
VMware Tanzu Build
Service 1.1 Documentation

Tanzu Build Service 1.1

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2022 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Tanzu Build Service 1.1 Documentation 9

Overview 9

Build Service Concepts 9

Image 9

Builder 9

ClusterStore 9

ClusterStack 9

Build Service Components 10

Build Service Dependencies 10

Buildpacks 10

Stacks 10

Updating Build Service Dependencies 10

Troubleshooting 10

Installing Tanzu Build Service 11

Prerequisites 11

Installing 12

Relocate Images to a Registry 12

Install Tanzu Build Service 13

Install Tanzu Build Service Public Registry 13

Installing with a CA certificate for internal registry 14

Import Tanzu Build Service Dependencies 14

Additional Configuration 15

Configuring TKGI as an OIDC Provider 15

Installation to Air-Gapped Environment 16

Relocate Images to a Registry (Air-Gapped) 16

Installing (Air-Gapped) 17

Additional Configuration 18

Import Tanzu Build Service Dependencies (Air-Gapped) 18

Relocate Tanzu Build Service Dependency Images (Air-Gapped) 18

Import Tanzu Build Service Dependency Resources (Air-Gapped) 19

Verify Installation 19

Upgrading Tanzu Build Service 19

Updating Build Service Dependencies 20

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 3

Ensuring Access to Cluster Builders 20

Ensuring the Run Image is Readable 20

Next Steps 20

Kubernetes Permissions for Installation 21

Installing Windows Components (Beta) 23

Getting Started with Tanzu Build Service 24

Prerequisites 24

Assumptions 25

Installation 25

Relocate Images to a Registry 25

Install Tanzu Build Service 25

Import Tanzu Build Service Dependencies 26

Verify Installation 26

Create an Image 26

Accessing Tanzu Build Service 28

Updating Build Service Dependencies 29

Updating Dependencies 29

Bulk Update 29

Cluster Stacks Update 29

Cluster Store Update 30

Updating Buildpacks From Tanzu Network 31

Offline Update of Dependencies 32

Managing Secrets 33

Overview 33

Create Secrets 33

Create a Docker Hub Registry Secret 33

Create a GCR Registry Secret 34

Create an Artifactory, Harbor, or ACR Registry Secret 34

Create a Git SSH Secret 35

Create a Git Basic Auth Secret 35

List Secrets 36

Delete Secrets 36

Encrypting Secrets at Rest 37

Synced-Secrets in Tanzu Build Service 37

When to use Synchronized Secrets 37

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 4

Managing Secret Synchronization 37

Create a Synchronized Secret 37

Update a Synchronized Secret 38

Stop Synchronizing a Secret 38

Managing Images and Builds 39

Images 40

Creating Images 40

Source Code 40

Builders 40

Creating an Image With Source Code in a Git Repository 40

Create an Image With Source Code In A Blob Store 41

Creating an Image With Local Source Code 42

Buildpack Configuration 43

Buildpack Configuration Use Cases 43

Buildpack Configuration Documentation 43

Buildpack Configuration in Images 43

Patching Images 44

Saving Images 45

Listing Images 45

Filter Images 46

Image Rebuilds 46

Trigger an Image Rebuild 47

Viewing the Status of an Image 47

Deleting an Image 47

Managing Images with YAML 48

Using Secrets 48

Debugging with Image Status 48

Image Service Bindings 49

Creating an Image with Service Bindings 49

Builds 50

Listing Builds 50

Viewing Build Details for an Image 51

Image Status shows ImagePullBackOff 52

Getting Build Logs 53

Viewing Bill of Materials 55

Offline Builds 56

Image Signing with Notary 56

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 5

Generate Notary Signing Keys 56

Create a Secret to be used for TBS Image Signing 57

Create an Image that will be Signed by Notary 57

Managing ClusterStacks 58

Create a ClusterStack 59

Update a ClusterStack 59

Save a ClusterStack 60

Get ClusterStack Status 60

Delete a ClusterStack 60

List all ClusterStacks 60

How to update an Image for Stack updates only? 61

Managing Stores 62

Creating Buildpacks and Buildpackages 62

Listing ClusterStores 62

Creating a ClusterStore 63

Saving a ClusterStore 63

Adding Buildpackages to a ClusterStore 63

Adding Buildpackages to a ClusterStore from Tanzu Network 64

Offline Adding Buildpackages to a ClusterStore from Tanzu Network 64

Removing Buildpackages from a ClusterStore 65

Get ClusterStore Status 65

Migrating Buildpacks 66

Corresponding kpack Resource 66

Managing Builders 67

Creating a Builder 68

Patching a Builder 69

Saving Builders 70

Deleting Builders 71

Retrieving Builder Details 71

Listing Builders 72

Corresponding kpack Resources 72

Pinning Buildpack versions 72

Update Lifecycle 73

Managing Custom Stacks 74

Creating a CustomStack 74

Source Configuration 74

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 6

Destination Configuration 75

Example CustomStack from Registry Images 75

Example CustomStack from ClusterStack 76

Debugging CustomStacks 78

RBAC in Tanzu Build Service 79

RBAC using Projects Operator 79

RBAC Support in Tanzu Build Service 79

Build Service User Role 79

Build Service Admin Role 80

Frequently Asked Questions 81

How do Cloud Native Buildpacks (CNBs), kpack, and Tanzu Build Service overlap
and differ?

81

Why do I see two images in the image registry after a successful build? 81

How does TBS work in air gapped environments? 81

Is there documentation on supported Tanzu Buildpacks? 81

Why do I get an X509 error from Build Service when trying to create an image in
my registry?

82

How do I configure a secret to publish images to Dockerhub? 82

How can I configure an image to pull from a private GitHub repository? 82

Why do some builds fail with "Error: could not read run image: *"? 82

Why don't my image builds appear in my Harbor v1.X.X registry? 83

How do I fix "unsupported status code 500" when creating a builder on my
Harbor v2.X.X registry?

83

How do I configure credentials for using gcr as my installation registry? 83

Can I configure a proxy for my Tanzu Build Service? 83

How do I build my app locally using kpack builders? 84

What can I do with the kp --dry-run and --output flags? 84

Does TBS support Azure Devops for git repositories 85

Why do I get a "repository does not exist" error when I use ECR Registry? 85

How do I troubleshoot a failed build? 85

How do I troubleshoot an UNAUTHENTICATED error? 86

Additional resources for Tanzu Build Service 88

Concourse Kpack resource 88

Helpful Articles 88

Helpful Videos 88

Helpful Repositories 88

Release Notes 89

v1.1.4 89

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 7

Product Snapshot 89

v1.1.3 89

Product Snapshot 89

v1.1.2 89

Product Snapshot 89

v1.1.1 90

v1.1.0 90

Product Snapshot 90

Product Dependencies 91

Upgrade Path 91

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 8

Tanzu Build Service 1.1 Documentation

This topic provides an overview of Tanzu Build Service.

Overview

Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application source

code into container images. Build Service executes reproducible builds that align with modern

container standards, and additionally keeps images up-to-date. It does so by leveraging Kubernetes

infrastructure with kpack, a Cloud Native Buildpacks Platform, to orchestrate the image lifecycle. The

kpack CLI tool, kp can aid in managing kpack resources.

Build Service helps you develop and automate containerized software workflows securely and at

scale.

Build Service Concepts

Build Service reduces operational overhead and improves security by automating the building of

application images. It relies on Image, Builder, ClusterStore and ClusterStack to achieve these

results.

Image

An Image defines the source of the application, build time environment and registry destination. This

source code could reside in git, a blobstore, or as code on a workstation.

For more information see the Managing Images and Builds page.

Builder

A Builder references the Stack and Buildpacks that are used in the process of building source code.

They "provide" the Buildpacks that run against the application and the OS images upon which the

application is built and run.

For more information see the Managing Builders page.

ClusterStore

A ClusterStore serves as a repository for Cloud Native Buildpacks available for use in Builders. One

can populate a store with Buildpacks they create and package.

For more information see the Managing ClusterStores page.

ClusterStack

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 9

https://buildpacks.io
https://github.com/opencontainers/image-spec/blob/master/spec.md
https://github.com/pivotal/kpack
https://buildpacks.io/docs/buildpack-author-guide/create-buildpack/
https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack

A ClusterStack defines a pair of build and run OS images. Critical security vulnerabilities are

addressed by building apps on the most up-to date stack. The stacks used by Build Service to build

applications are referenced in the Builders.

For more information see the Managing ClusterStacks page.

Build Service Components

Tanzu Build Service 1.0.2 ships with the following components:

kpack v0.2.0

kpack CLI (kp) v0.2.0

CNB lifecycle v0.10.2

Build Service Dependencies

Buildpacks

Tanzu Build Service utilize Tanzu Buildpacks.

Stacks

Stack Documentation is available on the Tanzu Buildpacks documentation.

The following Stacks and their updates can be found on the Tanzu Build Service Dependencies

page.

Name ID

tiny io.paketo.stacks.tiny

base io.buildpacks.stacks.bionic

full io.buildpacks.stacks.bionic

Updating Build Service Dependencies

Build Service allows the user to update Buildpacks and Stacks via the kp CLI. You can learn more

about updating Build Service dependencies here.

Troubleshooting

For troubleshooting failed builds, check the FAQ section of our docs.

If you are unable to resolve your problem, please contact Tanzu VMware Support.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 10

https://github.com/pivotal/kpack/releases/tag/v0.2.0
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.2.0
https://github.com/buildpacks/lifecycle/releases/tag/v0.10.2
https://docs.pivotal.io/tanzu-buildpacks/
https://docs.pivotal.io/tanzu-buildpacks/index.html
https://network.pivotal.io/products/tbs-dependencies/
https://tanzu.vmware.com/support

Installing Tanzu Build Service

This topic describes how to install and configure Tanzu Build Service.

Prerequisites

Before you install Build Service, you must:

Be on Kubernetes cluster v1.16 or later

Have access to the Kubernetes cluster satisfying the minimum required permissions.

Ensure that all worker nodes have at least 50 GB of ephemeral storage allocated to them.

To do this on TKGs, mount a 50GB volume at /var/lib to the worker nodes in the

TanzuKubernetesCluster resource that corresponds to your TKGs cluster. These

instructions show how to configure storage on worker nodes.

Have access to a container registry to install Tanzu Build Service and store the application

images that will be created.

Although the documentation references specific registries for the purpose of

providing examples, any registry that adheres to the Docker Registry HTTP API V2 is

supported

TBS uses ~5GB of registry space for installation, this does not include the space that

will be used for application images.

Ensure your Kubernetes cluster is configured with default StorageClass. Tanzu Build Service

will default to using 2G of cache if a default StorageClass is defined. Build Service utilizes

PersistentVolumeClaims to cache build artifacts, which reduces the time of subsequent

builds.

For more information, see Persistent Volumes in the Kubernetes documentation. And for

information on defining a default StorageClass, see Changing the default StorageClass

Download three Carvel CLIs for your operating system. These tools will facilitate the

installation of Tanzu Build Service on your cluster. They can be found on their respective

Tanzu Network pages:

kapp is a deployment tool that allows users to manage Kubernetes resources in bulk.

ytt is a templating tool that understands YAML structure.

kbld is tool that builds, pushes, and relocates container images.

Navigate to the following pages in Tanzu Network and accept all EULAs highlighted in yellow.

Tanzu Build Service

Tanzu Build Service Dependencies

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 11

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-4E68C7F2-C948-489A-A909-C7A1F3DC545F.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://carvel.dev/
https://network.pivotal.io/products/kapp/
https://network.pivotal.io/products/ytt/
https://network.pivotal.io/products/kbld/
https://network.pivotal.io/products/build-service/
https://network.pivotal.io/products/tbs-dependencies/

Buildpacks for VMware Tanzu

Stacks for VMware Tanzu

Download the Build Service Bundle from the Tanzu Build Service page on Tanzu Network.

Unarchive the Build Service Bundle file:

tar xvf build-service-<version>.tar -C /tmp

Download the kp CLI for your operating system from the Tanzu Build Service page on Tanzu

Network. The kp CLI help text is published here.

These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working,

you may need to upgrade your cli.

Download the docker CLI to authenticate with registries.

Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network. This file contains

paths to images that contain dependency resources Tanzu Build Service needs to execute

image builds.

Note: Clusters running with Containerd 1.4.1 are not compatible with TBS. Notably, TKG 1.2.1 uses this

version of Containerd, a different TKG version must be used.

Note: TKGs clusters running Kubernetes 1.20 are not compatible with TBS. A TKGs patch is

expected to fix this. In the meantime, we recommend running k8s 1.19 when using TKGs.

Installing

Create a kubernetes cluster where you would like to install build service and target the cluster as

follows:

kubectl config use-context <CONTEXT-NAME>

Relocate Images to a Registry

This procedure relocates images from the Tanzu Network registry to an internal image registry.

1. Log in to the image registry where you want to store the images by running:

docker login <IMAGE-REGISTRY>

Where IMAGE-REGISTRY is the name of the image registry where you want to store the images.

2. Log in to the Tanzu Network registry with your Tanzu Network credentials:

docker login registry.pivotal.io

3. Relocate the images with the Carvel tool kbld by running:

kbld relocate -f /tmp/images.lock --lock-output /tmp/images-relocated.lock --repositor

y <IMAGE-REPOSITORY>

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 12

https://network.pivotal.io/products/tanzu-buildpacks-suite
https://network.pivotal.io/products/tanzu-stacks-suite
https://network.pivotal.io/products/build-service/
https://network.pivotal.io/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md
https://network.pivotal.io/products/tbs-dependencies/
https://carvel.dev/

Where IMAGE-REPOSITORY is the repository in your registry that you want to relocate images to.

Note: The flag argument --lock-output /tmp/images-relocated.lock creates a file that will be used

for installation.

Note: When relocating, the IMAGE-REPOSITORY must be the IMAGE-REGISTRY appended with

the destination repository for the images. For example, IMAGE-REGISTRY/build-service.

Exception: When relocating to Dockerhub, you must provide the Dockerhub repository and an

image name that kbld will use for relocation. For example, my-dockerhub-account/build-service.

For example:

Dockerhub kbld relocate -f /tmp/images.lock --lock-output /tmp/images-

relocated.lock --repository my-dockerhub-account/build-service

GCR kbld relocate -f /tmp/images.lock --lock-output /tmp/images-relocated.lock --

repository gcr.io/my-project/build-service

Artifactory kbld relocate -f /tmp/images.lock --lock-output /tmp/images-

relocated.lock --repository artifactory.com/my-project/build-service

Harbor kbld relocate -f /tmp/images.lock --lock-output /tmp/images-relocated.lock

--repository harbor.io/my-project/build-service

Install Tanzu Build Service

There are two ways to install Tanzu Build Service:

1. Using a public registry (eg. GCR, Dockerhub) or an internal registry that uses a trusted

certificate (eg. Let's Encrypt)

2. Using an internal registry that uses a self-signed CA certificate (eg. Harbor, Artifactory)

Install Tanzu Build Service Public Registry

Use the Carvel tools kapp, ytt, and kbld to install Build Service and define the required Build Service

parameters by running:

ytt -f /tmp/values.yaml \

 -f /tmp/manifests/ \

 -v docker_repository="<IMAGE-REPOSITORY>" \

 -v docker_username="<REGISTRY-USERNAME>" \

 -v docker_password="<REGISTRY-PASSWORD>" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Where:

IMAGE-REPOSITORY is the image repository where Tanzu Build Service images exist.

Note: This is identical to the IMAGE-REPOSITORY argument provided during kbld relocation

command.

Exception: When using Dockerhub as your registry target, only use your DockerHub

account for this value. For example, my-dockerhub-account (without /build-service).

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 13

https://carvel.dev/

Otherwise, you will encounter an error similar to: Error: invalid credentials, ensure

registry credentials for 'index.docker.io/my-dockerhub-account/build-

service/tanzu-buildpacks_go' are available locally

REGISTRY-USERNAME is the username you use to access the registry. gcr.io expects

_json_key as the username when using JSON key file authentication.

REGISTRY-PASSWORD is the password you use to access the registry.

Note: [Managing Secrets](managing-secrets.html) for more information about how the

registry username and password are used in Tanzu Build Service.

Installing with a CA certificate for internal registry

To install Tanzu Build Service with an internal registry that requires providing a CA certificate such as

Harbor, use the normal installation command with the CA certificate file passed in with a -f flag:

ytt -f /tmp/values.yaml \

 - f / t m p / m a n i f e s t s / \

 - f < P A T H - T O - C A > \

 -v docker_repository="<IMAGE-REPOSITORY>" \

 -v docker_username="<REGISTRY-USERNAME>" \

 -v docker_password="<REGISTRY-PASSWORD>" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Where:

PATH-TO-CA is the path to the registry root CA. This CA is required to enable Build Service to

interact with internally deployed registries. This is the CA that was used while deploying the

registry.

IMAGE-REPOSITORY is the image repository where Tanzu Build Service images exist.

Note: This is identical to the IMAGE-REPOSITORY argument provided during kbld relocation

command.

Exception: When using Dockerhub as your registry target, only use your DockerHub

account for this value. For example, my-dockerhub-account (without /build-service).

Otherwise, you will encounter an error similar to: Error: invalid credentials, ensure

registry credentials for 'index.docker.io/my-dockerhub-account/build-

service/tanzu-buildpacks_go' are available locally

REGISTRY-USERNAME is the username you use to access the registry. gcr.io expects

_json_key as the username when using JSON key file authentication.

REGISTRY-PASSWORD is the password you use to access the registry.

Note: [Managing Secrets](managing-secrets.html) for more information about how the

registry username and password are used in Tanzu Build Service.

Import Tanzu Build Service Dependencies

The Tanzu Build Service Dependencies (Stacks, Buildpacks, Builders, etc.) are used to build

applications and keep them patched.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 14

These must be imported with the kp cli and the Dependency Descriptor (descriptor-

<version>.yaml) file from the Tanzu Build Service Dependencies page:

kp import -f /tmp/descriptor-<version>.yaml

When importing to a registry that uses a self-signed CA certificate:

kp import -f /tmp/descriptor-<version>.yaml --registry-ca-cert-path <path-to-ca-cert>

Using the --show-changes flag will give a summary of the resource changes for the import. You will

also be asked to confirm the import. Confirmation can be skipped with --force.

Successfully performing a kp import command requires that your Tanzu Network account has

access to the images specified in the Dependency Descriptor file. Users can only access these

images if they agree to the dependency EULAs.

Users must navigate to the following dependencies pages in Tanzu Network and accept all EULAs

highlighted in yellow.

1. Tanzu Build Service Dependencies

2. Buildpacks for VMware Tanzu

3. Stacks for VMware Tanzu

Note: `kp import` will fail if it cannot access the images in all of the above Tanzu Network pages.

Note: You must be logged in locally to the registry used for `IMAGE-REGISTRY` during relocation

and the Tanzu Network registry `registry.pivotal.io`.

Additional Configuration

Other optional parameters can be added using the -v flag:

admin_users is a comma separated list of users who will be granted admin privileges on Build

Service.

admin_groups: a comma separated list of groups that will be granted admin privileges on

Build Service.

http_proxy: The HTTP proxy to use for network traffic.

https_proxy: The HTTPS proxy to use for network traffic.

no_proxy: A comma-separated list of hostnames, IP addresses, or IP ranges in CIDR format

that should not use a proxy.

Note: When proxy server is enabled using http_proxy and/or https_proxy, traffic to the kubernetes

API server will also flow through the proxy server. This is a known limitation and can be

circumvented by using no_proxy to specify the kubernetes API server.

Configuring TKGI as an OIDC Provider

The authentication and authorization processes for Build Service use a combination of RBAC rules

and third-party authentication, including OpenID Connect (OIDC). You may configure UAA as an

OIDC provider for your TKGI deployment to provide authentication for Build Service.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 15

https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tanzu-buildpacks-suite
https://network.pivotal.io/products/tanzu-stacks-suite

To configure UAA as an OIDC provider for your TKGI deployment:

1. Navigate to the OpsManager Installation Dashboard.

2. Click the TKGI tile.

3. Select UAA.

4. Under Configure created clusters to use UAA as the OIDC provider, select Enable.

5. Ensure the values in the UAA OIDC Groups Prefix and UAA OIDC Username Prefix fields

are the same and record them. For example, "oidc:". You will need these values during the

installation of Build Service.

Note: Ensure you add a : at the end of the desired prefix.

6. Click Save.

7. In the OpsManager Installation Dashboard, click Review Pending Changes, then Apply

Changes.

Installation to Air-Gapped Environment

Tanzu Build Service can be installed to a Kubernetes Cluster and registry that are air-gapped from

external traffic.

An air-gapped environment will often use an internal registry with a self-signed CA certificate and

you will need access to this CA certificate file to install TBS.

Note: If you are using a CA certificate that is trusted (eg. Let's Encrypt) you will not need the CA

certificate file.

Relocate Images to a Registry (Air-Gapped)

This procedure relocates images from the Tanzu Network registry to an internal image registry via a

local machine.

The local machine must have write access to the internal registry.

1. Log in to the image registry where you want to store the images by running:

docker login <IMAGE-REGISTRY>

Where IMAGE-REGISTRY is the name of the image registry where you want to store the images.

2. Log in to the Tanzu Network registry with your Tanzu Network credentials:

docker login registry.pivotal.io

3. Package the images in a file on your local machine with the Carvel tool kbld by running:

kbld package -f /tmp/images.lock --output /tmp/packaged-images.tar

4. Move the output file packaged-images.tar to a machine that has access to the air-gapped

environment.

5. Unpackage the images from your local machine to the internal registry:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 16

https://carvel.dev/

kbld unpackage -f /tmp/images.lock \

 --input /tmp/packaged-images.tar \

 --repository <IMAGE-REPOSITORY> \

 --lock-output /tmp/images-relocated.lock \

 --registry-ca-cert-path <PATH-TO-CA>

Where:

IMAGE-REPOSITORY is the repository in your registry that you want to relocate images to.

PATH-TO-CA is the path to the registry CA certificate file.

Note: The flag argument `--lock-output /tmp/images-relocated.lock` creates a file that will be used

for installation.

Note: When relocating to a registry that is not Dockerhub, the IMAGE-REPOSITORY must be the

IMAGE-REGISTRY appended with the destination repository for the images. For example, IMAGE-

REGISTRY/build-service.

Exception: When relocating to Dockerhub, you must provide the Dockerhub repository and an

image name that kbld will use for relocation. For example, my-dockerhub-account/build-service.

For example:

Dockerhub kbld unpackage -f /tmp/images.lock --input /tmp/packaged-images.tar --

lock-output /tmp/images-relocated.lock --repository my-dockerhub-account/build-

service --registry-ca-cert-path ca.crt

GCR kbld unpackage -f /tmp/images.lock --input /tmp/packaged-images.tar --lock-

output /tmp/images-relocated.lock --repository gcr.io/my-project/build-service --

registry-ca-cert-path ca.crt

Artifactory kbld unpackage -f /tmp/images.lock --input /tmp/packaged-images.tar --

lock-output /tmp/images-relocated.lock --repository artifactory.com/my-

project/build-service --registry-ca-cert-path ca.crt

Harbor kbld unpackage -f /tmp/images.lock --input /tmp/packaged-images.tar --lock-

output /tmp/images-relocated.lock --repository harbor.io/my-project/build-service

--registry-ca-cert-path ca.crt

Installing (Air-Gapped)

Use the Carvel tools kapp, ytt, and kbld to install Build Service and define the required Build Service

parameters by running:

ytt -f /tmp/values.yaml \

 - f / t m p / m a n i f e s t s / \

 - f < P A T H - T O - C A > \

 -v docker_repository="<IMAGE-REPOSITORY>" \

 -v docker_username="<REGISTRY-USERNAME>" \

 -v docker_password="<REGISTRY-PASSWORD>" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 17

https://carvel.dev/

Where:

PATH-TO-CA is the path to the registry root CA. This CA is required to enable Build Service to

interact with internally deployed registries. This is the CA that was used while deploying the

registry.

IMAGE-REPOSITORY is the image repository where Tanzu Build Service images exist.

Note: This is identical to the IMAGE-REPOSITORY argument provided during kbld relocation

command.

Exception: When using Dockerhub as your registry target, only use your DockerHub

account for this value. For example, my-dockerhub-account (without /build-service).

Otherwise, you will encounter an error similar to: Error: invalid credentials, ensure

registry credentials for 'index.docker.io/my-dockerhub-account/build-

service/tanzu-buildpacks_go' are available locally

REGISTRY-USERNAME is the username you use to access the registry. gcr.io expects

_json_key as the username when using JSON key file authentication.

REGISTRY-PASSWORD is the password you use to access the registry.

Note: [Managing Secrets](managing-secrets.html) for more information about how the

registry username and password are used in Tanzu Build Service.

Additional Configuration

Other optional parameters can be added using the -v flag:

admin_users is a comma separated list of users who will be granted admin privileges on Build

Service.

admin_groups: a comma separated list of groups that will be granted admin privileges on

Build Service.

Import Tanzu Build Service Dependencies (Air-Gapped)

The Tanzu Build Service Dependencies (Stacks, Buildpacks, Builders, etc.) are used to build

applications and keep them patched.

These must be imported with the kp cli and the Dependency Descriptor (descriptor-

<version>.yaml) file from the Tanzu Build Service Dependencies page.

Relocate Tanzu Build Service Dependency Images (Air-Gapped)

To import these dependencies into an air-gapped environment, they must first be relocated to the

internal registry. Use kbld to perform this relocation similarly to installation:

1. Download the dependency images locally:

kbld package -f descriptor-<version>.yaml \

 --output /tmp/packaged-dependencies.tar

Note: You must be logged in locally to the Tanzu Network registry.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 18

https://network.pivotal.io/products/tbs-dependencies/

1. Move the output file packaged-dependencies.tar to a machine that has access to the air-

gapped environment.

2. Upload the dependency images to the Tanzu Build Service registry:

kbld unpackage -f descriptor-<version>.yaml \

 --input /tmp/packaged-dependencies.tar \

 --repository <IMAGE-REPOSITORY> \

 --lock-output /tmp/dependencies-relocated.lock \

 --registry-ca-cert-path <PATH-TO-CA>

Where:

IMAGE-REPOSITORY is the internal image repository where dependency images will be

relocated.

PATH-TO-CA is the path to the registry CA certificate file.

Note: You must be logged in locally to the registry used for `IMAGE-REGISTRY`.

Import Tanzu Build Service Dependency Resources (Air-Gapped)

After the dependency images are uploaded to the internal registry, you can successfully import

these images and create the corresponding Tanzu Build Service resources.

Use the following command with kbld and the kp CLI:

kbld -f descriptor-<version>.yaml -f /tmp/dependencies-relocated.lock | kp import -f -

 --registry-ca-cert-path <path-to-ca-cert>

Verify Installation

Verify your Build Service installation by first targeting the cluster Build Service has been installed on.

To verify your Build Service installation:

1. Download the kp binary from the Tanzu Build Service page on Tanzu Network.

2. List the cluster builders available in your installation:

kp clusterbuilder list

You should see an output that looks as follows:

NAME READY STACK IMAGE

base true io.buildpacks.stacks.bionic <image@sha256:digest>

default true io.buildpacks.stacks.bionic <image@sha256:digest>

full true io.buildpacks.stacks.bionic <image@sha256:digest>

tiny true io.paketo.stacks.tiny <image@sha256:digest>

Upgrading Tanzu Build Service

To upgrade Tanzu Build Service to a newer version, run the same commands as installation. Re-

importing dependencies is not required for upgrading TBS.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 19

https://network.pivotal.io/products/build-service/

Relocate the images with kbld:

kbld relocate -f /tmp/images.lock --lock-output /tmp/images-relocated.lock --repositor

y <IMAGE-REPOSITORY>

Run the ytt/kapp command to install:

ytt -f /tmp/values.yaml \

 -f /tmp/manifests/ \

 -v docker_repository="<IMAGE-REPOSITORY>" \

 -v docker_username="<REGISTRY-USERNAME>" \

 -v docker_password="<REGISTRY-PASSWORD>" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Updating Build Service Dependencies

Use the following documentation to keep applications patched and up-to-date with Tanzu Build

Service:

To keep dependencies up-to-date, see Updating Build Service Dependencies

To manage Stacks, see Managing Stacks

To manage Buildpack Stores, see Managing Stores

Ensuring Access to Cluster Builders

In order to use Cluster Builders, such as the ones installed with Tanzu Build Service, we suggest to

install Tanzu Build Service to a repository that is accessible by the nodes in the kubernetes cluster

without credentials.

If this is not desired, see When to use Synchronized Secrets.

Ensuring the Run Image is Readable

Build Service relies on the run-image being publicly readable or readable with the registry

credentials configured in a project/namespace for the builds to be executed successfully.

The location of the run image can be identified by running the following command:

kp clusterstack status <stack-name>

If the cluster stack run image is not public, you may need to create a registry secret in any

namespace where Images or Builds will be used. For more details on secrets in Tanzu Build Service,

see Managing Secrets

This can be done with the kp CLI:

kp secret create my-registry-creds --registry example-registry.io --registry-user my-r

egistry-user --namespace build-namespace

Next Steps

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 20

Visit the Managing Images and Builds page to learn how to create and manage a new image.

Kubernetes Permissions for Installation

The minimum Kubernetes RBAC permissions required to install Tanzu Build Service are as follows.

This includes the namespaces required for the Kubernetes Roles:

apiVersion: v1

kind: Namespace

metadata:

 name: build-service

apiVersion: v1

kind: Namespace

metadata:

 name: kpack

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: build-service-install-cluster-role

rules:

 - apiGroups:

 - "admissionregistration.k8s.io"

 resources:

 - mutatingwebhookconfigurations

 - validatingwebhookconfigurations

 verbs:

 - '*'

 - apiGroups:

 - "rbac.authorization.k8s.io"

 resources:

 - clusterroles

 - clusterrolebindings

 verbs:

 - '*'

 - apiGroups:

 - "apiextensions.k8s.io"

 resources:

 - customresourcedefinitions

 verbs:

 - '*'

 - apiGroups:

 - "storage.k8s.io"

 resources:

 - storageclasses

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - kpack.io

 resources:

 - builds

 - builds/status

 - builds/finalizers

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 21

 - images

 - images/status

 - images/finalizers

 - builders

 - builders/status

 - clusterbuilders

 - clusterbuilders/status

 - clusterstores

 - clusterstores/status

 - clusterstacks

 - clusterstacks/status

 - sourceresolvers

 - sourceresolvers/status

 verbs:

 - '*'

 - apiGroups:

 - "projects.vmware.com"

 resources:

 - projects

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: build-service-install-role

 namespace: build-service

rules:

 - apiGroups:

 - ""

 resources:

 - configmaps

 - secrets

 - serviceaccounts

 - services

 - namespaces

 verbs:

 - '*'

 - apiGroups:

 - "rbac.authorization.k8s.io"

 resources:

 - roles

 - rolebindings

 verbs:

 - '*'

 - apiGroups:

 - apps

 resources:

 - deployments

 - daemonsets

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: kpack-install-role

 namespace: kpack

rules:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 22

 - apiGroups:

 - ""

 resources:

 - services

 - serviceaccounts

 - namespaces

 - secrets

 - configmaps

 verbs:

 - '*'

 - apiGroups:

 - "rbac.authorization.k8s.io"

 resources:

 - roles

 - rolebindings

 verbs:

 - '*'

 - apiGroups:

 - apps

 resources:

 - deployments

 - daemonsets

 verbs:

 - '*'

The kapp command used to install Tanzu Build Service requires access to ConfigMaps in the

namespace that will be used to run kapp:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: kapp-role

 namespace: <my-kapp-namespace>

rules:

 - apiGroups:

 - ""

 resources:

 - configmaps

 verbs:

 - '*'

Where the namespace <my-kapp-namespace> must be the namespace of the Kubernetes context that

kapp will be run in.

Installing Windows Components (Beta)

Warning: This feature is in Beta.

Note: TBS on Windows does not currently support self-signed registry certificates. Please use a

public registry or a non-self-signed cert.

Tanzu Build Service supports building .NET Framework application images. Building .NET

Framework images will require a Kubernetes Cluster with windows nodes provisioned.

After the windows nodes are provisioned, the Tanzu Build Service Windows Dependencies (Stacks,

Buildpacks, Builders, etc.) can be used to build .NET Framework applications and keep them

patched. These must be imported with the kp cli and the Dependency Descriptor (windows-

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 23

https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework

descriptor-<version>.yaml) file from the Tanzu Build Service Dependencies for Microsoft Windows

page:

kp import -f /tmp/windows-descriptor-<version>.yaml

The following features are not yet supported on windows nodes of Tanzu Build Service

Caching of build artifacts (which reduces the time of subsequent builds)

Preloading of ClusterBuilder images

Self-signed registry certificate

Getting Started with Tanzu Build Service

This topic describes how to get started with a typical installation of Tanzu Build Service and create an

Image.

This page is meant to serve as a quick-start guide and may not include some configurations required

for your specific environment. For more details on installation, see Installing Tanzu Build Service.

Prerequisites

Before you install Build Service, you must:

Have access to the Kubernetes cluster satisfying the minimum required permissions.

Ensure your Kubernetes cluster is configured with default StorageClass. Tanzu Build Service

will default to using 2G of cache if a default StorageClass is defined. Build Service utilizes

PersistentVolumeClaims to cache build artifacts, which reduces the time of subsequent

builds.

For more information, see Persistent Volumes in the Kubernetes documentation. And for

information on defining a default StorageClass, see Changing the default StorageClass

Download three Carvel CLIs for your operating system. These tools will facilitate the

installation of Tanzu Build Service on your cluster. They can be found on their respective

Tanzu Network pages:

kapp is a deployment tool that allows users to manage Kubernetes resources in bulk.

ytt is a templating tool that understands YAML structure.

kbld is tool that builds, pushes, and relocates container images.

Download the Build Service Bundle from the Tanzu Build Service page on Tanzu Network.

Unarchive the Build Service Bundle file:

tar xvf build-service-<version>.tar -C /tmp

Download the kp CLI for your operating system from the Tanzu Build Service page on Tanzu

Network. The kp CLI help text is published here.

These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working,

you may need to upgrade your cli.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 24

https://network.pivotal.io/products/tbs-dependencies-windows/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://carvel.dev/
https://network.pivotal.io/products/kapp/
https://network.pivotal.io/products/ytt/
https://network.pivotal.io/products/kbld/
https://network.pivotal.io/products/build-service/
https://network.pivotal.io/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Download the docker cli to authenticate with registries.

Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network. This file contains

paths to images that contain dependency resources Tanzu Build Service needs to execute

image builds.

Assumptions

For this example setup, we will make the following assumptions:

You are using a registry named my.registry.io with credentials

Username: my-user

Password: my-password

Your registry uses a self-signed CA certificate and you have access to the cert in a file

/tmp/ca.crt

The nodes on your cluster must also be configured to trust this CA certificate so they

can pull in images. Configuration for this depends on the cluster provider

You are using an "online" environment that has access to the internet

Installation

Relocate Images to a Registry

This procedure relocates images from the Tanzu Network registry to your registry.

1. Log in to your image registry:

docker login my.registry.io --tlscacert /tmp/ca.crt

2. Log in to the Tanzu Network registry with your Tanzu Network credentials:

docker login registry.pivotal.io

3. Relocate the images with the Carvel tool kbld by running:

kbld relocate -f /tmp/images.lock --lock-output /tmp/images-relocated.lock --repositor

y my.registry.io/tbs --registry-ca-cert-path /tmp/ca.crt

Note: The flag argument --lock-output /tmp/images-relocated.lock creates a file that will be used

for installation.

Install Tanzu Build Service

Use the Carvel tools kapp, ytt, and kbld to install Build Service and define the required Build Service

parameters by running:

ytt -f /tmp/values.yaml \

 -f /tmp/manifests/ \

 -f /tmp/ca.crt \

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 25

https://network.pivotal.io/products/tbs-dependencies/
https://carvel.dev/
https://carvel.dev/

 -v docker_repository="my.registry.io/tbs" \

 - v d o c k e r _ u s e r n a m e = " m y - u s e r " \

 -v docker_password="my-password" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Import Tanzu Build Service Dependencies

The Tanzu Build Service Dependencies (Stacks, Buildpacks, Builders, etc.) are used to build

applications and keep them patched.

These must be imported with the kp cli and the Dependency Descriptor (descriptor-

<version>.yaml) file from the Tanzu Build Service Dependencies page:

kp import -f /tmp/descriptor-<version>.yaml --registry-ca-cert-path /tmp/ca.crt

Successfully performing a kp import command requires that your Tanzu Network account has

access to the images specified in the Dependency Descriptor file. Users can only access these

images if they agree to the dependency EULAs.

Users must navigate to the following dependencies pages in Tanzu Network and accept all EULAs

highlighted in yellow.

1. Tanzu Build Service Dependencies

2. Buildpacks for VMware Tanzu

3. Stacks for VMware Tanzu

Note: `kp import` will fail if it cannot access the images in all of the above Tanzu Network pages.

Verify Installation

To verify your Build Service installation:

List the cluster builders available in your installation:

kp clusterbuilder list

You should see an output that looks as follows:

NAME READY STACK IMAGE

base true io.buildpacks.stacks.bionic <image@sha256:digest>

default true io.buildpacks.stacks.bionic <image@sha256:digest>

full true io.buildpacks.stacks.bionic <image@sha256:digest>

tiny true io.paketo.stacks.tiny <image@sha256:digest>

Create an Image

You can now create a Tanzu Build Service Image to start building you app and keep it patched with

the latest Stack and Buildpack Dependencies.

We will assume you are using the default namespace, use -n when using kp to set a specific

namespace.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 26

https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tanzu-buildpacks-suite
https://network.pivotal.io/products/tanzu-stacks-suite

1. Create a Kubernetes Secret that will allow your Builds to push to the desired registry with the

kp cli:

kp secret create my-registry-creds --registry my.registry.io --registry-user my-user

You will be prompted for your password (my-password).

2. Create the Tanzu Build Service Image:

We will use a sample java-maven app:

kp image create my-image --tag my.registry.io/tbs/test-app --git https://github.com/bu

ildpacks/samples --sub-path ./apps/java-maven --wait

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 27

https://github.com/buildpacks/samples/tree/098946cf3d9ce2d6b42d6b33a12b0799b288f873/apps/java-maven

Accessing Tanzu Build Service

To use your Build Service installation, gain kubeconfig access to the Kubernetes Cluster that has the

Build Service installed. For example, if you are using TKGI (formerly PKS):

tkgi login -a <tkg-api-url> -u <username> -p <password>

tkgi get-credentials <clustername> -a <tkg-api-url> -u <username> -p <password>

You can use the kp CLI, downloaded as part of the installation to interact with Build Service. The kp

CLI uses the local KUBECONFIG utilized by kubectl. All operations will be performed on kubernetes

current-context namespace.

The kp CLI help text is published here.

$ kp

kp controls the kpack installation on Kubernetes.

kpack extends Kubernetes and utilizes unprivileged kubernetes primitives to provide

builds of OCI images as a platform implementation of Cloud Native Buildpacks (CNB).

Learn more about kpack @ https://github.com/pivotal/kpack

Usage:

 kp [command]

Available Commands:

 build Build Commands

 builder Builder Commands

 clusterbuilder Cluster Builder Commands

 clusterstack Cluster Stack Commands

 clusterstore Cluster Store Commands

 completion Generate completion script

 help Help about any command

 image Image commands

 import Import dependencies for stores, stacks, and cluster builders

 secret Secret Commands

 version Display kp version

Flags:

 -h, --help help for kp

Use "kp [command] --help" for more information about a command.

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 28

https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Updating Build Service Dependencies

Keeping applications up-to-date with the latest dependency patches is a core feature of Tanzu Build

Service. Updates to dependencies will be propagated to application images. The resources that

account for these patches are:

ClusterStacks - Update a ClusterStack to patch operating system packages.

ClusterStores - Update a ClusterStore to patch the Cloud Native Buildpacks used to build

your applications.

You can use the kp CLI to update any resource. The help text is published here.

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

Updating Dependencies

Bulk Update

Note: If you want to be alerted when a new descriptor file is published, we recommend using an RSS

reader and watching the Tanzu Build Service Dependencies TanzuNet feed for updates

https://network.pivotal.io/rss

The Bulk Update workflow can update all dependencies (ClusterStacks, ClusterStores and

ClusterBuilders) in Tanzu Build Service using the kp import command.

1. Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network.

Note: You can see all of the buildpackages versions that will be imported by looking at the

`buildpackage-versions-.yaml` file from the [Tanzu Build Service Dependencies]

(https://network.pivotal.io/products/tbs-dependencies/) release.

2. Use the kp CLI

kp import -f descriptor-<version>.yaml

The following ClusterStacks will be updated with the latest Operating System patches: base, default,

full, and tiny.

The following ClusterStore will be updated with the latest Cloud Native Buildpacks: default

Using the --show-changes flag will give a summary of the resource changes for the import. You will

also be asked to confirm the import. Confirmation can be skipped with --force.

Cluster Stacks Update

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 29

https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md
https://network.pivotal.io/products/tbs-dependencies/

This section described how to update individual cluster stacks. This provides a more fine-grained way

to patch operating system packages.

New stack versions will be provided on the Tanzu Build Service Dependencies page on Tanzu

Network.

To update specific cluster stacks, go to the latest release of the Tanzu Build Service Dependencies

page on Tanzu Network to find the image references and their <sha256> sums. Example commands

will be provided on this page.

Use the following kp CLI commands to update the desired stack:

kp clusterstack update base \

 --build-image registry.pivotal.io/tbs-dependencies/build-base@<sha256> \

 --run-image registry.pivotal.io/tbs-dependencies/run-base@<sha256>

kp clusterstack update default \

 --build-image registry.pivotal.io/tbs-dependencies/build-full@<sha256> \

 --run-image registry.pivotal.io/tbs-dependencies/run-full@<sha256>

kp clusterstack update full \

 --build-image registry.pivotal.io/tbs-dependencies/build-full@<sha256> \

 --run-image registry.pivotal.io/tbs-dependencies/run-full@<sha256>

kp clusterstack update tiny \

 --build-image registry.pivotal.io/tbs-dependencies/build-tiny@<sha256> \

 --run-image registry.pivotal.io/tbs-dependencies/run-tiny@<sha256>

Note: Both build and run images need to be provided to update the stack.

The updated ClusterStack can be viewed with the following command:

kp clusterstack status <stack-name>

Example output

$ kp clusterstack status tiny

Status: Ready

Id: io.paketo.stacks.tiny

Run Image: gcr.io/build-service-dev/test/run@sha256:34b01fd9a3745fcaa345f89939382

91c931f7977cc2bee78ed377da2edc55e3d

Build Image: gcr.io/build-service-dev/test/build@sha256:5288d9c5b7cf7068d07b5a184f3

ec2f124fbc5842401b8b23c74485c4d2ba23a

Cluster Store Update

ClusterStores contain all of the buildpackages (one or more packaged Cloud Native Buildpacks) to be

used by Builders to build application images.

You can update Cloud Native Buildpacks in Tanzu Build Service by adding new buildpackage

versions to the store.

To list the buildpackages available in a store:

kp clusterstore status <store-name>

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 30

https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/

Example output

$ kp clusterstore status default

Status: Ready

BUILDPACKAGE ID VERSION HOMEPAGE

paketo-buildpacks/procfile 1.4.0 https://github.com/paketo-buildpacks/procfi

le

tanzu-buildpacks/dotnet-core 0.0.3

tanzu-buildpacks/go 1.0.5

tanzu-buildpacks/httpd 0.0.38

tanzu-buildpacks/java 2.5.0 https://github.com/pivotal-cf/tanzu-java

tanzu-buildpacks/nginx 0.0.45

tanzu-buildpacks/nodejs 1.1.0

tanzu-buildpacks/php 0.0.3

To show a complete list of all buildpacks available in a store:

kp clusterstore status <store-name> --verbose

Update a store with one or more buildpackages with:

kp clusterstore add <store-name> -b <buildpackage-image1> -b <buildpackage-image2>

Note: Any number of buildpackages can be added to a store at a time with multiple `-b` flags.

Updating Buildpacks From Tanzu Network

New Cloud Native Buildpacks (packaged as buildpackages) will be available on Tanzu Network and

should be uploaded to a Tanzu Build Service to keep application images patched.

New versions of the Java, NodeJS, and Go buildpacks will be released on their respective Tanzu

Network pages: Java, NodeJS and Go. New versions of all other buildpacks will be released on the

Tanzu Build Service Dependencies page.

Here is a list of how to update each buildpack that is included with Tanzu Build Service by default:

kp clusterstore add default -b registry.pivotal.io/tanzu-java-buildpack/java:<version>

kp clusterstore add default -b registry.pivotal.io/tanzu-nodejs-buildpack/nodejs:<vers

ion>

kp clusterstore add default -b registry.pivotal.io/tanzu-go-buildpack/go:<version>

kp clusterstore add default -b registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_d

otnet-core:<version>

kp clusterstore add default -b registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_p

hp:<version>

kp clusterstore add default -b registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_n

ginx:<version>

kp clusterstore add default -b registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_h

ttpd:<version>

kp clusterstore add default -b registry.pivotal.io/tbs-dependencies/paketo-buildpacks_

procfile:<version>

Additionally, multiple buildpackages can be added to Build Service by passing multiple image

references:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 31

https://network.pivotal.io
https://network.pivotal.io/products/tanzu-java-buildpack
https://network.pivotal.io/products/tanzu-nodejs-buildpack
https://network.pivotal.io/products/tanzu-go-buildpack
https://network.pivotal.io/products/tbs-dependencies

kp clusterstore add <store-name> \

 -b registry.pivotal.io/buildpacakge-1 \

 -b registry.pivotal.io/buildpackage-2 \

 -b registry.pivotal.io/buildpackage-3

Offline Update of Dependencies

The stack images and buildpacks used by build service can be updated by first downloading those

images and saving them as a .tar file. This file can be provided to the kp CLI to import to Tanzu Build

Service.

1. Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network.

2. Download the kp CLI for your operating system from the latest release on the Tanzu Build

Service page.

3. Download the kbld CLI for your operating system from the latest release on the kbld page.

4. Download the dependency images for Tanzu Build Service to your local machine with kbld:

docker login registry.pivotal.io

kbld package -f descriptor-<version>.yaml \

 --output /tmp/packaged-dependencies.tar

5. Move the output file packaged-dependencies.tar to a machine that has access to the

"offline" environment

6. Upload the dependency images to the internal registry used to deploy Tanzu Build Service:

docker login <build-service-registry>

kbld unpackage -f descriptor-<version>.yaml \

 --input /tmp/packaged-dependencies.tar \

 --repository <IMAGE-REPOSITORY> \

 --lock-output /tmp/dependencies-relocated.lock

Where IMAGE-REPOSITORY is the repository used to install Tanzu Build Service. This should be

the same value as IMAGE-REPOSITORY used in the Installation Steps.

7. Now that dependencies are relocated to the internal registry, you can use the following

command to update the necessary resources:

kbld -f descriptor-<version>.yaml -f /tmp/dependencies-relocated.lock | kp impo

rt -f -

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 32

https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/build-service
https://network.pivotal.io/products/kbld
#other-install

Managing Secrets

Overview

VMware Tanzu Build Service uses Kubernetes secrets to manage credentials.

To publish images to a Registry, you must use a Registry secret.

To use source code stored in a private Git repository, you must use a Git secret.

Secrets are namespaced and can only be used for image configurations that exist in the same

namespace. For more information about Kubernetes secrets, see Secrets in the Kubernetes

documentation.

For more information about secret synchronization, see the Secret Synchronization page.

You can manage secrets with the kp CLI. The help text is published here.

$ kp secret

Secret Commands

Usage:

 kp secret [command]

Available Commands:

 create Create a secret configuration

 delete Delete secret

 list List secrets

Flags:

 -h, --help help for secret

Use "kp secret [command] --help" for more information about a command.

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

Create Secrets

You can create secrets using the kp CLI and script them with environment variables.

Secrets are created in the Kubernetes current-context namespace, unless you specify a different

namespace using the --namespace or -n flag. Kubernetes automatically adds these secrets to the

default service account in the same namespace.

Note: The kp CLI does not validate the secret against the specified registry or Git at the time of

secret creation. Incorrect credentials will be reported as they are used during an image build.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 33

https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Create a Docker Hub Registry Secret

You can create a Docker Hub registry secret using the --dockerhub flag.

kp secret create SECRET-NAME --dockerhub DOCKER-HUB-ID

Where:

SECRET-NAME is the name you give your secret.

DOCKER-HUB-ID is your Docker Hub user ID.

When prompted, enter your Docker Hub password. Alternatively, you can use the DOCKER_PASSWORD

environment variable to bypass the password prompt.

The Docker Hub registry secret is stored as a kubernetes.io/dockerconfigjson secret.

Examples:

$ kp secret create secret1 --dockerhub my-dockerhub-id

dockerhub password:

"secret1" created

$ DOCKER_PASSWORD="my-password" kp secret create secret2 --dockerhub my-dockerhub-id

"secret2" created

Create a GCR Registry Secret

You can create a GCR registry secret using the --gcr flag.

kp secret create SECRET-NAME --gcr GCR-SERVICE-ACCOUNT-PATH

Where:

SECRET-NAME is the name you give your secret.

GCR-SERVICE-ACCOUNT-PATH is the path to your GCR service account json file.

Alternatively use the GCR_SERVICE_ACCOUNT_PATH environment variable instead of the --gcr flag.

The GCR registry secret is stored as a kubernetes.io/dockerconfigjson secret.

Examples:

$ kp secret create secret1 --gcr /tmp/my-gcr-service-account.json

"secret1" created

$ GCR_SERVICE_ACCOUNT_PATH="/tmp/my-gcr-service-account.json" kp secret create secret2

"secret2" created

Create an Artifactory, Harbor, or ACR Registry Secret

You can create an Artifactory, Harbor, or ACR secret using the --registry and --registry-user

flags.

kp secret create SECRET-NAME --registry REGISTRY-URL --registry-user REGISTRY-USER-ID

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 34

Where:

SECRET-NAME is the name you give your secret.

REGISTRY-URL is the URL of the registry. This should only be the domain for the registry and

should not contain folders or projects. Example: registry.io and not registry.io/project.

REGISTRY-USER-ID is your registry user ID.

When prompted, enter your registry password. Alternatively, you can use the REGISTRY_PASSWORD

environment variable to bypass the password prompt.

The Artifactory, Harbor, or ACR registry secret is stored as a kubernetes.io/dockerconfigjson

secret.

Examples:

$ kp secret create secret1 \

 --registry registry.pivotal.io \

 --registry-user someuser@pivotal.io

registry password:

"secret1" created

$ REGISTRY_PASSWORD="my-password" kp secret create secret2 \

 --registry registry.pivotal.io \

 --registry-user someuser@pivotal.io

"secret2" created

Create a Git SSH Secret

You can create a Git SSH secret by specifying a Git SSH URL and private SSH key.

kp secret create SECRET-NAME --git-url GIT-SSH-URL --git-ssh-key PRIVATE-SSH-KEY-PATH

Where:

SECRET-NAME is the name you give your secret.

GIT-SSH-URL is the Git SSH domain URL. This is not the full repository URL. For example,

value should be git@github.com for GitHub.

PRIVATE-SSH-KEY-PATH is the path to your private SSH key.

Alternatively, use the GIT_SSH_KEY_PATH environment variable instead of the --git-ssh-key flag.

The Git SSH secret is stored as a kubernetes.io/ssh-auth secret.

Examples:

$ kp secret create secret1 \

 --git-url git@github.com \

 --git-ssh-key /tmp/private-repo-git-deploy-key

"secret1" created

$ GIT_SSH_KEY_PATH="/tmp/private-repo-git-deploy-key" kp secret create secret2 \

 --git-url git@github.com \

"secret2" created

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 35

Create a Git Basic Auth Secret

You can create a Git basic auth secret by providing your Git username and password

kp secret create SECRET-NAME --git-url GIT-DOMAIN-URL --git-user GIT-USERNAME

Where:

SECRET-NAME is the name you give your secret.

GIT-DOMAIN-URL is the Git domain url. This is not the full repository url. For example, value

should be https://github.com for GitHub.

GIT-USERNAME is your Git username.

When prompted, enter your Git password. Alternatively, you can use the GIT_PASSWORD environment

variable to bypass the password prompt.

The Git basic auth secret is stored as a kubernetes.io/basic-auth secret.

Examples:

$ kp secret create secret1 \

 --git-url https://github.com \

 --git-user someone@vmware.com

git password:

"secret1" created

$ GIT_PASSWORD="my-password" kp secret create secret2 \

 --git-url https://github.com \

 --git-user someone@vmware.com

"secret2" created

List Secrets

To list the names and the targets for your secrets:

kp secret list

Unless you specify a namespace using the --namespace or -n flag, running the kp secret list

command lists secrets for the Kubernetes current-context namespace.

Example:

$ kp secret list

NAME TARGET

default-token-qrdbr

docker-hub-creds https://index.docker.io/v1/

gcr-creds gcr.io

git-creds https://github.com

git-ssh-creds git@github.com

harbor-creds registry.pivotal.io

The default-token-xxxxx secret is automatically added to the default service account by

Kubernetes

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 36

Delete Secrets

To delete secrets:

kp secret delete SECRET-NAME

Where SECRET-NAME is the name of the secret you want to delete.

Unless you specify a namespace using the --namespace or -n flag, secrets are deleted from the

Kubernetes current-context namespace. There is no confirmation required from the user.

Encrypting Secrets at Rest

Because Tanzu Build Service uses standard Kubernetes secrets, administrators may configure the

cluster to encrypt secrets at rest. For more information, see the following link:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Synced-Secrets in Tanzu Build Service

When to use Synchronized Secrets

To enable the use of Cluster Builders from private registries, a Secret with registry credentials must

exist in the namespace of the Image using that Cluster Builder.

You can configure this secret manually for each namespace, but Tanzu Build Service provides

functionality to synchronize secrets across namespaces to simplify this process.

This feature is applicable in the following cases:

You have installed Tanzu Build Service to a private registry and do not wish to make Cluster

Builders imported by kp publicly readable.

You have used kp to create a Cluster Builder in a private registry and do not wish to make it

publicly readable.

Synchronized secrets are attached to build pods as imagePullSecrets so that the Cluster Builder

Image can be pulled at build time.

Note: Synchronizing secrets with write access is not recommended. Instead, create and synchronize

read-only secrets. A synced secret is not created during installation because the credentials

provided for installation must be writable.

Managing Secret Synchronization

Currently, the kp CLI does not support adding and removing synchronized secrets. However, this

may be achieved by using the kubectl CLI.

Create a Synchronized Secret

To start synchronizing a secret to all namespaces with builds, use kubectl to create a docker-registry

(Dockercfg or DockerConfigJson) secret in the build-service namespace with the following label:

com.vmware.tanzu.buildservice.sync=true.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 37

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Example Secret:

apiVersion: v1

data:

 .dockerconfigjson: <SECRET DATA>

kind: Secret

metadata:

 labels:

 com.vmware.tanzu.buildservice.sync: "true"

 name: my-synced-secret

 namespace: build-service

type: kubernetes.io/dockerconfigjson

Example configuration steps:

Remove current local docker config

rm ~/.docker/config.json

Login locally with READ-ONLY creds

docker login my-registry.io -u <read-only-user> -p <read-only-password>

Create kubernetes Secret

cat <<EOF | kubectl apply -f-

apiVersion: v1

data:

 .dockerconfigjson: $(cat ~/.docker/config.json | base64)

kind: Secret

metadata:

 labels:

 com.vmware.tanzu.buildservice.sync: "true"

 name: my-synced-secret

 namespace: build-service

type: kubernetes.io/dockerconfigjson

EOF

Update a Synchronized Secret

To update a secret and roll-out those changes to all namespaces that use Builds, simply update the

secret(s) with the com.vmware.tanzu.buildservice.sync=true label located in the build-service

namespace.

Stop Synchronizing a Secret

To stop synchronizing a secret, delete the secret from the build-service namespace or remove the

com.vmware.tanzu.buildservice.sync=true label from the secret located in the build-service

namespace.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 38

Managing Images and Builds

This topic contains the following sections:

Images

Builds

The kp CLI can be used to manage images and builds. The help text is published here.

$ kp image

Image commands

Usage:

 kp image [command]

Aliases:

 image, images, imgs, img

Available Commands:

 create Create an image configuration

 delete Delete an image

 list List images

 patch Patch an existing image configuration

 save Create or patch an image configuration

 status Display status of an image

 trigger Trigger an image build

Flags:

 -h, --help help for image

Use "kp image [command] --help" for more information about a command.

$ kp build

Build Commands

Usage:

 kp build [command]

Aliases:

 build, builds, blds, bld

Available Commands:

 list List builds for an image

 logs Tails logs for an image build

 status Display status for an image build

Flags:

 -h, --help help for build

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 39

https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Use "kp build [command] --help" for more information about a command.

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

Images

Images provide a configuration for Tanzu Build Service to build and maintain a Docker image utilizing

Tanzu, Paketo, and custom Cloud Native Buildpacks.

Build Service will monitor the inputs to the image configuration to rebuild the image when the

underlying source or buildpacks have changed.

The following procedures describe how to create and manage images in Build Service with the kp

CLI.

Creating Images

Prerequisites:

Access to a cluster running Build Service.

Configured write secrets for your Docker registry.

Source Code

The kp CLI supports creating Images using source code from the following locations:

Git based source

Blob store

Local machine

You can specify only one location for app source code.

Builders

Users can select a Builder (namespaced-scoped) or a Cluster Builder (cluster-scoped) to be used to

create image builds. You can use any of the available Builders or Cluster Builders with any of the

source types (git, blob, or local).

If you do not use the --builder or --cluster-builder flags, the default Cluster Builder will be used.

For more information on Builders, see Managing Builders.

Creating an Image With Source Code in a Git Repository

To create an image using source code from a git repository run:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 40

https://buildpacks.io

kp image create <name> \

 --tag <tag> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --sub-path <sub-path> \

 --wait \

 --git <git-repo> \

 --git-revision <git-revision>

Where:

name: The name of the image.

tag: The registry location where the image will be created.

builder: (optional) Builder name to be used in the image. Cannot be used with cluster-

builder.

cluster-builder: (optional) Cluster Builder name to be used in the image. Defaults to

default when builder is not set. Cannot be used with builder.

namespace: (optional) The Kubernetes namespace for the image. Defaults to the local

Kubernetes current-context namespace.

env (optional): Image environment variable configuration as key=val pairs (env_var=env_val).

The --env flag can be specified multiple times.

sub-path (optional): Build code at the sub path located within the source code directory.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

wait flag (optional) Waits for image create to be reconciled and tails resulting build logs.

git-repo Git repository URL of the source code.

git-revision (optional) The Git revision of the code that the image is built against. Can be

either a branch, tag or a commit sha. When you target the image against a branch, Build

Service triggers a build for every new commit. Defaults to master.

Note: If the git-repo is a private repository, you must configure the git credentials. For more

information, see Create Secrets.

Create an Image With Source Code In A Blob Store

Users can specify source code in a blob store saved as a compressed file (zip, tar.gz, .tar) or a

.jar file.

To create an image using source code from blob store:

kp image create <name> \

 --tag <tag> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --sub-path <sub-path> \

 --wait \

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 41

 --blob <blob-url>

Where:

name: The name of the image.

tag: The registry location where the image will be created.

builder: (optional) Builder name to be used in the image. Cannot be used with cluster-

builder.

cluster-builder: (optional) Cluster Builder name to be used in the image. Defaults to

default when builder is not set. Cannot be used with builder.

namespace: (optional) The Kubernetes namespace for the image. Defaults to the local

Kubernetes current-context namespace.

env (optional): Image environment variable configuration as key=val pairs (env_var=env_val).

The --env flag can be specified multiple times.

sub-path (optional): Build code at the sub path located within the source code directory.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

wait flag (optional) Waits for image create to be reconciled and tails resulting build logs.

blob-url URL of the source code blob file.

Note: The source code file in the blob store must be publicly viewable or the blob-url must contain

the basic authentication credentials.

Creating an Image With Local Source Code

Users can apply local source code from a directory, compressed source code (zip, tar.gz, .tar), or

a .jar file.

To create an image using source code from a local machine run:

kp image create <name> \

 --tag <tag> \

 --local-path <source-path> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --cache \

 --registry-ca-cert-path <path-to-ca-cert> \

 --registry-verify-certs

Where:

name: The name of the image.

tag: The registry location where the image will be created.

source-path Path to local source code.

builder: (optional) Builder name to be used in the image. Cannot be used with cluster-

builder.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 42

cluster-builder: (optional) Cluster Builder name to be used in the image. Defaults to

default when builder is not set. Cannot be used with builder.

namespace: (optional) The Kubernetes namespace for the image. Defaults to the local

Kubernetes current-context namespace.

env (optional): Image environment variable configuration as key=val pairs (env_var=env_val).

The --env flag can be specified multiple times.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

--wait flag (optional) Waits for image create to be reconciled and tails resulting build logs.

registry-ca-cert-path (optional) Add CA certificate for registry API

registry-verify-certs (optional) Set whether to verify server's certificate chain and host

name (default true)

Buildpack Configuration

Images use buildpacks to build application images in a registry. The buildpacks contain the

dependencies needed for these builds and you can add buildpack configuration to Tanzu Build

Service Images.

Buildpack Configuration Use Cases

Common use cases for setting buildpack configuration include:

Selecting a specific version or version line of a dependency (Go 1.15.*, Java 1.8)

Language-specific configuration (Go build target)

Buildpack-specific configuration

Buildpack Configuration Documentation

Buildpack configuration details can be found in the documentation for that specific buildpack.

Use kp clusterstore status <store-name> --verbose to find the homepage of the desired

buildpack.

Buildpack Configuration in Images

Buildpack configuration – including manually selecting buildpacks to use – can be set in two ways

in Tanzu Build Service Images. The configuration depends on the specific buildpack, find buildpack

details in Buildpack Configuration Documentation.

1. Creating a buildpack.yml file at the root of the application source code.

Example buildpack.yml for a Go app to use the latest Go 1.15 version and build with the path

./cmd/package./cmd/package:

go:

 version: 1.15.*

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 43

 targets: ["./cmd/package"]

2. Setting environment variables on an Image.

Tanzu Build Service Images can have environment variables configured which will be set in all Builds

and in the final exported registry image. These can be used for buildpack configuration.

Example kp command to create an image for a Go app to build with the path ./cmd/package:

kp image create my-image \

 --tag registry.io/my-repo \

 --git https://github.com/my-go-app \

 --env BP_GO_TARGETS="./cmd/package"

Patching Images

Users can patch their existing images with the kp CLI. Running a patch will trigger a new build of the

image if any of the build inputs are changed.

Note:For handling source code changes in the Tanzu Build Service process, we recommend utilizing

the `kp image save --wait` command within a CI/CD pipeline to update the source code referenced

in the image configuration.

This can be accomplished by updating the `--git-revision` field with a new commit ID. For many TBS

customers this commit ID references source code that has undergone unit testing, so that they can

be confident that the resulting image can be deployed or promoted to higher level environments.

Patch images with the following commands:

With Source Code in a Git Repository

kp image patch <name> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --wait \

 --git <git-repo> \

 --git-revision <git-revision>

With Source Code In A Blob Store

kp image patch <name> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --wait \

 --blob <blob-url>

With Local Source Code

kp image patch <name> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --wait \

 --local-path <source-path>

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 44

Where:

name: The name of the image to patch.

namespace: (optional) The Kubernetes namespace for the image. Defaults to the local

Kubernetes current-context namespace.

env (optional): Image environment variable configuration as key=val pairs (env_var=env_val).

The --env flag can be specified multiple times.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

git-repo Git repository URL of the source code. Must select one of git-repo, blob-url, or

source-path

git-revision (optional) The Git revision of the code that the image is built against. Can be

either a branch, tag or a commit sha. When you target the image against a branch, Build

Service triggers a build for every new commit. Defaults to master.

blob-url URL of the source code blob file. Must select one of git-repo, blob-url, or

source-path

source-path Path to local source code. Must select one of git-repo, blob-url, or source-

path

Note: If the git-repo is a private repository, you must configure the git credentials. For more

information, see Create Secrets.

Note: The tag location in a registry and name of an image cannot be modified. To change these

fields, you must create a new image.

Saving Images

Users can create or patch an Image using the save command. The kp image save command is used

exactly the same as kp image create or kp image patch, but it will determine if a image needs to be

created or patched.

kp image save my-image \

 --tag my-registry.com/my-repo \

 --git https://my-repo.com/my-app.git \

 --git-revision my-branch

Listing Images

To list all the image configurations in a Kubernetes namespace:

kp image list --namespace <namespace>

Example

$ kp image list -n example1

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 45

NAME READY LATEST REASON LATEST IMAGE NAMESPACE

test-image1 True CONFIG first/image:sha example1

test-image2 False BUILDPACK second/image:sha example1

To list all the image configurations across all Kubernetes namespaces:

kp image list --all-namespaces

Example

$ kp image list -A

NAME READY LATEST REASON LATEST IMAGE NAMESPACE

test-image1 True CONFIG first/image:sha example1

test-image2 True BUILDPACK second/image:sha example1

test-image3 True BUILDPACK third/image:sha example2

test-image4 False CONFIG fourth/image:sha example2

Filter Images

Users can further filter the list of Images by applying the --filter flag and specifying a filter and

value. This command is useful for traversing large number of Image configurations by narrowing the

list to only display Images that possess certain attributes.

$ kp image list --filter ready=false -A

NAME READY LATEST REASON LATEST IMAGE NAMESPACE

test-image2 False BUILDPACK second/image:sha example1

test-image4 False CONFIG fourth/image:sha example2

See below for the current supported filters and values:

builder=string

clusterbuilder=string

latest-reason=commit,trigger,config,stack,buildpack

ready=true,false,unknown

Image Rebuilds

Rebuilds happen in three ways:

1. An imperative rebuild occurs when you patch an image with kp image patch.

2. An automatic rebuild occurs when build inputs change (source code, stack, or buildpacks).

3. A user can trigger a rebuild manually.

An imperative rebuild will be initiated if any of the following changes are made to an image:

An update to the commit, branch, Git repository, or other arguments to kp image patch.

You upload a new copy of the local source code by running kp image patch --local-path

<source-path>, where <source-path> is the source code path.

For more information, see Patching Images.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 46

Build Service auto-rebuilds images when one or more of the following build inputs change:

New buildpack versions are made available via updates to a Cluster Store.

New Buildpack versions are made available on Tanzu Network.

To update buildpacks, you must add new buildpack versions from Tanzu Network to a

Cluster Store. See Updating Build Service Dependencies for more details.

There is a new commit on a branch or tag Tanzu Build Service is tracking.

There is a new Cluster Stack (ie. base OS image) available, such as full, tiny, or base.

New Stack versions are made available on the Tanzu Build Service Dependencies

page on Tanzu Network.

You can get updates to Stacks from the Tanzu Network Registry by using the kp CLI.

See Updating Build Service Dependencies for more details.

Trigger an Image Rebuild

You can initiate a manual rebuild using kp:

kp image trigger <image-name> --namespace <namespace>

This is useful for debugging image builds.

Viewing the Status of an Image

When a user creates an image using the above workflow, they are configuring Tanzu Build Service

to start creating builds of the image which create container images to be pushed to a registry.

If a particular build associated with an image fails, check the status of the image by running:

kp image status <image-name> --namespace <namespace>

Where image-name is the name of the image. See Listing Images to get image names.

The following is an example output of this command:

Status: Not Ready

Message: --

LatestImage: gcr.io/myapp@sha256:9d7b1fbf7f5cb0f8efe797f30e598b5e38bb1c08ada143d4c

96e4f78111a9239

Last Successful Build

Id: 1

Reason: CONFIG

Last Failed Build

Id: 2

Reason: COMMIT

Deleting an Image

This procedure describes how to delete a Build Service image with the kp CLI.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 47

https://network.pivotal.io/
https://network.pivotal.io/products/tbs-dependencies

Warning: Deleting an image deletes the image resource and all the builds that the image resource

owns. It does not delete the app images generated by those builds from the registry.

To delete an image:

kp image delete <image> --namespace <namespace>

Where image is the name of the image.

When you successfully delete an image, you will see this message:

"<image>" deleted

Managing Images with YAML

Build Services images can be created by applying the kpack image resources to cluster via kubectl.

Use the default service account for Build Service registry and git secrets.

Using Secrets

Use the default service account for Build Service registry and git secrets. kpack will default to the

default service account if no service account is specified.

Debugging with Image Status

Using kubectl is a good way to debug Images.

When an image has successfully built with its current configuration, its status will report the up to

date fully qualified built image reference.

This information is available with kubectl get image <image-name> -o yaml.

status:

 conditions:

 - lastTransitionTime: "2020-01-17T16:16:36Z"

 status: "True"

 type: Succeeded

 - lastTransitionTime: "2020-01-17T16:16:36Z"

 status: "True"

 type: BuilderReady

 latestImage: index.docker.io/sample/image@sha256:d3eb15a6fd25cb79039594294419de2328f

14b443fa0546fa9e16f5214d61686

 ...

When a build fails the image status will report the condition Succeeded=False. The Image status also

includes the status of the builder being used by the image. If the builder is not ready, you may want

to inspect that builder. More details in Managing Builders.

status:

 conditions:

 - lastTransitionTime: "2020-01-17T16:13:48Z"

 status: "False"

 type: Succeeded

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 48

https://github.com/pivotal/kpack/blob/master/docs/image.md

 message: "Some error occurred"

 - lastTransitionTime: "2020-01-17T16:16:36Z"

 s t a t u s : " F a l s e "

 t y p e : B u i l d e r R e a d y

 message: "Some builder error occurred"

 ...

If further debugging is required, inspect the image's latest Build status discussed in Viewing Build

Details for an Image.

Image Service Bindings

Tanzu Build Service supports application service bindings as described in the Cloud Native Buildpack

Service Bindings specification.

The kp CLI does not currently support creating service bindings, you should use kubectl.

Creating an Image with Service Bindings

To create a service binding in your application image, you must create the following:

A Kubernetes Secret containing the service binding data

The Secret stringData field must contain key-value pairs of <binding file name>:

<binding data>. For each key-value pair, a file will be created that is accessible

during build.

A Kubernetes ConfigMap containing the metadata for the service binding

The ConfigMap must have the fields data.kind and data.provider populated. The

buildpacks used to build the image will handle the service bindings based on these

fields.

A Tanzu Build Service Image referencing that Secret and ConfigMap in the

spec.build.bindings field.

Note: Check the desired buildpack documentation for details on the service bindings it supports. To

find buildpack docs, see [Store Status](managing-stores.html#show-buildpackages-in-store).

The following is an example that can be used with kubectl apply. It creates a settings.xml service

binding for a maven app.

Example:

apiVersion: kpack.io/v1alpha1

kind: Image

metadata:

 name: sample-binding-with-secret

spec:

 tag: my-registry.com/repo

 builder:

 kind: ClusterBuilder

 name: default

 source:

 git:

 url: https://github.com/buildpack/sample-java-app.git

 revision: 0eccc6c2f01d9f055087ebbf03526ed0623e014a

 build:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 49

https://github.com/buildpacks/spec/blob/main/extensions/bindings.md

 bindings:

 - name: settings

 secretRef:

 name: settings-xml

 metadataRef:

 name: settings-binding-metadata

apiVersion: v1

kind: Secret

metadata:

 name: settings-xml

type: Opaque

stringData:

 settings.xml: <settings>...</settings>

apiVersion: v1

kind: ConfigMap

metadata:

 name: settings-binding-metadata

data:

 kind: maven

 provider: sample

Builds

The procedures in this section describe how to view information and logs for image builds using the

kp CLI.

Listing Builds

Build Service stores the ten most recent successful builds and the ten most recent failed builds.

To see a the list of builds for an image run:

kp build list <image-name> --namespace <namespace>

If the namespace is not specified, it defaults to the kubernetes current-context namespace. And if the

image-name is not specified, the builds for all the images in your namespace are listed.

The following is an example of the output for this command:

BUILD STATUS IMAGE REASON

1 SUCCESS gcr.io/myapp@sha256:some-sha1 CONFIG

2 SUCCESS gcr.io/myapp@sha256:some-sha2 COMMIT

3 SUCCESS gcr.io/myapp@sha256:some-sha3 STACK

4 FAILURE gcr.io/myapp@sha256:some-sha4 CONFIG+

5 BUILDING gcr.io/myapp@sha256:some-sha5 BUILDPACK

The following describes the fields in the example output:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 50

BUILD: Describes the index of builds in the order that they were built.

STATUS: Describes the status of a previous build image.

IMAGE: The full image reference for the app image produced by the build.

REASON: Describes why an image rebuild occurred. These reasons include:

CONFIG: Occurs when a change is made to commit, branch, Git repository, or build

fields on the image's configuration file and you run kp image apply.

COMMIT: Occurs when new source code is committed to a branch or tag that Build

Service is monitoring for changes.

BUILDPACK: Occurs when new buildpack versions are made available through an

updated builder.

STACK: Occurs when a new base OS image, called a run image, is available.

TRIGGER: Occurs when a new build is manually triggered.

Note: A rebuild can occur for more than one reason. When there are multiple reasons for a rebuild,

the kp CLI output shows the primary Reason and appends a + sign to the Reason field. The priority

rank for the Reason, from highest to lowest, is CONFIG, COMMIT, BUILDPACK, STACK, and TRIGGER.

Viewing Build Details for an Image

To display retrieve a detailed Bill of Materials for a particular build:

kp build status <image> -b <build-number>

Where:

image-name is the name of the image the build is associated with

build-name (optional) is the index of the build from listing builds. Defaults to latest build.

The following is an example of the output for this command:

Image: gcr.io/myapp@sha256:f87b614257af05c3301c1554c4f15131793caec3adf55e45d2c612

e90445765a

Status: SUCCESS

Reason: CONFIG

 resources

 - s o u r c e : { }

 + s o u r c e :

 + g i t :

 + revision: 948b2eff6a21580a44a0f4d8c609a2af45359d41

 + url: https://github.com/paketo-buildpacks/samples

 + s u b P a t h : g o / m o d

Started: 2021-02-02 18:34:33

Finished: 2021-02-02 18:41:03

Pod Name: build-pod-xyz

Builder: gcr.io/my-builder:base@sha256:grtewwads0asdvf09asdf

Run Image: gcr.io/base-image:run@sha256:asdas098asdas

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 51

Source: Git

Url: http://github.com/myapp

Revision: ad123ad

BUILDPACK ID BUILDPACK VERSION

io.java.etc 123

io.kotlin.etc 321

The following describes the fields in the example output:

Image: The full image reference for the app image produced by the build.

Status: Describes the status of a previous build image.

Reason: Describes why an image build occurred and the change diff. The reason could be

one or more of these:

CONFIG: Occurs when a change is made to commit, branch, Git repository, or build

fields on the image's configuration file and you run kp image apply.

COMMIT: Occurs when new source code is committed to a branch or tag that Build

Service is monitoring for changes.

BUILDPACK: Occurs when new buildpack versions are made available through an

updated builder.

STACK: Occurs when a new base OS image (called a run image) is available.

TRIGGER: Occurs when a new build is manually triggered.

Started: When a build started.

Finished: When a build finished.

Pod Name: The name of the Pod being used for the Build.

Builder: The full image tag for the builder image used by the build.

Run Image: The full image tag for the run image used by the app.

Source: Describes where the source code used to build the image is coming from. Can be

Git, Blob, or Local Source.

Url: The Git repository URL for Git source, the Blob file URL for Blob source. Unset for

Local Source.

Revision: The Git commit sha of the source code used to create the build for Git source.

BUILDPACK ID: A list of buildpack ids the build used.

BUILDPACK VERSION: A list of buildpack versions the build used.

Image Status shows ImagePullBackOff

If the Build is currently waiting for a container, the Build status will show details in the output of kp

build status.

Here is an example output:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 52

Image: --

Status: BUILDING

Reason: CONFIG

Status Reason: ImagePullBackOff

Status Message: A container image currently cannot be pulled: Back-off pulling image

 "gcr.io/my-builder:base@sha256:grtewwads0asdvf09asdf"

Pod Name: build-pod-xyz

Builder: gcr.io/my-builder:base@sha256:grtewwads0asdvf09asdf

Run Image: gcr.io/base-image:run@sha256:asdas098asdas

Source: Git

Url: http://github.com/myapp

Revision: ad123ad

BUILDPACK ID BUILDPACK VERSION

If you are seeing this error and you are using a Cluster Builder, you may need to configure a Synced

Secret. See When to use Synchronized Secrets.

Getting Build Logs

An image that a user creates will cause builds to be initiated for that image. Builds are where Cloud

Native Buildpacks are run and apps get built into images.

Build logs are a good way to debug issues and to get information about how your app is being built.

If you get logs of a build in progress, the logs will be tailed and will terminate when the build

completes.

To get logs from a build run:

kp build logs <image> --build <build-number> --namespace <namespace>

Where:

image-name is the name of the image the build is associated with

build-name (optional) is the index of the build from listing builds. Defaults to latest build.

The following is an example of the output of the command:

===> PREPARE

Build reason(s): CONFIG

CONFIG:

 r e s o u r c e s : { }

 - s o u r c e : { }

 + s o u r c e :

 + g i t :

 + revision: 446dbda043ca103d33e2cad389d43f289e63f647

 + url: https://github.com/some-org/some-repo

Loading secret for "gcr.io" from secret "gcr" at location "/var/build-secrets/gcr"

Cloning "https://github.com/some-org/some-repo" @ "446dbda043ca103d33e2cad389d43f289e6

3f647"...

Successfully cloned "https://github.com/some-org/some-repo" @ "446dbda043ca103d33e2cad

389d43f289e63f647" in path "/workspace"

===> DETECT

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 53

tanzu-buildpacks/node-engine 0.1.2

tanzu-buildpacks/npm-install 0.1.1

tanzu-buildpacks/npm-start 0.0.2

===> ANALYZE

Previous image with name "gcr.io/test-app" not found

===> RESTORE

===> BUILD

Tanzu Node Engine Buildpack 0.1.2

 Resolving Node Engine version

 Candidate version sources (in priority order):

 -> ""

 <unknown> -> "*"

 Selected Node Engine version (using): 14.15.1

 Executing build process

 Installing Node Engine 14.15.1

 Completed in 2.495s

 Configuring environment

 NODE_ENV -> "production"

 NODE_HOME -> "/layers/tanzu-buildpacks_node-engine/node"

 NODE_VERBOSE -> "false"

 Writing profile.d/0_memory_available.sh

 Calculates available memory based on container limits at launch time.

 Made available in the MEMORY_AVAILABLE environment variable.

Tanzu NPM Install Buildpack 0.1.1

 Resolving installation process

 Process inputs:

 node_modules -> "Not found"

 npm-cache -> "Not found"

 package-lock.json -> "Not found"

 Selected NPM build process: 'npm install'

 Executing build process

 Running 'npm install --unsafe-perm --cache /layers/tanzu-buildpacks_npm-install/np

m-cache'

 Completed in 3.591s

 Configuring environment

 NPM_CONFIG_LOGLEVEL -> "error"

 NPM_CONFIG_PRODUCTION -> "true"

 PATH -> "$PATH:/layers/tanzu-buildpacks_npm-install/modules/node_

modules/.bin"

Tanzu NPM Start Buildpack 0.0.2

 Assigning launch processes

 web: node server.js

===> EXPORT

Adding layer 'tanzu-buildpacks/node-engine:node'

Adding layer 'tanzu-buildpacks/npm-install:modules'

Adding layer 'tanzu-buildpacks/npm-install:npm-cache'

Adding 1/1 app layer(s)

Adding layer 'launcher'

Adding layer 'config'

Adding label 'io.buildpacks.lifecycle.metadata'

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 54

Adding label 'io.buildpacks.build.metadata'

Adding label 'io.buildpacks.project.metadata'

*** Images (sha256:0abdbaf1f25c3c13cdb918d06906670b84dd531bc7301177b11284dac68bdb9c):

 gcr.io/test-app

 gcr.io/test-app:b1.20210203.225422

Adding cache layer 'tanzu-buildpacks/node-engine:node'

Adding cache layer 'tanzu-buildpacks/npm-install:modules'

Adding cache layer 'tanzu-buildpacks/npm-install:npm-cache'

===> COMPLETION

Build successful

Viewing Bill of Materials

The kp cli allows you to view the bill of materials in an image built by a Build.

kp build status <image-name> --bom

For generating the bill of materials, the kp CLI will read metadata from the image (generated by the

build) in the registry.

Note: You must have credentials to access the image registry on your machine.

As an example:

$ kp build status --bom my-app-image | jq

[

 {

 "buildpack": {

 "id": "tanzu-buildpacks/node-engine",

 "version": "0.1.2"

 },

 "metadata": {

 "licenses": [],

 "name": "Node Engine",

 "sha256": "b981046a0ea3d5594a7f04fae3afdfa1983bc65f4e26e768b38a2d67057ac75c",

 "stacks": [

 "io.buildpacks.stacks.bionic",

 "org.cloudfoundry.stacks.cflinuxfs3"

],

 "uri": "file:///dependencies/b981046a0ea3d5594a7f04fae3afdfa1983bc65f4e26e768b38

a2d67057ac75c",

 "version": "14.15.1"

 },

 "name": "node",

 "version": "14.15.1"

 },

 {

 "buildpack": {

 "id": "tanzu-buildpacks/npm-install",

 "version": "0.1.1"

 },

 "metadata": {

 "launch": true

 },

 "name": "node_modules"

 }

]

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 55

Offline Builds

Tanzu Build Service supports offline/air-gapped builds with Tanzu Buildpacks. Offline builds use pre-

packaged dependencies and do not need to download from anywhere off-cluster to create

application images.

When using Tanzu Buildpacks the build will execute as an offline build. For details on how to

configure buildpacks, see Buildpack Configuration in Images.

Note: Offline builds only ensure buildpack dependencies are offline. The application build and

custom configuration must also not reach off-cluster to be completely offline.

Image Signing with Notary

Tanzu Build Service supports Notary image signing.

Images signed with Notary require using kubectl instead of kp.

Prerequisites:

notary cli

A notary server accessible by the Tanzu Build Service cluster

Generate Notary Signing Keys

Only one root signing key is required. Each image that will be signed by notary will require a target

and snapshot signing key.

Run the following commands. You will be asked to provide the registry credentials for the <image-

repository>:

export NOTARY_ROOT_PASSPHRASE=<notary-root-passphrase>

export NOTARY_SNAPSHOT_PASSPHRASE=<notary-snapshot-passphrase>

notary -s <notary-server-url> init <image-repository>

notary -s <notary-server-url> key rotate <image-repository> snapshot -r

notary -s <notary-server-url> publish <image-repository>

You will be prompted to enter a <notary-targets-passphrase>:

Enter passphrase for targets key with ID <target-hash>:

Where:

<notary-root-passphrase> is a secure passphrase (this is the root passphrase and should be

secure and stored. This is used to generate and rotate other keys.)

<notary-snapshot-passphrase> is a secure passphrase (one per image)

<notary-targets-passphrase> is a secure passphrase for the targets (one per image)

<notary-server-url> is the notary server url

<image-repository> is the repository for the image that will be built by Tanzu Build Service.

<target-hash> is the hash for the target signing key.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 56

https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary/releases

Note: All passphrases can be entered manually via prompts. Some are set as env vars in the

example command for simplicity.

Create a Secret to be used for TBS Image Signing

Run the following:

kubectl create secret generic <notary-secret-name> \

 --from-literal=password=<notary-targets-passphrase> \

 --from-file=~/.notary/private/<target-hash>.key \

 - - n a m e s p a c e < i m a g e - n a m e s p a c e >

Where:

<notary-secret-name> is the arbitrary name of the notary secret

<notary-targets-passphrase> is the passphrase used in the previous step

<target-hash> is the hash from the previous step

<image-namespace> is the namespace where the TBS image will be created

Create an Image that will be Signed by Notary

TBS will sign images when the spec.notary key is populated.

This configuration cannot be set by kp cli, kubectl must be used to create the Image.

Example image.yaml:

apiVersion: kpack.io/v1alpha1

kind: Image

metadata:

 name: my-notary-image

 namespace: <image-namespace>

spec:

 notary:

 v1:

 url: <notary-server-url>

 secretRef:

 name: <notary-secret-name>

 serviceAccount: default

 source:

 git:

 url: github.com/my-git-repo

 tag: <image-repository>

status: {}

Where:

<image-namespace> is the namespace used for the secret created in the above step

<notary-server-url> is the notary server url used in the first step

<notary-secret-name> is the secret name created in the previous step

<image-repository> is the image repository used in the first step

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 57

Managing ClusterStacks

A ClusterStack is a cluster scoped resource that provides the build and run images for the Cloud

Native Buildpack stack that will be used in a Builder.

Most users automatically configure three ClusterStack resources via the TBS installation process.

These ClusterStacks are referenced in three corresponding ClusterBuilder resources.

Additional information about security and patching cadence for these stacks and their ideal use cases

can be found here. More detailed release notes for the stacks can be accessed by following the links

in the table below.

Name ID

tiny io.paketo.stacks.tiny

base io.buildpacks.stacks.bionic

full io.buildpacks.stacks.bionic

The kp CLI can be used to manage clusterstack. The help text is published here.

$ kp clusterstack

Cluster Stack Commands

Usage:

 kp clusterstack [command]

Aliases:

 clusterstack, csk

Available Commands:

 create Create a cluster stack

 delete Delete a cluster stack

 list List cluster stacks

 save Create or update a cluster stack

 status Display cluster stack status

 update Update a cluster stack

Flags:

 -h, --help help for clusterstack

Use "kp clusterstack [command] --help" for more information about a command.

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

Note: Only Build Service Admins (i.e. users with the pb-admin-role kubernetes ClusterRole) can

perform clusterstack commands.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 58

https://buildpacks.io/docs/concepts/components/stack/
https://docs.pivotal.io/tanzu-buildpacks/stacks.html
https://github.com/paketo-buildpacks/tiny-release/releases
https://github.com/paketo-buildpacks/base-release/releases
https://github.com/paketo-buildpacks/full-release/releases
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Create a ClusterStack

Users can create a clusterstack using build and run images from a Docker registry or the local

machine. The run and build images provided during clusterstack creation will be uploaded to the

canonical repository, which is the docker-repository specified during TBS install.

If using a Docker registry for the stack images:

kp clusterstack create <clusterstack-name> \

 --build-image <location of build-image> \

 --run-image <location of run-image>

Note: The user must have read access to the source Docker registry and write access to the

canonical registry on the local machine.

Example:

kp csk create my-clusterstack \

 -b gcr.io/test/stack/run:latest

 -r gcr.io/test/stack/build:latest

If using local stack images created with docker save:

kp clusterstack create <clusterstack-name> \

 --build-image <path to build-image>.tar \

 --run-image <path to run-image>.tar

Note: The user must have write access to the canonical registry on the local machine.

Example:

kp csk create my-clusterstack \

 -b ./local-build-image.tar \

 -r ./local-run-image.tar

Update a ClusterStack

Users can update a stack using build and run images from a Docker registry or the local machine.

The run and build images provided during clusterstack update will be uploaded to the canonical

repository, which is the docker-repository specified during TBS install.

If using a Docker registry:

kp clusterstack update <stack-name> \

 --build-image <location of build-image> \

 --run-image <location of run-image>

Note: The user must have read access to the source Docker registry and write access to the

canonical registry on the local machine.

Example:

kp csk update my-clusterstack \

 -b gcr.io/test/stack/run:latest

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 59

 -r gcr.io/test/stack/build:latest

If using local stack images created with docker save:

kp clusterstack update <stack-name> \

 --build-image <path to build-image>.tar \

 --run-image <path to run-image>.tar

Note: The user must have write access to the canonical registry on the local machine.

Example:

kp csk update my-clusterstack \

 -b ./local-build-image.tar \

 -r ./local-run-image.tar

Save a ClusterStack

Users can create or update a ClusterStack using the save command. The kp clusterstack save

command is used exactly the same as kp clusterstack create and kp clusterstack update, but it

will determine if a clusterstack needs to be created or updated.

Get ClusterStack Status

Users can get the current status of a clusterstack:

kp clusterstack status <stack-name>

The following is an example of the output for this command:

Status: Ready

ID: org.cloudfoundry.stacks.cflinuxfs3

Run Image: paketo/run:full-cnb

Build Image: paketo/build:full-cnb

Delete a ClusterStack

Users can delete an existing clusterstack:

kp clusterstack delete <stack-name>

Note: User will not be asked for a confirmation before deletion.

List all ClusterStacks

Users can view the list of all ClusterStacks created:

The following is an example of the output for this command:

NAME READY ID

base True io.buildpacks.stacks.bionic

default True io.buildpacks.stacks.bionic

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 60

full True org.cloudfoundry.stacks.cflinuxfs3

tiny True io.paketo.stacks.tiny

How to update an Image for Stack updates only?

To achieve Stack only updates for an Image, you can pin the Buildpack versions in the Builder used

for creating the Image.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 61

Managing Stores

A Store is a cluster level resource that provides a collection of buildpacks that can be utilized by

Builders. Buildpacks are distributed and added to a store in buildpackages which are docker images

containing one or more buildpacks.

Build Service ships with a curated collection of Tanzu buildpacks for Java, Nodejs, Go, PHP, nginx,

and httpd and Paketo buildpacks for procfile, and .NET Core. Detailed documentation about the

buildpacks that are installed with TBS can be found here. It is important to keep these buildpacks up-

to-date. Updates to these buildpacks are provided on Tanzu Network.

In addition to supported Tanzu and Paketo buildpacks, custom buildpackages can be uploaded to

Build Service stores.

The kp CLI can be used to manage clusterstores. The help text is published here.

$ kp clusterstore

ClusterStore Commands

Usage:

 kp clusterstore [command]

Aliases:

 clusterstore, clusterstores, clstrcsrs, clstrcsr, csrs, csr

Available Commands:

 add Add buildpackage(s) to cluster store

 create Create a cluster store

 delete Delete a cluster store

 list List cluster stores

 remove Remove buildpackage(s) from cluster store

 save Create or update a cluster store

 status Display cluster store status

Flags:

 -h, --help help for clusterstore

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

Creating Buildpacks and Buildpackages

Documentation for creating buildpacks is available here.

Documentation for creating buildpackages is available here.

Note: Only Build Service Admins can perform store commands.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 62

https://docs.pivotal.io/tanzu-buildpacks/
https://network.pivotal.io/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md
https://buildpacks.io/docs/buildpack-author-guide/create-buildpack/
https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack/

Listing ClusterStores

Users can view the existing stores with:

kp clusterstore list

Creating a ClusterStore

Tanzu Build Service ships with a default store containing all of the supported buildpacks. Users can

create additional stores with:

kp clusterstore create <store-name> -b <buildpackage-1> -b <buildpackage-2>

Examples:

kp clusterstore create my-store -b my-registry.com/my-buildpackage

kp clusterstore create my-store -b my-registry.com/my-buildpackage -b my-registry.com/

my-other-buildpackage

kp clusterstore create my-store -b ../path/to/my-local-buildpackage.cnb

Buildpackages will be uploaded to the registry used during installation.

Note: The user must have read access to the source Docker registry and write access to the registry

used for installation on the local machine.

Saving a ClusterStore

Users can create or update a ClusterStore using the save command. The kp clusterstore save

command is used exactly the same as kp clusterstore create, but it will determine if a clusterstore

needs to be created or updated.

kp clusterstore save <store-name> -b <buildpackage-1> -b <buildpackage-2>

Adding Buildpackages to a ClusterStore

Users can add multiple buildpackages at a time from a registry or from a file on the local machine.

This command is useful for users that want to only consume certain buildpacks rather than update all

dependencies with kp import.

If using a Docker registry:

kp clusterstore add <store-name> -b <buildpackage-1> -b <buildpackage-2> ...

Note: The user must have read access to the source Docker registry and write access to the registry

used for installation on the local machine.

If using local .cnb buildpackage files created as described in the buildpackages docs:

kp clusterstore add <store-name> -b <path-to-buildpackage-1>.cnb -b <path-to-bu

ildpackage-2>.cnb ...

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 63

https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack/

Adding Buildpackages to a ClusterStore from Tanzu Network

Updated versions of all supported Buildpacks will be available on Tanzu Network as registry images.

Updated Buildpacks will be found in the following locations:

Java

NodeJS

Go

PHP, .NET Core, nginx, httpd, procfile

Here is a list of how to update each buildpack that is included with Tanzu Build Service by default:

kp clusterstore add default registry.pivotal.io/tanzu-java-buildpack/java:<version>

kp clusterstore add default registry.pivotal.io/tanzu-nodejs-buildpack/nodejs:<version

>

kp clusterstore add default registry.pivotal.io/tanzu-go-buildpack/go:<version>

kp clusterstore add default registry.pivotal.io/tbs-dependencies/paketo-buildpacks_dot

net-core:<version>

kp clusterstore add default registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_php:

<version>

kp clusterstore add default registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_ngin

x:<version>

kp clusterstore add default registry.pivotal.io/tbs-dependencies/tanzu-buildpacks_http

d:<version>

kp clusterstore add default registry.pivotal.io/tbs-dependencies/paketo-buildpacks_pro

cfile:<version>

Offline Adding Buildpackages to a ClusterStore from Tanzu Network

If your Tanzu Build Service installation is in an offline/air-gapped environment, you can update stores

with the following offline workflow:

1. Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network.

2. Download the kp CLI for your operating system from the latest release on the Tanzu Build

Service page.

3. Download the kbld CLI for your operating system from the latest release on the kbld page.

4. Download the dependency images for Tanzu Build Service to your local machine with kbld:

docker login registry.pivotal.io

kbld package -f descriptor-<version>.yaml \

 --output /tmp/packaged-dependencies.tar

5. Move the output file packaged-dependencies.tar to a machine that has access to the

"offline" environment

6. Upload the dependency images to the registry used to deploy Tanzu Build Service:

docker login <build-service-registry>

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 64

https://network.pivotal.io
https://network.pivotal.io/products/tanzu-java-buildpack
https://network.pivotal.io/products/tanzu-nodejs-buildpack
https://network.pivotal.io/products/tanzu-go-buildpack
https://network.pivotal.io/products/tbs-dependencies
https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/build-service
https://network.pivotal.io/products/kbld

kbld unpackage -f descriptor-<version>.yaml \

 --input /tmp/packaged-dependencies.tar \

 --repository <IMAGE-REPOSITORY> \

 --lock-output /tmp/dependencies-relocated.lock

Where IMAGE-REPOSITORY is the repository used to install Tanzu Build Service. This should be the

same value as IMAGE-REPOSITORY used in the Installation Steps.

7. Now that dependencies are relocated to the internal registry, you can use the following

command to update the necessary resources:

kbld -f descriptor-<version>.yaml -f /tmp/dependencies-relocated.lock | kp import -f -

Removing Buildpackages from a ClusterStore

Users can remove a buildpackage from a ClusterStore by referencing the buildpackage Id and

version.

kp clusterstore remove <store> -b <buildpackage-id>@<buildpackage-version>

Examples:

kp clusterstore remove my-store -b buildpackage@1.0.0

kp clusterstore remove my-store -b buildpackage@1.0.0 -b other-buildpackage@2.0.0

The ClusterStore status shows the list of buildpackage Id and version

Get ClusterStore Status

Users can use the kp CLI to get details about a store including buildpackages and their buildpacks, as

well as meta-buildpacks. Meta-buildpacks are buildpacks that indicate the order that other buildpacks

run:

To view the buildpackages in a store:

kp clusterstore status <store-name>

Example:

$kp clusterstore status default

Status: Ready

BUILDPACKAGE ID VERSION HOMEPAGE

paketo-buildpacks/go 0.1.3 https://github.com/paketo-buildpacks/

go

paketo-buildpacks/procfile 2.0.2 https://github.com/paketo-buildpacks/

procfile

paketo-buildpacks/procfile 3.0.0 https://github.com/paketo-buildpacks/

procfile

tanzu-buildpacks/dotnet-core 0.0.4

tanzu-buildpacks/dotnet-core 0.0.7

tanzu-buildpacks/dotnet-core 0.0.6

tanzu-buildpacks/go 1.0.6

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 65

#other-install
https://buildpacks.io/docs/concepts/components/buildpack/#meta-buildpack

tanzu-buildpacks/go 1.0.7

tanzu-buildpacks/go 1.0.9

tanzu-buildpacks/go 1.0.5

tanzu-buildpacks/httpd 0.0.38

tanzu-buildpacks/httpd 0.0.39

tanzu-buildpacks/httpd 0.0.40

tanzu-buildpacks/java 3.8.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java 3.5.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java 4.1.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java 4.0.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java-native-image 3.6.0 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/java-native-image 3.9.0 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/java-native-image 3.4.2 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/java-native-image 3.10.0 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/nginx 0.0.48

tanzu-buildpacks/nginx 0.0.46

tanzu-buildpacks/nodejs 1.1.0

tanzu-buildpacks/nodejs 1.2.3

tanzu-buildpacks/nodejs 1.2.2

tanzu-buildpacks/php 0.0.3

tanzu-buildpacks/php 0.0.5

To view buildpackages & their individual buildpacks as well as display the order of meta-buildpacks

use the --verbose flag

kp clusterstore status <store-name> --verbose

Migrating Buildpacks

Build Service will never automatically remove buildpackages from the store unless you explicitly

remove them. In this way, users can continue to use older buildpacks until the operator is ready to

migrate them.

How you migrate is entirely dependent on the configuration of your Builder resources: * Builders

that do not provide a buildpack version will automatically update to the latest buildpack version if it is

available. * Builders that explicitly specify a buildpack version will not update automatically.

With the above in mind, migrating buildpackages in the store is as simple as kp clusterstore adding

newer buildpackages and kp clusterstore removeing older buildpackages as necessary.

If you'd like fine-grained control over buildpack updates, you can create multiple stores to manage

buildpack versions. Then, you can point individual builders at the desired store. Each store can be

updated as needed without affecting other builders or fanning out large, sweeping changes.

Corresponding kpack Resource

All Build Service builders utilize cluster scoped Store Resources.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 66

https://github.com/pivotal/kpack/blob/master/docs/builders.md#store

Managing Builders

A Builder is a Tanzu Build Service resource used to manage Cloud Native Buildpack builders.

Builders contain a set of buildpacks and a stack that will be used to create images.

There are two types of Builders:

Cluster Builders: Cluster-scoped Builders

Builders: Namespace-scoped Builders

Note: Only Build Service Admins can manage Cluster Builders.

The kp CLI can be used to manage builders and clusterbuilders. The help text is published here.

$ kp builder

Builder Commands

Usage:

 kp builder [command]

Aliases:

 builder, builders, bldrs, bldr

Available Commands:

 create Create a builder

 delete Delete a builder

 list List available builders

 patch Patch an existing builder configuration

 save Create or patch a builder

 status Display status of a builder

Flags:

 -h, --help help for builder

Use "kp builder [command] --help" for more information about a command.

$ kp clusterbuilder

ClusterBuilder Commands

Usage:

 kp clusterbuilder [command]

Aliases:

 clusterbuilder, clusterbuilders, clstrbldrs, clstrbldr, cbldrs, cbldr, cbs, cb

Available Commands:

 create Create a cluster builder

 delete Delete a cluster builder

 list List available cluster builders

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 67

https://buildpacks.io/docs/concepts/components/builder/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

 patch Patch an existing cluster builder configuration

 save Create or patch a cluster builder

 status Display cluster builder status

Flags:

 -h, --help help for clusterbuilder

Note: These docs assume kp cli v0.2.* from TBS release v1.1.*. If a feature is not working, you may

need to upgrade your cli.

Creating a Builder

Use the kp cli to create a Builder:

Cluster Builder:

kp clusterbuilder create <name> --tag <tag> --order <order> --stack <stack> --s

tore <store>

kp clusterbuilder create <name> --tag <tag> --stack <stack> --store <store> --b

uildpack <buildpack>

Builder:

kp builder create <name> --tag <tag> --order <order> --stack <stack> --store <s

tore> --namespace <namespace>

kp builder create <name> --tag <tag> --stack <stack> --store <store> --namespac

e <namespace> --buildpack <buildpack>

Where:

name: The name of the builder.

tag: The registry location where the builder will be created.

stack: The name of the stack to be used by the builder.

store: The name of the store containing the buildpacks that will be used by the builder.

namespace The kubernetes namespace for the builder (for Builders only)

order: The local path to the buildpack order YAML that the builder will use. Sample order

YAML files will be available on the VMware Tanzu Build Service Dependencies page on

Tanzu Network. For more information about listing buildpacks in groups in the order YAML,

see builder.toml in the Buildpacks.io documentation.

Example order YAML file that would be used by a builder designed to build NodeJS and

Java apps:

- group:

 - id: tanzu-buildpacks/nodejs

- group:

 - id: tanzu-buildpacks/java

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 68

https://network.pivotal.io/products/tbs-dependencies
https://buildpacks.io/docs/reference/builder-config/#order-_list-required_

buildpack: Buildpack id and optional version in the form of either '@' or ''. Repeat for each

buildpack in order, or supply once with comma-separated list. This cannot be combined with

--order. All supplied buildpacks will be in the same group.

Patching a Builder

You can update a Builder resource using the kp cli. To update a builder given a name, run:

Cluster Builder:

kp clusterbuilder patch <name> --order <order> --stack <stack> --store <store>

kp clusterbuilder patch <name> --stack <stack> --store <store> --buildpack <bui

ldpack>

Builder:

kp builder patch <name> --order <order> --stack <stack> --store <store> --names

pace <namespace>

kp builder patch <name> --stack <stack> --store <store> --namespace <namespace>

 --buildpack <buildpack>

kp ccb patch and kp cb patch are respective aliases.

Where:

name: The name of the builder.

stack: The name of the stack to be used by the builder.

store: The name of the store containing the buildpacks that will be used by the builder.

namespace The kubernetes namespace for the builder (for Builders only)

order: The local path to the buildpack order YAML that the builder will use. Sample order

YAML files will be available on the VMware Tanzu Build Service Dependencies page on

Tanzu Network. For more information about listing buildpacks in groups in the order YAML,

see builder.toml in the Buildpacks.io documentation.

Example order YAML file that would be used by a builder designed to build NodeJS and

Java apps:

- group:

 - id: paketo-buildpacks/bellsoft-liberica

 - id: paketo-buildpacks/gradle

- group:

 - id: paketo-buildpacks/nodejs

buildpack: Buildpack id and optional version in the form of either '@' or ''. Repeat for each

buildpack in order, or supply once with comma-separated list. This cannot be combined with

--order. All supplied buildpacks will be in the same group.

Note: The `tag` (location in a registry) of a builder cannot be modified. To change this field, you must

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 69

https://network.pivotal.io/products/tbs-dependencies
https://buildpacks.io/docs/reference/builder-config/#order-_list-required_

create a new builder.

Saving Builders

Users can create or update a Builder/ClusterBuilder using the save command. The kp

builder/clusterbuilder save command is used exactly the same as kp builder/clusterbuilder

create and kp builder/clusterbuilder update, but it will determine if a builder/clusterbuilder

needs to be created or updated.

To save a Builder/ClusterBuilder:

Cluster Builder:

kp clusterbuilder save <name> --tag <tag> --order <order> --stack <stack> --sto

re <store>

kp clusterbuilder save <name> --tag <tag> --stack <stack> --store <store> --bui

ldpack <buildpack>

Builder:

kp builder save <name> --tag <tag> --order <order> --stack <stack> --store <sto

re> --namespace <namespace>

kp builder save <name> --tag <tag> --stack <stack> --store <store> --namespace

<namespace> --buildpack <buildpack>

Where:

name: The name of the builder.

tag: The registry location where the builder will be created.

stack: The name of the stack to be used by the builder.

store: The name of the store containing the buildpacks that will be used by the builder.

namespace The kubernetes namespace for the builder (for Builders only)

order: The local path to the buildpack order YAML that the builder will use. Sample order

YAML files will be available on the VMware Tanzu Build Service Dependencies page on

Tanzu Network. For more information about listing buildpacks in groups in the order YAML,

see builder.toml in the Buildpacks.io documentation.

Example order YAML file that would be used by a builder designed to build NodeJS and

Java apps:

- group:

 - id: paketo-buildpacks/bellsoft-liberica

 - id: paketo-buildpacks/gradle

- group:

 - id: paketo-buildpacks/nodejs

buildpack: Buildpack id and optional version in the form of either '@' or ''. Repeat for each

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 70

https://network.pivotal.io/products/tbs-dependencies
https://buildpacks.io/docs/reference/builder-config/#order-_list-required_

buildpack in order, or supply once with comma-separated list. This cannot be combined with

--order. All supplied buildpacks will be in the same group.

Deleting Builders

To delete a Builder:

Cluster Builder:

kp clusterbuilder delete <builder name>

Builder:

kp builder delete <builder name> --namespace <namespace>

Warning: Deleting a builder will prevent image configs that reference that builder from successfully

building again.

Retrieving Builder Details

To get builder details:

Cluster Builder:

kp clusterbuilder status <builder-name>

Builder:

kp builder status <builder-name> --namespace <namespace>

Example:

$ kp clusterbuilder status tiny

Status: Ready

Image: gcr.io/my-repo/tiny@sha256:07d94db2e3e9f43cba67c389f1c83e4eac821aa83084a

88136ed8d431b37f008

Stack: io.paketo.stacks.tiny

Run Image: gcr.io/cf-build-service-dev-219913/ssuresh/install/run@sha256:e9159f0ef2

3c28b943cfb1b5d5be9638b67211f6ff0bd3fae35ff4b499136152

BUILDPACK ID VERSION HOMEPAGE

paketo-buildpacks/graalvm 4.0.0 https://github.com/paketo-bui

ldpacks/graalvm

tanzu-buildpacks/go-dist 0.1.3

paketo-buildpacks/gradle 3.5.0 https://github.com/paketo-bui

ldpacks/gradle

paketo-buildpacks/sbt 3.6.0 https://github.com/paketo-bui

ldpacks/sbt

paketo-buildpacks/maven 3.2.1 https://github.com/paketo-bui

ldpacks/maven

tanzu-buildpacks/dep 0.0.10

paketo-buildpacks/spring-boot 3.5.0 https://github.com/paketo-bui

ldpacks/spring-boot

paketo-buildpacks/leiningen 1.2.1 https://github.com/paketo-bui

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 71

ldpacks/leiningen

paketo-buildpacks/spring-boot-native-image 2.0.0 https://github.com/paketo-bui

ldpacks/spring-boot-native-image

paketo-buildpacks/executable-jar 3.1.3 https://github.com/paketo-bui

ldpacks/executable-jar

tanzu-buildpacks/go-build 0.0.23

paketo-buildpacks/environment-variables 2.1.2 https://github.com/paketo-bui

ldpacks/environment-variables

paketo-buildpacks/procfile 3.0.0 https://github.com/paketo-bui

ldpacks/procfile

paketo-buildpacks/image-labels 2.0.6 https://github.com/paketo-bui

ldpacks/image-labels

tanzu-buildpacks/dep-ensure 0.0.29

tanzu-buildpacks/go-mod-vendor 0.0.26

tanzu-buildpacks/java-native-image 3.10.0 https://github.com/pivotal-cf

/tanzu-java-native-image

tanzu-buildpacks/go 1.0.9

DETECTION ORDER

Group #1

 tanzu-buildpacks/go@1.0.9

Group #2

 tanzu-buildpacks/java-native-image@3.10.0

Group #3

 paketo-buildpacks/procfile@3.0.0

Listing Builders

To list all builders available to the current user:

Cluster Builder:

kp clusterbuilder list

Builder:

 kp builder list --namespace <namespace>

Corresponding kpack Resources

All Build Service Builders are represented as kpack resources.

Builder

ClusterBuilder

Pinning Buildpack versions

You can pin buildpack versions by specifying the version for buildpacks in the order file.

As an example, consider the clusterbuilder created below:

kp cb create pinned \

 --tag my-registry.io/example/pinned \

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 72

https://github.com/pivotal/kpack/blob/master/docs/builders.md#builders
https://github.com/pivotal/kpack/blob/master/docs/builders.md#cluster-builders

 --order order.yaml

where the contents of order.yaml file is

- group:

 - id: tanzu-buildpacks/php

 version: 0.0.5

- group:

 - id: tanzu-buildpacks/nodejs

 version: 1.3.0

Note: When a buildpack version is pinned, Images that use the Builder will not initiate new Builds

due to new Buildpack versions. For best practice, only pin a buildpack version when necessary.

Update Lifecycle

All builders make use of a lifecycle. A lifecycle orchestrates buildpack execution, then assembles the

resulting artifacts into a final app image. Within Build Service, it will be uploaded to the canonical

registry, which is the docker-repository specified during TBS install. More information on lifecycles

can be found here.

To update the lifecycle that will be used by builders:

```

kp lifecycle update --image <image-tag>

```

Note: You must have credentials to access the registry on your machine.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 73

https://buildpacks.io/docs/concepts/components/lifecycle/

Managing Custom Stacks

A CustomStack is a resource that allows users to create a customized ClusterStack from Ubuntu

18.04 (Bionic Beaver) based OCI images.

CustomStacks can be used to:

Convert a pre-existing base image that you'd like to use with TBS into a ClusterStack

resource.

Add required stack metadata to base images.

Add CA certificates to build and/or run image.

Add packages and mixin labels to build and/or run image.

Set CNB user and group IDs.

Creating a CustomStack

A CustomStack is created by running kubectl apply with a resource configuration file. The following

defines the relevant fields of the CustomStack resource spec in more detail:

source: The location of base images used for building the stack. See more info in Source

Configuration.

destination: The location to publish built images and optional ClusterStack. See more info in

Destination Configuration.

caCerts: References to config maps of CA certificates to add to one or both of the stack

images.

packages: List of packages to install on one or both of the stack images. A list of all available

packages can be found here.

mixins: List of mixin labels to add to one or both of the stack images. Information on the

mixins concept can be found here.

service-account-name: Name of service account with secret containing credentials to push

to registry.

user: User and group ID of the CNB user

Not required if the user is already present in metadata.

If the user and/or group ID do not exist on the image, they will be created.

Source Configuration

The source field describes the base images for the CustomStack. It can be configured in exactly one

of the following ways:

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 74

https://buildpacks.io/docs/concepts/components/stack/#mixins
https://packages.ubuntu.com/bionic/allpackages
https://buildpacks.io/docs/concepts/components/stack/#mixins

Registry Images

source:

 registryImages:

 build:

 image: <build-base-image>

 run:

 image: <run-base-image>

build-base-image: The fully qualified reference of the build base image.

run-base-image: The fully qualified reference of the run base image.

Stack

stack:

 name: <cluster-stack-name>

 apiVersion: kpack.io/v1alpha1

 kind: ClusterStack

cluster-stack-name: Name of ClusterStack to base CustomStack images on.

Destination Configuration

The destination field describes where the built images will be published and if a ClusterStack should

be created.

destination:

 build:

 tag: <output-build-image-tag>

 run:

 tag: <output-run-image-tag>

 stack: # Optional

 name: <output-cluster-stack-name>

 apiVersion: kpack.io/v1alpha1

 kind: ClusterStack

output-build-image-tag: The registry location where the build image will be created.

output-run-image-tag: The registry location where the run image will be created.

output-cluster-stack-name: Name of ClusterStack to create with CustomStack images

Example CustomStack from Registry Images

apiVersion: v1

kind: ConfigMap

metadata:

 name: build-ca-certs

data:

 cert-1: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 cert-2: |

 -----BEGIN CERTIFICATE-----

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 75

 ...

 -----END CERTIFICATE-----

apiVersion: v1

kind: ConfigMap

metadata:

 name: run-ca-certs

data:

 cert-3: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: stacks.stacks-operator.tanzu.vmware.com/v1alpha1

kind: CustomStack

metadata:

 name: stack-sample

spec:

 source:

 registryImages:

 build:

 image: paketobuildpacks/build@sha256:ae88191cc5bfd0dcd2938954f20d5df5060a562af

8e3d65a92a815612054537c

 run:

 image: paketobuildpacks/run@sha256:48f67dcb3f2b27403de80193e34abd3172b3fbdfdd8

7e452721aba90ea68fc66

 destination:

 build:

 tag: my.registry.io/final-build-image

 run:

 tag: my.registry.io/final-run-image

 stack: # Optional

 name: stack-sample-cluster-stack

 apiVersion: kpack.io/v1alpha1

 kind: ClusterStack

 caCerts: # Optional

 buildRef: # Optional

 name: build-ca-certs

 runRef: # Optional

 name: run-ca-certs

 packages: # Optional

 - name: cowsay

 - name: cowsay-off

 - name: fortune

 phase: build

 - name: rolldice

 phase: run

 mixins: # Optional

 - name: set=build-utils

 phase: build

 - name: set=run-utils

 phase: run

 - name: set=shared-utils

 serviceAccountName: default

 user: # Optional

 userID: 1000

 groupID: 1000

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 76

Example CustomStack from ClusterStack

apiVersion: v1

kind: ConfigMap

metadata:

 name: build-ca-certs

data:

 cert-1: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 cert-2: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: v1

kind: ConfigMap

metadata:

 name: run-ca-certs

data:

 cert-3: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: stacks.stacks-operator.tanzu.vmware.com/v1alpha1

kind: CustomStack

metadata:

 name: stack-sample

spec:

 source:

 stack:

 name: stack-sample-cluster-stack

 apiVersion: kpack.io/v1alpha1

 kind: ClusterStack

 destination:

 build:

 tag: my.registry.io/final-build-image

 run:

 tag: my.registry.io/final-run-image

 stack: # Optional

 name: final-stack-sample-cluster-stack

 apiVersion: kpack.io/v1alpha1

 kind: ClusterStack

 caCerts: # Optional

 buildRef: # Optional

 name: build-ca-certs

 runRef: # Optional

 name: run-ca-certs

 packages: # Optional

 - name: cowsay

 - name: cowsay-off

 - name: fortune

 phase: build # Optional

 - name: rolldice

 phase: run # Optional

 mixins: # Optional

 - name: set=build-utils

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 77

 phase: build # Optional

 - name: set=run-utils

 phase: run # Optional

 - name: set=shared-utils

 serviceAccountName: default

 user: # Optional

 userID: 1000 # Optional

 groupID: 1000 # Optional

Debugging CustomStacks

When a CustomStack is created, a pod is created in the same namespace which will modify the base

image and push the resulting stack image to the registry. The pod will be named stack-pod-

<customstack-name>-<number>, where:

customstack-name: The name of your CustomStack

number: The revision of your CustomStack. This will be incremented by one each time a new

spec is applied.

The ten latest pods are kept around for debugging purposes. To debug a failing CustomStack, check

the logs of the corresponding pod: kubectl logs <pod-name> -c <create-build-image/create-run-

image>, where:

pod-name: The name of the pod

create-build-image/create-run-image: The container whose logs you would like to see.

create-build-image for logs related to creating the build image.

create-run-image for logs related to create the run image.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 78

RBAC in Tanzu Build Service

Given that Tanzu Build Service supports functionality most customers would likely want to restrict to

only certain users, we encourage utilization of RBAC as a best practice if Tanzu Build Service is to be

broadly deployed for usage by many users.

RBAC using Projects Operator

Projects Operator can be installed on the cluster to simplify RBAC management.

Projects Operator extends kubernetes with a Project CRD and corresponding controller. Projects

are intended to provide isolation of kubernetes resources on a single kubernetes cluster. A Project

is essentially a kubernetes namespace along with a corresponding set of RBAC rules.

As part of the Projects Operator installation, you can specify the ClusterRole to apply for each

Project using the CLUSTER_ROLE_REF environment variable. The TBS installation comes with a

ClusterRole called build-service-user-role which can be used for this purpose.

RBAC Support in Tanzu Build Service

Tanzu Build Service is installed with 2 Kubernetes ClusterRoles that can be used for RBAC for Build

Service users and admins:

build-service-user-role

build-service-admin-role

Build Service User Role

This should be used for users that will create Images and Builds.

To view the configuration for this role:

kubectl get clusterrole build-service-user-role -o yaml

To use this ClusterRole you should create a RoleBinding with an existing user.

Example:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: my-build-service-user-role-binding

 namespace: my-build-namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 79

https://github.com/vmware-tanzu/projects-operator
https://github.com/vmware-tanzu/projects-operator#install
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding

 kind: ClusterRole

 name: build-service-user-role

subjects:

- kind: User

 name: my-user

Build Service Admin Role

This should be used for admin users that will operate Tanzu Build Service.

To view the configuration for this role:

kubectl get clusterrole build-service-admin-role -o yaml

To use this ClusterRole you should create a RoleBinding or ClusterRoleBinding with an existing user.

Example:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: my-build-service-admin-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: build-service-admin-role

subjects:

- kind: User

 name: my-cluster-wide-admin-user

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 80

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding

Frequently Asked Questions

How do Cloud Native Buildpacks (CNBs), kpack, and Tanzu
Build Service overlap and differ?

CNBs are build tools that adhere to the CNB v3 Specification and transform source code into an OCI

compliant runnable image. The v3 specification, lifecycle, and local CLI (pack) are governed by the

open source Cloud Native Buildpacks project.

kpack is a collection of open source resource controllers that together function as a Kubernetes

native build service. The product provides a declarative image type that builds an image and

schedules image rebuilds when dependencies of the image change. kpack is a platform

implementation of CNBs in that it utilizes CNBs and the v3 lifecycle to execute image builds.

Tanzu Build Service is a commercial product owned and operated by VMware that utilizes kpack

and CNBs. Build Service provides additional abstractions intended to ease the use of the above

technologies in Enterprise settings. These abstractions are covered in detail throughout the

documentation on this site. Additionally, customers of Build Service are entitled to support and

VMware Tanzu buildpacks.

Why do I see two images in the image registry after a
successful build?

By default Build Service will tag each built image twice. The first tag will be the configured image tag.

The second tag will be a unique tag with the build number and build timestamp. The second tag is

added to ensure that previous images are not deleted on registries that garbage collect untagged

images.

How does TBS work in air gapped environments?

Build Service is installed and deployed using Carvel tools. Therefore, the kbld package command

can create a .tar file composed of the kubernetes manifests and images required to successfully

install Build Service. The kbld unpackage command ensures that all the images can be relocated to

air-gapped registries, and by providing the credentials to the air-gapped registry when executing the

install command, Build Service can then use that secret to pull images from said registry, hence

working in air-gapped environments.

For more details on air-gapped installation, see Installation to Air-Gapped Environment.

For more details on air-gapped builds, see Offline Builds.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 81

https://github.com/buildpacks/spec
https://buildpacks.io
https://github.com/pivotal/kpack
https://carvel.dev/

Is there documentation on supported Tanzu Buildpacks?

Yes, documentation is available on Tanzu Buildpacks Documenation.

Why do I get an X509 error from Build Service when trying
to create an image in my registry?

When interacting with a registry or a git repo that has been deployed using a self signed certificate,

Build Service must be provided with the certificate during install time. Unfortunately, you will either

need to target a registry that does not have self signed certificates or re-install Build Service to work

with this registry.

How do I configure a secret to publish images to Dockerhub?

1. Create a dockerhub secret with the kp cli:

kp secret create my-dockerhub-creds --dockerhub DOCKERHUB-USERNAME

Where DOCKERHUB-USERNAME is your dockerhub username You will be prompted for your

dockerhub password

How can I configure an image to pull from a private GitHub
repository?

1. Create a github secret with the kp cli:

Using a git ssh key

kp secret create my-git-ssh-cred --git git@github.com --git-ssh-key PATH-TO-GIT

HUB-PRIVATE-KEY

Where PATH-TO-GITHUB-PRIVATE-KEY is the absolute local path to the github ssh private key

Or with a basic auth github username and password

 kp secret create my-git-cred --git https://github.com --git-user GITHUB-USERNA

ME

Where GITHUB-USERNAME is your github username You will be prompted for your github

password

Why do some builds fail with "Error: could not read run
image: *"?

The run image must be publicly readable or readable with the registry credentials configured in a

project/namespace.

To see where the build service run image is located run: kp stack status STACK-NAME.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 82

https://docs.pivotal.io/tanzu-buildpacks/
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account

If you cannot make the run image publicly readable, you must kp to create a registry secret within

the namespace where your builds reside. This can be accomplished using kp secret create.

Why don't my image builds appear in my Harbor v1.X.X
registry?

There is a known bug in Harbor that, at times, prevents the UI from showing images. If you are

unable to see a recently built image in the Harbor UI, try pulling it using the docker CLI to verify that

it exists.

How do I fix "unsupported status code 500" when creating a
builder on my Harbor v2.X.X registry?

Some builders are very large and can overwhelm Harbor's default database connection. You can

remediate this issue by increasing the database.maxOpenConns setting in the helm values.yaml file.

Increase this value from 100 to 300. The exact setting can be found here.

How do I configure credentials for using gcr as my installation
registry?

You can use Google Container Registry for your Tanzu Build Service installation registry.

If you have trouble configuring the registry credentials for gcr when following the install docs, use

the following to set the gcr credentials:

registry_name="_json_key"

registry_password="$(cat /path/to/gcp/service/account/key.json)"

ytt -f /tmp/values.yaml \

 - f / t m p / m a n i f e s t s / \

 -v docker_repository="<IMAGE-REPOSITORY>" \

 -v docker_username="$registry_name" \

 -v docker_password="$registry_password>" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Can I configure a proxy for my Tanzu Build Service?

TBS can be configured with a proxy at installation time by specifying additional parameters:

http_proxy: The HTTP proxy to use for network traffic.

https_proxy: The HTTPS proxy to use for network traffic.

no_proxy: A comma-separated list of hostnames, IP addresses, or IP ranges in CIDR format

that should not use a proxy.

Note: When proxy server is enabled using http_proxy and/or https_proxy, traffic to the kubernetes

API server will also flow through the proxy server. This is a known limitation and can be

circumvented by using no_proxy to specify the kubernetes API server.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 83

https://github.com/goharbor/harbor-helm/blob/ab57e34774ad57fe6506ad5161b2d7b207e1dfd1/values.yaml#L689
#other-install

ytt -f /tmp/values.yaml \

 - f / t m p / m a n i f e s t s / \

 -v docker_repository="<IMAGE-REPOSITORY>" \

 -v docker_username="<REGISTRY-USERNAME>" \

 -v docker_password="<REGISTRY-PASSWORD>" \

 -v http_proxy="<HTTP-PROXY-URL>" \

 -v https_proxy="<HTTPS-PROXY-URL>" \

 -v no_proxy="<KUBERNETES-API-SERVER-URL>" \

 | kbld -f /tmp/images-relocated.lock -f- \

 | kapp deploy -a tanzu-build-service -f- -y

How do I build my app locally using kpack builders?

You can use the pack cli with your kpack builders to test them locally before checking in your code.

By using your kpack builder locally, you can guarantee that the buildpacks, stacks, and lifecycle used

to build the image config will also be used by the pack CLI, resulting in a container image that is the

exact same, whether it is built by kpack or pack.

Note: Make sure that you `docker login` to the image repository containing your kpack builder.

pack build my-app --path ~/workspace/my-app --builder gcr.io/my-project/my-image:lates

t --trust-builder

What can I do with the kp --dry-run and --output flags?

From kp CLI v1.0.3+ the --dry-run and --output flags are made available to kp commands that

create or update any kpack Kubernetes resources.

The --dry-run flag lets you perform a quick validation with no side-effects as no objects are sent to

the server. And the --output flag lets you view the resource in yaml or json format.

The --dry-run-with-image-upload flag is similar to the --dry-run flag in that no kpack Kubernetes

resources are updated. This flag is provided as a convenience for kp commands that can output

Kubernetes resource with generated container image references.

For example, consider the command below

$ kp clusterstack create test-stack \

 --dry-run \

 --output yaml \

 --build-image gcr.io/paketo-buildpacks/build@sha256:f550ab24b72586cb26215817b874b9e9e

c2ca615ede03206833286934779ab5d \

 --run-image gcr.io/paketo-buildpacks/run@sha256:21c1fb65033ae5a765a1fb44bfefdea37024c

eac86ac6098202b891d27b8671f

Creating ClusterStack... (dry run)

Uploading to 'gcr.io/my-project/my-repo'... (dry run)

 Skipping 'gcr.io/my-project/my-repo/build@sha256:f550ab24b72586cb26215817b874b

9e9ec2ca615ede03206833286934779ab5d'

 Skipping 'gcr.io/my-project/my-repo/run@sha256:21c1fb65033ae5a765a1fb44bfefdea

37024ceac86ac6098202b891d27b8671f'

apiVersion: kpack.io/v1alpha1

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 84

https://buildpacks.io/docs/tools/pack/

kind: ClusterStack

metadata:

 creationTimestamp: null

 name: test-stack

spec:

 buildImage:

 image: gcr.io/my-project/my-repo/build@sha256:f550ab24b72586cb26215817b874b9e9ec2c

a615ede03206833286934779ab5d

 id: io.buildpacks.stacks.bionic

 runImage:

 image: gcr.io/my-project/my-repo/run@sha256:21c1fb65033ae5a765a1fb44bfefdea37024ce

ac86ac6098202b891d27b8671f

status:

 buildImage: {}

 runImage: {}

The resource yaml output above has the relocated build and run image urls. However, the images

were never uploaded.

If you now apply the resource output using kubectl apply -f as shown below, then the resource

will be created but will be faulty since the referenced images do not exist.

$ kp clusterstack create test-stack \

 --dry-run \

 --output yaml \

 --build-image gcr.io/paketo-buildpacks/build@sha256:f550ab24b72586cb26215817b874b9e9e

c2ca615ede03206833286934779ab5d \

 --run-image gcr.io/paketo-buildpacks/run@sha256:21c1fb65033ae5a765a1fb44bfefdea37024c

eac86ac6098202b891d27b8671f \

 | kubectl apply -f -

Creating ClusterStack... (dry run)

Uploading to 'gcr.io/my-project/my-repo'... (dry run)

 Skipping 'gcr.io/my-project/my-repo/build@sha256:f550ab24b72586cb26215817b874b

9e9ec2ca615ede03206833286934779ab5d'

 Skipping 'gcr.io/my-project/my-repo/run@sha256:21c1fb65033ae5a765a1fb44bfefdea

37024ceac86ac6098202b891d27b8671f'

clusterstack.kpack.io/test-stack created

Running the same command above with the --dry-run-with-image-upload flag (instead of --dry-

run) ensures the created resource refers to images exist.

Does TBS support Azure Devops for git repositories

Azure Devops cannot be used as a git repository with TBS. This can be worked-around by using the

--local-path source type with the kp cli which will use your registry to store the source code.

This is expected to be fixed in upcoming releases.

Why do I get a "repository does not exist" error when I use
ECR Registry?

ECR is supported but requires manually creating each repository that TBS will use. With other

registries, the repositories will be created automatically.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 85

How do I troubleshoot a failed build?

Like many Kubernetes native products, operating TBS involves orchestrating resources that depend

on each other to function. If a resource is in a "not ready" state it is likely that there is a problem with

one of the resources it depends on.

If you are encountering a not ready Image, check and see which builder it uses and then check the

status of that builder for additional information that could help you troubleshoot the problem.

$ kp image status <image-name>

$ kp clusterbuilder status <clusterbuilder-name>

Similarly, if a builder resource is in a "not ready" state, it is possible that there is a problem with the

clusterstack or clusterstore resources it is referencing.

$ kp clusterstack status <clusterstack-name> --verbose

$ kp clusterstore status <clusterstore-name> --verbose

All Build Service concepts are also Kubernetes resources. Therefore, customers can interact with

them using the kubectl CLI to see all the information that can be provided by the Kubernetes API.

$ kubectl describe image <image-name>

$ kubectl describe clusterbuilder <clusterbuilder-name>

How do I troubleshoot an UNAUTHENTICATED error?

During kbld relocate

1. Ensure you are logged in locally to both registries with:

docker logout registry.pivotal.io && docker login registry.pivotal.io

docker logout <tbs-registry> && docker login <tbs-registry>

2. On linux, if you have installed docker with snap you will need to copy

/root/snap/docker/471/.docker/config.json to ~/.docker/config.json which is where

kbld is looking for the docker credentials

3. Ensure your credentials have write access to your registry with docker push

<registry>/<build-service-repository> this is the same repository used during install with

the ytt/kapp command

During kp import

1. Ensure you are logged in locally to both registries with:

docker logout registry.pivotal.io && docker login registry.pivotal.io

docker logout <tbs-registry> && docker login <tbs-registry>

2. Ensure the credentials used to install TBS have write access to your registry as they

sometimes differ from local credentials

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 86

Use docker login <tbs-registry> using the credentials used to install TBS with ytt/kapp

Try to docker push <tbs-registry>/<build-service-repository> this is the same repository

used during install with the ytt/kapp command

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 87

Additional resources for Tanzu Build Service

Concourse Kpack resource

The Concourse Kpack resource helps in the integration of Kpack in a Concourse based CI/CD

pipeline. This Concourse resource is capable of triggering Image builds based on a commit SHA.

The Git repo for the Concourse Kpack resource provides guidance on usage within a pipeline.

Note: The Kpack Image must be created within a TBS cluster before referring to it within a pipeline

using the Concourse Kpack resource

Note: The Concourse Kpack resource currently only supports GKE and TKGI clusters

Helpful Articles

Getting Started with VMware Tanzu Build Service 1.0

(September 03, 2020 - Tony Vetter)

This covers installation of Tanzu Build Service on local Kubernetes cluster (using Docker

Desktop) and demonstrates the auto build of app images for Code and OS updates.

VMware Tanzu Build Service, a Kubernetes-Native Way to Build Containers, Is Now GA

(September 03, 2020 - Brad Bock)

A big picture overview of Tanzu Build Service, integration with CI/CD and links on getting

started.

Helpful Videos

Introduction to Tanzu Build Service 1.0

(September 22, 2020 - Tony Vetter)

This covers the different components of TBS, the benefits it offers, and a demo of how TBS

can auto update your application images for different reasons - Code update, Config change

or Stack update.

Helpful Repositories

kpdemo - https://github.com/matthewmcnew/kpdemo

A tool to visualize and demo kpack.

Demos include auto Image creation for Stack and Buildpack updates.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 88

https://github.com/vmware-tanzu/concourse-kpack-resource
https://github.com/vmware-tanzu/concourse-kpack-resource
https://tanzu.vmware.com/content/blog/getting-started-with-vmware-tanzu-build-service-1-0
https://tanzu.vmware.com/content/blog/vmware-tanzu-build-service-a-kubernetes-native-way-to-build-containers-is-now-generally-available
https://www.youtube.com/watch?v=IMmUjUjBzes&ab_channel=VMwareTanzu
https://github.com/matthewmcnew/kpdemo

Release Notes

v1.1.4

Release Date: March 10, 2021

Fixed issue that prevented "smart-warmer" pods from correctly starting in the Build Service

Namespace.

Product Snapshot

Tanzu Build Service 1.1.4 ships with the following components:

kpack 0.2.2

kpack cli v0.2.0

CNB lifecycle v0.10.2

Stacks Operator v0.0.4

v1.1.3

Release Date: March 08, 2021

Build pod pod security context will match user:group of the builder config. Adds support for

more restrictive pod security policies.

Product Snapshot

Tanzu Build Service 1.1.3 ships with the following components:

kpack 0.2.2

kpack cli v0.2.0

CNB lifecycle v0.10.2

Stacks Operator v0.0.4

v1.1.2

Release Date: March 03, 2021

kpack controller resources updated to be more accurate and avoid limit issues.

stacks operator controller resources updated to be more accurate and avoid limit issues.

CustomResourceDefinitions migrated to apiextensions.k8s.io/v1.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 89

https://github.com/pivotal/kpack/releases/tag/v0.2.2
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.2.0
https://github.com/buildpacks/lifecycle/releases/tag/v0.10.2
https://github.com/pivotal/kpack/releases/tag/v0.2.2
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.2.0
https://github.com/buildpacks/lifecycle/releases/tag/v0.10.2

Product Snapshot

Tanzu Build Service 1.1.2 ships with the following components:

kpack 0.2.1

kpack cli v0.2.0

CNB lifecycle v0.10.2

Stacks Operator v0.0.4

v1.1.1

Release Date: February 08, 2021

1.1.1 provides a patch of 1.1.0, which fixes an install issue where relocated images locations were not

being properly written.

v1.1.0

Release Date: February 05, 2021

NOTE: v1.1.0 has an install issue which will prevent kbld from writing the correct image location.

Please use v1.1.1.

1.1.0 represents the second minor GA release of Tanzu Build Service.

This release includes a few notable new features:

Windows .NET Framework images can be built on clusters with windows nodes.

Image resources can be configured to sign images with Notary.

The kp cli can upgrade the version of the lifecycle.

Improved logging for Image builds

Display Build reason change diff

Log fetching source

More descriptive errors

This release includes the 0.2.0 release of kpack.

Image resources can be configured to sign images with Notary.

Build logs will display a diff explaining why the build was scheduled.

The lifecycle used by kpack can be updated without a controller restart.

This release includes the 0.2.0 release of kpack-cli

kp import supports v1alpha3 descriptors

kpack lifecycle image can be updated.

kp import will wait for relevant resources to resolve before exiting.

kp image list Image list can be filtered.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 90

https://github.com/pivotal/kpack/releases/tag/v0.2.1
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.2.0
https://github.com/buildpacks/lifecycle/releases/tag/v0.10.2

Product Snapshot

Tanzu Build Service 1.1.0 ships with the following components:

kpack 0.2.0

kpack cli v0.2.0

CNB lifecycle v0.10.2

[Stacks Operator v0.0.3]

Tanzu Build Service supports and utilizes Tanzu Buildpacks.

Product Dependencies

Build Service can be installed on any Kubernetes cluster (v1.16 or later).

Upgrade Path

v1.0.* can be upgraded to v1.1.*. Please follow the install process to upgrade.

VMware Tanzu Build Service 1.1 Documentation

VMware, Inc 91

https://github.com/pivotal/kpack/releases/tag/v0.2.0
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.2.0
https://github.com/buildpacks/lifecycle/releases/tag/v0.10.2
https://docs.pivotal.io/tanzu-buildpacks

