode cluster.

Requirements and setup instructions specific to Minikube are detailed in this document. Otherwise,

you can follow normal installation instructions for the Learning Center operator.

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image

registry is secured with a password specific to the workshop session and is exposed through a

Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Minikube uses insecure ingress routes. Even were you to generate a self-

signed certificate to use for ingress, it is not trusted by dockerd that runs within Minikube. You must

tell Minikube to trust any insecure registry running inside of Minikube.

You must configure Minikube to trust insecure registries the first time you start a new cluster with it.

That is, you must supply the details to minikube start, which means you must know the IP subnet

Minikube uses.

If you already have a cluster running using Minikube, run minikube ip to discover the IP address it

uses. From that you can discover the trusted subnet. For example, if minikube ip returned

Tanzu Application Platform v1.1

VMware, Inc 329

192.168.64.1, the trusted subnet is 192.168.64.0/24.

With this information, when you start a new cluster with Minikube, run:

minikube start --insecure-registry=192.168.64.0/24

If you already have a cluster started with Minikube, you cannot stop it and then provide this option

when it is restarted. You can only use this option for a completely new cluster.

Note: You must be using dockerd, not containerd, in the Minikube cluster. containerd does not

accept an IP subnet when defining insecure registries to be trusted. It allows only specific hosts or IP

addresses. Because you don’t know what IP address Minikube will use in advance, you can’t provide

the IP address on the command line when starting Minikube to create the cluster.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Create a tanzunet account and have access to your tanzunet credentials.

Install miniKube on your local machine.

Install tanzuCLI on your local machine.

Install kubectlCLI on your local machine.

Ingress controller with DNS

After the Minikube cluster is running, you must enable the ingress and ingress-dns add-ons for

Minikube. These deploy the nginx ingress controller along with support for integrating into DNS.

To enable these after the cluster has been created, run:

minikube addons enable ingress

minikube addons enable ingress-dns

You are now ready to install the Learning Center package.

Note: The ingress add-ons for Minikube do not work when using Minikube on top of Docker for Mac

or Docker for Windows. On macOS you must use the Hyperkit VM driver. On Windows you must

use the Hyper-V VM driver.

Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly install

VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

Tanzu Application Platform v1.1

VMware, Inc 330

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Note: Type “y” and enter to continue when prompted during installation of both kapp and secret-

gen controllers.

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

 --username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

 --server registry.tanzu.vmware.com \

 --export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a package repository to your cluster:

tanzu package repository add tanzu-tap-repository \

 --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VERSI

ON-NUMBER \

 --namespace tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

Note: We are currently on build 7; if this changes, we need to update the command with the

correct build version after the –url flag.

4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Wait for a reconciled sucessful status before attempting to install any other packages.

Create a configuration YAML file for the Learning Center
package

Create a file called learningcenter-value.yaml in your current directory with the following data:

#! The namespace in which to deploy Learning Center.

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

Tanzu Application Platform v1.1

VMware, Inc 331

ingressClass: null

#! SSL certificate for secure ingress. Must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

 certificate: null

 privateKey: null

 secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. Storage group might need to be

#! set where a cluster has pod security policies enabled, usually setting it

#! to one. Storage user and storage group can be set in exceptional cases

#! where storage class used maps to NFS storage and storage server requires that

#! specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified

#! random passwords are generated that can be obtained from the custom resource

#! for the training portal.

portalCredentials:

 systemAdmin:

 username: learningcenter

 password: null

 clientAccess:

 username: robot@learningcenter

 password: null

#! Primary image registry where Learning Center container images are stored. You

#! need only define the host and credentials when that image

#! registry requires authentication to access images. This principally

#! exists to allow relocation of images through Carvel image bundles.

imageRegistry:

 host: null

 username: null

 password: null

#! Container image versions for various components of Learning Center. The Learning Ce

nter

#! Operator must be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! https://github.com/eduk8s/eduk8s-operator/issues/112

#! Prepull images to nodes in cluster. This is an empty list if no images

#! are prepulled. Normally you only prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

 networkMTU: 1500

 proxyCache:

 remoteURL: null

 username: null

 password: null

#! Override operator image. Only used during development of Learning Center.

operatorImage: null

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details

Tanzu Application Platform v1.1

VMware, Inc 332

about this are provided in the following section.

workshops.example.com is <your-local-ip>.nip.io

Using a nip.io DNS address

After the Learning Center operator is installed, before you can start deploying workshops, you must

configure the operator to tell it what domain name can be used to access anything deployed by the

operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can

use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address of the cluster created by

Minikube by running minikube ip. Add this as a prefix to the domain name nip.io. For example, if

minikube ip returns 192.168.64.1, use the domain name of 192.168.64.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You should now

be able to start deploying workshops.

Note: Some home Internet gateways implement what is called rebind protection. These gateways do

not let DNS names from the public Internet bind to local IP address ranges inside the home network.

If your home Internet gateway has such a feature and it is enabled, it blocks nip.io addresses from

working. In this case, you must configure your home Internet gateway to allow *.nip.io names to

be bound to local addresses.

Install Learning Center package onto a minikube cluster

To install the Learning Center package onto a minikube cluster, run:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-

value.yaml to install the Learning Center package.

Install workshop tutorial package onto a minikube cluster

To install the workshop tutorial package onto a minikube cluster, run:

tanzu package install learningcenter-tutorials --package-name workshops.learningcenter

.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and

successfully installed onto your cluster. In case of new versioning, to obtain package version

numbers, run:

Tanzu Application Platform v1.1

VMware, Inc 333

https://nip.io/

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running the tutorial workshop using the Learning Center operator.

Working with large images

If you create or run workshops that work with the image registry created for a workshop session, and

you push images to that image registry that have large layers, you must configure the version of

nginx deployed for the ingress controller and increase the allowed size of request data for a HTTP

request.

To do this, run:

kubectl edit configmap nginx-load-balancer-conf -n kube-system

To the config map resource, add the following property under data:

proxy-body-size: 1g

If you don’t increase this, docker push fails when trying to push container images with large layers.

Limited resource availability

When deploying a cluster, by default Minikube only configures support for 2Gi of memory. This

usually isn’t adequate.

To view how much memory is available when a custom amount has been set as a default, run:

minikube config get memory

VMware recommends you configure Minikube to use 4Gi or more. This must be specified when the

cluster is first created. Do this by using the --memory option to minikube start or by specifying a

default memory value beforehand by using minikube config set memory.

In addition to increasing the memory available, you can increase the disk size, because fat container

images can quickly use disk space within the cluster.

Storage provisioner issue

v1.12.3 of Minikube introduced a bug in the storage provisioner that causes potential corruption of

data in persistent volumes where the same persistent volume claim name is used in two different

namespaces. This affects Learning Center when:

You deploy multiple training portals at the same time.

Tanzu Application Platform v1.1

VMware, Inc 334

https://github.com/kubernetes/minikube/issues/8987

You run multiple workshops at the same time that have docker or image registry support

enabled.

The workshop session itself is backed by persistent storage and multiple sessions run at the

same time.

This issue is supposed to be fixed in Minikube v1.13.0; however, you can still encounter issues when

deleting a training portal instance and recreating it immediately with the same name. This occurs

because reclaiming of the persistent volume by the Minikube storage provisioner can be slow, and

the new instance can grab the same original directory on disk with old data in it. After deleting a

training portal instance, wait before recreating one with the same name to allow the storage

provisioner to delete the old persistent volume.

Creating Learning Center workshops

This section includes information on creating Learning Center workshops.

Workshop configuration

Workshop images

Workshop content

Building an image

Workshop instructions

Workshop runtime

Workshop slides

Workshop configuration

There are two main parts to the configuration for a workshop. The first specifies the structure of the

workshop content and the second defines the runtime requirements for deploying the workshop.

Specifying structure of the content

There are multiple ways you can configure a workshop to specify the structure of the content. The

sample workshops use YAML files.

The workshop/modules.yaml file provides details about the list of available modules that make up

your workshop and data variables for use in content.

The list of available modules represents all of the modules available to you. You might not use all of

them. You might want to run variations of your workshop, such as for different programming

languages. As such, which modules are active and are used for a specific workshop are listed in the

separate workshop/workshop.yaml file. The active modules are listed with the name to be given to

that workshop.

By default the workshop.yaml file specifies what modules are used. When you want to deliver

different variations of the workshop content, you can provide multiple workshop files with different

names. For example, you can name the workshop files workshop-java.yaml and workshop-

python.yaml.

Tanzu Application Platform v1.1

VMware, Inc 335

Where you have multiple workshop files and don’t have the default workshop.yaml file, you can

specify the default workshop file by setting the WORKSHOP_FILE environment variable in the runtime

configuration.

The format for listing the available modules in the workshop/modules.yaml file is:

modules:

 workshop-overview:

 name: Workshop Overview

 exit_sign: Setup Environment

 setup-environment:

 name: Setup Environment

 exit_sign: Start Workshop

 exercises/01-sample-content:

 name: Sample Content

 workshop-summary:

 name: Workshop Summary

 exit_sign: Finish Workshop

Each available module is listed under modules, where the name used corresponds to the path to the

file containing the content for that module. Any extension identifying the content type is left off.

For each module, set the name field to the page title to be displayed for that module. If no fields are

provided and name is not set, the title for the module is derived from the name of the module file.

The corresponding workshop/workshop.yaml file, where all available modules are used, would have

the format:

name: Markdown Sample

modules:

 activate:

 - workshop-overview

 - setup-environment

 - exercises/01-sample-content

 - workshop-summary

The top-level name field in this file is the name of this variation of the workshop content.

The modules.activate field is a list of modules to be used for the workshop. The names in this list

must match the names as they appear in the modules file.

The order in which modules are listed under the modules.activate field in the workshop

configuration file dictates the order pages are traversed. The order in which modules appear in the

modules configuration file is not relevant.

At the bottom of each page, a Continue button is displayed to allow the user to go to the next page

in sequence. You can customize the label on this button by setting the exit_sign field in the entry

for the module in the modules configuration file.

In the last module in the workshop, a button is displayed, but where the user goes after clicking it

varies. If you want the user to go to a different website upon completion, you can set the exit_link

field of the final module to an external URL. Alternatively, you can set the RESTART_URL environment

variable in a workshop environment to control where the user goes. If a destination for the final page

is not provided, the user is redirected back to the starting page of the workshop.

When the user uses the training portal, the training portal overrides this environment variable so, at

Tanzu Application Platform v1.1

VMware, Inc 336

the completion of a workshop, the user returns to the training portal.

VMware recommends that for the last page, the exit_sign be set to “Finish Workshop” and

exit_link not be specified. This enables the destination to be controlled from the workshop

environment or training portal.

Specifying the runtime configuration

You can deploy workshop images directly to a container runtime. The Learning Center Operator is

provided to manage deployments into a Kubernetes cluster. You define the configuration for the

Learning Center Operator with a Workshop CRD in the resources/workshop.yaml file:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 vendor: learningcenter.tanzu.vmware.com

 title: Markdown Sample

 description: A sample workshop using Markdown

 url: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 duration: 15m

 session:

 namespaces:

 budget: small

 applications:

 console:

 enabled: true

 editor:

 enabled: true

Where:

YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

In this sample, a custom workshop image bundles the workshop content into its own container

image. The content.image setting specifies this. To instead download workshop content from a

GitHub repository at runtime, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 vendor: learningcenter.tanzu.vmware.com

 title: Markdown Sample

 description: A sample workshop using Markdown

 url: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 content:

 files: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 duration: 15m

 session:

 namespaces:

Tanzu Application Platform v1.1

VMware, Inc 337

 budget: small

 applications:

 console:

 enabled: true

 editor:

 enabled: true

Where:

YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

The difference is the use of the content.files setting. Here, the workshop content is overlaid on

top of the standard workshop base image. To use an alternate base image with additional

applications or packages installed, specify the alternate image against the content.image setting at

the same time you set content.files.

Next steps

Learn about configuration options for the workshop.yaml custom resource definitions (CRD)

in Workshop resource.

Workshop images

The workshop environment for the Learning Center is packaged as a container image. You can

execute the image with remote content pulled down from GitHub or a web server. Alternatively, you

can bundle your workshop content, including any extra tools required, in a new container image

derived from the workshop environment base image.

Templates for creating a workshop

To get you started with your own workshop content, VMware provides a number of sample

workshops. Different templates in Markdown or AsciiDoc are available to use depending on the

syntax you use to create the workshop. These templates are available in a zip file called LEARNING-

CENTER-WORKSHOP-SAMPLES.ZIP on the Tanzu Network TAP Product Page. The zip file contains the

following projects that you can upload to your own Git repository:

lab-markdown-sample

lab-asciidoc-sample

When creating your own workshops, a suggested convention is to prefix the directory name with the

Git repository name where it is hosted. For example, you can make the prefix lab-. This way it

stands out as a workshop or lab when you have a number of Git repositories on the same Git hosting

service account or organization.

Note: Do not make the name you use for a workshop too long. The DNS host name used for

applications deployed from the workshop, when using certain methods of deployment, might exceed

the 63 character limit. This is because the workshop deployment name is used as part of the

namespace for each workshop session. This is in turn used in the DNS host names generated for the

ingress host name. VMware suggests keeping the workshop name, and so your repository name, to

25 characters or less.

Tanzu Application Platform v1.1

VMware, Inc 338

https://network.tanzu.vmware.com/products/tanzu-application-platform

Workshop content directory layout

After creating a copy of the sample workshop content, you can see a number of files located in the

top-level directory and a number of subdirectories forming a hierarchy. The files in the top-level

directory are:

README.md - A file stating what the workshop in your Git repository is about and how to

deploy it. Replace the current content provided in the sample workshop with your own.

LICENSE - A license file so people are clear about how they can use your workshop content.

Replace this with what license you want to apply to your workshop content.

Dockerfile - Steps to build your workshop into an image ready for deployment. Leave this

as is, unless you want to customize it to install additional system packages or tools.

kustomization.yaml - A kustomize resource file for loading the workshop definition. The

Learning Center operator must be deployed before using this file.

.dockerignore - List of files to ignore when building the workshop content into an image.

.eduk8signore - List of files to ignore when downloading workshop content into the

workshop environment at runtime.

Key subdirectories and the files contained within them are:

workshop - Directory under which your workshop files reside.

workshop/modules.yaml - Configuration file with details of available modules that make up

your workshop and data variables for use in content.

workshop/workshop.yaml - Configuration file that gives the name of the workshop, the list of

active modules for the workshop, and any overrides for data variables.

workshop/content - Directory under which your workshop content resides, including images

to be displayed in the content.

resources - Directory under which Kubernetes custom resources are stored for deploying

the workshop using the Learning Center.

resources/workshop.yaml - The custom resources for the Learning Center, which describe

your workshop and requirements for deployment.

resources/training-portal.yaml - A sample custom resource for the Learning Center for

creating a training portal for the workshop, encompassing the workshop environment and a

workshop instance.

A workshop can include other configuration files and directories with other types of content, but this

is the minimal set of files to get you started.

Directory for workshop exercises

The number of files and directories can quickly add up at the top level of your repository. The same

is true of the home directory for the user when running the workshop environment. To help with this

proliferation of files, you can push files required for exercises during the workshop into the

exercises subdirectory under the root of the repository.

Tanzu Application Platform v1.1

VMware, Inc 339

With an exercises subdirectory, the initial working directory for the embedded terminal when

created is set to $HOME/exercises instead of $HOME. If the embedded editor is enabled, the

subdirectory is opened as the workspace for the editor. Only directories and files in that subdirectory

are visible through the default view of the editor.

However, the exercises directory isn’t set as the home directory of the user. This means if a user

inadvertently runs cd with no arguments from the terminal, they go back to the home directory.

To avoid confusion and help a user return to where they need to be, VMware recommends that

when you instruct users to change directories, provide a full path relative to the home directory. For

example, use a path of the form ~/exercises/example-1 rather than example-1 for the cd command

when changing directories. By using a full path, users can execute the command and be assured of

going to the required location.

Workshop content

Workshop content is either embedded in a custom workshop image or downloaded from a Git

repository or web server when the workshop session is created. There are several best practices for

speeding up the iterative loop of editing and testing a workshop when developing workshop content.

Deactivating reserved sessions

Deactivate the reserved sessions by setting the reserved field to 0 in your training portal instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-sample-workshop

spec:

 portal:

 sessions:

 maximum: 1

 workshops:

 - name: lab-sample-workshop

 reserved: 0

 expires: 120m

 orphaned: 15m

If you do not deactivate reserved sessions, a new session is always created ready for the next

workshop session when there is available capacity to do so. If you modify workshop content while

testing the current workshop session, terminate the session and start a new one, the workshop picks

up the reserved session. The reserved session has a copy of the old content.

By deactivating reserved sessions, a new workshop session is always created on demand. This

ensures the latest workshop content is used.

Because you might have to wait to create a new workshop, shut down the existing workshop session

first. The new workshop session might also take some time to start if an updated version of the

workshop image also has to be pulled down.

Live updates to the content

If you download workshop content from a Git repository or web server, and you are only doing

Tanzu Application Platform v1.1

VMware, Inc 340

simple updates to workshop instructions, scripts, or files bundled with the workshop, you can update

the content in place without needing to restart the workshop session. To perform an update,

download the workshop content after you have pushed back any changes to the hosted Git

repository or updated the content available through the web server. From the workshop session

terminal, run:

update-workshop

This command downloads any workshop content from the Git repository or web server, unpacks it

into the live workshop session, and re-runs any script files found in the workshop/setup.d directory.

Find the location where the workshop content is downloading by viewing the file:

cat ~/.eduk8s/workshop-files.txt

You can change the location saved in this file if, for example, it references a specific version of the

workshop content and you want to test with a different version.

Once the workshop content has been updated, reload the current page of the workshop instructions

by clicking the reload icon on the dashboard while holding down the shift key.

If additional pages are added to the workshop instructions or pages are renamed, you must restart

the workshop renderer process by running:

restart-workshop

If you didn’t rename the current pager or if the name changed, you can trigger a reload of the

current page. Click the home icon or refresh the webpage if the name of the first page didn’t

change.

If action blocks within the workshop instructions are broken, to change and test the workshop

instructions within the live workshop session, you can edit the appropriate page under

/opt/workshop/content. Navigate to the modified page or reload it to verify the change.

To change set up scripts that create files specific to a workshop session, edit the script under

/opt/workshop/setup.d directory.

To trigger running of any setup scripts, run:

rebuild-workshop

If local changes to the workshop session take effect, you can restore the file in the original Git

repository.

Updating workshop content in a live session in this way does not undo any deployments or changes

you make in the Kubernetes cluster for that session. To retest parts of the workshop instructions, you

might have to manually undo the changes in the cluster to replay them. This depends on your

specific workshop content.

Custom workshop image changes

If your workshop uses a custom workshop image to provide additional tools and you have included

the workshop instructions as part of the workshop image, you must use an image tag of main,

Tanzu Application Platform v1.1

VMware, Inc 341

develop, or latest during the development of workshop content. Do not use a version image

reference.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-sample-workshop

spec:

 title: Sample Workshop

 description: A sample workshop

 content:

 image: <YOUR-GIT-REPO>/lab-sample-workshop:main

When you use an image tag of main, develop, or latest, the image pull policy is set to Always to

ensure that the custom workshop image is pulled down again for a new workshop session if the

remote image changes. If the image tag is for a specific version, you must change the workshop

definition every time when the workshop image changes.

Custom workshop image overlay

For a custom workshop image, you can set up the workshop definition to pull down the workshop

content from the hosted Git repository or web server as the follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-sample-workshop

spec:

 title: Sample Workshop

 description: A sample workshop

 content:

 image: ghcr.io/eduk8s-labs/lab-sample-workshop:main

 files: <YOUR-GIT-REPO>/lab-sample-workshop

By pulling down the workshop content as an overlay of the custom workshop image when the

workshop session starts, you only need to rebuild the custom workshop image when you need to

make changes such as to include additional tools or to ensure the latest workshop instructions are

included in the final custom workshop image.

Because the location of the workshop files is known, you can live update the workshop content in

the session by following Live updates to the content.

If the additional set of tools required for a workshop is not specific to a workshop, VMware

recommends that you create a standalone workshop base image where you can add the tools. You

can always pull down content for a specific workshop from a Git repository or web server when the

workshop session starts.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-sample-workshop

spec:

 title: Sample Workshop

Tanzu Application Platform v1.1

VMware, Inc 342

 description: A sample workshop

 content:

 image: ghcr.io/eduk8s-labs/custom-environment:main

 files: github.com/eduk8s-labs/lab-sample-workshop

This separates generic tooling from specific workshops and so you can use the custom workshop

base image for multiple workshops on different, but related topics that require the same tooling.

Changes to workshop definition

By default, to modify the definition for a workshop, you need to delete the training portal instance,

update the workshop definition in the cluster, and recreate the training portal.

During the workshop content development, to change resource allocations, role access, or to specify

what resource objects to be automatically created for the workshop environment or a specific

workshop session, you can enable automatic updates in the training portal definition by setting

updates.workshop field as true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-sample-workshop

spec:

 portal:

 sessions:

 maximum: 1

 updates:

 workshop: true

 workshops:

 - name: lab-sample-workshop

 expires: 120m

 orphaned: 15m

With automatic updates enabled, if the workshop definition in the cluster is modified, the existing

workshop environment managed by the training portal for that workshop is shut down and replaced

with a new workshop environment by using the updated workshop definition.

When an active workshop session is running, the actual deletion of the old workshop environment is

delayed until that workshop session is terminated.

Local build of workshop image

If you do not package a workshop into a custom workshop image, VMware recommends to build a

custom workshop image locally on your own machine by using docker to avoid keeping pushing

changes to a hosted Git repository and using a Kubernetes cluster for local workshop content

development.

Furthermore, to avoid pushing the image to a public image registry on the Internet, you must deploy

an image registry to your local Kubernetes cluster where you run the Learning Center. In most

cases, a basic deployment of an image registry in a local cluster access is not secure. As a result, you

have to configure the Kubernetes cluster to trust the registry that is not secure. This can be difficult

to do depending on the Kubernetes cluster you use, but it can enable quicker turnaround because

you do not have to push or pull the custom workshop image across the public Internet.

Tanzu Application Platform v1.1

VMware, Inc 343

After pushing the custom workshop image built locally to the local image registry, you can set the

image reference in the workshop definition to pull the custom workshop from the local registry in the

same cluster. To ensure that the custom workshop image is always pulled for a new workshop

session after update, use the latest tag when tagging and pushing the image to the local registry.

Building an image

This topic explains how to include an extra system, third-party tool, or configuration in your image by

bundling workshop content from the Learning Center workshop base image. The following sample

workshop template provides a Dockerfile.

Structure of the Dockerfile

The structure of the Dockerfile in the sample workshop template is:

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a8870aa6

0b45495d298df5b65c69b3d7972608da4367bd6e69d6e392ac969dd4

COPY --chown=1001:0 . /home/eduk8s/

RUN mv /home/eduk8s/workshop /opt/workshop

RUN fix-permissions /home/eduk8s

The default Dockerfile action is to:

Copy all files from a registry to the /home/eduk8s directory. You must build the custom

workshop images on the registry.tanzu.vmware.com/tanzu-application-platform/tap-

packages@sha256:a8870aa60b45495d298df5b65c69b3d7972608da4367bd6e69d6e392ac969dd4

workshop image. You can do this directly or you can also create an intermediate base image

to install extra packages required by a number of different workshops. The --chown=1001:0

option ensures that files are owned by the appropriate user and group.

The workshop subdirectory is moved to /opt/workshop so that it is not visible to the user. This

subdirectory is in an area searchable for workshop content, in addition to

/home/eduk8s/workshop.

To customize your Dockerfile:

You can ignore other files or directories from the repository, by listing them in the

.dockerignore file.

You can include RUN statements in the Dockerfile to run custom-build steps, but the USER

inherited from the base image has user ID 1001 and is not the root user.

Base images and version tags

The sample Dockerfile provided above and the GitHub repository workshop templates reference

the workshop base image as follows:

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a8870aa60b454

95d298df5b65c69b3d7972608da4367bd6e69d6e392ac969dd4

Tanzu Application Platform v1.1

VMware, Inc 344

Custom workshop base images

The base-environment workshop images include language run times for Node.js and Python. If you

need a different language runtime or a different version of a language runtime, you must create a

custom workshop base image which includes the environment you need. This custom workshop

image is derived from base-environment but includes extra runtime components.

The following Dockerfile example creates a Java JDK11-customized image:

ARG IMAGE_REPOSITORY=dev.registry.tanzu.vmware.com/learning-center

FROM ${IMAGE_REPOSITORY}/pkgs-java-tools as java-tools

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a8870aa6

0b45495d298df5b65c69b3d7972608da4367bd6e69d6e392ac969dd4

COPY --from=java-tools --chown=1001:0 /opt/jdk11 /opt/java

COPY --from=java-tools --chown=1001:0 /opt/gradle /opt/gradle

COPY --from=java-tools --chown=1001:0 /opt/maven /opt/maven

COPY --from=java-tools --chown=1001:0 /opt/code-server/extensions/. /opt/code-server/

extensions/

COPY --from=java-tools --chown=1001:0 /home/eduk8s/. /home/eduk8s/

COPY --from=java-tools --chown=1001:0 /opt/eduk8s/. /opt/eduk8s/

ENV PATH=/opt/java/bin:/opt/gradle/bin:/opt/maven/bin:$PATH \

 JAVA_HOME=/opt/java \

 M2_HOME=/opt/maven

Installing extra system packages

Installing extra system packages requires that you run the installation as root. You must switch the

user commands before running the command, and then switch the user back to user ID of 1001.

USER root

RUN ... commands to install system packages

USER 1001

VMware recommends that you only use the root user to install extra system packages. Don’t use the

root user when adding anything under /home/eduk8s. Otherwise, you must ensure the user ID and

group for directories and files are set to 1001:0 and then run the fix-permissions command if

necessary.

When you run any command as root, you must temporarily override the value of the HOME

environment variable and set it to /root.

If you don’t do this the root user drops configuration files in /home/eduk8s, thinking it is the root

home directory, because the HOME environment variable is by default set to /home/eduk8s. This can

cause commands run later during the workshop to fail if they try to update the configuration files as

they have wrong permissions.

Fixing the file and group ownership and running fix-permissions can help with this problem, but

not in every case, because of permissions the root user may apply and how container image layers

work. VMware recommends that you use the following:

Tanzu Application Platform v1.1

VMware, Inc 345

USER root

RUN HOME=/root && \

 ... commands to install system packages

USER 1001

Installing third-party packages

If you are not using system packaging tools to install extra packages, but are manually downloading

packages and optionally compiling them to binaries, it is better to do this as the default user and not

root.

If compiling packages, VMware recommends working in a temporary directory under /tmp and

removing the directory as part of the same RUN statement when done.

If you are installing a binary, you can install it in /home/eduk8s/bin. This directory is in the application

search path defined by the PATH environment variable for the image.

To install a directory hierarchy of files, create a separate directory under /opt to install everything.

You can override the PATH environment variable in the Dockerfile to add an extra directory for

application binaries and scripts. You can override the LD_LIBRARY_PATH environment variable for the

location of shared libraries.

If installing any files from a RUN instruction into /home/eduk8s, VMware recommends that you run

fix-permissions as part of the same instruction to avoid copies of files being made into a new layer,

which applies to the case where fix-permissions is only run in a later RUN instruction. You can still

leave the final RUN instruction for fix-permissions as it is smart enough not to apply changes if the

file permissions are already set correctly and so it does not trigger a copy of a file when run more

than once.

Workshop instructions

Individual module files making up the workshop instructions can use either Markdown or AsciiDoc

markup formats. The extension used on the file should be .md or .adoc, corresponding to which

formatting markup style you use.

Annotation of executable commands

In conjunction with the standard Markdown and AsciiDoc, additional annotations can be applied to

code blocks. The annotations indicate that a user can click the code block and have it copied to the

terminal and executed.

If using Markdown, to annotate a code block so it is copied to the terminal and executed, use:

```execute

echo "Execute command."

```

When the user clicks the code block, the command is executed in the first terminal of the workshop

dashboard.

Tanzu Application Platform v1.1

VMware, Inc 346

https://github.github.com/gfm/
http://asciidoc.org/

If using AsciiDoc, you can instead use the role annotation in an existing code block:

[source,bash,role=execute]

echo "Execute command."

When the workshop dashboard is configured to display multiple terminals, you can qualify which

terminal the command must be executed in by adding a suffix to the execute annotation. For the first

terminal, use execute-1, for the second terminal execute-2, and so on:

```execute-1

echo "Execute command."

```

```execute-2

echo "Execute command."

```

To execute a command in all terminal sessions on the terminals tab of the dashboard, you can use

execute-all:

```execute-all

clear

```

In most cases, a command the user executes completes immediately. To run a command that never

returns, with the user needing to interrupt it to stop it, you can use the special string <ctrl+c> in a

subsequent code block.

```execute

<ctrl+c>

```

When the user clicks on this code block, the command running in the corresponding terminal is

interrupted.

Note: Using the special string <ctrl+c> is deprecated, and you must use the terminal:interrupt

clickable action instead.

Annotation of text to be copied

To copy the content of the code block into the paste buffer instead of running the command, you

can use:

```copy

echo "Text to copy."

```

After the user clicks this code block, they can then paste the content into another window.

If you have a situation where the text being copied must be modified before use, you can denote

this special case by using copy-and-edit instead of copy. The text is still copied to the paste buffer,

Tanzu Application Platform v1.1

VMware, Inc 347

but is displayed in the browser in a way to highlight that it must be changed before use.

```copy-and-edit

echo "Text to copy and edit."

```

For AsciiDoc, similar to execute, you can add the role of copy or copy-and-edit:

[source,bash,role=copy]

echo "Text to copy."

[source,bash,role=copy-and-edit]

echo "Text to copy and edit."

For copy only, to mark an inline code section within a paragraph of text as copyable when clicked,

you can append the special data variable reference {{copy}} immediately after the inline code block:

Text to `copy`{{copy}}.

Extensible clickable actions

The preceding means to annotate code blocks were the original methods used to indicate code

blocks to be executed or copied when clicked. To support a growing number of clickable actions

with different customizable purposes, annotation names are now name-spaced. The preceding

annotations are still supported, but the following are now recommended, with additional options

available to customize the way the actions are presented.

For code execution, instead of:

```execute

echo "Execute command."

```

you can use:

```terminal:execute

command: echo "Execute command."

```

The contents of the code block is YAML. The executable command must be set as the command

property. By default when the user clicks the command, it is executed in terminal session 1. To select

a different terminal session, you can set the session property.

```terminal:execute

command: echo "Execute command."

session: 1

```

To define a command the user clicks that executes in all terminal sessions on the terminals tab of the

Tanzu Application Platform v1.1

VMware, Inc 348

dashboard, you can also use:

```terminal:execute-all

command: echo "Execute command."

```

For terminal:execute or terminal:execute-all, to clear the terminal before the command is

executed, set the clear property to true:

```terminal:execute

command: echo "Execute command."

clear: true

```

This clears the full terminal buffer and not just the displayed portion of the buffer.

With the new clickable actions, to indicate that a running command in a terminal session must be

interrupted, use:

```terminal:interrupt

session: 1

```

(Optional) Set the session property within the code block to indicate an alternate terminal session to

session 1.

To allow the user to send an interrupt to all terminals sessions on the terminals tab of the dashboard,

use:

```terminal:interrupt-all

```

Where you want the user to enter input into a terminal rather than a command, such as when a

running command prompts for a password, use:

```terminal:input

text: password

```

To allow the user to run commands or interrupt a command, set the session property to indicate a

specific terminal to send it to if you don’t want to send it to terminal session 1:

```terminal:input

text: password

session: 1

```

When providing terminal input in this way, the text by default still has a newline appended to the

end, making it behave the same as using terminal:execute. If you do not want a newline appended,

set the endl property to false.

```terminal:input

text: input

endl: false

Tanzu Application Platform v1.1

VMware, Inc 349



```

To allow the user to clear all terminal sessions on the terminals tab of the dashboard, use:

```terminal:clear-all

```

This clears the full terminal buffer and not just the displayed portion of the terminal buffer. It does not

have any effect when an application is running in the terminal using visual mode. To clear only the

displayed portion of the terminal buffer when a command dialog box is displayed, use

terminal:execute and run the clear command.

To allow the user to copy content to the paste buffer, use:

```workshop:copy

text: echo "Text to copy."

```

or:

```workshop:copy-and-edit

text: echo "Text to copy and edit."

```

A benefit of using these over the original methods is that by using the appropriate YAML syntax, you

can control whether:

A multiline string value is concatenated into one line.

Line breaks are preserved.

Initial or terminating new lines are included.

In the original methods, the string was always trimmed before use. By using the different forms as

appropriate, you can annotate the displayed code block with a different message letting the user

know what will happen.

The method for using AsciiDoc is similar, using the role for the name of the annotation and YAML as

the content:

[source,bash,role=terminal:execute]

command: echo "Execute command."

Clickable actions for the dashboard

In addition to the clickable actions related to the terminal and copying of text to the paste buffer,

other actions are available for controlling the dashboard and opening URL links.

To allow the user to click in the workshop content to open a URL in a new browser, use:

```dashboard:open-url

url: https://www.example.com/

```

Tanzu Application Platform v1.1

VMware, Inc 350

To allow the user to click in the workshop content to display a specific dashboard tab if hidden, use:

```dashboard:open-dashboard

name: Terminal

```

To allow the user to create a new dashboard tab with a specific URL, use:

```dashboard:create-dashboard

name: Example

url: https://www.example.com/

```

To allow the user to create a new dashboard tab with a new terminal session, use:

```dashboard:create-dashboard

name: Example

url: terminal:example

```

The value must be of the form terminal:<session>, where <session> is replaced with the name you

want to give the terminal session. The terminal session name must be restricted to lowercase letters,

numbers, and ‘-‘. You must avoid using numeric terminal session names such as “1”, “2”, and “3”,

because these are used for the default terminal sessions.

To allow the user to reload an existing dashboard, using the URL it is currently targeting, use:

```dashboard:reload-dashboard

name: Example

```

If the dashboard is for a terminal session, there is no effect unless the terminal session was

disconnected, in which case it is reconnected.

To allow the user to change the URL target of an existing dashboard by entering the new URL when

reloading a dashboard, use:

```dashboard:reload-dashboard

name: Example

url: https://www.example.com/

```

The user cannot change the target of a dashboard that includes a terminal session.

To allow the user to delete a dashboard, use:

```dashboard:delete-dashboard

name: Example

```

The user cannot delete dashboards corresponding to builtin applications provided by the workshop

environment, such as the default terminals, console, editor, or slides.

Deleting a custom dashboard including a terminal session does not destroy the underlying terminal

session, and the user can reconnect it by creating a new custom dashboard for the same terminal

Tanzu Application Platform v1.1

VMware, Inc 351

session name.

Clickable actions for the editor

If the embedded editor is enabled, special actions are available that control the editor.

To allow the user to open an existing file you can use:

```editor:open-file

file: ~/exercises/sample.txt

```

You can use ~/ prefix to indicate the path relative to the home directory of the session. When the

user opens the file, if you want the insertion point left on a specific line, provide the line property.

Lines numbers start at 1.

```editor:open-file

file: ~/exercises/sample.txt

line: 1

```

To allow the user to highlight certain lines of a file based on an exact string match, use:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

```

The region of the match is highlighted by default. To allow the user to highlight any number of lines

before or after the line with the match, you can set the before and after properties:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

before: 1

after: 1

```

Setting both before and after to 0 causes the complete line that matched to be highlighted instead

of a region within the line.

To match based on a regular expression, rather than an exact match, set isRegex to true:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

```

When a regular expression is used, and subgroups are specified within the pattern, you can indicate

which subgroup is selected:

```editor:select-matching-text

file: ~/exercises/sample.txt

Tanzu Application Platform v1.1

VMware, Inc 352



text: "image: (.*)"

isRegex: true

group: 1

```

Where there are multiple possible matches in a file, and the one you want to match is not the first,

you can set a range of lines to search:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

start: 8

stop: 12

```

Absence of start means start at the beginning of the file. Absence of stop means stop at the end of

the file. The line number given by stop is not included in the search.

For both an exact match and regular expression, the text to be matched must all be on one line. It is

not possible to match text that spans across lines.

To allow the user to replace text within the file, first match it exactly or use a regular expression so it

is marked as selected, then use:

```editor:replace-text-selection

file: ~/exercises/sample.txt

text: nginx:latest

```

To allow the user to append lines to the end of a file, use:

```editor:append-lines-to-file

file: ~/exercises/sample.txt

text: |

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

    do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

If the user runs the action editor:append-lines-to-file and the file doesn’t exist, it is created. You

can use this to create new files for the user.

To allow the user to insert lines before a specified line in the file, use:

```editor:insert-lines-before-line

file: ~/exercises/sample.txt

line: 8

text: |

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

    do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

To allow the user to insert lines after matching a line containing a specified string, use:

```editor:append-lines-after-match

file: ~/exercises/sample.txt

Tanzu Application Platform v1.1

VMware, Inc 353



match: Lorem ipsum

text: |

    Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

    do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

Where the file contains YAML, to allow the user to insert a new YAML value into an existing

structure, use:

```editor:insert-value-into-yaml

file: ~/exercises/deployment.yaml

path: spec.template.spec.containers

value:

- name: nginx

  image: nginx:latest

```

To allow the user to execute a registered VS code command, use:

```editor:execute-command

command: spring.initializr.maven-project

args:

- language: Java

  dependencies: [ "actuator", "webflux" ]

  artifactId: demo

  groupId: com.example

```

Clickable actions for file download

If file downloads are enabled for the workshop, you can use the files:download-file clickable

action:

```files:download-file

path: .kube/config

```

The action triggers saving the file to the user’s local computer, and the file is not displayed in the

user’s web browser.

Clickable actions for the examiner

If the test examiner is enabled, special actions are available to run verification checks to verify

whether a workshop user has performed a required step. You can trigger these verification checks

by clicking on the action, or you can configure them to start running when the page loads.

For a single verification check the user must click to run, use:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists.

args:

- one

```

Tanzu Application Platform v1.1

VMware, Inc 354

The title field is displayed as the title of the clickable action and must describe the nature of the

test. If required, you can provide a description field for a longer explanation of the test. This is

displayed in the body of the clickable action but is shown as preformatted text.

There must be an executable program (script or compiled application) in the

workshop/examiner/tests directory with name matching the value of the name field.

The list of program arguments against the args field is passed to the test program.

The executable program for the test must exit with a status of 0 if the test is successful, and nonzero

if the test is a failure. The test should aim to return as quickly as possible and should not be a

persistent program.

#!/bin/bash

kubectl get pods --field-selector=status.phase=Running -o name | egrep -e "^pod/1"

if ["$?" != "0"]; then

 exit 1

fi

exit 0

By default, the program for a test is stopped after a timeout of 15 seconds, and the test is deemed to

have failed. To adjust the timeout, you can set the timeout value, which is in seconds. A value of 0

causes the default 15 seconds timeout to be applied. It is not possible to deactivate stopping the test

program after running for the default or a specified timeout value.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

```

To apply the test multiple times, you can enable the retry when a failure occurs. For this you must

set the number of times to retry and the delay between retries. The value for the delay is in seconds.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: 10

delay: 1

```

When you use retries, the testing stops as soon as the test program returns that it was successful.

To have retries continue for as long as the page of the workshop instructions displays, set retries to

the special YAML value of .INF:

Tanzu Application Platform v1.1

VMware, Inc 355


```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

```

Rather than require a workshop user to click the action to run the test, you can have the test start as

soon as the page is loaded, or when a section the page is contained in is expanded. Do this by

setting autostart to true:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

```

When a test succeeds, to immediately start the next test in the same page, set cascade to true.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

cascade: true

```

```examiner:execute-test

name: test-that-pod-does-not-exist

title: Verify that pod named "one" does not exist

args:

- one

retries: .INF

delay: 1

```

Clickable actions for sections

For optional instructions, or instructions you want to hide until the workshop user is ready for them,

you can designate sections to be hidden. When the user clicks the appropriate action, the section

expands to show its content. You can use this for examples that initially hide a set of questions or a

test at the end of each workshop page.

In order to designate a section of content as hidden, you must use two separate action code blocks

Tanzu Application Platform v1.1

VMware, Inc 356

marking the beginning and end of the section:

```section:begin

title: Questions

```

To show you understand ...

```section:end

```

The title must be set to the text you want to include in the banner for the clickable action.

A clickable action is only shown for the beginning of the section, and the action for the end is always

hidden. Clicking the action for the beginning expands the section. The user can collapse the section

again by clicking the action.

To create nested sections, you must name the action blocks for the beginning and end so they can

be correctly matched:

```section:begin

name: questions

title: Questions

```

To show you understand ...

```section:begin

name: question-1

prefix: Question

title: 1

```

...

```section:end

name: question-1

```

```section:end

name: questions

```

The prefix attribute allows you to override the default Section prefix used on the title for the action.

If a collapsible section includes an examiner action block set to automatically run, it only starts when

the user expands the collapsible section.

In case you want a section header showing in the same style as other clickable actions, you can use:

```section:heading

title: Questions

```

When the user clicks on this, the action is still marked as completed, but it does not trigger any other

action.

Tanzu Application Platform v1.1

VMware, Inc 357

Overriding title and description

Clickable action blocks default to use a title with the prefix dictated by what the action block does.

The body of the action block also defaults to use a value commensurate with the action.

Especially for complicated scenarios involving editing of files, the defaults might not be the most

appropriate and be confusing, so you can override them. To override these defaults, set the prefix,

title, and description fields of a clickable action block:

```action:name

prefix: Prefix

title: Title

description: Description

```

The banner of the action block in this example displays “Prefix: Title”, with the body showing

“Description”.

Note: The description is always displayed as pre-formatted text within the rendered page.

Escaping of code block content

Because the Liquid template engine is applied to workshop content, you must escape content in

code blocks that conflict with the syntactic elements of the Liquid template engine. To escape such

elements, you can suspend processing by the template engine for that section of workshop content

to ensure it is rendered correctly. Do this by using a Liquid {% raw %}...{% endraw %} block.

{% raw %}

```execute

echo "Execute command."

```

{% endraw %}

This has the side effect of preventing interpolation of data variables, so restrict it to only the required

scope.

Interpolation of data variables

When creating page content, you can reference a number of predefined data variables. The values

of the data variables are substituted into the page when rendered in the user’s browser.

The workshop environment provides the following built-in data variables:

workshop_name: The name of the workshop.

workshop_namespace: The name of the namespace used for the workshop environment.

session_namespace: The name of the namespace the workshop instance is linked to and into

which any deployed applications run.

training_portal: The name of the training portal the workshop is hosted by.

ingress_domain: The host domain must be used in the any generated host name of ingress

routes for exposing applications.

Tanzu Application Platform v1.1

VMware, Inc 358

https://www.npmjs.com/package/liquidjs

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

To use a data variable within the page content, surround it by matching pairs of brackets:

{{ session_namespace }}

Do this inside of code blocks, including clickable actions, as well as in URLs:

http://myapp-{{ session_namespace }}.{{ ingress_domain }}

When the workshop environment is hosted in Kubernetes and provides access to the underlying

cluster, the following data variables are also available.

kubernetes_token: The Kubernetes access token of the service account the workshop

session is running as.

kubernetes_ca_crt: The contents of the public certificate required when accessing the

Kubernetes API URL.

kubernetes_api_url: The URL for accessing the Kubernetes API. This is only valid when

used from the workshop terminal.

Note: An older version of the rendering engine required that data variables be surrounded on each

side with the character %. This is still supported for backwards compatibility, but VMware

recommends you use matched pairs of brackets instead.

Adding custom data variables

You can introduce your own data variables by listing them in the workshop/modules.yaml file. A data

variable is defined as having a default value, but the value is overridden if an environment variable of

the same name is defined.

The field under which the data variables must be specified is config.vars:

config:

 vars:

 - name: LANGUAGE

 value: undefined

To use a name for a data variable that is different from the environment variable name, add a list of

aliases:

config:

 vars:

 - name: LANGUAGE

 value: undefined

 aliases:

 - PROGRAMMING_LANGUAGE

The environment variables with names in the list of aliases are checked first, then the environment

variable with the same name as the data variable. If no environment variables with those names are

set, the default value is used.

You can override the default value for a data variable for a specific workshop by setting it in the

Tanzu Application Platform v1.1

VMware, Inc 359

corresponding workshop file. For example, workshop/workshop-python.yaml might contain:

vars:

 LANGUAGE: python

For more control over setting the values of data variables, you can provide the file

workshop/config.js. The form of this file is:

function initialize(workshop) {

 workshop.load_workshop();

 if (process.env['WORKSHOP_FILE'] == 'workshop-python.yaml') {

 workshop.data_variable('LANGUAGE', 'python');

 }

}

exports.default = initialize;

module.exports = exports.default;

This JavaScript code is loaded and the initialize() function called to set up the workshop

configuration. You can then use the workshop.data_variable() function to set up any data variables.

Because it is JavaScript, you can write any code to query process environment variables and set data

variables based on those. This might include creating composite values constructed from multiple

environment variables. You can even download data variables from a remote host.

Passing environment variables

You can pass environment variables, including remapping of variable names, by setting your own

custom data variables. If you don’t need to set default values or remap the name of an environment

variable, you can instead reference the name of the environment variable directly. You must prefix

the name with ENV_ when using it.

For example, to display the value of the KUBECTL_VERSION environment variable in the workshop

content, use ENV_KUBECTL_VERSION, as in:

{{ ENV_KUBECTL_VERSION }}

Handling embedded URL links

You can include URLs in workshop content. This can be the literal URL, or the Markdown or

AsciiDoc syntax for including and labelling a URL. What happens when a user clicks on a URL

depends on the specific URL.

In the case of the URL being an external website, when the URL is clicked, the URL opens in a new

browser tab or window. When the URL is a relative page referring to another page that is part of the

workshop content, the page replaces the current workshop page.

You can define a URL where components of the URL are provided by data variables. Data variables

useful for this are session_namespace and ingress_domain, because they can be used to create a

URL to an application deployed from a workshop:

Tanzu Application Platform v1.1

VMware, Inc 360

https://myapp-{{ session_namespace }}.{{ ingress_domain }}

Conditional rendering of content

Rendering pages is in part handled by the Liquid template engine. So you can use any constructs

the template engine supports for conditional content:

{% if LANGUAGE == 'java' %}

....

{% endif %}

{% if LANGUAGE == 'python' %}

....

{% endif %}

Embedding custom HTML content

Custom HTML can be embedded in the workshop content by using the appropriate mechanism

provided by the content rendering engine used.

If using Markdown, HTML can be embedded directly without being marked as HTML:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

<div>

<table style="width:100%">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>50</td>

 </tr>

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

 </tr>

</table>

</div>

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

If using AsciiDoc, HTML can be embedded by using a passthrough block:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

++++

<div>

<table style="width:100%">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

Tanzu Application Platform v1.1

VMware, Inc 361

https://www.npmjs.com/package/liquidjs

 <th>Age</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>50</td>

 </tr>

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

 </tr>

</table>

</div>

++++

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

In both cases, VMware recommends that the HTML consist of only a single HTML element. If you

have more than one, include them all in a div element. The latter is necessary if any of the HTML

elements are marked as hidden and the embedded HTML is a part of a collapsible section. If you

don’t ensure the hidden HTML element is placed under the single top-level div element, the hidden

HTML element is visible when the collapsible section is expanded.

In addition to visual HTML elements, you can also include elements for embedded scripts or style

sheets.

If you have HTML markup that must be added to multiple pages, extract it into a separate file and

use the include file mechanism of the Liquid template engine. You can also use the partial render

mechanism of Liquid as a macro mechanism for expanding HTML content with supplied values.

Workshop runtime

Your workshop content can script the steps a user must run for a workshop. In some cases, you

must parameterize that content with information from the runtime environment. Data variables in

workshop content allow this to a degree, but you can automate this by using scripts executed in the

workshop container to set up configuration files.

Do this by supplying setup scripts that run when the container is started. You can also run persistent

background processes in the container that perform extra work for you while a workshop is being

run.

Predefined environment variables

When you create the workshop content, you can use data variables to automatically insert values

corresponding to the specific workshop session or environment. For example: the name of the

namespace used for the session and the ingress domain when creating an ingress route.

These data variables can display a YAML/JSON resource file in the workshop content with values

already filled out. You can have executable commands that have the data variables substituted with

values given as arguments to the commands.

For commands run in the shell environment, a number of predefined environment variables are also

available that can be referenced directly.

Tanzu Application Platform v1.1

VMware, Inc 362

Key environment variables are:

WORKSHOP_NAMESPACE - The name of the namespace used for the workshop environment.

SESSION_NAMESPACE - The name of the namespace the workshop instance is linked to and

into which any deployed applications run.

INGRESS_DOMAIN - The host domain that must be used in any generated host name of ingress

routes for exposing applications.

INGRESS_PROTOCOL - The protocol (http/https) used for ingress routes created for workshops.

Instead of having an executable command in the workshop content, use:

```execute

kubectl get all -n %session_namespace%

```

With the value of the session namespace filled out when the page is rendered, you can use:

```execute

kubectl get all -n $SESSION_NAMESPACE

```

The shell inserts the value of the environment variable.

Running steps on container start

To run a script that makes use of the earlier environment variables when the container is started, and

to perform tasks such as pre-create YAML/JSON resource definitions with values filled out, you can

add an executable shell script to the workshop/setup.d directory. The name of the executable shell

script must have a .sh suffix to be recognized and run.

If the container is restarted, the setup script runs again in the new container. If the shell script is

performing actions against the Kubernetes REST API using kubectl or by using another means, the

actions it performs must be tolerant of running more than once.

When using a setup script to fill out values in resource files, a useful utility is envsubst. You can use

this in a setup script as follows:

#!/bin/bash

envsubst < frontend/ingress.yaml.in > frontend/ingress.yaml

A reference of the form ${INGRESS_DOMAIN} in the input file is replaced with the value of the

INGRESS_DOMAIN environment variable.

Setup scripts have the /home/eduk8s directory as the current working directory.

If you are creating or updating files in the file system and using a custom workshop image, ensure

that the workshop image is created with correct file permissions to allow updates.

Running background applications

The setup scripts run once on container startup. You can use the script to start a background

Tanzu Application Platform v1.1

VMware, Inc 363

application needed to run in the container for the life of the workshop, but if that application stops, it

does not restart.

If you must run a background application, you can integrate the management of the background

application with the supervisor daemon run within the container. To have the supervisor daemon

manage the application for you, add a configuration file snippet for the supervisor daemon in the

workshop/supervisor directory. This configuration file must have a .conf extension.

The form of the configuration file snippet must be:

[program:myapplication]

process_name=myapplication

command=/opt/myapplication/sbin/start-myapplication

stdout_logfile=/proc/1/fd/1

stdout_logfile_maxbytes=0

redirect_stderr=true

The application must send any logging output to stdout or stderr, and the configuration snippet

must direct log output to /proc/1/fd/1 so it is captured in the container log file. If you must restart or

shut down the application within the workshop interactive terminal, you can use the supervisorctl

control script.

Terminal user shell environment

Neither the setup scripts that run when the container starts nor background applications affect the

user environment of the terminal shell. The shell environment makes use of bash and the

$HOME/.bash_profile script is read to perform added setup for the user environment. Because some

default setup is included in $HOME/.bash_profile, you must not replace it, because you can loose

that configuration.

To provide commands to initialize each shell environment, you can provide the file

workshop/profile. When this file exists, it is sourced at the end of the $HOME/.bash_profile file

when it is processed.

Overriding terminal shell command

The user starts each terminal session by using the bash terminal shell. A terminal prompt dialog box

displays, allowing the user to manually enter commands or perform clickable actions targetting the

terminal session.

To specify the command to run for a terminal session, you can supply an executable shell script file

in the workshop/terminal directory.

The name of the shell script file for a terminal session must be of the form <session>.sh, where

<session> is replaced with the name of the terminal session. The session names of the default

terminals configured to be displayed with the dashboard are 1, 2, and 3.

The shell script file might be used to run a terminal-based application such as k9s, or to create an

SSH session to a remote system.

#!/bin/bash

Tanzu Application Platform v1.1

VMware, Inc 364

exec k9s

If the command that is run exits, the terminal session is marked as exited and you need to reload that

terminal session to start over again. Alternatively, you could write the shell script file as a loop so it

restarts the command you want to run if it ever exits.

#!/bin/bash

while true; do

 k9s

 sleep 1

done

If you want to run an interactive shell and output a banner at the start of the session with special

information for the user, use a script file to output the banner and then run the interactive shell:

#!/bin/bash

echo

echo "Your session namespace is "$SESSION_NAMESPACE".

echo

exec bash

Presenter slides

If a workshop includes a presentation, include slides by placing them in the workshop/slides

directory. Anything in this directory is served up as static files through a HTTP web server. The

default webpage must be provided as index.html.

Using reveal.js presentation tool

To support the use of reveal.js, static media assets for that package are already bundled and

available at the standard URL paths that the package expects. You can drop your slide presentation

using reveal.js into the workshop/slides directory and it will work with no additional setup.

If you are using reveal.js for the slides and you have history enabled or are using section IDs to

support named links, you can use an anchor to a specific slide and that slide will be opened when

clicked on:

%slides_url%#/questions

When using embedded links to the slides in workshop content, if the workshop content is displayed

as part of the dashboard, the slides open in the tab to the right rather than as a separate browser

window or tab.

Using a PDF file for presenter slides

For slides bundled as a PDF file, add the PDF file to workshop/slides and then add an index.html

which displays the PDF embedded in the page.

Tanzu Application Platform v1.1

VMware, Inc 365

https://revealjs.com/
https://stackoverflow.com/questions/291813/recommended-way-to-embed-pdf-in-html

Learning Center runtime environment

This section includes information about the Custom Resource Definitions (CRDs) that are part of the

Learning Center:

Custom resource overview

Workshop resource

WorkshopEnvironment resource

WorkshopRequest resource

WorkshopSession resource

TrainingPortal resource

SystemProfile resource

Custom resources

You can deploy workshop images directly to a container runtime. Learning Center Operator enables

managing the deployments into a Kubernetes cluster. A set of Kubernetes custom resource

definitions (CRDs) controls the operation of the Learning Center Operator.

Note: The examples do not show all the possible fields of each custom resource type. Later

documentation will go in-depth on all the possible fields and their definitions.

Workshop definition resource

The Workshop custom resource defines a workshop. It specifies the title and description of the

workshop, the location of the workshop content or container image that you deploy, any resources

that you pre-create in the workshop environment or for each instance of the workshop.

You can also define environment variables for the workshop image, the amount of CPU and memory

resources for the workshop instance, any overall quota you will apply to the created namespaces and

what the workshop uses.

A minimal example of the Workshop custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

 session:

 namespaces:

 budget: small

 applications:

 console:

 enabled: true

 editor:

 enabled: true

Tanzu Application Platform v1.1

VMware, Inc 366

When you create an instance of the Workshop custom resource, the Learning Center Operator does

not take any immediate action. This custom resource exists only to define the workshop.

Note: You create the Workshop custom resource at the cluster scope.

Workshop environment resource

You must create a workshop environment first to deploy the instances of a workshop. The

WorkshopEnvironment custom resource defines the configuration of the workshop environment and

the details of the workshop that you deploy.

A minimal example of the WorkshopEnvironment custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 token: lab-markdown-sample

 session:

 username: learningcenter

When you create an instance of the WorkshopEnvironment custom resource, the Learning Center

Operator responds by creating a namespace to host the workshop instances. The Workshop resource

defines the workshop instance and the spec.workshop.name field specifies the name of the Workshop

resource. The namespace you create uses the same name as that of the metadata.name field in the

WorkshopEnvironment resource.

The spec.request.token field defines a token with which you must supply a request to create an

instance of a workshop in this workshop environment. If necessary, you can also specify the

namespaces from which a request for a workshop instance to initiate.

The Workshop defines a set of common resources that must exist for the workshop. Learning Center

Operator creates these common resources after you created the namespace for the workshop

environment. If necessary, these resources can include creation of separate namespaces with

specific resources that you create in those namespaces instead.

Note: You create the WorkshopEnvironment custom resource at the cluster scope.

Workshop request resource

To create an instance of the workshop under the workshop environment, the typical path is to create

an instance of the WorkshopRequest custom resource.

The WorkshopRequest custom resource is namespaced to allow who can create it. Role-based access

control (RBAC) controls the request to create a workshop instance. This means you can allow non-

privileged users to create workshops, although the deployment of the workshop instance might

require elevated privileges.

A minimal example of the WorkshopRequest custom resource looks like this:

Tanzu Application Platform v1.1

VMware, Inc 367

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

 token: lab-markdown-sample

Apart from appropriate access from RBAC, the user requesting a workshop instance must know the

name of the workshop environment and the secret token that permits workshop requests against

that specific workshop environment.

You do not need to create the WorkshopRequest resource when you use the TrainingPortal

resource to provide a web interface for accessing workshops. You only need to create the

WorkshopRequest resource when you create the WorkshopEnvironment resource manually and do not

use the training portal.

Workshop session resource

Although WorkshopRequest is the typical way to request workshop instances, the Learning Center

Operator itself creates an instance of a WorkshopSession custom resource when the request is

granted.

The WorkshopSession custom resource is the expanded definition of what the workshop instance is.

It combines details from Workshop and WorkshopEnvironment, and also links back to the

WorkshopRequest resource object that triggered the request. The Learning Center Operator reacts to

an instance of WorkshopSession and creates the workshop instance based on that definition.

Note: You create the WorkshopSession custom resource at the cluster scope.

Training portal resource

The TrainingPortal custom resource provides a high-level mechanism for creating a set of

workshop environments and populating them with workshop instances.

A minimal example of the TrainingPortal custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 1

You can set the capacity of the training room, which dictates how many workshop instances are

created for each workshop.

Note: You create the TrainingPortal custom resource at the cluster scope.

Tanzu Application Platform v1.1

VMware, Inc 368

System profile resource

The SystemProfile custom resource provides a mechanism for configuring the Learning Center

Operator. This provides additional features that use environment variables to configure the operator.

A minimal example of the SystemProfile custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter-tanzu-vmware-com-tls

 class: nginx

 environment:

 secrets:

 pull:

 - cluster-image-registry-pull

The operator, by default, looks for a default system profile called default-system-profile. Setting

the SYSTEM_PROFILE environment variable on the deployment for the operator or using the

system.profile setting on TrainingPortal, WorkshopEnvironment, or WorkshopSession custom

resources for specific deployments can override the default name globally.

As only a global deployment of the operator is supported, the SystemProfile custom resource is

created at cluster scope.

You can make changes to instances of the SystemProfile custom resource. The Learning Center

Operator uses these changes without needing to redeploy the custom resource.

Note: You create the SystemProfile custom resource at the cluster scope.

Loading the workshop CRDs

The custom resource definitions for the custom resource described earlier are created in the

Kubernetes cluster when you deploy the Learning Center operator by using the Tanzu CLI.

This is because v1 versions of CRDs are only supported from Kubernetes v1.17. If you want to use the

v1 versions of the CRDs, you must create a copy of the Learning Center operator deployment

resources and override the configuration.

Workshop resource

The Workshop custom resource defines a workshop.

Workshop title and description

Each workshop must have the title and description fields. If you do not supply these fields, the

Workshop resource is rejected when you attempt to load it into the Kubernetes cluster.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.1

VMware, Inc 369

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

Where:

The title field has a single-line value specifying the subject of the workshop.

The description field has a longer description of the workshop.

You can also supply the following optional information for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 url: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

 difficulty: beginner

 duration: 15m

 vendor: learningcenter.tanzu.vmware.com

 authors:

 - John Smith

 tags:

 - template

 logo: data:image/png;base64,....

 content:

 files: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The url field is the Git repository URL for lab-markdown-sample. For example,

https://github.com/eduk8s/lab-markdown-sample. It must be a URL you can use to get

more information about the workshop.

The difficulty field indicates the target audiences of the workshop. The value can be

beginner, intermediate, advanced, or extreme.

The duration field gives the maximum amount of time the workshop takes to complete. This

field provides informational value and does not guarantee how long a workshop instance

lasts. The field format is an integer number with s, m, or h suffix.

The vendor field must be a value that identifies the company or organization with which the

authors are affiliated. This is a company or organization name or a DNS host name under the

control of whoever has created the workshop.

The authors field must list the people who create the workshop.

The tags field must list labels identifying what the workshop is about. This is used in a

searchable catalog of workshops.

Tanzu Application Platform v1.1

VMware, Inc 370

The logo field must be an image provided in embedded data URI format that depicts the

topic of the workshop. The image must be 400 by 400 pixels. You can use it in a searchable

catalog of workshops.

The files field is the Git repository URL for lab-markdown-sample. For example,

https://github.com/eduk8s/lab-markdown-sample.

When referring to a workshop definition after you load it into a Kubernetes cluster, use the value of

the name field given in the metadata. To experiment with different variations of a workshop, copy the

original workshop definition YAML file and change the value of name. Make your changes and load it

into the Kubernetes cluster.

Downloading workshop content

You can download workshop content when you create the workshop instance. If the amount of

content is moderate, the download doesn’t increase startup time for the workshop instance. The

alternative is to bundle the workshop content in a container image you build from the Learning

Center workshop base image.

To download workshop content at the time the workshop instance starts, set the content.files field

to the location of the workshop content:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

The location is a GitHub or GitLab repository, a URL to a tarball hosted on a HTTP server, or a

reference to an OCI image artifact on a registry.

For a GitHub or GitLab repository, do not prefix the location with https:// as it uses symbolic

reference and is not a URL.

The format of the reference to a GitHub or GitLab repository is similar to what you use with

Kustomize when referencing remote repositories. For example:

github.com/organisation/project?ref=main or github.com/organisation/project?

ref=main: Use the workshop content you host at the root of the GitHub repository. Use the

main branch. Be sure to specify the ref branch, because not specifying the branch may lead

to content download errors.

github.com/organisation/project/subdir?ref=develop: Use the workshop content you

host at subdir of the GitHub repository. Use the develop branch.

gitlab.com/organisation/project: Use the workshop content you host at the root of the

GitLab repository. Use the main branch.

gitlab.com/organisation/project/subdir?ref=develop: Use the workshop content you

host at subdir of the GitLab repository. Use the develop branch.

Tanzu Application Platform v1.1

VMware, Inc 371

For a URL to a tarball hosted on a HTTP server, the URL is in the following formats:

https://example.com/workshop.tar - Use the workshop content from the top-level directory

of the unpacked tarball.

https://example.com/workshop.tar.gz - Use the workshop content from the top-level

directory of the unpacked tarball.

https://example.com/workshop.tar?path=subdir - Use the workshop content from the

subdirectory path of the unpacked tarball.

https://example.com/workshop.tar.gz?path=subdir - Use the workshop content from the

subdirectory path of the unpacked tarball.

The tarball referenced by the URL is either uncompressed or compressed.

For GitHub, instead of referencing the Git repository containing the workshop content, use a URL to

refer directly to the downloadable tarball for a specific version of the Git repository:

https://github.com/organization/project/archive/develop.tar.gz?path=project-

develop

You must reference the .tar.gz download and cannot use the .zip file. The base name of the

tarball file is the branch or commit name. You must enter the path query string parameter where the

argument is the name of the project and branch or project and commit. You must supply the path

because the contents of the repository are not returned at the root of the archive.

GitLab also provides a means of downloading a package as a tarball:

https://gitlab.com/organization/project/-/archive/develop/project-develop.tar.gz?

path=project-develop

If the GitHub or GitLab repository is private, you can generate a personal access token providing

read-only access to the repository and include the credentials in the URL:

https://username@token:github.com/organization/project/archive/develop.tar.gz?

path=project-develop

With this method, you supply a full URL to request a tarball of the repository and it does not refer to

the repository itself. You can also reference private enterprise versions of GitHub or GitLab and the

repository doesn’t need to be on the public github.com or gitlab.com sites.

The last case is a reference to an OCI image artifact stored on a registry. This is not a full container

image with the operating system, but an image containing only the files making up the workshop

content. The URI formats for this are:

imgpkg+https://harbor.example.com/organisation/project:version - Use the workshop

content from the top-level directory of the unpacked OCI artifact. The registry in this case

must support https.

imgpkg+https://harbor.example.com/organisation/project:version?path=subdir - Use

the workshop content from the subdirectory path of the unpacked OCI artifact you specify.

The registry in this case must support https.

imgpkg+http://harbor.example.com/organisation/project:version - Use the workshop

content from the top-level directory of the unpacked OCI artifact. The registry in this case

can only support http.

Tanzu Application Platform v1.1

VMware, Inc 372

imgpkg+http://harbor.example.com/organisation/project:version?path=subdir - Use the

workshop content from the subdirectory path of the unpacked OCI artifact you specify. The

registry in this case can only support http.

You can use imgpkg:// instead of the prefix imgpkg+https://. The registry in this case must still

support https.

For any of the formats, you can supply credentials as part of the URI:

imgpkg+https://username:password@harbor.example.com/organisation/project:version

Access to the registry using a secure connection of https must have a valid certificate.

You can create the OCI image artifact by using imgpkg from the Carvel tool set. For example, from

the top-level directory of the Git repository containing the workshop content, run:

imgpkg push -i harbor.example.com/organisation/project:version -f .

In all cases for downloading workshop content, the workshop subdirectory holding the actual

workshop content is relocated to /opt/workshop so that it is not visible to a user. If you want to

ignore other files so the user can not see them, you can supply a .eduk8signore file in your

repository or tarball and list patterns for the files in it.

The contents of the .eduk8signore file are processed as a list of patterns and each is applied

recursively to subdirectories. To ensure that a file is only ignored if it resides in the root directory,

prefix it with ./:

./.dockerignore

./.gitignore

./Dockerfile

./LICENSE

./README.md

./kustomization.yaml

./resources

Container image for the workshop

When you bundle the workshop content into a container image, the content.image field must

specify the image reference identifying the location of the container image that you will deploy for

the workshop instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

Even though you can download workshop content when the workshop environment starts, you

might still want to override the workshop image that is used as a base. You can do this when you

Tanzu Application Platform v1.1

VMware, Inc 373

have a custom workshop base image that includes added language runtimes or tools that the

specialized workshops require.

For example, if running a Java workshop, you can enter the jdk11-environment for the workshop

image. The workshop content is still downloaded from GitHub:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-spring-testing

spec:

 title: Spring Testing

 description: Playground for testing Spring development

 content:

 image: registry.tanzu.vmware.com/learning-center/jdk11-environment:latest

 files: github.com/eduk8s-tests/lab-spring-testing

If you want to use the latest version of an image, always include the :latest tag. This is important

because the Learning Center Operator looks for version tags :main, :develop, and :latest. When

using these tags, the Operator sets the image pull policy to Always to ensure that a newer version is

always pulled if available. Otherwise, the image is cached on the Kubernetes nodes and only pulled

when it is initially absent. Any other version tags are always assumed to be unique and are never

updated. Be aware of image registries that use a content delivery network (CDN) as front end. When

using these image tags, the CDN can still regard them as unique and not do pull through requests to

update an image even if it uses a tag of :latest.

When special custom workshop base images are available as part of the Learning Center project,

instead of specifying the full location for the image, including the image registry, you can specify a

short name. The Learning Center Operator then fills in the rest of the details:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-spring-testing

spec:

 title: Spring Testing

 description: Playground for testing Spring development

 content:

 image: jdk11-environment:latest

 files: github.com/eduk8s-tests/lab-spring-testing

The supported short versions of the names are:

base-environment:*: A tagged version of the base-environment workshop image matched

with the current version of the Learning Center Operator.

The * variants of the short names map to the most up-to-date version of the image available when

the version of the Learning Center Operator was released. That version is guaranteed to work with

that version of the Learning Center Operator. The latest version can be newer, with possible

incompatibilities.

If required, you can remap the short names in the SystemProfile configuration of the Learning

Center Operator. You can map additional short names to your own custom workshop base images

for your own deployment of the Learning Center Operator, and with any of your own workshops.

Tanzu Application Platform v1.1

VMware, Inc 374

Setting environment variables

To set or override environment variables for the workshop instance, you can supply the session.env

field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 files: github.com/eduk8s/lab-markdown-sample

 session:

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The session.env field is a list of dictionaries with the name and value fields.

The value field is the Git repository for lab-markdown-sample. For example,

https://github.com/eduk8s/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session. A workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances. It is also the namespace where

the service account that the workshop instance runs.

service_account: The name of the service account that the workshop instance runs as. It has

access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for

workshops.

The syntax for referencing the parameters is $(parameter_name).

Use the session.env field to override environment variables only when they are required for the

workshop. To set or override an environment for a specific workshop environment, set environment

variables in the WorkshopEnvironment custom resource for the workshop environment instead.

Tanzu Application Platform v1.1

VMware, Inc 375

Overriding the memory available

By default the container the workshop environment runs in is allocated 512Mi. If the editor is

enabled, a total of 1Gi is allocated.

The memory allocation is sufficient for the workshop that is mainly aimed at deploying workloads into

the Kubernetes cluster. If you run workloads in the workshop environment container and need more

memory, you can override the default by setting memory under session.resources:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 resources:

 memory: 2Gi

Mounting a persistent volume

In circumstances where a workshop needs persistent storage to ensure no loss of work, you can

request a persistent volume be mounted into the workshop container after the workshop

environment container is stopped and restarted:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 resources:

 storage: 5Gi

The persistent volume is mounted on top of the /home/eduk8s directory. Because this hides any

workshop content bundled with the image, an init container is automatically configured and run,

which copies the contents of the home directory to the persistent volume before the persistent

volume is mounted on top of the home directory.

Resource budget for namespaces

In conjunction with each workshop instance, a namespace is created during the workshop. From the

terminal of the workshop, you can deploy dashboard applications into the namespace through the

Kubernetes REST API by using tools such as kubectl.

By default, this namespace has all the limit ranges and resource quotas the Kubernetes cluster can

Tanzu Application Platform v1.1

VMware, Inc 376

enforce. In most cases, this means there are no limits or quotas.

To control how much resources you can use when you set no limit ranges and resource quotas, or

override any default limit ranges and resource quotas, you can set a resource budget for any

namespace of the workshop instance in the session.namespaces.budget field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 namespaces:

 budget: small

The resource budget sizings and quotas for CPU and memory are:

Budget CPU Memory

small 1000m 1Gi

medium 2000m 2Gi

large 4000m 4Gi

x-large 8000m 8Gi

xx-large 8000m 12Gi

xxx-large 8000m 16Gi

A value of 1000m is equivalent to 1 CPU.

Separate resource quotas for CPU and memory are applied for terminating and non-terminating

workloads.

Only the CPU and memory quotas are listed in the preceding table, but limits also apply to the

number of resource objects of certain types you can create, such as:

persistent volume claims

replication controllers

services

secrets

For each budget type, a limit range is created with fixed defaults. The limit ranges for CPU usage on

a container are as follows:

Budget Minimum Maximum Request Limit

small 50m 1000m 50m 250m

medium 50m 2000m 50m 500m

large 50m 4000m 50m 500m

Tanzu Application Platform v1.1

VMware, Inc 377

Budget Minimum Maximum Request Limit

x-large 50m 8000m 50m 500m

xx-large 50m 8000m 50m 500m

xxx-large 50m 8000m 50m 500m

The limit ranges for memory are as follows:

Budget Minimum Maximum Request Limit

small 32Mi 1Gi 128Mi 256Mi

medium 32Mi 2Gi 128Mi 512Mi

large 32Mi 4Gi 128Mi 1Gi

x-large 32Mi 8Gi 128Mi 2Gi

xx-large 32Mi 12Gi 128Mi 2Gi

xxx-large 32Mi 16Gi 128Mi 2Gi

The request and limit values are the defaults of a container when there is no resources specification

in a pod specification.

You can supply overrides in session.namespaces.limits to override the limit ranges and defaults for

request and limit values when a budget sizing for CPU and memory is sufficient and there is no

resources specification in a pod specification:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-markdown-sample

spec:

 title: Markdown Sample

 description: A sample workshop using Markdown

 content:

 image: quay.io/eduk8s/lab-markdown-sample:main

 session:

 namespaces:

 budget: medium

 limits:

 min:

 cpu: 50m

 memory: 32Mi

 max:

 cpu: 1

 memory: 1Gi

 defaultRequest:

 cpu: 50m

 memory: 128Mi

 default:

 cpu: 500m

 memory: 1Gi

Although all the configurable properties are listed in this example, you only need to supply the

property for the value that you want to override.

Tanzu Application Platform v1.1

VMware, Inc 378

If you need more control over the limit ranges and resource quotas, you can set the resource

budget to custom. This removes any default limit ranges and resource quota that might be applied to

the namespace. You can enter your own LimitRange and ResourceQuota resources as part of the list

of resources created for each session.

Before disabling the quota and limit ranges or contemplating any switch to using a custom set of

LimitRange and ResourceQuota resources, consider if that is what is really required.

The default requests defined by these for memory and CPU are fallbacks only. In most cases, instead

of changing the defaults, you can enter the memory and CPU resources in the pod template

specification of your deployment resources used in the workshop to indicate what the application

requires. This allows you to control exactly what the application can use and so fit into the minimum

quota required for the task.

This budget setting and the memory values are distinct from the amount of memory the container

the workshop environment runs in. To change how much memory is available to the workshop

container, set the memory setting under session.resources.

Patching workshop deployment

In order to set or override environment variables, you can provide session.env. To make other

changes to the Pod template for the deployment used to create the workshop instance, provide an

overlay patch. You can use this patch to override the default CPU and memory limit applied to the

workshop instance or to mount a volume.

The patches are provided by setting session.patches. The patch is applied to the spec field of the

pod template:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-resource-testing

spec:

 title: Resource testing

 description: Play area for testing memory resources

 content:

 files: github.com/eduk8s-tests/lab-resource-testing

 session:

 patches:

 containers:

 - name: workshop

 resources:

 requests:

 memory: "1Gi"

 limits:

 memory: "1Gi"

In this example, the default memory limit of “512Mi” is increased to “1Gi”. Although memory is set

using a patch in this example, the session.resources.memory field is the preferred way to override

the memory allocated to the container the workshop environment is running in.

The patch works differently than overlay patches that you can find elsewhere in Kubernetes.

Specifically, when patching an array and the array contains a list of objects, a search is performed on

the destination array. If an object already exists with the same value for the name field, the item in the

Tanzu Application Platform v1.1

VMware, Inc 379

source array is overlaid on top of the existing item in the destination array.

If there is no matching item in the destination array, the item in the source array is added to the end

of the destination array.

This means an array doesn’t outright replace an existing array, but a more intelligent merge is

performed of elements in the array.

Creation of session resources

When a workshop instance is created, the deployment running the workshop dashboard is created

in the namespace for the workshop environment. When more than one workshop instance is

created under that workshop environment, all those deployments are in the same namespace.

For each workshop instance, a separate empty namespace is created with name corresponding to

the workshop session. The workshop instance is configured so that the service account that the

workshop instance runs under can access and create resources in the namespace created for that

workshop instance. Each separate workshop instance has its own corresponding namespace and

cannot see the namespace for another instance.

To pre-create additional resources within the namespace for a workshop instance, you can supply a

list of the resources against the session.objects field within the workshop definition. You might use

this to add additional custom roles to the service account for the workshop instance when working in

that namespace or to deploy a distinct instance of an application for just that workshop instance, such

as a private image registry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-registry-testing

spec:

 title: Registry Testing

 description: Play area for testing image registry

 content:

 files: github.com/eduk8s-tests/lab-registry-testing

 session:

 objects:

 - apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: registry

 spec:

 replicas: 1

 selector:

 matchLabels:

 deployment: registry

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 deployment: registry

 spec:

 containers:

 - name: registry

 image: registry.hub.docker.com/library/registry:2.6.1

Tanzu Application Platform v1.1

VMware, Inc 380

 imagePullPolicy: IfNotPresent

 ports:

 - containerPort: 5000

 protocol: TCP

 env:

 - name: REGISTRY_STORAGE_DELETE_ENABLED

 value: "true"

 - apiVersion: v1

 kind: Service

 metadata:

 name: registry

 spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 5000

 selector:

 deployment: registry

For namespaced resources, it is not necessary to enter the namespace field of the resource metadata.

When the namespace field is not present, the resource is created within the session namespace for

that workshop instance.

When resources are created, owner references are added, making the WorkshopSession custom

resource corresponding to the workshop instance the owner. This means that when the workshop

instance is deleted, any resources are deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

session_namespace: The namespace you create for and bound to the workshop instance.

This is the namespace unique to the session and where a workshop can create its own

resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances. It is also the namespace where

the service account that the workshop instance runs.

service_account: The name of the service account the workshop instance runs as and which

has access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for

workshops.

The syntax for referencing the parameter is $(parameter_name).

For cluster-scoped resources, you must set the name of the created resource so that it embeds the

value of $(session_namespace). This way the resource name is unique to the workshop instance,

and you do not get a clash with a resource for a different workshop instance.

Tanzu Application Platform v1.1

VMware, Inc 381

For examples of making use of the available parameters, see the following sections.

Overriding default role-based access control (RBAC) rules

By default the service account created for the workshop instance has admin role access to the

session namespace created for that workshop instance. This enables the service account to be used

to deploy applications to the session namespace and manage secrets and service accounts.

Where a workshop doesn’t require admin access for the namespace, you can reduce the level of

access it has to edit or view by setting the session.namespaces.role field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-role-testing

spec:

 title: Role Testing

 description: Play area for testing roles

 content:

 files: github.com/eduk8s-tests/lab-role-testing

 session:

 namespaces:

 role: view

To add additional roles to the service account, such as working with custom resource types added to

the cluster, you can add the appropriate Role and RoleBinding definitions to the session.objects

field described previously:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-kpack-testing

spec:

 title: Kpack Testing

 description: Play area for testing kpack

 content:

 files: github.com/eduk8s-tests/lab-kpack-testing

 session:

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: Role

 metadata:

 name: kpack-user

 rules:

 - apiGroups:

 - build.pivotal.io

 resources:

 - builds

 - builders

 - images

 - sourceresolvers

 verbs:

 - get

 - list

 - watch

 - create

Tanzu Application Platform v1.1

VMware, Inc 382

 - delete

 - patch

 - update

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: RoleBinding

 metadata:

 name: kpack-user

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: kpack-user

 subjects:

 - kind: ServiceAccount

 namespace: $(workshop_namespace)

 name: $(service_account)

Because the subject of a RoleBinding must specify the service account name and namespace it is

contained within, both of which are unknown in advance, references to parameters for the workshop

namespace and service account for the workshop instance are used when defining the subject.

You can add additional resources with session.objects to grant cluster-level roles and the service

account cluster-admin role:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-admin-testing

spec:

 title: Admin Testing

 description: Play area for testing cluster admin

 content:

 files: github.com/eduk8s-tests/lab-admin-testing

 session:

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRoleBinding

 metadata:

 name: $(session_namespace)-cluster-admin

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

 subjects:

 - kind: ServiceAccount

 namespace: $(workshop_namespace)

 name: $(service_account)

In this case, the name of the cluster role binding resource embeds $(session_namespace) so that its

name is unique to the workshop instance and doesn’t overlap with a binding for a different workshop

instance.

Running user containers as root

In addition to RBAC, which controls what resources a user can create and work with, Pod security

policies are applied to restrict what Pods/containers a user deploys can do.

Tanzu Application Platform v1.1

VMware, Inc 383

By default the deployments that a workshop user can create are allowed only to run containers as a

non-root user. This means that many container images available on registries such as Docker Hub

cannot be used.

If you are creating a workshop where a user must run containers as the root user, you must override

the default nonroot security policy and select the anyuid security policy by using the

session.namespaces.security.policy setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing security policies

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 namespaces:

 security:

 policy: anyuid

This setting applies to the primary session namespace and any secondary namespaces created.

Creating additional namespaces

For each workshop instance, a primary session namespace is created. You can deploy or pre-deploy

applications into this namespace as part of the workshop.

If you need more than one namespace per workshop instance, you can create secondary

namespaces in a couple of ways.

If the secondary namespaces are to be created empty, you can list the details of the namespaces

under the property session.namespaces.secondary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 namespaces:

 role: admin

 budget: medium

 secondary:

 - name: $(session_namespace)-apps

 role: edit

 budget: large

 limits:

 default:

 memory: 512mi

Tanzu Application Platform v1.1

VMware, Inc 384

When secondary namespaces are created, by default, the role, resource quotas, and limit ranges are

set the same as the primary session namespace. Each namespace has a separate resource budget

and it is not shared.

If required, you can override what role, budget, and limits are applied within the entry for the

namespace.

Similarly, you can override the security policy for secondary namespaces on a case-by-case basis by

adding the security.policy setting under the entry for the secondary namespace.

To create resources in the namespaces you create, create the namespaces by adding an appropriate

Namespace resource to session.objects with the definitions of the resources you want to create in

the namespaces:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

When listing any other resources to be created within the added namespace, such as deployments,

ensure that the namespace is set in the metadata of the resource. For example,

$(session_namespace)-apps.

To override what role the service account for the workshop instance has in the added namespace,

you can set the learningcenter.tanzu.vmware.com/session.role annotation on the Namespace

resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

 annotations:

 learningcenter.tanzu.vmware.com/session.role: view

To have a different resource budget set for the additional namespace, you can add the annotation

Tanzu Application Platform v1.1

VMware, Inc 385

learningcenter.tanzu.vmware.com/session.budget in the Namespace resource metadata and set the

value to the required resource budget:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

 annotations:

 learningcenter.tanzu.vmware.com/session.budget: large

To override the limit range values applied corresponding to the budget applied, you can add

annotations starting with learningcenter.tanzu.vmware.com/session.limits. for each entry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-namespace-testing

spec:

 title: Namespace Testing

 description: Play area for testing namespaces

 content:

 files: github.com/eduk8s-tests/lab-namespace-testing

 session:

 objects:

 - apiVersion: v1

 kind: Namespace

 metadata:

 name: $(session_namespace)-apps

 annotations:

 learningcenter.tanzu.vmware.com/session.limits.min.cpu: 50m

 learningcenter.tanzu.vmware.com/session.limits.min.memory: 32Mi

 learningcenter.tanzu.vmware.com/session.limits.max.cpu: 1

 learningcenter.tanzu.vmware.com/session.limits.max.memory: 1Gi

 learningcenter.tanzu.vmware.com/session.limits.defaultrequest.cpu: 50m

 learningcenter.tanzu.vmware.com/session.limits.defaultrequest.memory: 128Mi

 learningcenter.tanzu.vmware.com/session.limits.request.cpu: 500m

 learningcenter.tanzu.vmware.com/session.limits.request.memory: 1Gi

You only must supply annotations for the values you want to override.

If you need more fine-grained control over the limit ranges and resource quotas, set the value of the

annotation for the budget to custom and add the LimitRange and ResourceQuota definitions to

session.objects.

In this case you must set the namespace for the LimitRange and ResourceQuota resource to the name

of the namespace, e.g., $(session_namespace)-apps so they are only applied to that namespace.

Tanzu Application Platform v1.1

VMware, Inc 386

To set the security policy for a specific namespace other than the primary session namespace, you

can add the annotation learningcenter.tanzu.vmware.com/session.security.policy in the

Namespace resource metadata and set the value to nonroot, anyuid, or custom as necessary.

Shared workshop resources

Adding a list of resources to session.objects causes the given resources to be created for each

workshop instance, whereas namespaced resources default to being created in the session

namespace for a workshop instance.

If instead you want to have one common shared set of resources created once for the whole

workshop environment, that is, used by all workshop instances, you can list them in the

environment.objects field.

This might, for example, be used to deploy a single container image registry used by all workshop

instances, with a Kubernetes job used to import a set of images into the container image registry,

which are then referenced by the workshop instances.

For namespaced resources, it is not necessary to enter the namespace field of the resource metadata.

When the namespace field is not present, the resource is created within the workshop namespace for

that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment

custom resource correspond to the workshop environment of the owner. This means that when the

workshop environment is deleted, any resources are also deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

workshop_name: The name of the workshop. This is the name of the Workshop definition the

workshop environment was created against.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

environment_token: The value of the token that must be used in workshop requests against

the workshop environment.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances, and their service accounts, are created. It

is the same namespace that shared workshop resources are created.

service_account: The name of a service account you can use when creating deployments in

the workshop namespace.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

ingress_secret: The name of the ingress secret stored in the workshop namespace when

secure ingress is used.

To create additional namespaces associated with the workshop environment, embed a reference to

$(workshop_namespace) in the name of the additional namespaces with an appropriate suffix. Be

Tanzu Application Platform v1.1

VMware, Inc 387

careful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the

Deployment resource to $(service_account). This ensures the deployment makes use of a special

Pod security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more

strict default Pod security policy, your deployment might not work, especially if any image runs as

root.

Workshop pod security policy

The pod for the workshop session is set up with a pod security policy that restricts what you can do

from containers in the pod. The nature of the applied pod security policy is adjusted when enabling

support for doing Docker builds. This in turn enables Docker builds inside the sidecar container

attached to the workshop container.

If you are customizing the workshop by patching the pod specification using session.patches to add

your own sidecar container, and that sidecar container must run as the root user or needs a custom

pod security policy, you must override the default security policy for the workshop container.

To allow a sidecar container to run as the root user with no extra privileges required, you can

override the default nonroot security policy and set it to anyuid:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing security policies

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 security:

 policy: anyuid

This is a different setting than described previously for changing the security policy for deployments

made by a workshop user to the session namespaces. This setting applies only to the workshop

container itself.

If you need more fine-grained control of the security policy, you must provide your own resources

for defining the Pod security policy and map it so it is used. The details of the pod security policy

must be in environment.objects and mapped by definitions added to session.objects. For this to

be used, you must deactivate the application of the inbuilt pod security policies. You can do this by

setting session.security.policy to custom:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing policy override

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

Tanzu Application Platform v1.1

VMware, Inc 388

 session:

 security:

 policy: custom

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: RoleBinding

 metadata:

 namespace: $(workshop_namespace)

 name: $(session_namespace)-podman

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: $(workshop_namespace)-podman

 subjects:

 - kind: ServiceAccount

 namespace: $(workshop_namespace)

 name: $(service_account)

 environment:

 objects:

 - apiVersion: policy/v1beta1

 kind: PodSecurityPolicy

 metadata:

 name: aa-$(workshop_namespace)-podman

 spec:

 privileged: true

 allowPrivilegeEscalation: true

 requiredDropCapabilities:

 - KILL

 - MKNOD

 hostIPC: false

 hostNetwork: false

 hostPID: false

 hostPorts: []

 runAsUser:

 rule: MustRunAsNonRoot

 seLinux:

 rule: RunAsAny

 fsGroup:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

 volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRole

 metadata:

 name: $(workshop_namespace)-podman

 rules:

 - apiGroups:

 - policy

 resources:

 - podsecuritypolicies

 verbs:

 - use

Tanzu Application Platform v1.1

VMware, Inc 389

 resourceNames:

 - aa-$(workshop_namespace)-podman

By overriding the pod security policy, you are responsible for limiting what you can do from the

workshop pod. In other words, add only the extra capabilities you need. The pod security policy is

applied only to the pod the workshop session runs in. It does not change any pod security policy

applied to service accounts that exist in the session namespace or other namespaces you have

created.

There is a better way to set the priority of applied Pod security policies when a default Pod security

policy is applied globally by mapping it to the system:authenticated group. This causes priority

falling back to the order of the names of the Pod security policies. VMware recommends you use

aa- as a prefix to the custom Pod security name you create. This ensures it takes precedence over

any global default Pod security policy such as restricted, pks-restricted or vmware-system-tmc-

restricted, no matter what the name of the global policy default.

Custom security policies for user containers

You can also set the value of the session.namespaces.security.policy setting as custom. This gives

you more fine-grained control of the security policy applied to the pods and containers that a user

deploys during a session. In this case you must provide your own resources that define and map the

pod security policy.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-policy-testing

spec:

 title: Policy Testing

 description: Play area for testing policy override

 content:

 files: github.com/eduk8s-tests/lab-policy-testing

 session:

 namespaes:

 security:

 policy: custom

 objects:

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: RoleBinding

 metadata:

 namespace: $(workshop_namespace)

 name: $(session_namespace)-security-policy

 roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: $(workshop_namespace)-security-policy

 subjects:

 - kind: Group

 namespace: $(workshop_namespace)

 name: system:serviceaccounts:$(workshop_namespace)

 environment:

 objects:

 - apiVersion: policy/v1beta1

Tanzu Application Platform v1.1

VMware, Inc 390

 kind: PodSecurityPolicy

 metadata:

 name: aa-$(workshop_namespace)-security-policy

 spec:

 privileged: true

 allowPrivilegeEscalation: true

 requiredDropCapabilities:

 - KILL

 - MKNOD

 hostIPC: false

 hostNetwork: false

 hostPID: false

 hostPorts: []

 runAsUser:

 rule: MustRunAsNonRoot

 seLinux:

 rule: RunAsAny

 fsGroup:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

 volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

 - apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRole

 metadata:

 name: $(workshop_namespace)-security-policy

 rules:

 - apiGroups:

 - policy

 resources:

 - podsecuritypolicies

 verbs:

 - use

 resourceNames:

 - aa-$(workshop_namespace)-security-policy

You can also do this on secondary namespaces by either changing the

session.namespaces.secondary.security.policy setting to custom or using the

learningcenter.tanzu.vmware.com/session.security.policy: custom annotation.

Defining additional ingress points

If running additional background applications, by default they are only accessible to other processes

within the same container. For an application to be accessible to a user through their web browser,

an ingress must be created mapping to the port for the application.

You can do this by supplying a list of the ingress points and the internal container port they map to

by setting the session.ingresses field in the workshop definition:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.1

VMware, Inc 391

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 port: 8080

The form of the host name used in the URL to access the service is:

$(session_namespace)-application.$(ingress_domain)

This name cannot be terminal, console, slides, editor, or the name of any built-in dashboard.

These values are reserved for the corresponding built-in capabilities providing those features.

In addition to specifying ingresses for proxying to internal ports within the same Pod, you can enter a

host, protocol and port corresponding to a separate service running in the Kubernetes cluster:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 protocol: http

 host: service.namespace.svc.cluster.local

 port: 8080

You can use variables providing information about the current session within the host property if

required:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 protocol: http

 host: service.$(session_namespace).svc.cluster.local

 port: 8080

Tanzu Application Platform v1.1

VMware, Inc 392

Available variables are:

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances and where the service account

that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

If the service uses standard http or https ports, you can leave out the port property, and the port is

set based on the value of protocol.

When a request is proxied, you can specify additional request headers that must be passed to the

service:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 protocol: http

 host: service.$(session_namespace).svc.cluster.local

 port: 8080

 headers:

 - name: Authorization

 value: "Bearer $(kubernetes_token)"

The value of a header can reference the following variable:

kubernetes_token: The access token of the service account for the current workshop

session, used for accessing the Kubernetes REST API.

Access controls enforced by the workshop environment or training portal protect accessing any

service through the ingress. If you use the training portal, this must be transparent. Otherwise,

supply any login credentials for the workshop again when prompted by your web browser.

External workshop instructions

In place of using workshop instructions provided with the workshop content, you can use externally

hosted instructions instead. To do this set sessions.applications.workshop.url to the URL of an

external web site:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.1

VMware, Inc 393

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 workshop:

 url: https://www.example.com/instructions

The external web site must displayed in an HTML iframe, is shown as is and must provide its own

page navigation and table of contents if required.

The URL value can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where you create all deployments of the workshop instances and where the service account

that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for

workshops.

These could be used, for example, to reference workshops instructions hosted as part of the

workshop environment:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 workshop:

 url: $(ingress_protocol)://$(workshop_namespace)-instructions.$(ingress_domain

)

 environment:

 objects:

 - ...

In this case environment.objects of the workshop spec must include resources to deploy the

application hosting the instructions and expose it through an appropriate ingress.

Tanzu Application Platform v1.1

VMware, Inc 394

Disabling workshop instructions

The aim of the workshop environment is to provide instructions for a workshop that users can follow.

If you want instead to use the workshop environment as a development environment or as an

administration console that provides access to a Kubernetes cluster, you can deactivate the display of

workshop instructions provided with the workshop content. In this case, only the work area with the

terminals, console, and so on, is displayed. To deactivate display of workshop instructions, add a

session.applications.workshop section and set the enabled property to false:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 workshop:

 enabled: false

Enabling the Kubernetes console

By default the Kubernetes console is not enabled. To enable it and make it available through the

web browser when accessing a workshop, add a session.applications.console section to the

workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 console:

 enabled: true

The Kubernetes dashboard provided by the Kubernetes project is used. To use Octant as the

console, you can set the vendor property to octant:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

Tanzu Application Platform v1.1

VMware, Inc 395

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 console:

 enabled: true

 vendor: octant

When vendor is not set, kubernetes is assumed.

Enabling the integrated editor

By default the integrated web based editor is not enabled. To enable it and make it available through

the web browser when accessing a workshop, add a session.applications.editor section to the

workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 editor:

 enabled: true

The integrated editor used is based on Visual Studio Code. For more information about the editor,

see https://github.com/cdr/code-server in GitHub.

To install additional VS Code extensions, do this from the editor. Alternatively, if building a custom

workshop, you can install them from your Dockerfile into your workshop image by running:

code-server --install-extension vendor.extension

Replace vendor.extension with the name of the extension, where the name identifies the extension

on the VS Code extensions marketplace used by the editor or provide a path name to a local .vsix

file.

This installs the extensions into $HOME/.config/code-server/extensions.

If downloading extensions yourself and unpacking them or extensions are part of your Git repository,

you can instead locate them in the workshop/code-server/extensions directory.

Enabling workshop downloads

You can provide a way for a workshop user to download files as part of the workshop content.

Enable this by adding the session.applications.files section to the workshop definition and

setting the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.1

VMware, Inc 396

https://github.com/cdr/code-server

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 files:

 enabled: true

The recommended way of providing access to files from workshop instructions is using the

files:download-file clickable action block. This action ensures any file is downloaded to the local

machine and is not displayed in the browser in place of the workshop instructions.

By default the user can access any files located under the home directory of the workshop user

account. To restrict where the user can download files from, set the directory setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 files:

 enabled: true

 directory: exercises

When the specified directory is a relative path, it is evaluated relative to the home directory of the

workshop user.

Enabling the test examiner

The test examiner is a feature that allows a workshop to have verification checks that the workshop

instructions can trigger. The test examiner is deactivated by default. To enable it, add a

session.applications.examiner section to the workshop definition and set the enabled property to

true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 examiner:

Tanzu Application Platform v1.1

VMware, Inc 397

 enabled: true

You must provide any executable test programs for verification checks in the

workshop/examiner/tests directory.

The test programs must return an exit status of 0 if the test is successful and nonzero if it fails. Test

programs must not be persistent programs that can run forever.

Clickable actions for the test examiner are used within the workshop instructions to trigger the

verification checks. You can configure them to start when the page of the workshop instructions is

loaded.

Enabling session image registry

Workshops using tools such as kpack or tekton and which need a place to push container images

when built can enable a container image registry. A separate registry is deployed for each workshop

session.

The container image registry is currently fully usable only if workshops are deployed under a

Learning Center Operator configuration that uses secure ingress. This is because a registry that is

not secure is not trusted by the Kubernetes cluster as the source of container images when doing

deployments.

To enable the deployment of a registry per workshop session, add a

session.applications.registry section to the workshop definition and set the enabled property to

true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 registry:

 enabled: true

The registry mounts a persistent volume for storing of images. By default the size of that persistent

volume is 5Gi. To override the size of the persistent volume, add the storage property under the

registry section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

Tanzu Application Platform v1.1

VMware, Inc 398

 applications:

 registry:

 enabled: true

 storage: 20Gi

The amount of memory provided to the registry defaults to 768Mi. To increase this, add the memory

property under the registry section.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 registry:

 enabled: true

 memory: 1Gi

The registry is secured with a user name and password unique to the workshop session, and must be

accessed over a secure connection.

To allow access from the workshop session, the file $HOME/.docker/config.json containing the

registry credentials are injected into the workshop session. This is used by tools such as docker.

For deployments in Kubernetes, a secret of type kubernetes.io/dockerconfigjson is created in the

namespace and applied to the default service account in the namespace. This means deployments

made using the default service account can pull images from the registry without additional

configuration. If creating deployments using other service accounts, add configuration to the service

account or deployment to add the registry secret for pulling images.

If you need access to the raw registry host details and credentials, they are provided as environment

variables in the workshop session. The environment variables are:

REGISTRY_HOST: Contains the host name for the registry for the workshop session.

REGISTRY_AUTH_FILE: Contains the location of the docker configuration file. Must be the

equivalent of $HOME/.docker/config.json.

REGISTRY_USERNAME: Contains the user name for accessing the registry.

REGISTRY_PASSWORD: Contains the password for accessing the registry. This is different for

each workshop session.

REGISTRY_SECRET: Contains the name of a Kubernetes secret of type

kubernetes.io/dockerconfigjson added to the session namespace, which contains the

registry credentials.

The URL for accessing the registry adopts the HTTP protocol scheme inherited from the

environment variable INGRESS_PROTOCOL. This is the same HTTP protocol scheme the workshop

sessions use.

To use any of the variables as data variables in workshop content, use the same variable name but in

Tanzu Application Platform v1.1

VMware, Inc 399

lowercase: registry_host, registry_auth_file, registry_username, registry_password and

registry_secret.

Enabling ability to use Docker

To build container images in a workshop using docker, first enable it. Each workshop session is

provided with its own separate Docker daemon instance running in a container.

Enabling support for running docker requires the use of a privileged container for running the

Docker daemon. Because of the security implications of providing access to Docker with this

configuration, VMware recommends that if you don’t trust the people taking the workshop, any

workshops that require Docker only be hosted in a disposable Kubernetes cluster that is destroyed at

the completion of the workshop. You must not enable Docker for workshops hosted on a public

service that is always kept running and where arbitrary users can access the workshops.

To enable support for using docker add a session.applications.docker section to the workshop

definition and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 docker:

 enabled: true

The container that runs the Docker daemon mounts a persistent volume for storing of images which

are pulled down or built locally. By default the size of that persistent volume is 5Gi. To override the

size of the persistent volume, add the storage property under the docker section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 docker:

 enabled: true

 storage: 20Gi

The amount of memory provided to the container running the Docker daemon defaults to 768Mi. To

increase this, add the memory property under the registry section:

Tanzu Application Platform v1.1

VMware, Inc 400

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 docker:

 enabled: true

 memory: 1Gi

Access to the Docker daemon from the workshop session uses a local UNIX socket shared with the

container running the Docker daemon. If it uses a local tool to access the socket connection for the

Docker daemon directly rather than by running docker, it must use the DOCKER_HOST environment

variable to set the location of the socket.

The Docker daemon is only available from within the workshop session and cannot be accessed

outside of the pod by any tools deployed separately to Kubernetes.

Enabling WebDAV access to files

You can access or update local files within the workshop session from the terminal command line or

editor of the workshop dashboard. The local files reside in the file system of the container the

workshop session is running in.

To access the files remotely, you can enable WebDAV support for the workshop session.

To enable support for accessing files over WebDAV, add a session.applications.webdav section to

the workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 webdav:

 enabled: true

This causes a WebDAV server running within the workshop session environment. A set of

credentials is also generated and are available as environment variables. The environment variables

are:

WEBDAV_USERNAME: Contains the user name that must be used when authenticating over

WebDAV.

WEBDAV_PASSWORD: Contains the password that must be used when authenticating over

Tanzu Application Platform v1.1

VMware, Inc 401

WebDAV.

To use any of the environment variables related to the container image registry as data variables in

workshop content, declare this in the workshop/modules.yaml file in the config.vars section:

config:

 vars:

 - name: WEBDAV_USERNAME

 - name: WEBDAV_PASSWORD

The URL endpoint for accessing the WebDAV server is the same as the workshop session, with

/webdav/ path added. This can be constructed from the terminal using:

$INGRESS_PROTOCOL://$SESSION_NAMESPACE.$INGRESS_DOMAIN/webdav/

In workshop content it can be constructed using:

{{ingress_protocol}}://{{session_namespace}}.{{ingress_domain}}/webdav/

You can use WebDAV client support provided by your operating system or by using a standalone

WebDAV client, such as CyberDuck.

Using WebDAV can make it easier to transfer files to or from the workshop session.

Customizing the terminal layout

By default a single terminal is provided in the web browser when accessing the workshop. If

required, you can enable alternate layouts which provide additional terminals. To set the layout, add

the session.applications.terminal section and include the layout property with the desired

layout:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 applications:

 terminal:

 enabled: true

 layout: split

The options for the layout property are:

default: Single terminal.

split: Two terminals stacked above each other in ratio 60/40.

split/2: Three terminals stacked above each other in ratio 50/25/25.

lower: A single terminal is placed below any dashboard tabs, rather than being a tab of its

own. The ratio of dashboard tab to terminal is 70/30.

Tanzu Application Platform v1.1

VMware, Inc 402

https://cyberduck.io/

none: No terminal is displayed but can still be created from the drop down menu.

When adding the terminal section, you must include the enabled property and set it to true as it is a

required field when including the section.

If you don’t want a terminal displayed and also want to deactivate the ability to create terminals from

the drop-down menu, set enabled to false.

Adding custom dashboard tabs

Exposed applications, external sites and additional terminals, can be given their own custom

dashboard tab. This is done by specifying the list of dashboard panels and the target URL:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 ingresses:

 - name: application

 port: 8080

 dashboards:

 - name: Internal

 url: "$(ingress_protocol)://$(session_namespace)-application.$(ingress_domain)/"

 - name: External

 url: http://www.example.com

The URL values can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of

the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances you create and where the service account

that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating

ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for

workshops.

The URL can reference an external web site, however, that web site must not prohibit being

embedded in an HTML iframe.

In the case of wanting to have a custom dashboard tab provide an additional terminal, the url

property must use the form terminal:<session>, where <session> is replaced with the name of the

terminal session. The name of the terminal session can be any name you choose, but must be

Tanzu Application Platform v1.1

VMware, Inc 403

restricted to lowercase letters, numbers, and dashes. You should avoid using numeric terminal

session names such as “1”, “2”, and “3” as these are used for the default terminal sessions.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

 name: lab-application-testing

spec:

 title: Application Testing

 description: Play area for testing my application

 content:

 image: quay.io/eduk8s-tests/lab-application-testing:main

 session:

 dashboards:

 - name: Example

 url: terminal:example

WorkshopEnvironment resource

The WorkshopEnvironment custom resource defines a workshop environment.

Specifying the workshop definition

Creating a workshop environment is performed as a separate step to loading the workshop

definition. This allows multiple distinct workshop environments using the same workshop definition to

be created if necessary.

To specify which workshop definition is to be used for a workshop environment, set the

workshop.name field of the specification for the workshop environment.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

The workshop environment name specified in the workshop environment metadata does not need

to be the same. It has to be different if you create multiple workshop environments from the same

workshop definition.

When the workshop environment is created, the namespace created for the workshop environment

uses the name specified in the metadata. This name is also used in the unique names of each

workshop instance created under the workshop environment.

Overriding environment variables

A workshop definition can set a list of environment variables that must be set for all workshop

instances. To override an environment variable specified in the workshop definition. or one defined

in the container image, you can supply a list of environment variables as session.env.

Tanzu Application Platform v1.1

VMware, Inc 404

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

You can use this to set the location of a back-end service, such as an image registry, used by the

workshop.

Values of fields in the list of resource objects can reference several predefined parameters. The

available parameters are:

session_ - A unique ID for the workshop instance within the workshop environment.

session_ - The namespace created for and bound to the workshop instance. This is the

namespace unique to the session and where a workshop can create its own resources.

environment_ - The name of the workshop environment. Currently, this is the same as the

name of the namespace for the workshop environment. It is suggested that you do not rely

on workshop environment name and namespace being the same, and use the most

appropriate to cope with any future change.

workshop_ - The namespace for the workshop environment. This is the namespace where all

deployments of the workshop instances are created and where the workshop instance runs

the service account exists.

service_ - The workshop instance service account’s name and access to the namespace

created for that workshop instance.

ingress_ - The host domain under which host names are created when creating ingress

routes.

ingress_ - The protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Overriding the ingress domain

To access a workshop instance using a public URL, you must specify an ingress domain. If an ingress

domain is not specified, the default ingress domain that the Learning Center operator configured

with is used.

When setting a custom domain, DNS must be configured with a wildcard domain to forward all

requests for subdomains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.1

VMware, Inc 405

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

By default, the workshop session is exposed using an HTTP connection if overriding the domain. If

you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for the

domain. A secret of type tls must be created for the certificate in the learningcenter namespace or

the namespace where the Learning Center Operator is deployed. The name of that secret must then

be set in the session.ingress.secret field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

If HTTPS connections are terminated using an external load balancer and not by specifying a secret

for ingresses managed by the Kubernetes ingress controller, then routing traffic into the Kubernetes

cluster as HTTP connections, you can override the ingress protocol without specifying an ingress

secret by setting the session.ingress.protocol field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 protocol: https

To override or set the ingress class, which dictates which ingress router is used when more than one

option is available, you can add session.ingress.class.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

Tanzu Application Platform v1.1

VMware, Inc 406

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

 class: nginx

Controlling access to the workshop

By default, requesting a workshop using the WorkshopRequest custom resource is deactivated and

must be enabled for a workshop environment by setting request.enabled to true.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

With this enabled, anyone who can create a WorkshopRequest custom resource can request the

creation of a workshop instance for the workshop environment.

To further control who can request a workshop instance in the workshop environment, you can first

set an access token, which a user must know and supply with the workshop request. This is done by

setting the request.token field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

 token: lab-markdown-sample

The same name as the workshop environment is used in this example, which is probably not a good

practice. Use a random value instead. The token value may be multiline.

As a second control measure, you can specify what namespaces the WorkshopRequest must be

created. This means a user must have the specific ability to create WorkshopRequest resources in one

of those namespaces.

You can specify the list of namespaces from which workshop requests for the workshop environment

by setting request.namespaces.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

Tanzu Application Platform v1.1

VMware, Inc 407

 request:

 enabled: true

 token: lab-markdown-sample

 namespaces:

 - default

To add the workshop namespace in the list, rather than list the literal name, you can reference a

predefined parameter specifying the workshop namespace by including $(workshop_namespace).

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 enabled: true

 token: lab-markdown-sample

 namespaces:

 - $(workshop_namespace)

Overriding the login credentials

When requesting a workshop using WorkshopRequest, a login dialog box is presented to the user

when accessing the workshop instance URL. By default, the user name is learningcenter. The

password is a random value the user must query from the WorkshopRequest status after creating the

custom resource.

To override the user name, you can set the session.username field. To set the same fixed password

for all workshop instances, you can set the session.password field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 session:

 username: workshop

 password: lab-markdown-sample

Additional workshop resources

The workshop definition defined by the Workshop custom resource already declares a set of

resources to be created with the workshop environment. You can use this when you have shared

service applications the workshop needs, such as an container image registry or a Git repository

server.

To deploy additional applications related to a specific workshop environment, you can declare them

by adding them into the environment.objects field of the WorkshopEnvironment custom resource.

You might use this deploy a web application used by attendees of a workshop to access their

Tanzu Application Platform v1.1

VMware, Inc 408

workshop instances.

For namespaced resources, it is not necessary to set the namespace field of the resource metadata.

When the namespace field is not present, the resource is created within the workshop namespace for

that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment

custom resource correspond to the owner of the workshop environment. This means that any

resources are also deleted when the workshop environment is deleted.

Values of fields in the list of resource objects can reference several predefined parameters. The

available parameters are:

workshop_ - The name of the workshop. This is the name of the Workshop definition the

workshop environment was created against.

environment_ - The name of the workshop environment. Currently, this is the same as the

name of the namespace for the workshop environment. Do not rely on the name and the

workshop environment being the same, and use the most appropriate to cope with any

future change.

environment_ - The token value must be used against the workshop environment in

workshop requests.

workshop_ - The namespace for the workshop environment. This is the namespace where all

deployments of the workshop instances and their service accounts are created. It is the same

namespace that shared workshop resources are created.

service_ - The service account name is used when creating deployments in the workshop

namespace.

ingress_ - The host domain under which host names are created when creating ingress

routes.

ingress_ - The protocol (http/https) used for ingress routes created for workshops.

ingress_ - The name of the ingress secret stored in the workshop namespace when secure

ingress is being used.

To create additional namespaces associated with the workshop environment, embed a reference to

$(workshop_namespace) in the name of the additional namespaces, with an appropriate suffix. Be

mindful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the

Deployment resource to $(service_account). This ensures the deployment uses a special Pod

security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more strict

default Pod security policy, your deployment might not work, especially if any image expects to run

as root.

Creation of workshop instances

After a workshop environment is created, you can create the workshop instances. You can request a

workshop instance by using the WorkshopRequest custom resource. This can be a separate step, or

you can add them as resources under environment.objects.

Tanzu Application Platform v1.1

VMware, Inc 409

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

 name: lab-markdown-sample

spec:

 workshop:

 name: lab-markdown-sample

 request:

 token: lab-markdown-sample

 namespaces:

 - $(workshop_namespace)

 session:

 username: learningcenter

 password: lab-markdown-sample

 environment:

 objects:

 - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

 kind: WorkshopRequest

 metadata:

 name: user1

 spec:

 environment:

 name: $(environment_name)

 token: $(environment_token)

 - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

 kind: WorkshopRequest

 metadata:

 name: user2

 spec:

 environment:

 name: $(environment_name)

 token: $(environment_token)

Using this method, the workshop environment is populated with workshop instances. You can query

the workshop requests from the workshop namespace to discover the URLs for accessing each and

the password if you didn’t set one and a random password was assigned.

If you need more control over how the workshop instances were created using this method, you can

use the WorkshopSession custom resource instead.

WorkshopRequest resource

The WorkshopRequest custom resource defines a workshop request.

Specifying workshop environment

The WorkshopRequest custom resource is used to request a workshop instance. It does not provide

details needed to perform the deployment of the workshop instance. That information is sourced by

the Learning Center Operator from the WorkshopEnvironment and Workshop custom resources.

The minimum required information in the workshop request is the name of the workshop

environment. You supply this by setting the environment.name field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.1

VMware, Inc 410

kind: WorkshopRequest

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

A request is successful only if requesting a workshop instance for a workshop environment is

enabled for that workshop. You can enable requests in the WorkshopEnvironment custom resource

for the workshop environment.

If multiple workshop requests, for the same workshop environment or different ones, are created in

the same namespace, the name defined in the metadata for the workshop request must be different

for each. The value of this name is not used to name workshop instances. You need the name value

to delete the workshop instance, which is done by deleting the workshop request.

Specifying required access token

If a workshop environment is configured to require an access token when making a workshop

request against that environment, you can specify decide the token by setting the

environment.token field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

 token: lab-markdown-sample

Even with the token, the request fails if the following is true:

The workshop environment has restricted the namespaces from which a workshop request

was made

The workshop request was not created in one of the permitted namespaces

TrainingPortal resource

The TrainingPortal custom resource triggers the deployment of a set of workshop environments

and a set number of workshop instances.

Specifying the workshop definitions

You run multiple workshop instances to perform training to a group of people by creating the

workshop environment and then creating each workshop instance. The TrainingPortal workshop

resource bundles that up as one step.

Before creating the training environment, you must load the workshop definitions as a separate step.

To specify the names of the workshops to be used for the training, list them under the workshops

Tanzu Application Platform v1.1

VMware, Inc 411

field of the training portal specification. Each entry needs to define a name property, matching the

name of the Workshop resource you created.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 - name: lab-markdown-sample

When the training portal is created, it:

Sets up the underlying workshop environments.

Creates any workshop instances required to be created initially for each workshop.

Deploys a web portal for attendees of the training to access their workshop instances.

Limit the number of sessions

When defining the training portal, you can set a limit on the workshop sessions that can be run

concurrently. Set this limit by using the portal.sessions.maximum property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 - name: lab-markdown-sample

When you specify this, the maximum capacity of each workshop is set to the maximum value for the

training portal as a whole. This means that any one workshop can have as many sessions running as

specified by the maximum for the portal. However, to achieve this maximum for a given workshop,

only instances of that workshop can be created. In other words, the maximum capacity can be

spread across a number of workshops or it can be used in its entirety by a single workshop.

If you do not set portal.sessions.maximum, you must set the capacity for each individual workshop

as detailed in the following section. In only setting the capacities of each workshop and not an overall

maximum for sessions, you cannot share the overall capacity of the training portal across multiple

workshops.

Capacity of individual workshops

When you have more than one workshop, you can want to limit how many instances of each

workshop you can have so that they cannot grow to the maximum number of sessions for the whole

Tanzu Application Platform v1.1

VMware, Inc 412

training portal. This means you can stop a specific workshop from using all of the capacity of the

training portal. To do this, set the capacity field under the entry for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 - name: lab-markdown-sample

 capacity: 6

The value of capacity limits the number of workshop sessions for a specific workshop to that value.

It must be less than or equal to the maximum number of workshops sessions for the portal, because

the latter always sets the absolute limit.

Set reserved workshop instances

By default one instance of each of the listed workshops is created so when the initial user requests

that workshop, it’s available for use immediately.

When such a reserved instance is allocated to a user, provided that the workshop capacity hasn’t

been reached, a new instance of the workshop is created as a reserve ready for the next user.

When a user ends a workshop and the workshop is at capacity, when the instance is deleted, a new

reserve is created. The total of allocated and reserved sessions for a workshop cannot exceed the

capacity for that workshop.

To override for a specific workshop how many reserved instances are kept on standby ready for

users, you can set the reserved setting against the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 reserved: 2

 - name: lab-markdown-sample

 capacity: 6

 reserved: 4

You can set the value of reserved to 0 if you never want any reserved instances for a workshop and

only want instances of that workshop created on demand when required for a user. Creating

instances of a workshop on demand can result in a user waiting longer to access a workshop session.

Tanzu Application Platform v1.1

VMware, Inc 413

When workshop instances are always created on demand, the oldest reserved instance is terminated

to allow a new session of a desired workshop to be created. This also happens when reserved

instances tie up capacity that could be used for a new session of another workshop. This occurs if

any caps for specific workshops are met.

Override initial number of sessions

The initial number of workshop instances created for each workshop is specified by reserved or 1 if

the setting hasn’t been provided.

In the case where reserved is set in order to keep workshop instances on standby, you can indicate

that initially you want more than the reserved number of instances created. This is useful when

running a workshop for a set period of time. You might create up-front instances of the workshop

corresponding to 75% of the expected number of attendees but with a smaller reserve number. With

this configuration, new reserve instances only start to be created when the total number approaches

75% and all extra instances created up front have been allocated to users. This ensures you have

enough instances ready for when most people come, but you can also create other instances later if

necessary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: kubernetes-fundamentals

spec:

 portal:

 sessions:

 maximum: 100

 workshops:

 - name: lab-kubernetes-fundamentals

 initial: 75

 reserved: 5

Setting defaults for all workshops

If you have a list of workshops, and they all must be set with the same values for capacity, reserved,

and initial, rather than add settings to each, you can set defaults to apply to all workshops under

the portal section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 10

 capacity: 6

 reserved: 2

 initial: 4

 workshops:

 - name: lab-asciidoc-sample

 - name: lab-markdown-sample

Tanzu Application Platform v1.1

VMware, Inc 414

Set caps on individual users

By default a single user can run more than one workshop at a time. You can cap this to ensure that

workshops run only one at a time. This prevents a user from wasting resources by starting more than

one workshop and only working on one without shutting the other down.

To apply a limit on how many concurrent workshop sessions a user can start, use the

portal.sessions.registered setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 registered: 1

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 reserved: 2

 - name: lab-markdown-sample

 capacity: 6

 reserved: 4

This limit also applies to anonymous users when anonymous access is enabled through the training

portal web interface or if sessions are being created through the REST API. To set a limit on

anonymous users, you can set portal.sessions.anonymous instead:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: sample-workshops

spec:

 portal:

 sessions:

 maximum: 8

 anonymous: 1

 workshops:

 - name: lab-asciidoc-sample

 capacity: 4

 reserved: 2

 - name: lab-markdown-sample

 capacity: 6

 reserved: 4

Expiration of workshop sessions

After you reach the maximum capacity, no more workshops sessions can be created. After a

workshop session is allocated to a user, it cannot be reassigned to another user.

If you are running a supervised workshop, set the capacity higher than the anticipated number of

users in case you have more users than you expect. Use the setting for the reserved number of

Tanzu Application Platform v1.1

VMware, Inc 415

instances. This way, even if you set a higher capacity than needed, workshop sessions are only

created as required and not all up front.

In supervised workshops, when the training is over, delete the whole training environment. All

workshop sessions are then deleted.

To host a training portal over an extended period but don’t know when users want to do a workshop,

you can set up workshop sessions to expire after a set time. When expired, the workshop session is

deleted and a new workshop session can be created in its place.

The maximum capacity is therefore the maximum at any one point in time, while the number can

grow and shrink over time. So over an extended time, you can handle many more sessions than the

set maximum capacity. The maximum capacity ensures you don’t try to allocate more workshop

sessions than you have resources for at a given time.

To set a maximum time allowed for a workshop session, use the expires setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 8

 reserved: 1

 expires: 60m

The value needs to be an integer, followed by a suffix of ‘s’, ‘m’ or ‘h’, corresponding to seconds,

minutes, or hours.

The time period is calculated from when the workshop session is allocated to a user. When the time

period is up, the workshop session is automatically deleted.

When an expiration period is specified, or when a user finishes a workshop or restarts the workshop,

the workshop is also deleted.

To cope with users who claim a workshop session, but leave and don’t use it, you can set a time

period for when a workshop session with no activity is deemed orphaned and so is deleted. Do this

using the orphaned setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 8

 reserved: 1

 expires: 60m

 orphaned: 5m

Avoid this setting for supervised workshops where the whole event only lasts a certain length of

time. This prevents a user’s session from being deleted when the user takes breaks and the

computer goes to sleep.

Tanzu Application Platform v1.1

VMware, Inc 416

The expires and orphaned settings can also be set against portal to apply them to all workshops.

Updates to workshop environments

The list of workshops for an existing training portal can be changed by modifying the training portal

definition applied to the Kubernetes cluster.

If you remove a workshop from the list of workshops, the workshop environment is marked as

stopping and is deleted when all active workshop sessions have completed.

If you add a workshop to the list of workshops, a new workshop environment for it is created.

Changes to settings, such as the maximum number of sessions for the training portal or capacity

settings for individual workshops, are applied to existing workshop environments.

By default a workshop environment is left unchanged if the corresponding workshop definition is

changed. So in the default configuration, you must explicitly delete the workshop from the list of

workshops managed by the training portal and then add it back again if the workshop definition

changed.

If you prefer that workshop environments be replaced when the workshop definition changes,

enable this by using the portal.updates.workshop setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 sessions:

 maximum: 8

 updates:

 workshop: true

 workshops:

 - name: lab-markdown-sample

 reserved: 1

 expires: 60m

 orphaned: 5m

When using this option, use the portal.sessions.maximum setting to limit the number of workshop

sessions that can be run for the training portal as a whole. When replacing the workshop

environment, the old workshop environment is retained if there is still an active workshop session

being used. If the limit isn’t set, the new workshop environment is still able to grow to its specific

capacity and is not limited by how many workshop sessions are running against old instances of the

workshop environment.

Overall, VMware recommends updating workshop environments when workshop definitions change

only in development environments when working on workshop content. This is an especially good

practice until you are familiar with how the training portal replaces existing workshop environments,

and the resource implications of having old and new instances of a workshop environment running at

the same time.

Override the ingress domain

Tanzu Application Platform v1.1

VMware, Inc 417

To access a workshop instance using a public URL, specify an ingress domain. If an ingress domain

isn’t specified, the default ingress domain that the Learning Center Operator is configured with is

used.

When setting a custom domain, DNS must have been configured with a wildcard domain to forward

all requests for sub-domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, set the portal.ingress.domain field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If overriding the domain, by default the workshop session is exposed using a HTTP connection. For a

secure HTTPS connection, you must have access to a wildcard SSL certificate for the domain. A

secret of type tls should be created for the certificate in the learningcenter namespace or the

namespace where the Learning Center Operator is deployed. The name of that secret must be set in

the portal.ingress.secret field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

You can terminate HTTPS connections by using an external load balancer instead of specifying a

secret for ingresses managed by the Kubernetes ingress controller. In that case, when routing traffic

into the Kubernetes cluster as HTTP connections, you can override the ingress protocol without

specifying an ingress secret. Instead, set the portal.ingress.protocol field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 protocol: https

Tanzu Application Platform v1.1

VMware, Inc 418

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

To override or set the ingress class, which dictates which ingress router is used when more than one

option is available, you can add portal.ingress.class:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 class: nginx

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Override the portal host name

The default host name given to the training portal is the name of the resource with -ui suffix,

followed by the domain specified by the resource or the default inherited from the configuration of

the Learning Center Operator.

To override the generated host name, you can set portal.ingress.hostname:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 ingress:

 hostname: labs

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

This causes the host name to be labs.learningcenter.tanzu.vmware.com rather than the default

generated name for this example of lab-markdown-sample-ui.learningcenter.tanzu.vmware.com.

Set extra environment variables

To override any environment variables for workshop instances created for a specific work, provide

the environment variables in the env field of that workshop:

Tanzu Application Platform v1.1

VMware, Inc 419

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters. The

available parameters are:

session_id - A unique ID for the workshop instance within the workshop environment.

session_namespace - The namespace created for and bound to the workshop instance. This

is the namespace unique to the session and where a workshop can create its own resources.

environment_name - The name of the workshop environment. For now this is the same as the

name of the namespace for the workshop environment. Don’t rely on them being the same,

and use the most appropriate to cope with any future change.

workshop_namespace - The namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances are created and where the service account

that the workshop instance runs as exists.

service_account - The name of the service account the workshop instance runs as and

which has access to the namespace created for that workshop instance.

ingress_domain - The host domain under which host names can be created when creating

ingress routes.

ingress_protocol - The protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Override portal credentials

When a training portal is deployed, the user name for the admin and robot accounts uses the

defaults of learningcenter and robot@learningcenter. The passwords for each account are

randomly set.

For the robot account, the OAuth application client details used with the REST API are also randomly

generated.

You can see what the credentials and client details are by running kubectl describe against the

training portal resource. This will yield output that includes:

Status:

 learningcenter:

 Clients:

Tanzu Application Platform v1.1

VMware, Inc 420

 Robot:

 Id: ACZpcaLIT3qr725YWmXu8et9REl4HBg1

 Secret: t5IfXbGZQThAKR43apoc9usOFVDv2BLE

 Credentials:

 Admin:

 Password: 0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

 Username: learningcenter

 Robot:

 Password: QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

 Username: robot@learningcenter

To override any of these values to set them to a predetermined value, you can add credentials and

clients sections to the training portal specification.

To overload the credentials for the admin and robot accounts user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 credentials:

 admin:

 username: admin-user

 password: top-secret

 robot:

 username: robot-user

 password: top-secret

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

To override the application client details for OAuth access by the robot account user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 clients:

 robot:

 id: application-id

 secret: top-secret

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Control registration type

By default the training portal web interface presents a registration page for users to create an

account before selecting a workshop. If you only want to allow the administrator to log in, you can

disable the registration page. Do this if you are using the REST API to create and allocate workshop

Tanzu Application Platform v1.1

VMware, Inc 421

sessions from a separate application:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 registration:

 type: one-step

 enabled: false

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If rather than requiring users to register, you want to allow anonymous access, you can switch the

registration type to anonymous:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 registration:

 type: anonymous

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

When a user visits the training portal home page in anonymous mode, an account for that user is

automatically created and the user is logged in.

Specify an event access code

When deploying the training portal with anonymous access or open registration, anyone who knows

the URL can access workshops. To at least restrict access to those who know a common event

access code or password, you can set portal.password:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 password: workshops-2020-07-01

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

When anonymous access is enabled and the training portal URL is accessed, users are asked to

enter an event access code before they are redirected to the list of workshops or to the login page.

Tanzu Application Platform v1.1

VMware, Inc 422

Make a list of workshops public

By default the index page providing the catalog of available workshop images is only available after a

user has logged in, either through a registered account or as an anonymous user.

To make the catalog of available workshops public so they can be viewed before logging in, set the

portal.catalog.visibility property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 catalog:

 visibility: public

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

By default the catalog has visibility set to private. Use public to expose it.

This also makes it possible to access the list of available workshops from the catalog through the

REST API, without authenticating against the REST API.

Use an external list of workshops

If you are using the training portal with registration disabled, and you are using the REST API from a

separate website to control creation of sessions, you can specify an alternate URL for providing the

list of workshops.

This helps when the REST API creates a session and cookies are deleted or a session URL is shared

with a different user. This means the value for the index_url supplied with the REST API request is

lost.

To set the URL for the external site, use the portal.index property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 index: https://www.example.com/

 registration:

 type: one-step

 enabled: false

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

If you supply this property, passing the index_url when creating a workshop session using the REST

API is optional, and the value of this property is used. You can still supply index_url when using the

Tanzu Application Platform v1.1

VMware, Inc 423

REST API for a user to be redirected back to a sub-category of workshops on the site. The URL

provided in the training portal definition then acts only as a fallback. That is, when the redirect URL

becomes unavailable, it directs the user back to the top-level page for the external list of workshops.

If a user has logged into the training portal as the admin user, the user is not redirected to the

external site and still sees the training portal’s list of workshops.

Override portal title and logo

By default the web interface for the training portal displays a generic Learning Center logo and a

page title of “Workshops.” To override these, you can set portal.title and portal.logo:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 title: Workshops

 logo: data:image/png;base64,....

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

The logo field should be a graphical image provided in embedded data URI format. The image is

displayed with a fixed height of “40px”. The field can also be a URL for an image stored on a remote

web server.

Allow the portal in an iframe

By default it is prohibited to display the web interface for the training portal in an iframe of another

web site, because of content security policies applying to the training portal website.

To enable the ability to iframe the full training portal web interface or even a specific workshop

session created using the REST API, provide the host name of the site that embeds it. Do this by

using the portal.theme.frame.ancestors property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 theme:

 frame:

 ancestors:

 - https://www.example.com

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

The property is a list of hosts, not a single value. To use a URL for the training portal in an iframe of a

Tanzu Application Platform v1.1

VMware, Inc 424

page, which, in turn, is embedded in another iframe of a page on a different site, list the host names

of all sites.

Because the sites that embed iframes must be secure and use HTTPS, they cannot use plain HTTP.

Browser policies prohibit promoting cookies to an insecure site when embedding using an iframe. If

cookies cannot be stored, a user cannot authenticate against the workshop session.

Collect analytics on workshops

To collect analytics data on usage of workshops, supply a webhook URL. When you supply a

webhook URL, events are posted to the webhook URL, including:

Workshops started

Pages of a workshop viewed

Expiration of a workshop

Completion of a workshop

Termination of a workshop

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 analytics:

 webhook:

 url: https://metrics.learningcenter.tanzu.vmware.com/?client=name&token=password

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

At present there is no metrics collection service compatible with the portal webhook reporting

mechanism, so create a custom service or integrate it with any existing web front end for the portal

REST API service.

If the collection service needs to be provided with a client ID or access token, it must accept using

query string parameters set in the webhook URL.

Include the details of the event as HTTP POST data by using the application/json content type:

{

 "portal": {

 "name": "lab-markdown-sample",

 "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

 "generation": 3,

 "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

 },

 "event": {

 "name": "Session/Started",

 "timestamp": "2021-03-18T02:50:40.861392+00:00",

 "user": "c66db34e-3158-442b-91b7-25391042f037",

 "session": "lab-markdown-sample-w01-s001",

Tanzu Application Platform v1.1

VMware, Inc 425

 "environment": "lab-markdown-sample-w01",

 "workshop": "lab-markdown-sample",

 "data": {}

 }

}

When an event has associated data, it is included in the data dictionary:

{

 "portal": {

 "name": "lab-markdown-sample",

 "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

 "generation": 3,

 "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

 },

 "event": {

 "name": "Workshop/View",

 "timestamp": "2021-03-18T02:50:44.590918+00:00",

 "user": "c66db34e-3158-442b-91b7-25391042f037",

 "session": "lab-markdown-sample-w01-s001",

 "environment": "lab-markdown-sample-w01",

 "workshop": "lab-markdown-sample", "workshop": "lab-markdown-sample",

 "data": {

 "current": "workshop-overview",

 "next": "setup-environment",

 "step": 1,

 "total": 4

 }

 }

}

The user field is the same portal user identity returned by the REST API when creating workshop

sessions.

The event stream only produces events for things as they happen. For a snapshot of all current

workshop sessions, use the REST API to request the catalog of available workshop environments,

enabling the inclusion of current workshop sessions.

Track using Google Analytics

To record analytics data on usage of workshops by using Google Analytics, enable tracking by

supplying a tracking ID for Google Analytics:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 analytics:

 google:

 trackingId: UA-XXXXXXX-1

 workshops:

 - name: lab-markdown-sample

 capacity: 3

 reserved: 1

Tanzu Application Platform v1.1

VMware, Inc 426

Custom dimensions are used in Google Analytics to record details about the workshop a user is

taking, including through which training portal and cluster it was accessed. So you can use the same

Google Analytics tracking ID for multiple training portal instances running on different Kubernetes

clusters.

To support use of custom dimensions in Google Analytics, configure the Google Analytics property

with the following custom dimensions. They must be added in the order shown, because Google

Analytics doesn’t allow you to specify the index position for a custom dimension. It allocates them for

you. You can’t already have custom dimensions defined for the property, as the new custom

dimensions must start at index of 1.

Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

If you provide a Google Analytics tracking ID with the TrainingPortal resource definition, it takes

precedence over the SystemProfile resource definition.

Note: Google Analytics is not a reliable way to collect data. Individuals or corporate firewalls can

block the reporting of Google Analytics data. For more precise statistics, use the webhook URL for

collecting analytics with a custom data collection platform.

SystemProfile resource

Use the SystemProfile custom resource to configure the Learning Center Operator. You can use

the default system profile to set defaults for ingress and image pull secrets. You can also select an

alternate profile for specific deployments if required.

Note: Changes made to the SystemProfile custom resource, or changes made by means of

environment variables, don’t take effect on already deployed TrainingPortals. You must recreate

those for the changes to be applied. You only need to recreate the TrainingPortal resources,

because this resource takes care of recreating the WorkshopEnvironments with the new values.

Operator default system profile

The Learning Center Operator, by default, uses an instance of the SystemProfile custom resource if

it exists, named default-system-profile. You can override the name of the resource used by the

Tanzu Application Platform v1.1

VMware, Inc 427

Learning Center Operator as the default by setting the SYSTEM_PROFILE environment variable on the

deployment for the Learning Center Operator. For example:

kubectl set env deployment/learningcenter-operator -e SYSTEM_PROFILE=default-system-pr

ofile -n learningcenter

The Learning Center Operator automatically detects and uses any changes to an instance of the

SystemProfile custom resource. You do not need to redeploy the operator when changes are

made.

Defining configuration for ingress

The SystemProfile custom resource replaces the use of environment variables to configure details

such as the ingress domain, secret, and class.

Instead of setting INGRESS_DOMAIN, INGRESS_SECRET, and INGRESS_CLASS environment variables,

create an instance of the SystemProfile custom resource named default-system-profile:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 secret: learningcenter.tanzu.vmware.com-tls

 class: nginx

If you terminate HTTPS connections by using an external load balancer and not by specifying a

secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying

an ingress secret:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 ingress:

 domain: learningcenter.tanzu.vmware.com

 protocol: https

 class: nginx

Defining container image registry pull secrets

To work with custom workshop images stored in a private image registry, the system profile can

define a list of image pull secrets. Add this to the service accounts used to deploy and run the

workshop images. Set the environment.secrets.pull property to the list of secret names:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

Tanzu Application Platform v1.1

VMware, Inc 428

spec:

 environment:

 secrets:

 pull:

 - private-image-registry-pull

The secrets containing the image registry credentials must exist within the learningcenter

namespace or the namespace where the Learning Center Operator is deployed. The secret

resources must be of type kubernetes.io/dockerconfigjson.

The secrets are added to the workshop namespace and are not visible to a user. No secrets are

added to the namespace created for each workshop session.

Some container images are used as part of Learning Center itself, such as the container image for

the training portal web interface and the builtin base workshop images. If you have copied these

from the public image registries and stored them in a local private registry, use the registry section

instead of the above setting. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 registry:

 secret: learningcenter-image-registry-pull

The registry.secret is the name of the secret containing the image registry credentials. This must

be present in the learningcenter namespace or the namespace where the Learning Center

Operator is deployed.

Defining storage class for volumes

Deployments of the training portal web interface and the workshop sessions make use of persistent

volumes. By default the persistent volume claims do not specify a storage class for the volume.

Instead, they rely on the Kubernetes cluster to specify a default storage class that works. If the

Kubernetes cluster doesn’t define a suitable default storage class or you need to override it, you can

set the storage.class property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 storage:

 class: default

This only applies to persistent volume claims setup by the Learning Center Operator. If a user

executes steps in a workshop that include making persistent volume claims, these are not

automatically adjusted.

Defining storage group for volumes

The cluster must apply pod security policies where persistent volumes are used by Learning Center

Tanzu Application Platform v1.1

VMware, Inc 429

for the training portal web interface and workshop environments. These security policies ensure that

permissions of persistent volumes are set correctly so they can be accessed by containers mounting

the persistent volume. When the pod security policy admission controller is not enabled, the cluster

institutes a fallback to enable access to volumes by enabling group access using the group ID of 0.

In situations where the only class of persistent storage available is NFS or similar, you might have to

override the group ID applied and set it to an alternate ID dictated by the file system storage

provider. If this is required, you can set the storage.group property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 storage:

 group: 1

Overriding the group ID to match the persistent storage relies on the group having write permission

to the volume. If only the owner of the volume has permission, this does not work.

In this case, change the owner/group and permissions of the persistent volume such that the owner

matches the user ID a container runs at. Alternatively, set the group to a known ID that is added as a

supplemental group for the container and update the persistent volume to be writable to this group.

This must be done by an init container running in the pod mounting the persistent volume.

To trigger this change of ownership and permissions, set the storage.user property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 storage:

 user: 1

 group: 1

This results in:

The init container running as the root user.

The owner of the mount directory of the persistent volume being set to storage.user.

The group being set to storage.group.

The directory made group-writable.

The group is then added as the supplemental group to containers using the persistent volume. So

they can write to the persistent volume, regardless of what user ID the container runs as. To that

end, the specific value of storage.user doesn’t matter, but you might need to set it to a specific user

ID based on requirements of the storage provider.

Both these variations on the settings only apply to the persistent volumes used by Learning Center

itself. If a workshop asks users to create persistent volumes, those instructions, or the resource

definitions used, might need to be modified to work where the available storage class requires

access as a specific user or group ID.

Tanzu Application Platform v1.1

VMware, Inc 430

Further, the second method using the init container to fix permissions does not work if pod security

policies are enforced. The ability to run a container as the root user is blocked in that case due to the

restricted PSP, which is applied to workshop instances.

Restricting network access

Any processes running from the workshop container, and any applications deployed to the session

namespaces associated with a workshop instance, can contact any network IP addresses accessible

from the cluster. To restrict access to IP addresses or IP subnets, set network.blockCIDRs. This must

be a CIDR block range corresponding to the subnet or a portion of a subnet you want to block. A

Kubernetes NetworkPolicy is used to enforce the restriction. So the Kubernetes cluster must use a

network layer supporting network policies, and the necessary Kubernetes controllers supporting

network policies must be enabled when the cluster is installed.

If deploying to AWS, it is important to block access to the AWS endpoint for querying EC2 metadata,

because it can expose sensitive information that workshop users should not haves access to. By

default Learning Center will block the AWS endpoint on the TAP SystemProfile. If you need to

replicate this block to other SystemProfiles, the configuration is as follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 network:

 blockCIDRs:

 - 169.254.169.254/32

 - fd00:ec2::254/128

Running Docker daemon rootless

If docker is enabled for workshops, Docker-in-Docker is run using a sidecar container. Because of

the current state of running Docker-in-Docker and portability across Kubernetes environments, the

docker daemon by default runs as root. Because a privileged container is also being used, this

represents a security risk. Only run workshops requiring docker in disposable Kubernetes clusters or

for users whom you trust.

You can partly mediate the risks of running docker in the Kubernetes cluster by running the docker

daemon in rootless mode. However, not all Kubernetes clusters can support this due to the Linux

kernel configuration or other incompatibilities.

To enable rootless mode, you can set the dockerd.rootless property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 rootless: true

Use of docker can be made even more secure by avoiding the use of a privileged container for the

Tanzu Application Platform v1.1

VMware, Inc 431

docker daemon. This requires that you set up a specific configuration for nodes in the Kubernetes

cluster. With this configuration, you can disable the use of a privileged container by setting

dockerd.privileged to false:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 rootless: true

 privileged: false

For further details about the requirements for running rootless Docker-in-Docker and using a non-

privileged container, see the Docker documentation.

Overriding network packet size

When you enable support for building container images using docker for workshops, because of

network layering that occurs when doing docker build or docker run, you must adjust the network

packet size (MTU) used for containers run from dockerd hosted inside the workshop container.

The default MTU size for networks is 1500, but, when containers are run in Kubernetes, the size

available to containers is often reduced. To deal with this possibility, the MTU size used when

dockerd is run for a workshop is set as 1400 instead of 1500.

You might need to override this value to an even lower value if you experience problems building or

running images with docker support. These problems could include errors or timeouts in pulling

images or when pulling software packages such as PyPi, npm, and so on.

To lower the value, set the dockerd.mtu property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 mtu: 1400

To discover the maximum viable size, access the docker container run with a workshop and run

ifconfig eth0. This yields something similar to:

eth0 Link encap:Ethernet HWaddr 02:42:AC:11:00:07

 inet addr:172.17.0.7 Bcast:172.17.255.255 Mask:255.255.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1350 Metric:1

 RX packets:270018 errors:0 dropped:0 overruns:0 frame:0

 TX packets:283882 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:86363656 (82.3 MiB) TX bytes:65183730 (62.1 MiB)

If the MTU size is less than 1400, use the value given, or a smaller value, for the dockerd.mtu setting.

Tanzu Application Platform v1.1

VMware, Inc 432

https://docs.docker.com/engine/security/rootless/

Image registry pull through cache

When running or building container images with docker, if the container image is hosted on Docker

Hub, it is pulled down directly from the Docker Hub for each separate workshop session of that

workshop.

Because the image is pulled from Docker Hub, this can be slow for all users, especially for large

images. With Docker Hub introducing limits on how many images can be pulled anonymously from

an IP address within a set period, this also can result in the cap on image pulls being reached. This

prevents the workshop from being used until the period expires.

Docker Hub has a higher limit when pulling images as an authenticated user, but with the limit

applied to the user rather than by IP address. For authenticated users with a paid plan on Docker

Hub, there is no limit.

To attempt to avoid the impact of the limit, the first thing you can do is enable an image registry

mirror with image pull-through. This is enabled globally and results in an instance of an image

registry mirror being created in the workshop environment of workshops that enable docker support.

This mirror is used for all workshops sessions created against that workshop environment. When the

first user attempts to pull an image, it is pulled down from Docker Hub and cached in the mirror.

Subsequent users are served up from the image registry mirror, avoiding the need to pull the image

from Docker Hub again. Subsequent users also see a speed up in pulling the image, because the

mirror is deployed to the same cluster.

To enable the use of an image registry mirror against Docker Hub, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 mirror:

 remote: https://registry-1.docker.io

For authenticated access to Docker Hub, create an access token under your Docker Hub account.

Then set the username and password using the access token as the password. Do not use the

password for the account itself. Using an access token makes it easier to revoke the token if

necessary.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 dockerd:

 mirror:

 remote: https://registry-1.docker.io

 username: username

 password: access-token

An access token provides write access to Docker Hub. It is therefore also recommended you use a

separate robot account in Docker Hub that is not used to host images and doesn’t have write access

to any other organizations. In other words, use it purely for reading images from Docker Hub.

Tanzu Application Platform v1.1

VMware, Inc 433

If this is a free account, the higher limit on image pulls then applies. If the account is paid, there

might be higher limits or no limit all all.

The image registry mirror is only used when running or building images using support for running

docker. The mirror does not come into play when creating deployments in Kubernetes, which make

use of images hosted on Docker Hub. Use of images from Docker Hub in deployments is still subject

to the limit for anonymous access, unless you supply image registry credentials for the deployment

so an authenticated user is used.

Setting default access credentials

When deploying a training portal using the TrainingPortal custom resource, the credentials for

accessing the portal are unique for each instance. Find the details of the credentials by viewing

status information added to the custom resources by using kubectl describe.

To override the credentials for the portals so the same set of credentials are used for each, add the

desired values to the system profile.

To override the user name and password for the admin and robot accounts, use

portal.credentials:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 portal:

 credentials:

 admin:

 username: learningcenter

 password: admin-password

 robot:

 username: robot@learningcenter

 password: robot-password

To override the client ID and secret used for OAuth access by the robot account, use

portal.clients:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 portal:

 clients:

 robot:

 id: robot-id

 secret: robot-secret

If the TrainingPortal has specified credentials or client information, they still take precedence over

the values specified in the system profile.

Overriding the workshop images

Tanzu Application Platform v1.1

VMware, Inc 434

When a workshop does not define a workshop image to use and instead downloads workshop

content from GitHub or a web server, it uses the base-environment workshop image. The workshop

content is then added to the container, overlaid on this image.

The version of the base-environment workshop image used is the most up-to-date, compatible

version of the image available for that version of the Learning Center Operator when it was released.

If necessary you can override the version of the base-environment workshop image used by defining

a mapping under workshop.images. For workshop images supplied as part of the Learning Center

project, you can override the short names used to refer to them.

The short versions of the recognized names are:

base-environment:* is a tagged version of the base-environment workshop image matched

with the current version of the Learning Center Operator.

To override the version of the base-environment workshop image mapped to by the * tag, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 workshop:

 images:

 "base-environment:*": "registry.tanzu.vmware.com/learning-center/base-environmen

t:latest"

It is also possible to override where images are pulled from for any arbitrary image. This could be

used where you want to cache the images for a workshop in a local image registry and avoid going

outside of your network, or the cluster, to get them. This means you wouldn’t need to override the

workshop definitions for a specific workshop to change it. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 workshop:

 images:

 "quay.io/eduk8s-labs/lab-k8s-fundamentals:main": "registry.test/lab-k8s-fundamen

tals:main"

Tracking using Google Analytics

If you want to record analytics data on usage of workshops using Google Analytics, you can enable

tracking by supplying a tracking ID for Google Analytics. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 analytics:

 google:

Tanzu Application Platform v1.1

VMware, Inc 435

 trackingId: UA-XXXXXXX-1

Custom dimensions are used in Google Analytics to record details about the workshop a user is

taking and through which training portal and cluster it was accessed. You can therefore use the same

Google Analytics tracking ID with Learning Center running on multiple clusters.

To support use of custom dimensions in Google Analytics, you must configure the Google Analytics

property with the following custom dimensions. They must be added in the order shown, because

Google Analytics doesn’t allow you to specify the index position for a custom dimension and

allocates them for you. You can’t already have defined custom dimensions for the property, because

the new custom dimensions must start at index of 1.

Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

However, Google Analytics is not a reliable way to collect data. This is because individuals or

corporate firewalls can block the reporting of Google Analytics data. For more precise statistics, use

the webhook URL for collecting analytics with a custom data collection platform. Configuration of a

webhook URL for analytics can only be specified on the TrainingPortal definition and cannot be

specified globally on the SystemProfile configuration.

Overriding styling of the workshop

If using the REST API to create/manage workshop sessions, and the workshop dashboard is then

embedded into an iframe of a separate site, you can perform minor styling changes of the

dashboard, workshop content, and portal to match the separate site. To do this, provide CSS styles

under theme.dashboard.style, theme.workshop.style and theme.portal.style. For dynamic styling

or for adding hooks to report on progress through a workshop to a separate service, supply

JavaScript as part of the theme under theme.dashboard.script, theme.workshop.script, and

theme.portal.script. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

 name: default-system-profile

spec:

 theme:

Tanzu Application Platform v1.1

VMware, Inc 436

 dashboard:

 script: |

 console.log("Dashboard theme overrides.");

 style: |

 body {

 font-family: "Comic Sans MS", cursive, sans-serif;

 }

 workshop:

 script: |

 console.log("Workshop theme overrides.");

 style: |

 body {

 font-family: "Comic Sans MS", cursive, sans-serif;

 }

 portal:

 script: |

 console.log("Portal theme overrides.");

 style: |

 body {

 font-family: "Comic Sans MS", cursive, sans-serif;

 }

Additional custom system profiles

If the default system profile is specified, it is used by all deployments managed by the Learning

Center Operator, unless it was overridden by the system profile to use for a specific deployment.

You can set the name of the system profile for deployments by setting the system.profile property

of TrainingPortal, WorkshopEnvironment, and WorkshopSession custom resources. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 system:

 profile: learningcenter-tanzu-vmware-com-profile

 workshops:

 - name: lab-markdown-sample

 capacity: 1

WorkshopSession resource

The WorkshopSession custom resource defines a workshop session.

Specifying the session identity

When running training for multiple people, typically you’ll use the TrainingPortal custom resource

to set up a training environment. Alternatively, you can set up a workshop environment by using the

WorkshopEnvironment custom resource, and then create requests for workshop instances by using

the WorkshopRequest custom resource. If you’re creating requests for workshop instances and you

need more control over how the workshop instances are set up, you can use WorkshopSession

custom resource instead of WorkshopRequest.

Tanzu Application Platform v1.1

VMware, Inc 437

To specify the workshop environment the workshop instance is created against, set the

environment.name field of the specification for the workshop session. At the same time, you must

specify the session ID for the workshop instance. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample-user1

spec:

 environment:

 name: lab-markdown-sample

 session:

 id: user1

The name of the workshop specified in the metadata of the training environment must be globally

unique for the workshop instance you’re creating. You must create a separate WorkshopSession

custom resource for each workshop instance you want.

The session ID must be unique within the workshop environment that you’re creating the workshop

instance against.

Specifying the login credentials

You can control access to each workshop instance using login credentials. This ensures a workshop

attendee cannot interfere with another.

To set login credentials for a workshop instance, set the session.username and session.password

fields. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 username: learningcenter

 password: lab-markdown-sample

If you do not specify login credentials, the workshop instance has no access controls and anyone can

access it.

Specifying the ingress domain

To access the workshop instance by using a public URL, you must specify an ingress domain. If an

ingress domain isn’t specified, use the default ingress domain that the Learning Center Operator was

configured with.

When setting a custom domain, configure DNS with a wildcard domain to forward all requests for

sub-domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field. For example:

Tanzu Application Platform v1.1

VMware, Inc 438

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

You can create a full host name for the session by prefixing the ingress domain with a host name

constructed from the name of the workshop environment and the session ID.

If overriding the domain, by default, the workshop session is exposed by using a HTTP connection. If

you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for the

domain.

You must create a secret of type tls for the certificate in the learningcenter namespace or in the

namespace where Learning Center Operator is deployed. You must then set the name of that secret

in the session.ingress.secret field. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

You can terminate HTTPS connections by using an external load balancer rather than by specifying a

secret for ingresses managed by the Kubernetes ingress controller. When routing traffic into the

Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying

an ingress secret by setting the session.ingress.protocol field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 protocol: https

To override or set the ingress class, add session.ingress.class. This dictates which ingress router is

used when more than one option is available.

For example:

Tanzu Application Platform v1.1

VMware, Inc 439

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample-user1

 session:

 ingress:

 domain: training.learningcenter.tanzu.vmware.com

 secret: training.learningcenter.tanzu.vmware.com-tls

 class: nginx

Setting the environment variables

To set the environment variables for the workshop instance, provide the environment variables in

the session.env field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

 name: lab-markdown-sample

spec:

 environment:

 name: lab-markdown-sample

 session:

 id: user1

 env:

 - name: REPOSITORY-URL

 value: YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GITHUB-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-

sample. For example, https://github.com/eduk8s/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters.

Available parameters are:

session_id is a unique ID for the workshop instance within the workshop environment.

session_namespace is the namespace created for and bound to the workshop instance. This

is the namespace unique to the session and where a workshop can create their own

resources.

environment_name is the name of the workshop environment. For now this is the same as the

name of the namespace for the workshop environment. Don’t rely on them being the same,

and use the most appropriate to cope with any future change.

workshop_namespace is the namespace for the workshop environment. This is the namespace

where all deployments of the workshop instances are created, and where the service

account that the workshop instance runs as exists.

service_account is the name of the service account the workshop instance runs as, and

which has access to the namespace created for that workshop instance.

ingress_domain is the host domain under which host names can be created when creating

Tanzu Application Platform v1.1

VMware, Inc 440

ingress routes.

ingress_protocol is the protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

If the workshop environment had specified a set of extra environment variables to be set for

workshop instances, it is up to you to incorporate those in the set of environment variables you list

under session.env. That is, anything listed in session.env of the WorkshopEnvironment custom

resource of the workshop environment is ignored.

Learning Center Portal Rest API

This section includes information about the Portal Rest API that you can leverage to gain information

and manage your Learning Center instance.

Anonymous access

Workshop catalog

Session management

Client authentication

Anonymous access

The REST API with client authentication provides a means to have the portal create and manage

workshop sessions on your behalf but allow a separate system handle user authentication.

If you do not need to authenticate users but still want to provide your own front end from which

users select a workshop, such as when integrating workshops into an existing web property, you can

enable anonymous mode and redirect users to a URL for workshop session creation.

Note: Anonymous mode is only recommended for temporary deployments and not for a permanent

web site providing access to workshops.

Enabling anonymous access

Set the registration type to anonymous to enable full anonymous access to the training portal:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: lab-markdown-sample

spec:

 portal:

 registration:

 type: anonymous

 workshops:

 ...

Note: Users can still visit the training portal directly and view the catalog of available workshops, so

instead of linking to the main page of the training portal, link from your custom index page to the

individual links for creating each workshop.

Tanzu Application Platform v1.1

VMware, Inc 441

Triggering workshop creation

Direct users’ browsers to a URL that is specific to a workshop to trigger creation and allocation of the

workshop.

The URL format looks like this:

TRAINING-PORTAL-URL/workshops/environment/NAME/create/?index_url=INDEX

Where:

NAME is the name of the workshop environment corresponding to the workshop that you

creates.

INDEX is the URL of your custom index page that contains the workshops.

The user is redirected back to this index page when:

a user completes the workshop

an error occurs

When a user is redirected back to the index page, a query string parameter is supplied to display a

banner or other indication about why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment created is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be

created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist. This

can occur when the workshop dashboard is refreshed after the workshop session is expired

and deleted.

Workshop catalog

A single training portal can host one or more workshops. The REST API endpoints for the workshops

catalog provide a means to list the available workshops and get information about them.

Listing available workshops

The URL sub path for accessing the list of available workshop environments is

/workshops/catalog/environments/. When making the request, you must supply the access token

in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/

The JSON response looks like this:

{

 "portal": {

Tanzu Application Platform v1.1

VMware, Inc 442

 "name": "learningcenter-tutorials",

 "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

 "generation": 451,

 "url": "<training_portal_url>",

 "sessions": {

 "maximum": 10,

 "registered": 0,

 "anonymous": 0,

 "allocated": 0

 }

 },

 "environments": [

 {

 "name": "learningcenter-tutorials-w01",

 "state": "RUNNING",

 "workshop": {

 "name": "lab-et-self-guided-tour",

 "id": "15e5f1a569496f335049bb00c370ee20",

 "title": "Workshop Building Tutorial",

 "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

 "vendor": "",

 "authors": [],

 "difficulty": "",

 "duration": "",

 "tags": [],

 "logo": "",

 "url": "<workshop_repository_url>"

 },

 "duration": 1800,

 "capacity": 10,

 "reserved": 0,

 "allocated": 0,

 "available": 0

 }

]

}

For each workshop listed under environments, where a field listed under workshop has the same

name as appears in the Workshop custom resource, it has the same meaning. The id field is an

additional field that can uniquely identify a workshop based on the name of the workshop image, the

Git repository for the workshop, or the website hosting the workshop instructions. The value of the

id field does not rely on the name of the Workshop resource and must be the same if the same

workshop details are used but the name of the Workshop resource is different.

The duration field provides the time in seconds after which the workshop environment expires. The

value is null if there is no expiration time for the workshop.

The capacity field is the maximum number of workshop sessions that you can create for the

workshop.

The reserved field indicates how many instances of the workshop are reserved as hot spares. These

are used to service requests for a workshop session. If no reserved instances are available and

capacity has not been reached, a new workshop session is created on demand.

The allocated field indicates how many workshop sessions are active and currently allocated to a

user.

Tanzu Application Platform v1.1

VMware, Inc 443

The available field indicates how many workshop sessions are available for immediate allocation.

This is never more than the number of reserved instances.

Under portal.sessions, the allocated field indicates the total number of allocated sessions across

all workshops hosted by the portal.

Where maximum, registered, and anonymous are nonzero, they are the limit on the number of

workshops run.

The maximum is the total number of workshop sessions that can be run by the portal across all

workshops. If allocated for the whole portal has reached maximum, no more workshop

sessions are created.

The value of registered when nonzero indicates a cap on the number of workshop sessions

a single registered portal user can have running at the one time.

The value of anonymous when nonzero indicates a cap on the number of workshop sessions

an anonymous user can have running at the one time. Anonymous users are users created

as a result of the REST API being used or if anonymous access is enabled when the user

accesses the portal through the web interface.

By default, only workshop environments currently marked with a state of RUNNING are returned, that

is, those workshop environments which are taking new workshop session requests. If you also want

to see the workshop environments which are currently in the process of being shut down, you must

provide the state query string parameter to the REST API call and indicate which states workshop

environments to return for.

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/catalog/environments/?state=RUNNING&stat

e=STOPPING

You can include the state query string parameter more than once to see workshop environments in

both RUNNING and STOPPING states.

If anonymous access to the list of workshop environments is enabled and you are not authenticated

when using the REST API endpoint, only workshop environments in a running state are returned.

Session management

The REST API endpoints for session management allow you to request that a workshop session be

allocated.

Disabling portal user registration

When you use the REST API to trigger creation of workshop sessions, VMware recommends that

you disable user registration through the training portal web interface. This means that only the

admin user is able to directly access the web interface for the training portal.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

 name: learningcenter-tutorials

spec:

Tanzu Application Platform v1.1

VMware, Inc 444

 portal:

 registration:

 type: one-step

 enabled: false

 workshops:

 ...

Requesting a workshop session

The form of the URL sub path for requesting the allocation of a workshop environment by using the

REST API is /workshops/environment/<name>/request/. The name segment must be replaced with

the name of the workshop environment. When making the request, the access token must be

supplied in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/environment/<name>/request/?index_url=https://hub.test

/

You can supply a query string parameter, index_url. When you restart the workshop session from

the workshop environment web interface, the session is deleted and the user is redirected to the

supplied URL. This URL is that of your front end web application that has requested the workshop

session, allowing users to select a different workshop.

The value of the index_url is not available if session cookies are cleared or a session URL is shared

with another user. In this case, a user is redirected back to the training portal URL instead. You can

override the global default for this case by specifying the index URL as part of the TrainingPortal

configuration.

When successful, the JSON response from the request is of the form:

{

 "name": "educaes-tutorials-w01-s001",

 "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

 "url": "/workshops/session/learningcenter-tutorials-w01-s001/activate/?token=6UIW4

D8Bhf0egVmsEKYlaOcTywrpQJGi&index_url=https%3A%2F%2Fhub.test%2F",

 "workshop": "learningcenter-tutorials",

 "environment": "learningcenter-tutorials-w01",

 "namespace": "learningcenter-tutorials-w01-s001"

}

This includes the name of the workshop session, an ID for identifying the user, and both a URL path

with an activation token and an index URL included as query string parameters.

Redirect the user’s browser to this URL path on the training portal host. Accessing the URL activates

the workshop session and then redirects the user to the workshop dashboard.

If the workshop session is not activated, which confirms allocation of the session, the session is

deleted after 60 seconds.

When a user is redirected back to the URL for the index page, a query string parameter is supplied

to give the reason the user is being returned. You can use this to display a banner or other indication

as to why the user was returned.

The name of the query string parameter is notification and the possible values are:

Tanzu Application Platform v1.1

VMware, Inc 445

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment supplied while

attempting to create the workshop is invalid.

session-unavailable - Used when capacity is reached, and a workshop session cannot be

created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist. This

can occur when the workshop dashboard is refreshed sometime after the workshop session

expired and was deleted.

In prior versions, the name of the session was returned through the “session” property, whereas the

“name” property is now used. To support older code using the REST API, the “session” property is

still returned, but it is deprecated.

Associating sessions with a user

When the workshop session is requested, a unique user account is created in the training portal

each time. You can identify this account by using the user identifier, which is returned in the

response.

The front end using the REST API to create workshop sessions can track user activity so that the

training portal associates all workshop sessions created by the same user. Supply the user identifier

with subsequent requests by the same user in the request parameter:

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/environment/<name>/request/?index_url=ht

tps://hub.test/&user=<user>

If the supplied ID matches a user in the training portal, the training portal uses it internally and

returns the same value for user in the response.

When the user does match, and if there is already a workshop session allocated to the user for the

workshop being requested, the training portal returns a link to the existing workshop session, rather

than requesting that the user create a new workshop session.

If the user is not a match, possibly because the training portal was completely redeployed since the

last time it was accessed, the training portal returns a new user identifier.

The first time you make a request to create a workshop session for a user where user is not

supplied, you can optionally supply request parameters for the following to set these as the user

details in the training portal.

email - The email address of the user.

first_name - The first name of the user.

last_name - The last name of the user.

These details will be accessible through the admin pages of the training portal.

When sessions are associated with a user, you can query all active sessions for that user across the

different workshops hosted by the instance of the training portal:

curl -v -H "Authorization: Bearer <access-token>" \

Tanzu Application Platform v1.1

VMware, Inc 446

<training-portal-url>/workshops/user/<user>/sessions/

The response is of the form:

{

 "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

 "sessions": [

 {

 "name": "learningcenter-tutorials-w01-s001",

 "workshop": "learningcenter-tutorials",

 "environment": "learningcenter-tutorials-w01",

 "namespace": "learningcenter-tutorials-w01-s001",

 "started": "2020-07-31T03:57:33.942Z",

 "expires": "2020-07-31T04:57:33.942Z",

 "countdown": 3353,

 "extendable": false

 }

]

}

After a workshop has expired or has otherwise been shut down, the training portal no longer returns

an entry for the workshop.

Listing all workshop sessions

To get a list of all running workshops sessions allocated to users, provide the sessions=true flag to

the query string parameters of the REST API call. This lists the workshop environments available

through the training portal.

curl -v -H "Authorization: Bearer <access-token>" |

<training-portal-url>/workshops/catalog/environments/?sessions=true

The JSON response is of the form:

{

 "portal": {

 "name": "learningcenter-tutorials",

 "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

 "generation": 476,

 "url": "<training-portal-url>",

 "sessions": {

 "maximum": 10,

 "registered": 0,

 "anonymous": 0,

 "allocated": 1

 }

 },

 "environments": [

 {

 "name": "learningcenter-tutorials-w01",

 "state": "RUNNING",

 "workshop": {

 "name": "lab-et-self-guided-tour",

 "id": "15e5f1a569496f335049bb00c370ee20",

 "title": "Workshop Building Tutorial",

 "description": "A guided tour of how to build a workshop for your team's learn

Tanzu Application Platform v1.1

VMware, Inc 447

ing center.",

 "vendor": "",

 "authors": [],

 "difficulty": "",

 "duration": "",

 "tags": [],

 "logo": "",

 "url": "<workshop-repository-url>"

 },

 "duration": 1800,

 "capacity": 10,

 "reserved": 0,

 "allocated": 1,

 "available": 0,

 "sessions": [

 {

 "name": "learningcenter-tutorials-w01-s002",

 "state": "RUNNING",

 "namespace": "learningcenter-tutorials-w01-s002",

 "user": "672338f3-4085-4782-8d9b-ae1637e1c28c",

 "started": "2021-11-05T15:50:04.824Z",

 "expires": "2021-11-05T16:20:04.824Z",

 "countdown": 1737,

 "extendable": false

 }

]

 }

]

}

No workshop sessions are returned if anonymous access to this REST API endpoint is enabled and

you are not authenticated against the training portal.

Only workshop environments with a state of RUNNING are returned by default. To see workshop

environments that are shut down and any workshop sessions that still haven’t been completed,

supply the state query string parameter with value STOPPING.

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/?sessions=true&state=RUNNING&stat

e=STOPPING

Include the state query string parameter more than once to see workshop environments in both

RUNNING and STOPPING states.

Client authentication

The training portal web interface is a quick way of providing access to a set of workshops when

running a supervised training workshop. For integrating access to workshops into an existing website

or for creating a custom web interface for accessing workshops hosted across one or more training

portals, you can use can use the portal REST API.

The REST API gives you access to the list of workshops hosted by a training portal instance and allow

you to request and access workshop sessions. This bypasses the training portal’s own user

registration and log in so you can implement whatever access controls you need. This can include

anonymous access or access integrated into an organization’s single sign-on system.

Tanzu Application Platform v1.1

VMware, Inc 448

Querying the credentials

To provide access to the REST API, a robot account is automatically provisioned. Obtain the login

credentials and details of the OAuth client endpoint used for authentication by querying the resource

definition for the training portal after it is created and the deployment completed. If using kubectl

describe, use:

kubectl describe trainingportal.learningcenter.tanzu.vmware.com/<training-portal-name>

The status section of the output reads:

Status:

 learningcenter:

 Clients:

 Robot:

 Id: ACZpcaLIT3qr725YWmXu8et9REl4HBg1

 Secret: t5IfXbGZQThAKR43apoc9usOFVDv2BLE

 Credentials:

 Admin:

 Password: 0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

 Username: learningcenter

 Robot:

 Password: QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

 Username: robot@learningcenter

Use the admin login credentials when you log in to the training portal web interface to access admin

pages.

Use the robot login credentials if you want to access the REST API.

Requesting an access token

Before you can make requests against the REST API to query details about workshops or request a

workshop session, you must log in through the REST API to get an access token.

This is done from any front-end web application or provisioning system, but the step is equivalent to

making a REST API call by using curl of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=password&username=robot@learningcenter&password=<robot-password>" \

-u "<robot-client-id>:<robot-client-secret>" \

<training-portal-url>/oauth2/token/

The URL sub path is /oauth2/token/.

Upon success, the output is a JSON response consisting of:

{

 "access_token": "tg31ied56fOo4axuhuZLHj5JpUYCEL",

 "expires_in": 36000,

 "token_type": "Bearer",

 "scope": "user:info",

 "refresh_token": "1ryXhXbNA9RsTRuCE8fDAyZToJmp30"

Tanzu Application Platform v1.1

VMware, Inc 449

}

Refreshing the access token

The access token that is provided expires: it needs to be refreshed before it expires if in use by a

long-running application.

To refresh the access token, use the equivalent of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=refresh_token&refresh_token=<refresh-token>& \client_id=<robot-client-i

d>&client_secret=<robot-client-secret>" \

https://lab-markdown-sample-ui.test/oauth2/token/

As with requesting the initial access token, the URL sub path is /oauth2/token/.

The JSON response is of the same format as if a new token was requested.

Troubleshoot Learning Center

This section includes a list of known issues with troubleshooting and recovery steps for Learning

Center.

Training portal stays in pending state

The training portal stays in a “pending” state.

The Training Portal custom resource (CR) has a status property. To see the status, run:

kubectl get trainingportals.learningcenter.tanzu.vmware.com

Explanation

If the status stays in a pending state, the TLS secret tls might not be available. Other errors can also

cause the status to stay in a pending state, so it is important to check the operator and portal logs.

Solution

1. Access the operator logs by running:

kubectl logs deployment/learningcenter-operator -n learningcenter

Access the portal logs by running:

kubectl logs deployment/learningcenter-portal -n {PORTAL_NAMESPACE}

2. Check whether the TLS secret tls is available. The TLS secret must be on the Learning

Center operator namespace (by default learningcenter). If the TLS secret is not on the

Learning Center operator namespace, the operator logs contain the following error:

ERROR:kopf.objects:Handler 'learningcenter' failed temporarily: TLS secret tls

is not available

Tanzu Application Platform v1.1

VMware, Inc 450

3. Follow the steps in Enforcing Secure Connections in Learning Center Operator to create the

TLS secret.

4. Redeploy the trainingPortal resource.

image-policy-webhook-service not found

You are installing a TAP profile and you get this error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.run.tanz

u.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.imag

e-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webho

ok-service" not found

Explanation

This is a race condition error among some Tanzu Application Platform packages.

Solution

To recover from this error you only need to redeploy the trainingPortal resource.

Cannot update parameters

The training portals do not work or do not show updated parameters.

Run one of the following commands to validate changes made to parameters provided to the

Learning Center Operator. These parameters include ingressDomain, TLS secret, ingressClass, and

others.

Command:

kubectl describe systemprofile

Command:

kubectl describe pod -n learningcenter

Explanation

By design, the training portal resources do not react to any changes on the parameters provided

when the training portals were created. This prevents any change on the trainingportal resource

from affecting any online user running a workshop.

Solution

Redeploy trainingportal in a maintenance window where Learning Center is unavailable while the

systemprofile is updated.

Increase your cluster’s resources

If you don’t have enough nodes or enough resources on nodes for deploying the workloads, node

pressure might occur. In this case, follow your cloud provider’s instructions on how to scale out or

scale up your cluster.

Tanzu Application Platform v1.1

VMware, Inc 451

Supply Chain Choreographer for Tanzu

This topic introduces Supply Chain Choreographer.

Overview

Supply Chain Choreographer is based on open source Cartographer. It allows App Operators to

create pre-approved paths to production by integrating Kubernetes resources with the elements of

their existing toolchains, for example, Jenkins.

Each pre-approved supply chain creates a paved road to production. Orchestrating supply chain

resources - test, build, scan, and deploy - allows developers to focus on delivering value to their

users and provides App Operators the assurance that all code in production has passed through all

the steps of an approved workflow.

Out of the Box Supply Chains

Out of the box supply chains are provided with Tanzu Application Platform.

The following three supply chains are included:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As auxiliary components, Tanzu Application Platform also includes:

Out of the Box Templates, for providing templates used by the supply chains to perform

common tasks like fetching source code, running tests, and building container images.

Out of the Box Delivery Basic, for delivering to a Kubernetes cluster the configuration built

throughout a supply chain

Both Templates and Delivery Basic are requirements for the Supply Chains.

Install Supply Chain Choreographer

This document describes how to install Supply Chain Choreographer from the Tanzu Application

Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Supply Chain Choreographer. For more information about profiles,

see Installing the Tanzu Application Platform Package and Profiles.

Supply Chain Choreographer provides the custom resource definitions the supply chain uses. Each

pre-approved supply chain creates a clear road to production and orchestrates supply chain

resources. You can test, build, scan, and deploy. Developers can focus on delivering value to users.

Application operators can rest assured that all code in production has passed through an approved

workflow.

For example, Supply Chain Choreographer passes the results of fetching source code to the

component that builds a container image of it, and then passes the container image to a component

Tanzu Application Platform v1.1

VMware, Inc 452

https://cartographer.sh/docs/

that deploys the image.

Prerequisites

Before installing Supply Chain Choreographer:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install

To install Supply Chain Choreographer:

1. Install v0.3.0 of the cartographer.tanzu.vmware.com package, naming the installation

cartographer.

tanzu package install cartographer \

 --namespace tap-install \

 --package-name cartographer.tanzu.vmware.com \

 --version 0.3.0

Example output:

| Installing package 'cartographer.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'cartographer.tanzu.vmware.com'

| Creating service account 'cartographer-tap-install-sa'

| Creating cluster admin role 'cartographer-tap-install-cluster-role'

| Creating cluster role binding 'cartographer-tap-install-cluster-rolebinding'

- Creating package resource

\ Package install status: Reconciling

Added installed package 'cartographer' in namespace 'tap-install'

Out of the Box Delivery Basic

This package provides a reusable ClusterDelivery object that is responsible for delivering to an

environment the Kubernetes configuration that has been produced by the Out of the Box Supply

Chains, including Basic, Testing, and Testing With Scanning.

Prerequisites

To make use of this package you must have installed:

Supply Chain Cartographer

Out of the Box Templates

Usage

Out of the Box Delivery Basic support both GitOps and local development workflows:

GITOPS

Tanzu Application Platform v1.1

VMware, Inc 453

#install-scc

 Deliverable:

 points at a git repository where source code is found and

 kubernetes configuration is pushed to

LOCAL DEVELOPMENT

 Deliverable:

 points at a container image registry where the supplychain

 pushes source code and configuration to

DELIVERY

 takes a Deliverable (local or gitops) and passes is through

 a series of resources:

 config-provider <---[config]--- deployer

 . .

 . .

 GitRepository/ImageRepository kapp-ctrl/App

 - knative/Service

 - ResourceClaim

 - ServiceBinding

 ...

As a prerequisite to the Basic, Testing, and Testing With Scanning Out of the Box Supply Chains, you

must install this package to have Workloads delivered properly.

Consumers do not interact directly with this package. Instead, this package is used once a

carto.run/Deliverable object is created by the supply chains to express the intention of having the

Workloads that go through them delivered to an environment. At this time, the environment is the

same Kubernetes cluster as the Supply Chains.

Install Out of the Box Delivery Basic

This document describes how to install Out of the Box Delivery Basic from the Tanzu Application

Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Delivery Basic. For more information about profiles,

see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Delivery Basic package is used by all the Out of the Box Supply Chains to deliver

the objects that have been produced by them to a Kubernetes environment.

Prerequisites

Before installing Out of the Box Delivery Basic:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Tanzu Application Platform v1.1

VMware, Inc 454

https://github.com/vmware-tanzu/cartographer

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install

To install Out of the Box Delivery Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-delivery-basic.tanzu.vmware.com/0.7.0 \

 --values-schema \

 -n tap-install

For example:

KEY DEFAULT TYPE DESCRIPTION

service_account default string Name of the service account in the

 namespace where the Deliverable is

 submitted to.

git_implementation go-git string Which git client library to use.

 Valid options are go-git or libgit2.

2. Create a file named ootb-delivery-basic-values.yaml that specifies the corresponding

values to the properties you want to change.

For example, the contents of the file might look like this:

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-delivery-basic \

 --package-name ootb-delivery-basic.tanzu.vmware.com \

 --version 0.7.0 \

 --namespace tap-install \

 --values-file ootb-delivery-basic-values.yaml

Example output:

\ Installing package 'ootb-delivery-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-delivery-basic.tanzu.vmware.com'

| Creating service account 'ootb-delivery-basic-tap-install-sa'

| Creating cluster admin role 'ootb-delivery-basic-tap-install-cluster-role'

| Creating cluster role binding 'ootb-delivery-basic-tap-install-cluster-rolebi

nding'

| Creating secret 'ootb-delivery-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-delivery-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-delivery-basic' in namespace 'tap-install'

Tanzu Application Platform v1.1

VMware, Inc 455

Out of the Box Supply Chain Basic

This package contains Cartographer Supply Chains that tie together a series of Kubernetes resources

that drive a developer-provided workload from source code to a Kubernetes configuration ready to

be deployed to a cluster. It contains the most basic supply chains that focus on providing a quick

path to deployment making no use of testing or scanning resources.

The supply chains included in this package perform the following:

Building from source code:

1. Watching a Git repository or local directory for changes

2. Building a container image out of the source code with Buildpacks

3. Applying operator-defined conventions to the container definition

4. Creating a deliverable object for deploying the application to a cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this package, you must:

Install Out of the Box Templates.

Configure the Developer namespace with auxiliary objects that are used by the supply chain

as described in the following section.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application to

the same cluster as the workload and supply chains.

Developer Namespace

The supply chains provide definitions of many of the objects that they create to transform the source

code to a container image and make it available as an application in a cluster.

The developer must provide or configure particular objects in the developer namespace so that the

supply chain can provide credentials and use permissions granted to a specific development team.

The objects that the developer must provide or configure include:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that contain

credentials for pushing and pulling the container images built by the supply chain and the

installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made

by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed

by the supply chain.

Registries Secrets

Tanzu Application Platform v1.1

VMware, Inc 456

Regardless of the supply chain that a workload goes through, there must be Kubernetes secrets in

the developer namespace containing credentials for both pushing and pulling the container image

that gets built by the supply chains when source code is provided. The developer namespace must

also contain registry credentials for Kubernetes to run pods using images from the installation of

Tanzu Application Platform.

1. Add read/write registry credentials for pushing and pulling application images:

tanzu secret registry add registry-credentials \

 --server REGISTRY-SERVER \

 --username REGISTRY-USERNAME \

 --password REGISTRY-PASSWORD \

 --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you want to use for the developer namespace. For

example, use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be

https://index.docker.io/v1/. Specifically, it must have the leading https://, the v1

path, and the trailing /. For GCR, this is gcr.io. Based on the information used in

Installing the Tanzu Application Platform package and profiles, you can use the same

registry server as in ootb_supply_chain_basic - registry - server.

2. Add a placeholder secret for gathering the credentials used for pulling container images

from the installation of Tanzu Application Platform:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

With the two secrets created:

tap-registry is a placeholder secret filled indirectly by secretgen-controller Tanzu

Application Platform credentials set up during the installation of Tanzu Application Platform.

registry-credentials is a secret providing credentials for the registry where application

container images are pushed to.

The following section discusses setting up the identity required for the workload.

ServiceAccount

In a Kubernetes cluster, a ServiceAccount provides a way of representing an actor within the

Kubernetes role-based access control (RBAC) system. In the case of a developer namespace, this

represents a developer or development team.

Tanzu Application Platform v1.1

VMware, Inc 457

You can directly attach secrets to the ServiceAccount through both the secrets and

imagePullSecets fields. This allows you to provide indirect ways for resources to find credentials

without knowing the exact name of the secrets.

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

RoleBinding

As the Supply Chain takes action in the cluster on behalf of the users who created the workload, it

needs permissions within Kubernetes’ RBAC system to do so.

Tanzu Application Platform v1.1 ships with two ClusterRoles that describe all of the necessary

permissions to grant to the service account:

workload clusterrole, providing the necessary roles for the supply chains to be able to

manage the resources prescribed by them.

deliverable clusterrole, providing the roles for deliveries to deploy to the cluster the

application Kubernetes objects produced by the supply chain.

To provide those permissions to the identity we created for this workload, bind the workload

ClusterRole to the ServiceAccount we created above:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

subjects:

 - kind: ServiceAccount

 name: default

If this is just a Build cluster, and you do not intend to run the application in it, this single RoleBinding

is all that’s necessary.

If you intend to also deploy the application that’s been built, bind to the same ServiceAccount the

Important

The ServiceAccount must have the secrets created earlier linked to it. If it does not,

services like Tanzu Build Service (used in the supply chain) lack the necessary

credentials for pushing the images it builds for that workload.

Tanzu Application Platform v1.1

VMware, Inc 458

deliverable ClusterRole too:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-deliverable

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: deliverable

subjects:

 - kind: ServiceAccount

 name: default

For more information about authentication and authorization in Tanzu Application Platform v1.1, see

https://github.com/pivotal/docs-tap/blob/main/authn-authz/overview.md.

Developer workload

With the developer namespace set up with the preceding objects (secret, serviceaccount, and

rolebinding), you can create the workload object.

To do so, make use of the apps plug-in from the Tanzu CLI:

tanzu apps workload create [flags] [workload-name]

Depending on what you are aiming to achieve, you can set different flags. To know more about

those (including details about different features of the supply chains), see the following sections:

Building from source, for more information about different ways of creating a workload

where the application is built from source code.

Using a prebuilt image, for more information about how to leverage prebuilt images in the

supply chains.

GitOps vs RegistryOps, for a description of the different ways of propagating the deployment

configuration through external systems (Git repositories and image registries).

Install Out of the Box Supply Chain Basic

This document describes how to install Out of the Box Supply Chain Basic from the Tanzu

Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Supply Chain Basic. For more information about

profiles, see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Supply Chain Basic package provides the most basic ClusterSupplyChain that

brings an application from source code to a deployed instance of it running in a Kubernetes

environment.

Prerequisites

Fulfill the following prerequisites:

Tanzu Application Platform v1.1

VMware, Inc 459

Fulfill the prerequisites for installing Tanzu Application Platform.

Install Supply Chain Choreographer.

Install

To install Out of the Box Supply Chain Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-basic.tanzu.vmware.com/0.7.0 \

 --values-schema \

 -n tap-install

For example:

KEY DESCRIPTION

registry.repository Name of the repository in the image registry server w

here

 the application images from the workload should be pu

shed (required).

registry.server Name of the registry server where application images

should

 be pushed to (required).

git_implementation Determines which git client library to use.

 Valid options are go-git or libgit2.

gitops.username Default user name to be used for the commits produced

 by the

 supply chain.

gitops.branch Default branch to use for pushing Kubernetes configur

ation files

 produced by the supply chain.

gitops.commit_message Default git commit message to write when publishing K

ubernetes

 configuration files produces by the supply chain to g

it.

gitops.email Default user email to be used for the commits produce

d by the

 supply chain.

gitops.repository_prefix Default prefix to be used for forming Git SSH URLs fo

r pushing

 Kubernetes configuration produced by the supply chain

.

gitops.ssh_secret Name of the default Secret containing SSH credentials

 to lookup

 in the developer namespace for the supply chain to fe

tch source

Tanzu Application Platform v1.1

VMware, Inc 460

 code from and push configuration to.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to

 use by default on image objects managed by the supply

 chain.

service_account Name of the service account in the namespace where th

e Workload

 is submitted to utilize for providing registry creden

tials to

 Tanzu Build Service (TBS) Image objects as well as de

ploying the

 application.

2. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding

values to the properties you want to change. For example:

registry:

 server: REGISTRY-SERVER

 repository: REGISTRY-REPOSITORY

gitops:

 repository_prefix: git@github.com:vmware-tanzu/

 branch: main

 user_name: supplychain

 user_email: supplychain

 commit_message: supplychain@cluster.local

 ssh_secret: git-ssh

cluster_builder: default

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-basic \

 --package-name ootb-supply-chain-basic.tanzu.vmware.com \

 --version 0.7.0 \

 --namespace tap-install \

 --values-file ootb-supply-chain-basic-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-basic.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-basic-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-basic-tap-install-cluster-role

'

| Creating cluster role binding 'ootb-supply-chain-basic-tap-install-cluster-ro

lebinding'

| Creating secret 'ootb-supply-chain-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-basic'

/ 'PackageInstall' resource install status: Reconciling

Tanzu Application Platform v1.1

VMware, Inc 461

 Added installed package 'ootb-supply-chain-basic' in namespace 'tap-install'

Out of the Box Supply Chain with Testing

This package contains Cartographer Supply Chains that tie together a series of Kubernetes resources

that drive a developer-provided workload from source code to a Kubernetes configuration ready to

be deployed to a cluster. It passes the source code forward to image building only if the testing

pipeline supplied by the developers runs successfully.

This package includes all the capabilities of the Out of the Box Supply Chain Basic, but adds testing

with Tekton.

For workloads that use either source code or prebuilt images, it performs the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Building a container image out of the source code with Buildpacks

4. Applying operator-defined conventions to the container definition

5. Deploying the application to the same cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To make use this supply chain, ensure:

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is installed.

Out of the Box Supply Chain With Testing and Scanning is NOT installed.

Developer namespace is configured with the objects per Out of the Box Supply Chain Basic

guidance. This supply chain is in addition to the basic one.

(optionally) Install Out of the Box Delivery Basic, if you are willing to deploy the application to

the same cluster as the workload and supply chains.

To verify that you have the right set of supply chains installed (that is, the one with Scanning and not

the one with testing), run:

tanzu apps cluster-supply-chain list

NAME LABEL SELECTOR

source-test-to-url apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url apps.tanzu.vmware.com/workload-type=web

Tanzu Application Platform v1.1

VMware, Inc 462

If you see source-test-scan-to-url in the list, the setup is wrong: you must not have the source-

test-scan-to-url installed at the same time as source-test-to-url.

Developer Namespace

As mentioned in the prerequisites section, this supply chain builds on the previous Out of the Box

Supply Chain, so only additions are included here.

To make sure you have configured the namespace correctly, it is important that the namespace has

the following objects in it (including the ones marked with ‘new’ whose explanation and details are

provided below):

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that contain

credentials for pushing and pulling the container images built by the supply chain and the

installation of Tanzu Application Platform.

For more information, see Out of the Box Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made

by the supply chain

For more information, see Out of the Box Supply Chain Basic.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed

by the supply chain.

For more information, see Out of the Box Supply Chain Basic.

Tekton pipeline (new): A pipeline runs whenever the supply chain hits the stage of testing

the source code.

Below you will find details about the new objects compared to Out of the Box Supply Chain Basic.

Updates to the developer Namespace

In order for source code testing to be present in the supply chain, a Tekton Pipeline must exist in the

same namespace as the Workload so that, at the right moment, the Tekton PipelineRun object that

gets created to run the tests can reference such developer-provided Pipeline.

So, aside from the objects previously defined in the Out of the Box Supply Chain Basic section, you

need to include one more:

tekton/Pipeline: the definition of a series of tasks to run against the source code that has

been found by earlier resources in the Supply Chain.

Tekton/Pipeline

Despite the full liberty around tasks to run, the Tekton or pipeline object must be labelled with

apps.tanzu.vmware.com/pipeline: test, and define that it expects to take two parameters:

source-url, an HTTP address where a .tar.gz file containing all the source code to be

tested can be found

source-revision, the revision of the commit or image reference (in case of

workload.spec.source.image being set instead of workload.spec.source.git)

Tanzu Application Platform v1.1

VMware, Inc 463

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

At this point, changes to the developer-provided Tekton Pipeline do not automatically trigger a re-

run of the pipeline. That is, a new Tekton PipelineRun is not automatically created if a field in the

Pipeline object is changed. As a workaround, the latest PipelineRun created can be deleted, which

triggers a re-run.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the

following methods:

Use a single pipeline running on a container image that includes testing tools and runs a

common script to execute tests. This allows you to accommodate multiple workloads based

in different languages in the same namespace that use a common make test script, as shown

in the following example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test

spec:

 #...

 steps:

 - name: test

Tanzu Application Platform v1.1

VMware, Inc 464

 image: <image_that_has_JDK_and_Go>

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 make test

Update the template to include labels that differentiate the pipelines. Then configure the

labels to differentiate between pipelines, as shown in the following example:

 selector:

 resource:

 apiVersion: tekton.dev/v1beta1

 kind: Pipeline

 matchingLabels:

 apps.tanzu.vmware.com/pipeline: test

+ apps.tanzu.vmware.com/language: #@ data.values.workload.metadata.labe

ls["apps.tanzu.vmware.com/language"]

The following example shows one namespace per-language pipeline:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: java-tests

 labels:

 apps.tanzu.vmware.com/pipeline: test

 apps.tanzu.vmware.com/language: java

spec:

 #...

 steps:

 - name: test

 image: gradle

 script: |-

 # ...

 ./mvnw test

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: go-tests

 labels:

 apps.tanzu.vmware.com/pipeline: test

 apps.tanzu.vmware.com/language: go

spec:

 #...

 steps:

 - name: test

 image: golang

 script: |-

 # ...

 go test -v ./...

Developer Workload

With the Tekton Pipeline object submitted to the same namespace as the one where the Workload

Tanzu Application Platform v1.1

VMware, Inc 465

will be submitted to, you can submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload configuration

details are the same as in Out of the Box Supply Chain Basic, except that you mark the workload with

tests enabled by means of the has-tests label.

For example:

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | apps.tanzu.vmware.com/has-tests: "true"

 8 + | app.kubernetes.io/part-of: tanzu-java-web-app

 9 + | name: tanzu-java-web-app

 10 + | namespace: default

 11 + |spec:

 12 + | source:

 13 + | git:

 14 + | ref:

 15 + | branch: main

 16 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

Install Out of the Box Supply Chain with Testing

This document describes how to install Out of the Box Supply Chain with Testing from the Tanzu

Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Supply Chain with Testing. For more information

about profiles, see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Supply Chain with Testing package provides a ClusterSupplyChain that brings an

application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Runs developer-provided tests in the form of Tekton/Pipeline objects to validate the source

code before building container images.

Prerequisites

Before installing Out of the Box Supply Chain with Testing:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Tanzu Application Platform v1.1

VMware, Inc 466

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install

Install by following these steps:

1. Ensure you do not have Out of the Box Supply Chain With Testing and Scanning (ootb-

supply-chain-testing-scanning.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing-scanning is in the output:

NAME PACKAGE-NAME

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.

com

ootb-templates ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing-scanning in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing-scanning --names

pace tap-install

Example output:

Deleting installed package 'ootb-supply-chain-testing-scanning' in namesp

ace 'tap-install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing-scanning' from namespac

e 'tap-install'

\ Getting package install for 'ootb-supply-chain-testing-scanning'

- Deleting package install 'ootb-supply-chain-testing-scanning' from name

space 'tap-install'

| Deleting admin role 'ootb-supply-chain-testing-scanning-tap-install-clu

ster-role'

| Deleting role binding 'ootb-supply-chain-testing-scanning-tap-install-c

luster-rolebinding'

| Deleting secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-scanning-tap-instal

l-sa'

 Uninstalled package 'ootb-supply-chain-testing-scanning' from namespace

'tap-install'

2. Verify that the values of the package can be configured by referencing the values below:

KEY DESCRIPTION

Tanzu Application Platform v1.1

VMware, Inc 467

registry.repository Name of the repository in the image registry server w

here

 the application images from the workload should be pu

shed (required).

registry.server Name of the registry server where application images

should

 be pushed to (required).

git_implementation Determines which git client library to use.

 Valid options are go-git or libgit2.

gitops.username Default user name to be used for the commits produced

 by the

 supply chain.

gitops.branch Default branch to use for pushing Kubernetes configur

ation files

 produced by the supply chain.

gitops.commit_message Default git commit message to write when publishing K

ubernetes

 configuration files produces by the supply chain to g

it.

gitops.email Default user email to be used for the commits produce

d by the

 supply chain.

gitops.repository_prefix Default prefix to be used for forming Git SSH URLs fo

r pushing

 Kubernetes configuration produced by the supply chain

.

gitops.ssh_secret Name of the default Secret containing SSH credentials

 to lookup

 in the developer namespace for the supply chain to fe

tch source

 code from and push configuration to.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to

 use by default on image objects managed by the supply

 chain.

service_account Name of the service account in the namespace where th

e Workload

 is submitted to utilize for providing registry creden

tials to

 Tanzu Build Service (TBS) Image objects as well as de

ploying the

 application.

3. Create a file named ootb-supply-chain-testing-values.yaml that specifies the

Tanzu Application Platform v1.1

VMware, Inc 468

corresponding values to the properties you want to change. For example:

registry:

 server: REGISTRY-SERVER

 repository: REGISTRY-REPOSITORY

gitops:

 repository_prefix: git@github.com:vmware-tanzu/

 branch: main

 user_name: supplychain

 user_email: supplychain

 commit_message: supplychain@cluster.local

 ssh_secret: git-ssh

cluster_builder: default

service_account: default

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing \

 --package-name ootb-supply-chain-testing.tanzu.vmware.com \

 --version 0.7.0 \

 --namespace tap-install \

 --values-file ootb-supply-chain-testing-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-testing-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-tap-install-cluster-ro

le'

| Creating cluster role binding 'ootb-supply-chain-testing-tap-install-cluster-

rolebinding'

| Creating secret 'ootb-supply-chain-testing-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing' in namespace 'tap-install'

Out of the Box Supply Chain with Testing and Scanning

This package contains Cartographer Supply Chains that tie together a series of Kubernetes resources

that drive a developer-provided workload from source code to a Kubernetes configuration ready to

be deployed to a cluster. It contains supply chains that not only pass the source code through testing

and vulnerability scanning, but also the container image produced.

This package includes all the capabilities of the Out of the Box Supply Chain With Testing, but adds

Important

it’s required that the gitops.repository_prefix field ends with a /.

Tanzu Application Platform v1.1

VMware, Inc 469

source and image scanning using Grype.

For workloads that use source code or prebuilt images, it performs the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Scanning the source code for known vulnerabilities using Grype

4. Building a container image out of the source code with Buildpacks

5. Scanning the image for known vulnerabilities

6. Applying operator-defined conventions to the container definition

7. Deploying the application to the same cluster

Using a prebuilt application image:

1. Scanning the image for known vulnerabilities

2. Applying operator-defined conventions to the container definition

3. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To make use this supply chain, ensure:

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is NOT installed.

Out of the Box Supply Chain With Testing and Scanning is installed.

Developer namespace is configured with the objects per Out of the Box Supply Chain With

Testing guidance. This supply chain is in addition to the Supply Chain with testing.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application to

the same cluster as the workload and supply chains.

To verify you have the right set of supply chains installed (that is, the one with scanning and not the

one with testing), run:

tanzu apps cluster-supply-chain list

NAME LABEL SELECTOR

source-test-scan-to-url apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url apps.tanzu.vmware.com/workload-type=web

If you see source-test-to-url in the list, the setup is wrong. You must not have the source-test-to-

url installed at the same time as source-test-scan-to-url.

Developer Namespace

As mentioned in the prerequisites section, this example builds on the previous Out of the Box

Tanzu Application Platform v1.1

VMware, Inc 470

Supply Chain examples, so only additions are included here.

To ensure that you have configured the namespace correctly, it is important that the namespace has

the objects that you configured in the other supply chain setups:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that contain

credentials for pushing and pulling the container images built by the supply chain and the

installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made

by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed

by the supply chain.

For more information on the preceding objects, see Out of the Box Supply Chain Basic.

Tekton pipeline: A pipeline runs whenever the supply chain hits the stage of testing the

source code.

For more information, see Out of the Box Supply Chain Testing.

And the new ones, that you create here:

scan policy: Defines what to do with the results taken from scanning the source code and

image produced. For more information, see ScanPolicy section.

source scan template: A template of how jobs are created for scanning the source code. For

more information, see ScanTemplate section.

image scan template: A template of how jobs are created for scanning the image produced

by the supply chain. For more information, see ScanTemplate section.

Below you will find details about the new objects (compared to Out of the Box Supply Chain With

Testing).

Updates to the developer Namespace

For source and image scans, scan templates and scan policies must exist in the same namespace as

the workload. These define:

ScanTemplate: how to run a scan, allowing one to change details about the execution of the

scan (either for images or source code)

ScanPolicy: how to evaluate whether the artifacts scanned are compliant, for example

allowing one to be either very strict, or restrictive about particular vulnerabilities found.

Note that the names of the objects must match the ones in the example.

ScanPolicy

The ScanPolicy defines a set of rules to evaluate for a particular scan to consider the artifacts (image

or source code) either compliant or not.

When a ImageScan or SourceScan is created to run a scan, those reference a policy whose name

must match the one below (scan-policy):

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

Tanzu Application Platform v1.1

VMware, Inc 471

kind: ScanPolicy

metadata:

 name: scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

 violatingSeverities := ["Critical","High","UnknownSeverity"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

See Writing Policy Templates for more details.

ScanTemplate

A ScanTemplate defines the PodTemplateSpec to be used by a Job to run a particular scan (image

or source). When an ImageScan or SourceScan is instantiated by the supply chain, they reference

these templates which must live in the same namespace as the workload with the names matching

the ones below:

source scanning (blob-source-scan-template)

image scanning (private-image-scan-template)

If you are targeting a namespace that does not match the one configured in the Tanzu Application

Platform profiles, for example if grype.namespace is not the same as the one you are writing the

workload to, you can install these in such namespace by making use of the tanzu package install

command as described in Install Supply Chain Security Tools - Scan:

1. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding

values to the properties you want to change. For example:

grype:

 namespace: YOUR-DEV-NAMESPACE

 targetImagePullSecret: registry-credentials

2. With the configuration ready, install the templates by running:

Tanzu Application Platform v1.1

VMware, Inc 472

tanzu package install grype-scanner \

 --package-name grype.scanning.apps.tanzu.vmware.com \

 --version 1.0.0 \

 --namespace YOUR-DEV-NAMESPACE

Note: Although you can customize the templates, if you are just following the Getting Started guide

then it is recommended you stick with what is provided in the installation of

grype.scanning.apps.tanzu.vmware.com. This is created in the same namespace as configured by

using grype.namespace in either Tanzu Application Platform profiles or individual component

installation as in the earlier example. For more information, see About Source and Image Scans.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the

following methods:

Use a single pipeline running on a container image that includes testing tools and runs a

common script to execute tests. This allows you to accommodate multiple workloads based

in different languages in the same namespace that use a common make test script, as shown

in the following example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test

spec:

 #...

 steps:

 - name: test

 image: <image_that_has_JDK_and_Go>

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 make test

Update the template to include labels that differentiate the pipelines. Then configure the

labels to differentiate between pipelines, as shown in the following example:

 selector:

 resource:

 apiVersion: tekton.dev/v1beta1

 kind: Pipeline

 matchingLabels:

 apps.tanzu.vmware.com/pipeline: test

+ apps.tanzu.vmware.com/language: #@ data.values.workload.metadata.labe

ls["apps.tanzu.vmware.com/language"]

The following example shows one namespace per-language pipeline:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

Tanzu Application Platform v1.1

VMware, Inc 473

 name: java-tests

 labels:

 apps.tanzu.vmware.com/pipeline: test

 apps.tanzu.vmware.com/language: java

spec:

 #...

 steps:

 - name: test

 image: gradle

 script: |-

 # ...

 ./mvnw test

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: go-tests

 labels:

 apps.tanzu.vmware.com/pipeline: test

 apps.tanzu.vmware.com/language: go

spec:

 #...

 steps:

 - name: test

 image: golang

 script: |-

 # ...

 go test -v ./...

Developer workload

With the ScanPolicy and ScanTemplate objects, with the required names set, submitted to the same

namespace where the workload are submitted, you are ready to submit your workload.

Regardless of the workflow being targeted (local development or gitops), the workload configuration

details are the same as in Out of the Box Supply Chain Basic, except that you mark the workload as

having tests enabled.

For example:

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | apps.tanzu.vmware.com/has-tests: "true"

 8 + | app.kubernetes.io/part-of: tanzu-java-web-app

 9 + | name: tanzu-java-web-app

Tanzu Application Platform v1.1

VMware, Inc 474

 10 + | namespace: default

 11 + |spec:

 12 + | source:

 13 + | git:

 14 + | ref:

 15 + | branch: main

 16 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

Install Out of the Box Supply Chain with Testing and
Scanning

This document describes how to install Out of the Box Supply Chain with Testing and Scanning from

the Tanzu Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. The full

profile includes Out of the Box Supply Chain with Testing and Scanning. For more information about

profiles, see Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Supply Chain with Testing and Scanning package provides a ClusterSupplyChain

that brings an application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Performs validations in terms of running application tests.

Scans the source code and image for vulnerabilities.

Prerequisites

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install

To install Out of the Box Supply Chain with Testing and Scanning:

1. Ensure you do not have Out of The Box Supply Chain With Testing (ootb-supply-chain-

testing.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing is in the output:

NAME PACKAGE-NAME

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.

com

Tanzu Application Platform v1.1

VMware, Inc 475

ootb-templates ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing --namespace tap-

install

Example output:

Deleting installed package 'ootb-supply-chain-testing' in namespace 'tap-

install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing' from namespace 'tap-in

stall'

\ Getting package install for 'ootb-supply-chain-testing'

- Deleting package install 'ootb-supply-chain-testing' from namespace 'ta

p-install'

| Deleting admin role 'ootb-supply-chain-testing-tap-install-cluster-role

'

| Deleting role binding 'ootb-supply-chain-testing-tap-install-cluster-ro

lebinding'

| Deleting secret 'ootb-supply-chain-testing-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-tap-install-sa'

 Uninstalled package 'ootb-supply-chain-testing' from namespace 'tap-inst

all'

2. Check the values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-testing-scanning.tanzu.vmware.com

/0.7.0 \

 --values-schema \

 -n tap-install

For example:

KEY DESCRIPTION

registry.repository Name of the repository in the image registry server w

here

 the application images from the workload should be pu

shed (required).

registry.server Name of the registry server where application images

should

 be pushed to (required).

git_implementation Determines which git client library to use.

 Valid options are go-git or libgit2.

gitops.username Default user name to be used for the commits produced

 by the

 supply chain.

Tanzu Application Platform v1.1

VMware, Inc 476

gitops.branch Default branch to use for pushing Kubernetes configur

ation files

 produced by the supply chain.

gitops.commit_message Default git commit message to write when publishing K

ubernetes

 configuration files produces by the supply chain to g

it.

gitops.email Default user email to be used for the commits produce

d by the

 supply chain.

gitops.repository_prefix Default prefix to be used for forming Git SSH URLs fo

r pushing

 Kubernetes configuration produced by the supply chain

.

gitops.ssh_secret Name of the default Secret containing SSH credentials

 to lookup

 for the supply chain to push configuration to.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to

 use by default on image objects managed by the supply

 chain.

service_account Name of the service account in the namespace where th

e Workload

 is submitted to utilize for providing registry creden

tials to

 Tanzu Build Service (TBS) Image objects as well as de

ploying the

 application.

cluster_builder Name of the Tanzu Build Service (TBS) ClusterBuilder

to use by

 default on image objects managed by the supply chain.

3. Create a file named ootb-supply-chain-testing-scanning-values.yaml that specifies the

corresponding values to the properties you want to change. For example:

registry:

 server: REGISTRY-SERVER

 repository: REGISTRY-REPOSITORY

gitops:

 repository_prefix: git@github.com:vmware-tanzu/

 branch: main

 user_name: supplychain

 user_email: supplychain

 commit_message: supplychain@cluster.local

 ssh_secret: git-ssh

cluster_builder: default

service_account: default

Tanzu Application Platform v1.1

VMware, Inc 477

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing-scanning \

 --package-name ootb-supply-chain-testing-scanning.tanzu.vmware.com \

 --version 0.7.0 \

 --namespace tap-install \

 --values-file ootb-supply-chain-testing-scanning-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing-scanning.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing-scanning.tanzu.vmware

.com'

| Creating service account 'ootb-supply-chain-testing-scanning-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-scanning-tap-install-c

luster-role'

| Creating cluster role binding 'ootb-supply-chain-testing-scanning-tap-install

-cluster-rolebinding'

| Creating secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing-sc

anning'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing-scanning' in namespace 'tap-

install'

Out of the Box Templates

In Cartographer, a supply chain is defined as a directed acyclic graph of resources choreographed

by the Cartographer controllers, with the definition of the shape of such resources defined by

templates.

This package contains a series of reusable templates used by:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As a prerequisite of the Out of the Box Supply Chains, you must install this package to have

Workloads delivered properly.

Install Out of the Box Templates

This document describes how to install Out of the Box Templates from the Tanzu Application

Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Out of the Box Templates. For more information about profiles, see

Important

The gitops.repository_prefix field must end with /.

Tanzu Application Platform v1.1

VMware, Inc 478

Installing the Tanzu Application Platform Package and Profiles.

The Out of the Box Templates package is used by all the Out of the Box Supply Chains to provide

the templates that are used by the Supply Chains to create the objects that drive source code all the

way to a deployed application in a cluster.

Prerequisites

Before installing Out of the Box Templates:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Tekton Pipelines.

Install

To install Out of the Box Templates:

1. View the configurable values of the package by running:

tanzu package available get ootb-templates.tanzu.vmware.com/0.7.0 \

 --values-schema \

 -n tap-install

For example:

KEY DEFAULT TYPE DESCRIPTION

excluded_templates [] array List of templates to exclude from the

 installation (e.g. ['git-writer'])

2. Create a file named ootb-templates.yaml that specifies the corresponding values to the

properties you want to change.

For example, the contents of the file might look like this:

excluded_templates: []

3. After the configuration is ready, install the package by running:

tanzu package install ootb-templates \

 --package-name ootb-templates.tanzu.vmware.com \

 --version 0.7.0 \

 --namespace tap-install \

 --values-file ootb-templates-values.yaml

Example output:

\ Installing package 'ootb-templates.tanzu.vmware.com'

| Getting package metadata for 'ootb-templates.tanzu.vmware.com'

| Creating service account 'ootb-templates-tap-install-sa'

| Creating cluster admin role 'ootb-templates-tap-install-cluster-role'

| Creating cluster role binding 'ootb-templates-tap-install-cluster-rolebinding

Tanzu Application Platform v1.1

VMware, Inc 479

'

| Creating secret 'ootb-templates-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-templates'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-templates' in namespace 'tap-install'

Building from source

Regardless of the Out of the Box Supply Chain Package you’ve installed, you can provide source

code for the workload either from a directory in your local computer’s file system or from a Git

repository.

Supply Chain

 -- fetch source * either from Git or local directory

 -- test

 -- build

 -- scan

 -- apply-conventions

 -- push config

This document provides details about both approaches.

Note: To provide a prebuilt container image instead of building the application from the beginning by

using the supply chain, see Using a prebuilt image.

Git source

To provide source code from a Git repository to the supply chains, you must fill

workload.spec.source.git. With the tanzu CLI, you can do so by using the following flags:

--git-branch: branch within the Git repository to checkout

--git-commit: commit SHA within the Git repository to checkout

--git-repo: Git URL to remote source code

--git-tag: tag within the Git repository to checkout

For example, after installing ootb-supply-chain-basic, to create a Workload the source code for

which comes from the main branch of the github.com/sample-accelerators/tanzu-java-web-app Git

repository, run:

tanzu apps workload create tanzu-java-web-app \

 --app tanzu-java-web-app \

 --type web \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main

Expect to see the following output:

Create workload:

 1 + |---

Tanzu Application Platform v1.1

VMware, Inc 480

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | app.kubernetes.io/part-of: tanzu-java-web-app

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

Private GitRepository

To fetch source code from a repository that requires credentials, you must provide those by using a

Kubernetes secret object that is referenced by the GitRepostiory object created for that workload.

See How It Works to learn more about the underlying process of detecting changes to the

repository.

Workload/tanzu-java-web-app

└─GitRepository/tanzu-java-web-app

 └───────> secretRef: {name: GIT-SECRET-NAME}

 |

 either a default from TAP installation or

 gitops_ssh_secret Workload parameter

Platform operators who install the Out of the Box Supply Chain packages by using Tanzu Application

Platform profiles can customize the default name of the secret (git-ssh) by editing the

corresponding ootb_supply_chain* property in the tap-values.yaml file:

ootb_supply_chain_basic:

 gitops:

 ssh_secret: GIT-SECRET-NAME

For platform operators who install the ootb-supply-chain-* package individually by using tanzu

package install, they can edit the ootb-supply-chain-*-values.yml as follows:

gitops:

 ssh_secret: GIT-SECRET-NAME

You can also override the default secret name directly in the workload by using the

gitops_ssh_secret parameter, regardless of how Tanzu Application Platform is installed. You can

use the --param flag in Tanzu CLI. For example:

tanzu apps workload create tanzu-java-web-app \

Important

The Git repository URL must include the scheme: http://, https://, or ssh://.

Tanzu Application Platform v1.1

VMware, Inc 481

 --app tanzu-java-web-app \

 --type web \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main \

 --param gitops_ssh_secret=SECRET-NAME

Expect to see the following output:

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | app.kubernetes.io/part-of: tanzu-java-web-app

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | params:

 12 + | - name: gitops_ssh_secret #! parameter that overrides the default

 13 + | value: GIT-SECRET-NAME #! secret name

 14 + | source:

 15 + | git:

 16 + | ref:

 17 + | branch: main

 18 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

Note: A secret reference is only provided to GitRepository if gitops_ssh_secret is set to a non-

empty string in some fashion, either by a package property or a workload parameter. To force a

GitRepository to not reference a secret, set the value to an empty string ("").

After defining the name of the Kubernetes secret, you can define the secret.

HTTP(S) Basic-auth / Token-based authentication

Despite both the package value and workload parameter being called gitops.ssh_secret, you can

use HTTP(S) transports as well:

1. Ensure that the repository in the Workload specification uses http:// or https:// schemes in

any URLs that relate to the repositories. For example, https://github.com/my-org/my-repo

instead of github.com/my-org/my-repo or ssh://github.com:my-org/my-repo.

2. In the same namespace as the workload, create a Kubernetes secret object of type

kubernetes.io/basic-auth with the name matching the one expected by the supply chain as

explained in the earlier section. For example:

apiVersion: v1

kind: Secret

metadata:

 name: GIT-SECRET-NAME

 annotations:

 tekton.dev/git-0: GIT-SERVER # ! required

type: kubernetes.io/basic-auth

stringData:

 username: GIT-USERNAME

Tanzu Application Platform v1.1

VMware, Inc 482

 password: GIT-PASSWORD

3. With the secret created with the name matching the one configured for gitops.ssh_secret,

attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

 - name: GIT-SECRET-NAME

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git

Authentication’s HTTP section.

SSH auth

Aside from using HTTP(S) as a transport, you can also use SSH:

1. Ensure that the repository URL in the workload specification uses ssh:// as the scheme in

the URL, for example, ssh://git@github.com:my-org/my-repo.git.

2. Create a Kubernetes secret object of type kubernetes.io/ssh-auth:

apiVersion: v1

kind: Secret

metadata:

 name: GIT-SECRET-NAME

 annotations:

 tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: SSH-PRIVATE-KEY # private key with push-permissions

 identity: SSH-PRIVATE-KEY # private key with pull permissions

 identity.pub: SSH-PUBLIC-KEY # public of the `identity` private key

 known_hosts: GIT-SERVER-PUBLIC-KEYS # git server public keys

3. With the secret created with the name matching the one configured for gitops.ssh_secret,

attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

 - name: GIT-SECRET-NAME

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

Tanzu Application Platform v1.1

VMware, Inc 483

To learn more about how to generate the keys and set it up with the Git server, see Git

Authentication’s SSH section.

How it works

With the workload.spec.source.git filled, the supply chain takes care of managing a child

GitRepository object that keeps track of commits made to the Git repository stated in

workload.spec.source.git.

For each revision found, gitrepository.status.artifact gets updated providing information about

an HTTP endpoint that the controller makes available for other components to fetch the source code

from within the cluster. The digest of the latest commit looks like this:

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

 name: tanzu-java-web-app

spec:

 gitImplementation: go-git

 ignore: '!.git'

 interval: 1m0s

 ref: {branch: main}

 timeout: 20s

 url: https://github.com/sample-accelerators/tanzu-java-web-app

status:

 artifact:

 checksum: 375c2daee5fc8657c5c5b49711a8e94d400994d7

 lastUpdateTime: "2022-04-07T15:02:30Z"

 path: gitrepository/default/tanzu-java-web-app/d85df1fc.tar.gz

 revision: main/d85df1fc28c6b86ca54bd613f55991645d3b257c

 url: http://source-controller.flux-system.svc.cluster.local./gitrepository/default

/tanzu-java-web-app/d85df1fc.tar.gz

 conditions:

 - lastTransitionTime: "2022-04-07T15:02:30Z"

 message: 'Fetched revision: main/d85df1fc28c6b86ca54bd613f55991645d3b257c'

 reason: GitOperationSucceed

 status: "True"

 type: Ready

 observedGeneration: 1

Cartographer passes the artifact URL and revision to further components in the supply chain. Those

components must consume the source code from an internal URL where a tarball with the source

code can be fetched, without having to process any Git-specific details in multiple places.

Workload parameters

You can pass the following parameters by using the workload object’s workload.spec.params field to

override the default behavior of the GitRepository object created for keeping track of the changes

to a repository:

gitImplementation: name of the Git implementation (either libgit2 or go-git) to fetch the

source code.

gitops_ssh_secret: name of the secret in the same namespace as the workload where

credentials to fetch the repository can be found.

Tanzu Application Platform v1.1

VMware, Inc 484

You can also customize the following parameters with defaults for the whole cluster. Do this by using

properties for either tap-values.yaml when installing supply chains by using Tanzu Application

Platform profiles, or ootb-supply-chain-*-values.yml when installing the OOTB packages

individually):

git_implementation: the same as gitImplementation workload parameter

gitops.ssh_secret: the same as gitops_ssh_secret workload parameter

Local source

You can provide source code from a local directory; that is, from a directory in the developer’s file

system. The tanzu CLI provides two flags to specify the source code location in the file system and

where the source code is pushed to as a container image:

--local-path: path on the local file system to a directory of source code to build for the

workload

--source-image: destination image repository where source code is staged before being built

This way, whether the cluster the developer targets is local (a cluster in the developer’s machine) or

not, the source code is made available by using a container image registry.

For example, if a developer has source code under the current directory (.) and access to a

repository in a container image registry, you can create a workload as follows:

tanzu apps workload create tanzu-java-web-app \

 --app tanzu-java-web-app \

 --type web \

 --local-path . \

 --source-image $REGISTRY/test

Publish source in "." to "REGISTRY-SERVER/REGISTRY-REPOSITORY"?

It may be visible to others who can pull images from that repository

 Yes

Publishing source in "." to "REGISTRY-SERVER/REGISTRY-REPOSITORY"...

Published source

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | app.kubernetes.io/part-of: tanzu-java-web-app

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | image: REGISTRY-SERVER/REGISTRY-REPOSITORY:latest@<digest>

Where:

Tanzu Application Platform v1.1

VMware, Inc 485

REGISTRY-SERVER is the container image registry.

REGISTRY-REPOSITORY is the repository in the container image registry.

Authentication

Both the cluster and the developer’s machine must be configured to properly provide credentials for

accessing the container image registry where the local source code is published to.

Developer

The tanzu CLI must push the source code to the container image registry indicated by --source-

image. To do so, the CLI must find the credentials, so the developer must configure their machine

accordingly.

To ensure credentials are available, use docker to make the necessary credentials available for the

Tanzu CLI to perform the image push. Run:

docker login REGISTRY-SERVER -u REGISTRY-USERNAME -p REGISTRY-PASSWORD

Supply chain components

Aside from the developer’s ability to push source code to the image registry, the cluster must also

have the proper credentials, so it can pull that container image, unpack it, run tests, build the

application, and so on.

To provide the cluster with the credentials, point the ServiceAccount used by the workload at the

Kubernetes secret that contains the credentials.

If the registry that the developer targets is the same one for which credentials were provided while

setting up the workload namespace, no further action is required. Otherwise, follow the same steps

as recommended for the application image.

How it works

A workload specifies that source code must come from an image by setting

workload.spec.source.image to point at the registry provided by using --source-image. Then,

instead of having a GitRepository object created, an ImageRepository object is instantiated, with its

specification filled in such a way to keep track of images pushed to the registry provided by the user.

Take the following workload as an example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: app

 labels:

 app.kubernetes.io/part-of: app

 apps.tanzu.vmware.com/workload-type: web

spec:

 source:

 image: 10.188.0.3:5000/test:latest

Instead of a GitRepository object, an ImageRepository is created:

Tanzu Application Platform v1.1

VMware, Inc 486

 Workload/app

 │

- ├─GitRepository/app

+ ├─ImageRepository/app

 │

 ├─Image/app

 │ ├─Build/app-build-1

 │ │ └─Pod/app-build-1-build-pod

 │ ├─PersistentVolumeClaim/app-cache

 │ └─SourceResolver/app-source

 │

 ├─PodIntent/app

 │

 ├─ConfigMap/app

 │

 └─Runnable/app-config-writer

 └─TaskRun/app-config-writer-2zj7w

 └─Pod/app-config-writer-2zj7w-pod

ImageRepository provides the same semantics as GitRepository, except that it looks for source

code in container image registries rather than Git repositories.

Using a prebuilt image

For apps that build container images in a predefined way, the supply chains in the Out of the Box

packages enable you to specify a prebuilt image. This uses the same stages as any other workload.

Requirements for prebuilt images

Supply chains aim at Knative as the runtime for the container image you provide. Your app must

adhere to the following Knative standards:

Container port listens on port 8080

The Knative service is created with the container port set to 8080 in the pod template spec

Therefore, your container image must have a socket listening on 8080.

ports:

 - containerPort: 8080

 name: user-port

 protocol: TCP

Non-privileged user ID

By default, the container initiated as part of the pod is run as user 1000.

securityContext:

 runAsUser: 1000

Arguments other than the image’s default ENTRYPOINT

In most cases the container image runs using the ENTRYPOINT it was configured with. In the

case of Dockerfiles, the combination of ENTRYPOINT and CMD.

Tanzu Application Platform v1.1

VMware, Inc 487

If you need extra configuration for your image, use --env flags with the tanzu apps workload

create command or modify spec.env in your workload.yaml file.

Credentials for pulling the container image at runtime

The image you provide is not relocated to an internal container image registry. Any

components associated with the image must have the necessary credentials to pull it. For the

service accounts used for the workload and deliverable, you must attach a secret that

contains the credentials to pull the container image.

If the image is hosted in a registry that has certificates signed by a private certificate

authority, the components of the supply chains, delivery, and the Kubernetes nodes in the

run cluster must trust the certificate.

Configure your workload to use a prebuilt image

To select a prebuilt image, set the spec.image field in your workload.yaml file with the name of the

container image that contains the app to deploy by running:

tanzu apps workload create WORKLOAD-NAME \

 --app APP-NAME \

 --type TYPE \

 --image IMAGE

Where:

WORKLOAD-NAME is the name you choose for your workload.

APP-NAME is the name of your app.

TYPE is the type of your app.

IMAGE is the container image that contains the app you want to deploy.

For example, if you have an image named IMAGE, you can create a workload with the flag mentioned

earlier:

tanzu apps workload create tanzu-java-web-app \

 --app tanzu-java-web-app \

 --type web \

 --image IMAGE

Expected output:

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | app.kubernetes.io/part-of: hello-world

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | image: IMAGE

Tanzu Application Platform v1.1

VMware, Inc 488

When you run tanzu apps workload create command with the --image field, the source resolution

and build phases of the supply chain are skipped.

Examples

The following examples show ways that you can build container images for a Java-based app and

complete the supply chains to a running service.

Using a Dockerfile

Using a Dockerfile is the most common way of building container images. You can select a base

image, on top of which certain operations must occur, such as compiling code, and mutate the

contents of the file system to a final container image that has a build of your app and any required

runtime dependencies.

Here you use the maven base image for compiling your app code, and then the minimal distroless

java17-debian11 image for providing a JRE that can run your app when it is built.

After building the image, you push it to a container image registry, and then reference it in the

workload.

1. Create a Dockerfile that describes how to build your app and make it available as a container

image:

ARG BUILDER_IMAGE=maven

ARG RUNTIME_IMAGE=gcr.io/distroless/java17-debian11

FROM $BUILDER_IMAGE AS build

 ADD . .

 RUN unset MAVEN_CONFIG && ./mvnw clean package -B -DskipTests

FROM $RUNTIME_IMAGE AS runtime

 COPY --from=build /target/demo-0.0.1-SNAPSHOT.jar /demo.jar

 CMD ["/demo.jar"]

2. Push the container image to a container image registry by running:

docker build -t IMAGE .

docker push IMAGE

3. Create a workload by running:

tanzu apps workload create tanzu-java-web-app \

 --type web \

 --app tanzu-java-web-app \

 --image IMAGE

Expected output:

Create workload:

Tanzu Application Platform v1.1

VMware, Inc 489

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | app.kubernetes.io/part-of: hello-world

 7 + | apps.tanzu.vmware.com/workload-type: web

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | image: IMAGE

4. Run the following workload:

tanzu apps workload get tanzu-java-web-app

Expected output:

tanzu-java-web-app: Ready

lastTransitionTime: "2022-04-06T19:32:46Z"

message: ""

reason: Ready

status: "True"

type: Ready

Workload pods

NAME STATUS RESTARTS A

GE

tanzu-java-web-app-00001-deployment-7d7df5ccf5-k58rt Running 0 3

2s

tanzu-java-web-app-config-writer-xjmvw-pod Succeeded 0 8

9s

Workload Knative Services

NAME READY URL

tanzu-java-web-app Ready http://tanzu-java-web-app.default.example.com

Using Spring Boot’s build-image Maven target

You can use Spring Boot’s build-image target to build a container image that runs your app. The

build-image target must use a Dockerfile.

For example, using the same sample repository as mentioned before (https://github.com/sample-

accelerators/tanzu-java-web-app):

1. Build the image by running the following command from the root of the repository:

IMAGE=ghcr.io/kontinue/hello-world:tanzu-java-web-app

./mvnw spring-boot:build-image -Dspring-boot.build-image.imageName=$IMAGE

Expected output:

[INFO] Scanning for projects...

[INFO]

[INFO] --------------------------< com.example:demo >--------------------------

Tanzu Application Platform v1.1

VMware, Inc 490

[INFO] Building demo 0.0.1-SNAPSHOT

[INFO] --------------------------------[jar]---------------------------------

[INFO]

...

[INFO]

[INFO] Successfully built image 'ghcr.io/kontinue/hello-world:tanzu-java-web-ap

p'

[INFO]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 39.257 s

[INFO] Finished at: 2022-04-06T19:40:16Z

[INFO] --

2. Push the image you built to the container image registry by running:

IMAGE=ghcr.io/kontinue/hello-world:tanzu-java-web-app

docker push $IMAGE

Expected output:

The push refers to repository [ghcr.io/kontinue/hello-world]

1dc94a70dbaa: Preparing

...

9d6787a516e7: Pushed

tanzu-java-web-app: digest: sha256:7140722ea396af69fb3d0ad12e9b4419bc3e67d9c5d8

a2f6a1421decc4828ace size: 4497

After you push the container image, you see the same results as building the image using a

Dockerfile.

For more information about building container images for a Spring Boot app, see Spring Boot with

Docker

About Out of the Box Supply Chains

In Tanzu Application Platform, the ootb-supply-chain-basic, ootb-supply-chain-testing, and

ootb-supply-chain-testing-scanning packages each receive a new supply chain that provides a

prebuilt container image for your app.

ootb-supply-chain-basic

 (cluster) basic-image-to-url ClusterSupplyChain (!) new

 ^ source-to-url ClusterSupplyChain

ootb-supply-chain-testing

 (cluster) testing-image-to-url ClusterSupplyChain (!) new

 ^ source-test-to-url ClusterSupplyChain

ootb-supply-chain-testing-scanning

 (cluster) scanning-image-scan-to-url ClusterSupplyChain (!) new

Tanzu Application Platform v1.1

VMware, Inc 491

https://spring.io/guides/topicals/spring-boot-docker/

 ^ source-test-scan-to-url ClusterSupplyChain

To leverage the supply chains that expect a prebuilt image, you must set the spec.image field in the

workload to the name of the container image that contains the app to deploy.

The new supply chains use a Cartographer feature that lets VMware increase the specificity of supply

chain selection by using the matchFields selector rule.

The selection takes place as follows:

ootb-supply-chain-basic

From source: label apps.tanzu.vmware.com/workload-type: web

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set

spec.image in the workload.yaml

ootb-supply-chain-testing

From source: labels apps.tanzu.vmware.com/workload-type: web and

apps.tanzu.vmware.com/has-tests: true

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set

spec.image in the workload.yaml

ootb-supply-chain-testing-scanning

From source: labels apps.tanzu.vmware.com/workload-type: web and

apps.tanzu.vmware.com/has-tests: true

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set

spec.image in the workload.yaml

Workloads that already work with the supply chains before Tanzu Application Platform v1.1 continue

to work with the same supply chain. Workloads that bring a prebuilt container image must set

spec.image in the workload.yaml.

Understanding the supply chain for a prebuilt image

An ImageRepository object is created to keep track of new images pushed under that name.

ImageRepository makes the image available to further resources in the supply chain, providing the

final digest of the latest image.

Whenever a new image is pushed to the workload’s image location, the ImageRepository detects

the change. The image is then available to further resources by updating its

imagerepository.status.artifact.revision with an absolute reference to that image.

For example, if you create a workload using an image named hello-world, tagged tanzu-java-web-

app hosted under ghcr.io in the kontinue repository:

tanzu apps workload create tanzu-java-web-app \

 --app tanzu-java-web-app \

 --type web \

 --image ghcr.io/kontinue/hello-world:tanzu-java-web-app

After a couple seconds, you see the ImageRepository object created to keep track of images named

Tanzu Application Platform v1.1

VMware, Inc 492

ghcr.io/kontinue/hello-world:tanzu-java-web-app:

Workload/tanzu-java-web-app

├─ImageRepository/tanzu-java-web-app

├─PodIntent/tanzu-java-web-app

├─ConfigMap/tanzu-java-web-app

└─Runnable/tanzu-java-web-app-config-writer

 └─TaskRun/tanzu-java-web-app-config-writer-p2lzv

 └─Pod/tanzu-java-web-app-config-writer-p2lzv-pod

If you inspect the status in status.resources in the workload.yaml, you see the image-provider

resource promoting the image it found to further resources:

apiVersion: carto.run/v1alpha1

kind: Workload

spec:

 image: ghcr.io/kontinue/hello-world:tanzu-java-web-app

status:

 resources:

 - name: image-provider

 outputs:

 # output being made available to further resources in the supply chain

 # (in this case, the latest image it found under that name).

 #

 - name: image

 lastTransitionTime: "2022-04-01T15:05:01Z"

 preview: ghcr.io/kontinue/hello-world:tanzu-java-web-app@sha256:9fb930a...

 # reference to the object managed by the supply chain for this

 # resource

 #

 stampedRef:

 apiVersion: source.apps.tanzu.vmware.com/v1alpha1

 kind: ImageRepository

 name: tanzu-java-web-app

 namespace: workload

 # reference to the template that defined how this object should look

 # like

 #

 templateRef:

 apiVersion: carto.run/v1alpha1

 kind: ClusterImageTemplate

 name: image-provider-template

The image found by the ImageRepository object is carried through the supply chain to the final

configuration. This is pushed to either a Git repository or image registry so that it is deployed in a run

cluster.

Note: The image name matches the image name supplied in the spec.image field in the

workload.yaml, but also includes the digest of the latest image found under the tag. If a new image is

pushed to the same tag, you see the ImageRepository resolving the name to a different digest

corresponding to the new image pushed.

Git authentication

Tanzu Application Platform v1.1

VMware, Inc 493

To either fetch or push source code from or to a repository that requires credentials, you must

provide those through a Kubernetes secret object referenced by the intended Kubernetes object

created for performing the action.

The following sections provide details about how to appropriately set up Kubernetes secrets for

carrying those credentials forward to the proper resources.

HTTP

For any action upon an HTTP(s)-based repository, create a Kubernetes secret object of type

kubernetes.io/basic-auth as follows:

apiVersion: v1

kind: Secret

metadata:

 name: SECRET-NAME

 annotations:

 tekton.dev/git-0: GIT-SERVER # ! required

type: kubernetes.io/basic-auth # ! required

stringData:

 username: GIT-USERNAME

 password: GIT-PASSWORD

For example, assuming you have a repository called kontinue/hello-world on GitHub that requires

authentication, and you have an access token with the privileges of reading the contents of the

repository, you can create the secret as follows:

apiVersion: v1

kind: Secret

metadata:

 name: git-secret

 annotations:

 tekton.dev/git-0: https://github.com

type: kubernetes.io/basic-auth

stringData:

 username: GITHUB-USERNAME

 password: GITHUB-ACCESS-TOKEN

After you create the secret, attach it to the ServiceAccount configured for the workload by including

Important

For both HTTP(s) and SSH, do not use the same server for multiple secrets to avoid a

Tekton error.

Note

: In this example, you use an access token because GitHub deprecates basic

authentication with plain user name and password. For more information, see

Creating a personal access token on GitHub.

Tanzu Application Platform v1.1

VMware, Inc 494

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

it in its set of secrets. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

 - name: GIT-SECRET-NAME

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

SSH

Aside from using HTTP(S) as a transport, the supply chains also allow you to use SSH.

1. To provide the credentials for any Git operations with SHH, create the Kubernetes secret as

follows:

apiVersion: v1

kind: Secret

metadata:

 name: GIT-SECRET-NAME

 annotations:

 tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: SSH-PRIVATE-KEY # private key with push-permissions

 identity: SSH-PRIVATE-KEY # private key with pull permissions

 identity.pub: SSH-PUBLIC-KEY # public of the `identity` private key

 known_hosts: GIT-SERVER-PUBLIC-KEYS # Git server public keys

2. Generate a new SSH keypair: identity and identity.pub.

ssh-keygen -t ecdsa -b 521 -C "" -f "identity" -N ""

3. Go to your Git provider and add the identity.pub as a deployment key for the repository of

interest or add to an account that has access to it. For example, for GitHub, visit

https://github.com/<repository>/settings/keys/new.

Note: Keys of type SHA-1/RSA are recently deprecated by GitHub.

4. Gather public keys from the provider, for example, GitHub:

ssh-keyscan github.com > ./known_hosts

5. Create the Kubernetes secret by using the contents of the files in the first step:

apiVersion: v1

kind: Secret

metadata:

 name: GIT-SECRET-NAME

 annotations: {tekton.dev/git-0: GIT-SERVER}

Tanzu Application Platform v1.1

VMware, Inc 495

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: SSH-PRIVATE-KEY

 identity: SSH-PRIVATE-KEY

 identity.pub: SSH-PUBLIC-KEY

 known_hosts: GIT-SERVER-PUBLIC-KEYS

For example, edit the credentials:

apiVersion: v1

kind: Secret

metadata:

 name: git-ssh

 annotations: {tekton.dev/git-0: github.com}

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: |

 -----BEGIN OPENSSH PRIVATE KEY-----

 AAAA

 -----END OPENSSH PRIVATE KEY-----

 known_hosts: |

 <known hosts entrys for git provider>

 identity: |

 -----BEGIN OPENSSH PRIVATE KEY-----

 AAAA

 -----END OPENSSH PRIVATE KEY-----

 identity.pub: ssh-ed25519 AAAABBBCCCCDDDDeeeeFFFF user@example.com

6. After you create the secret, attach it to the ServiceAccount configured for the workload by

including it in its set of secrets. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

 - name: GIT-SECRET-NAME

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

GitOps vs. RegistryOps

Regardless of the supply chain that a workload goes through, in the end, some Kubernetes

configuration is pushed to an external entity, either to a Git repository or to a container image

registry.

For example:

Supply Chain

Tanzu Application Platform v1.1

VMware, Inc 496

 -- fetch source

 -- test

 -- build

 -- scan

 -- apply-conventions

 -- push config * either to Git or Registry

This topic dives into the specifics of that last phase of the supply chains by pushing configuration to a

Git repository or an image registry.

Note: For more information about providing source code either from a local directory or Git

repository, see Building from Source.

GitOps

The GitOps approach differs from local iteration in that GitOps configures the supply chains to push

the Kubernetes configuration to a remote Git repository. This allows users to compare configuration

changes and promote those changes through environments by using GitOps principles.

Typically associated with an outerloop workflow, the GitOps approach is only activated if certain

parameters are set in the supply chain:

gitops.repository_prefix: configured during the Out of the Box Supply Chains package

installation.

gitops_repository: configured as a workload parameter.

For example, assuming the installation of the supply chain packages through Tanzu Application

Platform profiles and a tap-values.yaml:

ootb_supply_chain_basic:

 registry:

 server: REGISTRY-SERVER

 repository: REGISTRY-REPOSITORY

 gitops:

 repository_prefix: https://github.com/my-org/

Workloads in the cluster with the Kubernetes configuration produced throughout the supply chain is

pushed to the repository whose name is formed by concatenating gitops.repository_prefix with

the name of the workload. In this case, for example, https://github.com/my-

org/$(workload.metadata.name).git.

Supply Chain

 params:

 - gitops_repository_prefix: GIT-REPO_PREFIX

workload-1:

 `git push` to GIT-REPO-PREFIX/workload-1.git

workload-2:

 `git push` to GIT-REPO-PREFIX/workload-2.git

...

Tanzu Application Platform v1.1

VMware, Inc 497

workload-n:

 `git push` to GIT-REPO-PREFIX/workload-n.git

Alternatively, you can force a workload to publish the configuration in a Git repository by providing

the gitops_repository parameter to the workload:

tanzu apps workload create tanzu-java-web-app \

 --app tanzu-java-web-app \

 --type web \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

 --git-branch main \

 --param gitops_ssh_secret=GIT-SECRET-NAME \

 --param gitops_repository=https://github.com/my-org/config-repo

In this case, at the end of the supply chain, the configuration for this workload is published to the

repository provided under the gitops_repository parameter.

Authentication

Regardless of how the supply chains are configured, if pushing to Git is configured by repository

prefix or repository name, you must provide credentials for the remote provider (for example,

GitHub) by using a Kubernetes secret in the same namespace as the workload attached to the

workload ServiceAccount.

Because the operation of pushing requires elevated permissions, credentials are required by both

public and private repositories.

HTTP(S) Basic-auth / Token-based authentication

If the repository at which configuration is published uses https:// or http:// as the URL scheme,

the Kubernetes secret must provide the credentials for that repository as follows:

apiVersion: v1

kind: Secret

metadata:

 name: GIT-SECRET-NAME # `git-ssh` is the default name.

 # - operators can change such default by using the

 # `gitops.ssh_secret` property in `tap-values.yaml`

 # - developers can override by using the workload parameter

 # named `gitops_ssh_secret`.

 annotations:

 tekton.dev/git-0: GIT-SERVER # ! required

type: kubernetes.io/basic-auth # ! required

stringData:

 username: GIT-USERNAME

 password: GIT-PASSWORD

Both the Tekton annotation and the basic-auth secret type must be set. GIT-SERVER must be

prefixed with the appropriate URL scheme and the Git server. For example, for

https://github.com/vmware-tanzu/cartographer, https://github.com must be provided as the GIT-

SERVER.

After the Secret is created, attach it to the ServiceAccount used by the workload. For example:

Tanzu Application Platform v1.1

VMware, Inc 498

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

 - name: GIT-SECRET-NAME

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git

Authentication’s HTTP section.

SSH

If the repository to which configuration is published uses https:// or http:// as the URL scheme,

the Kubernetes secret must provide the credentials for that repository as follows:

apiVersion: v1

kind: Secret

metadata:

 name: GIT-SECRET-NAME # `git-ssh` is the default name.

 # - operators can change such default via the

 # `gitops.ssh_secret` property in `tap-values.yaml`

 # - developers can override by using the workload parameter

 # named `gitops_ssh_secret`.

 annotations:

 tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: SSH-PRIVATE-KEY # private key with push-permissions

 identity: SSH-PRIVATE-KEY # private key with pull permissions

 identity.pub: SSH-PUBLIC-KEY # public of the `identity` private key

 known_hosts: GIT-SERVER-PUBLIC-KEYS # git server public keys

After the Secret is created, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

 - name: tap-registry

 - name: GIT-SECRET-NAME

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git

Authentication’s SSH section.

GitOps workload parameters

Tanzu Application Platform v1.1

VMware, Inc 499

#sh

While installing ootb-*, operators can configure gitops.repository_prefix to indicate what prefix

the supply chain must use when forming the name of the repository to push to the Kubernetes

configurations produced by the supply chains.

To change the behavior to use GitOps, set the source of the source code to a Git repository. As the

supply chain progresses, configuration is pushed to a repository named after

$(gitops.repository_prefix) + $(workload.name).

For example, configure gitops.repository_prefix to git@github.com/foo/ and create a workload

as follows:

tanzu apps workload create tanzu-java-web-app \

 --git-branch main \

 --git-repo https://github.com/sample-accelerators/tanzu-java-web-app

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --type web

Expect to see the following output:

Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | app.kubernetes.io/part-of: tanzu-java-web-app

 8 + | name: tanzu-java-web-app

 9 + | namespace: default

 10 + |spec:

 11 + | source:

 12 + | git:

 13 + | ref:

 14 + | branch: main

 15 + | url: https://github.com/sample-accelerators/tanzu-java-web-app

As a result, the Kubernetes configuration is pushed to git@github.com/foo/tanzu-java-web-

app.git.

Regardless of the setup, developers can also manually override the repository where configuration is

pushed to by tweaking the following parameters:

gitops_ssh_secret: Name of the secret in the same namespace as the workload where SSH

credentials exist for pushing the configuration produced by the supply chain to a Git

repository. Example: ssh-secret

gitops_repository: SSH URL of the Git repository to push the Kubernetes configuration

produced by the supply chain to. Example: ssh://git@foo.com/staging.git

gitops_branch: Name of the branch to push the configuration to. Example: main

gitops_commit_message: Message to write as the body of the commits produced for pushing

configuration to the Git repository. Example: ci bump

gitops_user_name: User name to use in the commits. Example: Alice Lee

gitops_user_email: User email address to use in the commits. Example: alice@example.com

Tanzu Application Platform v1.1

VMware, Inc 500

RegistryOps

RegistryOps is typically used for inner loop flows where configuration is treated as an artifact from

quick iterations by developers. In this scenario, at the end of the supply chain, configuration is

pushed to a container image registry in the form of an imgpkg bundle. You can think of it as a

container image whose sole purpose is to carry arbitrary files.

To enable this mode of operation, the supply chains must be configured without the following

parameters being configured during the installation of the ootb- packages or overwritten by the

workload by using the following parameters:

gitops_repository_prefix

gitops_repository

If none of the parameters are set, the configuration is pushed to the same container image registry

as the application image. That is, to the registry configured under the registry: {} section of the

ootb- values.

For example, assuming the installation of Tanzu Application Platform by using profiles, configure the

ootb-supply-chain* package as follows:

ootb_supply_chain_basic:

 registry:

 server: REGISTRY-SERVER

 repository: REGISTRY_REPOSITORY

The Kubernetes configuration produced by the supply chain is pushed to an image named after

REGISTRY-SERVER/REGISTRY-REPOSITORY including the workload name.

In this scenario, no extra credentials need to be set up, because the secret containing the

credentials for the container image registry were already configured during the setup of the

workload namespace.

Authoring supply chains

The Out of the Box Supply Chain, Delivery Basic, and Templates packages provide a set of

Kubernetes objects aiming at covering a reference path to production prescribed by VMware.

Because VMware recognizes that each organization has their own needs, all of these objects are

customizable, whether individual templates for each resource, whole supply chains, or delivery

objects.

Depending on how you installed Tanzu Application Platform, there are different ways to customize

the Out of the Box Supply Chains. The following sections describe the ways supply chains and

templates are authored within the context of profile-based Tanzu Application Platform installations.

Providing your own supply chain

To create a new supply chain and make it available for workloads, ensure the supply chain does not

conflict with those installed on the cluster, as those objects are cluster-scoped.

If this is your first time creating a supply chain, follow the tutorials from the Cartographer

Tanzu Application Platform v1.1

VMware, Inc 501

https://carvel.dev/imgpkg/docs/v0.27.0/
https://cartographer.sh/docs/v0.3.0/tutorials/first-supply-chain/

documentation.

Any supply chain installed in a Tanzu Application Platform cluster might encounter two possible

cases of collisions:

object name: Supply chains are cluster scoped, such as any Cartographer resource prefixed

with Cluster. So the name of the custom supply chain must be different from the ones

provided by the Out of the Box packages.

Either create a supply chain whose name is different, or remove the installation of the

corresponding ootb-supply-chain-* from the Tanzu Application Platform.

workload selection: A workload is reconciled against a particular supply chain based on a set

of selection rules as defined by the supply chains. If the rules for the supply chain to match a

workload are ambiguous, the workload does not make any progress.

Either create a supply chain whose selection rules are different from the ones the Out of the

Box Supply Chain packages use, or remove the installation of the corresponding ootb-

supply-chain-* from Tanzu Application Platform.

See Selectors.

For Tanzu Application Platform 1.1, the following selection rules are in place for the supply chains of

the corresponding packages:

ootb-supply-chain-basic

ClusterSupplyChain/basic-image-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image field set

ClusterSupplyChain/source-to-url

label apps.tanzu.vmware.com/workload-type: web

ootb-supply-chain-testing

ClusterSupplyChain/testing-image-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image field set

ClusterSupplyChain/source-test-to-url

label apps.tanzu.vmware.com/workload-type: web

label apps.tanzu.vmware.com/has-test: true

ootb-supply-chain-testing-scanning

ClusterSupplyChain/scanning-image-scan-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image field set

ClusterSupplyChain/source-test-scan-to-url

label apps.tanzu.vmware.com/workload-type: web

label apps.tanzu.vmware.com/has-test: true

Tanzu Application Platform v1.1

VMware, Inc 502

https://cartographer.sh/docs/v0.3.0/tutorials/first-supply-chain/
https://cartographer.sh/docs/v0.3.0/architecture/#selectors

For details about how to edit an existing supply chain, see Modifying an Out of the Box Supply Chain

section.

You can exclude a supply chain package from the installation to prevent the conflicts mentioned

earlier, by using the excluded_packages property in tap-values.yaml. For example:

add to exclued_packages `ootb-*` packages you DON'T want to install

#

excluded_packages:

 - ootb-supply-chain-basic.apps.tanzu.vmware.com

 - ootb-supply-chain-testing.apps.tanzu.vmware.com

 - ootb-supply-chain-testing-scanning.apps.tanzu.vmware.com

comment out remove the `supply_chain` property

#

supply_chain: ""

Providing your own templates

Similar to supply chains, Cartographer templates (Cluster*Template resources) are cluster-scoped,

so you must ensure that the new templates submitted to the cluster do not conflict with those

installed by the ootb-templates package.

Currently, the following set of objects are provided by ootb-templates:

ClusterConfigTemplate/config-template

ClusterConfigTemplate/convention-template

ClusterDeploymentTemplate/app-deploy

ClusterImageTemplate/image-provider-template

ClusterImageTemplate/image-scanner-template

ClusterImageTemplate/kpack-template

ClusterRole/ootb-templates-app-viewer

ClusterRole/ootb-templates-deliverable

ClusterRole/ootb-templates-workload

ClusterRunTemplate/tekton-source-pipelinerun

ClusterRunTemplate/tekton-taskrun

ClusterSourceTemplate/delivery-source-template

ClusterSourceTemplate/source-scanner-template

ClusterSourceTemplate/source-template

ClusterSourceTemplate/testing-pipeline

ClusterTask/git-writer

ClusterTask/image-writer

ClusterTemplate/config-writer-template

ClusterTemplate/deliverable-template

Tanzu Application Platform v1.1

VMware, Inc 503

#modifying-an-out-of-the-box-supply-chain

Before submitting your own, either ensure that the name and resource has no conflicts with those

installed by ootb-templates, or exclude from the installation the template you want to override by

using the excluded_templates property of ootb-templates.

For example, perhaps you want to override the ClusterConfigTemplate named config-template to

provide your own with the same name, so that you don’t need to edit the supply chain. In tap-

values.yaml, you can exclude template provided by Tanzu Application Platform:

ootb_templates:

 excluded_templates:

 - 'config-writer'

For details about how to edit an existing template, see Modifying an Out of the Box Supply template

section.

Modifying an Out of the Box Supply Chain

In case either the shape of a supply chain or the templates that it points to must be changed,

VMware recommends the following:

1. Copy one of the reference supply chains.

2. Remove the old supply chain. See preventing Tanzu Application Platform supply chains from

being installed.

3. Edit the supply chain object.

4. Submit the modified supply chain to the cluster.

Example

In this example, you have a new ClusterImageTemplate object named foo that you want use for

building container images instead of the out of the box object that makes use of Kpack. The supply

chain that you want to apply the modification to is source-to-url provided by the ootb-supply-

chain-basic package.

1. Find the image that contains the supply chain definition:

kubectl get app ootb-supply-chain-basic \

 -n tap-install \

 -o jsonpath={.spec.fetch[0].imgpkgBundle.image}

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:f2ad40

1bb3e850940...

2. Pull the contents of the bundle into a directory named ootb-supply-chain-basic:

imgpkg pull \

 -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:f

2ad401bb3e850940... \

 -o ootb-supply-chain-basic

Pulling bundle 'registry.tanzu.vmware.com/tanzu-...

Tanzu Application Platform v1.1

VMware, Inc 504

#modifying-an-out-of-the-box-template
#preventing-tap-supply-chains-from-being-installed

 Extracting layer 'sha256:542f2bb8eb946fe9d2c8a...

Locating image lock file images...

The bundle repo (registry.tanzu.vmware.com/tanzu...

Succeeded

3. Inspect the files obtained:

tree ./ootb-supply-chain-basic/

./ootb-supply-chain-basic/

├── config

│ ├── supply-chain-image.yaml

│ └── supply-chain.yaml

└── values.yaml

4. Edit the desired supply chain to exchange the template with another:

--- a/supply-chain.yaml

+++ b/supply-chain.yaml

@@ -52,7 +52,7 @@ spec:

 - name: image-builder

 templateRef:

 kind: ClusterImageTemplate

- name: kpack-template

+ name: foo

 params:

 - name: serviceAccount

 value: #@ data.values.service_account

5. Submit the supply chain to Kubernetes:

The supply chain definition found in the bundle expects the values you provided through

tap-values.yaml to be interpolated through YTT before they are submitted to Kubernetes.

So before applying the modified supply chain to the cluster, use YTT to interpolate those

values. After that, run:

ytt \

 --ignore-unknown-comments \

 --file ./ootb-supply-chain-basic/config \

 --data-value registry.server=REGISTRY-SERVER \

 --data-value registry.repository=REGISTRY-REPOSITORY |

 kubectl apply -f-

Note: The modified supply chain does not outlive the destruction of the cluster. VMware

recommends that you save it, for example in a git repository, to install on every cluster where

you expect the supply chain to exist.

Modifying an Out of the Box Supply template

The Out of the Box Templates package (ootb-templates) includes all of the templates and shared

Tekton tasks used by the supply chains shipped through ootb-supply-chain-* packages. Any

template that you want to edit, for example to change details about the resources that are created

Tanzu Application Platform v1.1

VMware, Inc 505

based on them, is part of this package.

The workflow for updating a template is as follows:

1. Copy one of the reference templates from ootb-templates.

2. Exclude that template from the set of objects provided by ootb-templates. For more

information, see excluded_templates in Providing your Own Templates.

3. Edit the template.

4. Submit the modified template to the cluster.

Note: Here you don’t need to change anything related to supply chains, because you’re preserving

the name of the object referenced by the supply chain.

Example

In this example, you want to update the ClusterImageTemplate object called kpack-template, which

provides a template for creating kpack/Images to hardcode an environment variable.

1. Exclude the kpack-template from the set of templates that ootb-templates installs by upating

tap-values.yaml:

 ootb_templates:

 excluded_templates: ['kpack-template']

2. Find the image that contains the templates:

kubectl get app ootb-templates \

 -n tap-install \

 -o jsonpath={.spec.fetch[0].imgpkgBundle.image}

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a5e177

f38d7287f2ca7ee2afd67ff178645d8f1b1e47af4f192a5ddd6404825e

3. Pull the contents of the bundle into a directory named ootb-templates:

imgpkg pull \

 -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a

5e177f38d7.. \

 -o ootb-templates

Pulling bundle 'registry.tanzu.vmware.com/tanzu-...

 Extracting layer 'sha256:a5e177f38d7...

Locating image lock file images...

The bundle repo (registry.tanzu.vmware.com/tanzu...

Succeeded

4. Confirm that you’ve downloaded all the templates:

tree ./ootb-templates

Tanzu Application Platform v1.1

VMware, Inc 506

#providing-your-own-templates

./ootb-templates

├── config

│ ├── cluster-roles.yaml

│ ├── config-template.yaml

│ ├── kpack-template.yaml # ! the one we want to modify

...

│ └── testing-pipeline.yaml

└── values.yaml

5. Change the property you want to change:

--- a/config/kpack-template.yaml

+++ b/config/kpack-template.yaml

@@ -65,6 +65,8 @@ spec:

 subPath: #@ data.values.workload.spec.source.subPath

 build:

 env:

+ - name: FOO

+ value: BAR

 - name: BP_OCI_SOURCE

 value: #@ data.values.source.revision

 #@ if/end param("live-update"):

6. Submit the template.

The name of the template is preserved but the contents are changed. So after the template is

submitted, the supply chains are all embedded to the build of the application container images that

have FOO environment variable.

Live modification of supply chains and templates

Preceding sections covered how to update supply chains or templates installed in a cluster. This

section shows how you can experiment by making small changes in a live setup with kubectl edit.

When you install Tanzu Application Platform by using profiles, a PackageInstall object is created.

This in turn creates a set of children PackageInstall objects for installing the individual components

that make up the platform.

PackageInstall/tap

└─App/tap

 ├─ PackageInstall/cert-manager

 ├─ PackageInstall/cartographer

 ├─ ...

 └─ PackageInstall/tekton-pipelines

Because the installation is based on Kubernetes primitives, PackageInstall tries to achieve the state

where all packages are installed.

This is great but presents challenges for modifying the contents of some of the objects that the

installation submits to the cluster. Namely, such modifications result in the original definition

persisting instead of the changes.

For this reason, before you perform any customization to what is provided by the Out of the Box

packages, you must pause the top-level PackageInstall/tap object. Run:

Tanzu Application Platform v1.1

VMware, Inc 507

kubectl edit -n tap-install packageinstall tap

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: tap

 namespace: tap-install

spec:

 paused: true # ! set this field to `paused: true`.

 packageRef:

 refName: tap.tanzu.vmware.com

 versionSelection:

...

With the installation of Tanzu Application Platform paused, all of the currently installed components

are still there, but changes to those children PackageInstall objects are not overwritten.

Now you can pause the PackageInstall objects that relate to the templates/supply chains you want

to edit.

For example:

To edit templates: kubectl edit -n tap-install packageinstall ootb-templates

To edit the basic supply chains: kubectl edit -n tap-install packageinstall ootb-

supply-chain-basic

setting packageinstall.spec.paused: true.

With the installations paused, further live changes to templates/supply chains are persisted until you

revert the PackageInstalls to not being paused. To persist the changes, follow the steps outlined in

the earlier sections.

Supply Chain Security Tools - Scan

Overview

With Supply Chain Security Tools - Scan, you can build and deploy secure, trusted software that

complies with your corporate security requirements. Supply Chain Security Tools - Scan provides

scanning and gatekeeping capabilities that Application and DevSecOps teams can incorporate early

in their path to production as it is a known industry best practice for reducing security risk and

ensuring more efficient remediation.

Use cases

The following use cases apply to Supply Chain Security Tools - Scan:

Use your scanner as a plug-in, scan source code repositories and images for known

Common Vulnerabilities and Exposures (CVEs) before deploying to a cluster.

Identify CVEs by continuously scanning each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent.

Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store

Tanzu Application Platform v1.1

VMware, Inc 508

from where they are queried.

Supply Chain Security Tools - Scan features

The following Supply Chain Security Tools - Scan features enable the Use cases:

Kubernetes controllers to run scan jobs.

Custom Resource Definitions (CRDs) for Image and Source Scan.

CRD for a scanner plug-in. Example is available by using Anchore’s Syft and Grype.

CRD for policy enforcement.

Enhanced scanning coverage by analyzing the Cloud Native Buildpack SBoMs that Tanzu

Build Service images provide.

A Note on Vulnerability Scanners

Although vulnerability scanning is an important practice in DevSecOps and the benefits of it are

widely recognized and accepted, it is important to remember that there are limitations present that

impact its efficacy. The following examples illustrate the limitations that are prevalent in most

scanners today:

Missed CVEs

One limitation of all vulnerability scanners is that there is no one tool that can find 100% of all CVEs,

which means there is always a risk that a missed CVE can be exploited. Some reasons for missed

CVEs include:

The scanner does not detect the vulnerability because it is just discovered and the CVE

databases that the scanner checks against are not updated yet.

Scanners verify different CVE sources based on the detected package type and OS.

The scanner might not fully support a particular programming language, packaging system or

manifest format.

The scanner might not implement binary analysis or fingerprinting.

The detected component does not always include a canonical name and vendor, requiring

the scanner to infer and attempt fuzzy matching.

When vendors register impacted software with NVD, the provided information might not

exactly match the values in the release artifacts.

False positives

Vulnerability scanners can not always access the information to accurately identify whether a CVE

exists. This often leads to an influx of false positives where the tool mistakenly flags something as a

vulnerability when it isn’t. Unless a user is specialized in security or is deeply familiar with what is

deemed to be a vulnerable component by the scanner, assessing and determining false positives

becomes a challenging and time-consuming activity. Some reasons for a false positive flag include:

A component might be misidentified due to similar names.

Tanzu Application Platform v1.1

VMware, Inc 509

A subcomponent might be identified as the parent component.

A component is correctly identified but the impacted function is not on a reachable code

path.

A component’s impacted function is on a reachable code path but is not a concern due to

the specific environment or configuration.

The version of a component might be incorrectly flagged as impacted.

The detected component does not always include a canonical name and vendor, requiring

the scanner to infer and attempt fuzzy matching.

So what can you do to protect yourselves and your software?

Although vulnerability scanning is not a perfect solution, it is an essential part of the process for

keeping your organization secure. You can take the following measures to maximize the benefits

while minimizing the impact of the limitations:

Scan more continuously and comprehensively to identify and remediate zero-day

vulnerabilities quicker. Comprehensive scanning can be achieved by:

scanning earlier in the development cycle to ensure issues can be addressed more

efficiently and do not delay a release. Tanzu Application Platform includes security

practices such as source and container image vulnerability scanning earlier in the

path to production for application teams.

scanning any base images in use. Tanzu Application Platform image scanning

includes the ability to recognize and scan the OS packages from a base image.

scanning running software in test, stage, and production environments at a regular

cadence.

generating accurate provenance at any level so that scanners have a complete

picture of the dependencies to scan. This is where a software bill of materials (SBoM)

comes into play. To help you automate this process, VMware Tanzu Build Service,

leveraging Cloud Native Buildpacks, generates an SBoM for Java and Node.js based

projects. Since this SBoM is generated during the image building stage, it is more

accurate and complete than one generated earlier or later in the release life cycle.

This is because it can highlight dependencies introduced at the time of build that

might introduce potential for compromise.

Scan by using multiple scanners to maximize CVE coverage.

Practice keeping your dependencies up-to-date.

Reduce overall surface area of attack by:

using smaller dependencies.

reducing the amount of third party dependencies when possible.

using distroless base images when possible.

Maintain a central record of false positives to ease CVE triaging and remediation efforts.

Install Supply Chain Security Tools - Scan

This document describes how to install Supply Chain Security Tools - Scan from the Tanzu

Tanzu Application Platform v1.1

VMware, Inc 510

Application Platform package repository.

Note: Use the instructions on this page if you do not want to use a profile to install packages. The full

profile includes Supply Chain Security Tools - Scan. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Supply Chain Security Tools - Scan:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Supply Chain Security Tools - Store for scan results to persist. It can be present on the

same cluster or a different one. You can install Supply Chain Security Tools - Scan by using

the CA Secret name for Supply Chain Security Tools - Store present in the same cluster, with

Token Secret name for Supply Chain Security Tools - Store in different cluster, or without

Supply Chain Security Tools - Store. After you complete installing Supply Chain Security

Tools - Store, you must update the Supply Chain Security Tools - Scan values file.

For usage instructions, see Using the Supply Chain Security Tools - Store.

Install the Tanzu Insight CLI plug-in to query the Supply Chain Security Tools - Store for CVE

results. See Install the Tanzu Insight CLI plug-in.

Scanner support

Out-Of-The-Box Scanner Version

Anchore Grype v0.33.1

Let us know if there’s a scanner you’d like us to support.

Install

The installation for Supply Chain Security Tools – Scan involves installing two packages:

Scan controller

Grype scanner

The Scan controller enables you to use a scanner, in this case, the Grype scanner. Ensure both the

Grype scanner and the Scan controller are installed.

To install Supply Chain Security Tools - Scan (Scan controller):

1. List version information for the package by running:

tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-ins

tall

For example:

$ tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-i

nstall

Tanzu Application Platform v1.1

VMware, Inc 511

https://github.com/anchore/grype

/ Retrieving package versions for scanning.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 scanning.apps.tanzu.vmware.com 1.1.0

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get scanning.apps.tanzu.vmware.com/VERSION --values-sch

ema -n tap-install

Where VERSION is your package version number. For example, 1.1.0.

3. Gather the values schema.

4. Install the package with default configuration by running:

tanzu package install scan-controller \

 --package-name scanning.apps.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install

Where VERSION is your package version number. For example, 1.1.0.

5. (Optional) Configure Supply Chain Security Tools - Store in a different cluster

metadataStore:

 url: META-DATA-STORE-URL

 authSecret:

 name: AUTH-SECRET-NAME

Where:

META-DATA-STORE-URL is the URL pointing to the Supply Chain Security Tools - Store

ingress in the cluster that has your Supply Chain Security Tools - Store deployment.

For example, https://metadata-store.example.com:8443.

AUTH-SECRET-NAME is the name of the secret that has the auth token to post to the

Supply Chain Security Tools - Store.

To install Supply Chain Security Tools - Scan (Grype scanner):

1. List version information for the package by running:

tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace

 tap-install

/ Retrieving package versions for grype.scanning.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 grype.scanning.apps.tanzu.vmware.com 1.1.0

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get grype.scanning.apps.tanzu.vmware.com/VERSION --valu

Tanzu Application Platform v1.1

VMware, Inc 512

es-schema -n tap-install

Where VERSION is your package version number. For example, 1.1.0.

For example:

$ tanzu package available get grype.scanning.apps.tanzu.vmware.com/1.1.0 --valu

es-schema -n tap-install

| Retrieving package details for grype.scanning.apps.tanzu.vmware.com/1.1.0...

 KEY DEFAULT TYPE DESCRIPTION

 namespace default string Deployment namespace for the Scan

 Templates

 resources.limits.cpu 1000m <nil> Limits describes the maximum amou

nt of cpu resources allowed.

 resources.requests.cpu 250m <nil> Requests describes the minimum am

ount of cpu resources required.

 resources.requests.memory 128Mi <nil> Requests describes the minimum am

ount of memory resources required.

 targetImagePullSecret <EMPTY> string Reference to the secret used for

pulling images from private registry.

 targetSourceSshSecret <EMPTY> string Reference to the secret containin

g SSH credentials for cloning private repositories.

3. (Optional) You can define the --values-file flag to customize the default configuration.

Create a grype-values.yaml file by using the following configuration:

namespace: DEV-NAMESPACE # defaults to default

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

targetSourceSshSecret: TARGET-REPOSITORY-CREDENTIALS-SECRET

syft:

 failOnSchemaErrors: FAIL-ON-SCHEMA-ERRORS # defaults to true

Where:

DEV-NAMESPACE is your developer namespace.

Note: To use a namespace other than the default namespace, ensure the

namespace exists before you install. If the namespace does not exist, the Grype

scanner installation fails.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the

credentials to pull an image from a private registry for scanning. If built images are

pushed to the same registry as the Tanzu Application Platform images, you can reuse

the tap-registry secret created earlier in Add the Tanzu Application Platform

package repository for this field.

TARGET-REPOSITORY-CREDENTIALS-SECRET is the name of the secret that contains the

credentials to pull source code from a private repository for scanning. This field is not

optional if the source code is located in a public repository.

FAIL-ON-SCHEMA-ERRORS is a boolean (either true or false). When true the image

scan will exit with an error if the provided Syft schema version embeded in the image

is incompatible with the schema version supported in the Grype version.

4. VMware recommends using the default values for this package. To change the default

Tanzu Application Platform v1.1

VMware, Inc 513

#add-package-repositories-and-EULAs

values, see the Scan controller instructions for more information.

5. Install the package by running:

tanzu package install grype-scanner \

 --package-name grype.scanning.apps.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install \

 --values-file grype-values.yaml

Where VERSION is your package version number. For example, 1.1.0.

For example:

$ tanzu package install grype-scanner \

 --package-name grype.scanning.apps.tanzu.vmware.com \

 --version 1.1.0 \

 --namespace tap-install \

 --values-file grype-values.yaml

/ Installing package 'grype.scanning.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'grype.scanning.apps.tanzu.vmware.com'

| Creating service account 'grype-scanner-tap-install-sa'

| Creating cluster admin role 'grype-scanner-tap-install-cluster-role'

| Creating cluster role binding 'grype-scanner-tap-install-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

 Added installed package 'grype-scanner' in namespace 'tap-install'

Spec reference

With the Scan Controller and Grype Scanner installed (see Install Supply Chain Security Tools - Scan

from Installing Individual Packages, the following Custom Resource Definitions (CRDs) are now

available:

$ kubectl get crds | grep scanning.apps.tanzu.vmware.com

imagescans.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

scanpolicies.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

scantemplates.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

sourcescans.scanning.apps.tanzu.vmware.com 2021-09-09T15:22:07Z

About source and image scans

Both SourceScan (sourcescans.scanning.apps.tanzu.vmware.com) and ImageScan

(imagescans.scanning.apps.tanzu.vmware.com) define what will be scanned, and ScanTemplate

(scantemplates.scanning.apps.tanzu.vmware.com) will define how to run a scan. We have provided

five custom resources (CRs) pre-installed for use. You can either use them as-is or as samples to

create your own.

To view the pre-installed Scan Template CRs, run:

kubectl get scantemplates

Tanzu Application Platform v1.1

VMware, Inc 514

You will see the following scan templates:

CR Name Use Case

public-source-scan-

template

Clones and scans source code from a public repository.

private-source-scan-

template

Connects with SSH credentials to clone and scan source code from a private repository.

public-image-scan-

template

Pulls and scans images from a public registry.

private-image-scan-

template

Connects with the registry credentials to pull and scan images from a private registry.

blob-source-scan-

template

To be used in a Supply Chain. Gets a .tar.gz available file with wget, uncompresses it, and

scans the source code inside it.

By default, three scan templates are deployed (public-source-scan-template, public-image-scan-

template, and blob-source-scan-template).

If targetImagePullSecret is set in tap-values.yaml, private-image-scan-template is also deployed.

If targetSourceSshSecret is set in tap-values.yaml, private-source-scan-template is also

deployed.

The private scan templates reference secrets created using the Docker server and credentials you

provided, which means they are ready to use immediately.

For more information about the SourceScan and ImageScan CRDs and how to customize your own,

refer to Configuring Code Repositories and Image Artifacts to be Scanned.

About policy enforcement around vulnerabilities found

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine.

ScanPolicy (scanpolicies.scanning.apps.tanzu.vmware.com) allows scan results to be validated for

company policy compliance and can prevent source code from being built or images from being

deployed.

For more information, see Configuring Policy Enforcement using Open Policy Agent (OPA).

Scan samples

This section provides samples on multiple use cases that you can copy to your cluster for testing

purposes.

Running a sample public image scan with compliance check

Running a sample public source scan with compliance check

Running a sample private image scan

Running a sample private source scan

Running a sample public source scan of a blob/tar file

Sample public image scan with compliance check

Tanzu Application Platform v1.1

VMware, Inc 515

Public image scan

The following example performs an image scan on an image in a public registry. This image revision

has 223 known vulnerabilities (CVEs), spanning a number of severities. ImageScan uses the

ScanPolicy to run a compliance check against the CVEs.

The policy in this example is set to only consider Critical severity CVEs as a violation, which returns

21 Critical Severity Vulnerabilities.

Note: This example ScanPolicy is deliberately constructed to showcase the features available and

must not be considered an acceptable base policy.

In this example, the scan does the following:

Finds all 223 of the CVEs

Ignores any CVEs with severities that are not critical

Indicates in the Status.Conditions that 21 CVEs have violated policy compliance

Define the ScanPolicy and ImageScan

Create sample-public-image-scan-with-compliance-check.yaml:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: sample-scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low", "Neglig

ible"

 violatingSeverities := ["Critical"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

Tanzu Application Platform v1.1

VMware, Inc 516

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

 name: sample-public-image-scan-with-compliance-check

spec:

 registry:

 image: "nginx:1.16"

 scanTemplate: public-image-scan-template

 scanPolicy: sample-scan-policy

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal to

view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information about setting up a watch, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-public-image-scan-with-compliance-check.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

kubectl describe imagescan sample-public-image-scan-with-compliance-check -n DEV-NAMES

PACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information about scan status conditions, see Viewing and Understanding Scan Status

Conditions.

Edit the ScanPolicy

To edit the Scan Policy, see Step 5: Sample Public Source Code Scan with Compliance Check.

Clean up

To clean up, run:

kubectl delete -f sample-public-image-scan-with-compliance-check.yaml -n DEV-NAMESPACE

Note

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy

violated because of 21 CVEs.

Tanzu Application Platform v1.1

VMware, Inc 517

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Sample public source code scan with compliance check

Public source scan

This example performs a source scan on a public repository. The source revision has 192 known

Common Vulnerabilities and Exposures (CVEs), spanning several severities. SourceScan uses the

ScanPolicy to run a compliance check against the CVEs.

The example policy is set to only consider Critical severity CVEs as violations, which returns 7

Critical Severity Vulnerabilities.

Note: This example ScanPolicy is deliberately constructed to showcase the features available and

must not be considered an acceptable base policy.

For this example, the scan (at the time of writing):

Finds all 192 of the CVEs.

Ignores any CVEs that have severities that are not critical.

Indicates in the Status.Conditions that 7 CVEs have violated policy compliance.

Run an example public source scan

To perform an example source scan on a public repository:

1. Create sample-public-source-scan-with-compliance-check.yaml to define the ScanPolicy

and SourceScan:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: sample-scan-policy

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low",

"Negligible"

 violatingSeverities := ["Critical"]

 ignoreCVEs := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 fails := contains(violatingSeverities, match.Ratings.Rating[_].Severity)

 not fails

 }

Tanzu Application Platform v1.1

VMware, Inc 518

 isSafe(match) {

 ignore := contains(ignoreCVEs, match.Id)

 ignore

 }

 isCompliant = isSafe(input.currentVulnerability)

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

 name: sample-public-source-scan-with-compliance-check

spec:

 git:

 url: "https://github.com/houndci/hound.git"

 revision: "5805c650"

 scanTemplate: public-source-scan-template

 scanPolicy: sample-scan-policy

2. (Optional) Before deploying the resources to a user specified namespace, set up a watch in

another terminal to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolici

es -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

3. Deploy the resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml -n DEV-NA

MESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

4. When the scan completes, view the results by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check -n

DEV-NAMESPACE

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy

violated because of 7 CVEs. For more information, see Viewing and Understanding Scan

Status Conditions.

5. If the failing CVEs are acceptable or the build must be deployed regardless of these CVEs,

the app is patched to remove the vulnerabilities. Update the ignoreCVEs array in the

ScanPolicy to include the CVEs to ignore:

...

spec:

 regoFile: |

 package policies

 default isCompliant = false

 # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low",

Tanzu Application Platform v1.1

VMware, Inc 519

"Negligible"

 violatingSeverities := ["Critical"]

 # Adding the failing CVEs to the ignore array

 ignoreCVEs := ["CVE-2018-14643", "GHSA-f2jv-r9rf-7988", "GHSA-w457-6q6x-cgp

9", "CVE-2021-23369", "CVE-2021-23383", "CVE-2020-15256", "CVE-2021-29940"]

...

6. The changes applied to the new ScanPolicy trigger the scan to run again. Reapply the

resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml -n DEV-NA

MESPACE

7. Re-describe the SourceScan CR by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check -n

DEV-NAMESPACE

8. Ensure that Status.Conditions now includes a Reason: EvaluationPassed and No CVEs were

found that violated the policy. You can update the violatingSeverities array in the

ScanPolicy if you want. For reference, the Grype scan returns the following Severity spread

of vulnerabilities:

Critical: 7

High: 88

Medium: 92

Low: 5

Negligible: 0

UnknownSeverity: 0

9. Clean up by running:

kubectl delete -f sample-public-source-scan-with-compliance-check.yaml -n DEV-N

AMESPACE

Sample private image scan

This example performs a scan against an image located in a private registry.

Define the resources

Set up target image pull secret

1. Confirm that target image secret is configured. This is completed during Tanzu Application

Platform installation. If the target image secret exists, see Create the private image scan.

2. If the target image secret was not configured, create a secret containing the credentials used

to pull the target image you want to scan. For information about secret creation, see the

Kubernetes documentation.

Tanzu Application Platform v1.1

VMware, Inc 520

#create-the-private-image-scan
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

kubectl create secret docker-registry TARGET-REGISTRY-CREDENTIALS-SECRET \

--docker-server=<your-registry-server> \

--docker-username=<your-name> \

--docker-password=<your-password> \

--docker-email=<your-email> \

-n DEV-NAMESPACE

Where:

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that is created.

DEV-NAMESPACE is the developer namespace where the scanner is installed.

3. Update the tap-values.yaml file to include the name of secret created earlier.

grype:

namespace: "MY-DEV-NAMESPACE"

targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

4. Upgrade Tanzu Application Platform with the modified tap-values.yaml file.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP-VERSION} -

-values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version.

Create the private image scan

Create sample-private-image-scan.yaml:

apiVersion: v1

kind: Secret

metadata:

 name: image-secret

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: <~/.docker/config.json base64 data>

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

 name: sample-image-source-scan

spec:

 registry:

 image: IMAGE-URL

 scanTemplate: private-image-scan-template

Where IMAGE-URL is the URL of an image in a private registry.

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal to

view the progression:

Tanzu Application Platform v1.1

VMware, Inc 521

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-private-image-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

When the scan completes, run:

kubectl describe imagescan sample-private-image-scan -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Clean up

kubectl delete -f sample-private-image-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability

results.

Sample private source scan

Define the resources

1. Create a Kubernetes secret with an SSH key for cloning a Git repository. See the Kubernetes

documentation.

cat <<EOF | kubectl create -f -

apiVersion: v1

kind: Secret

metadata:

Note

The Status.Conditions includes a Reason: JobFinished and Message: The scan job

finished. See Viewing and Understanding Scan Status Conditions.

Tanzu Application Platform v1.1

VMware, Inc 522

https://kubernetes.io/docs/concepts/configuration/secret/#use-case-pod-with-ssh-keys

name: SECRET-SSH-AUTH

namespace: DEV-NAMESPACE

annotations:

 tekton.dev/git-0: https://github.com

 tekton.dev/git-1: https://gitlab.com

type: kubernetes.io/ssh-auth

stringData:

ssh-privatekey: |

 -----BEGIN OPENSSH PRIVATE KEY-----

 -----END OPENSSH PRIVATE KEY-----

EOF

Where:

SECRET-SSH-AUTH is the name of the secret that is being created.

DEV-NAMESPACE is the developer namespace where the scanner is installed.

.stringData.ssh-privatekey contains the private key with pull-permissions.

2. Update the tap-values.yaml file to include the name of secret created above.

grype:

namespace: "MY-DEV-NAMESPACE"

targetSourceSshSecret: "SECRET-SSH-AUTH"

3. Upgrade Tanzu Application Platform with the modified tap-values.yaml file.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP-VERSION} -

-values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version.

4. Create sample-private-source-scan.yaml:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

name: sample-private-source-scan

spec:

git:

 url: URL

 revision: REVISION

 knownHosts: |

 KNOWN-HOSTS

scanTemplate: private-source-scan-template

Where:

URL is the Git clone repository using SSH.

REVISION is the commit hash.

KNOWN-HOSTS are the SSH client stored host keys generated by ssh-keyscan.

For example, ssh-keyscan github.com produces:

Tanzu Application Platform v1.1

VMware, Inc 523

https://www.ssh.com/academy/ssh/host-key#known-host-keys
https://man.openbsd.org/ssh-keyscan

github.com ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9I

DSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyC

OV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU8

4KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqU

UmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28

G3skua2SmVi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==

github.com ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAA

IbmlzdHAyNTYAAABBBEmKSENjQEezOmxkZMy7opKgwFB9nkt5YRrYMjNuG5N87uRgg

6CLrbo5wAdT/y6v0mKV0U2w0WZ2YB/++Tpockg=

github.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOMqqnkVzrm0SdG6UOo

qKLsabgH5C9okWi0dh2l9GKJl

For example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

name: sample-private-source-scan

spec:

git:

 url: git@github.com:acme/website.git

 revision: 25as5e7df56c6401111be514a2f3666179ba04d0

 knownHosts: |

 10.254.171.53 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItb

POVVQF/CzuAeQNv4fZVf2pLxpGHle15zkpxOosckequUDxoq

scanTemplate: private-source-scan-template

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal to

view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

See Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-private-source-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan status

After the scan has completed, run:

kubectl describe sourcescan sample-private-source-scan -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Tanzu Application Platform v1.1

VMware, Inc 524

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job

finished. See Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f sample-private-source-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability

results.

Sample public source scan of a blob

This example performs a scan against source code in a .tar.gz file. This is helpful in a Supply Chain,

where there is a GitRepository step that handles cloning a repository and outputting the source

code as a compressed archive.

Define the resources

Create public-blob-source-example.yaml:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

 name: public-blob-source-example

spec:

 blob:

 url: "https://gitlab.com/nina-data/ckan/-/archive/master/ckan-master.tar.gz"

 scanTemplate: blob-source-scan-template

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal to

view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f public-blob-source-example.yaml -n DEV-NAMESPACE

Tanzu Application Platform v1.1

VMware, Inc 525

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

When the scan completes, perform:

kubectl describe sourcescan public-blob-source-example -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job

finished.

For more information, see Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f public-blob-source-example.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability

results.

Observe Supply Chain Security Tools - Scan

This section outlines observability and troubleshooting methods and issues for using the Supply

Chain Security Tools - Scan components.

Watching in-flight jobs

The scan will run inside the job, which creates a Pod. Both the job and Pod will be cleaned up

automatically after completion. You can set a watch on the job and Pod before applying a new scan

to observe the job deployment.

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Troubleshooting Supply Chain Security Tools - Scan

If you run into any problems or face non-expected behavior, you can always address the logs to get

more feedback.

kubectl -n scan-link-system logs -f deployment/scan-link-controller-manager -c manager

Tanzu Application Platform v1.1

VMware, Inc 526

Missing target image pull secret

Scanning an image from a private registry requires an image pull secret to exist in the Scan CR’s

namespace and be referenced as grype.targetImagePullSecret in tap-values.yaml. See Installing

the Tanzu Application Platform Package and Profiles for more information.

If a private image scan is triggered and the secret is not configured, the scan job will fail with the

error as follows:

Job.batch "scan-${app}-${id}" is invalid: [spec.template.spec.volumes[2].secret.secret

Name: Required value, spec.template.spec.containers[0].volumeMounts[2].name: Not found

: "registry-cred"]: "registry-cred"]

Disable Supply Chain Security Tools - Store

Supply Chain Security Tools - Store is a prerequisite for installing Supply Chain Security Tools - Scan.

If you choose to install without the Supply Chain Security Tools - Store, you need to edit the

configurations to disable the Store:

metadataStore:

 url: ""

Install the package with the edited configurations by running:

tanzu package install scan-controller \

 --package-name scanning.apps.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install \

 --values-file tap-values.yaml

Resolving Incompatible Syft Schema Version

You might encounter the following error:

The provided SBOM has a Syft Schema Version which doesn't match the version that is su

pported by Grype...

This means that the Syft Schema Version from the provided SBOM doesn’t match the version

supported by the installed grype-scanner. There are two different methods to resolve this

incompatibility issue:

(Preferred method) Install a version of Tanzu Build Service that provides an SBOM with a

compatible Syft Schema Version.

Deactivate the failOnSchemaErrors in grype-values.yaml (see installation steps). Although

this change bypasses the check on Syft Schema Version, it does not resolve the

incompatibility issue and produces a partial scanning result.

syft:

 failOnSchemaErrors: false

Tanzu Application Platform v1.1

VMware, Inc 527

Resolving “Unable to decode cyclonedx”

Supply Chain Security Tools - Scan intermittently sets the phase of a scan to Error with the message

unable to decode cyclonedx. To resolve this issue:

If you’re applying the scan manually, you can delete the failed scan job and re-apply with

kubectl apply -f PATH-TO-IMAGESCAN-OR-SOURCESCAN -n DEV-NAMESPACE to retrigger the

scan.

If this happens while running an out of the box Tanzu Application Platform Supply Chain, run

kubectl get imagescans -n WORKLOAD-NAMESPACE or kubectl get sourcescans -n

WORKLOAD-NAMESPACE to get the scan name. Delete the failed scan by running kubectl delete

IMAGESCAN-OR-SOURCESCAN SCAN-NAME -n WORKLOAD-NAMESPACE. The Choreographer

controller then recreates the scan.

Blob Source Scan is reporting wrong source URL

A Source Scan for a blob artifact might result in reporting the status.artifact and

status.compliantArtifact for the wrong URL for the resource. This passes the remote SSH URL

instead of the cluster local fluxcd URL. One symptom of this issue is the image-builder failing with a

ssh:// is an unsupported protocol error message.

You can confirm you’re having this problem by running kubectl describe in the affected resource

and comparing the spec.blob.url value against the status.artifact.blob.url. The problem occurs

if they are different URLs. For example:

kubectl describe sourcescan SOURCE-SCAN-NAME -n DEV-NAMESPACE

Compare the output:

...

spec:

 blob:

 ...

 url: http://source-controller.flux-system.svc.cluster.local./gitrepository/sample/

repo/8d4cea98b0fa9e0112d58414099d0229f190f7f1.tar.gz

 ...

status:

 artifact:

 blob:

 ...

 url: ssh://git@github.com:sample/repo.git

 compliantArtifact:

 blob:

 ...

 status:

 artifact:

 blob:

 ...

 url: ssh://git@github.com:sample/repo.git

 compliantArtifact:

 blob:

 ...

Tanzu Application Platform v1.1

VMware, Inc 528

 url: ssh://git@github.com:sample/repo.git

Workaround: The following workarounds fix this issue:

1. This problem is resolved in SCST - Scan v1.2.0. Upgrade your SCST - Scan and Grype

Scanner deployment to v1.2.0 or later.

2. Configure your SourceScan or Workload to connect to the repository by using HTTPS

instead of using SSH.

3. Edit the FluxCD GitRepository resource to not include the .git directory.

Additional resources

Configure Code Repositories and Image Artifacts to be Scanned

Code and Image Compliance Policy Enforcement Using Open Policy Agent (OPA)

How to Create a ScanTemplate

Viewing and Understanding Scan Status Conditions

Configure code repositories and image artifacts to be
scanned

Prerequisite

Both the source and image scans require a ScanTemplate to be defined. Run kubectl get

scantemplates for the ScanTemplates provided with the scanner installation. These can be

referenced, or see How to create a ScanTemplate.

Deploy scan custom resources

The scan controller defines two custom resources to create scanning jobs:

SourceScan

ImageScan

SourceScan

The SourceScan custom resource helps you define and trigger a scan for a given repository. You can

deploy SourceScan with source code existing in a public repository or a private one:

1. Create the SourceScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

 # set the name of the source scan CR

 name: sample-source-scan

spec:

 # At least one of these fields (blob or git) must be defined.

Tanzu Application Platform v1.1

VMware, Inc 529

 blob:

 # location to a file with the source code compressed (supported files: .tar

.gz)

 url:

 git:

 # A multiline string defining the known hosts that are going to be used for

 the SSH client on the container

 knownHosts:

 # Branch, tag, or commit digest

 revision:

 # The name of the kubernetes secret containing the private SSH key informat

ion.

 sshKeySecret:

 # A string containing the repository URL.

 url:

 # The username needed to SSH connection. Default value is “git”

 username:

 # A string defining the name of an existing ScanTemplate custom resource. See

 "How To Create a ScanTemplate" section.

 scanTemplate: my-scan-template

 # A string defining the name of an existing ScanPolicy custom resource. See

"Enforcement Policies (OPA)" section.

 scanPolicy: my-scan-policy

2. Deploy the SourceScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are

filled by the scanner:

These fields are populated from the source scan results

status:

 # The source code information as provided in the CycloneDX `bom>metadata>comp

onent>*` fields

 artifact:

 blob:

 url:

 git:

 url:

 revision:

 # An array populated with information about the scanning status

 # and the policy validation. These conditions might change in the lifecycle

 # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

 conditions: []

 # The URL of the vulnerability scan results in the Metadata Store integration

.

 # Only available when the integration is configured.

 metadataUrl:

 # When the CRD is updated to point at new revisions, this lets you know

 # if the status reflects the latest one or not

Tanzu Application Platform v1.1

VMware, Inc 530

 observedGeneration: 1

 observedPolicyGeneration: 1

 observedTemplateGeneration: 1

 # The latest datetime when the scanning was successfully finished.

 scannedAt:

 # Information about the scanner that was used for the latest image scan.

 # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

 scannedBy:

 scanner:

 # The name of the scanner that was used.

 name: my-image-scanner

 # The name of the scanner's development company or team

 vendor: my-image-scanner-provider

 # The version of the scanner used.

 version: 1.0.0

ImageScan

The ImageScan custom resource helps you define and trigger a scan for a given image. You can

deploy ImageScan with an image existing in a public or private registry:

1. Create the ImageScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

 # set the name of the image scan CR

 name: sample-image-scan

spec:

 registry:

 # Required. A string containing the image name can additionally add its tag

 or its digest

 image: nginx:1.16

 # A string containing the secret needed to pull the image from a private re

gistry.

 # The secret needs to be deployed in the same namespace as the ImageScan

 imagePullSecret: my-image-pull-secret

 # A string defining the name of an existing ScanTemplate custom resource. See

 "How To Create a ScanTemplate" section.

 scanTemplate: my-scan-template

 # A string defining the name of an existing ScanPolicy custom resource. See "

Enforcement Policies (OPA)" section.

 scanPolicy: my-scan-policy

2. Deploy the ImageScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

Tanzu Application Platform v1.1

VMware, Inc 531

After the scanning completes, the following fields appear in the custom resource and are

filled by the scanner:

 # These fields are populated from the image scan results

status:

 artifact:

 registry:

 # The image name with its digest as provided in the CycloneDX `bom>metada

ta>component>*` fields

 image:

 imagePullSecret:

 # An array that is populated with information about the scanning status

 # and the policy validation. These conditions might change in the lifecycle

 # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

 conditions: []

 # The URL of the vulnerability scan results in the Metadata Store integration

.

 # Only available when the integration is configured.

 metadataUrl:

 # When the CRD is updated to point at new revisions, this lets you know

 # whether the status reflects the latest one

 observedGeneration: 1

 observedPolicyGeneration: 1

 observedTemplateGeneration: 1

 # The latest datetime when the scanning was successfully finished.

 scannedAt:

 # Information about the scanner used for the latest image scan.

 # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

 scannedBy:

 scanner:

 # The name of the scanner that was used.

 name: my-image-scanner

 # The name of the scanner's development company or team

 vendor: my-image-scanner-provider

 # The version of the scanner used.

 version: 1.0.0

Enforce compliance policy using Open Policy Agent

Writing a policy template

The Scan Policy custom resource (CR) allows you to define a Rego file for policy enforcement that

you can reuse across image scan and source scan CRs.

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine with

Rego files. This allows you to validate scan results for company policy compliance and can prevent

source code from being built or images from being deployed.

Tanzu Application Platform v1.1

VMware, Inc 532

Rego file contract

To define a Rego file for an image scan or source scan, you must comply with the requirements

defined for every Rego file for the policy verification to work. For information about how to write

Rego, see Open Policy Agent documentation.

Package main: The Rego file must define a package in its body called main. The system

looks for this package to verify the scan results compliance.

Input match: The Rego file evaluates one vulnerability match at a time, iterating as many

times as the Rego file finds vulnerabilities in the scan. The match structure is accessed in the

input.currentVulnerability object inside the Rego file and has the CycloneDX format.

deny rule: The Rego file must define a deny rule inside its body. deny is a set of error

messages that are returned to the user. Each rule you write adds to that set of error

messages. If the conditions in the body of the deny statement are true then the user is

handed an error message. If false, the vulnerability is allowed in the Source or Image scan.

Define a Rego file for policy enforcement

Follow these steps to define a Rego file for policy enforcement that you can reuse across image scan

and source scan CRs that output in the CycloneDX XML format.

1. Create a scan policy with a Rego file. The following is an example scan policy resource:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scanpolicy-sample

spec:

 # A multiline string defining a valid Rego file for policy validation

 regoFile: |

 # Define the package policies

 package policies

 # Give default value to isCompliant to be returned

 # if no change to `true` is applied

 default isCompliant = false

 # Not fail on any CVE with this severities in it

 ignoreSeverities := ["Low"]

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 # Define the rule structure for evaluating CVEs

 isCompliant {

 # Check if the severity level in any of the ratings associated

Note

The Snyk Scanner outputs SPDX JSON.

Tanzu Application Platform v1.1

VMware, Inc 533

https://www.openpolicyagent.org/docs/latest/policy-language/
https://cyclonedx.org/docs/1.3/

 # with the current CVEs is present in the ignoreSeverities

 # array.

 ignore := contains(ignoreSeverities, input.currentVulnerability.Ratings.R

ating[_].Severity)

 # If the severity level is in the array, isCompliant will be true

 # since `ignore` is. isCompliant will have the default value if `ignore`

is false.

 ignore

 }

2. Deploy the scan policy to the cluster by running:

kubectl apply -f <path_to_scan_policy>/<scan_policy_filename>.yaml -n <desired_

namespace>

Create a ScanTemplate

The ScanTemplate custom resource (CR) defines the Pod with the scanner image that you use for

vulnerability scanning. There’s a default scanner image you can use out-of-the-box.

Structure

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanTemplate

spec:

 # Required. This field must specify a valid pod.spec.

 # This has the instructions for the scan to be successfully executed.

 # See Pod Requirements section below for more details

 template:

Pod requirements

You can define any valid Kubernetes Pod into the ScanTemplate CR if you follow these requirements:

1. Scanner Container

The Pod scan must define a container named scanner to hold the scanning result.

stdout Logs

The scan result must be printed in the stdout of the scanner container having a valid

CycloneDX XML format.

2. XML Extra Fields

Component Name

For the scan controller to keep track of your report, provide the name of the scanned artifact

in the bom>metadata>component>name field of the XML generated as an output. Use the url

for a source repository. Use the image name for an image scan. Component Digest

For the Scan Controller to keep track of your report, provide your artifact’s digest or most

unique identifier of your artifact into the bom>metadata>component>version field of the XML

generated as an output.

Scanner Name

Provide the name of the scanner you are using in the bom>metadata>tools>tool>name field of

Tanzu Application Platform v1.1

VMware, Inc 534

https://kubernetes.io/docs/concepts/workloads/pods/
https://cyclonedx.org/docs/1.3/

the XML generated as an output.

Scanner Vendor

Provide the name of the vendor from the scanner that you are using in the

bom>metadata>tools>tool>vendor field of the XML generated as an output.

Scanner Version

Provide the version of the scanner you are using in bom>metadata>tools>tool>version field

of the XML generated as an output.

If the scanner Pod is not defined or the logs retrieved from the stdout do not have a valid format,

the scanning condition fails.

Best practices

1. SourceScan

Init Container

If you’re doing a SourceScan, we recommend defining the cloning of the repository

in an init container named repo. Any output in stdout in this init container is

prompted if an error occurs, so you can have more context about what failed inside

the job.

View scan status conditions

Viewing scan status

You can view the scan status by using kubectl describe on a SourceScan or ImageScan. You can see

information about the scan status under the Status field for each scan CR.

Understanding conditions

The Status.Conditions array is populated with the scan status information during and after scanning

execution, and the policy validation (if defined for the scan) after the results are available.

Condition types for the scans

Scanning

The Condition with type Scanning indicates the execution of the scanning job. The Status field

indicates whether the scan is still running or has already finished (i.e., if Status: True, the scan job is

still running; if Status: False, the scan is done).

The Reason field is JobStarted while the scanning is running and JobFinished when it is done.

The Message field can either be The scan job is running or The scan job terminated depending

on the current Status and Reason.

Succeeded

The Condition with type Succeeded indicates the scanning job result. The Status field indicates

whether the scan finished successfully or if it encountered an error (i.e., the status is Status: True if

Tanzu Application Platform v1.1

VMware, Inc 535

it completed successfully or Status: False otherwise).

The Reason field is JobFinished if the scanning was successful or Error if otherwise.

The Message and Error fields have more information about the last seen status of the scan job.

SendingResults

The condition with type SendingResults indicates sending the scan results to the metadata store. In

addition to a successful process of sending the results, the condition may also indicate that the

metadata store integration has not been configured or that there was an error sending. An error

would usually be a misconfigured metadata store url or that the metadata store is inaccessible. Check

the installation steps to ensure the configuration is correct regarding secrets being set within the

scan-link-system namespace.

PolicySucceeded

The Condition with type PolicySucceeded indicates the compliance of the scanning results against

the defined policies (see Code Compliance Policy Enforcement using Open Policy Agent (OPA). The

Status field indicates whether the results are compliant or not (Status: True or Status: False

respectively) or Status: Unknown in case an error occurred during the policy verification.

The Reason field is EvaluationPassed if the scan complies with the defined policies. The Reason field

is EvaluationFailed if the scan is not compliant, or Error if something went wrong.

The Message and Error fields are populated with An error has occurred and an error message if

something went wrong during policy verification. Otherwise, the Message field displays No CVEs were

found that violated the policy if there are no non-compliant vulnerabilities found or Policy

violated because of X CVEs indicating the count of unique vulnerabilities found.

Understanding CVECount

The status.CVECount is populated with the number of CVEs in each category (CRITICAL, HIGH,

MEDIUM, LOW, UNKNOWN) and the total (CVETOTAL).

Note: You can also view scan CVE summary in print columns with kubectl get on a SourceScan or

ImageScan.

Understanding MetadataURL

The status.metadataURL is populated with the url of the vulnerability scan results in the metadata

store integration. This is only available when the integration is configured.

Understanding Phase

The status.phase field is populated with the current phase of the scan. The phases are: Pending,

Scanning, Completed, Failed, and Error.

Pending: initial phase of the scan.

Scanning: execution of the scan job is running.

Tanzu Application Platform v1.1

VMware, Inc 536

Completed: scan completed and no CVEs were found that violated the scanpolicy.

Failed: scan completed but CVEs were found that violated the scan policy.

Error: indication of an error (e.g., an invalid scantemplate or scanpolicy).

Note: The PHASE print column also shows this with kubectl get on a SourceScan or ImageScan.

Understanding ScannedBy

The status.scannedBy field is populated with the name, vendor, and scanner version that generates

the security assessment report.

Understanding ScannedAt

The status.scannedAt field is populated with the latest date when the scanning was successfully

finished.

Supply Chain Security Tools for VMware Tanzu - Sign

Supply Chain Security Tools - Sign provides an admission WebHook that:

Verifies signatures on container images used by Kubernetes resources.

Enforces policy by allowing or denying container images from running based on

configuration.

Adds metadata to verified resources according to their verification status.

It intercepts all resources that create Pods as part of their lifecycle:

Pods,

ReplicaSets

Deployments

Jobs

StatefulSets

DaemonSets

CronJobs.

This component uses cosign as its backend for signature verification and is compatible only with

cosign signatures. When cosign signs an image, it generates a signature in an OCI-compliant format

and pushes it to the same registry where the image is stored. The signature is identified by a tag in

the format sha256-<image-digest>.sig, where <image-digest> is the digest of the image that this

signature belongs to. The WebHook needs credentials to access this artifact when hosted in a

registry protected by authentication.

By default, once installed, this component does not include any policy resources and does not

enforce any policy. The operator must create a ClusterImagePolicy resource in the cluster before

the WebHook can perform any verifications. This ClusterImagePolicy resource contains all image

patterns the operator wants to verify, and their corresponding cosign public keys.

Tanzu Application Platform v1.1

VMware, Inc 537

https://github.com/sigstore/cosign#cosign

Typically, the WebHook gets credentials from running resources and their service accounts to

authenticate against private registries at admission time. There are other mechanisms that the

WebHook uses for finding credentials. For more information about providing credentials, see

Providing Credentials for the WebHook.

Install Supply Chain Security Tools - Sign

Supply Chain Security Tools - Sign is released as an individual Tanzu Application Platform

component and is not included in either the full or light profile.

Prerequisites

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

A container image registry that supports TLS connections. This component does not work

with insecure registries.

During configuration for this component, you are asked to provide a cosign public key to use

to validate signed images. An example cosign public key is provided that can validate an

image from the public cosign registry. If you want to provide your own key and images,

follow the cosign quick start guide in GitHub to generate your own keys and sign an image.

Caution: This component rejects pods if the webhook fails or is incorrectly configured. If the

webhook is preventing the cluster from functioning, see Supply Chain Security Tools - Sign Known

Issues in the Tanzu Application Platform release notes for recovery steps.

Install

Note: v1alpha1 api version of the ClusterImagePolicy is no longer supported as the group name has

been renamed from signing.run.tanzu.vmware.com to signing.apps.tanzu.vmware.com.

To install Supply Chain Security Tools - Sign:

1. List version information for the package by running:

tanzu package available list image-policy-webhook.signing.apps.tanzu.vmware.com

 --namespace tap-install

For example:

$ tanzu package available list image-policy-webhook.signing.apps.tanzu.vmware.c

om --namespace tap-install

- Retrieving package versions for image-policy-webhook.signing.apps.tanzu.vmwar

e.com...

 NAME VERSION RELEASED-A

T

 image-policy-webhook.signing.apps.tanzu.vmware.com 1.1.2 2022-04-20

 18:00:00 -0500 EST

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get image-policy-webhook.signing.apps.tanzu.vmware.com/

Tanzu Application Platform v1.1

VMware, Inc 538

https://github.com/sigstore/cosign#quick-start

VERSION --values-schema --namespace tap-install

Where VERSION is the version number you discovered. For example, 1.1.1.

For example:

$ tanzu package available get image-policy-webhook.signing.apps.tanzu.vmware.co

m/1.1.2 --values-schema --namespace tap-install

| Retrieving package details for image-policy-webhook.signing.apps.tanzu.vmware

.com/1.1.2...

 KEY DEFAULT TYPE DESCRIPTION

 allow_unmatched_images false boolean Feature flag for enabli

ng admission of images that do not match any patterns in the image policy confi

guration.

 Set to true to allow im

ages that do not match any patterns into the cluster with a warning.

 custom_ca_secrets <nil> array List of custom CA secre

ts that should be included in the application container for registry communicat

ion.

 An array of secret refe

rences each containing a secret_name field with the secret name to be reference

d

 and a namespace field w

ith the name of the namespace where the referred secret resides.

 custom_cas <nil> array List of custom CA conte

nts that should be included in the application container for registry communica

tion.

 An array of items conta

ining a ca_content field with the PEM-encoded contents of a certificate authori

ty.

 deployment_namespace image-policy-system string Deployment namespace sp

ecifies the namespace where this component should be deployed to.

 If not specified, "imag

e-policy-system" is assumed.

 limits_cpu 200m string The CPU limit defines a

 hard ceiling on how much CPU time that

 the Image Policy Webhoo

k controller manager container can use.

 https://kubernetes.io/d

ocs/concepts/configuration/manage-resources-containers/#meaning-of-cpu

 limits_memory 256Mi string The memory limit define

s a hard ceiling on how much memory that

 the Image Policy Webhoo

k controller manager container can use.

 https://kubernetes.io/d

ocs/concepts/configuration/manage-resources-containers/#meaning-of-memory

 quota.pod_number 5 string The maximum number of I

mage Policy Webhook Pods allowed to be created with the priority class

 system-cluster-critical

. This value must be enclosed in quotes (""). If this value is not

 specified then a defaul

t value of 5 is used.

 replicas 1 integer The number of replicas

Tanzu Application Platform v1.1

VMware, Inc 539

to be created for the Image Policy Webhook. This value must not be enclosed

 in quotes. If this valu

e is not specified then a default value of 1 is used.

 requests_cpu 100m string The CPU request defines

 the minimum CPU time for the Image Policy

 Webhook controller mana

ger. During CPU contention, CPU request is used

 as a weighting where hi

gher CPU requests are allocated more CPU time.

 https://kubernetes.io/d

ocs/concepts/configuration/manage-resources-containers/#meaning-of-cpu

 requests_memory 50Mi string The memory request defi

nes the minium memory amount for the Image Policy Webhook controller manager.

 https://kubernetes.io/d

ocs/concepts/configuration/manage-resources-containers/#meaning-of-memory

3. Create a file named scst-sign-values.yaml and add the settings you want to customize:

allow_unmatched_images:

For non-production environments: To warn the user when images do not

match any pattern in the policy, but still allow them into the cluster, set

allow_unmatched_images to true.

allow_unmatched_images: true

For production environments: To deny images that match no patterns in the

policy set allow_unmatched_images to false.

allow_unmatched_images: false

custom_ca_secrets: This setting controls which secrets to be added to the application

container as custom certificate authorities (CAs). It enables communication with

registries deployed with self-signed certificates. custom_ca_secrets consists of an

array of items. Each item contains two fields: the secret_name field defines the name

of the secret, and the namespace field defines the name of the namespace where said

secret is stored.

For example:

Note

: For a quicker installation process VMware recommends that

you set allow_unmatched_images to true initially. This setting

means that the webhook allows unsigned images to run if the

image does not match any pattern in the policy. To promote

to a production environment VMware recommends that you

re-install the webhook with allow_unmatched_images set to

false.

Tanzu Application Platform v1.1

VMware, Inc 540

custom_ca_secrets:

- secret_name: first-ca

 namespace: ca-namespace

- secret_name: second-ca

 namespace: ca-namespace

Note: This setting is allowed even if custom_cas was informed.

custom_cas: This setting enables adding certificate content in PEM format. The

certificate content is added to the application container as custom certificate

authorities (CAs) to communicate with registries deployed with self-signed

certificates. custom_cas consists of an array of items. Each item contains a single field

named ca_content. The value of this field must be a PEM-formatted certificate

authority. The certificate content must be defined as a YAML block, preceded by the

literal indicator (|) to preserve line breaks and ensure the certificates are interpreted

correctly.

For example:

custom_cas:

- ca_content: |

 ----- BEGIN CERTIFICATE -----

 first certificate content here...

 ----- END CERTIFICATE -----

- ca_content: |

 ----- BEGIN CERTIFICATE -----

 second certificate content here...

 ----- END CERTIFICATE -----

Note: This setting is allowed even if custom_ca_secrets was informed.

deployment_namespace: This setting controls the namespace to which this component

is deployed. When not specified, the namespace image-policy-system is assumed.

This component creates the specified namespace to deploy required resources.

Select a namespace that is not used by any other components.

limits_cpu: This setting controls the maximum CPU resource allocated to the Image

Policy Webhook controller. The default value is “200m”. See Kubernetes

documentation for more details.

limits_memory: This setting controls the maximum memory resource allocated to the

Image Policy Webhook controller. The default value is “256Mi”. See Kubernetes

documentation for more details.

quota.pod_number: This setting controls the maximum number of pods that are

allowed in the deployment namespace with the system-cluster-critical priority

class. This priority class is added to the pods to prevent preemption of this

component’s pods in case of node pressure.

The default value for this field is 5. If your use case requires more than 5 pods,

change this value to allow the number of replicas you intend to deploy.

replicas: This setting controls the default amount of replicas to be deployed by this

component. The default value is 1.

Tanzu Application Platform v1.1

VMware, Inc 541

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory

For production environments: VMware recommends you increase the number of

replicas to 3 to ensure availability of the component and better admission

performance.

requests_cpu: This setting controls the minimum CPU resource allocated to the

Image Policy Webhook controller. During CPU contention, this value is used as a

weighting where higher values indicate more CPU time is allocated. The default value

is “100m”. See Kubernetes documentation for more details.

requests_memory: This setting controls the minimum memory resource allocated to

the Image Policy Webhook controller. The default value is “50Mi”. See Kubernetes

documentation for more details.

4. Install the package:

tanzu package install image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

Where VERSION is the version number you discovered earlier. For example, 1.1.1.

For example:

$ tanzu package install image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.1.2 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

| Installing package 'image-policy-webhook.signing.apps.tanzu.vmware.com'

| Getting namespace 'default'

| Getting package metadata for 'image-policy-webhook.signing.apps.tanzu.vmware.

com'

| Creating service account 'image-policy-webhook-default-sa'

| Creating cluster admin role 'image-policy-webhook-default-cluster-role'

| Creating cluster role binding 'image-policy-webhook-default-cluster-rolebindi

ng'

| Creating secret 'image-policy-webhook-default-values'

/ Creating package resource

- Package install status: Reconciling

Added installed package 'image-policy-webhook' in namespace 'tap-install'

After you run the commands above your signing package will be running.

Note: This component requires extra configuration steps to work properly. See Configuring

Supply Chain Security Tools - Sign for instructions on how to apply the required

configuration.

Configure

The WebHook deployed by Supply Chain Security Tools - Sign requires extra input from the

operator before it starts enforcing policies.

Tanzu Application Platform v1.1

VMware, Inc 542

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory

To configure your installed component properly, see Configuring Supply Chains Security Tools -

Sign.

Known issues

See Supply Chain Security Tools - Sign Known Issues.

Configuring Supply Chain Security Tools - Sign

This component requires extra configuration steps to start verifying your container images properly.

The instructions in this section only apply to the deployment namespace of Supply Chain Security

Tools - Sign. In most cases, this namespace is rendered as the default namespace image-policy-

system.

If you deployed Supply Chain Security Tools - Sign by using a customized namespace specified in

the installation values file, replace image-policy-system with the namespace name that you specified

in deployment_namespace before performing the configuration steps.

Create a ClusterImagePolicy resource

The cluster image policy is a custom resource containing the following properties:

spec.verification.keys: A list of public keys complementary to the private keys that were

used to sign the images.

spec.verification.images[].namePattern: Image name patterns that the policy enforces.

Each image name pattern maps to the required public keys. (Optional) Use a secret to

authenticate the private registry where images and signatures matching a name pattern are

stored.

spec.verification.exclude.resources.namespaces: A list of namespaces where this policy

is not enforced.

System namespaces specific to your cloud provider may need to be excluded from the policy.

VMware also recommends configuring exclusions for Tanzu Application Platform system

namespaces. This prevents the Image Policy Webhook from blocking components of Tanzu

Application Platform.

To get a list of created namespaces, run:

kubectl get namespaces

Tanzu Application Platform system namespaces can include:

- accelerator-system

- api-portal

- app-live-view

- app-live-view-connector

- app-live-view-conventions

- build-service

- cartographer-system

- cert-injection-webhook

Tanzu Application Platform v1.1

VMware, Inc 543

- cert-manager

- conventions-system

- developer-conventions

- flux-system

- image-policy-system

- kapp-controller

- knative-eventing

- knative-serving

- knative-sources

- kpack

- learning-center-guided-ui

- learning-center-guided-w01

- learningcenter

- metadata-store

- scan-link-system

- secretgen-controller

- service-bindings

- services-toolkit

- source-system

- spring-boot-convention

- stacks-operator-system

- tanzu-cluster-essentials

- tanzu-package-repo-global

- tanzu-system-ingress

- tap-gui

- tap-install

- tap-telemetry

- tekton-pipelines

- triggermesh

The following is an example ClusterImagePolicy:

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources:

 namespaces:

 - kube-system

 - <TAP system namespaces>

 keys:

 - name: first-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 ...

 -----END PUBLIC KEY-----

 images:

 - namePattern: registry.example.org/myproject/*

 keys:

 - name: first-key

 - namePattern: registry.example.org/authproject/*

 secretRef:

 name: secret-name

 namespace: namespace-name

 keys:

Tanzu Application Platform v1.1

VMware, Inc 544

 - name: first-key

The name for the ClusterImagePolicy resource must be image-policy.

Add any namespaces that run container images that are not signed in the

spec.verification.exclude.resources.namespaces section, such as the kube-system namespace.

If no ClusterImagePolicy resource is created, all images are admitted into the cluster with the

following warning:

Warning: clusterimagepolicies.signing.apps.tanzu.vmware.com "image-policy" not found.

Image policy enforcement was not applied.

The patterns are evaluated using the any of operator to admit container images. For each pod, the

Image Policy Webhook iterates over the list of containers and init containers. The pod is verified

when there is at least one key specified in spec.verification.images[].keys[] for each container

image that matches spec.verification.images[].namePattern.

For a simpler installation process in a non-production environment, use the manifest below to create

the ClusterImagePolicy resource. This manifest includes a cosign public key which signed the public

cosign v1.2.1 image. The cosign public key validates the specified cosign images. Container images

running in system namespaces are currently not signed. You must configure the image policy

WebHook to allow these unsigned images by adding system namespaces to the

spec.verification.exclude.resources.namespaces section.

cat <<EOF | kubectl apply -f -

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources:

 namespaces:

 - kube-system

 keys:

 - name: cosign-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

 IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

 -----END PUBLIC KEY-----

 images:

 - namePattern: gcr.io/projectsigstore/cosign*

 keys:

 - name: cosign-key

EOF

Provide credentials for the package

There are four ways the package reads credentials to authenticate to registries protected by

authentication, in order:

1. Reading imagePullSecrets directly from the resource being admitted.

Tanzu Application Platform v1.1

VMware, Inc 545

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

2. Reading imagePullSecrets from the service account the resource is running as.

3. Reading a secretRef from the ClusterImagePolicy resource applied to the cluster for the

container image name pattern that matches the container being admitted.

4. Reading imagePullSecrets from the image-policy-registry-credentials service account in

the deployment namespace.

Authentication fails in the following scenario:

A valid credential is specified in the ClusterImagePolicy secretRef field, or in the image-

policy-registry-credentials service account.

An invalid credential is specified in the imagePullSecrets of the resource or in the service

account the resource runs as.

To prevent this issue, choose a single authentication method to validate signatures for your

resources.

If you use containerd-configured registry credentials or another mechanism that causes your

resources and service accounts to not include an imagePullSecrets field, you must provide

credentials to the WebHook using one of the following mechanisms:

1. Create secret resources in any namespace of your preference that grants read access to the

location of your container images and signatures and include it as part of your policy

configuration.

2. Create secret resources and include them in the image-policy-registry-credentials

service account. The service account and the secrets must be created in the deployment

namespace.

Provide secrets for authentication in your policy

You can provide secrets for authentication as part of the name pattern policy configuration provided

your use case meets the following conditions:

Your images and signatures reside in a registry protected by authentication.

You do not have imagePullSecrets configured in your runnable resources or in the

ServiceAccounts that your runnable resources use.

You want this WebHook to check these container images.

See the following example:

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy

spec:

 verification:

 exclude:

 resources:

 namespaces:

 - kube-system

 keys:

Tanzu Application Platform v1.1

VMware, Inc 546

https://kubernetes.io/docs/concepts/configuration/secret/#arranging-for-imagepullsecrets-to-be-automatically-attached
https://github.com/containerd/containerd/blob/main/docs/cri/registry.md#configure-registry-credentials

 - name: first-key

 publicKey: |

 -----BEGIN PUBLIC KEY-----

 ...

 -----END PUBLIC KEY-----

 images:

 - namePattern: registry.example.org/myproject/*

 # Your secret reference must be included here

 secretRef:

 name: your-secret

 namespace: your-namespace

 keys:

 - name: first-key

VMware suggests the use of a set of credentials with the least amount of privilege that allows reading

the signature stored in your registry.

Provide secrets for authentication in the image-policy-registry-
credentials service account

If you prefer to provide your secrets in the image-policy-registry-credentials service account,

follow these steps:

1. Create the required secrets in the deployment namespace (once per secret):

kubectl create secret docker-registry SECRET-1 \

 --namespace image-policy-system \

 --docker-server=<server> \

 --docker-username=<username> \

 --docker-password=<password>

2. Create the image-policy-registry-credentials service account in the deployment

namespace and add the secret name (one or more) in the previous step to the

imagePullSecrets section:

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: image-policy-registry-credentials

 namespace: image-policy-system

imagePullSecrets:

- name: SECRET-1

EOF

Where SECRET-1 is a secret that allows the WebHook to pull signatures from the private

registry.

Note

: You may need to grant the service account image-policy-controller-manager in

the deployment namespace RBAC permissions for the verbs get and list in the

namespace that hosts your secrets.

Tanzu Application Platform v1.1

VMware, Inc 547

Add additional secrets to imagePullSecrets as required.

Image name patterns

The container image names can be matched exactly or use a wildcard (*) that matches any number

of characters.

Example name patterns:

Description Pattern Matches Image Name

Exact Match registry.example.org/myproject/my-

image:mytag

registry.example.org/myproject/my-image:mytag

Any Tag registry.example.org/myproject/my-

image

registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/my-image:other-tag

Any Tag registry.example.org/myproject/my-

image:*

registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/my-image:other-tag

Any Image and

Tag

registry.example.org/myproject/* registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/anotherimage:anoth

ertag

Any Project registry.example.org/*/my-image:mytag registry.example.org/myproject/my-image:mytag

registry.example.org/anotherproject/my-

image:mytag

Any Project and

Tag

registry.example.org/*/my-image registry.example.org/myproject/my-image:mytag

registry.example.org/myproject/my-

image:anothertag

Registry registry.example.org/* registry.example.org/myproject/my-image:mytag

registry.example.org/anotherproject/anotherimage:a

nothertag

Any Subdomain *.example.org/* my-registry.example.org/myproject/my-

image:mytag

registry.example.org/anotherproject/anotherimage:a

nothertag

Anything * my-registry.example.org/myproject/my-

image:mytag

registry.example.org/anotherproject/anotherimage:a

nothertag

registry.io/project/image:tag

Verify your configuration

Note

: Providing a name pattern without specifying a tag acts as a wildcard for the tag even

if other wildcards are specified. The pattern registry.example.org/myproject/my-

image is the same as registry.example.org/myproject/my-image:*. In the same

way, *.example.org/project/image is equivalent to *.example.org/project/image:*

Tanzu Application Platform v1.1

VMware, Inc 548

If you are using the suggested key cosign-key shown in the previous section then you can run the

following commands to check your configuration:

1. Verify that a signed image, validated with a configured public key, launches. Run:

kubectl run cosign \

 --image=gcr.io/projectsigstore/cosign:v1.2.1 \

 --restart=Never \

 --command -- sleep 900

For example:

$ kubectl run cosign \

 --image=gcr.io/projectsigstore/cosign:v1.2.1 \

 --restart=Never \

 --command -- sleep 900

pod/cosign created

2. Verify that an unsigned image does not launch. Run:

kubectl run bb --image=busybox --restart=Never

For example:

$ kubectl run bb --image=busybox --restart=Never

Warning: busybox did not match any image policies. Container will be created as

 AllowUnmatchedImages flag is true.

pod/bb created

3. Verify that an image signed with a key that does not match the configured public key will not

launch. Run:

kubectl run cosign-fail \

 --image=gcr.io/projectsigstore/cosign:v0.3.0 \

 --command -- sleep 900

For example:

$ kubectl run cosign-fail \

 --image=gcr.io/projectsigstore/cosign:v0.3.0 \

 --command -- sleep 900

Error from server (The image: gcr.io/projectsigstore/cosign:v0.3.0 is not signe

d.): admission webhook "image-policy-webhook.signing.apps.tanzu.com" denied the

 request: The image: gcr.io/projectsigstore/cosign:v0.3.0 is not signed.

Logs messages and reasons

Log messages follow a JSON format. Each log can contain the following keys:

Key Description

level Log level

ts Timestamp

Tanzu Application Platform v1.1

VMware, Inc 549

Key Description

logger Name of the logger component which provided the log message

msg Log message

object Relevant object that triggered the log message

error A message for the error.

Only present with “error” log level

stacktrace A stacktrace for where the error occured.

Only present with error level

The possible log messages the webhook emits and their explanations are summarized in the

following table:

Log Message Explanation

clusterimagepolicies.signing.apps.tanzu.vmwa

re.com “image-policy” not found. Image

policy enforcement was not applied.

The Image Policy was not created in the cluster and the

webhook did not check any container images for signatures.

<Namespace> is excluded. The ImagePolicy

will not be applied. An image policy is present in the cluster.

The namespace is present in the

verification.exclude.resources.namespaces

property of the policy.

Any container images trying to get created in this

namespace will not be checked for signatures.

Could not verify against any image policies

for container image: <ContainerImage>. An image policy is present in the cluster.

The AllowUnMatchedImages flag is set to false or is

absent.

The namespace is not excluded.

Image of the container being installed does not match

any pattern present in the policy and was rejected by

the webhook.

Tanzu Application Platform v1.1

VMware, Inc 550

Log Message Explanation

<ContainerImage> did not match any image

policies. Container will be created as

AllowUnmatchedImages flag is true.
An image policy is present in the cluster.

The AllowUnMatchedImages flag is set to true.

The namespace you are installing your resource in is

not excluded.

Image of the container being installed does not match

any pattern present in the policy and was allowed to

be created.

failed to find signature for image.

An image policy is present in the cluster.

The namespace you are installing your resource in is

not excluded.

Image of the container being installed matches a

pattern in the policy.

The webhook was not able to verify the signature.

The image: <ContainerImage> is not signed.

An image policy is present in the cluster.

The namespace you are installing your resource in is

not excluded.

Image of the container being installed matches a

pattern in the policy.

The image is not signed.

failed to decode resource

The resource type is not supported.

Currently supported v1 versions of:

Pod

Deployment

StatefulSet

DaemonSet

ReplicaSet

Job

CronJob (and v1beta1)

Tanzu Application Platform v1.1

VMware, Inc 551

Log Message Explanation

failed to verify

An image policy is present in the cluster.

The namespace you are installing your resource in is

not excluded.

Image of the container being installed matches a

pattern.

The webhook can not verify the signature.

matching pattern: <Pattern> against image

<ContainerImage>

matching registry patterns: [{<Image

NamePattern, Keys, SecretRef>}]

Provide the pattern that matches the container image.

Provide the corresponding Image configuration from

the ClusterImagePolicy that matches the container

image.

service account not found

The fallback service account, “image-policy-registry-

credentials”, was not found in the namespace of which

the webhook is installed.

The fallback service account is deprecated and was

originally purposed to storing imagePullSecrets for

container images and their co-located cosign

signatures.

unmatched image policy: <ContainerImage> Container image does not match any policy image patterns.

Supply Chain Security Tools for Tanzu – Store

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database and allows

you to query for image, source code, package, and vulnerability relationships. It integrates with

Supply Chain Security Tools - Scan to automatically store the resulting source code and image

vulnerability reports. It accepts CycloneDX input and outputs in both human-readable and machine-

readable formats, including JSON, text, and CycloneDX.

The following is a four-minute demo of scanning an image for CVEs and querying the database for

CVEs and dependencies.

Tanzu Application Platform - Adding And Q…

Tanzu Application Platform v1.1

VMware, Inc 552

https://www.youtube.com/watch?v=UoWSsJBjFgc

Using the Tanzu Insight CLI plug-in

the Tanzu Insight CLI plug-in is the primary way to view results from the Supply Chain Security Tools

- Scan of source code and image files. Use it to query by source code commit, image digest, and

CVE identifier to understand security risks.

See Tanzu Insight plug-in overview to install, configure, and use tanzu insight.

Multicluster configuration

See Ingress and multicluster support for information about how to set up Supply Chain Security Tools

Scan and Store to work together in a multicluster setup.

Additional documentation

Additional documentation includes information about the API, deployment details and configuration,

AWS RDS configuration, other database backup recommendations, known issues, and other topics.

Install Supply Chain Security Tools - Store independent from
Tanzu Application Platform profiles

This document describes how to install Supply Chain Security Tools - Store from the Tanzu

Application Platform package repository.

Note: VMware recommends installing Supply Chain Security Tools - Store by using Tanzu

Application Platform Profiles. See Installing the Tanzu Application Platform Package and Profiles. Use

the following instructions if you do not want to use a profile to install the Supply Chain Security Tools

- Store package.

Prerequisites

Before installing Supply Chain Security Tools - Store:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager, Contour.

See Deployment Details and Configuration to review what resources will be deployed. For

more information, see the overview.

Install

Tanzu Application Platform v1.1

VMware, Inc 553

To install Supply Chain Security Tools - Store:

1. The deployment assumes the user has set up the Kubernetes cluster to provision persistent

volumes on demand. Make sure a default storage class is available in your cluster. Check

whether default storage class is set in your cluster by running:

kubectl get storageClass

For example:

$ kubectl get storageClass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE

 ALLOWVOLUMEEXPANSION AGE

standard (default) rancher.io/local-path Delete WaitForFirstConsum

er false 7s

2. List version information for the package by running:

tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace

 tap-install

- Retrieving package versions for metadata-store.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 metadata-store.apps.tanzu.vmware.com 1.0.2

3. (Optional) List out all the available deployment configuration options:

tanzu package available get metadata-store.apps.tanzu.vmware.com/VERSION --valu

es-schema -n tap-install

Where VERSION is the your package version number. For example, 1.0.2.

For example:

$ tanzu package available get metadata-store.apps.tanzu.vmware.com/1.0.2 --valu

es-schema -n tap-install

| Retrieving package details for metadata-store.apps.tanzu.vmware.com/1.0.2...

 KEY DEFAULT TYPE DESCRIPTION

 app_service_type LoadBalancer string The type of s

ervice to use for the metadata app service. This can be set to 'NodePort' or 'L

oadBalancer'.

 auth_proxy_host 0.0.0.0 string The binding i

p address of the kube-rbac-proxy sidecar

 db_host metadata-store-db string The address t

o the postgres database host that the metdata-store app uses to connect. The de

fault is set to metadata-store-db which is the postgres service name. Changing

this does not change the postgres service name

 db_replicas 1 integer The number of

 replicas for the metadata-store-db

 db_sslmode verify-full string Determines th

e security connection between API server and Postgres database. This can be set

 to 'verify-ca' or 'verify-full'

Tanzu Application Platform v1.1

VMware, Inc 554

 pg_limit_memory 4Gi string Memory limit

for postgres container in metadata-store-db deployment

 app_req_cpu 100m string CPU request f

or metadata-store-app container

 app_limit_memory 512Mi string Memory limit

for metadata-store-app container

 app_req_memory 128Mi string Memory reques

t for metadata-store-app container

 auth_proxy_port 8443 integer The external

port address of the of the kube-rbac-proxy sidecar

 db_name metadata-store string The name of t

he database to use.

 db_port 5432 string The database

port to use. This is the port to use when connecting to the database pod.

 api_port 9443 integer The internal

port for the metadata app api endpoint. This will be used by the kube-rbac-prox

y sidecar.

 app_limit_cpu 250m string CPU limit for

 metadata-store-app container

 app_replicas 1 integer The number of

 replicas for the metadata-store-app

 db_user metadata-store-user string The database

user to create and use for updating and querying. The metadata postgres section

 create this user. The metadata api server uses this username to connect to the

 database.

 pg_req_memory 1Gi string Memory reques

t for postgres container in metadata-store-db deployment

 priority_class_name string If specified,

 this value is the name of the desired PriorityClass for the metadata-store-db

deployment

 use_cert_manager true string Cert manager

is required to be installed to use this flag. When true, this creates certifica

tes object to be signed by cert manager for the API server and Postgres databas

e. If false, the certificate object have to be provided by the user.

 api_host localhost string The internal

hostname for the metadata api endpoint. This will be used by the kube-rbac-prox

y sidecar.

 db_password <auto-generated> string The database

user password. If not specified, the password will be auto-generated.

 storage_class_name string The storage c

lass name of the persistent volume used by Postgres database for storing data.

The default value will use the default class name defined on the cluster.

 database_request_storage 10Gi string The storage r

equested of the persistent volume used by Postgres database for storing data.

 add_default_rw_service_account true string Adds a read-w

rite service account which can be used to obtain access token to use metadata-s

tore CLI

 log_level default string Sets the log

level. This can be set to "minimum", "less", "default", "more", "debug" or "tra

ce". "minimum" currently does not output logs. "less" outputs log configuration

 options only. "default" and "more" outputs API endpoint access information. "d

ebug" and "trace" outputs extended API endpoint access information(such as body

 payload) and other debug information.

4. (Optional) Modify one of the deployment configurations by creating a configuration YAML

with the custom configuration values you want. For example, if your environment does not

support LoadBalancer, and you want to use NodePort, then create a metadata-store-

values.yaml and configure the app_service_type property.

Tanzu Application Platform v1.1

VMware, Inc 555

app_service_type: "NodePort"

See Deployment details and configuration for more information about configuration options.

See Ingress and multicluster support for more information about ingress and custom domain

name support.

5. Install the package by running:

tanzu package install metadata-store \

 --package-name metadata-store.apps.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install \

 --values-file metadata-store-values.yaml

Where:

--values-file is an optional flag. Only use it to customize the deployment

configuration.

VERSION is the package version number. For example, 1.0.2.

For example:

$ tanzu package install metadata-store \

 --package-name metadata-store.apps.tanzu.vmware.com \

 --version 1.0.2 \

 --namespace tap-install \

 --values-file metadata-store-values.yaml

- Installing package 'metadata-store.apps.tanzu.vmware.com'

/ Getting namespace 'tap-install'

- Getting package metadata for 'metadata-store.apps.tanzu.vmware.com'

/ Creating service account 'metadata-store-tap-install-sa'

/ Creating cluster admin role 'metadata-store-tap-install-cluster-role'

/ Creating cluster role binding 'metadata-store-tap-install-cluster-rolebinding

'

/ Creating secret 'metadata-store-tap-install-values'

| Creating package resource

- Package install status: Reconciling

Added installed package 'metadata-store' in namespace 'tap-install'

Configure target endpoint and certificate

The connection to the Store requires TLS encryption, the configuration depends on the kind of

installation. Use the following instructions to set up the TLS connection according to the type of your

setup:

Use Ingress

Not use Ingress

Use LoadBalancer

Use NodePort

Tanzu Application Platform v1.1

VMware, Inc 556

Note: NodePortis commonly used with local clusters such as kind or minikube.

Use Ingress

When using an Ingress setup, the Store creates a specific TLS Certificate for HTTPS communications

under the metadata-store namespace.

To get such certificate, run the following command:

kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

The endpoint host is set to metadata-store.<ingress-domain>, for example, metadata-

store.example.domain.com). This value matches the value of ingress_domain.

If no accessible DNS record exists for such domain, edit the /etc/hosts file to add a local record:

ENVOY_IP=$(kubectl get svc envoy -n tanzu-system-ingress -o jsonpath="{.status.loadBal

ancer.ingress[0].ip}")

replace with your domain

METADATA_STORE_DOMAIN="metadata-store.example.domain.com"

delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$ENVOY_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN --ca-cert insight-ca.cr

t

Not use Ingress

If you install the Store without using the Ingress alternative, you must use a different Certificate

resource for HTTPS communication. In this case, query the app-tls-cert to get the CA Certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Use LoadBalancer

To use a LoadBalancer configuration, you must find the external IP address of the metadata-store-

app service by using kubectl.

Note

: For all kubectl commands, use the --namespace metadata-store flag.

Tanzu Application Platform v1.1

VMware, Inc 557

METADATA_STORE_IP=$(kubectl get service/metadata-store-app --namespace metadata-store

-o jsonpath="{.status.loadBalancer.ingress[0].ip}")

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$METADATA_STORE_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Use NodePort

To use NodePort, you must obtain the CA certificate by following the instructions in Not use Ingress,

then Configure port forwarding and Modify your /etc/hosts file.

Configure port forwarding

When using NodePort, configure port forwarding for the service so the CLI can access Supply Chain

Security Tools - Store. Run:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Note: You must run this command in a separate terminal window.

Modify your /etc/hosts file

Use the following script to add a new local entry to /etc/hosts:

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "127.0.0.1 $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Configure access tokens

Service accounts are required to generate the access tokens.

The access token is a Bearer token used in the http request header Authorization. (ex.

Tanzu Application Platform v1.1

VMware, Inc 558

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0...)

By default, Supply Chain Security Tools - Store comes with read-write service account installed. This

service account is cluster-wide.

Service accounts

You can create two types of service accounts:

1. Read-only service account - only able to use GET API requests

2. Read-write service account - full access to the API requests

Read-only service account

As a part of the Store installation, the metadata-store-read-only cluster role is created by default.

This cluster role allows the bound user to have get access to all resources. To bind to this cluster

role, run the following command:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: metadata-store-ready-only

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: metadata-store-read-only

subjects:

- kind: ServiceAccount

 name: metadata-store-read-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

If you do not want to bind to a cluster role, create your own read-only role in the metadata-store

namespace with a service account. The following example command creates a service account

named metadata-store-read-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: metadata-store-ro

 namespace: metadata-store

rules:

- resources: ["all"]

 verbs: ["get"]

 apiGroups: ["metadata-store/v1"]

Tanzu Application Platform v1.1

VMware, Inc 559

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: metadata-store-ro

 namespace: metadata-store

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: metadata-store-ro

subjects:

- kind: ServiceAccount

 name: metadata-store-read-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-client

 namespace: metadata-store

automountServiceAccountToken: false

EOF

Read-write service account

To create a read-write service account, run the following command. The command creates a service

account called metadata-store-read-write-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: metadata-store-read-write

 namespace: metadata-store

rules:

- resources: ["all"]

 verbs: ["get", "create", "update"]

 apiGroups: ["metadata-store/v1"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: metadata-store-read-write

 namespace: metadata-store

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: metadata-store-read-write

subjects:

- kind: ServiceAccount

 name: metadata-store-read-write-client

 namespace: metadata-store

apiVersion: v1

kind: ServiceAccount

metadata:

 name: metadata-store-read-write-client

 namespace: metadata-store

Tanzu Application Platform v1.1

VMware, Inc 560

automountServiceAccountToken: false

EOF

Getting the Access Token

To retrieve the read-only access token, run the following command:

kubectl get secret $(kubectl get sa -n metadata-store metadata-store-read-client -o js

on | jq -r '.secrets[0].name') -n metadata-store -o json | jq -r '.data.token' | base6

4 -d

To retrieve the read-write access token run the following command:

kubectl get secret $(kubectl get sa -n metadata-store metadata-store-read-write-client

 -o json | jq -r '.secrets[0].name') -n metadata-store -o json | jq -r '.data.token' |

 base64 -d

The access token is a “Bearer” token used in the http request header “Authorization.” (ex.

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0...)

Setting the Access Token

When using the CLI, you’ll need to set the METADATA_STORE_ACCESS_TOKEN environment variable, or

use the --access-token flag. It is not recommended to use the --access-token flag as the token will

appear in your shell history.

The following command will retrieve the access token from Kubernetes and store it in

METADATA_STORE_ACCESS_TOKEN where SERVICE-ACCOUNT-NAME is the name of the service account you

plan to use.

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpath

="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='SERVICE-A

CCOUNT-NAME')].data.token}" | base64 -d)

For example:

$ export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpa

th="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='metadat

a-store-read-write-client')].data.token}" | base64 -d)

Security details

Application security

TLS encryption

Supply Chain Security Tools - Store requires TLS connection. If certificates are not provided, the

application will not start. It supports TLS v1.2 and TLS v1.3. It does not support TLS 1.0, so a

downgrade attack cannot happen. TLS 1.0 is prohibited under Payment Card Industry Data Security

Standard (PCI DSS).

Tanzu Application Platform v1.1

VMware, Inc 561

Cryptographic algorithms:

Elliptic Curve:

CurveP521

CurveP384

CurveP256

Cipher Suites:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Access controls

Supply Chain Security Tools - Store uses kube-rbac-proxy as the only entry point to its API.

Authentication and Authorization must be completed successfully via the kube-rbac-proxy before its

API is accessible.

Authent icat ion

The kube-rbac-proxy uses Token Review to verify if the token is valid. Token Review is a Kubernetes

API to ensure a trusted vendor issued the access token provided by the user. To issue an access

token using Kubernetes, the user can create a Kubernetes Service Account and retrieve the

corresponding generated Secret for the access token.

To create an access token, please refer to the Create Service Account Access Token Docs.

Author izat ion

The kube-rbac-proxy uses Subject Access Review to ensure users access certain operations.

Subject Access Review is a Kubernetes API that uses Kubernetes RBAC to determine if the user

can perform specific actions. Please refer to the Create Service Account Access Token doc.

There are only two supported roles: Read Only cluster role and Read and Write cluster role. These

cluster roles are deployed by default. Additionally, a service account is created and bound to the

Read and Write cluster role by default. If you do not want this service account, set

add_default_rw_service_account property to "false" in the metadata-store-values.yaml file

during deployment.

There is no default service account bound to the Read Only cluster role. You must create your

service account and cluster role binding to bind to the Read Only role.

Note: There is no support for roles with access to only specific types of resources (i.e., images,

packages, vulnerabilities, etc.)

Container security

Tanzu Application Platform v1.1

VMware, Inc 562

https://github.com/brancz/kube-rbac-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Non-root user

All containers shipped do not use root user accounts or accounts with root access. Using Kubernetes

Security Context ensures that applications do not run with root users.

Security Context for the API server:

allowPrivilegeEscalation: false

runAsUser: 65532

fsGroup: 65532

Security Context for the Postgres DB pod:

allowPrivilegeEscalation: false

runAsUser: 999

fsGroup: 999

Note: 65532 is the uuid for the “nobody” user. 999 is the uuid for the “postgres” user.

Security scanning

There are two types of security scans that are performed before every release.

Static Application Security Testing (SAST)

A Coverity Scan is run on the source code of the API server, CLI, and all their dependencies. There

are no high or critical items outstanding at the time of release.

Software Composition Analysis (SCA)

A Black Duck scan is run on the compiled binary to check for vulnerabilities and license data. There

are no high or critical items outstanding at the time of release.

A Grype scan is run against the source code and the compiled container for dependencies

vulnerabilities. There are no high or critical items outstanding at the time of release.

Additional documentation

API details

API walkthrough

Deployment details and configuration

Install independent from Tanzu Application Platform profiles

AWS RDS Postgres configuration

Database backup recommendations

Log configuration and usage

Troubleshooting upgrading

Failover, redundancy, and backups

Ingress and multicluster support

Tanzu Application Platform v1.1

VMware, Inc 563

API details

See API walkthrough for a walkthrough and example.

Information

Version

0.0.1

Content negotiation

URI Schemes

http

https

Consumes

application/json

Produces

application/json

All endpoints

images

Method URI Name Summary

POST /api/imageReport create image

report

Create a new image report. Related packages and

vulnerabilities are also created.

GET /api/images get images Search image by id or digest.

GET /api/packages/{IDorNam

e}/images

get package

images

List the images that contain the given package.

GET /api/vulnerabilities/{CVEI

D}/images

get vulnerability

images

List the images that contain the given vulnerability.

Operations

Method URI Name Summary

GET /api/health health check

Packages

Tanzu Application Platform v1.1

VMware, Inc 564

#create-image-report
#get-package-images
#get-vulnerability-images

Method URI Name Summary

GET /api/images/{IDorDigest}/packages get image packages List the packages in an image.

GET /api/packages get packages Search packages by id, name and/or

version.

GET /api/sources/{IDorRepoorSha}/pack

ages

get source packages

GET /api/sources/packages get source packages

query

List packages of the given source.

GET /api/vulnerabilities/{CVEID}/packag

es

get vulnerability

packages

List packages that contain the given CVE

id.

Sources

Method URI Name Summary

POST /api/sourceReport create source

report

Create a new source report. Related packages and

vulnerabilities are also created.

GET /api/packages/{IDorNam

e}/sources

get package

sources

List the sources containing the given package.

GET /api/sources get sources Search for sources by ID, repository, commit sha and/or

organization.

GET /api/vulnerabilities/{CVEI

D}/sources

get vulnerability

sources

List sources that contain the given vulnerability.

Vulnerabilities

Method URI Name Summary

GET /api/images/{IDorDigest}/vulnerabiliti

es

get image vulnerabilities List vulnerabilities from the given

image.

GET /api/packages/{IDorName}/vulnerabili

ties

get package vulnerabilities List vulnerabilities from the given

package.

GET /api/sources/{IDorRepoorSha}/vulner

abilities

get source vulnerabilities

GET /api/sources/vulnerabilities get source vulnerabilities

query

List vulnerabilities of the given

source.

GET /api/vulnerabilities get vulnerabilities Search for vulnerabilities by CVE id.

Paths

Create a new image report. Related packages and vulnerabilities
are also created. (CreateImageReport)

POST /api/imageReport

Tanzu Application Platform v1.1

VMware, Inc 565

#get-image-packages
#get-packages
#get-source-packages
#get-source-packages-query
#get-vulnerability-packages
#create-source-report
#get-package-sources
#get-sources
#get-vulnerability-sources
#get-image-vulnerabilities
#get-package-vulnerabilities
#get-source-vulnerabilities
#get-source-vulnerabilities-query
#get-vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

Image body Image models.Image ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

Create a new source report. Related packages and vulnerabilities
are also created. (CreateSourceReport)

POST /api/sourceReport

Parameters

Name Source Type Go type Separator Required Default Description

Image body Source models.Source ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

Tanzu Application Platform v1.1

VMware, Inc 566

#create-image-report-200
#create-image-report-200-schema
#create-image-report-default
#create-image-report-default-schema
#create-source-report-200
#create-source-report-200-schema

Code Status Description Has headers Schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

Source

Default Response

ErrorMessage

Schema

ErrorMessage

List the packages in an image. (GetImagePackages)

GET /api/images/{IDorDigest}/packages

Parameters

Name Source Type Go type Separator Required Default Description

IDorDigest path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Tanzu Application Platform v1.1

VMware, Inc 567

#create-source-report-default
#create-source-report-default-schema
#get-image-packages-200
#get-image-packages-200-schema
#get-image-packages-default
#get-image-packages-default-schema

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities from the given image. (GetImageVulnerabilities)

GET /api/images/{IDorDigest}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorDigest path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

Search image by id or digest. (GetImages)

GET /api/images

Tanzu Application Platform v1.1

VMware, Inc 568

#get-image-vulnerabilities-200
#get-image-vulnerabilities-200-schema
#get-image-vulnerabilities-default
#get-image-vulnerabilities-default-schema

Parameters

Name Source Type Go type Separator Required Default Description

digest query string string

id query int64 (formatted integer) int64

responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given package.
(GetPackageImages)

GET /api/packages/{IDorName}/images

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

Tanzu Application Platform v1.1

VMware, Inc 569

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

[][Image](#image)

Default Response

ErrorMessage

Schema

ErrorMessage

List the sources containing the given package.
(GetPackageSources)

GET /api/packages/{IDorName}/sources

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

Tanzu Application Platform v1.1

VMware, Inc 570

#get-package-images-200
#get-package-images-200-schema
#get-package-images-default
#get-package-images-default-schema
#get-package-sources-200
#get-package-sources-200-schema
#get-package-sources-default
#get-package-sources-default-schema

[][Source](#source)

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities from the given package.
(GetPackageVulnerabilities)

GET /api/packages/{IDorName}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

Search packages by id, name and/or version. (GetPackages)

Tanzu Application Platform v1.1

VMware, Inc 571

#get-package-vulnerabilities-200
#get-package-vulnerabilities-200-schema
#get-package-vulnerabilities-default
#get-package-vulnerabilities-default-schema

GET /api/packages

Parameters

Name Source Type
Go

type
Separator Required Default Description

id query int64 (formatted

integer)

int64 Any of id or name must be

provided

name query string string Any of id or name must be

provided

versio

n

query string string

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

get source packages (GetSourcePackages)

GET /api/sources/{IDorRepoorSha}/packages

Parameters

Name Source Type Go type Separator Required Default Description

Tanzu Application Platform v1.1

VMware, Inc 572

#get-packages-200
#get-packages-200-schema
#get-packages-default-schema

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

List packages of the given source. (GetSourcePackagesQuery)

GET /api/sources/packages

Parameters

Name Source Type Go type Separator Required Default Description

id query uint64 (formatted integer) uint64

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Tanzu Application Platform v1.1

VMware, Inc 573

#get-source-packages-200
#get-source-packages-200-schema
#get-source-packages-default
#get-source-packages-default-schema
#get-source-packages-query-200
#get-source-packages-query-200-schema
#get-source-packages-query-default
#get-source-packages-query-default-schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

get source vulnerabilities (GetSourceVulnerabilities)

GET /api/sources/{IDorRepoorSha}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Tanzu Application Platform v1.1

VMware, Inc 574

#get-source-vulnerabilities-200
#get-source-vulnerabilities-200-schema
#get-source-vulnerabilities-default
#get-source-vulnerabilities-default-schema

Schema

ErrorMessage

List vulnerabilities of the given source.
(GetSourceVulnerabilitiesQuery)

GET /api/sources/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

id query uint64 (formatted integer) uint64

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

Search for sources by ID, repository, commit sha and/or
organization. (GetSourcs)

GET /api/sources

Tanzu Application Platform v1.1

VMware, Inc 575

#get-source-vulnerabilities-query-200
#get-source-vulnerabilities-query-200-schema
#get-source-vulnerabilities-query-default
#get-source-vulnerabilities-query-default-schema

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[][Source](#source)

Default Response

ErrorMessage

Schema

ErrorMessage

Search for vulnerabilities by CVE id. (GetVulnerabilities)

GET /api/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

CVEID query string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerabi l i ty

Status: OK

Tanzu Application Platform v1.1

VMware, Inc 576

#get-vulnerabilities-200
#get-vulnerabilities-200-schema
#get-vulnerabilities-default
#get-vulnerabilities-default-schema

Schema

[][Vulnerability](#vulnerability)

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given vulnerability.
(GetVulnerabilityImages)

GET /api/vulnerabilities/{CVEID}/images

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

[][Image](#image)

Default Response

ErrorMessage

Schema

ErrorMessage

Tanzu Application Platform v1.1

VMware, Inc 577

#get-vulnerability-images-200
#get-vulnerability-images-200-schema
#get-vulnerability-images-default
#get-vulnerability-images-default-schema

List packages that contain the given CVE id.
(GetVulnerabilityPackages)

GET /api/vulnerabilities/{CVEID}/packages

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[][Package](#package)

Default Response

ErrorMessage

Schema

ErrorMessage

List sources that contain the given vulnerability.
(GetVulnerabilitySources)

GET /api/vulnerabilities/{CVEID}/sources

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

Tanzu Application Platform v1.1

VMware, Inc 578

#get-vulnerability-packages-200
#get-vulnerability-packages-200-schema
#get-vulnerability-packages-default
#get-vulnerability-packages-default-schema

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[][Source](#source)

Default Response

ErrorMessage

Schema

ErrorMessage

health check (HealthCheck)

GET /api/health

All responses

Code Status Description Has headers Schema

200 OK schema

default ErrorMessage schema

Responses

2 0 0

Status: OK

Schema

Default Response

ErrorMessage

Tanzu Application Platform v1.1

VMware, Inc 579

#get-vulnerability-sources-200
#get-vulnerability-sources-200-schema
#get-vulnerability-sources-default
#get-vulnerability-sources-default-schema
#health-check-200
#health-check-200-schema
#health-check-default
#health-check-default-schema

Schema

ErrorMessage

Models

DeletedAt

composed type NullTime

ErrorMessage

ErrorMessage wraps an error message in a struct so responses are properly marshalled as a JSON

object.

Properties

Name Type Go type Required Default Description Example

Message string string in: body something went wrong

Image

Properties

Name Type Go type Required Default Description Example

Digest string string ✓ 9n38274ods897fmay487gsdyfga

678wr82

ID uint64 (formatted

integer)

uint64

Name string string ✓ myorg/application

Packag

es

[][Package](#package) []*Packag

e

Registry string string ✓ docker.io

Sources [][Source](#source) []*Source

MethodType

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

Name string string

Tanzu Application Platform v1.1

VMware, Inc 580

Name Type Go type Required Default Description Example

Rating [][Rating](#rating) []*Rating

UpdatedAt date-time (formatted string) strfmt.DateTime

Model

Model a basic GoLang struct which includes the following fields: ID, CreatedAt, UpdatedAt,

DeletedAt It may be embedded into your model, or you may build your model without it type User

struct { gorm.Model }

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

UpdatedAt date-time (formatted string) strfmt.DateTime

NullTime

NullTime implements the Scanner interface to be used as a scan destination, similar to NullString.

Properties

Name Type Go type Required Default Description Example

Time date-time (formatted string) strfmt.DateTime

Valid boolean bool

Package

Properties

Name Type Go type Required Default Description Example

Homepage string string

ID uint64 (formatted integer) uint64

Images [][Image](#image) []*Image

Name string string

PackageManage

r

string string

Sources [][Source](#source) []*Source

Version string string

Tanzu Application Platform v1.1

VMware, Inc 581

Name Type Go type Required Default Description Example

Vulnerabilities [][Vulnerability]

(#vulnerability)

[]*Vulnerabilit

y

Rating

Properties

Name Type Go type Required Default Description Example

ID uint64 (formatted integer) uint64

MethodType MethodType MethodType

MethodTypeID uint64 (formatted integer) uint64

Score double (formatted number) float64

Severity string string

Vector string string

Source

Properties

Name Type Go type Required Default Description Example

DeletedAt DeletedAt DeletedAt

Host string string gitlab.com

ID uint64 (formatted integer) uint64

Images [][Image](#image) []*Image

Organization string string vmware

Packages [][Package](#package) []*Package

Repository string string ✓ myproject

Sha string string ✓ 0eb5fcd1

StringArray

[]string

Vulnerability

Properties

Name Type Go type Required Default Description Example

CNA string string

CVEID string string ✓ CVE-7467-2020

Tanzu Application Platform v1.1

VMware, Inc 582

Name Type Go type Required Default Description Example

Description string string

ID uint64 (formatted integer) uint64

Packages [][Package](#package) []*Package

Ratings [][Rating](#rating) []*Rating

References StringArray StringArray

URL string string

API walkthrough

This topic includes an example API call. For information about using the Supply Chain Security Tools

- Store API, see full API documentation.

Using CURL to POST an image report

The following procedure explains how to use CURL to POST an image report.

1. Port Forward the metadata-store-app. Run the following:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

2. Retrieve the metadata-store-read-write-client access token. Ensure the Service Account

is created. Run:

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets -n metadata-store -o j

sonpath="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name

']=='metadata-store-read-write-client')].data.token}" | base64 -d)

3. Retrieve the CA Certificate and store it locally. Run the following:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.cr

t"' | base64 -d > /tmp/ca.crt

4. Run the Curl POST Command:

curl https://metadata-store-app:8443/api/imageReport \

 --resolve metadata-store-app:8443:127.0.0.1 \

 --cacert /tmp/ca.crt \

 -H "Authorization: Bearer ${METADATA_STORE_ACCESS_TOKEN}" \

 -H "Content-Type: application/json" \

 -X POST \

 --data "@<ABSOLUTE PATH TO THE POST BODY>"

5. Replace with the absolute path of the POST body.

6. The following is a sample POST body of a image report:

{

 "Name" : "burger-image-2",

Tanzu Application Platform v1.1

VMware, Inc 583

 "Registry" : "test-registry",

 "Digest" : "test-digest@45asd61asasssdfsdfddssghjkdfsdfasdfasdsdasdassdfghjdd

asfddfsadfadfgfshdasdfsdfsdfsdasdsdfsdfadsdassdfdasdfaasdsdfsddfsdasgsasddffdgf

dasddfgdfssdfakasdasdasdsdasddasdsd23",

 "Sources" : [

 {

 "Repository" : "aaaaoslfdfggo",

 "Organization" : "pivotal",

 "Sha" : "1235assdfssadfacfddxdf41",

 "Host" : "http://oslo.io",

 "Packages" : [

 {

 "Name" : "Source package5",

 "Version" : "v2sfsfdd34",

 "PackageManager" : "test-manager",

 "Vulnerabilities" : [

 {

 "CVEID" : "0011",

 "PrimaryURL" : "http://www.mynamejeff.comm",

 "Description" : "Bye",

 "CNA" : "NVD",

 "Ratings": [{

 "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

 "Score" : 0,

 "MethodTypeID" : 1,

 "Severity": "High"

 }],

 "References" : [""]

 }

]

 }

]

 }

],

 "Packages" : [

 {

 "Name" : "bob-dependency-35daasds56j",

 "Version" : "v2",

 "PackageManager" : "test-manager",

 "Vulnerabilities" : [

 {

 "CVEID" : "002",

 "PrimaryURL" : "http://www.mynamejeff.comm",

 "Description" : "Bye",

 "CNA" : "NVD",

 "Ratings": [{

 "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

 "Score" : 0,

 "MethodTypeID" : 1,

 "Severity": "High"

 }],

 "References" : [""]

 }

]

 }

]

}

Tanzu Application Platform v1.1

VMware, Inc 584

Deployment details and configuration

What is deployed

The installation creates the following in your Kubernetes cluster:

Two components — an API back end and a database. Each component includes:

service

deployment

replicaset

pod

Persistent volume and persistent volume claim.

External IP address (based on a deployment configuration set to use LoadBalancer).

A Kubernetes secret to allow pulling Supply Chain Security Tools - Store images from a

registry.

A namespace called metadata-store.

A service account with read-write privileges named metadata-store-read-write-client. It’s

bound to a ClusterRole named metadata-store-read-write.

A read-only ClusterRole named metadata-store-read-only that isn’t bound to a service

account. See Service Accounts.

(Optional) An HTTPProxy object for ingress support.

Deployment configuration

Database configuration

The default database included with the deployment is meant to get users started using the metadata

store. The default database deployment does not support many enterprise production requirements,

including scaling, redundancy, or failover. However, it is still a secure deployment.

Using AWS RDS postgres database

Users can also configure the deployment to use their own RDS database instead of the default. See

AWS RDS Postgres Configuration.

Custom database password

By default, a database password is generated automatically upon deployment. To configure a custom

password, use the db_password property in the metadata-store-values.yaml during deployment.

db_password: "PASSWORD-0123"

If you’re deploying with Tanzu Application Platform profiles, in tap-values.yaml, put:

metadata_store:

Tanzu Application Platform v1.1

VMware, Inc 585

 db_password: "PASSWORD-0123"

Where PASSWORD-0123 is the same password used between deployments.

App service type

If your environment does not support LoadBalancer, and you want to use NodePort, configure the

app_service_type property in your metadata-store-values.yaml:

app_service_type: "LoadBalancer"

Service accounts

By default, a service account with read-write privileges to the metadata store app is installed. This

service account is a cluster-wide account that uses ClusterRole. If you don’t want the service account

and role, set the add_default_rw_service_account property to "false". To create a custom service

account, see Configure access tokens.

The store creates a read-only cluster role, which can be bound to a service account through

ClusterRoleBinding. To create service accounts to bind to this cluster role, see Configure access

tokens.

Exporting certificates

Supply Chain Security Tools - Store creates Secret Export for exporting certificates to Supply Chain

Security Tools - Scan to securely post scan results. These certificates are exported to the

namespace where Supply Chain Security Tools - Scan is installed.

Ingress support

Supply Chain Security Tools - Store’s values file allows you to enable ingress support and to

configure a custom domain name to use Contour to provide external access to Supply Chain Security

Tools - Store’s API. For example:

ingress_enabled: "true"

ingress_domain: "example.com"

An HTTPProxy object is then installed with metadata-store.example.com as the fully qualified domain

name. See Ingress and multicluster support.

Install Supply Chain Security Tools - Store independent from
Tanzu Application Platform profiles

Important

There is a known issue related to changing database passwords Persistent Volume

Retains Data.

Tanzu Application Platform v1.1

VMware, Inc 586

#store-persistent-volume-retains-data
https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/secret-export.md

This document describes how to install Supply Chain Security Tools - Store from the Tanzu

Application Platform package repository.

Note: VMware recommends installing Supply Chain Security Tools - Store by using Tanzu

Application Platform Profiles. See Installing the Tanzu Application Platform Package and Profiles. Use

the following instructions if you do not want to use a profile to install the Supply Chain Security Tools

- Store package.

Prerequisites

Before installing Supply Chain Security Tools - Store:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager, Contour.

See Deployment Details and Configuration to review what resources will be deployed. For

more information, see the overview.

Install

To install Supply Chain Security Tools - Store:

1. The deployment assumes the user has set up the Kubernetes cluster to provision persistent

volumes on demand. Make sure a default storage class is available in your cluster. Check

whether default storage class is set in your cluster by running:

kubectl get storageClass

For example:

$ kubectl get storageClass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE

 ALLOWVOLUMEEXPANSION AGE

standard (default) rancher.io/local-path Delete WaitForFirstConsum

er false 7s

2. List version information for the package by running:

tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace

 tap-install

- Retrieving package versions for metadata-store.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 metadata-store.apps.tanzu.vmware.com 1.0.2

3. (Optional) List out all the available deployment configuration options:

tanzu package available get metadata-store.apps.tanzu.vmware.com/VERSION --valu

Tanzu Application Platform v1.1

VMware, Inc 587

es-schema -n tap-install

Where VERSION is the your package version number. For example, 1.0.2.

For example:

$ tanzu package available get metadata-store.apps.tanzu.vmware.com/1.0.2 --valu

es-schema -n tap-install

| Retrieving package details for metadata-store.apps.tanzu.vmware.com/1.0.2...

 KEY DEFAULT TYPE DESCRIPTION

 app_service_type LoadBalancer string The type of s

ervice to use for the metadata app service. This can be set to 'NodePort' or 'L

oadBalancer'.

 auth_proxy_host 0.0.0.0 string The binding i

p address of the kube-rbac-proxy sidecar

 db_host metadata-store-db string The address t

o the postgres database host that the metdata-store app uses to connect. The de

fault is set to metadata-store-db which is the postgres service name. Changing

this does not change the postgres service name

 db_replicas 1 integer The number of

 replicas for the metadata-store-db

 db_sslmode verify-full string Determines th

e security connection between API server and Postgres database. This can be set

 to 'verify-ca' or 'verify-full'

 pg_limit_memory 4Gi string Memory limit

for postgres container in metadata-store-db deployment

 app_req_cpu 100m string CPU request f

or metadata-store-app container

 app_limit_memory 512Mi string Memory limit

for metadata-store-app container

 app_req_memory 128Mi string Memory reques

t for metadata-store-app container

 auth_proxy_port 8443 integer The external

port address of the of the kube-rbac-proxy sidecar

 db_name metadata-store string The name of t

he database to use.

 db_port 5432 string The database

port to use. This is the port to use when connecting to the database pod.

 api_port 9443 integer The internal

port for the metadata app api endpoint. This will be used by the kube-rbac-prox

y sidecar.

 app_limit_cpu 250m string CPU limit for

 metadata-store-app container

 app_replicas 1 integer The number of

 replicas for the metadata-store-app

 db_user metadata-store-user string The database

user to create and use for updating and querying. The metadata postgres section

 create this user. The metadata api server uses this username to connect to the

 database.

 pg_req_memory 1Gi string Memory reques

t for postgres container in metadata-store-db deployment

 priority_class_name string If specified,

 this value is the name of the desired PriorityClass for the metadata-store-db

deployment

 use_cert_manager true string Cert manager

is required to be installed to use this flag. When true, this creates certifica

tes object to be signed by cert manager for the API server and Postgres databas

e. If false, the certificate object have to be provided by the user.

 api_host localhost string The internal

Tanzu Application Platform v1.1

VMware, Inc 588

hostname for the metadata api endpoint. This will be used by the kube-rbac-prox

y sidecar.

 db_password <auto-generated> string The database

user password. If not specified, the password will be auto-generated.

 storage_class_name string The storage c

lass name of the persistent volume used by Postgres database for storing data.

The default value will use the default class name defined on the cluster.

 database_request_storage 10Gi string The storage r

equested of the persistent volume used by Postgres database for storing data.

 add_default_rw_service_account true string Adds a read-w

rite service account which can be used to obtain access token to use metadata-s

tore CLI

 log_level default string Sets the log

level. This can be set to "minimum", "less", "default", "more", "debug" or "tra

ce". "minimum" currently does not output logs. "less" outputs log configuration

 options only. "default" and "more" outputs API endpoint access information. "d

ebug" and "trace" outputs extended API endpoint access information(such as body

 payload) and other debug information.

4. (Optional) Modify one of the deployment configurations by creating a configuration YAML

with the custom configuration values you want. For example, if your environment does not

support LoadBalancer, and you want to use NodePort, then create a metadata-store-

values.yaml and configure the app_service_type property.

app_service_type: "NodePort"

See Deployment details and configuration for more information about configuration options.

See Ingress and multicluster support for more information about ingress and custom domain

name support.

5. Install the package by running:

tanzu package install metadata-store \

 --package-name metadata-store.apps.tanzu.vmware.com \

 --version VERSION \

 --namespace tap-install \

 --values-file metadata-store-values.yaml

Where:

--values-file is an optional flag. Only use it to customize the deployment

configuration.

VERSION is the package version number. For example, 1.0.2.

For example:

$ tanzu package install metadata-store \

 --package-name metadata-store.apps.tanzu.vmware.com \

 --version 1.0.2 \

 --namespace tap-install \

 --values-file metadata-store-values.yaml

- Installing package 'metadata-store.apps.tanzu.vmware.com'

/ Getting namespace 'tap-install'

- Getting package metadata for 'metadata-store.apps.tanzu.vmware.com'

Tanzu Application Platform v1.1

VMware, Inc 589

/ Creating service account 'metadata-store-tap-install-sa'

/ Creating cluster admin role 'metadata-store-tap-install-cluster-role'

/ Creating cluster role binding 'metadata-store-tap-install-cluster-rolebinding

'

/ Creating secret 'metadata-store-tap-install-values'

| Creating package resource

- Package install status: Reconciling

Added installed package 'metadata-store' in namespace 'tap-install'

AWS RDS Postgres configuration

Prerequisites

AWS Account

AWS RDS

1. Create an Amazon RDS Postgres using the Amazon RDS Getting Started Guide

2. Once the database instance starts, retrieve the following information:

1. DB Instance Endpoint

2. Master Username

3. Master Password

4. Database Name

3. Create a security group to allow inbound connections from the cluster to the Postgres DB

4. Retrieve the corresponding CA Certificate that signed the Postgres TLS Certificate using the

following link

5. In the metadata-store-values.yaml fill the following settings:

db_host: "<DB Instance Endpoint>"

db_user: "<Master Username>"

db_password: "<Master Password>"

db_name: "<Database Name>"

db_port: "5432"

db_sslmode: "verify-full"

db_max_open_conns: 10

db_max_idle_conns: 100

db_conn_max_lifetime: 60

db_ca_certificate: |

 <Corresponding CA Certification>

 ...

 ...

 ...

deploy_internal_db: "false"

Note: If deploy_internal_db is set to false, an instance of Postgres will not be deployed in the

cluster.

Tanzu Application Platform v1.1

VMware, Inc 590

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Creating.PostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html

Database backup recommendations

By default, the metadata store uses a PersistentVolume mounted on a Postgres instance, making it a

stateful component of Tanzu Application Platform. VMware recommends implementing a regular

backup strategy as part of your disaster recovery plan when using the provided Postgres instance.

Backup

You can use Velero to create regular backups.

velero install --provider <provider> --bucket <bucket-name> --plugins <plugin-image-lo

cation> --secret-file <secrets-file>

For example:

velero install --provider gcp --bucket <gcs-bucket-name> --plugins velero/velero-plugi

n-for-gcp:v1.3.0 --secret-file <gcp-json-credentials>

Velero CLI can then be used to create a backup of all the resources in the metadata-store

namespace, including PersistentVolumeClaim and PersistentVolume.

velero backup create metadata-store-$(date '+%s') --include-namespaces=metadata-store

Restore

Velero CLI can restore the Store in the same or a different cluster. The same namespace can be

used to restore, but may collide with other Supply Chain Security Tools – Store installations.

Furthermore, restoring into the same namespace restores a fully functional instance of Supply Chain

Security Tools – Store; however, this instance is not managed by Tanzu Application Platform and can

cause conflicts with future installations.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store-$

timestamp --namespace-mappings metadata-store:metadata-store

Alternatively, a different namespace can be used to restore Supply Chain Security Tools – Store. In

this case, Supply Chain Security Tools – Store API is not available due to conflicting definitions in the

RBAC proxy configuration, causing all requests to fail with an Unauthorized error. In this scenario,

the postgres instance is still accessible, and tools such as pg_dump can be used to retrieve table

contents and restore in a new live installation of Supply Chain Security Tools – Store.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store-$

timestamp --namespace-mappings metadata-store:restored-metadata-store

Note

Backup support for PersistentVolume depends on the used StorageClass and

existing provider plug-ins. See the officially supported plug-ins here.

Tanzu Application Platform v1.1

VMware, Inc 591

https://velero.io/
https://velero.io/plugins/

Currently, mounting an existing PersistentVolume or PersistentVolumeClaim during installation is

not supported.

The minimum suggested resources for backups are PersistentVolume, PersistentVolumeClaim and

Secret. The database password Secret is needed to set up a Postgres instance with the correct

password to properly read data from the restored volume.

Log configuration and usage

This topic covers configuring the Supply Chain Security Tools - Store to output detailed log

information and interpret them. re-boot

Log levels

There are six log levels that the Supply Chain Security Tools - Store supports.

Level Description

Trace Output extended debugging logs

Debug Output standard debugging log

More Output more verbose informational logs

Default Output standard informational logs

Less Outputs less verbose informational logs

Minimum Outputs a minimal set of informational logs

When the Store is deployed at a specific log level, all logs of that level and lower are outputted to the

console. For example, setting the log level to More outputs logs from Minimal to More, while Debug

and Trace logs are muted.

Currently, the application logs output at these levels:

Minimum does not output any logs.

Less outputs a single log line indicating the current log level the Metadata Store is configured

to when the application starts.

Default outputs API endpoint access information.

Debug outputs API endpoint payload information, both for requests and responses.

Trace outputs verbose debug information about the actual SQL queries for the database.

Other log levels do not output any additional log information and are present for future extensibility.

If no log level is specified when the Store is installed, the log level is set to default.

Error Logs

Error logs are always outputted regardless of the log level, even when set to minimum.

Tanzu Application Platform v1.1

VMware, Inc 592

Obtaining logs

Kubernetes pods emit logs. The deployment has two pods: one for the database and one for the API

back end.

Use kubectl get pods to obtain the names of the pods by running:

kubectl get pods -n metadata-store

For example:

$ kubectl get pods -n metadata-store

NAME READY STATUS RESTARTS AGE

metadata-store-app-67659bbc66-2rc6k 2/2 Running 0 4d3h

metadata-store-db-64d5b88587-8dns7 1/1 Running 0 4d3h

The database pod has prefix metadata-store-db- and the API backend pod has the prefix metadata-

store-app-. Use kubectl logs to get the logs from the pod you’re interested in. For example, to see

the logs of the database pod, run:

$ kubectl logs metadata-store-db-64d5b88587-8dns7 -n metadata-store

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

...

The API backend pod has two containers, one for kube-rbac-proxy, and the other for the API

server. Use the --all-containers flag to see logs from both containers. For example:

$ kubectl logs metadata-store-app-67659bbc66-2rc6k --all-containers -n metadata-store

I1206 18:34:17.686135 1 main.go:150] Reading config file: /etc/kube-rbac-proxy/c

onfig-file.yaml

I1206 18:34:17.784900 1 main.go:180] Valid token audiences:

...

API endpoint log output

When an API endpoint handles a request, the Store generates two and five log lines. They are:

1. When the endpoint receives a request, it outputs a Processing request line. This logline is

shown at the default log level.

2. If the endpoint includes query or path parameters, it outputs a Request parameters line. This

line logs the parameters passed in the request. This line is shown at the default log level.

3. If the endpoint takes in a request body, it outputs a Request body line. This line outputs the

entire request body as a string. This line is shown at the debug log level.

4. When the endpoint returns a response, it outputs a Request response line. This line is shown

at the default log level.

5. If the endpoint returns a response body, it outputs a second Request response line with an

extra key payload, and its value is set to the entire response body. This line is shown at the

debug log level.

Tanzu Application Platform v1.1

VMware, Inc 593

Format

When the Store handles a request, it outputs some API endpoint access information in the following

format:

I1122 20:30:21.869528 1 images.go:26] MetadataStore "msg"="Processing request" "

endpoint"="/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f

851d0f4bf57b0bab6" "hostname"="metadata-store-app-564f8995c8-r8d6n" "method"="GET"

The log is broken down into three sections: The header, name, and key/value pairs.

Log header

I1122 20:30:21.869528 1 images.go:26] is the logging header. The Logging header formats

section in GitHub explains each part in more detail.

Name

The string that follows the header is a name that helps identify what produced the log entry. For

Stores, the name always starts with MetadataStore.

For log entries that display the raw SQL queries, the name is MetadataStore/gorm.

Key-value pairs

Key-value pairs compose the rest of the log output. The tables in the following sections list each key

and the meaning of their values.

Common to al l logs

The following key-value pairs are common for all logs.

Key Type
Log

Level
Description

msg strin

g

defau

lt

A short description of the logged event

endp

oint

strin

g

defau

lt

The API endpoint the Metadata Store attempts to handle the request. This also includes any

query and path parameters passed in.

host

name

strin

g

defau

lt

The Kubernetes hostname of the pod handling the request. This helps identify the specific

instance of the Store when you deploy multiple instances on a cluster.

funct

ion

strin

g

debu

g

The function name that handles the request

meth

od

strin

g

defau

lt

The HTTP verb to access the endpoint. For example, “GET” or “POST.”

code integ

er

defau

lt

The HTTP response code

respo

nse

strin

g

defau

lt

The HTTP response in human-readable format. For example, “OK”, “Bad Request”, or

“Internal Server Error.”

Tanzu Application Platform v1.1

VMware, Inc 594

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md#logging-header-formats

Key Type
Log

Level
Description

error strin

g

all The error message which is only available in error log entries

Logging query and path parameter values

Those endpoints that use query or path parameters are logged on the Request parameters logline as

key-value pairs. Afterward, they are appended to all other log lines of the same request as key-value

pairs.

The key names are the query or path parameter’s name, while the value is set to the value of those

parameters in string format.

For example, the following log line contains the digest and id key, which represents the respective

digest and id query parameters, as well as their values:

I1122 20:30:21.869791 1 images.go:34] MetadataStore "msg"="Request parameters" "

endpoint"="/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f

851d0f4bf57b0bab6" "hostname"="metadata-store-app-564f8995c8-r8d6n" "method"="GET" "di

gest"="sha256:20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f851d0f4bf57b0bab6" "id"=0

These key/value pairs show up in all subsequent log lines of the same call. For example:

I1122 20:30:21.878749 1 images.go:56] MetadataStore "msg"="Request response" "di

gest"="sha256:20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f851d0f4bf57b0bab6" "endpo

int"="/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8495f851d0

f4bf57b0bab6" "hostname"="metadata-store-app-564f8995c8-r8d6n" "id"=0 "method"="GET" "

code"=200 "response"="OK"

This is done to ensure:

The application interprets the values of the query or path parameters correctly.

Help figure out which log lines are associated with a particular API request. Since there can

be several simultaneous endpoint calls, this is a first attempt at grouping logs by specific calls.

API payload log output

As mentioned at the start of this section, by setting the log level to debug, the Store logs the body

payload data for both the request and response of an API call.

The debug log level, instead of the default, is used to display this information instead of default

because:

Body payloads can be huge, containing full CycloneDX and SBOM information. Moving the

payload information at this level helps keep the production log output to a reasonable size.

Some information in these payloads may be sensitive, and the user may not want them

exposed in production environment logs.

SQL Query log output

Tanzu Application Platform v1.1

VMware, Inc 595

Some Store logs display the executed SQL query commands when you set the log level to trace or

a failed SQL call occurs.

Note: Some information in these SQL Query trace logs might be sensitive, and the user might not

want them exposed in production environment logs.

Format

When the Store display SQL query logs, it uses the following format:

I0111 20:14:30.816833 1 connection.go:40] MetadataStore/gorm "msg"="Sql Call" "h

ostname"="metadata-store-app-56799fc4f9-phlv7" "rows"=1 "sql"="SELECT count(*) FROM in

formation_schema.tables WHERE table_schema = CURRENT_SCHEMA() AND table_name = 'images

' AND table_type = 'BASE TABLE'"

It is similar to the API endpoint log output format, but also uses the following key-value pairs:

Key Type
Log

Level
Description

row

s

integ

er

trace Indicates the number of rows affected by the SQL query

sql strin

g

trace Displays the raw SQL query for the database

dat

a#

strin

g

all Used in error log entries. You can replace # with an integer because multiples of these keys can

appear in the same log entry. These keys contain extra information related to the error.

Troubleshooting

This topic contains troubleshooting and known issues for Supply Chain Security Tools - Store.

Persistent volume retains data

Symptom

If Supply Chain Security Tools - Store is deployed, deleted, redeployed, and the database password

is changed during the redeployment, the metadata-store-db pod fails to start. This is caused by the

persistent volume used by postgres retaining old data, even though the retention policy is set to

DELETE.

Solution

Caution: Changing the database password deletes your Supply Chain Security Tools - Store data.

To redeploy the app, either use the same database password or follow the steps below to erase the

data on the volume:

1. Deploy metadata-store app by using kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

Tanzu Application Platform v1.1

VMware, Inc 596

#api-endpoint-log-output

kubectl exec -it metadata-store-db-<some-id> -n metadata-store /bin/bash

Where <some-id> is the ID generated by Kubernetes and appended to the pod name.

4. Run rm -rf /var/lib/postgresql/data/* to delete all database data.

Where /var/lib/postgresql/data/* is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app by using kapp.

6. Deploy the metadata-store app by using kapp.

Missing persistent volume

Symptom

After Store is deployed, metadata-store-db pod might fail for missing volume while postgres-db-pv-

claim pvc is in PENDING state. This is because the cluster where Store is deployed does not have

storageclass defined. storageclass’s provisioner is responsible for creating the persistent volume

after metadata-store-db attaches postgres-db-pv-claim.

Solution

1. Verify that your cluster has storageclass by running kubectl get storageclass.

2. Create a storageclass in your cluster before deploying Store. For example:

This is the storageclass that Kind uses

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Multicluster Support: Error sending results to SCST - Store
running in a different cluster

Symptom

The Store Ingress and multicluster support document instructs you on how to create SecretExports

to share secrets for communicating with the Store. During installation, Supply Chain Security Tools -

Scan (Scan) creates the SecretImport for ingesting the TLS CA certificate secret, but misses the

SecretImport for the RBAC Auth token.

Solution

Follow the AWS documentation to install the Amazon EBS CSI Driver before installing Store or

before upgrading to Kubernetes v1.23.

Certificate Expiries

Tanzu Application Platform v1.1

VMware, Inc 597

https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html

Symptom

The Insight CLI or the Scan Controller fails to connect to the Store.

The logs of the metadata-store-app pod show the following error:

$ kubectl logs deployment/metadata-store-app -c metadata-store-app -n metadata-store

...

2022/09/12 21:22:07 http: TLS handshake error from 127.0.0.1:35678: write tcp 127.0.0.

1:9443->127.0.0.1:35678: write: broken pipe

...

or

The logs of metadata-store-db show the following error:

$ kubectl logs statefulset/metadata-store-db -n metadata-store

...

2022-07-20 20:02:51.206 UTC [1] LOG: database system is ready to accept connections

2022-09-19 18:05:26.576 UTC [13097] LOG: could not accept SSL connection: sslv3 alert

 bad certificate

...

Explanation

cert-manager rotates the certificates, but the metadata-store and the PostgreSQL db are unaware of

the change, and are using the old certificates.

Solution

If you see TLS handshake error in the metadata-store-app logs, delete the metadata-store-app pod

and wait for it to come back up.

kubectl delete pod metadata-store-app-xxxx -n metadata-store

If you see could not accept SSL connection in the metadata-store-db logs, delete the metadata-

store-db pod and wait for it to come back up.

kubectl delete pod metadata-store-db-0 -n metadata-store

Troubleshooting upgrading

This topic describes upgrading issues and resolutions.

Database deployment does not exist

To prevent issues with the metadata store database, such as the ones described in this topic, the

database deployment is StatefulSet in

Tanzu Application Platform v1.1 and later

Metadata Store v1.1 and later

If you have scripts searching for a metadata-store-db deployment, edit the scripts to instead search

Tanzu Application Platform v1.1

VMware, Inc 598

for StatefulSet.

Invalid checkpoint record

When using Tanzu to upgrade to a new version of the store, there is occasionally data corruption.

Here is an example of how this shows up in the log:

PostgreSQL Database directory appears to contain a database; Skipping initialization

2022-01-21 21:53:38.799 UTC [1] LOG: starting PostgreSQL 13.5 (Ubuntu 13.5-1.pgdg18.0

4+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0, 64-b

it

2022-01-21 21:53:38.799 UTC [1] LOG: listening on IPv4 address "0.0.0.0", port 5432

2022-01-21 21:53:38.799 UTC [1] LOG: listening on IPv6 address "::", port 5432

2022-01-21 21:53:38.802 UTC [1] LOG: listening on Unix socket "/var/run/postgresql/.s

.PGSQL.5432"

2022-01-21 21:53:38.807 UTC [14] LOG: database system was shut down at 2022-01-21 21:

21:12 UTC

2022-01-21 21:53:38.807 UTC [14] LOG: invalid record length at 0/1898BE8: wanted 24,

got 0

2022-01-21 21:53:38.807 UTC [14] LOG: invalid primary checkpoint record

2022-01-21 21:53:38.807 UTC [14] PANIC: could not locate a valid checkpoint record

2022-01-21 21:53:39.496 UTC [1] LOG: startup process (PID 14) was terminated by signa

l 6: Aborted

2022-01-21 21:53:39.496 UTC [1] LOG: aborting startup due to startup process failure

2022-01-21 21:53:39.507 UTC [1] LOG: database system is shut down

The log shows a database pod in a failure loop. For steps to fix the issue so that the upgrade can

proceed, see the SysOpsPro documentation.

Upgraded pod hanging

Because the default access mode in the PVC is ReadWriteOnce, if you are deploying in an

environment with multiple nodes then each pod might be on a different node. This causes the

upgraded pod to spin up but then get stuck initializing because the original pod does not stop. To

resolve this issue, find and delete the original pod so that the new pod can attach to the persistent

volume:

1. Discover the name of the app pod that is not in a pending state by running:

kubectl get pods -n metadata-store

2. Delete the pod by running:

kubectl delete pod METADATA-STORE-APP-POD-NAME -n metadata-store

Failover, redundancy, and backups

API Server

By default the API server only has 1 replica. If the POD fails, the single instance restarts by normal

Kubernetes behavior, but there is downtime. If the user is upgrading, some downtime is expected in

Tanzu Application Platform v1.1

VMware, Inc 599

https://sysopspro.com/fix-postgresql-error-panic-could-not-locate-a-valid-checkpoint-record/

most cases as well.

Users have the option to configure the number of replicas using the app_replicas field in the scst-

store-values.yaml file.

Database

By default, the database has 1 replica, and restarts with some downtime if it were to fail.

Although the field db_replicas exists and is configurable by the user in the scst-store-values.yaml

file, VMware discourages using it. The default internal database is not intended to be used in

production. For production use AWS RDS. See instructions here.

For the default postgres database deployment (set by default or by setting deploy_internal_db to

true), Velero may be used as the backup method. Read more about using Velero as back up here.

Ingress and multicluster support

Supply Chain Security Tools - Store has ingress support by using Contour’s HTTPProxy resources.

To enable ingress support, a Contour installation must be available in the cluster.

Supply Chain Security Tools - Store’s configuration includes two options to configure the proxy:

ingress_enabled and ingress_domain.

For example:

ingress_enabled: "true"

ingress_domain: "example.com"

Supply Chain Security Tools - Store installation creates an HTTPProxy entry with host routing by

using the qualified name metadata-store.<ingress_domain> (metadata-store.example.com). The

create route supports HTTPS communication through a self-signed certificate with the same subject

Alternative Name.

Contour and DNS setup are not part of Supply Chain Security Tools - Store installation. Access to

Supply Chain Security Tools - Store through Contour depends on the correct configuration of these

two components.

Make the proper DNS record available to clients to resolve metadata-store.<ingress_domain> to

Envoy service’s external IP address.

DNS setup example:

$ kubectl describe svc envoy -n tanzu-system-ingress

> ...

 Type: LoadBalancer

 ...

 LoadBalancer Ingress: 100.2.3.4

 ...

 Port: https 443/TCP

 ...

$ nslookup metadata-store.example.com

> S e r v e r : 8 . 8 . 8 . 8

 A d d r e s s : 8 . 8 . 8 . 8 # 5 3

Tanzu Application Platform v1.1

VMware, Inc 600

 Non-authoritative answer:

 Name: metadata-store.example.com

 Address: 100.2.3.4

$ curl https://metadata-store.example.com/api/health -k -v

> ...

 < HTTP/2 200

 ...

Note: The preceding curl example uses the insecure (-k) flag to skip TLS verification because the

Store installs a self-signed certificate. The following section shows how to access the CA certificate to

enable TLS verification for HTTP clients.

Multicluster setup

To support multicluster setup of Supply Chain Security Tools - Store, some communication secrets

must be shared across the cluster.

Set up the cluster containing Supply Chain Security Tools - Store first and enable Supply Chain

Security Tools - Store ingress for ease of installation. When configuring a second Tanzu Application

Platform cluster, components such as Supply Chain Security Tools - Scan need access to the Store’s

API. This requires access to the TLS CA certificate for HTTPS support and the Authorization access

token.

TLS CA certificate

To get Supply Chain Security Tools - Store’s TLS CA certificate, run:

On the Supply Chain Security Tools - Store's cluster

$ CA_CERT=$(kubectl get secret -n metadata-store ingress-cert -o json | jq -r ".data.\

"ca.crt\"")

$ cat <<EOF > store_ca.yaml

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

 name: store-ca-cert

 namespace: metadata-store-secrets

data:

 ca.crt: $CA_CERT

 tls.crt: ""

 tls.key: ""

EOF

On the second Cluster

Create secrets namespace

$ kubectl create ns metadata-store-secrets

Create the CA Certificate secret

$ kubectl apply -f store_ca.yaml

RBAC Auth token

Tanzu Application Platform v1.1

VMware, Inc 601

To get the Supply Chain Security Tools - Store’s Auth token, run:

$ AUTH_TOKEN=$(kubectl get secrets -n metadata-store -o jsonpath="{.items[?(@.metadata

.annotations['kubernetes\.io/service-account\.name']=='metadata-store-read-write-clien

t')].data.token}" | base64 -d)

Create the corresponding secret on the second cluster. Run:

$ kubectl create secret generic store-auth-token --from-literal=auth_token=$AUTH_TOKEN

 -n metadata-store-secrets

This secret is created in the metadata-store-secrets namespace to be imported by the Supply Chain

Security Tools - Scan.

Supply Chain Security Tools - Scan installation

To allow Supply Chain Security Tools - Scan to access the created secrets, SecretExport resources

must be created.

Note: Corresponding SecretImport resources that receive the exported secrets are installed with the

Supply Chain Security Tools - Scan package.

Here is an example for supporting Supply Chain Security Tools - Scan installation on the default

namespace scan-link-system:

$ cat <<EOF > store_secrets_export.yaml

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

 name: store-ca-cert

 namespace: metadata-store-secrets

spec:

 toNamespace: scan-link-system

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

 name: store-auth-token

 namespace: metadata-store-secrets

spec:

 toNamespace: scan-link-system

EOF

Export secrets to the Supply Chain Security Tools - Scan namespace

$ kubectl apply -f store_secrets_export.yaml

Install Supply Chain Security Tools - Scan with the following configuration:

scanning:

 metadataStore:

 url: https://metadata-store.example.com

 caSecret:

 name: store-ca-cert

Tanzu Application Platform v1.1

VMware, Inc 602

 importFromNamespace: metadata-store-secrets

 authSecret:

 name: store-auth-token

 importFromNamespace: metadata-store-secrets

Overview of VMware Tanzu Developer Tools for Visual Studio
Code

Tanzu Developer Tools for Visual Studio Code (VS Code) is the official VMware Tanzu IDE extension

for VS Code. It helps you develop with the Tanzu Application Platform.

Tanzu Developer Tools for VS Code currently supports VS Code only on macOS for Java

applications.

Extension Features

Deploy applications directly from VS Code Rapidly iterate on your applications on Tanzu

Application Platform by deploying them as workloads directly from within VS Code.

See code updates running on-cluster in seconds With Live Update (facilitated by Tilt), you

can deploy your workload once, save changes to the code and then see those changes

reflected within seconds in the workload running on the cluster.

Debug workloads directly on the cluster Debug your application in a production-like

environment by debugging on your Kubernetes cluster that has Tanzu Application Platform.

An environment’s similarity to production relies on keeping dependencies and other

variables updated.

See workloads running on the cluster From the Workloads panel you can see any workload

found within the cluster and namespace specified in the current kubectl context.

Installing Tanzu Developer Tools for Visual Studio Code

This topic explains how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.27.2 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the Tanzu

Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS

Code.

Tanzu Application Platform v1.1

VMware, Inc 603

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio

Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from

VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install them

from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the

Settings menu by going to Code > Preferences > Settings under Java > Server: Launch

Mode.

When the JDK and Language Support for Java are configured correctly, you see that the

integrated development environment creates a directory target where the code is compiled.

Configure

To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more informatiom, see the Kubernetes

documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the

following:

Confirm Delete: This controls whether the extension asks for confirmation when

deleting a workload.

Source Image: (Required) The registry location for publishing local source code. For

Tanzu Application Platform v1.1

VMware, Inc 604

https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

example, registry.io/yourapp-source. This must include both a registry and a

project name.

Local Path: (Optional) The path on the local file system to a directory of source code

to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into. The

namespace set in kubeconfig is the default.

Uninstall

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Getting started with Tanzu Developer Tools for Visual Studio
Code

This topic guides you through getting started with VMware Tanzu Developer Tools for Visual Studio

Code (VS Code).

Prerequisite

Install VMware Tanzu Developer Tools for Visual Studio Code.

Ensure you have completed the Installation before continuing on to the following sections.

To use the extension with a project, the project must have these required files:

workload.yaml

catalog-info.yaml

Tiltfile

There are two ways to create these files:

Using the VS Code snippets that Tanzu Developer Tools provide, which create templates in

empty files that you then fill in with the required information. For more information about the

snippets, see the VS Code documentation.

Writing the files by setting up manually.

Create the workload.yaml file

The workload.yaml file provides instructions to the Supply Chain Choreographer to build and

manage a workload.

The extension requires only one workload.yaml per project. The workload.yaml must be a single-

Tanzu Application Platform v1.1

VMware, Inc 605

https://code.visualstudio.com/docs/editor/userdefinedsnippets

document YAML file, not a multidocument YAML file.

Before beginning to write your workload.yaml file, ensure that you know:

The name of your application. For example, my app.

The workload type of your application. For example, web.

The GitHub source code URL. For example, github.com/mycompany/myapp.

The Git branch of the source code that you intend to use. For example, main.

Code snippets

To create a workload.yaml file by using code snippets:

1. (Optional) Create a directory named config in the root directory of your project. For

example, my project/config.

2. Create a file named workload.yaml in the new config directory. For example, my

project/config/workload.yaml.

3. Open the new workload.yaml file in VS Code, enter tanzu workload in the file to trigger

the code snippets, and either press Enter or left-click the tanzu workload text in the

drop-down menu.

4. Fill in the template by pressing the Tab key.

Manual

To create your workload.yaml file manually, follow this example:

apiVersion: carto.run/v1alpa1

kind: Workload

metadata:

 name: APP-NAME

 labels:

 apps.tanzu.vmware.com/workload-type: WORKLOAD-TYPE

 app.kubernetes.io/part-of: APP-NAME

spec:

 source:

 git:

 url: GIT-SOURCE-URL

 ref:

 branch: GIT-BRANCH-NAME

Where:

APP-NAME is the name of your application.

WORKLOAD-TYPE is the type of this workload. For example, web.

GIT-SOURCE-URL is your GitHub source code URL.

GIT-BRANCH-NAME is the Git branch of your source code.

Tanzu Application Platform v1.1

VMware, Inc 606

Alternatively, you can use the Tanzu CLI to create a workload.yaml file. For more information

about the Tanzu CLI command, see Tanzu apps workload apply in the Tanzu CLI documentation.

Create the catalog-info.yaml file

The catalog-info.yaml file enables the workloads of this project to appear in Tanzu Application

Platform GUI.

Before beginning to write your catalog-info.yaml file, ensure that you:

Know the name of your application. For example, my app.

Have a description of your application ready.

Code snippets

To create a catalog-info.yaml file by using the code snippets:

1. (Optional) Create a directory named catalog in the root directory of your project. For

example, my project/catalog.

2. Create a file named catalog-info.yaml in the new config directory. For example, my

project/catalog/catalog-info.yaml.

3. Open the new catalog-info.yaml file in VS Code, enter tanzu catalog-info in the file to

trigger the code snippets, and then either press Enter or left-click the tanzu catalog-

info text in the drop-down menu.

4. Fill in the template by pressing the Tab key.

Manual

To create your catalog-info.yaml file manually, follow this example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: APP-NAME

 description: APP-DESCRIPTION

 tags:

 - tanzu

 annotations:

 'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=APP-NAME'

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Where:

APP-NAME is the name of your application

APP-DESCRIPTION is the description of your application

Create the Tiltfile file

Tanzu Application Platform v1.1

VMware, Inc 607

The Tiltfile file provides the Tilt configuration to enable your project to Live Update on your

Kubernetes cluster that has Tanzu Application Platform. The Tanzu Developer Tools extension

requires only one Tiltfile per project.

Before beginning to write your Tiltfile file, ensure that you know:

The name of your application. For example, my app.

The value of the source image. For example, docker.io/mycompany/myapp.

Whether you want to compile the source image from a local directory other than the project

directory or otherwise leave the local path value unchanged. For more information, see

local path in the glossary.

The path to your workload.yaml file. For example, config/workload.yaml.

The name of your current Kubernetes context, if the targeting Kubernetes cluster enabled

by Tanzu Application Platform is not running on your local machine.

Code Snippets

To create a Tiltfile file by using the code snippets:

1. Create a file named Tiltfile with no file extension in the root directory of your project.

For example, my project/Tiltfile.

2. Open the new Tiltfile file in VS Code and enter tanzu tiltfile in the file to trigger the

code snippets, and then either press Enter or left-click the tanzu tiltfile text in the

drop-down menu.

3. Fill in the template by pressing the Tab key.

4. If the targeting Kubernetes cluster enabled by Tanzu Application Platform is not running

on your local machine, add a new line to the end of the Tiltfile template and enter:

allow_k8s_contexts('CONTEXT-NAME')

Where CONTEXT-NAME is the name of your current Kubernetes context.

Manual

To create a Tiltfile file manually, follow this example:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='SOURCE-IMAGE')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

k8s_custom_deploy(

 'APP-NAME',

 apply_cmd="tanzu apps workload apply -f PATH-TO-WORKLOAD-YAML --live-update" +

 " --local-path " + LOCAL_PATH +

 " --SOURCE-IMAGE " + SOURCE_IMAGE +

 " --namespace " + NAMESPACE +

Tanzu Application Platform v1.1

VMware, Inc 608

https://docs.tilt.dev/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

 " --yes >/dev/null" +

 " && kubectl get workload APP-NAME --namespace " + NAMESPACE + " -o yaml",

 delete_cmd="tanzu apps workload delete -f PATH-TO-WORKLOAD-YAML --namespace " + N

AMESPACE + " --yes" ,

 deps=['pom.xml', './target/classes'],

 container_selector='workload',

 live_update=[

 sync('./target/classes', '/workspace/BOOT-INF/classes')

]

)

k8s_resource('APP-NAME', port_forwards=["8080:8080"],

 extra_pod_selectors=[{'carto.run/workload-name': 'APP-NAME', 'app.kubernetes.io/c

omponent': 'run'}])

allow_k8s_contexts('CONTEXT-NAME')

Where:

SOURCE-IMAGE is the value of source image.

APP-NAME is the name of your application.

PATH-TO-WORKLOAD-YAML is the local file system path to workload.yaml. For example,

config/workload.yaml.

CONTEXT-NAME is the name of your current Kubernetes context. If your Kubernetes cluster

enabled by Tanzu Application Platform is running locally on your local machine, you can

remove the entire allow_k8s_contexts line. For more information, see the Tilt

documentation.

Example project

Before you begin, you need a container registry for the sample application.

You can view a sample application that demonstrates the necessary configuration files. There are two

ways to obtain the sample application.

Application Accelerator

If your company has configured Application Accelerator, you can obtain the sample application

from there if it was not removed.

1. Open Application Accelerator.

2. Search for Tanzu Java Web App in Application Accelerator.

3. Add the required configuration information and generate the application.

4. Unzip the file and open the project in a VS Code workspace.

Clone from GitHub

To clone the sample application from GitHub:

1. Run git clone to clone the tanzu-java-web-app repository from GitHub.

2. Open the Tiltfile and replace your-registry.io/project with your container registry.

Tanzu Application Platform v1.1

VMware, Inc 609

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.tilt.dev/api.html#api.allow_k8s_contexts
https://github.com/sample-accelerators/tanzu-java-web-app

Next steps

Proceed to Using Tanzu Developer Tools for VS Code.

Using Tanzu Developer Tools for Visual Studio Code

Ensure the project that you want to use the extension with has the required files specified in Getting

started with Tanzu Developer Tools for Visual Studio Code.

The extension requires only one Tiltfile and one workload.yaml per project. The workload.yaml must

be a single-document YAML file, not a multidocument YAML file.

Configure for multiple projects in the workspace

When working with multiple projects in a single workspace, you can configure the Tanzu Dev Tools

Extension settings on a per-project basis by using the dropdown selector in the Settings page.

Debugging on the cluster

The extension enables you to debug your application on your Kubernetes cluster that has Tanzu

Application Platform.

Debugging requires a workload.yaml file in your project. For information about creating a

workload.yaml file, see Set up Tanzu Developer Tools.

Debugging on the cluster and Live Update cannot be used simultaneously. If you use Live Update

for the current project, ensure that you stop the Tanzu Live Update Run Configuration before

attempting to debug on the cluster. For more information, see Stop Live Update.

Start debugging on the cluster

To start debugging on the cluster:

1. Add a breakpoint in your code.

2. Right-click the workload.yaml file in your project.

3. Select Debug ‘Tanzu Debug Workload…’ in the pop-up menu.

Tanzu Application Platform v1.1

VMware, Inc 610

#set-up-tanzu-dev-tools
https://code.visualstudio.com/docs/editor/debugging#_breakpoints

Stop Debugging on the cluster

To stop debugging on the cluster, you can click the stop button in the Debug overlay.

Alternatively, you can press ⌘+J (Ctrl+J on Windows) to open the panel and then click the trash can

button for the debug task running in the panel.

Tanzu Application Platform v1.1

VMware, Inc 611

Live Update

With the use of Live Update facilitated by Tilt, the extension enables you to deploy your workload

once, save changes to the code, and see those changes reflected in the workload running on the

cluster within seconds.

Live Update requires a workload.yaml file and a Tiltfile in your project. For information about how to

create a workload.yaml and a Tiltfile, see Set up Tanzu Developer Tools.

Live Update and Debugging on the cluster cannot be used simultaneously. If you are currently

debugging on the cluster, stop debugging before attempting to use Live Update.

Start Live Update

You can start Live Update by right-clicking anywhere in the VS Code project explorer and then

clicking Tanzu: Live Update Start in the pop-up menu.

![The VS Code interface showing the Explorer tab with the Tiltfile file right-click me

nu open and the Tanzu: Live Update Start option highlighted.](../images/vscode-startli

veupdate1.png)

Alternatively, you can press ⇧⌘P to open the Command Palette and run the Tanzu: Live Update

Start command.

![Command palette open showing text Tanzu: Live Update Start.](../images/vscode-startl

iveupdate2.png)

Stop Live Update

When Live Update stops, your application continues to run on the cluster, but the changes you

made and saved in your editor are not present in your running application unless you redeploy your

application to the cluster.

You can stop Live Update by right-clicking your project’s Tiltfile and selecting Tanzu: Live Update

Stop.

Tanzu Application Platform v1.1

VMware, Inc 612

https://docs.tilt.dev/
#set-up-tanzu-dev-tools

Tanzu Application Platform v1.1

VMware, Inc 613

Alternatively, you can press ⇧⌘P to open the Command Palette and then run Tanzu: Live Update

Stop.

Deactivate Live Update

You can remove the Live Update capability from your application entirely. This option can be useful

in a troubleshooting scenario. Deactivating Live Update redeploys your workload to the cluster and

removes the Live Update capability.

To deactivate Live Update:

1. Press ⇧⌘P to open the Command Palette.

2. Run Tanzu: Live Update Disable.

3. Type the name of the workload for which you want to deactivate Live Update.

Live Update status

The current status of Live Update is visible on the right side of the status bar at the bottom of the VS

Code window.

The Live Update status bar entry shows the following states:

Live Update Stopped

Live Update Starting…

Live Update Running

The Live Update status bar entry can be hidden by right-clicking on it and selecting Hide ‘Tanzu

Developer Tools (Extension)’.

Switch Namespace

To switch the namespace where you created the workload:

1. Navigate to settings (Code > Preferences > Settings).

2. Expand the Extensions section of the Settings and select Tanzu.

Tanzu Application Platform v1.1

VMware, Inc 614

3. In the Namespace option, add the namespace you want to deploy to. This defaults to the

default namespace.

Pinniped compatibility

This topic covers the compatibility details of Pinniped in GitHub.

Oauth

Oauth login is compatible only when both --skip-browser and --skip-listen flags are not set.

LDAP

LDAP authentication is not compatible with VMware Tanzu Developer Tools for Visual Studio Code.

Tanzu API portal

API portal for VMware Tanzu enables API consumers to find APIs they can use in their own

applications. Consumers can view detailed API documentation and try out an API to see if it can

meet their needs. API portal assembles its dashboard and detailed API documentation views by

ingesting OpenAPI documentation from the source URLs. An API portal operator can add any

number of OpenAPI source URLs in a single instance.

For more information about Tanzu API portal, see API portal for VMware Tanzu.

Tanzu Application Platform v1.1

VMware, Inc 615

https://github.com/vmware-tanzu/pinniped
https://docs.pivotal.io/api-portal

Install Tanzu API portal

This document describes how to install Tanzu API portal from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Tanzu API portal:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install

To install Tanzu API portal:

1. Check what versions of API portal are available to install by running:

tanzu package available list -n tap-install api-portal.tanzu.vmware.com

For example:

$ tanzu package available list api-portal.tanzu.vmware.com --namespace tap-inst

all

- Retrieving package versions for api-portal.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 api-portal.tanzu.vmware.com 1.0.3 2021-10-13T00:00:00Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get api-portal.tanzu.vmware.com/VERSION-NUMBER --values

-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1.

For example:

$ tanzu package available get api-portal.tanzu.vmware.com/1.0.3 --values-schema

 --namespace tap-install

For more information about values schema options, see the individual product

documentation.

3. Install API portal by running:

tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.com

Note

Follow the steps in this topic if you do not want to use a profile to install API portal.

For more information about profiles, see About Tanzu Application Platform

components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 616

-v 1.0.3

For example:

$ tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.co

m -v 1.0.3

/ Installing package 'api-portal.tanzu.vmware.com'

| Getting namespace 'api-portal'

| Getting package metadata for 'api-portal.tanzu.vmware.com'

| Creating service account 'api-portal-api-portal-sa'

| Creating cluster admin role 'api-portal-api-portal-cluster-role'

| Creating cluster role binding 'api-portal-api-portal-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

Added installed package 'api-portal' in namespace 'tap-install'

Tanzu Application Platform GUI

See the following topics for information about Tanzu Application Platform GUI.

Overview of Tanzu Application Platform GUI

Installing Tanzu Application Platform GUI

Accessing Tanzu Application Platform GUI

Catalog operations

Viewing resources on multiple clusters

Authentication

Adding integrations

Database configuration

TechDocs

Tanzu Application Platform GUI plug-ins

Upgrading Tanzu Application Platform GUI

Troubleshoot Tanzu Application Platform GUI

Overview of Tanzu Application Platform GUI

Tanzu Application Platform GUI is a tool for your developers to view your applications and services

running for your organization. This portal provides a central location in which you can view

dependencies, relationships, technical documentation, and the service status.

Tanzu Application Platform GUI is built from the Cloud Native Computing Foundation’s project

Backstage.

Tanzu Application Platform GUI consists of the following components:

Your organization catalog: The catalog serves as the primary visual representation of your

Tanzu Application Platform v1.1

VMware, Inc 617

https://www.cncf.io/
https://backstage.io/

running services (components) and applications (systems).

Tanzu Application Platform GUI plug-ins: These plug-ins expose capabilities regarding

specific Tanzu Application Platform tools. Initially the included plug-ins are:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Supply Chain Choreographer

TechDocs: This plug-in enables you to store your technical documentation in Markdown

format in a source-code repository and display it alongside the relevant catalog entries.

A Git repository: Tanzu Application Platform GUI stores the following in a Git repository:

The structure for your application catalog.

Your technical documentation about the catalog items, if you enable Tanzu

Application Platform GUI TechDocs capabilities.

You can host the structure for your application catalog and your technical documentation in the

same repository as your source code.

Install Tanzu Application Platform GUI

This topic describes how to install Tanzu Application Platform GUI from the Tanzu Application

Platform package repository.

Note

Follow the steps in this topic if you do not want to use a profile to install Tanzu

Application Platform GUI. For more information about profiles, see About Tanzu

Application Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 618

Prerequisites

Before installing Tanzu Application Platform GUI:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

the Tanzu Application Platform Prerequisites.

Create a Git repository for Tanzu Application Platform GUI software catalogs, with a token

allowing read access. Supported Git infrastructure includes:

GitHub

GitLab

Azure DevOps

Install Tanzu Application Platform GUI Blank Catalog

1. Go to the Tanzu Application Platform section of VMware Tanzu Network.

2. Under the list of available files to download, open the tap-gui-catalogs-latest folder.

3. Extract Tanzu Application Platform GUI Blank Catalog to your Git repository. This

serves as the configuration location for your organization’s Catalog inside Tanzu

Application Platform GUI.

Procedure

To install Tanzu Application Platform GUI on a compliant Kubernetes cluster:

1. List version information for the package by running:

tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tap-gui.tanzu.vmware.com 1.0.1 2022-01-10T13:14:23Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get tap-gui.tanzu.vmware.com/VERSION-NUMBER --values-sc

hema --namespace tap-install

Where VERSION-NUMBER is the number you discovered previously. For example, 1.0.1.

For more information about values schema options, see the individual product

documentation.

3. Create tap-gui-values.yaml and paste in the following code:

service_type: ClusterIP

ingressEnabled: true

ingressDomain: "INGRESS-DOMAIN"

app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

Tanzu Application Platform v1.1

VMware, Inc 619

https://network.tanzu.vmware.com/products/tanzu-application-platform/

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-

shared-ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file from

either the included Blank catalog (provided as an additional download named “Blank

Tanzu Application Platform GUI Catalog”) or a Backstage-compliant catalog that

you’ve already built and posted on the Git infrastructure specified in Adding Tanzu

Application Platform GUI integrations.

4. Install the package by running:

tanzu package install tap-gui \

 --package-name tap-gui.tanzu.vmware.com \

 --version VERSION -n tap-install \

 -f tap-gui-values.yaml

Where VERSION is the desired version. For example, 1.0.1.

For example:

$ tanzu package install tap-gui -package-name tap-gui.tanzu.vmware.com --versio

n 1.0.1 -n tap-install -f tap-gui-values.yaml

- Installing package 'tap-gui.tanzu.vmware.com'

| Getting package metadata for 'tap-gui.tanzu.vmware.com'

| Creating service account 'tap-gui-default-sa'

| Creating cluster admin role 'tap-gui-default-cluster-role'

| Creating cluster role binding 'tap-gui-default-cluster-rolebinding'

| Creating secret 'tap-gui-default-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tap-gui' in namespace 'tap-install'

5. Verify that the package installed by running:

tanzu package installed get tap-gui -n tap-install

For example:

$ tanzu package installed get tap-gui -n tap-install

| Retrieving installation details for cc...

NAME: tap-gui

PACKAGE-NAME: tap-gui.tanzu.vmware.com

PACKAGE-VERSION: 1.0.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

Tanzu Application Platform v1.1

VMware, Inc 620

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To access Tanzu Application Platform GUI, use the service you exposed in the service_type

field in the values file.

Accessing Tanzu Application Platform GUI

Use one of the following methods to access Tanzu Application Platform GUI:

Access with the LoadBalancer method (default)

Access with the shared Ingress method

Access with the LoadBalancer method (default)

1. Verify that you specified the service_type for Tanzu Application Platform GUI in tap-

values.yaml, as in this example:

tap_gui:

 service_type: LoadBalancer

2. Obtain the external IP address of your LoadBalancer by running:

kubectl get svc -n tap-gui

3. Access Tanzu Application Platform GUI by using the external IP address with the default port

of 7000. It has the following form:

http://EXTERNAL-IP:7000

Where EXTERNAL-IP is the external IP address of your LoadBalancer.

Access with the shared Ingress method

The Ingress method of access for Tanzu Application GUI uses the shared tanzu-system-ingress

instance of Contour that is installed as part of the Profile installation.

1. The Ingress method of access requires that you have a DNS host name that you can point at

the External IP address of the envoy service that the shared tanzu-system-ingress uses.

Retrieve this IP address by running:

kubectl get service envoy -n tanzu-system-ingress

This returns a value similar to this example:

$ kubectl get service envoy -n tanzu-system-ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

 AGE

envoy LoadBalancer 10.0.242.171 40.118.168.232 80:31389/TCP,443:31780/T

CP 27h

Tanzu Application Platform v1.1

VMware, Inc 621

The IP address in the EXTERNAL-IP field is the one that you point a DNS host record to. Tanzu

Application Platform GUI prepends tap-gui to your provided subdomain. This makes the

final host name tap-gui.YOUR-SUBDOMAIN. You use this host name in the appropriate fields in

the tap-values.yaml file mentioned later.

2. Specify parameters in tap-values.yaml related to Ingress. For example:

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: 'example.com' # This makes the host name tap-gui.example.com

3. Update your other host names in the tap_gui section of your tap-values.yaml with the new

host name. For example:

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: 'example.com' # This makes the host name tap-gui.example.com

Existing tap-values.yaml above

 app_config:

 app:

 baseUrl: http://tap-gui.example.com # No port needed with Ingress

 integrations:

 github: # Other are integrations available

 - host: github.com

 token: GITHUB-TOKEN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.example.com # No port needed with Ingress

 cors:

 origin: http://tap-gui.example.com # No port needed with Ingress

This snippet is from a values file in the Configure Tanzu Application Platform GUI section of

the Profiles installation topic. The new host names are populated based on the example host

name tap-gui.example.com.

4. Update your package installation with your changed tap-values.yaml file by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --versio

n VERSION-NUMBER \

--values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

5. Use a web browser to access Tanzu Application Platform GUI at the host name that you

provided.

Catalog operations

The software catalog setup procedures in this topic make use of Backstage. For more information

about Backstage, see the Backstage documentation.

Tanzu Application Platform v1.1

VMware, Inc 622

#configure-tap-gui
https://backstage.io/docs/features/software-catalog/

Adding catalog entities

This section describes how you can format your own catalog. Creating catalogs consists of building

metadata YAML files stored together with the code. This information is read from a Git-compatible

repository consisting of these YAML catalog definition files. Changes made to the catalog definitions

on your Git infrastructure are automatically reflected every 200 seconds or when manually

registered.

For each catalog entity kind you create, there is a file format you must follow. For information about

all types of entities, see the Backstage documentation.

You can use the example blank catalog described in the Tanzu Application Platform GUI

prerequisites as a foundation for creating user, group, system, and main component YAML files.

Relationship Diagram:

Users and groups

A user entity describes a specific person and is used for identity purposes. Users are members of

one or more groups. A group entity describes an organizational team or unit.

Users and groups have different descriptor requirements in their descriptor files:

User descriptor files require apiVersion, kind, metadata.name, and spec.memberOf.

Group descriptor files require apiVersion, kind, and metadata.name. They also require

spec.type and spec.children where spec.children is another group.

To link a logged-in user to a user entity, include the optional spec.profile.email field.

Sample user entity:

apiVersion: backstage.io/v1alpha1

kind: User

metadata:

 name: default-user

spec:

 profile:

 displayName: Default User

 email: guest@example.com

 picture: https://avatars.dicebear.com/api/avataaars/guest@example.com.svg?backgrou

Tanzu Application Platform v1.1

VMware, Inc 623

https://backstage.io/docs/features/software-catalog/descriptor-format

nd=%23fff

 memberOf: [default-team]

Sample group entity:

apiVersion: backstage.io/v1alpha1

kind: Group

metadata:

 name: default-team

 description: Default Team

spec:

 type: team

 profile:

 displayName: Default Team

 email: team-a@example.com

 picture: https://avatars.dicebear.com/api/identicon/team-a@example.com.svg?backgro

und=%23fff

 parent: default-org

 children: []

More information about user entities and group entities is available in the Backstage documentation.

Systems

A system entity is a collection of resources and components.

System descriptor files require values for apiVersion, kind, metadata.name, and also spec.owner

where spec.owner is a user or group.

A system has components when components specify the system name in the field spec.system.

Sample system entity:

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

 name: backstage

 description: Tanzu Application Platform GUI System

spec:

 owner: default-team

More information about system entities is available in the Backstage documentation.

Components

A component describes a software component, or what might be described as a unit of software.

Component descriptor files require values for apiVersion, kind, metadata.name, spec.type,

spec.lifecycle, and spec.owner.

Some useful optional fields are spec.system and spec.subcomponentOf, both of which link a

component to an entity that it is part of.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: backstage-component

Tanzu Application Platform v1.1

VMware, Inc 624

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-group
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-system

 description: Tanzu Application Platform GUI Component

 annotations:

 'backstage.io/kubernetes-label-selector': 'app=backstage' #Identifies the Kubernet

es objects that make up this component

 'backstage.io/techdocs-ref': dir:. #TechDocs label

spec:

 type: service

 lifecycle: alpha

 owner: default-team

 system: backstage

More information about component entities is available in the Backstage documentation.

Update software catalogs

The following procedures describe how to update software catalogs.

Register components

To update your software catalog with new entities without re-deploying the entire tap-gui package:

1. Go to your Software Catalog page.

2. Click Register Entity at the top-right of the page.

3. Enter the full path to link to an existing entity file and start tracking your entity.

4. Import the entities and view them in your Software Catalog page.

Deregister components

To deregister an entity:

1. Go to your Software Catalog page.

2. Select the entity to deregister, such as component, group, or user.

3. Click the three dots at the top-right of the page and then click Unregister….

Add or change organization catalog locations

To add or change organization catalog locations:

1. Use static configuration to add or change catalog locations.

Update components by changing the catalog location in either the app_config

section of tap-gui-values.yaml or the custom values file you used when installing.

For example:

catalog:

locations:

- type: url

 target: UPDATED-CATALOG-LOCATION

Register components by adding the new catalog location in either the app_config

section of tap-gui-values.yaml or the custom values file you used when installing.

For example:

Tanzu Application Platform v1.1

VMware, Inc 625

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-component

catalog:

locations:

- type: url

 target: EXISTING-CATALOG-LOCATION

- type: url

 target: EXTRA-CATALOG-LOCATION

When targeting GitHub, don’t write the raw URL. Instead, use the URL that you see when

you navigate to the file in the browser. The catalog processor cannot set up the files properly

if you use the raw URL.

Example raw URL: https://raw.githubusercontent.com/user/repo/catalog.yaml

Example target URL: https://github.com/user/repo/blob/main/catalog.yaml

When targeting GitLab, use a scoped route to the catalog file. This is a route with the /-/

separator after the project name. If you don’t use a scoped route, your entity fails to appear

in the catalog.

Example unscoped URL:

https://gitlab.com/group/project/blob/main/catalog.yaml

Example target URL: https://gitlab.com/group/project/-

/blob/main/catalog.yaml

For more information about static catalog configuration, see the Backstage documentation.

2. Update the package to include the catalog by running:

tanzu package installed update backstage \

 --version PACKAGE-VERSION \

 -f VALUES-FILE

3. Verify the status of this update by running:

tanzu package installed list

Install demo apps and their catalogs

To set up one of the demos, you can choose a blank catalog or a sample catalog.

Yelb system

The Yelb demo catalog in GitHub includes all the components that make up the Yelb system and the

default Backstage components.

Install Yelb

1. Download the appropriate file for running the Yelb application itself from GitHub.

2. Install the application on the Kubernetes cluster that you used for Tanzu Application Platform.

Preserve the metadata labels on the Yelb application objects.

Install the Yelb catalog

Tanzu Application Platform v1.1

VMware, Inc 626

https://docs.gitlab.com/ee/development/routing.html#project-routes
https://backstage.io/docs/features/software-catalog/configuration#static-location-configuration
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml

1. From the Tanzu Application Platform downloads page, click tap-gui-catalogs-latest > Tanzu

Application Platform GUI Yelb Catalog.

2. Follow the earlier steps for Adding catalog entities to add catalog-info.yaml.

Viewing resources on multiple clusters in Tanzu Application
Platform GUI

You can configure Tanzu Application Platform GUI to retrieve Kubernetes object details from

multiple clusters and then surface those details in the Runtime Resources Visibility plug-in.

Set up a Service Account to view resources on a cluster

To view resources on a cluster, you must create a service account on the cluster that can get, watch,

and list resources on that cluster. You first create a ClusterRole with these rules and a

ServiceAccount in its own Namespace, and then bind the ClusterRole to the ServiceAccount.

To do so:

1. Copy this YAML content into a file called tap-gui-viewer-service-account-rbac.yaml.

apiVersion: v1

kind: Namespace

metadata:

 name: tap-gui

apiVersion: v1

kind: ServiceAccount

metadata:

 namespace: tap-gui

 name: tap-gui-viewer

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: tap-gui-read-k8s

subjects:

- kind: ServiceAccount

 namespace: tap-gui

 name: tap-gui-viewer

roleRef:

 kind: ClusterRole

 name: k8s-reader

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: k8s-reader

rules:

- apiGroups: ['']

 resources: ['pods', 'services', 'configmaps']

 verbs: ['get', 'watch', 'list']

- apiGroups: ['apps']

 resources: ['deployments', 'replicasets']

Tanzu Application Platform v1.1

VMware, Inc 627

https://network.pivotal.io/products/tanzu-application-platform

 verbs: ['get', 'watch', 'list']

- apiGroups: ['autoscaling']

 resources: ['horizontalpodautoscalers']

 verbs: ['get', 'watch', 'list']

- apiGroups: ['networking.k8s.io']

 resources: ['ingresses']

 verbs: ['get', 'watch', 'list']

- apiGroups: ['networking.internal.knative.dev']

 resources: ['serverlessservices']

 verbs: ['get', 'watch', 'list']

- apiGroups: ['autoscaling.internal.knative.dev']

 resources: ['podautoscalers']

 verbs: ['get', 'watch', 'list']

- apiGroups: ['serving.knative.dev']

 resources:

 - configurations

 - revisions

 - routes

 - services

 verbs: ['get', 'watch', 'list']

- apiGroups: ['carto.run']

 resources:

 - clusterconfigtemplates

 - clusterdeliveries

 - clusterdeploymenttemplates

 - clusterimagetemplates

 - clusterruntemplates

 - clustersourcetemplates

 - clustersupplychains

 - clustertemplates

 - deliverables

 - runnables

 - workloads

 verbs: ['get', 'watch', 'list']

- apiGroups: ['source.toolkit.fluxcd.io']

 resources:

 - gitrepositories

 verbs: ['get', 'watch', 'list']

- apiGroups: ['source.apps.tanzu.vmware.com']

 resources:

 - imagerepositories

 verbs: ['get', 'watch', 'list']

- apiGroups: ['conventions.apps.tanzu.vmware.com']

 resources:

 - podintents

 verbs: ['get', 'watch', 'list']

- apiGroups: ['kpack.io']

 resources:

 - images

 - builds

 verbs: ['get', 'watch', 'list']

- apiGroups: ['scanning.apps.tanzu.vmware.com']

 resources:

 - sourcescans

 - imagescans

 - scanpolicies

 verbs: ['get', 'watch', 'list']

- apiGroups: ['tekton.dev']

 resources:

Tanzu Application Platform v1.1

VMware, Inc 628

 - taskruns

 - pipelineruns

 verbs: ['get', 'watch', 'list']

- apiGroups: ['kappctrl.k14s.io']

 resources:

 - apps

 verbs: ['get', 'watch', 'list']

This YAML content creates Namespace, ServiceAccount, ClusterRole, and

ClusterRoleBinding.

2. Create Namespace, ServiceAccount, ClusterRole, and ClusterRoleBinding by running:

kubectl create -f tap-gui-viewer-service-account-rbac.yaml

This ensures the kubeconfig context is set to the cluster with resources to be viewed in

Tanzu Application Platform GUI.

3. Discover the CLUSTER_URL and CLUSTER_TOKEN values by running:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

CLUSTER_TOKEN=$(kubectl -n tap-gui get secret $(kubectl -n tap-gui get sa tap-g

ui-viewer -o=json \

| jq -r '.secrets[0].name') -o=json \

| jq -r '.data["token"]' \

| base64 --decode)

echo CLUSTER_URL: $CLUSTER_URL

echo CLUSTER_TOKEN: $CLUSTER_TOKEN

4. Record the CLUSTER_URL and CLUSTER_TOKEN values for when you Update Tanzu Application

Platform GUI to view resources on multiple clusters later.

Update Tanzu Application Platform GUI to view resources on
multiple clusters

The cluster must be identified to Tanzu Application Platform GUI with the ServiceAccount token and

the cluster Kubernetes control plane URL.

You must add a kubernetes section to the app_config file that Tanzu Application Platform GUI uses.

This section must have an entry for each cluster that has resources to view.

To do so:

1. Copy this YAML content into tap-gui-values.yaml:

app_config:

 kubernetes:

 serviceLocatorMethod:

 type: 'multiTenant'

 clusterLocatorMethods:

 - type: 'config'

 clusters:

 - url: CLUSTER-URL

Tanzu Application Platform v1.1

VMware, Inc 629

 name: CLUSTER-NAME

 authProvider: serviceAccount

 serviceAccountToken: "CLUSTER-TOKEN"

 skipTLSVerify: true

Where:

CLUSTER-URL is the value you discovered earlier.

CLUSTER-TOKEN is the value you discovered earlier.

CLUSTER-NAME is a unique name of your choice.

If there are resources to view on the cluster that hosts Tanzu Application Platform GUI, add

an entry to clusters for it as well.

2. Update the tap-gui package by running this command:

tanzu package installed update tap-gui -n tap-install --values-file tap-gui-val

ues.yaml

3. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile

succeeded by running:

tanzu package installed get tap-gui -n tap-install

View resources on multiple clusters in the Runtime Resources
Visibility plug-in

To view resources on multiple clusters in the Runtime Resources Visibility plug-in:

1. Navigate to the Runtime Resources Visibility plug-in for a component that is running on

multiple clusters.

2. View the multiple resources and their statuses across the clusters.

Tanzu Application Platform v1.1

VMware, Inc 630

Setting up a Tanzu Application Platform GUI authentication
provider

Tanzu Application Platform GUI extends the current Backstage’s authentication plug-in so that you

can see a login page based on the authentication providers configured at installation. This feature is a

work in progress.

Tanzu Application Platform GUI currently supports the following authentication providers:

Auth0

Azure

Bitbucket

GitHub

GitLab

Google

Okta

OneLogin

You can also configure a custom OpenID Connect (OIDC) provider.

Configure an authentication provider

Configure a supported authentication provider or a custom OIDC provider:

To configure a supported authentication provider, see the Backstage authentication

documentation.

To configure a custom OIDC provider, edit your tap-values.yaml file or your custom

configuration file to include an OIDC authentication provider. Configure the OIDC provider

with your OAuth App values. For example:

tap_gui:

 service_type: ClusterIP

 ingressEnabled: "true"

 ingressDomain: "INGRESS-DOMAIN"

 app_config:

 app:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

#Existing values file above

 auth:

 environment: development

 session:

 secret: custom session secret

 providers:

Tanzu Application Platform v1.1

VMware, Inc 631

https://backstage.io/docs/auth/auth0/provider
https://backstage.io/docs/auth/microsoft/provider
https://backstage.io/docs/auth/bitbucket/provider
https://backstage.io/docs/auth/github/provider
https://backstage.io/docs/auth/gitlab/provider
https://backstage.io/docs/auth/google/provider
https://backstage.io/docs/auth/okta/provider
https://backstage.io/docs/auth/onelogin/provider
https://backstage.io/docs/auth/

 oidc:

 development:

 metadataUrl: AUTH-OIDC-METADATA-URL

 clientId: AUTH-OIDC-CLIENT-ID

 clientSecret: AUTH-OIDC-CLIENT-SECRET

 tokenSignedResponseAlg: AUTH-OIDC-TOKEN-SIGNED-RESPONSE-ALG # defau

lt='RS256'

 scope: AUTH-OIDC-SCOPE # default='openid profile email'

 prompt: auto # default=none (allowed values: auto, none, consent, l

ogin)

Where AUTH-OIDC-METADATA-URL is a JSON file with generic OIDC provider configuration. It

contains authorizationUrl and tokenUrl. Tanzu Application Platform GUI reads these values

from metadataUrl, so you must not specify these values explicitly in the earlier authentication

configuration.

You must also the provide the redirect URI of the Tanzu Application Platform GUI instance to

your identity provider. The redirect URI is sometimes called the redirect URL, the callback

URL, or the callback URI. The redirect URI takes the following form:

SCHEME://tap-gui.INGRESS-DOMAIN/api/auth/oidc/handler/frame

Where:

SCHEME is the URI scheme, most commonly http or https

INGRESS-DOMAIN is the host name you selected for your Tanzu Application Platform

GUI instance

When using https and example.com as examples for the two placeholders respectively, the

redirect URI reads as follows:

https://tap-gui.example.com/api/auth/oidc/handler/frame

For more information, see this example in GitHub.

(Optional) Allow guest access

Enable guest access with other providers by adding the following flag under your authentication

configuration:

auth:

 allowGuestAccess: true

(Optional) Customize the login page

Change the card’s title or description for a specific provider with the following configuration:

auth:

 environment: development

 providers:

 ... # auth providers config

 loginPage:

 github:

Tanzu Application Platform v1.1

VMware, Inc 632

https://github.com/backstage/backstage/blob/e4ab91cf571277c636e3e112cd82069cdd6fca1f/app-config.yaml#L333-L347

 title: Github Login

 message: Enter with your GitHub account

For a provider to appear on the login page, ensure it is properly configured under the

auth.providers section of your values file.

Support menu customization

This topic describes how to customize the support menu.

Overview

Many important pages of Tanzu Application Platform GUI have a Support button that displays a pop-

out menu. This menu contains a one-line description of the page the user is looking at, and a list of

support item groupings. For example, the default menu on the Catalog page looks similar to the

following image:

As standard, there are two support item groupings:

Contact Support, which is marked with an email icon and contains a link to VMware Tanzu’s

support portal.

Documentation, which is marked with a docs icon and contains a link to the Tanzu

Application Platform documentation that you are currently reading.

Customizing

The set of support item groupings is completely customizable. However, you might want to offer

custom in-house links for your Tanzu Application Platform users rather than simply sending them to

VMware support and documentation. You can provide this configuration by using your tap-

values.yaml. Here is a configuration snippet, which produces the default support menu:

tap_gui:

 app_config:

 app:

 support:

 url: https://tanzu.vmware.com/support

 items:

 - title: Contact Support

 icon: email

 links:

 - url: https://tanzu.vmware.com/support

 title: Tanzu Support Page

 - title: Documentation

 icon: docs

 links:

 - url: https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/inde

x.html

 title: Tanzu Application Platform Documentation

Structure of the support configuration

Tanzu Application Platform v1.1

VMware, Inc 633

URL

The url field under the support section, for example,

 support:

 url: https://tanzu.vmware.com/support

provides the address of the contact support link that appears on error pages such as this one:

Items

The items field under the support section, for example,

provides the set of support item groupings to display when the support menu is expanded.

Title

The title field on a support item grouping, for example,

 items:

 - title: Contact Support

provides the label for the grouping.

Icon

The icon field on a support item grouping, for example,

 items:

 - icon: email

provides the icon to use for that grouping. The valid choices are:

brokenImage

catalog

chat

dashboard

docs

email

github

group

help

user

warning

Links

Tanzu Application Platform v1.1

VMware, Inc 634

The links field on a support item grouping, for example,

 items:

 - links:

 - url: https://tanzu.vmware.com/support

 title: Tanzu Support Page

is a list of YAML objects that render as links. Each link has the text given by the title field and links

to the value of the url field.

Adding Tanzu Application Platform GUI integrations

You can integrate Tanzu Application Platform GUI with several Git providers. To use an integration,

you must enable it and provide the necessary token or credentials in tap-values.yaml.

Add a GitHub provider integration

To add a GitHub provider integration, edit tap-values.yaml as in this example:

 app_config:

 app:

 baseUrl: http://EXTERNAL-IP:7000

 # Existing tap-values.yaml above

 integrations:

 github: # Other integrations available see NOTE below

 - host: github.com

 token: GITHUB-TOKEN

Where:

EXTERNAL-IP is the external IP address.

GITHUB-TOKEN is a valid token generated from your Git infrastructure of choice. Ensure

GITHUB-TOKEN has the necessary read permissions for the catalog definition files you

extracted from the blank software catalog introduced in the Tanzu Application Platform GUI

prerequisites.

Add a Git-based provider integration that isn’t GitHub

To enable Tanzu Application Platform GUI to read Git-based non-GitHub repositories containing

component information:

1. Add the following YAML to tap-values.yaml:

 app_config:

 # Existing tap-values.yaml above

 backend:

 reading:

 allow:

 - host: "GIT-CATALOG-URL-1"

 - host: "GIT-CATALOG-URL-2" # Including more than one URL is optional

Where GIT-CATALOG-URL-1 and GIT-CATALOG-URL-2 are URLs in a list of URLs that Tanzu

Tanzu Application Platform v1.1

VMware, Inc 635

Application Platform GUI can read when registering new components. For example,

git.example.com. For more information about registering new components, see Adding

catalog entities.

2. Adding the YAML from the previous step currently causes the Accelerators page to break

and not show any accelerators. Provide a value for Application Accelerator as a workaround,

as in this example:

 app_config:

 # Existing tap-values.yaml above

 backend:

 reading:

 allow:

 - host: acc-server.accelerator-system.svc.cluster.local

Add a non-Git provider integration

To add an integration for a provider that isn’t associated with GitHub, see the Backstage

documentation.

Update the package profile

After making changes to tap-values.yaml, update the package profile by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --version VERS

ION-NUMBER --values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is the Tanzu Application Platform version. For example, 1.1.0.

For example:

$ tanzu package installed update tap --package-name tap.tanzu.vmware.com --version 1.

0.0 --values-file tap-values.yaml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

Configuring the Tanzu Application Platform GUI database

The Tanzu Application Platform GUI catalog allows for two approaches for storing catalog

information:

In-memory database: The default option uses an in-memory database and is suitable for test

and development scenarios only. The in-memory database reads the catalog data from Git

URLs that you write in tap-values.yaml.

This data is temporary. Any operations that cause the server pod in the tap-gui namespace

Tanzu Application Platform v1.1

VMware, Inc 636

https://backstage.io/docs/integrations/

to be re-created also cause this data to be rebuilt from the Git location.

This can cause issues when you manually register entities by using the UI because they only

exist in the database and are lost when that in-memory database is rebuilt. If you choose this

method, you lose all user preferences and any manually registered entities when the Tanzu

Application Platform GUI server pod is re-created.

PostgreSQL database: For production use-cases, use a PostgreSQL database that exists

outside the Tanzu Application Platform packaging. The PostgreSQL database stores all the

catalog data persistently both from the Git locations and the UI manual entity registrations.

For production or general-purpose use-cases, VMware recommends using a PostgreSQL database.

Configure a PostgreSQL database

To use a PostgreSQL database:

1. Use the following values in tap-values.yaml:

 backend:

 baseUrl: http://tap-gui.INGRESS-DOMAIN

 cors:

 origin: http://tap-gui.INGRESS-DOMAIN

 # Existing tap-values.yaml above

 database:

 client: pg

 connection:

 host: PG-SQL-HOSTNAME

 port: 5432

 user: PG-SQL-USERNAME

 password: PG-SQL-PASSWORD

 ssl: {rejectUnauthorized: false} # Set to true if using SSL

Where:

PG-SQL-HOSTNAME is the host name of your PostgreSQL database.

PG-SQL-USERNAME is the user name of your PostgreSQL database.

PG-SQL-PASSWORD is the password of your PostgreSQL database.

2. Update the package profile by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --versi

on VERSION-NUMBER --values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.1.0.

For example:

$ tanzu package installed update tap --package-name tap.tanzu.vmware.com --ver

sion 1.1.0 --values-file tap-values.yaml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Tanzu Application Platform v1.1

VMware, Inc 637

Updated package install 'tap' in namespace 'tap-install'

TechDocs

This guide explains how to generate and publish TechDocs for catalogs. For more information, see

the Backstage.io documentation.

Create an Amazon S3 bucket

To create an Amazon S3 bucket:

1. Go to Amazon S3.

2. Click Create bucket.

3. Give the bucket a name.

4. Select the AWS region.

5. Keep Block all public access checked.

6. Click Create bucket.

Configure Amazon S3 access

The TechDocs are published to the S3 bucket that was recently created. You need an AWS user’s

access key to read from the bucket when viewing TechDocs. To configure Amazon S3 access:

1. Create an AWS IAM User Group:

1. Click Create Group.

2. Give the group a name.

3. Click Create Group.

4. Click the new group and navigate to Permissions.

5. Click Add permissions and click Create Inline Policy.

6. Click the JSON tab and replace contents with this JSON replacing BUCKET-NAME with

the bucket name.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "ReadTechDocs",

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket",

 "s3:GetObject"

],

 "Resource": [

 "arn:aws:s3:::BUCKET-NAME",

 "arn:aws:s3:::BUCKET-NAME/*"

Tanzu Application Platform v1.1

VMware, Inc 638

https://backstage.io/docs/features/techdocs/
https://s3.console.aws.amazon.com/s3/home
https://console.aws.amazon.com/iamv2/home#/groups

]

 }

]

}

7. Click Review policy.

8. Give the policy a name and click Create policy.

2. Create an AWS IAM User to add to this group:

1. Click Add users.

2. Give the user a name.

3. Verify Access key - Programmatic access and click Next: Permissions.

4. Verify the IAM Group to add the user to and click Next: Tags.

5. Click Next: Review then click Create user.

6. Record the Access key ID (AWS_READONLY_ACCESS_KEY_ID) and the Secret access key

(AWS_READONLY_SECRET_ACCESS_KEY) and click Close.

Find the catalog locations and their entities’
namespace/kind/name

TechDocs are generated for catalogs that have markdown source files for TechDocs. To find the

catalog locations and their entities’ namespace/kind/name:

1. The catalogs appearing in Tanzu Application Platform GUI are listed in the config values

under app_config.catalog.locations.

2. For a given catalog, clone the catalog’s repository to the local file system.

3. Find the mkdocs.yml that is at the root of the catalog. There is a YAML file describing the

catalog at the same level called catalog-info.yaml.

4. Record the values for namespace, kind, and metadata.name, and the directory path containing

the YAML file.

5. Record the spec.targets in that file.

6. Find the namespace/kind for each of the targets:

1. Navigate to the target’s YAML file.

2. The namespace value is the value of namespace. If it is not specified, it has the value

default.

3. The kind value is the value of kind.

4. The name value is the value of metadata.name.

5. Record the directory path containing the YAML file.

Use the TechDocs CLI to generate and publish TechDocs

VMware uses npx to run the TechDocs CLI, which requires Node.js and npm. To generate and

Tanzu Application Platform v1.1

VMware, Inc 639

https://console.aws.amazon.com/iamv2/home#/users

publish TechDocs by using the TechDocs CLI:

1. Download and install Node.js and npm.

2. Install npx by running:

npm install -g npx

3. Generate the TechDocs for the root of the catalog by running:

npx @techdocs/cli generate --source-dir DIRECTORY-CONTAINING-THE-ROOT-YAML-FILE

 --output-dir ./site

This creates a temporary site directory in your current working directory that contains the

generated TechDocs files.

4. Review the contents of the site directory to verify the TechDocs were generated

successfully.

5. Set environment variables for authenticating with Amazon S3 with an account that has

read/write access:

export AWS_ACCESS_KEY_ID=AWS-ACCESS-KEY-ID

export AWS_SECRET_ACCESS_KEY=AWS-SECRET-ACCESS-KEY

export AWS_REGION=AWS-REGION

6. Publish the TechDocs for the root of the catalog to the Amazon S3 bucket you created

earlier by running:

npx @techdocs/cli publish --publisher-type awsS3 --storage-name BUCKET-NAME --e

ntity NAMESPACE/KIND/NAME --directory ./site

Where NAMESPACE/KIND/NAME are the values for namespace, kind, and metadata.name you

recorded earlier. For example, default/location/yelb-catalog-info.

7. For each of the spec.targets found earlier, repeat the generate and publish commands.

The generate command erases the contents of the site directory before creating new

TechDocs files. Therefore, the publish command must follow the generate command for

each target.

Update techdocs section in app-config.yaml to point to the
Amazon S3 bucket

Update the config values you used during installation to point to the Amazon S3 bucket that has the

published TechDocs files:

1. Add or edit the techdocs section under app_config in the config values with the following

YAML, replacing placeholders with the appropriate values.

techdocs:

 builder: 'external'

 publisher:

 type: 'awsS3'

Tanzu Application Platform v1.1

VMware, Inc 640

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

 awsS3:

 bucketName: BUCKET-NAME

 credentials:

 accessKeyId: AWS-READONLY-ACCESS-KEY-ID

 secretAccessKey: AWS-READONLY-SECRET-ACCESS-KEY

 region: AWS-REGION

 s3ForcePathStyle: false

2. Update your installation from the Tanzu CLI.

If you installed Tanzu Application Platform GUI as part of the Tanzu Application

Platform package (in other words, if you installed it by running tanzu package

install tap ...) then run:

tanzu package installed update tap \

--version PACKAGE-VERSION \

-f VALUES-FILE

Where:

PACKAGE-VERSION is your package version

VALUES-FILE is your values file

If you installed Tanzu Application Platform GUI as its own package (in other words, if

you installed it by running tanzu package install tap-gui ...) then run:

tanzu package installed update tap-gui \

--version PACKAGE-VERSION \

-f VALUES-FILE

Where:

PACKAGE-VERSION is your package version

VALUES-FILE is your values file

3. Verify the status of this update by running:

tanzu package installed list

4. Navigate to the Docs section of your catalog and view the TechDocs pages to verify the

content is loaded from the S3 bucket successfully.

Tanzu Application Platform GUI plug-ins

Overview

Tanzu Application Platform GUI has many pre-integrated plug-ins. You do not need to configure the

plug-ins. To use the plug-in, you must install the Tanzu Application Platform component.

Tanzu Application Platform includes the following GUI plug-ins:

Runtime Resources Visibility

Application Live View

Tanzu Application Platform v1.1

VMware, Inc 641

Application Accelerator

API Documentation

Supply Chain Choreographer

Runtime resources visibility

This topic describes runtime resources visibility.

Introduction

Runtime Resources Visibility plug-in part of Tanzu Application Platform GUI allows users to visualize

their Kubernetes resources associated with their Workloads.

Prerequisite

In order to access the Runtime Resources Visibility plug-in, you must first have successfully installed

Tanzu Application Platform, which includes Tanzu Application Platform GUI.

Visualize Workloads on Tanzu Application Platform GUI

In order to view your applications on Tanzu Application Platform GUI, use the following steps:

1. Develop your application on the Tanzu Application Platform via Application Accelerators

2. Add your application to Tanzu Application Platform GUI Software Catalog

Navigate to the Runtime Resources Visibility screen

You can view the list of running resources and the details of their status, type, namespace, cluster,

and public URL if applicable for the resource type.

To view the list of your running resources:

1. Select your component from the Catalog index page.

2. Select the Runtime Resources tab.

Tanzu Application Platform v1.1

VMware, Inc 642

Knative service details page

To view details about your Knative services, select any resource that has a Knative Service type. In

this page, additional information is available for Knative resources, including:

status

an ownership hierarchy

incoming routes

revisions

pod details

View details for a specific resource

Tanzu Application Platform v1.1

VMware, Inc 643

The Resources index table shows Knative Services, Deployments, pods, ReplicaSets and Kubernetes

Services that match the label indicated in the component’s definition.

You can see a hierarchical structure showing the owner-dependent relationship between the

objects. Resources without an owner are listed in the table as independent elements.

For information about owners and dependents, see the Kubernetes documentation.

See the following example of an expanded index table showing one of the owner resources and its

dependents.

Detail pages

The Runtime Resources Visibility plug-in provides additional details of the Kubernetes resources in

the Detail pages.

Overview card

All detail pages provide an overview card with information related to the selected resource. Most of

the information feeds from the metadata attribute in each object. The following are some attributes

that are displayed in the overview card:

.YAML button

URL (URL is available for Knative services and Kubernetes services)

Type

System

Namespace

Cluster

Tanzu Application Platform v1.1

VMware, Inc 644

https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/

Status card

The status section displays all of the conditions in the resource’s attribute status.conditions. Not all

resources have conditions, and they can vary from one resource to the other.

For more information, see Concepts - Object Spec and Status in the Kubernetes documentation.

Ownership card

Depending on the resource that you are viewing, the ownership section presents all the resources

specified in the metadata.ownerReferences. You can use this section to navigate between resources.

See Owners and Dependents in the Kubernetes documentation.

Tanzu Application Platform v1.1

VMware, Inc 645

https://kubernetes.io/docs/concepts/_print/#object-spec-and-status
https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/

Annotations and Labels

The Annotations and Labels card show information about metadata.annotations and

metadata.labels.

Navigating to Pod Details Page

You can navigate directly to the Pod Details page from the Resources index table.

Tanzu Application Platform v1.1

VMware, Inc 646

Alternatively, you can see the pod table in each resource details page as shown in the following

screenshot.

Navigating to Application Live View

To view additional information about your running applications, see the Application Live View section

in the Pod Details page.

Tanzu Application Platform v1.1

VMware, Inc 647

Application Live View in Tanzu Application Platform GUI

This topic describes Application Live View in Tanzu Application Platform GUI.

Overview

The Application Live View features of the Tanzu Application Platform include sophisticated

components to give developers and operators a view into their running workloads on Kubernetes.

Application Live View shows an individual running process, for example, a Spring Boot application

deployed as a workload resulting in a JVM process running inside of a pod. This is an important

concept of Application Live View: only running processes are recognized by Application Live View.

If there is not a running process inside of a running pod, Application Live View does not show

anything.

Under the hood, Application Live View uses the concept of Spring Boot Actuators to gather data

from those running processes. It visualizes them in a semantically meaningful way and allows users to

interact with the inner workings of the running processes within limited boundaries.

The actuator data serves as the source of truth. Application Live View provides a live view of the data

from inside of the running processes only. Application Live View does not store any of that data for

Tanzu Application Platform v1.1

VMware, Inc 648

further analysis or historical views. This easy-to-use interface provides ways to troubleshoot, learn,

and maintain an overview of certain aspects of the running processes. It gives a level of control to

the users to change some parameters, such as environment properties, without a restart (where the

Spring Boot application, for example, supports that).

Entry point to Application Live View plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To use the

Application Live View plug-in:

Select the relevant component under the Organization Catalog in Tanzu Application

Platform GUI

Select the desired service under Runtime Resources tab

Select the desired pod from the Pods section under Runtime Resources tab

The user can see all the details, do some lightweight troubleshooting and interact with the

application in certain boundaries under the Live View section

Application Live View pages

The following sections describe Application Live View pages.

Details page

This is the default page loaded in the Live View section. This page gives a tabular overview

containing the following information:

application name

instance ID

location

actuator location

health endpoint

direct actuator access

framework

version

new patch version

new major version

build version

The user can navigate between Information Categories by selecting from the drop-down menu on

the top right corner of the page.

Tanzu Application Platform v1.1

VMware, Inc 649

Health page

To navigate to the health page, the user can select the Health option from the Information Category

drop-down menu. The health page provides detailed information about the health of the application.

It lists all the components that make up the health of the application such as readiness, liveness, and

disk space. It displays the status, details associated with each of the components.

Environment page

To navigate to the Environment page, the user can select the Environment option from the

Information Category drop-down menu. The Environment page contains details of the applications’

environment. It contains properties including, but not limited to, system properties, environment

variables, and configuration properties (such as application.properties) in a Spring Boot application.

The page includes the following features:

The UI has search feature that enables the user to search for a property or values.

Each property has a search icon at the right corner which helps the user quickly see all the

occurrences of a specific property key without manually typing in the search field. Clicking

the search button trims down the page to that property name.

The Refresh Scope on the top right corner of the page probes the application to refresh all

the environment properties.

The user can edit existing property by clicking the Override in the row and editing the value.

After the value is saved, the user can see the updated property in the Applied overrides

section at the top of the page.

The Reset resets the environment property to the original state

The user can edit or remove the overridden environment variables in the Applied

Overrides section.

Tanzu Application Platform v1.1

VMware, Inc 650

The Applied Overrides section also enables the user to add new environment properties to

the application.

The management.endpoint.env.post.enabled=true has to be set in the application config properties

of the application and a corresponding, editable Environment has to be present in the application.

Log Levels page

To navigate to the Log Levels page, the user can select the Log Levels option from the Information

Category drop-down menu. The log levels page provides access to the application’s loggers and the

Tanzu Application Platform v1.1

VMware, Inc 651

configuration of their levels.

The user can configure the log levels such as INFO, DEBUG, and TRACE in real time from the UI.

The user can search for a package and edit its respective log level. The user can configure the log

levels at a specific class and package. They can deactivate all the log levels by modifying the log

level of root logger to OFF.

The toggle Changes Only displays the changed log levels. The search feature enables the user to

search by logger name. The Reset resets the log levels to the original state. The Reset All on top

right corner of the page resets all the loggers to default state.

Threads page

To navigate to the Threads page, the user can select the Threads option from the Information

Category drop-down menu.

This page displays all details related to JVM threads and running processes of the application. This

tracks live threads and daemon threads real-time. It is a snapshot of different thread states.

Navigating to a thread state displays all the information about a particular thread and its stack trace.

The search feature enables the user to search for threads by thread ID or state. The refresh icon

refreshes to the latest state of the threads. The user can view more thread details by clicking on the

Thread ID. The page also has a feature to download thread dump for analysis purposes.

Tanzu Application Platform v1.1

VMware, Inc 652

Memory page

To navigate to the Memory page, the user can select the Memory option from the Information

Category drop-down menu.

The memory page highlights the memory use inside of the JVM. It displays a graphical

representation of the different memory regions within heap and non-heap memory. This

visualizes data from inside of the JVM (in case of Spring Boot apps running on a JVM) and

therefore provides memory insights into the application in contrast to “outside” information

about the Kubernetes pod level.

The real-time graphs displays a stacked overview of the different spaces in memory with the

Tanzu Application Platform v1.1

VMware, Inc 653

total memory used and total memory size. The page contains graphs to display the GC

pauses and GC events. The Heap Dump on top right corner allows the user to download

heap dump data.

This graphical visualization happens in real time and shows real-time data only. As mentioned at the

top, the Application Live View features do not store any information. That means the graphs visualize

the data over time only for as long as you stay on that page.

Request Mappings page

To navigate to the Request Mappings page, the user should select the Request Mappings option

from the Information Category drop-down menu.

This page provides information about the application’s request mappings. For each of the mapping, it

displays the request handler method. The user can view more details of the request mapping such

as header metadata of the application. That is, it produces, consumes and HTTP method by clicking

on the mapping.

The search feature enables the user to search on the request mapping or the method. The toggle

/actuator/** Request Mappings displays the actuator related mappings of the application.

When the application actuator endpoint is exposed on management.server.port, the application does

not return any actuator request mappings data in the context. The application displays a message

when the actuator toggle is enabled.

Tanzu Application Platform v1.1

VMware, Inc 654

HTTP Requests page

To navigate to the HTTP Requests page, the user should select the HTTP Requests option from the

Information Category drop-down menu. The HTTP Requests page provides information about HTTP

request-response exchanges to the application.

The graph visualizes the requests per second indicating the response status of all the requests. The

user can filter on the response statuses which include info, success, redirects, client-errors, server-

errors. The trace data is captured in detail in a tabular format with metrics such as timestamp,

method, path, status, content-type, length, time.

The search feature on the table filters the traces based on the search field value. The user can view

Tanzu Application Platform v1.1

VMware, Inc 655

more details of the request such as method, headers, response of the application by clicking on the

timestamp. The refresh icon above the graph loads the latest traces of the application. The toggle

/actuator/** on the top right corner of the page displays the actuator related traces of the

application.

When the application actuator endpoint is exposed on management.server.port, no actuator HTTP

Traces data is returned for the application. In this case, a message is displayed when the actuator

toggle is enabled.

Caches page

Tanzu Application Platform v1.1

VMware, Inc 656

To navigate to the Caches page, the user can select the Caches option from the Information

Category drop-down menu.

The Caches page provides access to the application’s caches. It gives the details of the cache

managers associated with the application including the fully qualified name of the native cache.

The search feature in the Caches Page enables the user to search for a specific cache/cache

manager. The user can clear individual caches by clicking Evict. The user can clear all the caches

completely by clicking Evict All. If there are no cache managers for the application, the message No

cache managers available for the application is displayed.

Configuration Properties page

To navigate to the Configuration Properties page, the user can select the Configuration Properties

option from the Information Category drop-down menu.

The configuration properties page provides information about the configuration properties of the

application. In case of Spring Boot, it displays application’s @ConfigurationProperties beans. It gives a

snapshot of all the beans and their associated configuration properties. The search feature allows the

user to look up for property’s key/value or the bean name.

Conditions page

To navigate to the Conditions page, the user can select the Conditions option from the Information

Category drop-down menu. The conditions evaluation report provides information about the

evaluation of conditions on configuration and auto-configuration classes.

Tanzu Application Platform v1.1

VMware, Inc 657

In case of Spring Boot, this gives the user a view of all the beans configured in the application. When

the user clicks on the bean name, the conditions and the reason for the conditional match is

displayed.

In case of not configured beans, it shows both the matched and unmatched conditions of the bean if

any. In addition to this, it also displays names of unconditional auto configuration classes if any. The

user can filter out on the beans and the conditions using the search feature.

Scheduled Tasks page

To navigate to the Scheduled Tasks page, the user can select the Scheduled Tasks option from the

Information Category drop-down menu.

The scheduled tasks page provides information about the application’s scheduled tasks. It includes

cron tasks, fixed delay tasks and fixed rate tasks, custom tasks and the properties associated with

them.

The user can search for a particular property or a task in the search bar to retrieve the task or

property details.

Tanzu Application Platform v1.1

VMware, Inc 658

Beans page

To navigate to the Beans page, the user can select the Beans option from the Information Category

drop-down menu. The beans page provides information about a list of all application beans and its

dependencies. It displays the information about the bean type, dependencies, and its resource. The

user can search by the bean name or its corresponding fields.

Metrics page

To navigate to the Metrics page, the user can select the Metrics option from the Information

Category drop-down menu.

The metrics page provides access to application metrics information. The user can choose from the

list of various metrics available for the application such as jvm.memory.used, jvm.memory.max,

http.server.request, and so on.

After the metric is chosen, the user can view the associated tags. The user can choose the value of

each of the tags based on filtering criteria. Clicking Add Metric adds the metric to the page which is

refreshed every 5 seconds by default.

The user can pause the auto refresh feature by deactivating the Auto Refresh toggle. The user can

also refresh the metrics manually by clicking Refresh All. The format of the metric value can be

changed according to the user’s needs. They can delete a particular metric by clicking the minus

symbol in the same row.

Tanzu Application Platform v1.1

VMware, Inc 659

Actuator page

To navigate to the Actuator page, the user can select the Actuator option from the Information

Category drop-down menu. The actuator page provides a tree view of the actuator data. The user

can choose from a list of actuator endpoints and parse through the raw actuator data.

Troubleshooting

You might run into cases where a workload running on your cluster does not show up in the

Application Live View overview, the detail pages do not load any information while running, or

similar issues. See Troubleshooting in the Application Live View documentation.

Install Application Live View

This topic describes how to install Application Live View from the Tanzu Application Platform

package repository.

Application Live View installs three packages for full, light, and iterate profiles:

For the view profile, Application Live View installs Application Live View Backend package

(backend.appliveview.tanzu.vmware.com). This installs the Application Live View Backend

Tanzu Application Platform v1.1

VMware, Inc 660

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-troubleshooting.html

component with Tanzu Application Platform GUI in app-live-view namespace.

For the run profile, Application Live View installs Application Live View Connector package

(connector.appliveview.tanzu.vmware.com). This installs the Application Live View

Connector component as DaemonSet in app-live-view-connector namespace.

For the build profile, Application Live View installs Application Live View Conventions

package (conventions.appliveview.tanzu.vmware.com). This installs the Application Live

View Convention Service in app-live-view-conventions namespace.

Use the instructions on this page if you do not want to use a profile to install packages. For more

information about profiles, see Installing the Tanzu Application Platform Package and Profiles.

Prerequisites

Before installing Application Live View, complete all prerequisites to install Tanzu Application

Platform. For more information, see Prerequisites.

Install Application Live View

You can install Application Live View in single cluster or multicluster environment:

Single cluster: All Application Live View components are deployed in a single cluster. The

user can access Application Live View plug-in information of the applications across all the

namespaces in the Kubernetes cluster. This is the default mode of Application Live View.

Multicluster: In a multicluster environment, the Application Live View Backend component

is installed only once in a single cluster and exposes a RSocket registration for the other

clusters using Tanzu shared ingress. Each cluster continues to install the connector as a

DaemonSet. The connectors are configured to connect to the central instance of the

Application Live View Backend.

Install Application Live View Backend

To install Application Live View Backend:

1. List version information for the package by running:

tanzu package available list backend.appliveview.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list backend.appliveview.tanzu.vmware.com --namespace

 tap-install

- Retrieving package versions for backend.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 backend.appliveview.tanzu.vmware.com 1.1.1 2022-04-22T00:00:10Z

2. (Optional) Change the default installation settings by running:

tanzu package available get backend.appliveview.tanzu.vmware.com/VERSION-NUMBER

 --values-schema --namespace tap-install

Tanzu Application Platform v1.1

VMware, Inc 661

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package available get backend.appliveview.tanzu.vmware.com/1.1.1 --valu

es-schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create app-live-view-backend-values.yaml with the following details:

For single cluster environment, use the following values:

ingressEnabled: "false"

For a multicluster environment, use the following values:

ingressEnabled: "true"

ingressDomain: ${INGRESS-DOMAIN}

Where INGRESS-DOMAIN is the top level domain you use for the tanzu-shared-ingress

service’s external IP address. The appliveview subdomain is prepended to the value

provided.

To configure TLS certificate delegation information for the domain, add the following values

to app-live-view-backend-values.yaml:

tls:

 namespace: "NAMESPACE"

 secretName: "SECRET NAME"

Where:

NAMESPACE is the targeted namespace of TLS secret for the domain.

SECRET NAME is the name of TLS secret for the domain.

You can edit the values to suit your project needs or leave the default values as is.

4. Install the Application Live View Backend package by running:

tanzu package install appliveview -p backend.appliveview.tanzu.vmware.com -v VE

RSION-NUMBER -n tap-install -f app-live-view-backend-values.yaml

Where VERSION-NUMBER is the version of the package listed.

For example:

$ tanzu package install appliveview -p backend.appliveview.tanzu.vmware.com -v

1.1.1 -n tap-install -f app-live-view-backend-values.yaml

- Installing package 'backend.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'backend.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-tap-install-sa'

| Creating cluster admin role 'appliveview-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-tap-install-cluster-rolebinding'

Tanzu Application Platform v1.1

VMware, Inc 662

| Creating package resource

| Package install status: Reconciling

Added installed package 'appliveview' in namespace 'tap-install'

The Application Live View Backend component is deployed in app-live-view namespace by

default.

5. Verify the Application Live View Backend package installation by running:

tanzu package installed get appliveview -n tap-install

For example:

tanzu package installed get appliveview -n tap-install

\ Retrieving installation details for appliveview...

NAME: appliveview

PACKAGE-NAME: backend.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.1.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View Connector

To install Application Live View Connector:

1. List version information for the package by running:

tanzu package available list connector.appliveview.tanzu.vmware.com --namespace

 tap-install

For example:

$ tanzu package available list connector.appliveview.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for connector.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 connector.appliveview.tanzu.vmware.com 1.1.1 2022-04-22T00:00:10Z

2. (Optional) Change the default installation settings by running:

tanzu package available get connector.appliveview.tanzu.vmware.com/VERSION-NUMB

ER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package available get connector.appliveview.tanzu.vmware.com/1.1.1 --va

lues-schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

Tanzu Application Platform v1.1

VMware, Inc 663

3. Create app-live-view-connector-values.yaml with the following details:

For single cluster environment, use the following values:

backend:

 sslDisabled: "true"

The Application Live View Connector connects to the cluster-local back end to register

the applications.

For a multicluster environment, use the following values:

backend:

 sslDisabled: "false"

 host: appliveview.INGRESS-DOMAIN

Where INGRESS-DOMAIN is the top level domain the Application Live View Backend exposes

by using tanzu-shared-ingress for the Connectors in other clusters to reach the back end.

Prepend the appliveview subdomain to the provided value.

The sslDisabled boolean flag is treated as a string in Kubernetes YAML. Therefore it must

be specified in double-quotes for the configuration to be picked up.

You can edit the values to suit your project needs or leave the default values as is.

Using the HTTP proxy either on 80 or 443 based on SSL config exposes the Backend

service running on port 7000. The connector connects to the Backend on port 80/443 by

default. Therefore, you are not required to explicitly configure the port field.

4. Install the Application Live View Connector package by running:

tanzu package install appliveview-connector -p connector.appliveview.tanzu.vmwa

re.com -v VERSION-NUMBER -n tap-install -f app-live-view-connector-values.yaml

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package install appliveview-connector -p connector.appliveview.tanzu.vm

ware.com -v 1.1.1 -n tap-install -f app-live-view-connector-values.yaml

| Installing package 'connector.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'connector.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-connector-tap-install-sa'

| Creating cluster admin role 'appliveview-connector-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-connector-tap-install-cluster-role

binding'

- Creating package resource

/ Package install status: Reconciling

Added installed package 'appliveview-connector' in namespace 'tap-install'

Each cluster installs the connector as a DaemonSet. The connector is configured to connect

to the central instance of the Backend. The Application Live View Connector component is

deployed in app-live-view-connector namespace by default.

Tanzu Application Platform v1.1

VMware, Inc 664

5. Verify the Application Live View Connector package installation by running:

tanzu package installed get appliveview-connector -n tap-install

For example:

tanzu package installed get appliveview-connector -n tap-install

 5s

| Retrieving installation details for appliveview-connector...

NAME: appliveview-connector

PACKAGE-NAME: connector.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.1.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Install Application Live View Conventions

To install Application Live View Conventions:

1. List version information for the package by running:

tanzu package available list conventions.appliveview.tanzu.vmware.com --namespa

ce tap-install

For example:

$ tanzu package available list conventions.appliveview.tanzu.vmware.com --names

pace tap-install

- Retrieving package versions for conventions.appliveview.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 conventions.appliveview.tanzu.vmware.com 1.1.1 2022-04-22T00:00:00Z

2. Install the Application Live View Conventions package by running:

tanzu package install appliveview-conventions -p conventions.appliveview.tanzu.

vmware.com -v VERSION-NUMBER -n tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.1.1.

For example:

$ tanzu package install appliveview-conventions -p conventions.appliveview.tanz

u.vmware.com -v 1.1.1 -n tap-install

- Installing package 'conventions.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'conventions.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-conventions-tap-install-sa'

| Creating cluster admin role 'appliveview-conventions-tap-install-cluster-role

'

| Creating cluster role binding 'appliveview-conventions-tap-install-cluster-ro

lebinding'

- Creating package resource

\ Package install status: Reconciling

Tanzu Application Platform v1.1

VMware, Inc 665

Added installed package 'appliveview-conventions' in namespace 'tap-install'

3. Verify the package install for Application Live View Conventions package by running:

tanzu package installed get appliveview-conventions -n tap-install

For example:

tanzu package installed get appliveview-conventions -n tap-install

| Retrieving installation details for appliveview-conventions...

NAME: appliveview-conventions

PACKAGE-NAME: conventions.appliveview.tanzu.vmware.com

PACKAGE-VERSION: 1.1.1

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

For more information about Application Live View, see the Application Live View documentation.

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To access the

Application Live View UI, see Application Live View in Tanzu Application Platform GUI.

Application Accelerator in Tanzu Application Platform GUI

This topic describes how to use Application Accelerator in Tanzu Application Platform GUI.

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing and deploying your

applications in a discoverable and repeatable way.

Enterprise architects author and publish accelerator projects that provide developers and operators

with ready-made, enterprise-conforming code and configurations. You can then use Application

Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and

generate new projects to download.

Access Application Accelerator

To open the Application Accelerator UI plug-in and select an accelerator:

1. Within Tanzu Application Platform, click Create in the left navigation pane to open the

Accelerators page.

Tanzu Application Platform v1.1

VMware, Inc 666

https://docs.vmware.com/en/Application-Live-View-for-VMware-Tanzu/1.1/docs/GUID-index.html

Here you can view accelerators already registered with the system. Developers can add new

accelerators by registering them with Kubernetes.

2. Every accelerator has a title and short description. Click VIEW REPOSITORY to view an

accelerator definition. This opens the accelerator’s Git repository in a new browser tab.

3. Search and filter based on text and tags associated with the accelerators to find the

accelerator representing the project you want to create.

4. Click CHOOSE for the accelerator you want. This opens the Generate Accelerators page.

Configure project generation

To configure how projects are generated:

1. On the Generate Accelerators page, add any configuration values needed to generate the

project. The application architect defined these values in accelerator.yaml in the accelerator

definition. Filling some text boxes can cause other text boxes to appear. Fill them all in.

2. Click EXPLORE to open the Explore Project page and view the project before it is

generated.

Tanzu Application Platform v1.1

VMware, Inc 667

3. After configuring your project, click NEXT STEP to see the project summary page.

4. Review the values you specified for the configurable options.

5. Click BACK to make more changes, if necessary. Otherwise, proceed to create the project.

Create the project

To create the project:

1. Click Create to start generating your project. See the progress on the Task Activity page. A

detailed log is displayed on the right.

Tanzu Application Platform v1.1

VMware, Inc 668

2. After the project is generated, click EXPLORE ZIP FILE to open the Explore Project page to

verify configuration.

3. Click DOWNLOAD ZIP FILE to download the project in a ZIP file.

Develop your code

To develop your code:

1. Expand the ZIP file.

2. Open the project in your integrated development environment (IDE).

Next steps

Tanzu Application Platform v1.1

VMware, Inc 669

To learn more about Application Accelerator for VMware Tanzu, see the Application Accelerator

documentation.

Install Application Accelerator

This document describes how to install Application Accelerator from the Tanzu Application Platform

package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

Install Flux SourceController on the cluster. See Install cert-manager, Contour, and FluxCD

Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Configure properties and resource usage

When you install the Application Accelerator, you can configure the following optional properties:

Property Default Description

registry.secret_ref registry.tanzu.vmware.com The secret used for accessing the registry where

the App-Accelerator images are located

server.service_type LoadBalancer The service type for the acc-ui-server service

including LoadBalancer, NodePort, or ClusterIP

server.watched_namespa

ce

accelerator-system The namespace the server watches for accelerator

resources

server.engine_invocation

_url

http://acc-engine.accelerator-

system.svc.cluster.local/invocation

s

The URL to use for invoking the accelerator

engine

engine.service_type ClusterIP The service type for the acc-engine service

including LoadBalancer, NodePort, or ClusterIP

engine.max_direct_mem

ory_size

32M The maximum size for the Java -

XX:MaxDirectMemorySize setting

samples.include True Option to include the bundled sample

Accelerators in the installation

Note

Follow the steps in this topic if you do not want to use a profile to install Application

Accelerator. For more information about profiles, see About Tanzu Application

Platform components and profiles.

Tanzu Application Platform v1.1

VMware, Inc 670

https://docs.vmware.com/en/Application-Accelerator-for-VMware-Tanzu/1.1/acc-docs/GUID-index.html

Property Default Description

ingress.include False Option to include the ingress configuration in the

installation

ingress.enable_tls False Option to include TLS for the ingress

configuration

domain tap.example.com Top-level domain to use for ingress configuration

tls.secretName tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invocatio

n_events_for_no_days

30 The number of days to retain recorded invocation

events resources.

telemetry.record_invocati

on_events

true Should the system record each engine invocation

when generating files for an accelerator?

VMware recommends that you do not override the defaults for registry.secret_ref,

server.engine_invocation_url, or engine.service_type. These properties are only used to

configure non-standard installations.

The following table is the resource usage configurations for the components of Application

Accelerator.

Component Resource requests Resource limits

acc-controller cpu: 100m

memory: 20Mi

cpu: 100m

memory: 30Mi

acc-server cpu: 100m

memory:20Mi

cpu: 100m

memory: 30Mi

acc-engine cpu: 500m

memory: 1Gi

cpu: 500m

memory: 2Gi

Install

To install Application Accelerator:

1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 accelerator.apps.tanzu.vmware.com 0.5.1 2021-12-02T00:00:00Z

2. (Optional) To make changes to the default installation settings, run:

Tanzu Application Platform v1.1

VMware, Inc 671

tanzu package available get accelerator.apps.tanzu.vmware.com/VERSION-NUMBER --

values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get accelerator.apps.tanzu.vmware.com/0.5.1 --values-

schema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create an app-accelerator-values.yaml using the following example code:

server:

 service_type: "LoadBalancer"

 watched_namespace: "accelerator-system"

samples:

 include: true

Edit the values if needed or leave the default values.

Note: For clusters that do not support the LoadBalancer service type, override the default

value for server.service_type.

4. Install the package by running:

tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v V

ERSION-NUMBER -n tap-install -f app-accelerator-values.yaml

Where VERSION-NUMBER is the version included in the Tanzu Application Platform installation.

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v

 1.0.0 -n tap-install -f app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

5. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME: app-accelerator

Tanzu Application Platform v1.1

VMware, Inc 672

PACKAGE-NAME: accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION: 1.0.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To see the IP address for the Application Accelerator API when the server.service_type is

set to LoadBalancer, run the following command:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the

Accelerator plug-in generate command.

API documentation plug-in in Tanzu Application Platform GUI

This section provides a general overview of the API documentation plug-in of the Tanzu Application

Platform GUI. For more information, see Getting started with API documentation plug-in.

Overview

The API documentation plug-in provides a standalone list of APIs that can be connected to

components and systems of the Tanzu Application Platform GUI software catalog.

Each API entity can reflect the components that provide that API and the list of components that are

consumers of that API. Also, an API entity can be associated to systems and show up on the system

diagram. To show such dependency, make the spec.providesApis: and spec.consumesApis:

sections of the component definition files reference the name of the API entity.

Here’s a sample of how you can add providesApis and consumesApis to an existing component’s

catalog definition, linking them together.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: example-component

 description: Example Component

spec:

 type: service

 lifecycle: experimental

 owner: team-a

 system: example-system

 providesApis: # list of APIs provided by the Component

 - example-api-1

 consumesApis: # list of APIs consumed by the Component

 - example-api-2

For more information about the structure of the definition file for an API entity, see the Backstage

Kind: API documentation. For more information about the API documentation plug-in, see the

Backstage API documentation in GitHub.

Tanzu Application Platform v1.1

VMware, Inc 673

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-api
https://github.com/backstage/backstage/blob/master/plugins/api-docs/README.md

Use the API documentation plug-in

The API documentation plug-in is part of Tanzu Application Platform GUI.

The first way to use the API documentation plug-in is API-first. Click APIs in the left-hand navigation

sidebar of Tanzu Application Platform GUI. This opens the API catalog page.

On that page, you can view all the APIs already registered in the catalog regardless of whether they

are associated with components or systems.

The second way to use the API documentation plug-in is by using components and systems of the

software catalog, listed on the home page of Tanzu Application Platform GUI. If there is an API entity

associated with the selected component or system, the VIEW API icon is active.

The VIEW API tab displays which APIs are being consumed by a component and which APIs are

being provided by the component.

Tanzu Application Platform v1.1

VMware, Inc 674

Clicking on the API itself takes you to the catalog entry for the API, which the Kind type listed in the

upper-left corner denotes. Every API entity has a title and short description, including a reference to

the team that owns the definition of that API and the software catalog objects that are connected to

it.

By choosing the Definition tab on the top of the API page, you can see the definition of that API in

human-readable and machine-readable format.

The API documentation plug-in supports the following API formats:

OpenAPI 2 & 3

AsyncAPI

GraphQL

Tanzu Application Platform v1.1

VMware, Inc 675

Plain (to support any other format)

Create a new API entry

To create a new API entity, you must follow the same steps as if you were registering any other

software catalog entity:

1. Click the Home icon located on the left-side navigation bar to access the home page of

Tanzu Application Platform GUI.

2. Click REGISTER ENTITY.

3. Register an existing component prompts you to type a repository URL. Paste the link to the

catalog-info.yaml file of your choice that contains the definition of your API entity. For

example, you can copy the following YAML content and save it as catalog-info.yaml on a

Git repository of your choice.

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

 name: demo-api

 description: The demo API for Tanzu Application Platform GUI

 links:

 - url: https://api.agify.io

 title: API Definition

 icon: docs

spec:

 type: openapi

 lifecycle: experimental

 owner: demo-team

 system: demo-app # Or specify system name of your choice

 definition: |

 openapi: 3.0.1

 info:

 title: defaultTitle

 description: defaultDescription

 version: '0.1'

 servers:

 - url: https://api.agify.io

 paths:

 /:

 get:

Tanzu Application Platform v1.1

VMware, Inc 676

 description: Auto generated using Swagger Inspector

 parameters:

 - name: name

 in: query

 schema:

 type: string

 example: type_any_name

 responses:

 '200':

 description: Auto generated using Swagger Inspector

 content:

 application/json; charset=utf-8:

 schema:

 type: string

 examples: {}

4. Click ANALYZE and then review the catalog entities to be added.

5. Click IMPORT.

6. Click APIs on the left-hand side navigation panel to view entries on the API page.

Getting started with API documentation plug-in

This topic describes how to get started with the API documentation plug-in.

Add your API entry to the Tanzu Application Platform GUI
software catalog

Tanzu Application Platform v1.1

VMware, Inc 677

In this section, you will:

Learn about API entities of the Software Catalog

Add a demo API entity and its related Catalog objects to Tanzu Application Platform GUI

Update your demo API entry

About API entities

The list of API entities is visible on the left-hand side navigation panel of Tanzu Application Platform

GUI. It is also visible on the overview page of specific components on the home page. APIs are a

definition of the interface between components.

Their definition is provided in machine-readable (“raw”) and human-readable formats. For more

information, see API plugin documentation.

Add a demo API entity to Tanzu Application Platform GUI software
catalog

To add a demo API entity and its related Catalog objects, follow the same steps as registering any

other software catalog entity:

1. Navigate to the home page of Tanzu Application Platform GUI. Click Home on the left-side

navigation bar. Click REGISTER ENTITY.

2. Register an existing component prompts you to type a repository URL. Type the link to the

catalog-info.yaml file of your choice or use the following sample definition. Save this code

block as catalog-info.yaml, upload it to the Git repository of your choice, and copy the link

to catalog-info.yaml.

This demo setup includes a domain called demo-domain with a single system called demo-

system. This systems consists of two microservices - demo-app-ms-1 and demo-app-ms-1 - and

one API called demo-api that demo-app-ms-1 provides and demo-app-ms-2 consumes.

apiVersion: backstage.io/v1alpha1

kind: Domain

metadata:

 name: demo-domain

 description: Demo Domain for Tanzu Application Platform

Tanzu Application Platform v1.1

VMware, Inc 678

 annotations:

 'backstage.io/techdocs-ref': dir:.

spec:

 owner: demo-team

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: demo-app-ms-1

 description: Demo Application's Microservice-1

 tags:

 - microservice

 annotations:

 'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=demo-a

pp-ms-1'

 'backstage.io/techdocs-ref': dir:.

spec:

 type: service

 providesApis:

 - demo-api

 lifecycle: alpha

 owner: demo-team

 system: demo-app

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: demo-app-ms-2

 description: Demo Application's Microservice-2

 tags:

 - microservice

 annotations:

 'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=demo-a

pp-ms-2'

 'backstage.io/techdocs-ref': dir:.

spec:

 type: service

 consumesApis:

 - demo-api

 lifecycle: alpha

 owner: demo-team

 system: demo-app

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

 name: demo-app

 description: Demo Application for Tanzu Application Platform

 annotations:

 'backstage.io/techdocs-ref': dir:.

spec:

 owner: demo-team

 domain: demo-domain

Tanzu Application Platform v1.1

VMware, Inc 679

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

 name: demo-api

 description: The demo API for Tanzu Application Platform GUI

 links:

 - url: https://api.agify.io

 title: API Definition

 icon: docs

spec:

 type: openapi

 lifecycle: experimental

 owner: demo-team

 system: demo-app # Or specify system name of your choice

 definition: |

 openapi: 3.0.1

 info:

 title: Demo API

 description: defaultDescription

 version: '0.1'

 servers:

 - url: https://api.agify.io

 paths:

 /:

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: name

 in: query

 schema:

 type: string

 example: type_any_name

 responses:

 '200':

 description: Auto generated using Swagger Inspector

 content:

 application/json; charset=utf-8:

 schema:

 type: string

 examples: {}

3. Paste the link to the catalog-info.yaml and click ANALYZE. Review the catalog entities and

click IMPORT.

Tanzu Application Platform v1.1

VMware, Inc 680

4. Navigate to the API page by clicking APIs on the left-hand side navigation panel. The catalog

changes and entries are visible for further inspection. If you select the system demo-app,

the diagram appears as follows:

Tanzu Application Platform v1.1

VMware, Inc 681

Update your demo API entry

To update your demo API entry:

1. To update your demo API entity, select demo-api from the list of available APIs in your

software catalog and click the Edit icon on the Overview page.

It opens the source catalog-info.yaml file that you can edit. For example, change the

spec.paths.parameters.example from type_any_name to Tanzu and save your changes.

2. After you made the edits, Tanzu Application Platform GUI re-renders the API entry with the

next refresh cycle.

Supply Chain Choreographer in Tanzu Application Platform
GUI

This topic describes Supply Chain Choreographer in Tanzu Application Platform GUI.

Overview

The Supply Chain Choreographer (SCC) plug-in enables you to visualize the execution of a workload

by using any of the installed Out-of-the-Box supply chains. For more information about the Out-of-

Tanzu Application Platform v1.1

VMware, Inc 682

the-Box (OOTB) supply chains that are available in Tanzu Application Platform, see Supply Chain

Choreographer for Tanzu.

Prerequisites

You must have the Full profile or View profile installed on your cluster, which includes Tanzu

Application Platform GUI, or have installed the Tanzu Application Platform GUI package.

Supply Chain Visibility

Before using the SCC plug-in to visualize a workload, you must create a workload.

The workload must have the app.kubernetes.io/part-of label specified, whether you manually

create the workload or use one supplied with the OOTB supply chains.

Use the left sidebar navigation to access your workload and visualize it in the supply chain that is

installed on your cluster.

The example workload described in this topic is named tanzu-java-web-app.

Click tanzu-java-web-app in the WORKLOADS table to navigate to the visualization of the supply

chain.

There are two sections within this view:

The box-and-line diagram at the top shows all the configured CRDs that this supply chain

uses, and any artifacts that the supply chain’s execution outputs

The Stage Detail section at the bottom shows source data for each part of the supply chain

that you select in the diagram view

This is a sample result of the Build stage for the tanzu-java-web-app from using Tanzu Build Service:

Tanzu Application Platform v1.1

VMware, Inc 683

Upgrade Tanzu Application Platform GUI

This topic describes how to upgrade Tanzu Application Platform GUI outside of a Tanzu Application

Platform profile installation. If you installed Tanzu Application Platform through a profile, see

Upgrading Tanzu Application Platform instead.

Considerations

As part of the upgrade, Tanzu Application Platform updates its container with the new version.

As a result, if you installed Tanzu Application Platform GUI without the support of a backing database,

you lose your in-memory data for any manual component registrations when the container restarts.

While the update is pulling the new pod from the registry, users might experience a short UI

interruption and might need to re-authenticate because the in-memory session data is rebuilt.

Upgrade within a Tanzu Application Platform profile

If you installed Tanzu Application Platform GUI as part of a Tanzu Application Platform profile, see

Upgrading Tanzu Application Platform.

Upgrade Tanzu Application Platform GUI individually

These steps only apply to installing Tanzu Application Platform GUI individually, not as part of a Tanzu

Application Platform profile.

Tanzu Application Platform v1.1

VMware, Inc 684

To upgrade Tanzu Application Platform GUI outside of a Tanzu Application Platform profile:

1. Ensure your repository has access to the new version of the package by running:

tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tap-gui.tanzu.vmware.com 1.0.1 2021-12-22 17:45:51 +0000 UTC

 tap-gui.tanzu.vmware.com 1.0.2 2022-01-25 01:57:19 +0000 UTC

2. Perform the package upgrade by using the targeted package update version. Run:

tanzu package installed update tap -p tap-gui.tanzu.vmware.com -v VERSION --va

lues-file TAP-GUI-VALUES.yaml -n tap-install

Where:

VERSION is the desired target version of Tanzu Application Platform GUI.

TAP-GUI-VALUES is the configuration values file that contains the configuration used

when you installed Tanzu Application Platform GUI.

3. Verify that you upgraded your application by running:

tanzu package installed get tap-gui -n tap-install

Troubleshoot Tanzu Application Platform GUI

This topic describes troubleshooting information for problems with installing Tanzu Application

Platform GUI.

Tanzu Application Platform GUI does not work in Safari

Symptom

Tanzu Application Platform GUI does not work in the Safari web browser.

Solution

Currently there is no way to use Tanzu Application Platform GUI in Safari. Please use a different web

browser.

Catalog not found

Symptom

When you pull up Tanzu Application Platform GUI, you get the error Catalog Not Found.

Tanzu Application Platform v1.1

VMware, Inc 685

Cause

The catalog plug-in can’t read the Git location of your catalog definition files.

Solution

1. Ensure you have built your own Backstage-compatible catalog or that you have downloaded

one of the Tanzu Application Platform GUI catalogs from VMware Tanzu Network.

2. Ensure you defined the catalog in the values file that you input as part of installation. To

update this location, change the definition file:

Change the Tanzu Application Platform profile file if installed by using a profile.

Change the standalone Tanzu Application Platform GUI values file if you’re only

installing that package on its own.

 namespace: tap-gui

 service_type: SERVICE-TYPE

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

3. Provide the proper integration information for the Git location you specified earlier.

 namespace: tap-gui

 service_type: SERVICE-TYPE

 app_config:

 app:

 baseUrl: https://EXTERNAL-IP:PORT

 integrations:

 gitlab: # Other integrations available

 - host: GITLAB-HOST

 apiBaseUrl: https://GITLAB-URL/api/v4

 token: GITLAB-TOKEN

You can substitute for other integrations as defined in the Backstage documentation.

Issues updating the values file

Symptom

After updating the configuration of Tanzu Application Platform GUI, either by using a profile or as a

standalone package installation, you don’t know whether the configuration has reloaded.

Solution

1. Get the name you need by running:

kubectl get pods -n tap-gui

For example:

Tanzu Application Platform v1.1

VMware, Inc 686

https://backstage.io/
https://backstage.io/docs/integrations/

$ kubectl get pods -n tap-gui

NAME READY STATUS RESTARTS AGE

server-6b9ff657bd-hllq9 1/1 Running 0 13m

2. Read the log of the pod to see if the configuration reloaded by running:

kubectl logs NAME -n tap-gui

Where NAME is the value you recorded earlier, such as server-6b9ff657bd-hllq9.

3. Search for a line similar to this one:

2021-10-29T15:08:49.725Z backstage info Reloaded config from app-config.yaml, a

pp-config.yaml

4. If need be, delete and re-instantiate the pod.

Caution: Depending on your database configuration, deleting, and re-instantiating the pod

might cause the loss of user preferences and manually registered entities. If you have

configured an external PostgreSQL database, tap-gui pods are not stateful. In most cases,

state is held in ConfigMaps, Secrets, or the database. For more information, see Configuring

the Tanzu Application Platform GUI database and Register components.

To delete and re-instantiate the pod, run:

kubectl delete pod -l app=backstage -n tap-gui

Pull logs from Tanzu Application Platform GUI

Symptom

You have a problem with Tanzu Application Platform GUI, such as Catalog: Not Found, and don’t

have enough information to diagnose it.

Solution

Get timestamped logs from the running pod and review the logs:

1. Pull the logs by using the pod label by running:

kubectl logs -l app=backstage -n tap-gui

2. Review the logs.

Runtime Resources tab

Here are some common troubleshooting steps for errors presented in the Runtime Resources tab.

Error communicating with Tanzu Application Platform web server

Symptom

Tanzu Application Platform v1.1

VMware, Inc 687

When accessing the Runtime Resource Visibility tab, the system displays Error communicating

with TAP GUI back end.

Causes

An interrupted Internet connection

Error with the back end service

Solution

1. Confirm that you have Internet access.

2. Confirm that the back-end service is running correctly.

3. Confirm the cluster configuration is correct.

No data available

Symptom

When accessing the Runtime Resource Visibility tab, the system displays One or more resources

are missing. This could be due to a label mismatch. Please make sure your resources have

the label(s) "LABEL_SELECTOR".

Cause

No communications error has occurred, but no resources were found.

Solution

Confirm that you are using the correct label:

1. Verify the Component definition includes the annotation backstage.io/kubernetes-label-

selector.

2. Confirm your Kubernetes resources correspond to that label drop-down menu.

Errors retrieving resources

Symptom

When opening the Runtime Resource Visibility tab, the system displays One or more resources

might be missing because of cluster query errors.

The reported errors might not indicate a real problem. A build cluster might not have runtime CRDs

installed, such as Knative Service, and a run cluster might not have build CRDs installed, such as a

Cartographer workload. In these cases, 403 and 404 errors might be false positives.

You might receive the following error messages:

Access error when querying cluster CLUSTER_NAME for resource

KUBERNETES_RESOURCE_PATH (status: 401). Contact your administrator.

Tanzu Application Platform v1.1

VMware, Inc 688

Cause: There is a problem with the cluster configuration.

Solution: Confirm the access token used to request information in the cluster.

Access error when querying cluster CLUSTER_NAME for resource

KUBERNETES_RESOURCE_PATH (status: 403). Contact your administrator.

Cause: The service account used doesn’t have access to the specific resource type in

the cluster.

Solution: If the cluster is the same where Tanzu Application Platform is running,

review the version installed to confirm it contains the desired resource. If the error is

in a watched cluster, review the process to grant access to it in Viewing resources on

multiple clusters in Tanzu Application Platform GUI.

Knative is not installed on CLUSTER_NAME (status: 404). Contact your

administrator.

Cause: The cluster does not have Cloud Native Runtimes installed.

Solution: Install the Knative components by following the instructions in Install Cloud

Native Runtimes.

Error when querying cluster CLUSTER_NAME for resource KUBERNETES_RESOURCE_PATH

(status: 404). Contact your administrator.

Cause: The package that contains the resource is not installed.

Solution: Install the missing package.

Accelerators page

Here are some common troubleshooting steps for errors displayed on the Accelerators page.

No accelerators

Symptom

When the app_config.backend.reading.allow section is configured in the tap-values.yaml file

during the tap-gui package installation, there are no accelerators on the Accelerators page.

Cause

This section in tap-values.yaml overrides the default configuration that gives Tanzu Application

Platform GUI access to the accelerators.

Solution

As a workaround, provide a value for Application Accelerator in this section. For example:

app_config:

 # Existing tap-values yaml above

 backend:

 reading:

 allow:

Tanzu Application Platform v1.1

VMware, Inc 689

 - host: acc-server.accelerator-system.svc.cluster.local

Tanzu Build Service

VMware Tanzu Build Service automates container creation, management, and governance at

enterprise scale. Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn

application source code into container images. It executes reproducible builds aligned with modern

container standards and keeps images up to date. For more information about Tanzu Build Service,

see the Tanzu Build Service Documentation.

Tanzu Build Service Dependencies

Tanzu Build Service requires dependencies in the form of Buildpacks and Stacks to build OCI

images.

Configuration

On non-air-gapped clusters, dependencies are imported as a part of installation of a Tanzu

Application Platform profile or the Tanzu Build Service component.

When creating the values file during installation, include the tanzunet_username, tanzunet_password,

and descriptor_name key-value pairs, in addition to any other buildservice key-value pairs, as in

this example:

… kp_default_repository: REPOSITORY kp_default_repository_username: REGISTRY-USERNAME

kp_default_repository_password: REGISTRY-PASSWORD tanzunet_username: TANZUNET-USERNAME

tanzunet_password: TANZUNET-PASSWORD descriptor_name: DESCRIPTOR-NAME …

Where:

TANZUNET-USERNAME and TANZUNET-PASSWORD are the email address and password that you use

to log in to VMware Tanzu Network.

DESCRIPTOR-NAME is the name of the descriptor to import automatically. For more information,

see Descriptors. Available options are:

lite is the default if not set. It has a smaller footprint, which enables faster

installations.

full is optimized to speed up builds and includes dependencies for all supported

workload types.

Descriptors

Tanzu Build Service descriptors are curated sets of dependencies, including stacks and buildpacks,

that are continuously released on VMware Tanzu Network to resolve all workload Critical and High

CVEs. Descriptors are imported into Tanzu Build Service to update the entire cluster.

There are two types of descriptor, lite and full. The different descriptors can apply to different use

cases and workload types. You can configure which descriptor is imported after installation when

installing Tanzu Application Platform or the Tanzu Build Service component.

For more information, see Descriptors.

Tanzu Application Platform v1.1

VMware, Inc 690

https://buildpacks.io/
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html
https://network.pivotal.io/products/tbs-dependencies/

Automatic Dependency Updates

You can configure Tanzu Build Service to update dependencies in the background as they are

released. This enables workloads to keep up to date automatically.

When creating the values file during installation, include the key-value pair

enable_automatic_dependency_updates: true, in addition to any other buildservice keys, as in this

example:

...

kp_default_repository: REPOSITORY

kp_default_repository_username: REGISTRY-USERNAME

kp_default_repository_password: REGISTRY-PASSWORD

tanzunet_username: TANZUNET-USERNAME

tanzunet_password: TANZUNET-PASSWORD

descriptor_name: DESCRIPTOR-NAME

enable_automatic_dependency_updates: true

...

Manual Control of Dependency Updates

Sometimes you might not want Tanzu Build Service to automatically update dependencies in the

background.

In this case, you can manually manage and update your dependencies individually or automate the

updating configuration yourself in a CI/CD context.

The Tanzu Build Service package in Tanzu Application Platform behaves identically to the standalone

Tanzu Build Service product described in the Tanzu Build Service documentation.

For updating dependencies manually, see Updating Build Service Dependencies.

Install Tanzu Build Service

This document describes how to install Tanzu Build Service from the Tanzu Application Platform

package repository by using the Tanzu CLI.

Note: Use the instructions on this page if you do not want to use a profile to install packages. Both

the full and light profiles include Tanzu Build Service. For more information about profiles, see

Installing the Tanzu Application Platform Package and Profiles.

Note: The following procedure might not include some configurations required for your specific

environment. For more advanced details on installing Tanzu Build Service, see Installing Tanzu Build

Service.

Prerequisites

Before installing Tanzu Build Service:

Complete all prerequisites to install Tanzu Application Platform. For more information, see

Prerequisites.

You must have access to a Docker registry that Tanzu Build Service can use to create builder

images. Approximately 10 GB of registry space is required when using the full descriptor.

Tanzu Application Platform v1.1

VMware, Inc 691

https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-updating-deps.html#bulk-update
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html

Your Docker registry must be accessible with username and password credentials.

Install Tanzu Build Service by using the Tanzu CLI

To install Tanzu Build Service by using the Tanzu CLI:

1. List version information for the package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

For example:

$ tanzu package available list buildservice.tanzu.vmware.com --namespace tap-in

stall

- Retrieving package versions for buildservice.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 buildservice.tanzu.vmware.com 1.5.0 2022-12-17T00:00:00Z

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get buildservice.tanzu.vmware.com/VERSION-NUMBER --valu

es-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

$ tanzu package available get buildservice.tanzu.vmware.com/1.5.0 --values-sche

ma --namespace tap-install

3. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/1.5.0 --values-schema

 --namespace tap-install

4. Create a tbs-values.yaml file.

kp_default_repository: "KP-DEFAULT-REPO"

kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

tanzunet_username: "TANZUNET-USERNAME"

tanzunet_password: "TANZUNET-PASSWORD"

enable_automatic_dependency_updates: TRUE-OR-FALSE-VALUE # Optional, set a

s true or false. Not a string.

Where:

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service

dependencies are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-

project/build-service"

Docker Hub has the form kp_default_repository: "my-dockerhub-

Tanzu Application Platform v1.1

VMware, Inc 692

user/build-service" or kp_default_repository: "index.docker.io/my-

user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-

project/build-service"

KP-DEFAULT-REPO-USERNAME is the name of the user who can write to KP-DEFAULT-

REPO. You can write to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username:

_json_key

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-

REPO. You can write to this location with this credential. This credential can also be

configured by using a Secret reference. For more information, see Installation using

Secret References for registry credentials for details.

For Google Cloud Registry, use the contents of the service account json file.

TANZUNET-USERNAME and TANZUNET-PASSWORD are the email address and password that

you use to log in to VMware Tanzu Network. Your VMware Tanzu Network

credentials enable you to configure the dependencies updater. This resource

accesses and installs the build dependencies (buildpacks and stacks) Tanzu Build

Service needs on your cluster. It can also optionally keep these dependencies up to

date as new versions are released on VMware Tanzu Network. This credential can

also be configured by using a Secret reference. See Installation using Secret

References for registry credentials for details.

DESCRIPTOR-NAME is the name of the descriptor to import. For more information about

which descriptor to choose for your workload and use case, see Descriptors.

Available options are:

lite is the default if unset. It has a smaller footprint, which enables faster

installations.

full is optimized to speed up builds and includes dependencies for all

supported workload types.

Note: By using the tbs-values.yaml configuration,

enable_automatic_dependency_updates: true causes the dependency updater to

update Tanzu Build Service dependencies (buildpacks and stacks) when they are

released on VMware Tanzu Network. You can set

enable_automatic_dependency_updates as false to pause the automatic update of

Build Service dependencies. When automatic updates are paused, the pinned

version of the descriptor for Tanzu Application Platform v1.1.0 is 100.0.293. If left

undefined, this value is false. For information about updating dependencies

manually, see Manual Control of Dependency Updates.

5. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.5.0 -n tap-inst

all -f tbs-values.yaml --poll-timeout 30m

For example:

Tanzu Application Platform v1.1

VMware, Inc 693

https://network.pivotal.io/products/tbs-dependencies#/releases/1086670

$ tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.5.0 -n tap-in

stall -f tbs-values.yaml --poll-timeout 30m

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

Note: Installing the buildservice.tanzu.vmware.com package with Tanzu Network credentials

automatically relocates buildpack dependencies to your cluster. This install process can take

some time and the --poll-timeout flag increases the timeout duration. Using the lite

descriptor speeds this up significantly. If the command times out, periodically run the

installation verification step provided in the following optional step. Image relocation

continues in the background.

6. (Optional) Verify the clusterbuilders that the Tanzu Build Service installation created by

running:

tanzu package installed get tbs -n tap-install

Install Tanzu Build Service using the Tanzu CLI air-gapped

Tanzu Build Service can be installed to a Kubernetes Cluster and registry that are air-gapped from

external traffic.

These steps assume that you have installed the TAP packages in your air-gapped environment.

To install the Tanzu Build Service package air-gapped:

1. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/1.5.0 --values-schema

 --namespace tap-install

2. Create a tbs-values.yaml file. The required fields for an air-gapped installation are:

kp_default_repository: REPOSITORY

kp_default_repository_username: REGISTRY-USERNAME

kp_default_repository_password: REGISTRY-PASSWORD

ca_cert_data: CA-CERT-CONTENTS

Where:

REPOSITORY is the fully qualified path to the Tanzu Build Service repository. This path

must be writable. For example:

Harbor: harbor.io/my-project/build-service

Tanzu Application Platform v1.1

VMware, Inc 694

Artifactory: artifactory.com/my-project/build-service

REGISTRY-USERNAME and REGISTRY-PASSWORD are the user name and password for the

internal registry.

CA-CERT-CONTENTS are the contents of the PEM-encoded CA certificate for the

internal registry

3. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.5.0 -n tap-inst

all -f tbs-values.yaml

For example:

$ tanzu package install tbs -p buildservice.tanzu.vmware.com -v 1.5.0 -n tap-in

stall -f tbs-values.yaml

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

4. Keep Tanzu Build Service dependencies up-to-date.

When installing Tanzu Build Service to an air-gapped environment, dependencies cannot be

automatically pulled in from the external internet. So dependencies must be imported and kept up to

date manually. To import dependencies to an air-gapped Tanzu Build Service, follow the official

Tanzu Build Service docs.

Installation using Secret references for registry credentials

Tanzu Build Service requires credentials for the kp_default_repository and the Tanzu Network

registry.

You can apply them in the values.yaml configuration directly in-line by using _username and

_password fields such as kp_default_repository_username/kp_default_repository_password and

tanzunet_username/tanzunet_password.

If you do not want credentials saved in ConfigMaps in plaintext, you can use Secret references in the

values.yaml configuration to use existing Secrets.

To use Secret references you must create Secrets of type kubernetes.io/dockerconfigjson

containing credentials for kp_default_repository and the VMware Tanzu Network registry.

Use the following alternative configuration for values.yaml:

kp_default_repository: "KP-DEFAULT-REPO"

kp_default_repository_secret:

 name: "KP-DEFAULT-REPO-SECRET-NAME"

Tanzu Application Platform v1.1

VMware, Inc 695

https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-updating-deps.html#online-update

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

tanzunet_secret:

 name: "TANZUNET-SECRET-NAME"

 namespace: "TANZUNET-SECRET-NAMESPACE"

enable_automatic_dependency_updates: TRUE-OR-FALSE-VALUE

Where:

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies

are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-

service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-

service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-

project/build-service"

KP-DEFAULT-REPO-SECRET-NAME is the name of the kubernetes.io/dockerconfigjson Secret

containing credentials for KP-DEFAULT-REPO. You can write to this location with this credential.

KP-DEFAULT-REPO-SECRET-NAMESPACE is the namespace of the

kubernetes.io/dockerconfigjson Secret containing credentials for KP-DEFAULT-REPO. You

can write to this location with this credential.

TANZUNET-SECRET-NAME is the name of the kubernetes.io/dockerconfigjson Secret

containing credentials for VMware Tanzu Network registry.

TANZUNET-SECRET-NAMESPACE is the namespace of the kubernetes.io/dockerconfigjson

Secret containing credentials for the VMware Tanzu Network registry.

DESCRIPTOR-NAME is the name of the descriptor to import. For more information, see

Descriptors. Available options are:

lite is the default if not set. It has a smaller footprint, which enables faster

installations.

full is optimized to speed up builds and includes dependencies for all supported

workload types.

Descriptors

This topic describes the descriptors that are available so you can choose which option to configure

depending on your use case.

About descriptors

Tanzu Build Service descriptors are curated sets of dependencies, including stacks and buildpacks,

that are continuously released on VMware Tanzu Network to resolve all workload Critical and High

CVEs. Descriptors are imported into Tanzu Build Service to update the entire cluster.

There are two types of descriptor, lite and full, available on the Tanzu Network Build Service

Dependencies page. The different descriptors can apply to different use cases and workload types.

For the differences between the descriptors, see Descriptor comparison.

Tanzu Application Platform v1.1

VMware, Inc 696

https://network.pivotal.io/products/tbs-dependencies/

You configure which descriptor is imported when installing Tanzu Build Service.

Lite descriptor

The Tanzu Build Service lite descriptor is the default descriptor selected if none is configured.

It contains a smaller footprint to speed up installation time. However, it does not support all workload

types. For example, the lite descriptor does not contain the PHP buildpack.

The lite descriptor only contains the base stack. The default stack is installed, but is identical to the

base stack. For more information, see Stacks.

Full descriptor

The Tanzu Build Service full descriptor contains more dependencies, which allows for more

workload types.

The dependencies are pre-packaged so builds don’t have to download them from the Internet. This

can speed up build times.

The full descriptor contains the following stacks, which support different use cases:

base

default (identical to base)

full

tiny

For more information, see Stacks. Due to the larger footprint of full, installations might take longer.

Descriptor comparison

Both lite and full descriptors are suitable for production environments.

lite full

Faster installation time Yes No

Dependencies pre-packaged No Yes

Contains base stack Yes Yes

Contains full stack No Yes

Contains tiny stack No Yes

Supports Java workloads Yes Yes

Supports Node.js workloads Yes Yes

Supports Go workloads Yes Yes

Supports Python workloads Yes Yes

Supports .NET Core workloads Yes Yes

Supports PHP workloads No Yes

Tanzu Application Platform v1.1

VMware, Inc 697

https://docs.pivotal.io/tanzu-buildpacks/stacks.html
https://docs.pivotal.io/tanzu-buildpacks/stacks.html

lite full

Supports static workloads Yes Yes

Supports binary workloads Yes Yes

Tekton

Tekton is a cloud-native, open-source framework for creating CI/CD systems. It allows developers to

build, test, and deploy across cloud providers and on-premise systems. For more information about

Tekton, see the Tekton documentation.

Install Tekton

This topic describes how to install Tekton Pipelines from the Tanzu Application Platform package

repository.

Note

Follow the steps in this topic if you do not want to use a profile to install Tekton

Pipelines. For more information about profiles, see About Tanzu Application Platform

components and profiles.

Prerequisites

Before installing Tekton Pipelines, complete all prerequisites to install Tanzu Application Platform.

Install Tekton Pipelines

To install Tekton Pipelines:

1. See the Tekton Pipelines package versions available to install by running:

tanzu package available list -n tap-install tekton.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install tekton.tanzu.vmware.com

\ Retrieving package versions for tekton.tanzu.vmware.com...

 NAME VERSION RELEASED-AT

 tekton.tanzu.vmware.com 0.30.0 2021-11-18 17:05:37Z

2. Install Tekton Pipelines by running:

tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.co

m -v VERSION

Where VERSION is the desired version number. For example, 0.30.0.

For example:

Tanzu Application Platform v1.1

VMware, Inc 698

https://tekton.dev/docs/

$ tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.

com -v 0.30.0

- Installing package 'tekton.tanzu.vmware.com'

\ Getting package metadata for 'tekton.tanzu.vmware.com'

/ Creating service account 'tekton-pipelines-tap-install-sa'

/ Creating cluster admin role 'tekton-pipelines-tap-install-cluster-role'

/ Creating cluster role binding 'tekton-pipelines-tap-install-cluster-rolebindi

ng'

/ Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tekton-pipelines'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'tekton-pipelines'

3. Verify that you installed the package by running:

tanzu package installed get tekton-pipelines -n tap-install

For example:

$ tanzu package installed get tekton-pipelines -n tap-install

\ Retrieving installation details for tekton...

NAME: tekton-pipelines

PACKAGE-NAME: tekton.tanzu.vmware.com

PACKAGE-VERSION: 0.30.0

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Configure a namespace to use Tekton Pipelines

This section covers configuring a namespace to run Tekton Pipelines. If you rely on a SupplyChain to

create Tekton PipelinesRuns in your cluster, skip this step because namespace configuration is

covered in Set up developer namespaces to use installed packages. Otherwise, perform the steps in

this section for each namespace where you create Tekton Pipelines.

Service accounts that run Tekton workloads need access to the image pull secrets for the Tanzu

package. This includes the default service account in a namespace, which is created automatically

but is not associated with any image pull secrets. Without these credentials, PipelineRuns fail with a

timeout and the pods report that they cannot pull images.

To configure a namespace to use Tekton Pipelines:

1. Create an image pull secret in the current namespace and fill it from the tap-registry

secret. For more information, see Relocate images to a registry.

2. Create an empty secret, and annotate it as a target of the secretgen controller, by running:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjson={} -

-type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secret=""

Tanzu Application Platform v1.1

VMware, Inc 699

#add-package-repositories

3. After you create a pull-secret secret in the same namespace as the service account, add

the secret to the service account by running:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "pull-s

ecret"}]}'

4. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name: default

Namespace: default

Labels: <none>

Annotations: <none>

Image pull secrets: pull-secret

Mountable secrets: default-token-xh6p4

Tokens: default-token-xh6p4

Events: <none>

Note: The service account has access to the pull-secret image pull secret.

For more details about Tekton Pipelines, see the Tekton documentation and the GitHub repository.

For information about getting started with Tekton, see the Tekton tutorial in GitHub and the getting

started guide in the Tekton documentation.

Note: Windows workloads are deactivated and cause an error if any Tasks try to use Windows

scripts.

Tanzu Application Platform v1.1

VMware, Inc 700

https://tekton.dev/docs/
https://github.com/tektoncd/pipeline
https://github.com/tektoncd/pipeline/blob/main/docs/tutorial.md
https://tekton.dev/docs/getting-started/

Workload types

Tanzu Application Platform allows you to quickly build and test applications regardless of your

familiarity with Kubernetes. You can turn source code into a workload that runs in a container with a

URL. You can also use supply chains to build applications that process work from a message queue,

or provide arbitrary network services.

A workload allows you to choose application specifications, such as repository location, environment

variables, service binding, and so on. For more information about workload creation and

management, see Command Reference.

Tanzu Application Platform supports a range of workload types, including scalable web applications

(web), traditional application servers (tcp), background applications (queue), and serverless functions.

You can use a collection of workloads of different types to deploy microservices that function as a

logical application, or deploy your entire application as a single monolith.

Using web workloads

The web workload type allows you to deploy web applications on Tanzu Application Platform. Using

an application workload specification, you can turn source code into a scalable, stateless application

that runs in a container with an automatically-assigned URL.

The web workload is a good match for modern web applications that store state in external databases

and follow the 12-factor principles.

The out of the box (OOTB) supply chains include definitions for the web workload type which

leverage Cloud Native Runtimes to provide:

Automatic request-based scaling, including scale-to-zero

Automatic URL provisioning and optional certificate provisioning

Automatic health check definitions if not provided by a convention

Blue-green application rollouts

When creating a workload with tanzu apps workload create, you can use the --type=web argument

to select the web workload type. You can also use the apps.tanzu.vmware.com/workload-type:web

label in the YAML workload description to support this deployment type.

Using TCP workloads (Beta)

This topic describes how to create and install a supply chain for the tcp workload type.

Overview

Tanzu Application Platform v1.1

VMware, Inc 701

https://12factor.net

The tcp workload type allows you to deploy traditional network applications on Tanzu Application

Platform. Using an application workload specification, you can build and deploy application source

code to a manually-scaled Kubernetes deployment which exposes an in-cluster Service endpoint. If

required, you can use environment-specific LoadBalancer Services or Ingress resources to expose

these applications outside the cluster.

The tcp workload is a good match for traditional applications, including HTTP applications, that are

implemented as follows:

Store state locally

Run background tasks outside of requests

Provide multiple network ports or non-HTTP protocols

Are not a good match for the web workload type

Applications using the tcp workload type have the following features:

Do not natively autoscale, but can be used with the Kubernetes Horizontal Pod Autoscaler

By default are exposed only within the cluster using a ClusterIP Service

Use health checks if defined by a convention

Use a rolling update pattern by default

When creating a workload with tanzu apps workload create, you can use the --type=tcp argument

to select the tcp workload type. For more information, see Use the tcp Workload Type later in this

topic. You can also use the apps.tanzu.vmware.com/workload-type:tcp annotation in the YAML

workload description to support this deployment type.

Important: Beta features have been tested for functionality, but not performance. Features enter the

beta stage so that customers can gain early access, and give feedback on the design and behavior.

Beta features might undergo changes based on this feedback before the end of the beta stage.

VMware discourages running beta features in production. VMware cannot guarantee that you can

upgrade any beta feature in the future.

Prerequisites

Before using tcp workloads on Tanzu Application Platform, you must:

Follow all instructions in Installing Tanzu Application Platform.

Follow all instructions in Set up developer namespaces to use installed packages.

Create a tcp SupplyChain

This section describes how to create a supply chain for the tcp workload type.

Create supply chain templates

The tcp supply chain replaces the config-template from the existing out of the box (OOTB) supply

chain with two new templates:

The deployment-and-service-template defines Kubernetes Deployment and Service objects

Tanzu Application Platform v1.1

VMware, Inc 702

that represent the workload, instead of a Knative Service.

The apply-bindings template extends the deployment-and-service-template with

requested ServiceBindings and ResourceClaims.

To create supply chain templates:

1. Create a file using the following YAML manifests:

apiVersion: carto.run/v1alpha1

kind: ClusterConfigTemplate

metadata:

 name: deployment-and-service-template

spec:

 configPath: .data

 ytt: |

 #@ load("@ytt:data", "data")

 #@ load("@ytt:yaml", "yaml")

 #@ def merge_labels(fixed_values):

 #@ labels = {}

 #@ if hasattr(data.values.workload.metadata, "labels"):

 #@ labels.update(data.values.workload.metadata.labels)

 #@ end

 #@ labels.update(fixed_values)

 #@ return labels

 #@ end

 #@ def delivery():

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: #@ data.values.workload.metadata.name

 annotations:

 kapp.k14s.io/update-strategy: "fallback-on-replace"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 selector:

 matchLabels: #@ data.values.config.metadata.labels

 template: #@ data.values.config

 #@ end

 #@ def merge_ports(ports_spec, containers):

 #@ ports = {}

 #@ for c in containers:

 #@ for p in getattr(c, "ports", []):

 #@ ports[p.containerPort] = {"targetPort": p.containerPort, "port": p

.containerPort, "name": getattr(p, "name", str(p.containerPort))}

 #@ end

 #@ end

 #@ for p in ports_spec:

 #@ ports[p.port] = {"targetPort": getattr(p, "containerPort", p.port),

"port": p.port, "name": getattr(p, "name", str(p.port))}

 #@ end

 #@ return ports.values()

 #@ end

 #@ def services():

Tanzu Application Platform v1.1

VMware, Inc 703

 apiVersion: v1

 kind: Service

 metadata:

 name: #@ data.values.workload.metadata.name

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 selector: #@ data.values.config.metadata.labels

 ports:

 #@ declared_ports = {}

 #@ if "ports" in data.values.params:

 #@ declared_ports = data.values.params.ports

 #@ end

 #@ for p in merge_ports(declared_ports, data.values.config.spec.container

s):

 - #@ p

 #@ end

 #@ end

 apiVersion: v1

 kind: ConfigMap

 metadata:

 name: #@ data.values.workload.metadata.name + "-base"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "config" })

 data:

 delivery.yml: #@ yaml.encode(delivery())

 service.yaml: #@ yaml.encode(services())

apiVersion: carto.run/v1alpha1

kind: ClusterConfigTemplate

metadata:

 name: apply-bindings

spec:

 configPath: .data

 ytt: |

 #@ load("@ytt:data", "data")

 #@ load("@ytt:yaml", "yaml")

 #@ load("@ytt:json", "json")

 #@ load("@ytt:struct", "struct")

 #@ def get_claims_extension():

 #@ claims_extension_key = "serviceclaims.supplychain.apps.x-tanzu.vmware.

com/extensions"

 #@ if not hasattr(data.values.workload.metadata, "annotations") or not ha

sattr(data.values.workload.metadata.annotations, claims_extension_key):

 #@ return None

 #@ end

 #@

 #@ extension = json.decode(data.values.workload.metadata.annotations[clai

ms_extension_key])

 #@

 #@ spec_extension = extension.get('spec')

 #@ if spec_extension == None:

 #@ return None

 #@ end

 #@

 #@ return spec_extension.get('serviceClaims')

Tanzu Application Platform v1.1

VMware, Inc 704

 #@ end

 #@ def merge_claims_extension(claim, claims_extension):

 #@ if claims_extension == None:

 #@ return claim.ref

 #@ end

 #@ extension = claims_extension.get(claim.name)

 #@ if extension == None:

 #@ return claim.ref

 #@ end

 #@ extension.update(claim.ref)

 #@ return extension

 #@ end

 #@ def param(key):

 #@ if not key in data.values.params:

 #@ return None

 #@ end

 #@ return data.values.params[key]

 #@ end

 #@ def merge_labels(fixed_values):

 #@ labels = {}

 #@ if hasattr(data.values.workload.metadata, "labels"):

 #@ labels.update(data.values.workload.metadata.labels)

 #@ end

 #@ labels.update(fixed_values)

 #@ return labels

 #@ end

 #@ def merge_annotations(fixed_values):

 #@ annotations = {}

 #@ if hasattr(data.values.workload.metadata, "annotations"):

 #@ # DEPRECATED: remove in a future release

 #@ annotations.update(data.values.workload.metadata.annotations)

 #@ end

 #@ if type(param("annotations")) == "dict" or type(param("annotations"))

== "struct":

 #@ annotations.update(param("annotations"))

 #@ end

 #@ annotations.update(fixed_values)

 #@ return annotations

 #@ end

 #@ def claims():

 #@ claims_extension = get_claims_extension()

 #@ workload = struct.encode(yaml.decode(data.values.configs.app_def.config[

"delivery.yml"]))

 #@ for s in data.values.workload.spec.serviceClaims:

 #@ if claims_extension == None or claims_extension.get(s.name) == None:

 apiVersion: servicebinding.io/v1alpha3

 kind: ServiceBinding

 metadata:

 name: #@ data.values.workload.metadata.name + '-' + s.name

 annotations: #@ merge_annotations({})

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

Tanzu Application Platform v1.1

VMware, Inc 705

 name: #@ s.name

 service: #@ s.ref

 workload:

 apiVersion: #@ workload.apiVersion

 kind: #@ workload.kind

 name: #@ workload.metadata.name

 #@ else:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

 metadata:

 name: #@ data.values.workload.metadata.name + '-' + s.name

 annotations: #@ merge_annotations({})

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 ref: #@ merge_claims_extension(s, claims_extension)

 apiVersion: servicebinding.io/v1alpha3

 kind: ServiceBinding

 metadata:

 name: #@ data.values.workload.metadata.name + '-' + s.name

 annotations: #@ merge_annotations({})

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 name: #@ s.name

 service:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

 name: #@ data.values.workload.metadata.name + '-' + s.name

 workload:

 apiVersion: #@ workload.apiVersion

 kind: #@ workload.kind

 name: #@ workload.metadata.name

 #@ end

 #@ end

 #@ end

 #@ def add_claims():

 #@ if hasattr(data.values.workload.spec, "serviceClaims") and len(data.valu

es.workload.spec.serviceClaims):

 #@ new_data = struct.decode(data.values.configs.app_def.config)

 #@ new_data.update({"serviceclaims.yml":yaml.encode(claims())})

 #@ return new_data

 #@ else:

 #@ return struct.decode(data.values.configs.app_def.config)

 #@ end

 #@ end

 apiVersion: v1

 kind: ConfigMap

 metadata:

 name: #@ data.values.workload.metadata.name + "-claims"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "config" })

 data: #@ add_claims()

2. Apply the YAML file by running the command:

Tanzu Application Platform v1.1

VMware, Inc 706

kubectl apply -f FILENAME

Where FILENAME is the name of the file you created in the previous step.

Add RBAC permissions

Because the queue workload deployment creates different resources, you must extend the

deliverable ClusterRole.

To add the additional role to the cluster:

1. Create a file using the following YAML:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: additional-k8s-deliverable

 labels:

 apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

rules:

- apiGroups: [""]

 resources: ["services"]

 verbs: ["get", "list", "watch", "create", "patch", "update", "delete", "delet

ecollection"]

- apiGroups: ["apps"]

 resources: ["deployments"]

 verbs: ["get", "list", "watch", "create", "patch", "update", "delete", "delet

ecollection"]

2. Apply the YAML file by running the command:

kubectl apply -f FILENAME

Where FILENAME is the name of the file you created in the previous step.

Define the ClusterSupplyChain

To define the ClusterSupplyChain:

1. Create a file using the following YAML and substitute in your registry values from your tap-

values.yaml file:

apiVersion: carto.run/v1alpha1

kind: ClusterSupplyChain

metadata:

 name: tcp

spec:

 params:

 - default: main

 name: gitops_branch

 - default: supplychain

 name: gitops_user_name

 - default: supplychain

 name: gitops_user_email

 - default: supplychain@cluster.local

 name: gitops_commit_message

Tanzu Application Platform v1.1

VMware, Inc 707

 - default: git-ssh

 name: gitops_ssh_secret

 - default:

 - containerPort: 8080

 port: 8080

 name: http

 name: ports

 resources:

 - name: source-provider

 params:

 - name: serviceAccount

 value: default

 - name: gitImplementation

 value: go-git

 templateRef:

 kind: ClusterSourceTemplate

 name: source-template

 - name: deliverable

 params:

 - name: registry

 value:

 repository: REGISTRY-REPO

 server: REGISTRY-SERVER

 templateRef:

 kind: ClusterTemplate

 name: deliverable-template

 - name: image-builder

 params:

 - name: serviceAccount

 value: default

 - name: clusterBuilder

 value: default

 - name: registry

 value:

 repository: REGISTRY-REPO

 server: REGISTRY-SERVER

 sources:

 - name: source

 resource: source-provider

 templateRef:

 kind: ClusterImageTemplate

 name: kpack-template

 - images:

 - name: image

 resource: image-builder

 name: config-provider

 params:

 - name: serviceAccount

 value: default

 templateRef:

 kind: ClusterConfigTemplate

 name: convention-template

 - configs:

 - name: config

 resource: config-provider

 name: app-config

 templateRef:

 kind: ClusterConfigTemplate

 name: deployment-and-service-template

Tanzu Application Platform v1.1

VMware, Inc 708

 - configs:

 - name: app_def

 resource: app-config

 name: apply-bindings

 templateRef:

 kind: ClusterConfigTemplate

 name: apply-bindings

 - configs:

 - name: config

 resource: apply-bindings

 name: config-writer

 params:

 - name: serviceAccount

 value: default

 - name: registry

 value:

 repository: REGISTRY-REPO

 server: REGISTRY-SERVER

 templateRef:

 kind: ClusterTemplate

 name: config-writer-template

 selector:

 apps.tanzu.vmware.com/workload-type: tcp

Where:

REGISTRY-SERVER is the registry server from your tap-values.yaml file.

REGISTRY-REPO is the registry repository from your tap-values.yaml file.

2. Apply the YAML file by running the command:

kubectl apply -f FILENAME

Where FILENAME is the name of the file you created in the previous step.

Use the tcp workload type

The spring-sensors-consumer-web workload in the getting started example using Service Toolkit

claims is a good match for the tcp workload type. This is because it runs continuously to extract

information from a RabbitMQ queue, and stores the resulting data locally in-memory and presents it

through a web UI.

If you have followed the Services Toolkit example, you can update the spring-sensors-consumer-

web to use the tcp supply chain by changing the workload type by running:

tanzu apps workload update spring-sensors-consumer-web --type=tcp

This shows the change in the workload label, and prompts you to accept the change. After the

workload completes the new deployment, you’ll notice a few differences:

The workload no longer advertises a URL. It’s available within the cluster as spring-sensors-

consumer-web within the namespace, but you must use kubectl port-forward

service/spring-sensors-consumer-web 8080 to access the web service on port 8080.

You can also set up a Kubernetes ingress rule to direct traffic from outside the cluster to the

Tanzu Application Platform v1.1

VMware, Inc 709

workload. Using an ingress rule, you can specify that specific host names or paths must be

routed to the application. For more information about ingress rules, see the Kubernetes

documentation

The workload no longer autoscales based on request traffic. For the spring-sensors-

consumer-web workload, this means that it never spawns a second instance that consumes

part of the request queue. Also, it does not scale down to zero instances.

Using queue workloads (Beta)

This topic describes how to create and install a supply chain for the queue workload type.

Overview

The queue workload type allows you to deploy applications that run continuously without network

input on Tanzu Application Platform. Using an application workload specification, you can build and

deploy application source code to a manually-scaled Kubernetes deployment with no network

exposure.

The queue workload is a good match for applications that manage their own work by reading from a

queue or a background scheduled time source, and don’t expose any network interfaces.

Applications using the queue workload type have the following features:

Do not natively autoscale, but can be used with the Kubernetes Horizontal Pod Autoscaler

Do not expose any network services

Use health checks if defined by a convention

Use a rolling update pattern by default

When creating a workload with tanzu apps workload create, you can use the --type=queue

argument to select the queue workload type. For more information, see Use the queue Workload

Type later in this topic. You can also use the apps.tanzu.vmware.com/workload-type:queue

annotation in the YAML workload description to support this deployment type.

Important: Beta features have been tested for functionality, but not performance. Features enter the

beta stage so that customers can gain early access, and give feedback on the design and behavior.

Beta features might undergo changes based on this feedback before the end of the beta stage.

VMware discourages running beta features in production. VMware cannot guarantee that you can

upgrade any beta feature in the future.

Prerequisites

Before using queue workloads on Tanzu Application Platform, you must:

Follow all instructions in Installing Tanzu Application Platform.

Follow all instructions in Set up developer namespaces to use installed packages.

Create a queue SupplyChain

This section describes how to create a supply chain for the queue workload type.

Tanzu Application Platform v1.1

VMware, Inc 710

https://kubernetes.io/docs/concepts/services-networking/ingress/

Create supply chain templates

The queue supply chain replaces the config-template from the existing Out of the Box (OOTB)

supply chain with two new templates:

The deployment-template defines Kubernetes Deployment and Service objects that

represent the workload, instead of a Knative Service.

The apply-bindings template extends the deployment-and-service-template with

requested ServiceBindings and ResourceClaims.

To create supply chain templates:

1. Create a file using the following YAML manifests:

apiVersion: carto.run/v1alpha1

kind: ClusterConfigTemplate

metadata:

 name: deployment-template

spec:

 configPath: .data

 ytt: |

 #@ load("@ytt:data", "data")

 #@ load("@ytt:yaml", "yaml")

 #@ def merge_labels(fixed_values):

 #@ labels = {}

 #@ if hasattr(data.values.workload.metadata, "labels"):

 #@ labels.update(data.values.workload.metadata.labels)

 #@ end

 #@ labels.update(fixed_values)

 #@ return labels

 #@ end

 #@ def delivery():

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: #@ data.values.workload.metadata.name

 annotations:

 kapp.k14s.io/update-strategy: "fallback-on-replace"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 selector:

 matchLabels: #@ data.values.config.metadata.labels

 template: #@ data.values.config

 #@ end

 apiVersion: v1

 kind: ConfigMap

 metadata:

 name: #@ data.values.workload.metadata.name + "-base"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "config" })

 data:

 delivery.yml: #@ yaml.encode(delivery())

Tanzu Application Platform v1.1

VMware, Inc 711

apiVersion: carto.run/v1alpha1

kind: ClusterConfigTemplate

metadata:

 name: apply-bindings

spec:

 configPath: .data

 ytt: |

 #@ load("@ytt:data", "data")

 #@ load("@ytt:yaml", "yaml")

 #@ load("@ytt:json", "json")

 #@ load("@ytt:struct", "struct")

 #@ def get_claims_extension():

 #@ claims_extension_key = "serviceclaims.supplychain.apps.x-tanzu.vmware.

com/extensions"

 #@ if not hasattr(data.values.workload.metadata, "annotations") or not ha

sattr(data.values.workload.metadata.annotations, claims_extension_key):

 #@ return None

 #@ end

 #@

 #@ extension = json.decode(data.values.workload.metadata.annotations[clai

ms_extension_key])

 #@

 #@ spec_extension = extension.get('spec')

 #@ if spec_extension == None:

 #@ return None

 #@ end

 #@

 #@ return spec_extension.get('serviceClaims')

 #@ end

 #@ def merge_claims_extension(claim, claims_extension):

 #@ if claims_extension == None:

 #@ return claim.ref

 #@ end

 #@ extension = claims_extension.get(claim.name)

 #@ if extension == None:

 #@ return claim.ref

 #@ end

 #@ extension.update(claim.ref)

 #@ return extension

 #@ end

 #@ def param(key):

 #@ if not key in data.values.params:

 #@ return None

 #@ end

 #@ return data.values.params[key]

 #@ end

 #@ def merge_labels(fixed_values):

 #@ labels = {}

 #@ if hasattr(data.values.workload.metadata, "labels"):

 #@ labels.update(data.values.workload.metadata.labels)

 #@ end

 #@ labels.update(fixed_values)

 #@ return labels

 #@ end

Tanzu Application Platform v1.1

VMware, Inc 712

 #@ def merge_annotations(fixed_values):

 #@ annotations = {}

 #@ if hasattr(data.values.workload.metadata, "annotations"):

 #@ # DEPRECATED: remove in a future release

 #@ annotations.update(data.values.workload.metadata.annotations)

 #@ end

 #@ if type(param("annotations")) == "dict" or type(param("annotations"))

== "struct":

 #@ annotations.update(param("annotations"))

 #@ end

 #@ annotations.update(fixed_values)

 #@ return annotations

 #@ end

 #@ def claims():

 #@ claims_extension = get_claims_extension()

 #@ workload = struct.encode(yaml.decode(data.values.configs.app_def.config[

"delivery.yml"]))

 #@ for s in data.values.workload.spec.serviceClaims:

 #@ if claims_extension == None or claims_extension.get(s.name) == None:

 apiVersion: servicebinding.io/v1alpha3

 kind: ServiceBinding

 metadata:

 name: #@ data.values.workload.metadata.name + '-' + s.name

 annotations: #@ merge_annotations({})

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 name: #@ s.name

 service: #@ s.ref

 workload:

 apiVersion: #@ workload.apiVersion

 kind: #@ workload.kind

 name: #@ workload.metadata.name

 #@ else:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

 metadata:

 name: #@ data.values.workload.metadata.name + '-' + s.name

 annotations: #@ merge_annotations({})

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 ref: #@ merge_claims_extension(s, claims_extension)

 apiVersion: servicebinding.io/v1alpha3

 kind: ServiceBinding

 metadata:

 name: #@ data.values.workload.metadata.name + '-' + s.name

 annotations: #@ merge_annotations({})

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.ru

n/workload-name": data.values.workload.metadata.name })

 spec:

 name: #@ s.name

 service:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

Tanzu Application Platform v1.1

VMware, Inc 713

 name: #@ data.values.workload.metadata.name + '-' + s.name

 workload:

 apiVersion: #@ workload.apiVersion

 kind: #@ workload.kind

 name: #@ workload.metadata.name

 #@ end

 #@ end

 #@ end

 #@ def add_claims():

 #@ if hasattr(data.values.workload.spec, "serviceClaims") and len(data.valu

es.workload.spec.serviceClaims):

 #@ new_data = struct.decode(data.values.configs.app_def.config)

 #@ new_data.update({"serviceclaims.yml":yaml.encode(claims())})

 #@ return new_data

 #@ else:

 #@ return struct.decode(data.values.configs.app_def.config)

 #@ end

 #@ end

 apiVersion: v1

 kind: ConfigMap

 metadata:

 name: #@ data.values.workload.metadata.name + "-claims"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "config" })

 data: #@ add_claims()

2. Apply the YAML file by running the command:

kubectl apply -f FILENAME

Where FILENAME is the name of the file you created in the previous step.

Add RBAC permissions

Because the queue workload deployment creates different resources, you must extend the

deliverable ClusterRole.

To add the additional role to the cluster:

1. Create a file using the following YAML:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: additional-k8s-deliverable

 labels:

 apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

rules:

- apiGroups: [""]

 resources: ["services"]

 verbs: ["get", "list", "watch", "create", "patch", "update", "delete", "delet

ecollection"]

- apiGroups: ["apps"]

 resources: ["deployments"]

 verbs: ["get", "list", "watch", "create", "patch", "update", "delete", "delet

ecollection"]

Tanzu Application Platform v1.1

VMware, Inc 714

2. Apply the YAML file by running the command:

kubectl apply -f FILENAME

Where FILENAME is the name of the file you created in the previous step.

Define the ClusterSupplyChain

To define the ClusterSupplyChain:

1. Create a file using the following YAML and substitute in your registry values from your tap-

values.yaml file:

apiVersion: carto.run/v1alpha1

kind: ClusterSupplyChain

metadata:

 name: tcp

spec:

 params:

 - default: main

 name: gitops_branch

 - default: supplychain

 name: gitops_user_name

 - default: supplychain

 name: gitops_user_email

 - default: supplychain@cluster.local

 name: gitops_commit_message

 - default: git-ssh

 name: gitops_ssh_secret

 resources:

 - name: source-provider

 params:

 - name: serviceAccount

 value: default

 - name: gitImplementation

 value: go-git

 templateRef:

 kind: ClusterSourceTemplate

 name: source-template

 - name: deliverable

 params:

 - name: registry

 value:

 repository: REGISTRY-REPO

 server: REGISTRY-SERVER

 templateRef:

 kind: ClusterTemplate

 name: deliverable-template

 - name: image-builder

 params:

 - name: serviceAccount

 value: default

 - name: clusterBuilder

 value: default

 - name: registry

 value:

 repository: REGISTRY-REPO

Tanzu Application Platform v1.1

VMware, Inc 715

 server: REGISTRY-SERVER

 sources:

 - name: source

 resource: source-provider

 templateRef:

 kind: ClusterImageTemplate

 name: kpack-template

 - images:

 - name: image

 resource: image-builder

 name: config-provider

 params:

 - name: serviceAccount

 value: default

 templateRef:

 kind: ClusterConfigTemplate

 name: convention-template

 - configs:

 - name: config

 resource: config-provider

 name: app-config

 templateRef:

 kind: ClusterConfigTemplate

 name: deployment-template

 - configs:

 - name: app_def

 resource: app-config

 name: apply-bindings

 templateRef:

 kind: ClusterConfigTemplate

 name: apply-bindings

 - configs:

 - name: config

 resource: apply-bindings

 name: config-writer

 params:

 - name: serviceAccount

 value: default

 - name: registry

 value:

 repository: REGISTRY-REPO

 server: REGISTRY-SERVER

 templateRef:

 kind: ClusterTemplate

 name: config-writer-template

 selector:

 apps.tanzu.vmware.com/workload-type: tcp

Where:

REGISTRY-SERVER is the registry server from your tap-values.yaml file.

REGISTRY-REPO is the registry repository from your tap-values.yaml file.

2. Apply the YAML file by running the command:

kubectl apply -f FILENAME

Where FILENAME is the name of the file you created in the previous step.

Tanzu Application Platform v1.1

VMware, Inc 716

Use the queue workload type

The spring-sensors-sensor workload in the getting started example using Service Toolkit claims is a

good match for the queue workload type. This is because it runs continuously without a UI to report

sensor information to a RabbitMQ topic.

If you have followed the Services Toolkit example, you can update the spring-sensors-sensor to

use the queue supply chain by changing the workload type by running:

tanzu apps workload update spring-sensors-sensor --type=queue

This shows a diff in the workload label, and prompts you to accept the change. After the workload

completes the new deployment, you’ll notice a few differences:

The workload no longer has a URL. Because the workload does not present a web UI, this

more closely matches the original intent.

The workload no longer autoscales based on request traffic. For the srping-sensors-sensor

workload, this means that it does not scale down to zero instances when there is no request

traffic.

Functions (Beta)

The function experience on Tanzu Application Platform enables developers to deploy functions, use

starter templates to bootstrap their function and write only the code that matters to your business.

Developers can run a single CLI command to deploy their functions to an auto-scaled cluster.

In this section:

Using functions

Iterate on your function

Using functions (Beta)

This topic describes how to create and deploy an HTTP function from an application accelerator

starter template.

Overview

The function experience on Tanzu Application Platform enables developers to deploy functions, use

starter templates to bootstrap their function and write only the code that matters to your business.

Developers can run a single CLI command to deploy their functions to an auto-scaled cluster.

Functions provide a quick way to get started writing an application. Compared with a traditional

application:

Functions have a single entry-point and perform a single task. This means that functions can

be easier to understand and monitor.

The initial webserver and application boilerplate are managed by the function supply chain.

This means that you can update the webserver and application boilerplate without needing to

Tanzu Application Platform v1.1

VMware, Inc 717

update each function application.

A traditional webserver application might be a better fit if you want to implement an entire

website or API in a single container

Important: Beta features have been tested for functionality, but not performance. Features enter the

beta stage so that customers can gain early access, and give feedback on the design and behavior.

Beta features might undergo changes based on this feedback before the end of the beta stage.

VMware discourages running beta features in production. VMware cannot guarantee that you can

upgrade any beta feature in the future.

Prerequisites

Before using function workloads on Tanzu Application Platform, complete the following

prerequisites:

Follow all instructions in Installing Tanzu Application Platform.

Download and install the kp CLI for your operating system from the Tanzu Build Service page

on Tanzu Network. For more information, see the kp CLI help text on GitHub.

Follow all instructions in Set up developer namespaces to use installed packages.

Adding function buildpacks

To use the function buildpacks, you must upload their buildpackages to Build Service stores.

1. Add the function’s buildpackages to the default ClusterStore by running:

kp clusterstore add default \

-b registry.tanzu.vmware.com/python-function-buildpack-for-vmware-tanzu/python-

buildpack-with-deps:0.0.11 \

-b registry.tanzu.vmware.com/java-function-buildpack-for-vmware-tanzu/java-buil

dpack-with-deps:0.0.6

2. Create and save a new ClusterBuilder. Run one of the following commands depending on

the descriptor you used in the buildservice section of your tap-values.yaml file:

For the full descriptor, run:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python

 - id: kn-fn/python-function

- group:

 - id: tanzu-buildpacks/java-native-image

 - id: kn-fn/java-function

- group:

 - id: tanzu-buildpacks/java

 - id: kn-fn/java-function

EOF

If you still want to use default Java and Python buildpacks for non-functions

workloads, add optional: true flags for cluster builder groups. This does not enable

Tanzu Application Platform v1.1

VMware, Inc 718

https://network.tanzu.vmware.com/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-managing-stores.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.5/vmware-tanzu-build-service/GUID-managing-builders.html

the full capability of non-function workloads provided by the default ClusterBuilder.

For example:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python

 - id: kn-fn/python-function

 optional: true

- group:

 - id: tanzu-buildpacks/java-native-image

 - id: kn-fn/java-function

 optional: true

- group:

 - id: tanzu-buildpacks/java

 - id: kn-fn/java-function

 optional: true

EOF

For the lite descriptor, run:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python-lite

 - id: kn-fn/python-function

- group:

 - id: tanzu-buildpacks/java-native-image-lite

 - id: kn-fn/java-function

- group:

 - id: tanzu-buildpacks/java-lite

 - id: kn-fn/java-function

EOF

If you still want to use default Java and Python buildpacks for non-functions

workloads, add optional: true flags for cluster builder groups. This does not enable

the full capability of non-function workloads provided by the default ClusterBuilder.

For example:

kp clusterbuilder save function --store default -o - <<EOF

- group:

 - id: tanzu-buildpacks/python-lite

 - id: kn-fn/python-function

 optional: true

- group:

 - id: tanzu-buildpacks/java-native-image-lite

 - id: kn-fn/java-function

 optional: true

- group:

 - id: tanzu-buildpacks/java-lite

 - id: kn-fn/java-function

 optional: true

EOF

Tanzu Application Platform v1.1

VMware, Inc 719

3. After creating the ClusterBuilder, update your tap-values.yaml configuration to use the

cluster builder you created. See the following example:

ootb_supply_chain_basic:

 cluster_builder: function

 registry:

 server: "SERVER"

 repository: "REPO"

Where:

SERVER is your server. For example, index.docker.io.

REPO is your repository.

4. Apply the update by going to the directory containing tap-values.yaml and running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION --values-

file tap-values.yaml -n tap-install

Where VERSION is the version of Tanzu Application Platform GUI you have installed. For

example, 1.0.2.

Add accelerators to Tanzu Application Platform GUI

Application Accelerator is a component of Tanzu Application Platform. An accelerator contains your

enterprise-conformant code and configurations that developers can use to create new projects that

automatically follow the standards defined in your accelerators.

The accelerator ZIP file contains a file called k8s-resource.yaml. This file contains the resource

manifest for the function accelerator.

1. Download the ZIP file for the appropriate accelerator:

Python HTTP Function on GitHub.

Java HTTP Function on GitHub.

2. Expand the accelerator ZIP file in your target cluster with Tanzu Application Platform GUI

installed.

3. To update the Application Accelerator templates in Tanzu Application Platform GUI, you

must apply the k8s-resource.yaml. Run the following command in your terminal in the folder

where you expanded the ZIP file:

kubectl apply -f k8s-resource.yaml --namespace accelerator-system

4. Refresh Tanzu Application Platform GUI to reveal function accelerator(s).

Tanzu Application Platform v1.1

VMware, Inc 720

https://github.com/sample-accelerators/python-functions-accelerator
https://github.com/sample-accelerators/java-functions-accelerator

It might take time for Tanzu Application Platform GUI to refresh the catalog to see your

added function accelerators.

Create a function project from an accelerator

1. From the Tanzu Application Platform GUI portal, click Create on the left navigation bar to see

the list of available accelerators.

2. Locate the Function Buildpacks accelerator and click CHOOSE.

3. Provide a name for your function project and function. If creating a Java function, select a

project type*. Select HTTP for your event type. Provide a Git repository to store this

accelerator’s files. Click NEXT STEP, verify the provided information, and click CREATE.

Tanzu Application Platform v1.1

VMware, Inc 721

4. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

5. After downloading the ZIP file, expand it in a workspace directory and follow your preferred

procedure for uploading the generated project files to a Git repository for your new project.

Create a function project using the Tanzu CLI

From the CLI, you can generate a function project using an accelerator template, then download the

project artifacts as a ZIP file.

1. Validate that you have added the function accelerator template to the application accelerator

server by running:

tanzu accelerator list

2. Get the server-url for the Application Accelerator server. The URL depends on the

configuration settings for Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.DOMAIN

where DOMAIN is provided in the values file for the accelerator configuration.

For installations using a LoadBalancer, look up the External IP address by running:

kubectl get -n accelerator-system service/acc-server

Use http://EXTERNAL-IP as the URL.

For any other configuration, you can use port forwarding by running:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

3. Generate a function project from an accelerator template by running:

tanzu accelerator generate ACCELERATOR-NAME \

--options '{"projectName": "FUNCTION-NAME", "interfaceType": "TYPE"}' \

--server-url APPLICATION-ACCELERATOR-URL

Tanzu Application Platform v1.1

VMware, Inc 722

Where:

ACCELERATOR-NAME is the name of the function accelerator template you want to use.

FUNCTION-NAME is the name of your function project.

TYPE is the interface you want to use for your function. Available options are http or

cloudevents. CloudEvents is experimental.

APPLICATION-ACCELERATOR-URL is the URL for the Application Accelerator server that

you retrieved in the previous step.

For example:

tanzu accelerator generate java-function \

--options '{"projectName": "my-func", "interfaceType": "http"}' \

--server-url http://localhost:8877

4. After generating the ZIP file, expand it in your directory and follow your preferred procedure

for uploading the generated project files to a Git repository for your new project.

Deploy your function

1. Deploy the function accelerator by running the tanzu apps workload create command:

tanzu apps workload create functions-accelerator-python \

--local-path . \

--source-image REGISTRY/IMAGE:TAG \

--type web \

--yes

Where:

--source-image is a writable repository in your registry.

Harbor has the form: “my-harbor.io/my-project/functions-accelerator-python”.

Docker Hub has the form: “my-dockerhub-user/functions-accelerator-python”.

Google Cloud Registry has the form: “gcr.io/my-project/functions-accelerator-python”.

2. View the build and runtime logs for your application by running the tail command:

tanzu apps workload tail functions-accelerator-python --since 10m --timestamp

3. After the workload is built and running, you can view the web application in your browser. To

view the URL of the web application, run the following command and then ctrl-click the

Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get functions-accelerator-python

Iterating on your function

This topic provides instructions about how to iterate on your function using the VMware Tanzu

Tanzu Application Platform v1.1

VMware, Inc 723

Developer Tools extension for Visual Studio Code. This extension enables live updates of your

application while running on the cluster, and allows you to debug your application directly on the

cluster.

Prerequisites

Before you can iterate on your function, you must have:

Tanzu Developer Tools for Visual Studio Code

Tilt v0.27.2 or later.

Note: The Tanzu Developer Tools extension currently only supports Java Functions.

Configure the Tanzu Developer Tools extension

Before iterating on your application, you must configure the Tanzu Developer Tools extension as

follows:

1. Open your function as a project within your VSCode IDE.

2. To ensure your extension assists you with iterating on the correct project, configure its

settings as follows:

1. In Visual Studio Code, navigate to Preferences > Settings > Extensions > Tanzu.

2. In the Local Path field, provide the path to the directory containing your function

project. The current directory is the default.

3. In the Source Image field, provide the destination image repository to publish an

image containing your workload source code. For example,

index.docker.io/myteam/java-function.

You are now ready to iterate on your application.

Live update your application

Deploy your function application to view it updating live on the cluster. This demonstrates how code

changes will behave on a production cluster early in the development process.

To live update your application:

1. Open the Command Palette by pressing ⇧⌘P.

2. From the Command Palette, type in and select Tanzu: Live Update Start. You can view

output from Tanzu Application Platform and from Tilt indicating that the container is being

built and deployed.

You see Live Update starting… in the status bar at the bottom right.

Live update can take 1 to 3 minutes while the workload deploys and the Knative

service becomes available.

3. Depending on the type of cluster you use, you might see an error message similar to the

following:

ERROR: Stop! cluster-name might be production. If you're sure you want to deploy

Tanzu Application Platform v1.1

VMware, Inc 724

https://docs.tilt.dev/install.html

there, add allow_k8s_contexts('cluster-name') to your Tiltfile. Otherwise, switch

k8scontexts and restart Tilt.

If you see this error, add the line allow_k8s_contexts('CLUSTER-NAME') to your Tiltfile,

where CLUSTER-NAME is the name of your cluster.

4. When the Live Update status in the status bar is visible and says Live Update Started,

navigate to http://localhost:8080 in your browser and view your running application.

5. Enter the IDE and make a change to the source code.

6. The container is updated when the logs stop streaming. Navigate to your browser and

refresh the page.

7. View the changes to your workload running on the cluster.

8. If necessary, continue making changes to the source code.

9. When you have finished making changes, stop and deactivate the live update. To do so,

open the command palette by pressing ⇧⌘P, type Tanzu, and select Tanzu: Live Update

Stop.

Debug your application

Debug your cluster either on the application or in your local environment.

To debug your cluster:

1. Set a breakpoint in your code.

2. Right-click the file workload.yaml within the config directory, and select Tanzu: Java Debug

Start.

In a few moments, the workload is redeployed with debugging enabled. You will see the

Deploy and Connect task complete and the debug menu actions available to you, indicating

that the debugger has attached.

3. Navigate to http://localhost:8080 in your browser. This hits the breakpoint within VSCode.

Play to the end of the debug session using VSCode debugging controls.

Tanzu Application Platform v1.1

VMware, Inc 725

	Tanzu Application Platform v1.1
	Overview of Tanzu Application Platform
	Installation profiles in Tanzu Application Platform v1.1
	About Tanzu Application Platform package profiles
	About installing the Tanzu Application Platform v1.1
	Notice of telemetry collection for Tanzu Application Platform

	Release notes
	v1.1.2
	Security fixes
	Tanzu Application Platform GUI

	Resolved issues
	Application Live View
	Grype scanner
	Supply Chain Security Tools - Scan
	Tanzu Application Platform GUI

	Known issues
	Grype scanner
	Supply Chain Security Tools - Scan
	Supply Chain Security Tools - Sign

	v1.1.1
	Resolved issues
	Supply Chain Choreographer plug-in
	Supply Chain Security Tools - Scan
	Supply Chain Security Tools - Sign
	Supply Chain Security Tools - Store
	Grype Scanner
	Tanzu Application Platform GUI

	Known issues
	Grype scanner
	Supply Chain Choreographer for Tanzu
	Supply Chain Security Tools - Scan
	Supply Chain Security Tools - Store
	Tanzu Application Platform GUI

	v1.1
	Prerequisites
	New features
	Installing
	Default roles for Tanzu Application Platform
	Application Accelerator
	Application Live View
	Tanzu CLI - Apps plug-in
	Service Bindings
	Source Controller
	Spring Boot Conventions
	Supply Chain Choreographer
	Supply Chain Security Tools - Scan
	Supply Chain Security Tools - Sign
	Supply Chain Security Tools - Store
	Tanzu Application Platform GUI
	Functions (Beta)

	Breaking changes
	Application Accelerator
	Supply Chain Security Tools - Scan
	Supply Chain Security Tools - Store

	Resolved issues
	Application Accelerator
	Application Live View
	Services Toolkit
	Supply Chain Security Tools - Scan
	Grype Scanner
	Supply Chain Security Tools - Store
	Tanzu CLI - Apps plug-in
	Tanzu Application Platform GUI

	Known issues
	Tanzu Application Platform
	Tanzu Cluster Essentials
	Application Live View
	Grype scanner
	Supply Chain Choreographer plug-in
	Supply Chain Security Tools - Scan
	Supply Chain Security Tools - Store
	Tanzu Application Platform GUI

	Installing Tanzu Application Platform
	Installation process

	Prerequisites
	VMware Tanzu Network and container image registry requirements
	DNS Records
	Tanzu Application Platform GUI

	Kubernetes cluster requirements
	Resource requirements
	Tools and CLI requirements

	Accepting Tanzu Application Platform EULAs, installing Cluster Essentials and the Tanzu CLI
	Accept the End User License Agreements
	Example of accepting the Tanzu Application Platform EULA

	Set the Kubernetes cluster context
	Install Cluster Essentials for Tanzu
	Install or update the Tanzu CLI and plug-ins
	Install Tanzu CLI: Linux or macOS
	Install Tanzu CLI: Windows

	Install/Update Tanzu CLI plug-ins

	Installing the Tanzu Application Platform package and profiles
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	(Optional) Configure LoadBalancer for Contour ingress
	Full profile
	Light Profile
	View possible configuration settings for your package
	Identify the values for your package

	Install your Tanzu Application Platform package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile

	Opting out of telemetry collection
	Turn off telemetry collection

	Upgrading Tanzu Application Platform
	Prerequisites
	Add new package repository
	Perform upgrade of Tanzu Application Platform
	Upgrade instructions for Profile-based installation
	Upgrade instructions for component-specific installation

	Verify the upgrade

	Migrate Tanzu Application Platform profiles
	Prerequisites
	Add new package repository
	Edit the tap-values.yaml configuration file that was used during installation
	Perform migration of Tanzu Application Platform profile

	Getting started with the Tanzu Application Platform
	Purpose
	Getting started prerequisites
	Section 1: Develop your first application on the Tanzu Application Platform
	About application accelerators
	Deploy your application
	Add your application to Tanzu Application Platform GUI Software Catalog
	Iterate on your application
	Live update your application
	Debug your application
	Monitor your running application

	Section 2: Create your application accelerator
	Create an application accelerator

	Publish the new accelerator
	Working with accelerators
	Updating an accelerator
	Deleting an accelerator
	Using an accelerator manifest

	Section 3: Add Testing and Security Scanning to Your Application
	Introducing a Supply Chain
	A path to production
	Available Supply Chains
	1: OOTB Basic (default)
	2: OOTB Testing
	3: OOTB Testing+Scanning
	Install OOTB Testing
	Tekton pipeline config example
	Workload update

	Install OOTB Testing+Scanning
	Workload update
	Query for vulnerabilities

	Congratulations! You have successfully deployed your application on the Tanzu Application Platform.

	Section 4: Configure image signing and verification in your supply chain
	Configure your supply chain to sign your image builds
	Next steps

	Scan and Store: Introducing vulnerability scanning and metadata storage to your Supply Chain
	Next steps

	Section 5: Consuming services on Tanzu Application Platform
	Key concepts
	Service instances
	Service bindings
	Resource claims

	Services you can use with Tanzu Application Platform
	User roles and responsibilities
	Walkthrough
	Prerequisites
	Set up a service
	Create a service instance
	Claim a service instance
	Bind an application workload to the service instance

	Advanced use cases and further reading

	Overview of multicluster Tanzu Application Platform
	Next steps

	Install multicluster Tanzu Application Platform profiles
	Prerequisites
	Multicluster Installation Order of Operations
	Install View cluster
	Install Build clusters
	Install Run clusters
	Add Build and Run clusters to Tanzu Application Platform GUI
	Next steps

	Getting started with multicluster Tanzu Application Platform
	Prerequisites
	Start the workload on the Build profile cluster

	Build profile
	Run profile
	View profile
	Troubleshooting Tanzu Application Platform
	Troubleshoot installing Tanzu Application Platform
	Developer cannot be verified when installing Tanzu CLI on macOS
	Access .status.usefulErrorMessage details
	“Unauthorized to access” error
	“Serviceaccounts already exists” error
	After package installation, one or more packages fails to reconcile
	Failure to accept an End User License Agreement error

	Troubleshoot using Tanzu Application Platform
	Missing build logs after creating a workload
	“Workload already exists” error after updating the workload
	Workload creation fails due to authentication failure in Docker Registry
	Explanation
	Solution

	Telemetry component logs show errors fetching the “reg-creds” secret
	Debug convention may not apply
	Execute bit not set for App Accelerator build scripts
	“No live information for pod with ID” error
	“image-policy-webhook-service not found” error
	“Increase your cluster resources” error
	MutatingWebhookConfiguration prevents pod admission
	Priority class of webhook’s pods preempts less privileged pods
	CrashLoopBackOff from password authentication fails
	Password authentication fails
	metadata-store-db pod fails to start
	Missing persistent volume
	Supply Chain Security Tools - Sign rejects images
	Supply Chain Security Tools - Scan unable to decode CycloneDX

	Troubleshoot Tanzu Application Platform components
	Uninstalling Tanzu Application Platform
	Delete the packages
	Delete the Tanzu Application Platform package repository
	Remove Tanzu CLI, plug-ins, and associated files

	Component documentation
	Installing individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Set up developer namespaces to use installed packages
	Enable single user access
	Enable additional users access with Kubernetes RBAC

	Tanzu CLI
	Tanzu CLI plug-ins
	Apps CLI plug-in overview
	About workloads
	Command reference
	Usage and examples

	Install Apps CLI plug-in
	Prerequisites
	Install

	Create a workload
	Prerequisites
	Get started with an example workload
	Check build logs
	Get the workload status and details
	Create a workload from local source code
	Bind a service to a workload
	Next steps

	Command reference
	Tanzu apps
	Options
	See also

	Tanzu apps workload
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload apply
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload update
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload get
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload delete
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload list
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps workload tail
	Examples
	Options
	Options inherited from parent commands
	See also

	Tanzu apps cluster supply chain
	Options
	Options inherited from parent commands
	See also

	Tanzu apps cluster supply chain list
	Examples
	Options
	Options inherited from parent commands
	See also

	Usage and examples
	Changing clusters
	Checking update status
	Working with YAML files
	Autocompletion
	Bash
	Zsh

	Tanzu Insight plug-in overview
	Install the Tanzu Insight CLI plug-in
	Configure the Tanzu Insight CLI plug-in
	Set the target and certificate authority certificate
	Check the connection

	Configure target endpoint and certificate
	Use Ingress
	Not use Ingress
	Use LoadBalancer

	Use NodePort
	Configure port forwarding
	Modify your /etc/hosts file

	Configure access tokens
	Service accounts
	Read-only service account
	Read-write service account

	Getting the Access Token
	Setting the Access Token

	Query data
	Supported use cases
	Query using the Tanzu Insight CLI plug-in
	Example #1: What packages & CVEs does a specific image contain?
	Example #2: What packages & CVEs does my source code contain?
	Example #3: What dependencies are affected by a specific CVE?
	Add data

	Add data
	Supported formats and file types
	Generate a CycloneDX file
	Add data with the Tanzu Insight plug-in
	Example #1: Add an image report
	Example #2: Add a source report

	Command reference
	Synopsis
	Options
	See also

	Tanzu insight config set-target
	Tanzu insight config set-target
	Synopsis
	Examples
	Options
	See also

	Tanzu insight config
	Options
	See also

	Tanzu insight health
	Tanzu insight health
	Synopsis
	Examples
	Options
	See also

	Tanzu insight image
	Options
	See also

	Tanzu insight image add
	Examples
	Options
	See also

	Tanzu insight image get
	Synopsis
	Examples
	Options
	See Also

	Tanzu insight image packages
	Synopsis
	Examples
	Options
	See also

	Tanzu insight image vulnerabilities
	Examples
	Options
	See also

	Tanzu insight package
	Options
	See also

	Tanzu insight package get
	Synopsis
	Examples
	Options
	See also

	Tanzu insight Package Images
	Synopsis
	Examples
	Options
	See also

	Tanzu insight package sources
	Synopsis
	Examples
	Options
	See also

	Tanzu insight Package Vulnerabilities
	Synopsis
	Examples
	Options
	See also

	Tanzu insight source
	Options
	See also

	Tanzu insight source add
	Examples
	Options
	See also

	Tanzu insight source get
	Synopsis
	Examples
	Options
	See also

	Tanzu insight source packages
	Synopsis
	Examples
	Options
	See also

	Tanzu insight source vulnerabilities
	Synopsis
	Examples
	Options
	See also

	Tanzu insight version
	Options
	See also

	Tanzu insight vulnerabilities
	Options
	See also

	Tanzu insight vulnerabilities get
	Synopsis
	Examples
	Options
	See also

	Tanzu insight vulnerabilities images
	Synopsis
	Examples
	Options
	See also

	Tanzu insight vulnerabilities packages
	Synopsis
	Examples
	Options
	See also

	Tanzu insight vulnerabilities sources
	Synopsis
	Examples
	Options
	See also

	Overview
	Default roles
	Working with roles using the RBAC CLI plug-in
	Disclaimer

	Setting up authentication for Tanzu Application Platform
	Tanzu Kubernetes Grid

	Installing Pinniped on a single cluster
	Prerequisites
	Install Pinniped Supervisor
	Create Certificates (letsencrypt/cert-manager)
	Create Ingress resources
	Create Pinniped-Supervisor configuration
	Apply the resources

	Install Pinniped Concierge
	Log in to the cluster

	Integrating Azure Active Directory
	Integrate Azure AD with a new or existing AKS without Pinniped
	Prerequisites
	Set up a platform operator
	Set up a Tanzu Application Platform default role group
	Set up kubeconfig

	Integrate Azure AD with Pinniped
	Prerequisites
	Set up the Azure AD app
	Set up the Tanzu Application Platform default role group
	Set up kubeconfig

	Role descriptions
	app-editor
	app-viewer
	app-operator
	workload
	deliverable

	Detailed role permissions breakdown
	Native Kubernetes Resources
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	App Accelerator
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Cartographer
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Cloud Native Runtimes
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Convention Service
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Developer Conventions
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

	OOTB Templates
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-workload: "true"
	apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

	Service Bindings
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

	Services Toolkit
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Source Controller
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

	Supply Chain Security Tools — Store
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Tanzu Build Service
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Tekton
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Bind a user or group to a default role
	Prerequisites
	Install the Tanzu Application Platform RBAC CLI plug-in
	Use a different kubeconfig location
	Add the specified user or group to a role
	Get a list of users and groups from a role
	Remove the specified user or group from a role
	Error logs
	Troubleshooting

	Login using Pinniped
	Generate and distribute kubeconfig to users
	Login with provided kubeconfig

	Additional resources
	Install

	Install default roles independently
	Prerequisites
	Install

	Application Accelerator for VMware Tanzu
	Install Application Accelerator
	Prerequisites
	Configure properties and resource usage
	Install

	Application Live View for VMware Tanzu
	Install Application Live View
	Prerequisites
	Install Application Live View
	Install Application Live View Backend
	Install Application Live View Connector
	Install Application Live View Conventions

	Convention Service
	Overview
	About applying conventions
	Applying conventions by using image metadata
	Applying conventions without using image metadata

	Install Convention Service
	Prerequisites
	Install

	Creating conventions
	Introduction
	Convention server
	Convention controller

	Getting started
	Prerequisites

	Define convention criteria
	Define the convention behavior
	Matching criteria by labels or annotations
	Matching criteria by environment variables
	Matching criteria by image metadata

	Configure and install the convention server
	Deploy a convention server
	Next Steps

	Troubleshoot Convention Service
	No server in the cluster
	Symptoms
	Cause
	Solution

	Server with wrong certificates configured
	Symptoms
	Cause
	Solution

	Server fails when processing a request
	Symptoms
	Cause
	Solution

	Connection refused due to unsecured connection
	Symptoms
	Cause
	Solution

	Convention Resources
	Convention Service Resources
	API Structure
	Template Status

	Chaining Multiple Conventions
	Collecting Logs from the Controller
	References

	ImageConfig
	PodConventionContextSpec
	PodConventionContextStatus
	PodConventionContext
	PodConventionContext Structure

	ClusterPodConvention
	PodIntent
	BOM
	cert-manager, Contour, and FluxCD Source Controller
	Install cert-manager, Contour, and FluxCD Source Controller
	Prerequisites
	Install cert-manager
	Install Contour
	Install FluxCD source-controller

	Cloud Native Runtimes
	Install Cloud Native Runtimes
	Prerequisites
	Install

	Spring Boot conventions
	Overview

	Install Spring Boot conventions
	Prerequisites
	Install Spring Boot conventions

	Conventions
	Set a JAVA_TOOL_OPTIONS property for a workload
	Spring Boot convention
	Spring boot graceful shut down convention
	Spring Boot web convention
	Spring Boot Actuator convention
	Spring Boot Actuator Probes convention
	Service intent conventions
	Example

	Troubleshoot Spring Boot Conventions
	Collect logs

	Service Bindings for Kubernetes
	Install Service Bindings
	Prerequisites
	Install Service Bindings

	Troubleshoot Service Bindings
	Collect logs

	Resources
	ServiceBinding (servicebinding.io/v1alpha3)

	Services Toolkit
	Install Services Toolkit
	Prerequisites
	Install Services Toolkit

	Source Controller
	Install Source Controller
	Prerequisites
	Install

	Troubleshoot Source Controller
	Collecting Logs from Source Controller Manager

	Source Controller Reference
	ImageRepository

	Developer Conventions for Tanzu Application Platform
	Overview
	Features
	Enabling Live Updates
	Enabling debugging

	Next steps

	Install Developer Conventions
	Prerequisites
	Install
	Resource limits
	Uninstall

	Learning Center for Tanzu Application Platform
	Overview
	Use cases
	Use case requirements
	Platform architectural overview
	Next steps

	Install Learning Center
	Prerequisites
	Install

	Procedure to install the Self-Guided Tour Training Portal and Workshop
	Supported Learning Center Values Configuration

	Learning Center workshops
	Getting started with Learning Center
	Learning Center operator
	Installing and setting up Learning Center operator
	Cluster pod security policies
	Specifying the ingress domain
	Set the environment variable manually

	Enforcing secure connections
	Configuration YAML
	Create the TLS secret manually

	Specifying the ingress class
	Configuration YAML
	Set the environment variable manually

	Trusting unsecured registries

	Deleting Learning Center
	Learning Center Workshops
	Creating the workshop environment
	Requesting a workshop instance
	Deleting the workshop instance
	Deleting the workshop environment

	TrainingPortal
	Working with multiple workshops
	Loading the workshop definition
	Creating the workshop training portal
	Accessing workshops via the web portal
	Deleting the workshop training portal

	Learning Center local install guides
	Installing on Kind
	Prerequisites
	Kind cluster creation
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a Kubernetes cluster
	Install workshop tutorial package onto a Kubernetes cluster
	Run the workshop
	Trusting insecure registries

	Installing on Minikube
	Trusting insecure registries
	Prerequisites
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for the Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a minikube cluster
	Install workshop tutorial package onto a minikube cluster
	Run the workshop
	Working with large images
	Limited resource availability
	Storage provisioner issue

	Creating Learning Center workshops
	Workshop configuration
	Specifying structure of the content
	Specifying the runtime configuration
	Next steps

	Workshop images
	Templates for creating a workshop
	Workshop content directory layout
	Directory for workshop exercises

	Workshop content
	Deactivating reserved sessions
	Live updates to the content
	Custom workshop image changes
	Custom workshop image overlay
	Changes to workshop definition
	Local build of workshop image

	Building an image
	Structure of the Dockerfile
	Base images and version tags
	Custom workshop base images
	Installing extra system packages
	Installing third-party packages

	Workshop instructions
	Annotation of executable commands
	Annotation of text to be copied
	Extensible clickable actions
	Clickable actions for the dashboard
	Clickable actions for the editor
	Clickable actions for file download
	Clickable actions for the examiner
	Clickable actions for sections
	Overriding title and description
	Escaping of code block content
	Interpolation of data variables
	Adding custom data variables
	Passing environment variables
	Handling embedded URL links
	Conditional rendering of content
	Embedding custom HTML content

	Workshop runtime
	Predefined environment variables
	Running steps on container start
	Running background applications
	Terminal user shell environment
	Overriding terminal shell command

	Presenter slides
	Using reveal.js presentation tool
	Using a PDF file for presenter slides

	Learning Center runtime environment
	Custom resources
	Workshop definition resource
	Workshop environment resource
	Workshop request resource
	Workshop session resource
	Training portal resource
	System profile resource
	Loading the workshop CRDs

	Workshop resource
	Workshop title and description
	Downloading workshop content
	Container image for the workshop
	Setting environment variables
	Overriding the memory available
	Mounting a persistent volume
	Resource budget for namespaces
	Patching workshop deployment
	Creation of session resources
	Overriding default role-based access control (RBAC) rules
	Running user containers as root
	Creating additional namespaces
	Shared workshop resources
	Workshop pod security policy
	Custom security policies for user containers
	Defining additional ingress points
	External workshop instructions
	Disabling workshop instructions
	Enabling the Kubernetes console
	Enabling the integrated editor
	Enabling workshop downloads
	Enabling the test examiner
	Enabling session image registry
	Enabling ability to use Docker
	Enabling WebDAV access to files
	Customizing the terminal layout
	Adding custom dashboard tabs

	WorkshopEnvironment resource
	Specifying the workshop definition
	Overriding environment variables
	Overriding the ingress domain
	Controlling access to the workshop
	Overriding the login credentials
	Additional workshop resources
	Creation of workshop instances

	WorkshopRequest resource
	Specifying workshop environment
	Specifying required access token

	TrainingPortal resource
	Specifying the workshop definitions
	Limit the number of sessions
	Capacity of individual workshops
	Set reserved workshop instances
	Override initial number of sessions
	Setting defaults for all workshops
	Set caps on individual users
	Expiration of workshop sessions
	Updates to workshop environments
	Override the ingress domain
	Override the portal host name
	Set extra environment variables
	Override portal credentials
	Control registration type
	Specify an event access code
	Make a list of workshops public
	Use an external list of workshops
	Override portal title and logo
	Allow the portal in an iframe
	Collect analytics on workshops
	Track using Google Analytics

	SystemProfile resource
	Operator default system profile
	Defining configuration for ingress
	Defining container image registry pull secrets
	Defining storage class for volumes
	Defining storage group for volumes
	Restricting network access
	Running Docker daemon rootless
	Overriding network packet size
	Image registry pull through cache
	Setting default access credentials
	Overriding the workshop images
	Tracking using Google Analytics
	Overriding styling of the workshop
	Additional custom system profiles

	WorkshopSession resource
	Specifying the session identity
	Specifying the login credentials
	Specifying the ingress domain
	Setting the environment variables

	Learning Center Portal Rest API
	Anonymous access
	Enabling anonymous access
	Triggering workshop creation

	Workshop catalog
	Listing available workshops

	Session management
	Disabling portal user registration
	Requesting a workshop session
	Associating sessions with a user
	Listing all workshop sessions

	Client authentication
	Querying the credentials
	Requesting an access token
	Refreshing the access token

	Troubleshoot Learning Center
	Training portal stays in pending state
	image-policy-webhook-service not found
	Cannot update parameters
	Increase your cluster’s resources

	Supply Chain Choreographer for Tanzu
	Overview

	Out of the Box Supply Chains
	Install Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Delivery Basic
	Prerequisites
	Usage

	Install Out of the Box Delivery Basic
	Prerequisites
	Install

	Out of the Box Supply Chain Basic
	Prerequisites
	Developer Namespace
	Registries Secrets
	ServiceAccount
	RoleBinding

	Developer workload

	Install Out of the Box Supply Chain Basic
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing
	Prerequisites
	Developer Namespace
	Updates to the developer Namespace
	Tekton/Pipeline
	Allow multiple Tekton pipelines in a namespace

	Developer Workload

	Install Out of the Box Supply Chain with Testing
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Developer Namespace
	Updates to the developer Namespace
	ScanPolicy
	ScanTemplate
	Allow multiple Tekton pipelines in a namespace

	Developer workload

	Install Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Install

	Out of the Box Templates
	Install Out of the Box Templates
	Prerequisites
	Install

	Building from source
	Git source
	Private GitRepository
	HTTP(S) Basic-auth / Token-based authentication
	SSH auth

	How it works
	Workload parameters

	Local source
	Authentication
	Developer
	Supply chain components

	How it works

	Using a prebuilt image
	Requirements for prebuilt images
	Configure your workload to use a prebuilt image
	Examples
	Using a Dockerfile
	Using Spring Boot’s build-image Maven target

	About Out of the Box Supply Chains
	Understanding the supply chain for a prebuilt image

	Git authentication
	HTTP
	SSH

	GitOps vs. RegistryOps
	GitOps
	Authentication
	HTTP(S) Basic-auth / Token-based authentication

	SSH
	GitOps workload parameters

	RegistryOps

	Authoring supply chains
	Providing your own supply chain
	Providing your own templates
	Modifying an Out of the Box Supply Chain
	Example

	Modifying an Out of the Box Supply template
	Example

	Live modification of supply chains and templates

	Supply Chain Security Tools - Scan
	Overview
	Use cases
	Supply Chain Security Tools - Scan features
	A Note on Vulnerability Scanners
	Missed CVEs
	False positives

	Install Supply Chain Security Tools - Scan
	Prerequisites
	Scanner support
	Install

	Spec reference
	About source and image scans
	About policy enforcement around vulnerabilities found

	Scan samples
	Sample public image scan with compliance check
	Public image scan
	Define the ScanPolicy and ImageScan
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Edit the ScanPolicy
	Clean up

	Sample public source code scan with compliance check
	Public source scan
	Run an example public source scan

	Sample private image scan
	Define the resources
	Set up target image pull secret
	Create the private image scan

	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Sample private source scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan status
	Clean up
	View vulnerability reports

	Sample public source scan of a blob
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Observe Supply Chain Security Tools - Scan
	Watching in-flight jobs

	Troubleshooting Supply Chain Security Tools - Scan
	Missing target image pull secret
	Disable Supply Chain Security Tools - Store
	Resolving Incompatible Syft Schema Version
	Resolving “Unable to decode cyclonedx”
	Blob Source Scan is reporting wrong source URL

	Additional resources
	Configure code repositories and image artifacts to be scanned
	Prerequisite
	Deploy scan custom resources
	SourceScan
	ImageScan

	Enforce compliance policy using Open Policy Agent
	Writing a policy template
	Rego file contract
	Define a Rego file for policy enforcement

	Create a ScanTemplate
	Structure
	Pod requirements
	Best practices

	View scan status conditions
	Viewing scan status
	Understanding conditions
	Condition types for the scans
	Scanning
	Succeeded
	SendingResults
	PolicySucceeded

	Understanding CVECount
	Understanding MetadataURL
	Understanding Phase
	Understanding ScannedBy
	Understanding ScannedAt

	Supply Chain Security Tools for VMware Tanzu - Sign
	Install Supply Chain Security Tools - Sign
	Prerequisites
	Install
	Configure
	Known issues

	Configuring Supply Chain Security Tools - Sign
	Create a ClusterImagePolicy resource
	Provide credentials for the package
	Provide secrets for authentication in your policy
	Provide secrets for authentication in the image-policy-registry-credentials service account

	Image name patterns
	Verify your configuration

	Logs messages and reasons
	Supply Chain Security Tools for Tanzu – Store
	Using the Tanzu Insight CLI plug-in
	Multicluster configuration
	Additional documentation

	Install Supply Chain Security Tools - Store independent from Tanzu Application Platform profiles
	Prerequisites
	Install

	Configure target endpoint and certificate
	Use Ingress
	Not use Ingress
	Use LoadBalancer

	Use NodePort
	Configure port forwarding
	Modify your /etc/hosts file

	Configure access tokens
	Service accounts
	Read-only service account
	Read-write service account

	Getting the Access Token
	Setting the Access Token

	Security details
	Application security
	TLS encryption
	Cryptographic algorithms:

	Access controls
	Authentication
	Authorization

	Container security
	Non-root user

	Security scanning
	Static Application Security Testing (SAST)
	Software Composition Analysis (SCA)

	Additional documentation
	API details
	Information
	Version

	Content negotiation
	URI Schemes
	Consumes
	Produces

	All endpoints
	images
	Operations
	Packages
	Sources
	Vulnerabilities

	Paths
	Create a new image report. Related packages and vulnerabilities are also created. (CreateImageReport)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	Create a new source report. Related packages and vulnerabilities are also created. (CreateSourceReport)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	List the packages in an image. (GetImagePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	List vulnerabilities from the given image. (GetImageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	Search image by id or digest. (GetImages)
	Parameters
	responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	List the images that contain the given package. (GetPackageImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	List the sources containing the given package. (GetPackageSources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	List vulnerabilities from the given package. (GetPackageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	Search packages by id, name and/or version. (GetPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	get source packages (GetSourcePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	List packages of the given source. (GetSourcePackagesQuery)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	get source vulnerabilities (GetSourceVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	Search for sources by ID, repository, commit sha and/or organization. (GetSourcs)
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	Search for vulnerabilities by CVE id. (GetVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema

	List the images that contain the given vulnerability. (GetVulnerabilityImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema

	List packages that contain the given CVE id. (GetVulnerabilityPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema

	List sources that contain the given vulnerability. (GetVulnerabilitySources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema

	health check (HealthCheck)
	All responses
	Responses
	200
	Schema

	Default Response
	Schema

	Models
	DeletedAt
	ErrorMessage
	Image
	MethodType
	Model
	NullTime
	Package
	Rating
	Source
	StringArray
	Vulnerability

	API walkthrough
	Using CURL to POST an image report

	Deployment details and configuration
	What is deployed
	Deployment configuration
	Database configuration
	Using AWS RDS postgres database
	Custom database password

	App service type
	Service accounts

	Exporting certificates
	Ingress support

	Install Supply Chain Security Tools - Store independent from Tanzu Application Platform profiles
	Prerequisites
	Install

	AWS RDS Postgres configuration
	Prerequisites
	AWS RDS

	Database backup recommendations
	Backup
	Restore

	Log configuration and usage
	Log levels
	Error Logs

	Obtaining logs
	API endpoint log output
	Format
	Log header
	Name
	Key-value pairs
	Common to all logs
	Logging query and path parameter values
	API payload log output

	SQL Query log output
	Format

	Troubleshooting
	Persistent volume retains data
	Symptom
	Solution

	Missing persistent volume
	Symptom
	Solution

	Multicluster Support: Error sending results to SCST - Store running in a different cluster
	Symptom
	Solution

	Certificate Expiries
	Symptom
	Explanation
	Solution

	Troubleshooting upgrading
	Database deployment does not exist
	Invalid checkpoint record
	Upgraded pod hanging

	Failover, redundancy, and backups
	API Server
	Database

	Ingress and multicluster support
	Multicluster setup
	TLS CA certificate
	RBAC Auth token
	Supply Chain Security Tools - Scan installation

	Overview of VMware Tanzu Developer Tools for Visual Studio Code
	Extension Features

	Installing Tanzu Developer Tools for Visual Studio Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Getting started with Tanzu Developer Tools for Visual Studio Code
	Prerequisite
	Create the workload.yaml file
	Create the catalog-info.yaml file
	Create the Tiltfile file

	Example project
	Next steps

	Using Tanzu Developer Tools for Visual Studio Code
	Configure for multiple projects in the workspace
	Debugging on the cluster
	Start debugging on the cluster
	Stop Debugging on the cluster

	Live Update
	Start Live Update
	Stop Live Update
	Deactivate Live Update
	Live Update status

	Switch Namespace

	Pinniped compatibility
	Oauth
	LDAP

	Tanzu API portal
	Install Tanzu API portal
	Prerequisites
	Install

	Tanzu Application Platform GUI
	Overview of Tanzu Application Platform GUI
	Install Tanzu Application Platform GUI
	Prerequisites
	Procedure

	Accessing Tanzu Application Platform GUI
	Access with the LoadBalancer method (default)
	Access with the shared Ingress method

	Catalog operations
	Adding catalog entities
	Users and groups
	Systems
	Components

	Update software catalogs
	Register components
	Deregister components
	Add or change organization catalog locations

	Install demo apps and their catalogs
	Yelb system
	Install Yelb
	Install the Yelb catalog

	Viewing resources on multiple clusters in Tanzu Application Platform GUI
	Set up a Service Account to view resources on a cluster
	Update Tanzu Application Platform GUI to view resources on multiple clusters
	View resources on multiple clusters in the Runtime Resources Visibility plug-in

	Setting up a Tanzu Application Platform GUI authentication provider
	Configure an authentication provider
	(Optional) Allow guest access
	(Optional) Customize the login page

	Support menu customization
	Overview
	Customizing
	Structure of the support configuration
	URL
	Items
	Title
	Icon
	Links

	Adding Tanzu Application Platform GUI integrations
	Add a GitHub provider integration
	Add a Git-based provider integration that isn’t GitHub
	Add a non-Git provider integration
	Update the package profile

	Configuring the Tanzu Application Platform GUI database
	Configure a PostgreSQL database

	TechDocs
	Create an Amazon S3 bucket
	Configure Amazon S3 access
	Find the catalog locations and their entities’ namespace/kind/name
	Use the TechDocs CLI to generate and publish TechDocs
	Update techdocs section in app-config.yaml to point to the Amazon S3 bucket

	Tanzu Application Platform GUI plug-ins
	Overview

	Runtime resources visibility
	Introduction
	Prerequisite
	Visualize Workloads on Tanzu Application Platform GUI
	Navigate to the Runtime Resources Visibility screen
	Knative service details page
	View details for a specific resource
	Detail pages
	Overview card
	Status card
	Ownership card
	Annotations and Labels

	Navigating to Pod Details Page
	Navigating to Application Live View

	Application Live View in Tanzu Application Platform GUI
	Overview
	Entry point to Application Live View plug-in
	Application Live View pages
	Details page
	Health page
	Environment page
	Log Levels page
	Threads page
	Memory page
	Request Mappings page
	HTTP Requests page
	Caches page
	Configuration Properties page
	Conditions page
	Scheduled Tasks page
	Beans page
	Metrics page
	Actuator page

	Troubleshooting

	Install Application Live View
	Prerequisites
	Install Application Live View
	Install Application Live View Backend
	Install Application Live View Connector
	Install Application Live View Conventions

	Application Accelerator in Tanzu Application Platform GUI
	Overview
	Access Application Accelerator
	Configure project generation
	Create the project
	Develop your code
	Next steps

	Install Application Accelerator
	Prerequisites
	Configure properties and resource usage
	Install

	API documentation plug-in in Tanzu Application Platform GUI
	Overview
	Use the API documentation plug-in
	Create a new API entry

	Getting started with API documentation plug-in
	Add your API entry to the Tanzu Application Platform GUI software catalog
	About API entities
	Add a demo API entity to Tanzu Application Platform GUI software catalog
	Update your demo API entry

	Supply Chain Choreographer in Tanzu Application Platform GUI
	Overview
	Prerequisites
	Supply Chain Visibility

	Upgrade Tanzu Application Platform GUI
	Considerations
	Upgrade within a Tanzu Application Platform profile
	Upgrade Tanzu Application Platform GUI individually

	Troubleshoot Tanzu Application Platform GUI
	Tanzu Application Platform GUI does not work in Safari
	Symptom
	Solution

	Catalog not found
	Symptom
	Cause
	Solution

	Issues updating the values file
	Symptom
	Solution

	Pull logs from Tanzu Application Platform GUI
	Symptom
	Solution

	Runtime Resources tab
	Error communicating with Tanzu Application Platform web server
	Symptom
	Causes
	Solution

	No data available
	Symptom
	Cause
	Solution

	Errors retrieving resources
	Symptom

	Accelerators page
	No accelerators
	Symptom
	Cause
	Solution

	Tanzu Build Service
	Tanzu Build Service Dependencies
	Configuration
	Descriptors
	Automatic Dependency Updates
	Manual Control of Dependency Updates

	Install Tanzu Build Service
	Prerequisites
	Install Tanzu Build Service by using the Tanzu CLI
	Install Tanzu Build Service using the Tanzu CLI air-gapped
	Installation using Secret references for registry credentials

	Descriptors
	About descriptors
	Lite descriptor
	Full descriptor
	Descriptor comparison

	Tekton
	Install Tekton
	Prerequisites
	Install Tekton Pipelines
	Configure a namespace to use Tekton Pipelines

	Workload types
	Using web workloads
	Using TCP workloads (Beta)
	Overview
	Prerequisites
	Create a tcp SupplyChain
	Create supply chain templates
	Add RBAC permissions
	Define the ClusterSupplyChain

	Use the tcp workload type

	Using queue workloads (Beta)
	Overview
	Prerequisites
	Create a queue SupplyChain
	Create supply chain templates
	Add RBAC permissions
	Define the ClusterSupplyChain

	Use the queue workload type

	Functions (Beta)
	Using functions (Beta)
	Overview
	Prerequisites
	Adding function buildpacks
	Add accelerators to Tanzu Application Platform GUI
	Create a function project from an accelerator
	Create a function project using the Tanzu CLI
	Deploy your function

	Iterating on your function
	Prerequisites
	Configure the Tanzu Developer Tools extension
	Live update your application
	Debug your application

