
VMware Tanzu Build
Service 1.4 Documentation

Tanzu Build Service 1.4

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Tanzu Build Service 1.4 Documentation 10

Overview 10

Build Service Concepts 10

Image Resource 10

Builder 10

ClusterStore 10

ClusterStack 10

Build Service Components 11

Build Service Dependencies 11

Buildpacks 11

Stacks 11

Descriptors 11

Updating Build Service Dependencies 11

Troubleshooting 11

TBS Release Notes 13

v1.4.3 13

New Features 13

Breaking Changes 13

Bug Fixes 13

Product Snapshot 13

Security Scanning 13

Product Dependencies 14

Upgrade Path 14

v1.4.2 14

Breaking Changes 14

Bug Fixes 14

Product Snapshot 14

Product Dependencies 15

Upgrade Path 15

v1.4.1 15

v1.4.0 15

Installing Tanzu Build Service 16

Prerequisites 16

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 3

Installing Tanzu Build Service 17

Relocate Images to a Registry 18

Installation 18

Additional Configuration 20

Upgrading Tanzu Build Service 20

Installing Tanzu Build Service (Air-Gapped) 21

Relocate Images to a Registry (Air-Gapped) 21

Installation (Air-Gapped) 22

Additional Configuration 23

Updating Build Service Dependencies (Air-gapped) 23

Upgrading Tanzu Build Service (Air-Gapped) 24

Uninstalling Tanzu Build Service 24

Ensuring Access to Cluster Builders 24

Ensuring the Run Image is Readable 24

Next Steps 25

Installing Windows Components (Beta) 25

Getting Started with Tanzu Build Service 25

Prerequisites 25

Assumptions 26

Installation 26

Relocate Images to a Registry 27

Install Tanzu Build Service 27

Verify Installation 27

Create an Image 28

Installing Tanzu Build Service without kapp controller 28

Prerequisites 28

Installing 30

Relocate Images to a Registry 30

Install Tanzu Build Service 31

Install Tanzu Build Service Public Registry 31

Installing with a CA certificate for internal registry 32

Import Tanzu Build Service Dependencies 33

Additional Configuration 34

Configuring TKGI as an OIDC Provider 35

Installation to Air-Gapped Environment 35

Relocate Images to a Registry (Air-Gapped) 35

Installing (Air-Gapped) 36

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 4

Additional Configuration 37

Import Tanzu Build Service Dependencies (Air-Gapped) 38

Relocate Tanzu Build Service Dependency Images (Air-Gapped) 38

Import Tanzu Build Service Dependency Resources (Air-Gapped) 38

Verify Installation 39

Upgrading Tanzu Build Service 39

Uninstalling Tanzu Build Service 39

Updating Build Service Dependencies 39

Ensuring Access to Cluster Builders 40

Ensuring the Run Image is Readable 40

Next Steps 40

Kubernetes Permissions for Installation 40

Accessing Tanzu Build Service 44

Updating Build Service Dependencies 45

Updating Dependencies 45

Automatically Update Dependencies 45

Bulk Update 46

Cluster Stacks Update 47

Cluster Store Update 48

Updating Buildpacks From Tanzu Network 48

Offline Update of Dependencies 49

Managing Secrets 51

Overview 51

Create Secrets 51

Create a Docker Hub Registry Secret 52

Create a GCR Registry Secret 52

Create an Artifactory, Harbor, or ACR Registry Secret 52

Create a Git SSH Secret 53

Create a Git Basic Auth Secret 54

List Secrets 54

Delete Secrets 55

Encrypting Secrets at Rest 55

Using SecretGen controller Secrets to use private cluster builders 55

When to use Synchronized Secrets 55

Installing the Carvel secret-gen-controller 55

Managing Secret Synchronization 56

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 5

Create a Synchronized Secret 56

Update a Synchronized Secret 56

Stop Synchronizing a Secret 56

Managing Image Resources and Builds 58

Image Resources 59

Creating Image Resources 59

Source Code 59

Builders 59

Creating an Image Resource With Source Code in a Git Repository 59

Create an Image Resource With Source Code In A Blob Store 60

Creating an Image Resource With Local Source Code 61

Buildpack Configuration 62

Buildpack Configuration Use Cases 62

Buildpack Configuration Documentation 62

Buildpack Configuration in Image Resources 62

Patching Image Resources 63

Saving Image Resources 64

Listing Images 65

Filter Image Resources 65

Image Resource Rebuilds 65

Trigger an Image Resource Rebuild 66

Viewing the Status of an Image Resource 66

Deleting an Image Resource 67

Managing Image Resources with YAML 67

Image Resource Additional Tags 67

Using a registry for caching 67

Using Secrets 67

Debugging with Image Resource Status 68

Image Resource Service Bindings 68

Creating an Image Resource with Service Bindings 68

Builds 69

Listing Builds 70

Viewing Build Details for an Image 70

Image Resource Status shows ImagePullBackOff 72

Getting Build Logs 72

Viewing Bill of Materials 74

Offline Builds 75

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 6

Image Signing with cosign 75

Cosign Signing Secret 75

Adding Cosign Annotations 76

Push Cosign Signature to a Different Location 76

Cosign Legacy Docker Media Types 77

Managing ClusterStacks 78

Create a ClusterStack 79

Update a ClusterStack 79

Save a ClusterStack 80

Get ClusterStack Status 80

Delete a ClusterStack 80

List all ClusterStacks 81

How to update an Image for Stack updates only? 81

Managing Stores 82

Creating Buildpacks and Buildpackages 82

Listing ClusterStores 83

Creating a ClusterStore 83

Saving a ClusterStore 83

Adding Buildpackages to a ClusterStore 83

Adding Buildpackages to a ClusterStore from Tanzu Network 84

Offline Adding Buildpackages to a ClusterStore from Tanzu Network 84

Removing Buildpackages from a ClusterStore 85

Get ClusterStore Status 85

Migrating Buildpacks 86

Corresponding kpack Resource 87

Descriptors 88

About descriptors 88

Lite descriptor 88

Full descriptor 88

Descriptor comparison 88

Managing Builders 90

Creating a Builder 91

Patching a Builder 92

Saving Builders 93

Deleting Builders 94

Retrieving Builder Details 94

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 7

Listing Builders 95

Corresponding kpack Resources 95

Pinning Buildpack versions 95

Update Lifecycle 96

Managing Custom Stacks 97

Creating a CustomStack 97

Source Configuration 98

Destination Configuration 98

Example CustomStack from Registry Images 98

Example CustomStack from ClusterStack 100

Debugging CustomStacks 101

RBAC in Tanzu Build Service 102

RBAC using Projects Operator 102

RBAC Support in Tanzu Build Service 102

Build Service User Role 102

Build Service Admin Role 103

Using Tanzu Build Service in CI 104

Example: Using Tanzu Build Service in CI/CD 104

Frequently Asked Questions 110

How do Cloud Native Buildpacks (CNBs), kpack, and Tanzu Build Service overlap
and differ?

110

Why do I see two images in the image registry after a successful build? 110

How does TBS work in air gapped environments? 110

Is there documentation on supported Tanzu Buildpacks? 111

Why do I get an X509 error from Build Service when trying to create an image in
my registry?

111

How do I configure a secret to publish images to Dockerhub? 111

How can I configure an image resource to pull from a private GitHub repository? 111

Why do some builds fail with "Error: could not read run image: *"? 111

Why don't my image builds appear in my Harbor v1.X.X registry? 112

How do I fix "unsupported status code 500" when creating a builder on my
Harbor v2.X.X registry?

112

How do I configure credentials for using gcr as my installation registry? 112

Can I configure a proxy for my Tanzu Build Service? 112

How do I build my app locally using kpack builders? 113

What can I do with the kp --dry-run and --output flags? 113

Does TBS support Azure Devops for git repositories 114

Why do I get a "repository does not exist" error when I use ECR Registry? 114

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 8

How do I troubleshoot a failed build? 115

How do I troubleshoot an UNAUTHENTICATED error? 115

Why does TBS leave behind pods after builds on my Cluster? 116

How do I check what version of TBS I am using? 116

How does TBS use windows-based images? 116

What is the relationship between a kpack image resource and an OCI image? 116

Pinning the Tanzu Net Updater 117

Additional resources for Tanzu Build Service 118

Concourse Kpack resource 118

Helpful Articles 118

Helpful Videos 118

Helpful Repositories 118

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 9

Tanzu Build Service 1.4 Documentation

This topic provides an overview of Tanzu Build Service.

Overview

Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application source

code into container images. Build Service executes reproducible builds that align with modern

container standards, and additionally keeps image resources up-to-date. It does so by leveraging

Kubernetes infrastructure with kpack, a Cloud Native Buildpacks Platform, to orchestrate the image

lifecycle. The kpack CLI tool, kp can aid in managing kpack resources.

Build Service helps you develop and automate containerized software workflows securely and at

scale.

Build Service Concepts

Build Service reduces operational overhead and improves security by automating the building of

application images. It relies on Image, Builder, ClusterStore and ClusterStack to achieve these

results.

Image Resource

An Image resource defines the source of the application, build time environment and registry

destination. This source code could reside in git, a blobstore, or as code on a workstation.

For more information see the Managing Images and Builds page.

Builder

A Builder references the Stack and Buildpacks that are used in the process of building source code.

They "provide" the Buildpacks that run against the application and the OS images upon which the

application is built and run.

For more information see the Managing Builders page.

ClusterStore

A ClusterStore serves as a repository for Cloud Native Buildpacks available for use in Builders. One

can populate a store with Buildpacks they create and package.

For more information see the Managing ClusterStores page.

ClusterStack

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 10

https://buildpacks.io
https://github.com/opencontainers/image-spec/blob/master/spec.md
https://github.com/pivotal/kpack
https://buildpacks.io/docs/buildpack-author-guide/create-buildpack/
https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack

A ClusterStack defines a pair of build and run OS images. Critical security vulnerabilities are

addressed by building apps on the most up-to date stack. The stacks used by Build Service to build

applications are referenced in the Builders.

For more information see the Managing ClusterStacks page.

Build Service Components

Tanzu Build Service ships with the following components:

kpack

kpack CLI (kp)

CNB lifecycle

Build Service Dependencies

Buildpacks

Tanzu Build Service utilize Tanzu Buildpacks.

Stacks

Stack Documentation is available on the Tanzu Buildpacks documentation.

The following Stacks and their updates can be found on the Tanzu Build Service Dependencies

page.

Name ID

tiny io.paketo.stacks.tiny

base io.buildpacks.stacks.bionic

full io.buildpacks.stacks.bionic

Descriptors

Tanzu Build Service descriptors are curated sets of dependencies, including stacks and buildpacks,

that are continuously released on VMware Tanzu Network to resolve all workload Critical and High

CVEs. Descriptors are imported into Tanzu Build Service to update the entire cluster.

There are two types of descriptor, lite and full. The different descriptors can apply to different use

cases and workload types. You can configure which descriptor is imported when installing Tanzu

Build Service.

For more information, see Descriptors.

Updating Build Service Dependencies

Build Service allows the user to update Buildpacks and Stacks via the kp CLI. You can learn more

about updating Build Service dependencies here.

Troubleshooting

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 11

https://github.com/pivotal/kpack
https://github.com/vmware-tanzu/kpack-cli
https://github.com/buildpacks/lifecycle
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html
https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/

For troubleshooting failed builds, check the FAQ section of our docs.

If you are unable to resolve your problem, please contact Tanzu VMware Support.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 12

https://tanzu.vmware.com/support

TBS Release Notes

v1.4.3

Release Date: March, 04, 2022

New Features

Bump kpack to use lifecycle 0.13.3 which adds support for bom entries in the

io.buildpacks.build.metadata image label in Buildpack API 0.7 in addition to the existing

sbom layer formats which establishes a migration path.

When dependency updates are paused, the pinned descriptor version is 100.0.267

Breaking Changes

None

Bug Fixes

Full windows functionality has been restored

The restricted pod security standard is now applied to all build pods which could previously

violate security policies

When deploying with kapp controller, the deployment will no longer reconcile diffs

indefinitely

Certs are now correctly verified by the TanzuNetDependencyUpdater when using a private

registry

Product Snapshot

Tanzu Build Service 1.4.3 ships with the following components:

kpack 0.5.1

kpack cli v0.4.2

CNB lifecycle v0.13.3

Tanzu Build Service supports and utilizes Tanzu Buildpacks.

Security Scanning

This section provides context for the CVEs that may show up in security scans of TBS

github.com/containerd/containerd | CVE-2021-43816 | CRITICAL

Containerd is not used as a container runtime in TBS code and therefore never

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 13

https://network.pivotal.io/products/tbs-dependencies#/releases/1053790
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://github.com/pivotal/kpack/releases/tag/v0.5.1
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.4.2
https://github.com/buildpacks/lifecycle/releases/tag/v0.13.3
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://avd.aquasec.com/nvd/2021/cve-2021-43816/

interacts with volume mounts at all

org.apache.logging.log4j:log4j-core | CVE-2021-44228 | CRITICAL

org.apache.logging.log4j:log4j-core | CVE-2021-45105 | HIGH

These CVEs have been patched, however show up in some scans of TBS

dependencies such as builders or the Java & Node.js buildpacks. Scanners report

these up because some log4j files provided by third-party vendors have been

patched but have maintained the same file name which the scanners assume are

vulnerable.

Product Dependencies

Build Service can be installed on any Kubernetes cluster (v1.19 or later).

Upgrade Path

v1.3.* can be upgraded to v1.4.*. Please follow the install process to upgrade.

v1.4.2

Release Date: January, 11, 2022

This release includes a few notable new features:

TBS can now import a "full" or "lite" descriptor which will use different sets of buildpacks for

different use cases. See intallation for more details.

The mechanism to sync secrets to build namespaces has changed. Users should now

leverage the Carvel secretgen-controller for copying secrets to build namespaces. See the

Secret Synchronization page for more defails.

Breaking Changes

Installation steps have changed slightly. Some flags have changed and you must specify a

descriptor name as part of installation. See intallation for more details.

Secrets copied to Build namespaces using the old secret-syncing mechanism will be cleaned

up. Only copies of secrets will be deleted, original secrets with the

com.vmware.tanzu.buildservice.sync: "true" label will not be deleted.

Bug Fixes

Fix http(s) proxy support with git using HTTP_PROXY, HTTPS_PROXY, and NO_PROXY

env vars

Product Snapshot

Tanzu Build Service 1.4.2 ships with the following components:

kpack 0.5.0

kpack cli v0.4.2

CNB lifecycle v0.13.2

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 14

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45105
https://github.com/pivotal/kpack/releases/tag/v0.5.0
https://github.com/vmware-tanzu/kpack-cli/releases/tag/v0.4.2
https://github.com/buildpacks/lifecycle/releases/tag/v0.13.2

Tanzu Build Service supports and utilizes Tanzu Buildpacks.

Product Dependencies

Build Service can be installed on any Kubernetes cluster (v1.19 or later).

Upgrade Path

v1.3.* can be upgraded to v1.4.*. Please follow the install process to upgrade.

v1.4.1

TBS version 1.4.1 has been skipped, please use 1.4.2 or later.

v1.4.0

TBS version 1.4.0 has been skipped, please use 1.4.2 or later.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 15

https://docs.pivotal.io/tanzu-buildpacks

Installing Tanzu Build Service

This topic describes how to install and configure Tanzu Build Service.

We recommend installing TBS with the Tanzu CLI and kapp controller. If you want to view the

previous method of installation, see Installing without kapp controller.

Reasons to use the previous installation method include:

You do not want to install kapp controller on your cluster

You want to make custom changes to the TBS installation via ytt templating or overlays

Prerequisites

Before you install Build Service, you must:

Be on Kubernetes cluster v1.19 or later

Ensure that all worker nodes have at least 50 GB of ephemeral storage allocated to them.

To do this on TKGs, mount a 50GB volume at /var/lib/containerd to the worker

nodes in the TanzuKubernetesCluster resource that corresponds to your TKGs

cluster. These instructions show how to configure storage on worker nodes.

Have access to a container registry to install Tanzu Build Service and store the application

images that will be created.

Although the documentation references specific registries for the purpose of

providing examples, any registry that adheres to the Docker Registry HTTP API V2 is

supported

If installing using the lite descriptor, 1GB of registry storage is recommended

If installing using the full descriptor, which is intended for production use and offline

environments, 10 GB of available storage is recommended

This registry space suggestion does not include the space that will be used for

application images built by TBS

Ensure your Kubernetes cluster is configured with a default StorageClass. Tanzu Build

Service will default to using 2G of cache if a default StorageClass is defined. Build Service

utilizes PersistentVolumeClaims to cache build artifacts, which reduces the time of

subsequent builds.

For more information, see Persistent Volumes in the Kubernetes documentation. And for

information on defining a default StorageClass, see Changing the default StorageClass

Download Carvel imgpkg. Version 0.12.0 or higher is required.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 16

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-B1034373-8C38-4FE2-9517-345BF7271A1E.html#cluster-with-separate-disks-and-storage-parameters-1
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://network.tanzu.vmware.com/products/imgpkg/

Download and install the Tanzu CLI.

Only the package and secret plug-ins are required.

Install Carvel kapp controller and secret gen controller on your cluster.

Navigate to the following pages in Tanzu Network and accept all EULAs highlighted in yellow.

Tanzu Build Service

Tanzu Build Service Dependencies

Buildpacks for VMware Tanzu

Stacks for VMware Tanzu

Find the latest Tanzu Build Service version by checking the Tanzu Build Service page on

Tanzu Network. Just knowing the version is sufficient.

Download the kp CLI for your operating system from the Tanzu Build Service page on Tanzu

Network. The kp CLI help text is published here.

These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not working,

you may need to upgrade your cli.

Download the docker CLI to authenticate with registries.

Installing Tanzu Build Service

1. Set up environment variables for use during the installation.

export INSTALL_REGISTRY_HOSTNAME=<IMAGE-REGISTRY>

export INSTALL_REPOSITORY=<IMAGE-REPOSITORY>

export INSTALL_REGISTRY_USERNAME=<REGISTRY-USERNAME>

export INSTALL_REGISTRY_PASSWORD=<REGISTRY-PASSWORD>

export TANZUNET_REGISTRY_USERNAME=<TANZUNET_REGISTRY_USERNAME>

export TANZUNET_REGISTRY_PASSWORD=<TANZUNET_REGISTRY_PASSWORD>

export TBS_VERSION=<LATEST-TBS-VERSION>

Where:

IMAGE-REGISTRY is the hostname of the registry that will be used.

IMAGE-REPOSITORY is the repository in your registry that you want to relocate images to.

Dockerhub has the form my-dockerhub-username/build-service or

index.docker.io/my-dockerhub-username/build-service

gcr.io has the form gcr.io/my-project/build-service

Harbor has the form my-harbor.io/my-project/build-service

Note: Clusters running with Containerd 1.4.1, 1.5.6, and 1.5.7 are not compatible with

TBS. Notably, TKG 1.2.1 and TKGi 1.13.0 & 1.13.1 use these versions of Containerd, a

different version must be used.

Note: TKGs clusters running Kubernetes 1.20.0-1.20.6 are not compatible with TBS.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 17

https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-tanzu-cli.html
https://carvel.dev/kapp-controller/docs/latest/install/
https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/install.md
https://network.tanzu.vmware.com/products/build-service/
https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tanzu-buildpacks-suite
https://network.tanzu.vmware.com/products/tanzu-stacks-suite
https://network.tanzu.vmware.com/products/build-service/
https://network.tanzu.vmware.com/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md

REGISTRY-USERNAME is the username of the registry that will be used. You should be able to

docker push to IMAGE-REPOSITORY with this credential. gcr.io expects _json_key.

REGISTRY-PASSWORD is the password of the registry that will be used. You should be able to

docker push to IMAGE-REPOSITORY with this credential.

TANZUNET_REGISTRY_USERNAME is the username you use to access TanzuNet.

TANZUNET_REGISTRY_PASSWORD is the password you use to access TanzuNet.

For Google Cloud Registry, use the contents of the service account JSON key.

LATEST-TBS-VERSION is from the Tanzu Network Release page.

Relocate Images to a Registry

This procedure relocates images from the Tanzu Network registry to an internal image registry via a

local machine.

The local machine must have write access to the install registry.

1. Log in to the Tanzu Network registry with your Tanzu Network credentials

(TANZUNET_REGISTRY_USERNAME & TANZUNET_REGISTRY_PASSWORD):

docker login registry.tanzu.vmware.com

1. Log in to the image registry where you want to store the images by running:

docker login ${INSTALL_REGISTRY_HOSTNAME}

1. Copy the Tanzu Build Service package repository to your registry with the Carvel tool imgpkg

by running:

imgpkg copy -b registry.tanzu.vmware.com/build-service/package-repo:$TBS_VERSION --to-

repo=${INSTALL_REPOSITORY}

For example:

Dockerhub imgpkg copy -b registry.tanzu.vmware.com/build-service/package-

repo:$TBS_VERSION --to-repo=my-dockerhub-account/build-service

GCR imgpkg copy -b registry.tanzu.vmware.com/build-service/package-

repo:$TBS_VERSION --to-repo=gcr.io/my-project/build-service

Artifactory imgpkg copy -b registry.tanzu.vmware.com/build-service/package-

repo:$TBS_VERSION --to-repo=artifactory.com/my-project/build-service

Harbor imgpkg copy -b registry.tanzu.vmware.com/build-service/package-

repo:$TBS_VERSION --to-repo=harbor.io/my-project/build-service

Installation

1. Create a namespace called tbs-install for deploying the package by running:

kubectl create ns tbs-install

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 18

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com
https://network.pivotal.io/products/build-service/
https://carvel.dev/

This namespace keeps the installation objects grouped together logically.

1. Create a secret to pull in the package repository:

tanzu secret registry add tbs-install-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tbs-install

2. Add the Tanzu Build Service package repository to the cluster by running:

tanzu package repository add tbs-repository \

 --url "${INSTALL_REPOSITORY}:${TBS_VERSION}" \

 --namespace tbs-install

1. You should be able to get the status of the package repository, and ensure the status

updates to Reconcile succeeded by running:

tanzu package repository get tbs-repository --namespace tbs-install

1. Create a tbs-values.yml file by using the following sample as a guide. This file should be

kept for future use.

kp_default_repository: <INSTALL_REPOSITORY>

kp_default_repository_username: <INSTALL_REGISTRY_USERNAME>

kp_default_repository_password: <INSTALL_REGISTRY_PASSWORD>

pull_from_kp_default_repo: true

tanzunet_username: <TANZUNET_REGISTRY_USERNAME>

tanzunet_password: <TANZUNET_REGISTRY_PASSWORD>

descriptor_name: <DESCRIPTOR-NAME>

enable_automatic_dependency_updates: true

ca_cert_data: <CA_CERT_CONTENTS> (optional)

Where:

INSTALL_REPOSITORY is a writable repository in your registry. Tanzu Build Service

dependencies are written to this location. Same value as used during relocation.

INSTALL_REGISTRY_USERNAME is the registry username. Same value as used during

relocation.

INSTALL_REGISTRY_PASSWORD is the registry password. Same value as used during

relocation.

TANZUNET_REGISTRY_USERNAME is used to pull dependencies from tanzu network.

Same value used during relocation

TANZUNET_REGISTRY_PASSWORD is used to pull dependencies from tanzu network.

Same value used during relocation

DESCRIPTOR-NAME is the name of the descriptor to import automatically. For more

information about which descriptor to choose for your workload and use case, see

Descriptors. Available options:

full contains all dependencies.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 19

lite smaller footprint used for speeding up installs. Requires Internet access

on the cluster.

CA_CERT_CONTENTS must be provided when using registry that is signed by a Custom

Cert. This should be the value of the PEM-encoded CA certificate.

Additional Configuration

Additional fields can be added to tbs-values.yml:

admin_users is a comma separated list of users who will be granted admin privileges on Build

Service.

admin_groups: a comma separated list of groups that will be granted admin privileges on

Build Service.

http_proxy: The HTTP proxy to use for network traffic.

https_proxy: The HTTPS proxy to use for network traffic.

no_proxy: A comma-separated list of hostnames, IP addresses, or IP ranges in CIDR format

that should not use a proxy.

You can see the full values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/$TBS_VERSION --values-schema

 --namespace tbs-install

1. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v $TBS_VERSION -n tbs-inst

all -f tbs-values.yml --poll-timeout 30m

Upgrading Tanzu Build Service

To upgrade Tanzu Build Service to a newer version, run the following steps.

1. Relocate the new package repository:

imgpkg copy -b registry.tanzu.vmware.com/build-service/package-repo:$NEW_TBS_VERSION -

-to-repo=${INSTALL_REPOSITORY}

1. Add the Tanzu Build Service package repository to the cluster by running:

tanzu package repository add tbs-repository \

 --url "${INSTALL_REPOSITORY}:${NEW_TBS_VERSION}" \

Note: >**Note:** Installing with Tanzu Network credentials automatically relocates

buildpack dependencies to your registry. This install process can take some time and

the `--poll-timeout` flag increases the timeout duration. Using the `lite` descriptor

speeds this up significantly. If the command times out, periodically run the installation

verification step provided in the following optional step. Image relocation continues in

the background.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 20

 --namespace tbs-install

1. Install the package with the same tbs-values.yml file used during initial installation by

running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v $NEW_TBS_VERSION -n tbs-

install -f tbs-values.yml --poll-timeout 30m

Installing Tanzu Build Service (Air-Gapped)

Tanzu Build Service can be installed to a Kubernetes Cluster and registry that are air-gapped from

external traffic.

An air-gapped environment will often use an internal registry with a self-signed CA certificate and

you will need access to this CA certificate file to install TBS.

1. Set up environment variables for use during the installation.

export INSTALL_REGISTRY_HOSTNAME=<IMAGE-REGISTRY>

export INSTALL_REPOSITORY=<IMAGE-REPOSITORY>

export INSTALL_REGISTRY_USERNAME=<REGISTRY-USERNAME>

export INSTALL_REGISTRY_PASSWORD=<REGISTRY-PASSWORD>

export TBS_VERSION=<LATEST-TBS-VERSION>

Where:

IMAGE-REGISTRY is the hostname of the private registry that will be used.

IMAGE-REPOSITORY is the repository in your registry that you want to relocate images to.

Harbor has the form my-harbor.io/my-project/build-service

REGISTRY-USERNAME is the username of the private registry that will be used. You should be

able to docker push to IMAGE-REPOSITORY with this credential.

REGISTRY-PASSWORD is the password of the private registry that will be used. You should be

able to docker push to IMAGE-REPOSITORY with this credential.

LATEST-TBS-VERSION is from the Tanzu Network Release page.

Relocate Images to a Registry (Air-Gapped)

This procedure relocates images from the Tanzu Network registry to an internal image registry via

local machine(s).

1. Log in to the Tanzu Network registry with your Tanzu Network credentials:

Note: If you are using a CA certificate that is trusted (eg. Lets Encrypt) you will not

need the CA certificate file.

Note:The IMAGE-REPOSITORY must be the IMAGE-REGISTRY appended with the

destination repository for the images. For example, IMAGE-REGISTRY/some-

repo/build-service.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 21

https://network.pivotal.io/products/build-service/

docker login registry.tanzu.vmware.com

1. Copy the Tanzu Build Service package repository to your local machine as a tar with the

Carvel tool imgpkg by running:

imgpkg copy -b registry.tanzu.vmware.com/build-service/package-repo:$TBS_VERSION --to-

tar=/tmp/tanzu-build-service.tar

1. Move the output file tanzu-build-service.tar to a machine that has access to the air-

gapped environment. The machine must have write access to the internal registry.

2. Log in to the image registry where you want to store the images by running:

docker login ${INSTALL_REGISTRY_HOSTNAME}

1. Copy the images from your local machine to the internal registry:

imgpkg copy --tar /tmp/tanzu-build-service.tar \

 --to-repo=${INSTALL_REPOSITORY} \

 --registry-ca-cert-path <PATH-TO-CA>

Where:

PATH-TO-CA is the path to the registry CA certificate file.

For example:

Artifactory imgpkg copy --tar /tmp/tanzu-build-service.tar --to-

repo=artifactory.com/my-project/build-service --registry-ca-cert-path ca.crt

Harbor imgpkg copy --tar /tmp/tanzu-build-service.tar --to-repo=harbor.io/my-

project/build-service --registry-ca-cert-path ca.crt

Installation (Air-Gapped)

1. Create a namespace called tbs-install for deploying the package by running:

kubectl create ns tbs-install

This namespace keeps the installation objects grouped together logically.

1. Add the Tanzu Build Service package repository to the cluster by running:

tanzu package repository add tbs-repository \

 --url "${IMAGE-REPOSITORY}:${TBS_VERSION}" \

 --namespace tbs-install

1. You should be able to get the status of the package repository, and ensure the status

updates to Reconcile succeeded by running:

tanzu package repository get tbs-repository --namespace tbs-install

1. Create a tbs-values.yml file by using the following sample as a guide. This file should be

kept for future use.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 22

https://carvel.dev/

kp_default_repository: $INSTALL_REPOSITORY

kp_default_repository_username: $INSTALL_REGISTRY_USERNAME

kp_default_repository_password: $INSTALL_REGISTRY_PASSWORD

pull_from_kp_default_repo: true

ca_cert_data: <CA_CERT_CONTENTS>

Where:

INSTALL_REPOSITORY is a writable repository in your internal registry. Tanzu Build Service

dependencies are written to this location. Same value as used during relocation.

INSTALL_REGISTRY_USERNAME is the internal registry username. Same value as used during

relocation.

INSTALL_REGISTRY_PASSWORD is the internal registry password. Same value as used during

relocation.

CA_CERT_CONTENTS must be provided when using registry that is signed by a Custom Cert.

This should be the value of the PEM-encoded CA certificate.

Additional Configuration

Additional fields can be added to tbs-values.yml.

admin_users is a comma separated list of users who will be granted admin privileges on Build

Service.

admin_groups: a comma separated list of groups that will be granted admin privileges on

Build Service.

http_proxy: The HTTP proxy to use for network traffic.

https_proxy: The HTTPS proxy to use for network traffic.

no_proxy: A comma-separated list of hostnames, IP addresses, or IP ranges in CIDR format

that should not use a proxy.

You can see the full values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/$TBS_VERSION --values-schema

 --namespace tbs-install

1. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v $TBS_VERSION -n tbs-inst

all -f tbs-values.yml

Updating Build Service Dependencies (Air-gapped)

When running in an air-gapped environment, TBS cannot pull dependencies automatically from

external internet. Therefore, dependencies must be imported manually as a part of installation for

TBS to work.

More, TBS dependencies must be kept up to date manually or in a CI/CD automated way in order to

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 23

keep application images patched. To learn more about keeping dependencies up-to-date in an

offline environment, see Updating Build Service Dependencies

Upgrading Tanzu Build Service (Air-Gapped)

1. To upgrade Tanzu Build Service to a newer version in an air-gapped environment, the same

relocation steps listed here must be followed with a new TBS_VERSION.

2. Then the same installation steps can be followed using the same tbs-values.yml file used for

initial installation.

Re-importing dependencies is not required for upgrading TBS.

Uninstalling Tanzu Build Service

To uninstall Tanzu Build Service, uninstall the package using the tanzu cli:

tanzu package installed delete tbs -n tbs-install -y

To delete the Tanzu Build Service package repository:

tanzu package repository delete tbs-repository --namespace tbs-install

Ensuring Access to Cluster Builders

In order to use Cluster Builders, such as the ones installed with Tanzu Build Service, we suggest to

install Tanzu Build Service to a repository that is accessible by the nodes in the kubernetes cluster

without credentials.

If this is not desired, see When to use Synchronized Secrets.

Ensuring the Run Image is Readable

Build Service relies on the run-image being publicly readable or readable with the registry

credentials configured in a project/namespace for the builds to be executed successfully.

The location of the run image can be identified by running the following command:

kp clusterstack status <stack-name>

If the cluster stack run image is not public, you may need to create a registry secret in any

namespace where Images or Builds will be used. For more details on secrets in Tanzu Build Service,

see Managing Secrets

This can be done with the kp CLI:

kp secret create my-registry-creds --registry example-registry.io --registry-user my-r

egistry-user --namespace build-namespace

Note: All Tanzu Build Service resources will be deleted. Registry images created by

TBS will not be deleted.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 24

Next Steps

Visit the Managing Images and Builds page to learn how to create and manage a new image.

Installing Windows Components (Beta)

This beta feature receives full VMware support.

Tanzu Build Service supports building .NET Framework application images. Building .NET

Framework images will require a Kubernetes Cluster with windows nodes provisioned.

After the windows nodes are provisioned, the Tanzu Build Service Windows Dependencies (Stacks,

Buildpacks, Builders, etc.) can be used to build .NET Framework applications and keep them

patched. These must be imported with the kp cli and the Dependency Descriptor (windows-

descriptor-<version>.yaml) file from the Tanzu Build Service Dependencies for Microsoft Windows

page:

kp import -f /tmp/windows-descriptor-<version>.yaml

The following features are not yet supported on windows nodes of Tanzu Build Service

Caching of build artifacts (which reduces the time of subsequent builds)

Preloading of ClusterBuilder images

Self-signed registry certificate

Getting Started with Tanzu Build Service

This topic describes how to get started with a typical installation of Tanzu Build Service and create an

Image.

This page is meant to serve as a quick-start guide and may not include some configurations required

for your specific environment. For more details on installation, see Installing Tanzu Build Service.

Prerequisites

Before you install Build Service, you must:

Have access to the Kubernetes cluster satisfying the minimum required permissions.

Users must navigate to the following dependencies pages in Tanzu Network and accept all

EULAs highlighted in yellow.

Important: This feature is in beta because of its limitations. Beta features might

undergo changes before the end of the beta stage.

Note: TBS on Windows does not currently support self-signed registry certificates.

Please use a public registry or a non-self-signed cert.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 25

https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework
https://network.tanzu.vmware.com/products/tbs-dependencies-windows/
https://network.tanzu.vmware.com/products/tbs-dependencies/

1. Tanzu Build Service Dependencies

2. Buildpacks for VMware Tanzu

3. Stacks for VMware Tanzu

Ensure your Kubernetes cluster is configured with default StorageClass. Tanzu Build Service

will default to using 2G of cache if a default StorageClass is defined. Build Service utilizes

PersistentVolumeClaims to cache build artifacts, which reduces the time of subsequent

builds.

For more information, see Persistent Volumes in the Kubernetes documentation. And for

information on defining a default StorageClass, see Changing the default StorageClass

Download three Carvel CLIs for your operating system. These tools will facilitate the

installation of Tanzu Build Service on your cluster. They can be found on their respective

Tanzu Network pages:

kapp is a deployment tool that allows users to manage Kubernetes resources in bulk.

ytt is a templating tool that understands YAML structure. Version 0.35.0 or higher is

required.

kbld is needed to map relocated images to k8s config.

imgpkg is tool that relocates container images and pulls the release configuration

files. Version 0.12.0 or higher is required.

Find the latest Tanzu Build Service version by checking the Tanzu Build Service page on

Tanzu Network. Just knowing the version is sufficient.

Download the kp CLI for your operating system from the Tanzu Build Service page on Tanzu

Network. The kp CLI help text is published here.

These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not working,

you may need to upgrade your cli.

Assumptions

For this example setup, we will make the following assumptions:

You are installing TBS 1.4.2 (This is the latest version at the time of writing. Go to the Tanzu

Build Service page to find the most up-to-date version).

You are using a registry named my.registry.io with credentials

Username: my-user

Password: my-password

Your registry uses a self-signed CA certificate and you have access to the cert in a file

/tmp/ca.crt

The nodes on your cluster must also be configured to trust this CA certificate so they

can pull in images. Configuration for this depends on the cluster provider

You are using an "online" environment that has access to the internet

Installation

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 26

https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tanzu-buildpacks-suite
https://network.tanzu.vmware.com/products/tanzu-stacks-suite
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://carvel.dev/
https://network.tanzu.vmware.com/products/kapp/
https://network.tanzu.vmware.com/products/ytt/
https://network.tanzu.vmware.com/products/kbld/
https://network.tanzu.vmware.com/products/imgpkg/
https://network.tanzu.vmware.com/products/build-service/
https://network.tanzu.vmware.com/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md
https://network.tanzu.vmware.com/products/build-service/

Relocate Images to a Registry

This procedure relocates images from the Tanzu Network registry to your registry.

1. Log in to your image registry:

docker login my.registry.io --tlscacert /tmp/ca.crt

2. Log in to the Tanzu Network registry with your Tanzu Network credentials:

docker login registry.tanzu.vmware.com

3. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy -b "registry.tanzu.vmware.com/build-service/bundle:1.4.2" --to-repo my.reg

istry.io/some-repo/tbs --registry-ca-cert-path /tmp/ca.crt

4. Pull the Tanzu Build Service bundle locally using imgpkg:

imgpkg pull -b "my.registry.io/tbs:1.4.2" -o /tmp/bundle

Install Tanzu Build Service

Use the Carvel tools kapp, ytt, and kbld to install Build Service and define the required Build Service

parameters by running:

ytt -f /tmp/bundle/config/ \

 - f / t m p / c a . c r t \

 -v kp_default_repository='my.registry.io/tbs' \

 -v kp_default_repository_username='my-user' \

 -v kp_default_repository_password='my-password' \

 --data-value-yaml pull_from_kp_default_repo=true \

 -v tanzunet_username='tanzunet-username' \

 -v tanzunet_password='tanzunet-password' \

 - v d e s c r i p t o r _ n a m e = ' l i t e ' \

 --data-value-yaml enable_automatic_dependency_updates=true \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Verify Installation

To verify your Build Service installation:

List the cluster builders available in your installation:

kp clusterbuilder list

You should see an output that looks as follows:

NAME READY STACK IMAGE

base true io.buildpacks.stacks.bionic <image@sha256:digest>

default true io.buildpacks.stacks.bionic <image@sha256:digest>

full true io.buildpacks.stacks.bionic <image@sha256:digest>

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 27

https://carvel.dev/
https://carvel.dev/

tiny true io.paketo.stacks.tiny <image@sha256:digest>

Create an Image

You can now create a Tanzu Build Service Image to start building you app and keep it patched with

the latest Stack and Buildpack Dependencies.

We will assume you are using the default namespace, use -n when using kp to set a specific

namespace.

1. Create a Kubernetes Secret that will allow your Builds to push to the desired registry with the

kp cli:

kp secret create my-registry-creds --registry my.registry.io --registry-user my-user

You will be prompted for your password (my-password).

2. Create the Tanzu Build Service Image:

We will use a sample java-maven app:

kp image create my-image --tag my.registry.io/tbs/test-app --git https://github.com/bu

ildpacks/samples --sub-path ./apps/java-maven --wait

Installing Tanzu Build Service without kapp controller

This topic describes the method of installing Tanzu Build Service without kapp controller. The

recommended method uses the tanzu cli and kapp controller and can be found here.

Reasons to use the previous installation method include:

You do not want to install kapp controller on your cluster

You want to make custom changes to the TBS installation via ytt templating or overlays

Prerequisites

Before you install Build Service, you must:

Be on Kubernetes cluster v1.19 or later

Have access to the Kubernetes cluster satisfying the minimum required permissions.

Ensure that all worker nodes have at least 50 GB of ephemeral storage allocated to them.

To do this on TKGs, mount a 50GB volume at /var/lib/containerd to the worker

nodes in the TanzuKubernetesCluster resource that corresponds to your TKGs

cluster. These instructions show how to configure storage on worker nodes.

Have access to a container registry to install Tanzu Build Service and store the application

images that will be created.

Although the documentation references specific registries for the purpose of

providing examples, any registry that adheres to the Docker Registry HTTP API V2 is

supported

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 28

https://github.com/buildpacks/samples/tree/098946cf3d9ce2d6b42d6b33a12b0799b288f873/apps/java-maven
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-B1034373-8C38-4FE2-9517-345BF7271A1E.html#cluster-with-separate-disks-and-storage-parameters-1

If installing using the lite descriptor, 1GB of registry storage is recommended

If installing using the full descriptor, which is intended for production use and offline

environments, 10 GB of available storage is recommended

This registry space suggestion does not include the space that will be used for

application images built by TBS

Ensure your Kubernetes cluster is configured with default StorageClass. Tanzu Build Service

will default to using 2G of cache if a default StorageClass is defined. Build Service utilizes

PersistentVolumeClaims to cache build artifacts, which reduces the time of subsequent

builds.

For more information, see Persistent Volumes in the Kubernetes documentation. And for

information on defining a default StorageClass, see Changing the default StorageClass

Download four Carvel CLIs for your operating system. These tools will facilitate the installation

of Tanzu Build Service on your cluster. They can be found on their respective Tanzu Network

pages:

kapp is a deployment tool that allows users to manage Kubernetes resources in bulk.

ytt is a templating tool that understands YAML structure.

kbld is needed to map relocated images to k8s config.

imgpkg is tool that relocates container images and pulls the release configuration

files. Note: imgpkg 0.12.0 or higher is required for installation. If it is not available on

TanzuNet, it can be found here

Navigate to the following pages in Tanzu Network and accept all EULAs highlighted in yellow.

Tanzu Build Service

Tanzu Build Service Dependencies

Buildpacks for VMware Tanzu

Stacks for VMware Tanzu

Find the latest Tanzu Build Service version by checking the Tanzu Build Service page on

Tanzu Network. Just knowing the version is sufficient.

Download the kp CLI for your operating system from the Tanzu Build Service page on Tanzu

Network. The kp CLI help text is published here.

These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not working,

you may need to upgrade your cli.

Download the docker CLI to authenticate with registries.

Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network. This file contains

paths to images that contain dependency resources Tanzu Build Service needs to execute

image builds.

Note: Clusters running with Containerd 1.4.1, 1.5.6, and 1.5.7 are not compatible with

TBS. Notably, TKG 1.2.1 and TKGi 1.13.0 & 1.13.1 use these versions of Containerd, a

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 29

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://carvel.dev/
https://network.tanzu.vmware.com/products/kapp/
https://network.tanzu.vmware.com/products/ytt/
https://network.tanzu.vmware.com/products/kbld/
https://network.tanzu.vmware.com/products/imgpkg/
https://network.tanzu.vmware.com/products/imgpkg/
https://github.com/vmware-tanzu/carvel-imgpkg/releases
https://network.tanzu.vmware.com/products/build-service/
https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tanzu-buildpacks-suite
https://network.tanzu.vmware.com/products/tanzu-stacks-suite
https://network.tanzu.vmware.com/products/build-service/
https://network.tanzu.vmware.com/products/build-service/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md
https://network.tanzu.vmware.com/products/tbs-dependencies/

Installing

Create a kubernetes cluster where you would like to install build service and target the cluster as

follows:

kubectl config use-context <CONTEXT-NAME>

Relocate Images to a Registry

This procedure relocates images from the Tanzu Network registry to an internal image registry.

1. Log in to the image registry where you want to store the images by running:

docker login <IMAGE-REGISTRY>

Where IMAGE-REGISTRY is the name of the image registry where you want to store the images.

2. Log in to the Tanzu Network registry with your Tanzu Network credentials:

docker login registry.tanzu.vmware.com

3. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy -b "registry.tanzu.vmware.com/build-service/bundle:<TBS-VERSION>" --to-rep

o <IMAGE-REPOSITORY>

Where TBS-VERSION is the version full version (1.4.x) of Tanzu Build Service you want to install and

IMAGE-REPOSITORY is the repository in your registry that you want to relocate images to.

For example:

Dockerhub imgpkg copy -b "registry.tanzu.vmware.com/build-service/bundle:<TBS-

VERSION>" --to-repo my-dockerhub-account/build-service

GCR imgpkg copy -b "registry.tanzu.vmware.com/build-service/bundle:<TBS-VERSION>"

--to-repo gcr.io/my-project/build-service

Artifactory imgpkg copy -b "registry.tanzu.vmware.com/build-service/bundle:<TBS-

different version must be used.

Note: TKGs clusters running Kubernetes 1.20.0-1.20.6 are not compatible with TBS.

Note: When relocating, the IMAGE-REPOSITORY must be the IMAGE-REGISTRY

appended with the destination repository for the images. For example, IMAGE-

REGISTRY/some-repo/build-service.

Exception: When relocating to Dockerhub, you must provide the Dockerhub

username and a repository name that imgpkg will use for relocation. For example,

my-dockerhub-account/build-service.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 30

https://carvel.dev/

VERSION>" --to-repo artifactory.com/my-project/build-service

Harbor imgpkg copy -b "registry.tanzu.vmware.com/build-service/bundle:<TBS-

VERSION>" --to-repo harbor.io/my-project/build-service

Install Tanzu Build Service

There are two ways to install Tanzu Build Service:

1. Using a public registry (eg. GCR, Dockerhub) or an internal registry that uses a trusted

certificate (eg. Lets Encrypt)

2. Using an internal registry that uses a self-signed CA certificate (eg. Harbor, Artifactory)

Install Tanzu Build Service Public Registry

1. Pull the Tanzu Build Service bundle image locally using imgpkg:

imgpkg pull -b "<IMAGE-REPOSITORY>:<TBS-VERSION>" -o /tmp/bundle

Where TBS-VERSION and IMAGE-REPOSITORY are the same values used during relocation.

2. Use the Carvel tools kapp, ytt, and kbld to install Build Service and define the required Build

Service parameters:

Tanzu Build Service ships with a dependency updater that can update ClusterStacks,

ClusterStores, ClusterBuilders, and the CNB Lifecycle from TanzuNet automatically. Enabling

this feature will keep Images up to date with the latest security patches and fixes, and is

highly recommended. To enable this feature, include your TanzuNet credentials,

descriptor_name, and enable_automatic_dependency_updates when running the install

command below:

ytt -f /tmp/bundle/config/ \

 -v kp_default_repository='<IMAGE-REPOSITORY>' \

 -v kp_default_repository_username='<REGISTRY-USERNAME>' \

 -v kp_default_repository_password='<REGISTRY-PASSWORD>' \

 --data-value-yaml pull_from_kp_default_repo=true \

 -v tanzunet_username='<TANZUNET-USERNAME>' \

 -v tanzunet_password='<TANZUNET-PASSWORD>' \

 -v descriptor_name='<DESCRIPTOR-NAME>' \

 --data-value-yaml enable_automatic_dependency_updates=true \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

You can check the status of the DependencyUpdater by running kubectl -n build-service

get TanzuNetDependencyUpdater dependency-updater -o yaml

Note: During relocation, imgpkg will report the following:

Skipped layer due to it being non-distributable. If you would like to

include non-distributable layers, use the --include-non-distributable flag.

This is due to windows-based images shipped with TBS and can be ignored. For

more details see the faq.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 31

https://carvel.dev/

Alternatively, if you prefer to manage dependencies manually, leave the TanzuNet

credentials, descriptor_name, and enable_automatic_dependency_updates out of the install.

ytt -f /tmp/bundle/config/ \

 -v kp_default_repository='<IMAGE-REPOSITORY>' \

 -v kp_default_repository_username='<REGISTRY-USERNAME>' \

 -v kp_default_repository_password='<REGISTRY-PASSWORD>' \

 --data-value-yaml pull_from_kp_default_repo=true \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Where:

IMAGE-REPOSITORY is the image repository where Tanzu Build Service images exist.

REGISTRY-USERNAME is the username you use to access the registry. gcr.io expects

_json_key as the username when using JSON key file authentication.

REGISTRY-PASSWORD is the password you use to access the registry.

TANZUNET-USERNAME is the username you use to access TanzuNet

TANZUNET-PASSWORD is the password you use to access TanzuNet

DESCRIPTOR-NAME is the name of the descriptor to import automatically. For more

information about which descriptor to choose for your workload and use case, see

Descriptors. Available options:

full contains all dependencies.

lite smaller footprint used for speeding up installs. Requires Internet access

on the cluster.

Installing with a CA certificate for internal registry

To install Tanzu Build Service with an internal registry that requires providing a CA certificate such as

Harbor, use the normal installation command with the CA certificate file passed in with a -f flag:

ytt -f /tmp/bundle/config/ \

 - f < P A T H - T O - C A > \

 -v kp_default_repository='<IMAGE-REPOSITORY>' \

Note: This is identical to the IMAGE-REPOSITORY argument

provided during imgpkg relocation command.

Note: [Managing Secrets](managing-secrets.html) for more

information about how the registry username and password are used

in Tanzu Build Service.

Note: You may want to pin your TBS to a specific descriptor version and

temporarily pause the automatic update of dependencies. For details, see the

FAQ section "Pinning the Tanzu Net Updater"

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 32

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com

 -v kp_default_repository_username='<REGISTRY-USERNAME>' \

 -v kp_default_repository_password='<REGISTRY-PASSWORD>' \

 --data-value-yaml pull_from_kp_default_repo=true \

 -v tanzunet_username='<TANZUNET-USERNAME>' \

 -v tanzunet_password='<TANZUNET-PASSWORD>' \

 -v descriptor_name='<DESCRIPTOR-NAME>' \

 --data-value-yaml enable_automatic_dependency_updates=true \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Where:

PATH-TO-CA is the path to the registry root CA. This CA is required to enable Build Service to

interact with internally deployed registries. This is the CA that was used while deploying the

registry.

IMAGE-REPOSITORY is the image repository where Tanzu Build Service images exist.

REGISTRY-USERNAME is the username you use to access the registry. gcr.io expects

_json_key as the username when using JSON key file authentication.

REGISTRY-PASSWORD is the password you use to access the registry.

TANZUNET-USERNAME is the username you use to access TanzuNet

TANZUNET-PASSWORD is the password you use to access TanzuNet

Import Tanzu Build Service Dependencies

Warning: Tanzu Build Service ships with a automatic dependency updater. If you have enabled this

feature during install by passing in your TanzuNet credentials you **MUST** skip this step. To check

if you have a TanzuNetDependencyUpdater in your cluster, run: `kubectl get

TanzuNetDependencyUpdaters -A`

The Tanzu Build Service Dependencies (Stacks, Buildpacks, Builders, etc.) are used to build

applications and keep them patched.

These must be imported with the kp cli and the Dependency Descriptor (descriptor-

<version>.yaml) file from the Tanzu Build Service Dependencies page:

Note: This is identical to the IMAGE-REPOSITORY argument provided during

imgpkg relocation command.

Exception: When using Dockerhub as your registry target, only use your

DockerHub account for this value. For example, my-dockerhub-account

(without /build-service). Otherwise, you will encounter an error similar to:

Error: invalid credentials, ensure registry credentials for

'index.docker.io/my-dockerhub-account/build-service/tanzu-

buildpacks_go' are available locally

Note: [Managing Secrets](managing-secrets.html) for more information about

how the registry username and password are used in Tanzu Build Service.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 33

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tbs-dependencies/

When importing with kp cli, you must docker login to both registry.tanzu.vmware.com and

registry.pivotal.io.

kp import -f /tmp/descriptor-<version>.yaml

When importing to a registry that uses a self-signed CA certificate:

kp import -f /tmp/descriptor-<version>.yaml --registry-ca-cert-path <path-to-ca-cert>

Using the --show-changes flag will give a summary of the resource changes for the import. You will

also be asked to confirm the import. Confirmation can be skipped with --force.

Successfully performing a kp import command requires that your Tanzu Network account has

access to the images specified in the Dependency Descriptor file. Users can only access these

images if they agree to the dependency EULAs.

Users must navigate to the following dependencies pages in Tanzu Network and accept all EULAs

highlighted in yellow.

1. Tanzu Build Service Dependencies

2. Buildpacks for VMware Tanzu

3. Stacks for VMware Tanzu

Additional Configuration

Other optional parameters can be added using the -v flag:

admin_users is a comma separated list of users who will be granted admin privileges on Build

Service.

admin_groups: a comma separated list of groups that will be granted admin privileges on

Build Service.

http_proxy: The HTTP proxy to use for network traffic.

https_proxy: The HTTPS proxy to use for network traffic.

no_proxy: A comma-separated list of hostnames, IP addresses, or IP ranges in CIDR format

that should not use a proxy.

Note: `kp import` will fail if it cannot access the images in all of the above Tanzu

Network pages.

Note: You must be logged in locally to the registry used for `IMAGE-REGISTRY`

during relocation and both urls for the Tanzu Network registry

(`registry.tanzu.vmware.com` and `registry.pivotal.io`).

Note: When proxy server is enabled using http_proxy and/or https_proxy, traffic to

the kubernetes API server will also flow through the proxy server. This is a known

limitation and can be circumvented by using no_proxy to specify the kubernetes API

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 34

https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tanzu-buildpacks-suite
https://network.tanzu.vmware.com/products/tanzu-stacks-suite

Configuring TKGI as an OIDC Provider

The authentication and authorization processes for Build Service use a combination of RBAC rules

and third-party authentication, including OpenID Connect (OIDC). You may configure UAA as an

OIDC provider for your TKGI deployment to provide authentication for Build Service.

To configure UAA as an OIDC provider for your TKGI deployment:

1. Navigate to the OpsManager Installation Dashboard.

2. Click the TKGI tile.

3. Select UAA.

4. Under Configure created clusters to use UAA as the OIDC provider, select Enable.

5. Ensure the values in the UAA OIDC Groups Prefix and UAA OIDC Username Prefix fields

are the same and record them. For example, "oidc:". You will need these values during the

installation of Build Service.

6. Click Save.

7. In the OpsManager Installation Dashboard, click Review Pending Changes, then Apply

Changes.

Installation to Air-Gapped Environment

Tanzu Build Service can be installed to a Kubernetes Cluster and registry that are air-gapped from

external traffic.

An air-gapped environment will often use an internal registry with a self-signed CA certificate and

you will need access to this CA certificate file to install TBS.

Relocate Images to a Registry (Air-Gapped)

This procedure relocates images from the Tanzu Network registry to an internal image registry via a

local machine.

The local machine must have write access to the internal registry.

1. Log in to the image registry where you want to store the images by running:

server.

Note: Ensure you add a : at the end of the desired prefix.

Note: The TanzuNetDependencyUpdater cannot be used in air-gapped

environments. Do not include Tanzu Net credentials for air-gapped installations.

Note: If you are using a CA certificate that is trusted (eg. Lets Encrypt) you will not

need the CA certificate file.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 35

docker login <IMAGE-REGISTRY>

Where IMAGE-REGISTRY is the name of the image registry where you want to store the images.

2. Log in to the Tanzu Network registry with your Tanzu Network credentials:

docker login registry.tanzu.vmware.com

3. Copy the Tanzu Build Service bundle to your local machine as a tar with the Carvel tool

imgpkg by running:

imgpkg copy -b registry.tanzu.vmware.com/build-service/bundle:<TBS-VERSION> --to-tar=/

tmp/tanzu-build-service.tar

Where TBS-VERSION is the version of Tanzu Build Service you want to install.

4. Move the output file tanzu-build-service.tar to a machine that has access to the air-

gapped environment.

5. Unpackage the images from your local machine to the internal registry:

imgpkg copy --tar /tmp/tanzu-build-service.tar \

 --to-repo=<IMAGE-REPOSITORY> \

 --registry-ca-cert-path <PATH-TO-CA>

Where:

IMAGE-REPOSITORY is the repository in your registry that you want to relocate images to.

PATH-TO-CA is the path to the registry CA certificate file.

For example:

Dockerhub imgpkg copy --tar /tmp/tanzu-build-service.tar --to-repo=my-dockerhub-

account/build-service --registry-ca-cert-path ca.crt

GCR imgpkg copy --tar /tmp/tanzu-build-service.tar --to-repo=gcr.io/my-

project/build-service --registry-ca-cert-path ca.crt

Artifactory imgpkg copy --tar /tmp/tanzu-build-service.tar --to-

repo=artifactory.com/my-project/build-service --registry-ca-cert-path ca.crt

Harbor imgpkg copy --tar /tmp/tanzu-build-service.tar --to-repo=harbor.io/my-

project/build-service --registry-ca-cert-path ca.crt

Installing (Air-Gapped)

Note:The IMAGE-REPOSITORY must be the IMAGE-REGISTRY appended with the

destination repository for the images. For example, IMAGE-REGISTRY/some-

repo/build-service.

Exception: When relocating to Dockerhub, you must provide the Dockerhub

username and an image name that imgpkg will use for relocation. For example, my-

dockerhub-account/build-service.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 36

https://carvel.dev/

Once the images have been relocated, installation is the same as a regular install.

1. Pull the Tanzu Build Service bundle image locally using imgpkg:

imgpkg pull -b "<IMAGE-REPOSITORY>:<TBS-VERSION>" -o /tmp/bundle

Where TBS-VERSION and IMAGE-REPOSITORY are the same values used during relocation.

2. Use the Carvel tools kapp, ytt, and kbld to install Build Service and define the required Build

Service parameters by running:

ytt -f /tmp/bundle/config/ \

 - f < P A T H - T O - C A > \

 -v kp_default_repository='<IMAGE-REPOSITORY>' \

 -v kp_default_repository_username='<REGISTRY-USERNAME>' \

 -v kp_default_repository_password='<REGISTRY-PASSWORD>' \

 --data-value-yaml pull_from_kp_default_repo=true \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Where:

PATH-TO-CA is the path to the registry root CA. This CA is required to enable Build Service to

interact with internally deployed registries. This is the CA that was used while deploying the

registry.

IMAGE-REPOSITORY is the image repository where Tanzu Build Service images exist.

REGISTRY-USERNAME is the username you use to access the registry. gcr.io expects

_json_key as the username when using JSON key file authentication.

REGISTRY-PASSWORD is the password you use to access the registry.

Additional Configuration

Other optional parameters can be added using the -v flag:

admin_users is a comma separated list of users who will be granted admin privileges on Build

Service.

admin_groups: a comma separated list of groups that will be granted admin privileges on

Build Service.

Note: The TanzuNetDependencyUpdater cannot be used in air-gapped

environments. Do not include Tanzu Net credentials for air-gapped installations.

Note: This is identical to the IMAGE-REPOSITORY argument provided during

imgpkg relocation command.

Note: [Managing Secrets](managing-secrets.html) for more information about

how the registry username and password are used in Tanzu Build Service.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 37

https://carvel.dev/

Import Tanzu Build Service Dependencies (Air-Gapped)

The Tanzu Build Service Dependencies (Stacks, Buildpacks, Builders, etc.) are used to build

applications and keep them patched.

For air-gapped environments, dependencies must be imported with the kp cli and the Dependency

Descriptor bundle image (registry.tanzu.vmware.com/tbs-dependencies/full) from the Tanzu

Build Service Dependencies page.

Relocate Tanzu Build Service Dependency Images (Air-Gapped)

1. First, find the latest version of the descriptor from the Tanzu Build Service Dependencies

page.

2. To import these dependencies into an air-gapped environment, they must first be pulled

locally. Use imgpkg and the <VERSION> from the previous step:

imgpkg copy -b registry.tanzu.vmware.com/tbs-dependencies/full:<VERSION> \

 --to-tar=tbs-dependencies.tar

1. Move the output file tbs-dependencies.tar to a machine that has access to the air-gapped

environment.

2. Then the dependencies must be uploaded to the Tanzu Build Service registry:

imgpkg copy --tar=tbs-dependencies.tar \

 --to-repo <IMAGE-REPOSITORY> \

 --registry-ca-cert-path <PATH-TO-CA>

Where:

IMAGE-REPOSITORY is the internal image repository where dependency images will be

relocated. This should be the same as kp_default_repository from installation.

PATH-TO-CA is the path to the registry CA certificate file.

Import Tanzu Build Service Dependency Resources (Air-Gapped)

After the dependency images are uploaded to the internal registry, you can successfully import

these images and create the corresponding Tanzu Build Service resources.

Use the following commands with imgpkg, kbld, and the kp CLI:

imgpkg pull -b <IMAGE-REPOSITORY>:<VERSION> \

 -o /tmp/descriptor-bundle \

 --registry-ca-cert-path <PATH-TO-CA>

Note: You must be logged in locally to the Tanzu Network registry.

Note: You must be logged in locally to the registry used for `IMAGE-REPOSITORY`.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 38

https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tbs-dependencies/

kbld -f /tmp/descriptor-bundle/.imgpkg/images.yml \

 -f /tmp/descriptor-bundle/tanzu.descriptor.v1alpha3/descriptor-<VERSION>.yaml \

 | kp import -f - --registry-ca-cert-path <PATH-TO-CA>

Verify Installation

Verify your Build Service installation by first targeting the cluster Build Service has been installed on.

To verify your Build Service installation:

1. Download the kp binary from the Tanzu Build Service page on Tanzu Network.

2. List the cluster builders available in your installation:

kp clusterbuilder list

You should see an output that looks as follows:

NAME READY STACK IMAGE

base true io.buildpacks.stacks.bionic <image@sha256:digest>

default true io.buildpacks.stacks.bionic <image@sha256:digest>

full true io.buildpacks.stacks.bionic <image@sha256:digest>

tiny true io.paketo.stacks.tiny <image@sha256:digest>

Upgrading Tanzu Build Service

To upgrade Tanzu Build Service to a newer version, run the same commands as installation, kapp will

update resources if they already exist. Re-importing dependencies is not required for upgrading

TBS.

Uninstalling Tanzu Build Service

To uninstall Tanzu Build Service simply run the following kapp command:

kapp delete -a tanzu-build-service

Updating Build Service Dependencies

Use the following documentation to keep applications patched and up-to-date with Tanzu Build

Service:

To keep dependencies up-to-date, see Updating Build Service Dependencies

To manage Stacks, see Managing Stacks

Note: All Tanzu Build Service resources will be deleted. Registry images created by

TBS will not be deleted.

Note: If you enabled the TanzuNetDependencyUpdater during install (This can be

verified by running `kubectl get TanzuNetDependencyUpdater -A` you do not need

to do anything to manage your TBS dependencies

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 39

https://network.tanzu.vmware.com/products/build-service/

To manage Buildpack Stores, see Managing Stores

Ensuring Access to Cluster Builders

In order to use Cluster Builders, such as the ones installed with Tanzu Build Service, we suggest to

install Tanzu Build Service to a repository that is accessible by the nodes in the kubernetes cluster

without credentials.

If this is not desired, see When to use Synchronized Secrets.

Ensuring the Run Image is Readable

Build Service relies on the run-image being publicly readable or readable with the registry

credentials configured in a project/namespace for the builds to be executed successfully.

The location of the run image can be identified by running the following command:

kp clusterstack status <stack-name>

If the cluster stack run image is not public, you may need to create a registry secret in any

namespace where Images or Builds will be used. For more details on secrets in Tanzu Build Service,

see Managing Secrets

This can be done with the kp CLI:

kp secret create my-registry-creds --registry example-registry.io --registry-user my-r

egistry-user --namespace build-namespace

Next Steps

Visit the Managing Images and Builds page to learn how to create and manage a new image.

Kubernetes Permissions for Installation

The minimum Kubernetes RBAC permissions required to install Tanzu Build Service are as follows.

This includes the namespaces required for the Kubernetes Roles:

apiVersion: v1

kind: Namespace

metadata:

 name: build-service

apiVersion: v1

kind: Namespace

metadata:

 name: kpack

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: build-service-install-cluster-role

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 40

rules:

 - apiGroups:

 - "admissionregistration.k8s.io"

 resources:

 - mutatingwebhookconfigurations

 - validatingwebhookconfigurations

 verbs:

 - '*'

 - apiGroups:

 - "rbac.authorization.k8s.io"

 resources:

 - clusterroles

 - clusterrolebindings

 verbs:

 - '*'

 - apiGroups:

 - "apiextensions.k8s.io"

 resources:

 - customresourcedefinitions

 verbs:

 - '*'

 - apiGroups:

 - "storage.k8s.io"

 resources:

 - storageclasses

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - kpack.io

 resources:

 - builds

 - builds/status

 - builds/finalizers

 - images

 - images/status

 - images/finalizers

 - builders

 - builders/status

 - clusterbuilders

 - clusterbuilders/status

 - clusterstores

 - clusterstores/status

 - clusterstacks

 - clusterstacks/status

 - sourceresolvers

 - sourceresolvers/status

 verbs:

 - '*'

 - apiGroups:

 - "projects.vmware.com"

 resources:

 - projects

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 41

metadata:

 name: build-service-install-role

 namespace: build-service

rules:

 - apiGroups:

 - ""

 resources:

 - configmaps

 - secrets

 - serviceaccounts

 - services

 - namespaces

 verbs:

 - '*'

 - apiGroups:

 - "rbac.authorization.k8s.io"

 resources:

 - roles

 - rolebindings

 verbs:

 - '*'

 - apiGroups:

 - apps

 resources:

 - deployments

 - daemonsets

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: kpack-install-role

 namespace: kpack

rules:

 - apiGroups:

 - ""

 resources:

 - services

 - serviceaccounts

 - namespaces

 - secrets

 - configmaps

 verbs:

 - '*'

 - apiGroups:

 - "rbac.authorization.k8s.io"

 resources:

 - roles

 - rolebindings

 verbs:

 - '*'

 - apiGroups:

 - apps

 resources:

 - deployments

 - daemonsets

 verbs:

 - '*'

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 42

The kapp command used to install Tanzu Build Service requires access to ConfigMaps in the

namespace that will be used to run kapp:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: kapp-role

 namespace: <my-kapp-namespace>

rules:

 - apiGroups:

 - ""

 resources:

 - configmaps

 verbs:

 - '*'

Where the namespace <my-kapp-namespace> must be the namespace of the Kubernetes context that

kapp will be run in.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 43

Accessing Tanzu Build Service

To use your Build Service installation, gain kubeconfig access to the Kubernetes Cluster that has the

Build Service installed. For example, if you are using TKGI (formerly PKS):

tkgi login -a <tkg-api-url> -u <username> -p <password>

tkgi get-credentials <clustername> -a <tkg-api-url> -u <username> -p <password>

You can use the kp CLI, downloaded as part of the installation to interact with Build Service. The kp

CLI uses the local KUBECONFIG utilized by kubectl. All operations will be performed on kubernetes

current-context namespace.

The kp CLI help text is published here.

$ kp

kp controls the kpack installation on Kubernetes.

kpack extends Kubernetes and utilizes unprivileged kubernetes primitives to provide

builds of OCI images as a platform implementation of Cloud Native Buildpacks (CNB).

Learn more about kpack @ https://github.com/pivotal/kpack

Usage:

 kp [command]

Available Commands:

 build Build Commands

 builder Builder Commands

 clusterbuilder Cluster Builder Commands

 clusterstack Cluster Stack Commands

 clusterstore Cluster Store Commands

 completion Generate completion script

 help Help about any command

 image Image commands

 import Import dependencies for stores, stacks, and cluster builders

 secret Secret Commands

 version Display kp version

Flags:

 -h, --help help for kp

Use "kp [command] --help" for more information about a command.

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 44

https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Updating Build Service Dependencies

Keeping applications up-to-date with the latest dependency patches is a core feature of Tanzu Build

Service. Updates to dependencies will be propagated to application images. The resources that

account for these patches are:

ClusterStacks - Update a ClusterStack to patch operating system packages.

ClusterStores - Update a ClusterStore to patch the Cloud Native Buildpacks used to build

your applications.

You can use the kp CLI to update any resource. The help text is published here.

Updating Dependencies

Automatically Update Dependencies

Tanzu Build Service ships with a dependency updater that can update ClusterStacks, ClusterStores,

ClusterBuilders, and the CNB Lifecycle from TanzuNet automatically. Enabling this feature will keep

Images up to date with the latest security patches and fixes.

You can run kubectl get TanzuNetDependencyUpdater -A to check if you have a

TanzuNetDependencyUpdater set up already. If you have one, there is nothing you need to do to

manage your dependencies in TBS.

If you would like to enable this feature after install, you can create the following resources:

1. A secret with you TanzuNet credentials (kp secret create dependency-updater-secret --

registry registry.tanzu.vmware.com --registry-user <TANZUNET_USERNAME>) in the

namespace where you would like your dependency updater to be in.

2. A service account that contains that secret. (If the secret was created using kp, it will

automatically be added to the default service account in that namespace.

3. A TanzuNetDependencyUpdater resource:

apiVersion: buildservice.tanzu.vmware.com/v1alpha1

kind: TanzuNetDependencyUpdater

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

metadata:

 name: dependency-updater

 namespace: <NAMESPACE>

spec:

 serviceAccountName: <SERVICE-ACCOUNT>

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 45

https://github.com/vmware-tanzu/kpack-cli/blob/v0.4.0/docs/kp.md

 productSlug: tbs-dependencies

 checkEvery: 1m

 descriptorName: <DESCRIPTOR-NAME>

 descriptorVersion: <DESCRIPTOR-VERSION>

The productSlug field corresponds to the product name in TanzuNet

The checkEvery field is the frequency that the updater will check for new descriptor file

releases

The serviceAccountName field is the name of the service account from step 2

The descriptorName field is the name of the descriptor to import automatically. Available

options can be found on the Tanzu Network Build Service Dependencies page. Current

available options at time of release:

full contains all dependencies - for production use.

lite smaller footprint used for speeding up installs. Requires internet access on the

cluster.

The descriptorVersion (optional) field can be used to pin to a specific version of the

descriptor. This is only recommended for use to protect from breaking changes. This can

usually be left blank.

Bulk Update

The Bulk Update workflow can update all dependencies (ClusterStacks, ClusterStores and

ClusterBuilders) in Tanzu Build Service using the kp import command.

1. Download the Dependency Descriptor file (descriptor-<version>.yaml) from the latest

release on the Tanzu Build Service Dependencies page on Tanzu Network.

2. Docker login to the TanzuNet registry (both urls)

docker login registry.tanzu.vmware.com

docker login registry.pivotal.io

3. Use the kp CLI

Warning: Tanzu Build Service ships with a automatic dependency updater. If you have enabled this

feature during install by passing in your TanzuNet credentials you **MUST** skip this step. To check

if you have a TanzuNetDependencyUpdater in your cluster, run: `kubectl get

TanzuNetDependencyUpdaters -A`

Note: If you want to be alerted when a new descriptor file is published, we

recommend using an RSS reader and watching the Tanzu Build Service

Dependencies TanzuNet feed for updates https://network.tanzu.vmware.com/rss

Note: You can see all of the buildpackages versions that will be imported by looking

at the `buildpackage-versions-.yaml` file from the [Tanzu Build Service

Dependencies](https://network.tanzu.vmware.com/products/tbs-dependencies/)

release.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 46

https://network.pivotal.io/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tbs-dependencies/

kp import -f descriptor-<version>.yaml

The following ClusterStacks will be updated with the latest Operating System patches: base, default,

full, and tiny.

The following ClusterStore will be updated with the latest Cloud Native Buildpacks: default

Using the --show-changes flag will give a summary of the resource changes for the import. You will

also be asked to confirm the import. Confirmation can be skipped with --force.

Cluster Stacks Update

This section described how to update individual cluster stacks. This provides a more fine-grained way

to patch operating system packages.

New stack versions will be provided on the Tanzu Build Service Dependencies page on Tanzu

Network.

To update specific cluster stacks, go to the latest release of the Tanzu Build Service Dependencies

page on Tanzu Network to find the image references and their <sha256> sums. Example commands

will be provided on this page.

Use the following kp CLI commands to update the desired stack:

kp clusterstack update base \

 --build-image registry.tanzu.vmware.com/tbs-dependencies/build-base@<sha256> \

 --run-image registry.tanzu.vmware.com/tbs-dependencies/run-base@<sha256>

kp clusterstack update default \

 --build-image registry.tanzu.vmware.com/tbs-dependencies/build-full@<sha256> \

 --run-image registry.tanzu.vmware.com/tbs-dependencies/run-full@<sha256>

kp clusterstack update full \

 --build-image registry.tanzu.vmware.com/tbs-dependencies/build-full@<sha256> \

 --run-image registry.tanzu.vmware.com/tbs-dependencies/run-full@<sha256>

kp clusterstack update tiny \

 --build-image registry.tanzu.vmware.com/tbs-dependencies/build-tiny@<sha256> \

 --run-image registry.tanzu.vmware.com/tbs-dependencies/run-tiny@<sha256>

The updated ClusterStack can be viewed with the following command:

kp clusterstack status <stack-name>

Example output

$ kp clusterstack status tiny

Status: Ready

Id: io.paketo.stacks.tiny

Run Image: gcr.io/build-service-dev/test/run@sha256:34b01fd9a3745fcaa345f89939382

91c931f7977cc2bee78ed377da2edc55e3d

Build Image: gcr.io/build-service-dev/test/build@sha256:5288d9c5b7cf7068d07b5a184f3

Note: Both build and run images need to be provided to update the stack.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 47

https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tbs-dependencies/

ec2f124fbc5842401b8b23c74485c4d2ba23a

Cluster Store Update

ClusterStores contain all of the buildpackages (one or more packaged Cloud Native Buildpacks) to be

used by Builders to build application images.

You can update Cloud Native Buildpacks in Tanzu Build Service by adding new buildpackage

versions to the store.

To list the buildpackages available in a store:

kp clusterstore status <store-name>

Example output

$ kp clusterstore status default

Status: Ready

BUILDPACKAGE ID VERSION HOMEPAGE

paketo-buildpacks/procfile 1.4.0 https://github.com/paketo-buildpacks/procfi

le

tanzu-buildpacks/dotnet-core 0.0.3

tanzu-buildpacks/go 1.0.5

tanzu-buildpacks/httpd 0.0.38

tanzu-buildpacks/java 2.5.0 https://github.com/pivotal-cf/tanzu-java

tanzu-buildpacks/nginx 0.0.45

tanzu-buildpacks/nodejs 1.1.0

tanzu-buildpacks/php 0.0.3

To show a complete list of all buildpacks available in a store:

kp clusterstore status <store-name> --verbose

Update a store with one or more buildpackages with:

kp clusterstore add <store-name> -b <buildpackage-image1> -b <buildpackage-image2>

Updating Buildpacks From Tanzu Network

New Cloud Native Buildpacks (packaged as buildpackages) will be available on Tanzu Network and

should be uploaded to a Tanzu Build Service to keep application images patched.

New versions of the Java, NodeJS, and Go buildpacks will be released on their respective Tanzu

Network pages: Java, NodeJS and Go. New versions of all other buildpacks will be released on the

Tanzu Build Service Dependencies page.

Here is a list of how to update each buildpack that is included with Tanzu Build Service by default:

Note: Any number of buildpackages can be added to a store at a time with multiple `-

b` flags.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 48

https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-java-buildpack
https://network.tanzu.vmware.com/products/tanzu-nodejs-buildpack
https://network.tanzu.vmware.com/products/tanzu-go-buildpack
https://network.tanzu.vmware.com/products/tbs-dependencies

kp clusterstore add default -b registry.tanzu.vmware.com/tanzu-java-buildpack/java:<ve

rsion>

kp clusterstore add default -b registry.tanzu.vmware.com/tanzu-nodejs-buildpack/nodejs

:<version>

kp clusterstore add default -b registry.tanzu.vmware.com/tanzu-go-buildpack/go:<versio

n>

kp clusterstore add default -b registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildp

acks_dotnet-core:<version>

kp clusterstore add default -b registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildp

acks_php:<version>

kp clusterstore add default -b registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildp

acks_nginx:<version>

kp clusterstore add default -b registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildp

acks_httpd:<version>

kp clusterstore add default -b registry.tanzu.vmware.com/tbs-dependencies/paketo-build

packs_procfile:<version>

Additionally, multiple buildpackages can be added to Build Service by passing multiple image

references:

kp clusterstore add <store-name> \

 -b registry.tanzu.vmware.com/buildpacakge-1 \

 -b registry.tanzu.vmware.com/buildpackage-2 \

 -b registry.tanzu.vmware.com/buildpackage-3

Offline Update of Dependencies

If your Tanzu Build Service installation is in an offline/air-gapped environment, you can update stores

with the following offline workflow:

1. Find the latest version of the Dependency Descriptor bundle image

(registry.tanzu.vmware.com/tbs-dependencies/full) from the latest release on the Tanzu

Build Service Dependencies page on Tanzu Network.

2. Download the following CLIs for your operating system:

kp.

imgpkg

kbld

3. Download the dependency images for Tanzu Build Service to your local machine with imgpkg

using the VERSION found from Tanzu Network in step 1:

 docker login registry.tanzu.vmware.com

 imgpkg copy -b registry.tanzu.vmware.com/tbs-dependencies/full:<VERSION> \

 --to-tar=tbs-dependencies.tar

4. Move the output file tbs-dependencies.tar to a machine that has access to the "offline"

environment

5. Upload the dependency images to the registry used to deploy Tanzu Build Service:

 docker login <build-service-registry>

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 49

https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tbs-dependencies/build-service
https://network.tanzu.vmware.com/products/imgpkg
https://network.tanzu.vmware.com/products/kbld

 imgpkg copy --tar=tbs-dependencies.tar \

 --to-repo <IMAGE-REPOSITORY>

Where IMAGE-REPOSITORY is the repository used to install Tanzu Build Service. This should be the

same value as IMAGE-REPOSITORY used in the Installation Steps.

6. Now that dependencies are relocated to the internal registry, you can use the following

commands to update the necessary resources:

 imgpkg pull -b <IMAGE-REPOSITORY>:<VERSION> \

 -o /tmp/descriptor-bundle \

 --registry-ca-cert-path <PATH-TO-CA>

 kbld -f /tmp/descriptor-bundle/.imgpkg/images.yml \

 -f /tmp/descriptor-bundle/tanzu.descriptor.v1alpha3/descriptor-<VERSION>.yam

l \

 | kp import -f -

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 50

#other-install

Managing Secrets

Overview

VMware Tanzu Build Service uses Kubernetes secrets to manage credentials.

To publish images to a Registry, you must use a Registry secret.

To use source code stored in a private Git repository, you must use a Git secret.

Secrets are namespaced and can only be used for image configurations that exist in the same

namespace. For more information about Kubernetes secrets, see Secrets in the Kubernetes

documentation.

For more information about secret synchronization, see the Secret Synchronization page.

You can manage secrets with the kp CLI. The help text is published here.

$ kp secret

Secret Commands

Usage:

 kp secret [command]

Available Commands:

 create Create a secret configuration

 delete Delete secret

 list List secrets

Flags:

 -h, --help help for secret

Use "kp secret [command] --help" for more information about a command.

Create Secrets

You can create secrets using the kp CLI and script them with environment variables.

Secrets are created in the Kubernetes current-context namespace, unless you specify a different

namespace using the --namespace or -n flag. Kubernetes automatically adds these secrets to the

default service account in the same namespace.

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

Note: The kp CLI does not validate the secret against the specified registry or Git at

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 51

https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Create a Docker Hub Registry Secret

You can create a Docker Hub registry secret using the --dockerhub flag.

kp secret create SECRET-NAME --dockerhub DOCKER-HUB-ID

Where:

SECRET-NAME is the name you give your secret.

DOCKER-HUB-ID is your Docker Hub user ID.

When prompted, enter your Docker Hub password. Alternatively, you can use the DOCKER_PASSWORD

environment variable to bypass the password prompt.

The Docker Hub registry secret is stored as a kubernetes.io/dockerconfigjson secret.

Examples:

$ kp secret create secret1 --dockerhub my-dockerhub-id

dockerhub password:

"secret1" created

$ DOCKER_PASSWORD="my-password" kp secret create secret2 --dockerhub my-dockerhub-id

"secret2" created

Create a GCR Registry Secret

You can create a GCR registry secret using the --gcr flag.

kp secret create SECRET-NAME --gcr GCR-SERVICE-ACCOUNT-PATH

Where:

SECRET-NAME is the name you give your secret.

GCR-SERVICE-ACCOUNT-PATH is the path to your GCR service account json file.

Alternatively use the GCR_SERVICE_ACCOUNT_PATH environment variable instead of the --gcr flag.

The GCR registry secret is stored as a kubernetes.io/dockerconfigjson secret.

Examples:

$ kp secret create secret1 --gcr /tmp/my-gcr-service-account.json

"secret1" created

$ GCR_SERVICE_ACCOUNT_PATH="/tmp/my-gcr-service-account.json" kp secret create secret2

"secret2" created

Create an Artifactory, Harbor, or ACR Registry Secret

You can create an Artifactory, Harbor, or ACR secret using the --registry and --registry-user

the time of secret creation. Incorrect credentials will be reported as they are used

during an image build.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 52

flags.

kp secret create SECRET-NAME --registry REGISTRY-URL --registry-user REGISTRY-USER-ID

Where:

SECRET-NAME is the name you give your secret.

REGISTRY-URL is the URL of the registry. This should only be the domain for the registry and

should not contain folders or projects. Example: registry.io and not registry.io/project.

REGISTRY-USER-ID is your registry user ID.

When prompted, enter your registry password. Alternatively, you can use the REGISTRY_PASSWORD

environment variable to bypass the password prompt.

The Artifactory, Harbor, or ACR registry secret is stored as a kubernetes.io/dockerconfigjson

secret.

Examples:

$ kp secret create secret1 \

 --registry registry.tanzu.vmware.com \

 --registry-user someuser@pivotal.io

registry password:

"secret1" created

$ REGISTRY_PASSWORD="my-password" kp secret create secret2 \

 --registry registry.tanzu.vmware.com \

 --registry-user someuser@pivotal.io

"secret2" created

Create a Git SSH Secret

You can create a Git SSH secret by specifying a Git SSH URL and private SSH key.

kp secret create SECRET-NAME --git-url GIT-SSH-URL --git-ssh-key PRIVATE-SSH-KEY-PATH

Where:

SECRET-NAME is the name you give your secret.

GIT-SSH-URL is the Git SSH domain URL. This is not the full repository URL. For example,

value should be git@github.com for GitHub.

PRIVATE-SSH-KEY-PATH is the path to your private SSH key.

Alternatively, use the GIT_SSH_KEY_PATH environment variable instead of the --git-ssh-key flag.

The Git SSH secret is stored as a kubernetes.io/ssh-auth secret.

Examples:

$ kp secret create secret1 \

 --git-url git@github.com \

 --git-ssh-key /tmp/private-repo-git-deploy-key

"secret1" created

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 53

$ GIT_SSH_KEY_PATH="/tmp/private-repo-git-deploy-key" kp secret create secret2 \

 --git-url git@github.com \

"secret2" created

Create a Git Basic Auth Secret

You can create a Git basic auth secret by providing your Git username and password

kp secret create SECRET-NAME --git-url GIT-DOMAIN-URL --git-user GIT-USERNAME

Where:

SECRET-NAME is the name you give your secret.

GIT-DOMAIN-URL is the Git domain url. This is not the full repository url. For example, value

should be https://github.com for GitHub.

GIT-USERNAME is your Git username.

When prompted, enter your Git password. Alternatively, you can use the GIT_PASSWORD environment

variable to bypass the password prompt.

The Git basic auth secret is stored as a kubernetes.io/basic-auth secret.

Examples:

$ kp secret create secret1 \

 --git-url https://github.com \

 --git-user someone@vmware.com

git password:

"secret1" created

$ GIT_PASSWORD="my-password" kp secret create secret2 \

 --git-url https://github.com \

 --git-user someone@vmware.com

"secret2" created

List Secrets

To list the names and the targets for your secrets:

kp secret list

Unless you specify a namespace using the --namespace or -n flag, running the kp secret list

command lists secrets for the Kubernetes current-context namespace.

Example:

$ kp secret list

NAME TARGET

default-token-qrdbr

docker-hub-creds https://index.docker.io/v1/

gcr-creds gcr.io

git-creds https://github.com

git-ssh-creds git@github.com

harbor-creds registry.tanzu.vmware.com

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 54

The default-token-xxxxx secret is automatically added to the default service account by

Kubernetes

Delete Secrets

To delete secrets:

kp secret delete SECRET-NAME

Where SECRET-NAME is the name of the secret you want to delete.

Unless you specify a namespace using the --namespace or -n flag, secrets are deleted from the

Kubernetes current-context namespace. There is no confirmation required from the user.

Encrypting Secrets at Rest

Because Tanzu Build Service uses standard Kubernetes secrets, administrators may configure the

cluster to encrypt secrets at rest. For more information, see the following link:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Using SecretGen controller Secrets to use private cluster
builders

When to use Synchronized Secrets

To enable the use of Cluster Builders from private registries, a Secret with registry credentials must

exist in the namespace of the Image using that Cluster Builder.

You can configure this secret manually for each namespace, but Tanzu Build Service in tandem with

the Carvel secret-gen-controller provides functionality to synchronize secrets across namespaces to

simplify this process.

This feature is applicable in the following cases:

You have installed Tanzu Build Service to a private registry and do not wish to make Cluster

Builders imported by kp publicly readable.

You have used kp to create a Cluster Builder in a private registry and do not wish to make it

publicly readable.

Synchronized secrets are attached to build pods as imagePullSecrets so that the Cluster Builder

Image can be pulled at build time.

Installing the Carvel secret-gen-controller

Note: Synchronizing secrets with write access is not recommended. Instead, create

and synchronize read-only secrets. A synced secret is not created during installation

because the credentials provided for installation must be writable.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 55

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://github.com/vmware-tanzu/carvel-secretgen-controller

In order to manage secrets across namespaces, Tanzu Build Service utilizes the carvel secret-gen-

controller. Tanzu Build Service will automatically create placeholder secrets in namespaces that

contain Build resources and then the secret-gen-controller will populate these placeholders across

namespaces with the corresponding sync-secret in the secret-syncer namespace.

Please follow the secret-gen-controller install docs to install the controller.

Managing Secret Synchronization

Currently, the kp CLI does not support adding and removing synchronized secrets. However, this

may be achieved by using the kubectl CLI.

Create a Synchronized Secret

To start synchronizing a secret to all namespaces with builds, first create the secret in the build-

service namespace using the kubectl cli.

Example Secret:

apiVersion: v1

data:

 .dockerconfigjson: <SECRET DATA>

kind: Secret

metadata:

 name: my-synced-secret

 namespace: build-service

type: kubernetes.io/dockerconfigjson

Then create a secretExport resource

Example secretExport resource:

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

 name: my-synced-secret

 namespace: build-service

spec:

 toNamespace: "*"

Once the TBS secret-syncer controller creates the placeholder, this secret will be automatically

copied to the build namespace.

For more detailed information on the carvel secret-gen-controller please review the carvel docs

Update a Synchronized Secret

To update a secret and roll-out those changes to all namespaces that use Builds, simply update the

secret(s) that have a corresponding secretExport resource located in the build-service namespace.

Once this secret is updated the change will be rolled-out across namespaces.

Stop Synchronizing a Secret

To stop synchronizing a secret, delete the secret from the build-service namespace or remove the

corresonding secretExport resource from the secret located in the build-service namespace.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 56

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/install.md
https://github.com/vmware-tanzu/carvel-secretgen-controller/tree/develop/docs

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 57

Managing Image Resources and Builds

This topic contains the following sections:

Image Resources

Builds

The kp CLI can be used to manage image resources and builds. The help text is published here.

$ kp image

Image commands

Usage:

 kp image [command]

Aliases:

 image-resource, images, imgs, img

Available Commands:

 create Create an image resource

 delete Delete an image resource

 list List image resources

 patch Patch an existing image resource

 save Create or patch an image resource

 status Display status for an image resource

 trigger Trigger an image resource build

Flags:

 -h, --help help for image

Use "kp image [command] --help" for more information about a command.

$ kp build

Build Commands

Usage:

 kp build [command]

Aliases:

 build, builds, blds, bld

Available Commands:

 list List builds for an image resource

 logs Tails logs for an image resource build

 status Display status for an image resource build

Flags:

 -h, --help help for build

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 58

https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Use "kp build [command] --help" for more information about a command.

Image Resources

Image resources provide a configuration for Tanzu Build Service to build and maintain a Docker

image utilizing Tanzu, Paketo, and custom Cloud Native Buildpacks.

Build Service will monitor the inputs to the image resource to rebuild the image when the underlying

source or buildpacks have changed.

The following procedures describe how to create and manage image resources in Build Service with

the kp CLI.

Creating Image Resources

Prerequisites:

Access to a cluster running Build Service.

Configured write secrets for your Docker registry.

Source Code

The kp CLI supports creating Image Resources using source code from the following locations:

Git based source

Blob store

Local machine

You can specify only one location for app source code.

Builders

Users can select a Builder (namespaced-scoped) or a Cluster Builder (cluster-scoped) to be used to

create image resource builds. You can use any of the available Builders or Cluster Builders with any

of the source types (git, blob, or local).

If you do not use the --builder or --cluster-builder flags, the default Cluster Builder will be used.

For more information on Builders, see Managing Builders.

Creating an Image Resource With Source Code in a Git Repository

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 59

https://buildpacks.io

To create an image resource using source code from a git repository run:

kp image create <name> \

 --tag <tag> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --sub-path <sub-path> \

 --wait \

 --git <git-repo> \

 --git-revision <git-revision>

Where:

name: The name of the image resource.

tag: The registry location where the image will be created.

builder: (optional) Builder name to be used in the image resource. Cannot be used with

cluster-builder.

cluster-builder: (optional) Cluster Builder name to be used in the image resource. Defaults

to default when builder is not set. Cannot be used with builder.

namespace: (optional) The Kubernetes namespace for the image resource. Defaults to the

local Kubernetes current-context namespace.

env (optional): Image resource environment variable configuration as key=val pairs

(env_var=env_val). The --env flag can be specified multiple times.

sub-path (optional): Build code at the sub path located within the source code directory.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

wait flag (optional) Waits for image create to be reconciled and tails resulting build logs.

git-repo Git repository URL of the source code.

git-revision (optional) The Git revision of the code that the image is built against. Can be

either a branch, tag or a commit sha. When you target the image resource against a branch,

Build Service triggers a build for every new commit. Defaults to main.

Create an Image Resource With Source Code In A Blob Store

Users can specify source code in a blob store saved as a compressed file (zip, tar.gz, .tar) or a

.jar file.

To create an image resource using source code from blob store:

kp image create <name> \

 --tag <tag> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

Note: If the git-repo is a private repository, you must configure the git credentials.

For more information, see Create Secrets.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 60

 --namespace <namespace> \

 --env <env> \

 --sub-path <sub-path> \

 --wait \

 --blob <blob-url>

Where:

name: The name of the image resource.

tag: The registry location where the image will be created.

builder: (optional) Builder name to be used in the image resource. Cannot be used with

cluster-builder.

cluster-builder: (optional) Cluster Builder name to be used in the image resource. Defaults

to default when builder is not set. Cannot be used with builder.

namespace: (optional) The Kubernetes namespace for the image resource. Defaults to the

local Kubernetes current-context namespace.

env (optional): Image resource environment variable configuration as key=val pairs

(env_var=env_val). The --env flag can be specified multiple times.

sub-path (optional): Build code at the sub path located within the source code directory.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

wait flag (optional) Waits for image create to be reconciled and tails resulting build logs.

blob-url URL of the source code blob file.

Creating an Image Resource With Local Source Code

Users can apply local source code from a directory, compressed source code (zip, tar.gz, .tar), or

a .jar file.

To create an image resource using source code from a local machine run:

kp image create <name> \

 --tag <tag> \

 --local-path <source-path> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --cache \

 --registry-ca-cert-path <path-to-ca-cert> \

 --registry-verify-certs

Where:

name: The name of the image resource.

Note: The source code file in the blob store must be publicly viewable or the blob-

url must contain the basic authentication credentials.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 61

tag: The registry location where the image will be created.

source-path Path to local source code.

builder: (optional) Builder name to be used in the image resource. Cannot be used with

cluster-builder.

cluster-builder: (optional) Cluster Builder name to be used in the image resource. Defaults

to default when builder is not set. Cannot be used with builder.

namespace: (optional) The Kubernetes namespace for the image resource. Defaults to the

local Kubernetes current-context namespace.

env (optional): image resource environment variable configuration as key=val pairs

(env_var=env_val). The --env flag can be specified multiple times.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

--wait flag (optional) Waits for image create to be reconciled and tails resulting build logs.

registry-ca-cert-path (optional) Add CA certificate for registry API

registry-verify-certs (optional) Set whether to verify server's certificate chain and host

name (default true)

Buildpack Configuration

Image resources use buildpacks to build application images in a registry. The buildpacks contain the

dependencies needed for these builds and you can add buildpack configuration to Tanzu Build

Service Image Resources.

Buildpack Configuration Use Cases

Common use cases for setting buildpack configuration include:

Selecting a specific version or version line of a dependency (Go 1.15.*, Java 1.8)

Language-specific configuration (Go build target)

Buildpack-specific configuration

Buildpack Configuration Documentation

Buildpack configuration details can be found in the documentation for that specific buildpack.

Use kp clusterstore status <store-name> --verbose to find the homepage of the desired

buildpack.

Buildpack Configuration in Image Resources

Buildpack configuration – including manually selecting buildpacks to use – can be set in two ways

in Tanzu Build Service Image Resources. The configuration depends on the specific buildpack, find

buildpack details in Buildpack Configuration Documentation.

1. Creating a buildpack.yml file at the root of the application source code.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 62

Example buildpack.yml for a Go app to use the latest Go 1.15 version and build with the path

./cmd/package:

go:

 version: 1.15.*

 targets: ["./cmd/package"]

2. Setting environment variables on an Image Resource.

Tanzu Build Service Image Resources can have environment variables configured which will be set

in all Builds and in the final exported registry image. These can be used for buildpack configuration.

Example kp command to create an image resource for a Go app to build with the path

./cmd/package:

kp image create my-image \

 --tag registry.io/my-repo \

 --git https://github.com/my-go-app \

 --env BP_GO_TARGETS="./cmd/package"

Patching Image Resources

Users can patch their existing image resources with the kp CLI. Running a patch will trigger a new

build of the image resource if any of the build inputs are changed.

Patch image resources with the following commands:

With Source Code in a Git Repository

kp image patch <name> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --wait \

 --git <git-repo> \

 --git-revision <git-revision>

With Source Code In A Blob Store

kp image patch <name> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --wait \

 --blob <blob-url>

With Local Source Code

kp image patch <name> \

 [--builder <builder> or --cluster-builder <cluster-builder>] \

 --namespace <namespace> \

 --env <env> \

 --wait \

 --local-path <source-path>

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 63

Where:

name: The name of the image resource to patch.

namespace: (optional) The Kubernetes namespace for the image resource. Defaults to the

local Kubernetes current-context namespace.

env (optional): Image resource environment variable configuration as key=val pairs

(env_var=env_val). The --env flag can be specified multiple times.

cache-size (optional): The cache size used for subsequent builds. Must be a valid kubernetes

quantity (default 2G).

git-repo Git repository URL of the source code. Must select one of git-repo, blob-url, or

source-path

git-revision (optional) The Git revision of the code that the image is built against. Can be

either a branch, tag or a commit sha. When you target the image resource against a branch,

Build Service triggers a build for every new commit. Defaults to main.

blob-url URL of the source code blob file. Must select one of git-repo, blob-url, or

source-path

source-path Path to local source code. Must select one of git-repo, blob-url, or source-

path

Saving Image Resources

Users can create or patch an Image Resource using the save command. The kp image save

command is used exactly the same as kp image create or kp image patch, but it will determine if an

image resource needs to be created or patched.

This can be accomplished by updating the `--git-revision` field with a new commit ID. For many TBS

customers this commit ID references source code that has undergone unit testing, so that they can

be confident that the resulting image can be deployed or promoted to higher level environments.

kp image save my-image \

 --tag my-registry.com/my-repo \

 --git https://my-repo.com/my-app.git \

 --git-revision my-branch

Note: If the git-repo is a private repository, you must configure the git credentials.

For more information, see Create Secrets.

Note: The tag location in a registry and name of an image resource cannot be

modified. To change these fields, you must create a new image resource.

Note:For handling source code changes in the Tanzu Build Service process, we

recommend utilizing the `kp image save --wait` command within a CI/CD pipeline to

update the source code referenced in the image resource.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 64

Listing Images

To list all the image resources in a Kubernetes namespace:

kp image list --namespace <namespace>

Example

$ kp image list -n example1

NAME READY LATEST REASON LATEST IMAGE NAMESPACE

test-image1 True CONFIG first/image:sha example1

test-image2 False BUILDPACK second/image:sha example1

To list all the image resources across all Kubernetes namespaces:

kp image list --all-namespaces

Example

$ kp image list -A

NAME READY LATEST REASON LATEST IMAGE NAMESPACE

test-image1 True CONFIG first/image:sha example1

test-image2 True BUILDPACK second/image:sha example1

test-image3 True BUILDPACK third/image:sha example2

test-image4 False CONFIG fourth/image:sha example2

Filter Image Resources

Users can further filter the list of image resources by applying the --filter flag and specifying a filter

and value. This command is useful for traversing large number of image resources by narrowing the

list to only display image resources that possess certain attributes.

$ kp image list --filter ready=false -A

NAME READY LATEST REASON LATEST IMAGE NAMESPACE

test-image2 False BUILDPACK second/image:sha example1

test-image4 False CONFIG fourth/image:sha example2

See below for the current supported filters and values:

builder=string

clusterbuilder=string

latest-reason=commit,trigger,config,stack,buildpack

ready=true,false,unknown

Image Resource Rebuilds

Rebuilds happen in three ways:

1. An imperative rebuild occurs when you patch an image resource with kp image patch.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 65

2. An automatic rebuild occurs when build inputs change (source code, stack, or buildpacks).

3. A user can trigger a rebuild manually.

An imperative rebuild will be initiated if any of the following changes are made to an image resource:

An update to the commit, branch, Git repository, or other arguments to kp image patch.

You upload a new copy of the local source code by running kp image patch --local-path

<source-path>, where <source-path> is the source code path.

For more information, see Patching Image Resources.

Build Service auto-rebuilds image resources when one or more of the following build inputs change:

New buildpack versions are made available via updates to a Cluster Store.

New Buildpack versions are made available on Tanzu Network.

To update buildpacks, you must add new buildpack versions from Tanzu Network to a

Cluster Store. See Updating Build Service Dependencies for more details.

There is a new commit on a branch or tag Tanzu Build Service is tracking.

There is a new Cluster Stack (ie. base OS image) available, such as full, tiny, or base.

New Stack versions are made available on the Tanzu Build Service Dependencies

page on Tanzu Network.

You can get updates to Stacks from the Tanzu Network Registry by using the kp CLI.

See Updating Build Service Dependencies for more details.

Trigger an Image Resource Rebuild

You can initiate a manual rebuild using kp:

kp image trigger <image-name> --namespace <namespace>

This is useful for debugging image resource builds.

Viewing the Status of an Image Resource

When a user creates an image resource using the above workflow, they are configuring Tanzu Build

Service to start creating builds of the image resource which create container images to be pushed to

a registry.

If a particular build associated with an image resource fails, check the status of the image resource

by running:

kp image status <image-name> --namespace <namespace>

Where image-name is the name of the image resource. See Listing Image Resources to get image

names.

The following is an example output of this command:

Status: Not Ready

Message: --

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 66

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/tbs-dependencies

LatestImage: gcr.io/myapp@sha256:9d7b1fbf7f5cb0f8efe797f30e598b5e38bb1c08ada143d4c

96e4f78111a9239

Last Successful Build

Id: 1

Reason: CONFIG

Last Failed Build

Id: 2

Reason: COMMIT

Deleting an Image Resource

This procedure describes how to delete a Build Service image resource with the kp CLI.

To delete an image resource:

kp image delete <image> --namespace <namespace>

Where image is the name of the image resource.

When you successfully delete an image resource, you will see this message:

"<image>" deleted

Managing Image Resources with YAML

Build Services image resources can be created by applying the kpack image resources to cluster via

kubectl.

Use the default service account for Build Service registry and git secrets.

Image Resource Additional Tags

With the addition of kpack apiVersion kpack.io/v1alpha2, additional tags can be specified on image

resources. Additional tags are not currently configurable via the kp cli, applying yaml configuration

with kubectl is required. See kpack docs for details.

Using a registry for caching

TBS Image resource can be configured to use a registry as the build cache instead of a persistent

volume. Currently, configuring the registry cache is not supported with kp and kubectl must be used.

For more details see the kpack image config docs for how to set the cache tag.

Using Secrets

Use the default service account for Build Service registry and git secrets. kpack will default to the

Warning: Deleting an image resource deletes the image resource and all the builds

that the image resource owns. It does not delete the app images generated by those

builds from the registry.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 67

https://github.com/pivotal/kpack/blob/master/docs/image.md
https://github.com/pivotal/kpack/blob/main/docs/image.md#tags-config
https://github.com/pivotal/kpack/blob/main/docs/image.md

default service account if no service account is specified.

Debugging with Image Resource Status

Using kubectl is a good way to debug Image Resources.

When an image resource has successfully built with its current configuration, its status will report the

up to date fully qualified built image reference.

This information is available with kubectl get image <image-name> -o yaml.

status:

 conditions:

 - lastTransitionTime: "2020-01-17T16:16:36Z"

 status: "True"

 type: Succeeded

 - lastTransitionTime: "2020-01-17T16:16:36Z"

 status: "True"

 type: BuilderReady

 latestImage: index.docker.io/sample/image@sha256:d3eb15a6fd25cb79039594294419de2328f

14b443fa0546fa9e16f5214d61686

 ...

When a build fails the image resource status will report the condition Succeeded=False. The image

resource status also includes the status of the builder being used by the image resource. If the

builder is not ready, you may want to inspect that builder. More details in Managing Builders.

status:

 conditions:

 - lastTransitionTime: "2020-01-17T16:13:48Z"

 status: "False"

 type: Succeeded

 message: "Some error occurred"

 - lastTransitionTime: "2020-01-17T16:16:36Z"

 s t a t u s : " F a l s e "

 t y p e : B u i l d e r R e a d y

 message: "Some builder error occurred"

 ...

If further debugging is required, inspect the image resource's latest Build status discussed in Viewing

Build Details for an Image Resource.

Image Resource Service Bindings

Tanzu Build Service supports application service bindings as described in the Kubernetes Service

Bindings specification.

The kp CLI does not currently support creating service bindings, you should use kubectl.

Creating an Image Resource with Service Bindings

kpack documentation can be found here.

To create a service binding in your application image, you must create either of the following:

A Provisioned Service

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 68

https://github.com/servicebinding/spec
https://github.com/pivotal/kpack/blob/main/docs/servicebindings.md
https://github.com/servicebinding/spec#provisioned-service

A Kubernetes Secret that follows the guidelines provided in Well-known Secret Entry

The following is an example that can be used with kubectl apply. It creates a production-db service

binding for a maven app.

Example:

apiVersion: kpack.io/v1alpha2

kind: Image

metadata:

 name: sample-binding-with-secret

spec:

 tag: my-registry.com/repo

 builder:

 kind: ClusterBuilder

 name: default

 source:

 git:

 url: https://github.com/buildpack/sample-java-app.git

 revision: 0eccc6c2f01d9f055087ebbf03526ed0623e014a

 build:

 services:

 - name: production-db-secret

 kind: Secret

apiVersion: v1

kind: Secret

metadata:

 name: production-db-secret

type: servicebinding.io/mysql

stringData:

 type: mysql

 provider: bitnami

 host: localhost

 port: 3306

 username: root

 password: root

Builds

The procedures in this section describe how to view information and logs for image resource builds

using the kp CLI.

Note: Check the desired buildpack documentation for details on the service bindings

it supports. You can access these docs [here]

(https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-

buildpacks/GUID-index.html).

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 69

https://github.com/servicebinding/spec#provisioned-service
https://github.com/servicebinding/spec#provisioned-service

Listing Builds

Build Service stores the ten most recent successful builds and the ten most recent failed builds.

To see a the list of builds for an image resource run:

kp build list <image-name> --namespace <namespace>

If the namespace is not specified, it defaults to the kubernetes current-context namespace. And if the

image-name is not specified, the builds for all the image resources in your namespace are listed.

The following is an example of the output for this command:

BUILD STATUS IMAGE REASON

1 SUCCESS gcr.io/myapp@sha256:some-sha1 CONFIG

2 SUCCESS gcr.io/myapp@sha256:some-sha2 COMMIT

3 SUCCESS gcr.io/myapp@sha256:some-sha3 STACK

4 FAILURE gcr.io/myapp@sha256:some-sha4 CONFIG+

5 BUILDING gcr.io/myapp@sha256:some-sha5 BUILDPACK

The following describes the fields in the example output:

BUILD: Describes the index of builds in the order that they were built.

STATUS: Describes the status of a previous build image.

IMAGE: The full image reference for the app image produced by the build.

REASON: Describes why an image rebuild occurred. These reasons include:

CONFIG: Occurs when a change is made to commit, branch, Git repository, or build

fields on the image's configuration file and you run kp image apply.

COMMIT: Occurs when new source code is committed to a branch or tag that Build

Service is monitoring for changes.

BUILDPACK: Occurs when new buildpack versions are made available through an

updated builder.

STACK: Occurs when a new base OS image, called a run image, is available.

TRIGGER: Occurs when a new build is manually triggered.

Viewing Build Details for an Image

To display retrieve a detailed Bill of Materials for a particular build:

kp build status <image> -b <build-number>

Note: A rebuild can occur for more than one reason. When there are multiple

reasons for a rebuild, the kp CLI output shows the primary Reason and appends a +

sign to the Reason field. The priority rank for the Reason, from highest to lowest, is

CONFIG, COMMIT, BUILDPACK, STACK, and TRIGGER.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 70

Where:

image-name is the name of the image resource the build is associated with

build-name (optional) is the index of the build from listing builds. Defaults to latest build.

The following is an example of the output for this command:

Image: gcr.io/myapp@sha256:f87b614257af05c3301c1554c4f15131793caec3adf55e45d2c612

e90445765a

Status: SUCCESS

Reason: CONFIG

 resources

 - s o u r c e : { }

 + s o u r c e :

 + g i t :

 + revision: 948b2eff6a21580a44a0f4d8c609a2af45359d41

 + url: https://github.com/paketo-buildpacks/samples

 + s u b P a t h : g o / m o d

Started: 2021-02-02 18:34:33

Finished: 2021-02-02 18:41:03

Pod Name: build-pod-xyz

Builder: gcr.io/my-builder:base@sha256:grtewwads0asdvf09asdf

Run Image: gcr.io/base-image:run@sha256:asdas098asdas

Source: Git

Url: http://github.com/myapp

Revision: ad123ad

BUILDPACK ID BUILDPACK VERSION

io.java.etc 123

io.kotlin.etc 321

The following describes the fields in the example output:

Image: The full image reference for the app image produced by the build.

Status: Describes the status of a previous build image.

Reason: Describes why an image resource build occurred and the change diff. The reason

could be one or more of these:

CONFIG: Occurs when a change is made to commit, branch, Git repository, or build

fields on the image's configuration file and you run kp image apply.

COMMIT: Occurs when new source code is committed to a branch or tag that Build

Service is monitoring for changes.

BUILDPACK: Occurs when new buildpack versions are made available through an

updated builder.

STACK: Occurs when a new base OS image (called a run image) is available.

TRIGGER: Occurs when a new build is manually triggered.

Started: When a build started.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 71

Finished: When a build finished.

Pod Name: The name of the Pod being used for the Build.

Builder: The full image tag for the builder image used by the build.

Run Image: The full image tag for the run image used by the app.

Source: Describes where the source code used to build the image is coming from. Can be

Git, Blob, or Local Source.

Url: The Git repository URL for Git source, the Blob file URL for Blob source. Unset for

Local Source.

Revision: The Git commit sha of the source code used to create the build for Git source.

BUILDPACK ID: A list of buildpack ids the build used.

BUILDPACK VERSION: A list of buildpack versions the build used.

Image Resource Status shows ImagePullBackOff

If the Build is currently waiting for a container, the Build status will show details in the output of kp

build status.

Here is an example output:

Image: --

Status: BUILDING

Reason: CONFIG

Status Reason: ImagePullBackOff

Status Message: A container image currently cannot be pulled: Back-off pulling image

 "gcr.io/my-builder:base@sha256:grtewwads0asdvf09asdf"

Pod Name: build-pod-xyz

Builder: gcr.io/my-builder:base@sha256:grtewwads0asdvf09asdf

Run Image: gcr.io/base-image:run@sha256:asdas098asdas

Source: Git

Url: http://github.com/myapp

Revision: ad123ad

BUILDPACK ID BUILDPACK VERSION

If you are seeing this error and you are using a Cluster Builder, you may need to configure a Synced

Secret. See When to use Synchronized Secrets.

Getting Build Logs

An image resource that a user creates will cause builds to be initiated for that image. Builds are

where Cloud Native Buildpacks are run and apps get built into images.

Build logs are a good way to debug issues and to get information about how your app is being built.

If you get logs of a build in progress, the logs will be tailed and will terminate when the build

completes.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 72

To get logs from a build run:

kp build logs <image> --build <build-number> --namespace <namespace>

Where:

image-name is the name of the image resource the build is associated with

build-name (optional) is the index of the build from listing builds. Defaults to latest build.

The following is an example of the output of the command:

===> PREPARE

Build reason(s): CONFIG

CONFIG:

 r e s o u r c e s : { }

 - s o u r c e : { }

 + s o u r c e :

 + g i t :

 + revision: 446dbda043ca103d33e2cad389d43f289e63f647

 + url: https://github.com/some-org/some-repo

Loading secret for "gcr.io" from secret "gcr" at location "/var/build-secrets/gcr"

Cloning "https://github.com/some-org/some-repo" @ "446dbda043ca103d33e2cad389d43f289e6

3f647"...

Successfully cloned "https://github.com/some-org/some-repo" @ "446dbda043ca103d33e2cad

389d43f289e63f647" in path "/workspace"

===> DETECT

tanzu-buildpacks/node-engine 0.1.2

tanzu-buildpacks/npm-install 0.1.1

tanzu-buildpacks/npm-start 0.0.2

===> ANALYZE

Previous image with name "gcr.io/test-app" not found

===> RESTORE

===> BUILD

Tanzu Node Engine Buildpack 0.1.2

 Resolving Node Engine version

 Candidate version sources (in priority order):

 -> ""

 <unknown> -> "*"

 Selected Node Engine version (using): 14.15.1

 Executing build process

 Installing Node Engine 14.15.1

 Completed in 2.495s

 Configuring environment

 NODE_ENV -> "production"

 NODE_HOME -> "/layers/tanzu-buildpacks_node-engine/node"

 NODE_VERBOSE -> "false"

 Writing profile.d/0_memory_available.sh

 Calculates available memory based on container limits at launch time.

 Made available in the MEMORY_AVAILABLE environment variable.

Tanzu NPM Install Buildpack 0.1.1

 Resolving installation process

 Process inputs:

 node_modules -> "Not found"

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 73

 npm-cache -> "Not found"

 package-lock.json -> "Not found"

 Selected NPM build process: 'npm install'

 Executing build process

 Running 'npm install --unsafe-perm --cache /layers/tanzu-buildpacks_npm-install/np

m-cache'

 Completed in 3.591s

 Configuring environment

 NPM_CONFIG_LOGLEVEL -> "error"

 NPM_CONFIG_PRODUCTION -> "true"

 PATH -> "$PATH:/layers/tanzu-buildpacks_npm-install/modules/node_

modules/.bin"

Tanzu NPM Start Buildpack 0.0.2

 Assigning launch processes

 web: node server.js

===> EXPORT

Adding layer 'tanzu-buildpacks/node-engine:node'

Adding layer 'tanzu-buildpacks/npm-install:modules'

Adding layer 'tanzu-buildpacks/npm-install:npm-cache'

Adding 1/1 app layer(s)

Adding layer 'launcher'

Adding layer 'config'

Adding label 'io.buildpacks.lifecycle.metadata'

Adding label 'io.buildpacks.build.metadata'

Adding label 'io.buildpacks.project.metadata'

*** Images (sha256:0abdbaf1f25c3c13cdb918d06906670b84dd531bc7301177b11284dac68bdb9c):

 gcr.io/test-app

 gcr.io/test-app:b1.20210203.225422

Adding cache layer 'tanzu-buildpacks/node-engine:node'

Adding cache layer 'tanzu-buildpacks/npm-install:modules'

Adding cache layer 'tanzu-buildpacks/npm-install:npm-cache'

===> COMPLETION

Build successful

Viewing Bill of Materials

The kp cli allows you to view the bill of materials in an image built by a Build.

kp build status <image-name> --bom

For generating the bill of materials, the kp CLI will read metadata from the image (generated by the

build) in the registry.

As an example:

$ kp build status --bom my-app-image | jq

[

 {

 "buildpack": {

Note: You must have credentials to access the image registry on your machine.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 74

 "id": "tanzu-buildpacks/node-engine",

 "version": "0.1.2"

 },

 "metadata": {

 "licenses": [],

 "name": "Node Engine",

 "sha256": "b981046a0ea3d5594a7f04fae3afdfa1983bc65f4e26e768b38a2d67057ac75c",

 "stacks": [

 "io.buildpacks.stacks.bionic",

 "org.cloudfoundry.stacks.cflinuxfs3"

],

 "uri": "file:///dependencies/b981046a0ea3d5594a7f04fae3afdfa1983bc65f4e26e768b38

a2d67057ac75c",

 "version": "14.15.1"

 },

 "name": "node",

 "version": "14.15.1"

 },

 {

 "buildpack": {

 "id": "tanzu-buildpacks/npm-install",

 "version": "0.1.1"

 },

 "metadata": {

 "launch": true

 },

 "name": "node_modules"

 }

]

Offline Builds

Tanzu Build Service supports offline/air-gapped builds with Tanzu Buildpacks. Offline builds use pre-

packaged dependencies and do not need to download from anywhere off-cluster to create

application images.

When using Tanzu Buildpacks the build will execute as an offline build. For details on how to

configure buildpacks, see Buildpack Configuration in Images.

Image Signing with cosign

Tanzu Build Service supports cosign image signing.

Images signed with cosign require using kubectl instead of kp.

Cosign Signing Secret

Images can be signed with cosign when a cosign formatted secret is added to the service account

used to build the image. The secret can be added using the cosign CLI or manually.

Note: Offline builds only ensure buildpack dependencies are offline. The application

build and custom configuration must also not reach off-cluster to be completely

offline.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 75

https://github.com/sigstore/cosign

To create a cosign signing secret through the cosign CLI, when targetted to the Kubernetes cluster,

use: cosign generate-key-pair k8s://[NAMESPACE]/[NAME]

Alternatively, create the cosign secret and provide your own cosign key files manually to Kubernetes

by running the following command:

% kubectl create secret generic <secret-name> --from-literal=cosign.password=<password

> --from-file=</path/to/cosign.key>

<secret-name>: The name of the secret. Ensure that the secret is created in the same

namespace as the eventual image resource.

<password>: The password provided to encrypt the private key. If not present, an empty

password will be used.

</path/to/cosign.key>: The cosign private key file generated with cosign generate-key-

pair.

After adding the cosign secret, the secret must be added to the list of secrets attached to the

service account resource that is building the image.

Adding Cosign Annotations

By default, the build number and build timestamp information will be added to the cosign signing

annotations. Users can specify additional cosign annotations under the spec key.

cosign:

 annotations:

 - name: "annotationName"

 value: "annotationValue"

One way these annotations can be viewed is through verifying cosign signatures. The annotations

will be under the optional key in the verified JSON response. For example, this can be done with:

% cosign verify -key /path/to/cosign.pub registry.example.com/project/image@sha256:<DI

GEST>

Which provides a JSON response similar to:

{

 "critical": {

 "identity": {

 "docker-reference": "registry.example.com/project/image"

 }, "image": {

 "docker-manifest-digest": "sha256:<DIGEST>"

 }, "type": "cosign container image signature"

 }, "optional": {

 "buildNumber": "1",

 "buildTimestamp": "20210827.175240",

 "annotationName": "annotationValue"

 }

}

Push Cosign Signature to a Different Location

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 76

Cosign signatures can be pushed to a different registry from where the image is located. To enable

this, add the corresponding annotation to the cosign secret resource.

metadata:

 name: ...

 namespace: ...

 annotations:

 kpack.io/cosign.repository: other.registry.com/project/image

data:

 cosign.key: ...

 cosign.password: ...

This will be equivalent to setting COSIGN_REPOSITORY as specified in cosign Specifying Registry

The same service account that has that cosign secret attached, and would be used for signing and

building the image, would require that the registry credentials for this other repository be placed

under the listed secrets and is not required to be listed in imagePullSecrets. It should be noted that

if you wish to push the signatures to the same registry but a different path from the image, the

credential used must have access to both paths. You cannot use two separate credentials for the

same registry with different paths.

Cosign Legacy Docker Media Types

To sign images in a registry that does not fully support OCI media types, legacy equivalents can be

used by adding the corresponding annotation to the cosign secret resource:

metadata:

 name: ...

 namespace: ...

 annotations:

 kpack.io/cosign.docker-media-types: "1"

data:

 cosign.key: ...

 cosign.password: ...

This will be equivalent to setting COSIGN_DOCKER_MEDIA_TYPES=1 as specified in the cosign registry-

support

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 77

https://github.com/sigstore/cosign#specifying-registry
https://github.com/sigstore/cosign#registry-support

Managing ClusterStacks

A ClusterStack is a cluster scoped resource that provides the build and run images for the Cloud

Native Buildpack stack that will be used in a Builder.

Most users automatically configure three ClusterStack resources via the TBS installation process.

These ClusterStacks are referenced in three corresponding ClusterBuilder resources.

Additional information about security and patching cadence for these stacks and their ideal use cases

can be found here. More detailed release notes for the stacks can be accessed by following the links

in the table below.

Name ID

tiny io.paketo.stacks.tiny

base io.buildpacks.stacks.bionic

full io.buildpacks.stacks.bionic

The kp CLI can be used to manage clusterstack. The help text is published here.

$ kp clusterstack

Cluster Stack Commands

Usage:

 kp clusterstack [command]

Aliases:

 clusterstack, csk

Available Commands:

 create Create a cluster stack

 delete Delete a cluster stack

 list List cluster stacks

 save Create or update a cluster stack

 status Display cluster stack status

 update Update a cluster stack

Flags:

 -h, --help help for clusterstack

Use "kp clusterstack [command] --help" for more information about a command.

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 78

https://buildpacks.io/docs/concepts/components/stack/
https://docs.pivotal.io/tanzu-buildpacks/stacks.html
https://github.com/paketo-buildpacks/tiny-release/releases
https://github.com/paketo-buildpacks/base-release/releases
https://github.com/paketo-buildpacks/full-release/releases
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

Create a ClusterStack

Users can create a clusterstack using build and run images from a Docker registry or the local

machine. The run and build images provided during clusterstack creation will be uploaded to the

canonical repository, which is the docker-repository specified during TBS install.

If using a Docker registry for the stack images:

kp clusterstack create <clusterstack-name> \

 --build-image <location of build-image> \

 --run-image <location of run-image>

Example:

kp csk create my-clusterstack \

 -b gcr.io/test/stack/run:latest

 -r gcr.io/test/stack/build:latest

If using local stack images created with docker save:

kp clusterstack create <clusterstack-name> \

 --build-image <path to build-image>.tar \

 --run-image <path to run-image>.tar

Example:

kp csk create my-clusterstack \

 -b ./local-build-image.tar \

 -r ./local-run-image.tar

Update a ClusterStack

Users can update a stack using build and run images from a Docker registry or the local machine.

The run and build images provided during clusterstack update will be uploaded to the canonical

repository, which is the docker-repository specified during TBS install.

If using a Docker registry:

kp clusterstack update <stack-name> \

 --build-image <location of build-image> \

Note: Only Build Service Admins (i.e. users with the pb-admin-role kubernetes

ClusterRole) can perform clusterstack commands.

Note: The user must have read access to the source Docker registry and

write access to the canonical registry on the local machine.

Note: The user must have write access to the canonical registry on the local

machine.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 79

 --run-image <location of run-image>

Example:

kp csk update my-clusterstack \

 -b gcr.io/test/stack/run:latest

 -r gcr.io/test/stack/build:latest

If using local stack images created with docker save:

kp clusterstack update <stack-name> \

 --build-image <path to build-image>.tar \

 --run-image <path to run-image>.tar

Example:

kp csk update my-clusterstack \

 -b ./local-build-image.tar \

 -r ./local-run-image.tar

Save a ClusterStack

Users can create or update a ClusterStack using the save command. The kp clusterstack save

command is used exactly the same as kp clusterstack create and kp clusterstack update, but it

will determine if a clusterstack needs to be created or updated.

Get ClusterStack Status

Users can get the current status of a clusterstack:

kp clusterstack status <stack-name>

The following is an example of the output for this command:

Status: Ready

ID: org.cloudfoundry.stacks.cflinuxfs3

Run Image: paketo/run:full-cnb

Build Image: paketo/build:full-cnb

Delete a ClusterStack

Users can delete an existing clusterstack:

Note: The user must have read access to the source Docker registry and

write access to the canonical registry on the local machine.

Note: The user must have write access to the canonical registry on the local

machine.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 80

kp clusterstack delete <stack-name>

List all ClusterStacks

Users can view the list of all ClusterStacks created:

The following is an example of the output for this command:

NAME READY ID

base True io.buildpacks.stacks.bionic

default True io.buildpacks.stacks.bionic

full True org.cloudfoundry.stacks.cflinuxfs3

tiny True io.paketo.stacks.tiny

How to update an Image for Stack updates only?

To achieve Stack only updates for an Image, you can pin the Buildpack versions in the Builder used

for creating the Image.

Note: User will not be asked for a confirmation before deletion.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 81

Managing Stores

A Store is a cluster level resource that provides a collection of buildpacks that can be utilized by

Builders. Buildpacks are distributed and added to a store in buildpackages which are docker images

containing one or more buildpacks.

Build Service ships with a curated collection of Tanzu buildpacks for Java, Nodejs, Go, PHP, nginx,

and httpd and Paketo buildpacks for procfile, and .NET Core. Detailed documentation about the

buildpacks that are installed with TBS can be found here. It is important to keep these buildpacks up-

to-date. Updates to these buildpacks are provided on Tanzu Network.

In addition to supported Tanzu and Paketo buildpacks, custom buildpackages can be uploaded to

Build Service stores.

The kp CLI can be used to manage clusterstores. The help text is published here.

$ kp clusterstore

ClusterStore Commands

Usage:

 kp clusterstore [command]

Aliases:

 clusterstore, clusterstores, clstrcsrs, clstrcsr, csrs, csr

Available Commands:

 add Add buildpackage(s) to cluster store

 create Create a cluster store

 delete Delete a cluster store

 list List cluster stores

 remove Remove buildpackage(s) from cluster store

 save Create or update a cluster store

 status Display cluster store status

Flags:

 -h, --help help for clusterstore

Creating Buildpacks and Buildpackages

Documentation for creating buildpacks is available here.

Documentation for creating buildpackages is available here.

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 82

https://docs.pivotal.io/tanzu-buildpacks/
https://network.tanzu.vmware.com/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md
https://buildpacks.io/docs/buildpack-author-guide/create-buildpack/
https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack/

Listing ClusterStores

Users can view the existing stores with:

kp clusterstore list

Creating a ClusterStore

Tanzu Build Service ships with a default store containing all of the supported buildpacks. Users can

create additional stores with:

kp clusterstore create <store-name> -b <buildpackage-1> -b <buildpackage-2>

Examples:

kp clusterstore create my-store -b my-registry.com/my-buildpackage

kp clusterstore create my-store -b my-registry.com/my-buildpackage -b my-registry.com/

my-other-buildpackage

kp clusterstore create my-store -b ../path/to/my-local-buildpackage.cnb

Buildpackages will be uploaded to the registry used during installation.

Saving a ClusterStore

Users can create or update a ClusterStore using the save command. The kp clusterstore save

command is used exactly the same as kp clusterstore create, but it will determine if a clusterstore

needs to be created or updated.

kp clusterstore save <store-name> -b <buildpackage-1> -b <buildpackage-2>

Adding Buildpackages to a ClusterStore

Users can add multiple buildpackages at a time from a registry or from a file on the local machine.

This command is useful for users that want to only consume certain buildpacks rather than update all

dependencies with kp import.

If using a Docker registry:

kp clusterstore add <store-name> -b <buildpackage-1> -b <buildpackage-2> ...

Note: Only Build Service Admins can perform store commands.

Note: The user must have read access to the source Docker registry and write

access to the registry used for installation on the local machine.

Note: The user must have read access to the source Docker registry and write

access to the registry used for installation on the local machine.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 83

If using local .cnb buildpackage files created as described in the buildpackages docs:

kp clusterstore add <store-name> -b <path-to-buildpackage-1>.cnb -b <path-to-bu

ildpackage-2>.cnb ...

Adding Buildpackages to a ClusterStore from Tanzu Network

Updated versions of all supported Buildpacks will be available on Tanzu Network as registry images.

Updated Buildpacks will be found in the following locations:

Java

NodeJS

Go

PHP, .NET Core, nginx, httpd, procfile

Here is a list of how to update each buildpack that is included with Tanzu Build Service by default:

kp clusterstore add default registry.tanzu.vmware.com/tanzu-java-buildpack/java:<versi

on>

kp clusterstore add default registry.tanzu.vmware.com/tanzu-nodejs-buildpack/nodejs:<v

ersion>

kp clusterstore add default registry.tanzu.vmware.com/tanzu-go-buildpack/go:<version>

kp clusterstore add default registry.tanzu.vmware.com/tbs-dependencies/paketo-buildpac

ks_dotnet-core:<version>

kp clusterstore add default registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildpack

s_php:<version>

kp clusterstore add default registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildpack

s_nginx:<version>

kp clusterstore add default registry.tanzu.vmware.com/tbs-dependencies/tanzu-buildpack

s_httpd:<version>

kp clusterstore add default registry.tanzu.vmware.com/tbs-dependencies/paketo-buildpac

ks_procfile:<version>

Offline Adding Buildpackages to a ClusterStore from Tanzu Network

If your Tanzu Build Service installation is in an offline/air-gapped environment, you can update stores

with the following offline workflow:

1. Find the latest version of the Dependency Descriptor bundle image

(registry.tanzu.vmware.com/tbs-dependencies/full) from the latest release on the Tanzu

Build Service Dependencies page on Tanzu Network.

2. Download the following CLIs for your operating system:

kp.

imgpkg

kbld

4. Download the dependency images for Tanzu Build Service to your local machine with

imgpkg:

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 84

https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack/
https://network.tanzu.vmware.com
https://network.tanzu.vmware.com/products/tanzu-java-buildpack
https://network.tanzu.vmware.com/products/tanzu-nodejs-buildpack
https://network.tanzu.vmware.com/products/tanzu-go-buildpack
https://network.tanzu.vmware.com/products/tbs-dependencies
https://network.tanzu.vmware.com/products/tbs-dependencies/
https://network.tanzu.vmware.com/products/tbs-dependencies/build-service
https://network.tanzu.vmware.com/products/imgpkg
https://network.tanzu.vmware.com/products/kbld

docker login registry.tanzu.vmware.com

imgpkg copy -b registry.tanzu.vmware.com/tbs-dependencies/full:<VERSION> \

 --to-tar=tbs-dependencies.tar

5. Move the output file tbs-dependencies.tar to a machine that has access to the "offline"

environment

6. Upload the dependency images to the registry used to deploy Tanzu Build Service:

docker login <build-service-registry>

imgpkg copy --tar=tbs-dependencies.tar \

 --to-repo <IMAGE-REPOSITORY>

Where IMAGE-REPOSITORY is the repository used to install Tanzu Build Service. This should be the

same value as IMAGE-REPOSITORY used in the Installation Steps.

7. Now that dependencies are relocated to the internal registry, you can use the following

commands to update the necessary resources:

imgpkg pull -b <IMAGE-REPOSITORY>:<VERSION> \

 -o /tmp/descriptor-bundle \

 --registry-ca-cert-path <PATH-TO-CA>

kbld -f /tmp/descriptor-bundle/.imgpkg/images.yml \

 -f /tmp/descriptor-bundle/tanzu.descriptor.v1alpha3/descriptor-<VERSION>.yaml \

 | kp import -f -

Removing Buildpackages from a ClusterStore

Users can remove a buildpackage from a ClusterStore by referencing the buildpackage Id and

version.

kp clusterstore remove <store> -b <buildpackage-id>@<buildpackage-version>

Examples:

kp clusterstore remove my-store -b buildpackage@1.0.0

kp clusterstore remove my-store -b buildpackage@1.0.0 -b other-buildpackage@2.0.0

The ClusterStore status shows the list of buildpackage Id and version

Get ClusterStore Status

Users can use the kp CLI to get details about a store including buildpackages and their buildpacks, as

well as meta-buildpacks. Meta-buildpacks are buildpacks that indicate the order that other buildpacks

run:

To view the buildpackages in a store:

kp clusterstore status <store-name>

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 85

#other-install
https://buildpacks.io/docs/concepts/components/buildpack/#meta-buildpack

Example:

$kp clusterstore status default

Status: Ready

BUILDPACKAGE ID VERSION HOMEPAGE

paketo-buildpacks/go 0.1.3 https://github.com/paketo-buildpacks/

go

paketo-buildpacks/procfile 2.0.2 https://github.com/paketo-buildpacks/

procfile

paketo-buildpacks/procfile 3.0.0 https://github.com/paketo-buildpacks/

procfile

tanzu-buildpacks/dotnet-core 0.0.4

tanzu-buildpacks/dotnet-core 0.0.7

tanzu-buildpacks/dotnet-core 0.0.6

tanzu-buildpacks/go 1.0.6

tanzu-buildpacks/go 1.0.7

tanzu-buildpacks/go 1.0.9

tanzu-buildpacks/go 1.0.5

tanzu-buildpacks/httpd 0.0.38

tanzu-buildpacks/httpd 0.0.39

tanzu-buildpacks/httpd 0.0.40

tanzu-buildpacks/java 3.8.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java 3.5.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java 4.1.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java 4.0.0 https://github.com/pivotal-cf/tanzu-j

ava

tanzu-buildpacks/java-native-image 3.6.0 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/java-native-image 3.9.0 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/java-native-image 3.4.2 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/java-native-image 3.10.0 https://github.com/pivotal-cf/tanzu-j

ava-native-image

tanzu-buildpacks/nginx 0.0.48

tanzu-buildpacks/nginx 0.0.46

tanzu-buildpacks/nodejs 1.1.0

tanzu-buildpacks/nodejs 1.2.3

tanzu-buildpacks/nodejs 1.2.2

tanzu-buildpacks/php 0.0.3

tanzu-buildpacks/php 0.0.5

To view buildpackages & their individual buildpacks as well as display the order of meta-buildpacks

use the --verbose flag

kp clusterstore status <store-name> --verbose

Migrating Buildpacks

Build Service will never automatically remove buildpackages from the store unless you explicitly

remove them. In this way, users can continue to use older buildpacks until the operator is ready to

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 86

migrate them.

How you migrate is entirely dependent on the configuration of your Builder resources: * Builders

that do not provide a buildpack version will automatically update to the latest buildpack version if it is

available. * Builders that explicitly specify a buildpack version will not update automatically.

With the above in mind, migrating buildpackages in the store is as simple as kp clusterstore adding

newer buildpackages and kp clusterstore removeing older buildpackages as necessary.

If you'd like fine-grained control over buildpack updates, you can create multiple stores to manage

buildpack versions. Then, you can point individual builders at the desired store. Each store can be

updated as needed without affecting other builders or fanning out large, sweeping changes.

Corresponding kpack Resource

All Build Service builders utilize cluster scoped Store Resources.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 87

https://github.com/pivotal/kpack/blob/master/docs/builders.md#store

Descriptors

This topic describes the descriptors that are available so you can choose which option to configure

depending on your use case.

About descriptors

Tanzu Build Service descriptors are curated sets of dependencies, including stacks and buildpacks,

that are continuously released on VMware Tanzu Network to resolve all workload Critical and High

CVEs. Descriptors are imported into Tanzu Build Service to update the entire cluster.

There are two types of descriptor, lite and full, available on the Tanzu Network Build Service

Dependencies page. The different descriptors can apply to different use cases and workload types.

For the differences between the descriptors, see Descriptor comparison.

You configure which descriptor is imported when installing Tanzu Build Service.

Lite descriptor

The Tanzu Build Service lite descriptor is the default descriptor selected if none is configured.

It contains a smaller footprint to speed up installation time. However, it does not support all workload

types. For example, the lite descriptor does not contain the PHP buildpack.

The lite descriptor only contains the base stack. The default stack is installed, but is identical to the

base stack. For more information, see Stacks.

Full descriptor

The Tanzu Build Service full descriptor contains more dependencies, which allows for more

workload types.

The dependencies are pre-packaged so builds don't have to download them from the Internet. This

can speed up build times and allows builds to occur in airgapped environments.

The full descriptor contains the following stacks, which support different use cases:

base

default (identical to base)

full

tiny

For more information, see Stacks. Due to the larger footprint of full, installations might take longer.

Descriptor comparison

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 88

https://network.pivotal.io/products/tbs-dependencies/
https://docs.pivotal.io/tanzu-buildpacks/stacks.html
https://docs.pivotal.io/tanzu-buildpacks/stacks.html

Both lite and full descriptors are suitable for production environments.

lite full

Faster installation time Yes No

Dependencies pre-packaged No Yes

Contains base stack Yes Yes

Contains full stack No Yes

Contains tiny stack No Yes

Supports Java workloads Yes Yes

Supports Node.js workloads Yes Yes

Supports Go workloads Yes Yes

Supports Python workloads Yes Yes

Supports .NET Core workloads Yes Yes

Supports PHP workloads No Yes

Supports static workloads Yes Yes

Supports binary workloads Yes Yes

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 89

Managing Builders

A Builder is a Tanzu Build Service resource used to manage Cloud Native Buildpack builders.

Builders contain a set of buildpacks and a stack that will be used to create images.

There are two types of Builders:

Cluster Builders: Cluster-scoped Builders

Builders: Namespace-scoped Builders

The kp CLI can be used to manage builders and clusterbuilders. The help text is published here.

$ kp builder

Builder Commands

Usage:

 kp builder [command]

Aliases:

 builder, builders, bldrs, bldr

Available Commands:

 create Create a builder

 delete Delete a builder

 list List available builders

 patch Patch an existing builder configuration

 save Create or patch a builder

 status Display status of a builder

Flags:

 -h, --help help for builder

Use "kp builder [command] --help" for more information about a command.

$ kp clusterbuilder

ClusterBuilder Commands

Usage:

 kp clusterbuilder [command]

Aliases:

 clusterbuilder, clusterbuilders, clstrbldrs, clstrbldr, cbldrs, cbldr, cbs, cb

Available Commands:

 create Create a cluster builder

Note: Only Build Service Admins can manage Cluster Builders.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 90

https://buildpacks.io/docs/concepts/components/builder/
https://github.com/vmware-tanzu/kpack-cli/blob/v0.2.0/docs/kp.md

 delete Delete a cluster builder

 list List available cluster builders

 patch Patch an existing cluster builder configuration

 save Create or patch a cluster builder

 status Display cluster builder status

Flags:

 -h, --help help for clusterbuilder

Creating a Builder

Use the kp cli to create a Builder:

Cluster Builder:

kp clusterbuilder create <name> --tag <tag> --order <order> --stack <stack> --s

tore <store>

kp clusterbuilder create <name> --tag <tag> --stack <stack> --store <store> --b

uildpack <buildpack>

Builder:

kp builder create <name> --tag <tag> --order <order> --stack <stack> --store <s

tore> --namespace <namespace>

kp builder create <name> --tag <tag> --stack <stack> --store <store> --namespac

e <namespace> --buildpack <buildpack>

Where:

name: The name of the builder.

tag: The registry location where the builder will be created.

stack: The name of the stack to be used by the builder.

store: The name of the store containing the buildpacks that will be used by the builder.

namespace The kubernetes namespace for the builder (for Builders only)

order: The local path to the buildpack order YAML that the builder will use. Sample order

YAML files will be available on the VMware Tanzu Build Service Dependencies page on

Tanzu Network. For more information about listing buildpacks in groups in the order YAML,

see builder.toml in the Buildpacks.io documentation.

Example order YAML file that would be used by a builder designed to build NodeJS and

Java apps:

- group:

 - id: tanzu-buildpacks/nodejs

Note: These docs assume kp cli v0.4.* from TBS release v1.4.*. If a feature is not

working, you may need to upgrade your cli.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 91

https://network.tanzu.vmware.com/products/tbs-dependencies
https://buildpacks.io/docs/reference/builder-config/#order-_list-required_

- group:

 - id: tanzu-buildpacks/java

buildpack: Buildpack id and optional version in the form of either '@' or ''. Repeat for each

buildpack in order, or supply once with comma-separated list. This cannot be combined with

--order. All supplied buildpacks will be in the same group.

Patching a Builder

You can update a Builder resource using the kp cli. To update a builder given a name, run:

Cluster Builder:

kp clusterbuilder patch <name> --order <order> --stack <stack> --store <store>

kp clusterbuilder patch <name> --stack <stack> --store <store> --buildpack <bui

ldpack>

Builder:

kp builder patch <name> --order <order> --stack <stack> --store <store> --names

pace <namespace>

kp builder patch <name> --stack <stack> --store <store> --namespace <namespace>

 --buildpack <buildpack>

kp ccb patch and kp cb patch are respective aliases.

Where:

name: The name of the builder.

stack: The name of the stack to be used by the builder.

store: The name of the store containing the buildpacks that will be used by the builder.

namespace The kubernetes namespace for the builder (for Builders only)

order: The local path to the buildpack order YAML that the builder will use. Sample order

YAML files will be available on the VMware Tanzu Build Service Dependencies page on

Tanzu Network. For more information about listing buildpacks in groups in the order YAML,

see builder.toml in the Buildpacks.io documentation.

Example order YAML file that would be used by a builder designed to build NodeJS and

Java apps:

- group:

 - id: paketo-buildpacks/bellsoft-liberica

 - id: paketo-buildpacks/gradle

- group:

 - id: paketo-buildpacks/nodejs

buildpack: Buildpack id and optional version in the form of either '@' or ''. Repeat for each

buildpack in order, or supply once with comma-separated list. This cannot be combined with

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 92

https://network.tanzu.vmware.com/products/tbs-dependencies
https://buildpacks.io/docs/reference/builder-config/#order-_list-required_

--order. All supplied buildpacks will be in the same group.

Saving Builders

Users can create or update a Builder/ClusterBuilder using the save command. The kp

builder/clusterbuilder save command is used exactly the same as kp builder/clusterbuilder

create and kp builder/clusterbuilder update, but it will determine if a builder/clusterbuilder

needs to be created or updated.

To save a Builder/ClusterBuilder:

Cluster Builder:

kp clusterbuilder save <name> --tag <tag> --order <order> --stack <stack> --sto

re <store>

kp clusterbuilder save <name> --tag <tag> --stack <stack> --store <store> --bui

ldpack <buildpack>

Builder:

kp builder save <name> --tag <tag> --order <order> --stack <stack> --store <sto

re> --namespace <namespace>

kp builder save <name> --tag <tag> --stack <stack> --store <store> --namespace

<namespace> --buildpack <buildpack>

Where:

name: The name of the builder.

tag: The registry location where the builder will be created.

stack: The name of the stack to be used by the builder.

store: The name of the store containing the buildpacks that will be used by the builder.

namespace The kubernetes namespace for the builder (for Builders only)

order: The local path to the buildpack order YAML that the builder will use. Sample order

YAML files will be available on the VMware Tanzu Build Service Dependencies page on

Tanzu Network. For more information about listing buildpacks in groups in the order YAML,

see builder.toml in the Buildpacks.io documentation.

Example order YAML file that would be used by a builder designed to build NodeJS and

Java apps:

- group:

 - id: paketo-buildpacks/bellsoft-liberica

Note: The `tag` (location in a registry) of a builder cannot be modified. To change this

field, you must create a new builder.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 93

https://network.tanzu.vmware.com/products/tbs-dependencies
https://buildpacks.io/docs/reference/builder-config/#order-_list-required_

 - id: paketo-buildpacks/gradle

- group:

 - id: paketo-buildpacks/nodejs

buildpack: Buildpack id and optional version in the form of either '@' or ''. Repeat for each

buildpack in order, or supply once with comma-separated list. This cannot be combined with

--order. All supplied buildpacks will be in the same group.

Deleting Builders

To delete a Builder:

Cluster Builder:

kp clusterbuilder delete <builder name>

Builder:

kp builder delete <builder name> --namespace <namespace>

Retrieving Builder Details

To get builder details:

Cluster Builder:

kp clusterbuilder status <builder-name>

Builder:

kp builder status <builder-name> --namespace <namespace>

Example:

$ kp clusterbuilder status tiny

Status: Ready

Image: gcr.io/my-repo/tiny@sha256:07d94db2e3e9f43cba67c389f1c83e4eac821aa83084a

88136ed8d431b37f008

Stack: io.paketo.stacks.tiny

Run Image: gcr.io/cf-build-service-dev-219913/ssuresh/install/run@sha256:e9159f0ef2

3c28b943cfb1b5d5be9638b67211f6ff0bd3fae35ff4b499136152

BUILDPACK ID VERSION HOMEPAGE

paketo-buildpacks/graalvm 4.0.0 https://github.com/paketo-bui

ldpacks/graalvm

tanzu-buildpacks/go-dist 0.1.3

paketo-buildpacks/gradle 3.5.0 https://github.com/paketo-bui

ldpacks/gradle

paketo-buildpacks/sbt 3.6.0 https://github.com/paketo-bui

Warning: Deleting a builder will prevent image configs that reference that builder

from successfully building again.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 94

ldpacks/sbt

paketo-buildpacks/maven 3.2.1 https://github.com/paketo-bui

ldpacks/maven

tanzu-buildpacks/dep 0.0.10

paketo-buildpacks/spring-boot 3.5.0 https://github.com/paketo-bui

ldpacks/spring-boot

paketo-buildpacks/leiningen 1.2.1 https://github.com/paketo-bui

ldpacks/leiningen

paketo-buildpacks/spring-boot-native-image 2.0.0 https://github.com/paketo-bui

ldpacks/spring-boot-native-image

paketo-buildpacks/executable-jar 3.1.3 https://github.com/paketo-bui

ldpacks/executable-jar

tanzu-buildpacks/go-build 0.0.23

paketo-buildpacks/environment-variables 2.1.2 https://github.com/paketo-bui

ldpacks/environment-variables

paketo-buildpacks/procfile 3.0.0 https://github.com/paketo-bui

ldpacks/procfile

paketo-buildpacks/image-labels 2.0.6 https://github.com/paketo-bui

ldpacks/image-labels

tanzu-buildpacks/dep-ensure 0.0.29

tanzu-buildpacks/go-mod-vendor 0.0.26

tanzu-buildpacks/java-native-image 3.10.0 https://github.com/pivotal-cf

/tanzu-java-native-image

tanzu-buildpacks/go 1.0.9

DETECTION ORDER

Group #1

 tanzu-buildpacks/go@1.0.9

Group #2

 tanzu-buildpacks/java-native-image@3.10.0

Group #3

 paketo-buildpacks/procfile@3.0.0

Listing Builders

To list all builders available to the current user:

Cluster Builder:

kp clusterbuilder list

Builder:

 kp builder list --namespace <namespace>

Corresponding kpack Resources

All Build Service Builders are represented as kpack resources.

Builder

ClusterBuilder

Pinning Buildpack versions

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 95

https://github.com/pivotal/kpack/blob/master/docs/builders.md#builders
https://github.com/pivotal/kpack/blob/master/docs/builders.md#cluster-builders

You can pin buildpack versions by specifying the version for buildpacks in the order file.

As an example, consider the clusterbuilder created below:

kp cb create pinned \

 --tag my-registry.io/example/pinned \

 --order order.yaml

where the contents of order.yaml file is

- group:

 - id: tanzu-buildpacks/php

 version: 0.0.5

- group:

 - id: tanzu-buildpacks/nodejs

 version: 1.3.0

Update Lifecycle

All builders make use of a lifecycle. A lifecycle orchestrates buildpack execution, then assembles the

resulting artifacts into a final app image. Within Build Service, it will be uploaded to the canonical

registry, which is the docker-repository specified during TBS install. More information on lifecycles

can be found here.

To update the lifecycle that will be used by builders:

```

kp lifecycle update --image <image-tag>

```

Note: When a buildpack version is pinned, Images that use the Builder will not

initiate new Builds due to new Buildpack versions. For best practice, only pin a

buildpack version when necessary.

Note: You must have credentials to access the registry on your machine.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 96

https://buildpacks.io/docs/concepts/components/lifecycle/

Managing Custom Stacks

A CustomStack is a resource that allows users to create a customized ClusterStack from Ubuntu

18.04 (Bionic Beaver) and UBI7/UBI8 non-minimal based OCI images.

CustomStacks can be used to:

Convert a pre-existing base image that you'd like to use with TBS into a ClusterStack

resource.

Add required stack metadata to base images.

Add CA certificates to build and/or run image.

Add packages and mixin labels to build and/or run image.

Set CNB user and group IDs.

Creating a CustomStack

A CustomStack is created by running kubectl apply with a resource configuration file. The following

defines the relevant fields of the CustomStack resource spec in more detail:

source: The location of base images used for building the stack. See more info in Source

Configuration.

destination: The location to publish built images and optional ClusterStack. See more info in

Destination Configuration.

caCerts: References to config maps of CA certificates to add to one or both of the stack

images.

packages: List of packages to install on one or both of the stack images. A list of all available

packages can be found here.

mixins: List of mixin labels to add to one or both of the stack images. Information on the

mixins concept can be found here.

service-account-name: Name of service account with secret containing credentials to push

to registry.

user: User and group ID of the CNB user

Not required if the user is already present in metadata.

Note: Customstacks created with UBI7/UBI8 images do not currently support adding

packages, mixins, or caCerts. Currently, only the Java Tanzu Buildpacks support

CustomStacks that use UBI images

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 97

https://buildpacks.io/docs/concepts/components/stack/#mixins
https://packages.ubuntu.com/bionic/allpackages
https://buildpacks.io/docs/concepts/components/stack/#mixins

If the user and/or group ID do not exist on the image, they will be created.

Source Configuration

The source field describes the base images for the CustomStack. It can be configured in exactly one

of the following ways:

Registry Images

source:

 registryImages:

 build:

 image: <build-base-image>

 run:

 image: <run-base-image>

build-base-image: The fully qualified reference of the build base image.

run-base-image: The fully qualified reference of the run base image.

Stack

stack:

 name: <cluster-stack-name>

 kind: ClusterStack

cluster-stack-name: Name of ClusterStack to base CustomStack images on.

Destination Configuration

The destination field describes where the built images will be published and if a ClusterStack should

be created.

destination:

 build:

 tag: <output-build-image-tag>

 run:

 tag: <output-run-image-tag>

 stack: # Optional

 name: <output-cluster-stack-name>

 kind: ClusterStack

output-build-image-tag: The registry location where the build image will be created.

output-run-image-tag: The registry location where the run image will be created.

output-cluster-stack-name: Name of ClusterStack to create with CustomStack images

Example CustomStack from Registry Images

apiVersion: v1

kind: ConfigMap

metadata:

 name: build-ca-certs

data:

 cert-1: |

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 98

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 cert-2: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: v1

kind: ConfigMap

metadata:

 name: run-ca-certs

data:

 cert-3: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: stacks.stacks-operator.tanzu.vmware.com/v1alpha1

kind: CustomStack

metadata:

 name: stack-sample

spec:

 source:

 registryImages:

 build:

 image: paketobuildpacks/build@sha256:ae88191cc5bfd0dcd2938954f20d5df5060a562af

8e3d65a92a815612054537c

 run:

 image: paketobuildpacks/run@sha256:48f67dcb3f2b27403de80193e34abd3172b3fbdfdd8

7e452721aba90ea68fc66

 destination:

 build:

 tag: my.registry.io/final-build-image

 run:

 tag: my.registry.io/final-run-image

 stack: # Optional

 name: stack-sample-cluster-stack

 kind: ClusterStack

 caCerts: # Optional

 buildRef: # Optional

 name: build-ca-certs

 runRef: # Optional

 name: run-ca-certs

 packages: # Optional

 - name: cowsay

 - name: cowsay-off

 - name: fortune

 phase: build

 - name: rolldice

 phase: run

 mixins: # Optional

 - name: set=build-utils

 phase: build

 - name: set=run-utils

 phase: run

 - name: set=shared-utils

 serviceAccountName: default

 user: # Optional

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 99

 userID: 1000

 groupID: 1000

Example CustomStack from ClusterStack

apiVersion: v1

kind: ConfigMap

metadata:

 name: build-ca-certs

data:

 cert-1: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 cert-2: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: v1

kind: ConfigMap

metadata:

 name: run-ca-certs

data:

 cert-3: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

apiVersion: stacks.stacks-operator.tanzu.vmware.com/v1alpha1

kind: CustomStack

metadata:

 name: stack-sample

spec:

 source:

 stack:

 name: stack-sample-cluster-stack

 kind: ClusterStack

 destination:

 build:

 tag: my.registry.io/final-build-image

 run:

 tag: my.registry.io/final-run-image

 stack: # Optional

 name: final-stack-sample-cluster-stack

 kind: ClusterStack

 caCerts: # Optional

 buildRef: # Optional

 name: build-ca-certs

 runRef: # Optional

 name: run-ca-certs

 packages: # Optional

 - name: cowsay

 - name: cowsay-off

 - name: fortune

 phase: build # Optional

 - name: rolldice

 phase: run # Optional

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 100

 mixins: # Optional

 - name: set=build-utils

 phase: build # Optional

 - name: set=run-utils

 phase: run # Optional

 - name: set=shared-utils

 serviceAccountName: default

 user: # Optional

 userID: 1000 # Optional

 groupID: 1000 # Optional

Debugging CustomStacks

When a CustomStack is created, a pod is created in the same namespace which will modify the base

image and push the resulting stack image to the registry. The pod will be named stack-pod-

<customstack-name>-<number>, where:

customstack-name: The name of your CustomStack

number: The revision of your CustomStack. This will be incremented by one each time a new

spec is applied.

The ten latest pods are kept around for debugging purposes. To debug a failing CustomStack, check

the logs of the corresponding pod: kubectl logs <pod-name> -c <create-build-image/create-run-

image>, where:

pod-name: The name of the pod

create-build-image/create-run-image: The container whose logs you would like to see.

create-build-image for logs related to creating the build image.

create-run-image for logs related to create the run image.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 101

RBAC in Tanzu Build Service

Given that Tanzu Build Service supports functionality most customers would likely want to restrict to

only certain users, we encourage utilization of RBAC as a best practice if Tanzu Build Service is to be

broadly deployed for usage by many users.

RBAC using Projects Operator

Projects Operator can be installed on the cluster to simplify RBAC management.

Projects Operator extends kubernetes with a Project CRD and corresponding controller. Projects

are intended to provide isolation of kubernetes resources on a single kubernetes cluster. A Project

is essentially a kubernetes namespace along with a corresponding set of RBAC rules.

As part of the Projects Operator installation, you can specify the ClusterRole to apply for each

Project using the CLUSTER_ROLE_REF environment variable. The TBS installation comes with a

ClusterRole called build-service-user-role which can be used for this purpose.

RBAC Support in Tanzu Build Service

Tanzu Build Service is installed with 2 Kubernetes ClusterRoles that can be used for RBAC for Build

Service users and admins:

build-service-user-role

build-service-admin-role

Build Service User Role

This should be used for users that will create Images and Builds.

To view the configuration for this role:

kubectl get clusterrole build-service-user-role -o yaml

To use this ClusterRole you should create a RoleBinding with an existing user.

Example:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: my-build-service-user-role-binding

 namespace: my-build-namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 102

https://github.com/vmware-tanzu/projects-operator
https://github.com/vmware-tanzu/projects-operator#install
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding

 kind: ClusterRole

 name: build-service-user-role

subjects:

- kind: User

 name: my-user

Build Service Admin Role

This should be used for admin users that will operate Tanzu Build Service.

To view the configuration for this role:

kubectl get clusterrole build-service-admin-role -o yaml

To use this ClusterRole you should create a RoleBinding or ClusterRoleBinding with an existing user.

Example:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: my-build-service-admin-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: build-service-admin-role

subjects:

- kind: User

 name: my-cluster-wide-admin-user

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 103

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding

Using Tanzu Build Service in CI

This topic describes how to best leverage Tanzu Build Service in a Continuous Integration context to

build applications and keep them up-to-date at scale.

Example: Using Tanzu Build Service in CI/CD

This example shows using an Image resource with git source in a development-to-production CI/CD

pipeline flow.

Let's split this up into each step.

1. Run unit tests & merge to branch

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 104

This step shows a typical initial unit testing CI flow.

1. Developer pushes code to feature branch

2. CI/CD runs unit tests on that branch

3. Once tests have passed, the feature branch is merged to release branch (Git Branch

A)

2. Update Tanzu Build Service Image Configuration in CI/CD

After unit tests pass, CI/CD must tell TBS to build the registry image using the git commit that

passed tests.

For example:

Jenkins job that runs the following after unit tests with the successful <git-commit>:

kp image save my-image --git-revision <git-commit>

3. Tanzu Build Service builds the OCI registry image using the git commit

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 105

Here TBS works its magic and builds a new registry image using the git commit set in the

previous step and the latest app dependencies (Stacks & Buildpacks).

4. Tanzu Build Service pushes the built image to your registry

After the build finishes, TBS writes the resulting image to a container registry such as Harbor.

This image reference can be found with:

kp image status <image-name>

or

kp build status <image-name> -b <build-number>

5. Using CI/CD, deploy the built image to a Dev/QA Kubernetes cluster

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 106

Now that the image is available in your registry, it can be deployed to any kubernetes cluster.

In this example, it is deployed to a Dev Cluster for acceptance testing and QA/manual

approval.

There are a couple of ways to trigger this job:

Using registry webhooks (such as Harbor's) to trigger a CI/CD job

If you are using Concourse CI: the Concourse kpack Resource

Write your own polling mechanism to check for new images in your registry

6. Once the app has been vetted, deploy to production!

The same way the image was deployed to the Dev Cluster, the image can be pushed to

production.

7. Bonus: Dependencies are kept up to date for secure app images

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 107

https://github.com/vmware-tanzu/concourse-kpack-resource

Images are kept up to date with the latest dependencies provided via Stacks and Buildpacks

from the Cloud Native Buildpacks community which are released for TBS as Tanzu

Buildpacks on Tanzu Network.

As of TBS 1.2, these dependencies are automatically updated. These dependency updates

can also be done with the kp cli in CI/CD by running:

kp import -f descriptor.yaml

When dependencies are updated, affected apps are rebuilt to be promoted using steps 5 &

6.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 108

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 109

Frequently Asked Questions

How do Cloud Native Buildpacks (CNBs), kpack, and Tanzu
Build Service overlap and differ?

CNBs are build tools that adhere to the CNB v3 Specification and transform source code into an OCI

compliant runnable image. The v3 specification, lifecycle, and local CLI (pack) are governed by the

open source Cloud Native Buildpacks project.

kpack is a collection of open source resource controllers that together function as a Kubernetes

native build service. The product provides a declarative image type that builds an image and

schedules image rebuilds when dependencies of the image change. kpack is a platform

implementation of CNBs in that it utilizes CNBs and the v3 lifecycle to execute image builds.

Tanzu Build Service is a commercial product owned and operated by VMware that utilizes kpack

and CNBs. Build Service provides additional abstractions intended to ease the use of the above

technologies in Enterprise settings. These abstractions are covered in detail throughout the

documentation on this site. Additionally, customers of Build Service are entitled to support and

VMware Tanzu buildpacks.

Why do I see two images in the image registry after a
successful build?

By default Build Service will tag each built image twice. The first tag will be the configured image tag.

The second tag will be a unique tag with the build number and build timestamp. The second tag is

added to ensure that previous images are not deleted on registries that garbage collect untagged

images.

How does TBS work in air gapped environments?

Build Service is installed and deployed using Carvel tools. Therefore, the imgpkg copy command can

create a .tar file composed of the kubernetes config and images required to successfully install

Build Service. The imgpkg copy command also ensures that all the images can be relocated to air-

gapped registries, and by providing the credentials to the air-gapped registry when executing the

kapp install command, Build Service can then use that secret to pull images from said registry,

hence working in air-gapped environments.

Currently, kbld package and kbld unpackage must be used to import dependencies to an air-gapped

environment.

For more details on air-gapped installation, see Installation to Air-Gapped Environment.

For more details on air-gapped builds, see Offline Builds.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 110

https://github.com/buildpacks/spec
https://buildpacks.io
https://github.com/pivotal/kpack
https://carvel.dev/

Is there documentation on supported Tanzu Buildpacks?

Yes, documentation is available on Tanzu Buildpacks Documenation.

Why do I get an X509 error from Build Service when trying
to create an image in my registry?

When interacting with a registry or a git repo that has been deployed using a self signed certificate,

Build Service must be provided with the certificate during install time. Unfortunately, you will either

need to target a registry that does not have self signed certificates or re-install Build Service to work

with this registry.

How do I configure a secret to publish images to Dockerhub?

1. Create a dockerhub secret with the kp cli:

kp secret create my-dockerhub-creds --dockerhub DOCKERHUB-USERNAME

Where DOCKERHUB-USERNAME is your dockerhub username You will be prompted for your

dockerhub password

How can I configure an image resource to pull from a private
GitHub repository?

1. Create a github secret with the kp cli:

Using a git ssh key

kp secret create my-git-ssh-cred --git git@github.com --git-ssh-key PATH-TO-GIT

HUB-PRIVATE-KEY

Where PATH-TO-GITHUB-PRIVATE-KEY is the absolute local path to the github ssh private key

Or with a basic auth github username and password

 kp secret create my-git-cred --git https://github.com --git-user GITHUB-USERNA

ME

Where GITHUB-USERNAME is your github username You will be prompted for your github

password

Why do some builds fail with "Error: could not read run
image: *"?

The run image must be publicly readable or readable with the registry credentials configured in a

project/namespace.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 111

https://docs.pivotal.io/tanzu-buildpacks/
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account

To see where the build service run image is located run: kp stack status STACK-NAME.

If you cannot make the run image publicly readable, you must kp to create a registry secret within

the namespace where your builds reside. This can be accomplished using kp secret create.

Why don't my image builds appear in my Harbor v1.X.X
registry?

There is a known bug in Harbor that, at times, prevents the UI from showing images. If you are

unable to see a recently built image in the Harbor UI, try pulling it using the docker CLI to verify that

it exists.

How do I fix "unsupported status code 500" when creating a
builder on my Harbor v2.X.X registry?

Some builders are very large and can overwhelm Harbor's default database connection. You can

remediate this issue by increasing the database.maxOpenConns setting in the helm values.yaml file.

Increase this value from 100 to 300. The exact setting can be found here.

How do I configure credentials for using gcr as my installation
registry?

You can use Google Container Registry for your Tanzu Build Service installation registry.

If you have trouble configuring the registry credentials for gcr when following the install docs, use

the following to set the gcr credentials:

registry_name="_json_key"

registry_password="$(cat /path/to/gcp/service/account/key.json)"

ytt -f /tmp/bundle/config/ \

 -v docker_repository='<IMAGE-REPOSITORY>' \

 -v docker_username="$registry_name" \

 -v docker_password="$registry_password" \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Can I configure a proxy for my Tanzu Build Service?

TBS can be configured with a proxy at installation time by specifying additional parameters:

http_proxy: The HTTP proxy to use for network traffic.

https_proxy: The HTTPS proxy to use for network traffic.

no_proxy: A comma-separated list of hostnames, IP addresses, or IP ranges in CIDR format

that should not use a proxy.

Note: When proxy server is enabled using http_proxy and/or https_proxy, traffic to

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 112

https://github.com/goharbor/harbor-helm/blob/ab57e34774ad57fe6506ad5161b2d7b207e1dfd1/values.yaml#L689
#other-install

ytt -f /tmp/bundle/config/ \

 -v docker_repository='<IMAGE-REPOSITORY>' \

 -v docker_username='<REGISTRY-USERNAME>' \

 -v docker_password='<REGISTRY-PASSWORD>' \

 -v http_proxy='<HTTP-PROXY-URL>' \

 -v https_proxy='<HTTPS-PROXY-URL>' \

 -v no_proxy='<KUBERNETES-API-SERVER-URL>' \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

How do I build my app locally using kpack builders?

You can use the pack cli with your kpack builders to test them locally before checking in your code.

By using your kpack builder locally, you can guarantee that the buildpacks, stacks, and lifecycle used

to build the image config will also be used by the pack CLI, resulting in a container image that is the

exact same, whether it is built by kpack or pack.

pack build my-app --path ~/workspace/my-app --builder gcr.io/my-project/my-image:lates

t --trust-builder

What can I do with the kp --dry-run and --output flags?

From kp CLI v1.0.3+ the --dry-run and --output flags are made available to kp commands that

create or update any kpack Kubernetes resources.

The --dry-run flag lets you perform a quick validation with no side-effects as no objects are sent to

the server. And the --output flag lets you view the resource in yaml or json format.

The --dry-run-with-image-upload flag is similar to the --dry-run flag in that no kpack Kubernetes

resources are updated. This flag is provided as a convenience for kp commands that can output

Kubernetes resource with generated container image references.

For example, consider the command below

$ kp clusterstack create test-stack \

 --dry-run \

 --output yaml \

 --build-image gcr.io/paketo-buildpacks/build@sha256:f550ab24b72586cb26215817b874b9e9e

c2ca615ede03206833286934779ab5d \

 --run-image gcr.io/paketo-buildpacks/run@sha256:21c1fb65033ae5a765a1fb44bfefdea37024c

eac86ac6098202b891d27b8671f

Creating ClusterStack... (dry run)

the kubernetes API server will also flow through the proxy server. This is a known

limitation and can be circumvented by using no_proxy to specify the kubernetes API

server.

Note: Make sure that you `docker login` to the image repository containing your

kpack builder.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 113

https://buildpacks.io/docs/tools/pack/

Uploading to 'gcr.io/my-project/my-repo'... (dry run)

 Skipping 'gcr.io/my-project/my-repo/build@sha256:f550ab24b72586cb26215817b874b

9e9ec2ca615ede03206833286934779ab5d'

 Skipping 'gcr.io/my-project/my-repo/run@sha256:21c1fb65033ae5a765a1fb44bfefdea

37024ceac86ac6098202b891d27b8671f'

apiVersion: kpack.io/v1alpha1

kind: ClusterStack

metadata:

 creationTimestamp: null

 name: test-stack

spec:

 buildImage:

 image: gcr.io/my-project/my-repo/build@sha256:f550ab24b72586cb26215817b874b9e9ec2c

a615ede03206833286934779ab5d

 id: io.buildpacks.stacks.bionic

 runImage:

 image: gcr.io/my-project/my-repo/run@sha256:21c1fb65033ae5a765a1fb44bfefdea37024ce

ac86ac6098202b891d27b8671f

status:

 buildImage: {}

 runImage: {}

The resource yaml output above has the relocated build and run image urls. However, the images

were never uploaded.

If you now apply the resource output using kubectl apply -f as shown below, then the resource

will be created but will be faulty since the referenced images do not exist.

$ kp clusterstack create test-stack \

 --dry-run \

 --output yaml \

 --build-image gcr.io/paketo-buildpacks/build@sha256:f550ab24b72586cb26215817b874b9e9e

c2ca615ede03206833286934779ab5d \

 --run-image gcr.io/paketo-buildpacks/run@sha256:21c1fb65033ae5a765a1fb44bfefdea37024c

eac86ac6098202b891d27b8671f \

 | kubectl apply -f -

Creating ClusterStack... (dry run)

Uploading to 'gcr.io/my-project/my-repo'... (dry run)

 Skipping 'gcr.io/my-project/my-repo/build@sha256:f550ab24b72586cb26215817b874b

9e9ec2ca615ede03206833286934779ab5d'

 Skipping 'gcr.io/my-project/my-repo/run@sha256:21c1fb65033ae5a765a1fb44bfefdea

37024ceac86ac6098202b891d27b8671f'

clusterstack.kpack.io/test-stack created

Running the same command above with the --dry-run-with-image-upload flag (instead of --dry-

run) ensures the created resource refers to images exist.

Does TBS support Azure Devops for git repositories

Yes! Azure DevOps Git is fully supported as of TBS 1.2

Why do I get a "repository does not exist" error when I use
ECR Registry?

ECR is supported but requires manually creating each repository that TBS will use. With other

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 114

registries, the repositories will be created automatically.

How do I troubleshoot a failed build?

Like many Kubernetes native products, operating TBS involves orchestrating resources that depend

on each other to function. If a resource is in a "not ready" state it is likely that there is a problem with

one of the resources it depends on.

If you are encountering a not ready Image, check and see which builder it uses and then check the

status of that builder for additional information that could help you troubleshoot the problem.

$ kp image status <image-name>

$ kp clusterbuilder status <clusterbuilder-name>

Similarly, if a builder resource is in a "not ready" state, it is possible that there is a problem with the

clusterstack or clusterstore resources it is referencing.

$ kp clusterstack status <clusterstack-name> --verbose

$ kp clusterstore status <clusterstore-name> --verbose

All Build Service concepts are also Kubernetes resources. Therefore, customers can interact with

them using the kubectl CLI to see all the information that can be provided by the Kubernetes API.

$ kubectl describe image <image-name>

$ kubectl describe clusterbuilder <clusterbuilder-name>

How do I troubleshoot an UNAUTHENTICATED error?

During imgpkg copy

1. Ensure you are logged in locally to both registries with:

docker logout registry.tanzu.vmware.com && docker login registry.tanzu.vmware.com

docker logout <tbs-registry> && docker login <tbs-registry>

2. On linux, if you have installed docker with snap you will need to copy

/root/snap/docker/471/.docker/config.json to ~/.docker/config.json which is where

imgpkg is looking for the docker credentials

3. Ensure your credentials have write access to your registry with docker push

<registry>/<build-service-repository> this is the same repository used during install with

the ytt/kapp command

During kp import

1. Ensure you are logged in locally to both registries with:

docker logout registry.tanzu.vmware.com && docker login registry.tanzu.vmware.com

docker logout <tbs-registry> && docker login <tbs-registry>

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 115

2. Ensure the credentials used to install TBS have write access to your registry as they

sometimes differ from local credentials

Use docker login <tbs-registry> using the credentials used to install TBS with ytt/kapp

Try to docker push <tbs-registry>/<build-service-repository> this is the same repository

used during install with the ytt/kapp command

Why does TBS leave behind pods after builds on my Cluster?

All TBS builds happen in pods. By default, TBS will not delete the last ten successful builds and the

last ten failed builds for the purpose of providing historical logging and debugging. If this behavior is

not desired, users can configure the number of stored build pods by modifying the

failedBuildHistoryLimit and successBuildHistoryLimit on the Image resource. This is not

currently supported in the kp CLI, but users can apply yaml configuration using kubectl to update

these fields. Follow this link for documentation.

How do I check what version of TBS I am using?

After successfully installing tanzu-build-service In terminal run the command kubectl describe

configMap build-service-version -n build-service

Under the data field you will see the version of TBS you are currently using. EX:

 data:

 version: 1.3.0

How does TBS use windows-based images?

When running imgpkg copy, the command will output the following message:

Skipped layer due to it being non-distributable. If you would like to include non-dist

ributable layers, use the --include-non-distributable flag

This is because TBS ships with windows images to support windows builds. Windows images contain

"foreign layers" that are references to proprietary windows layers that cannot be distributed without

proper Microsoft licensing.

By default, imgpkg will not relocate the proprietary windows layers to your registry. TBS also will not

pull any windows layers to the cluster unless windows builds are being run so if you do not need

windows this message can be ignored.

What is the relationship between a kpack image resource
and an OCI image?

"Image resource" describes a kubernetes custom resource that produces OCI images by way of

build resources. This resource will continue producing new builds that, when successful, output

Note: This will only work for TBS versions 1.2 and above

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 116

https://github.com/pivotal/kpack/blob/main/docs/image.md

container images to the registry as configured by the image resource.

Pinning the Tanzu Net Updater

When you configure the Tanzu Network Auto Updater during installation, dependencies are pulled

in from network.tanzu.vmware.com as they are released to keep the all app OCI images up-to-date

and patched.

Using the steps from the installation docs will result in all dependencies to stay up-to-date with the

latest buildpacks.

To pin to a TBS "descriptor" version, find the desired version of the descriptor from the TBS

Dependencies Tanzu Network page. Run the following command to re-install TBS:

ytt -f /tmp/bundle/config/ \

 -v kp_default_repository='<IMAGE-REPOSITORY>' \

 -v kp_default_repository_username='<REGISTRY-USERNAME>' \

 -v kp_default_repository_password='<REGISTRY-PASSWORD>' \

 --data-value-yaml pull_from_kp_default_repo=true \

 -v tanzunet_username='<TANZUNET-USERNAME>' \

 -v tanzunet_password='<TANZUNET-PASSWORD>' \

 -v descriptor_name='<DESCRIPTOR-NAME>' \

 -v descriptor_version='<DESCRIPTOR-VERSION>' \

 | kbld -f /tmp/bundle/.imgpkg/images.yml -f- \

 | kapp deploy -a tanzu-build-service -f- -y

Where:

DESCRIPTOR-VERSION is the desired descriptor version from the TBS Dependencies Tanzu

Network page.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 117

https://network.pivotal.io/products/tbs-dependencies/
https://network.pivotal.io/products/tbs-dependencies/

Additional resources for Tanzu Build Service

Concourse Kpack resource

The Concourse Kpack resource helps in the integration of Kpack in a Concourse based CI/CD

pipeline. This Concourse resource is capable of triggering Image builds based on a commit SHA.

The Git repo for the Concourse Kpack resource provides guidance on usage within a pipeline.

Helpful Articles

Getting Started with VMware Tanzu Build Service 1.0

(September 03, 2020 - Tony Vetter)

This covers installation of Tanzu Build Service on local Kubernetes cluster (using Docker

Desktop) and demonstrates the auto build of app images for Code and OS updates.

VMware Tanzu Build Service, a Kubernetes-Native Way to Build Containers, Is Now GA

(September 03, 2020 - Brad Bock)

A big picture overview of Tanzu Build Service, integration with CI/CD and links on getting

started.

Helpful Videos

Introduction to Tanzu Build Service 1.0

(September 22, 2020 - Tony Vetter)

This covers the different components of TBS, the benefits it offers, and a demo of how TBS

can auto update your application images for different reasons - Code update, Config change

or Stack update.

Helpful Repositories

kpdemo - https://github.com/matthewmcnew/kpdemo

A tool to visualize and demo kpack.

Note: The Kpack Image must be created within a TBS cluster before referring to it

within a pipeline using the Concourse Kpack resource

Note: The Concourse Kpack resource currently only supports GKE and TKGI clusters

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 118

https://github.com/vmware-tanzu/concourse-kpack-resource
https://github.com/vmware-tanzu/concourse-kpack-resource
https://tanzu.vmware.com/content/blog/getting-started-with-vmware-tanzu-build-service-1-0
https://tanzu.vmware.com/content/blog/vmware-tanzu-build-service-a-kubernetes-native-way-to-build-containers-is-now-generally-available
https://www.youtube.com/watch?v=IMmUjUjBzes&ab_channel=VMwareTanzu
https://github.com/matthewmcnew/kpdemo

Demos include auto Image creation for Stack and Buildpack updates.

VMware Tanzu Build Service 1.4 Documentation

VMware, Inc 119

	Tanzu Build Service 1.4 Documentation
	Overview
	Build Service Concepts
	Image Resource
	Builder
	ClusterStore
	ClusterStack

	Build Service Components
	Build Service Dependencies
	Buildpacks
	Stacks
	Descriptors
	Updating Build Service Dependencies

	Troubleshooting

	TBS Release Notes
	v1.4.3
	New Features
	Breaking Changes
	Bug Fixes
	Product Snapshot
	Security Scanning
	Product Dependencies
	Upgrade Path

	v1.4.2
	Breaking Changes
	Bug Fixes
	Product Snapshot
	Product Dependencies
	Upgrade Path

	v1.4.1
	v1.4.0

	Installing Tanzu Build Service
	Prerequisites
	Installing Tanzu Build Service
	Relocate Images to a Registry
	Installation
	Additional Configuration

	Upgrading Tanzu Build Service

	Installing Tanzu Build Service (Air-Gapped)
	Relocate Images to a Registry (Air-Gapped)
	Installation (Air-Gapped)
	Additional Configuration

	Updating Build Service Dependencies (Air-gapped)
	Upgrading Tanzu Build Service (Air-Gapped)

	Uninstalling Tanzu Build Service
	Ensuring Access to Cluster Builders
	Ensuring the Run Image is Readable
	Next Steps

	Installing Windows Components (Beta)
	Getting Started with Tanzu Build Service
	Prerequisites
	Assumptions
	Installation
	Relocate Images to a Registry
	Install Tanzu Build Service

	Verify Installation
	Create an Image

	Installing Tanzu Build Service without kapp controller
	Prerequisites
	Installing
	Relocate Images to a Registry
	Install Tanzu Build Service
	Install Tanzu Build Service Public Registry
	Installing with a CA certificate for internal registry

	Import Tanzu Build Service Dependencies
	Additional Configuration

	Configuring TKGI as an OIDC Provider

	Installation to Air-Gapped Environment
	Relocate Images to a Registry (Air-Gapped)
	Installing (Air-Gapped)
	Additional Configuration

	Import Tanzu Build Service Dependencies (Air-Gapped)
	Relocate Tanzu Build Service Dependency Images (Air-Gapped)
	Import Tanzu Build Service Dependency Resources (Air-Gapped)

	Verify Installation
	Upgrading Tanzu Build Service
	Uninstalling Tanzu Build Service
	Updating Build Service Dependencies
	Ensuring Access to Cluster Builders
	Ensuring the Run Image is Readable
	Next Steps
	Kubernetes Permissions for Installation

	Accessing Tanzu Build Service
	Updating Build Service Dependencies
	Updating Dependencies
	Automatically Update Dependencies
	Bulk Update
	Cluster Stacks Update
	Cluster Store Update
	Updating Buildpacks From Tanzu Network

	Offline Update of Dependencies

	Managing Secrets
	Overview
	Create Secrets
	Create a Docker Hub Registry Secret
	Create a GCR Registry Secret
	Create an Artifactory, Harbor, or ACR Registry Secret
	Create a Git SSH Secret
	Create a Git Basic Auth Secret

	List Secrets
	Delete Secrets
	Encrypting Secrets at Rest

	Using SecretGen controller Secrets to use private cluster builders
	When to use Synchronized Secrets
	Installing the Carvel secret-gen-controller
	Managing Secret Synchronization
	Create a Synchronized Secret
	Update a Synchronized Secret
	Stop Synchronizing a Secret

	Managing Image Resources and Builds
	Image Resources
	Creating Image Resources
	Source Code
	Builders
	Creating an Image Resource With Source Code in a Git Repository
	Create an Image Resource With Source Code In A Blob Store
	Creating an Image Resource With Local Source Code
	Buildpack Configuration
	Buildpack Configuration Use Cases
	Buildpack Configuration Documentation
	Buildpack Configuration in Image Resources

	Patching Image Resources
	Saving Image Resources
	Listing Images
	Filter Image Resources

	Image Resource Rebuilds
	Trigger an Image Resource Rebuild

	Viewing the Status of an Image Resource
	Deleting an Image Resource
	Managing Image Resources with YAML
	Image Resource Additional Tags
	Using a registry for caching
	Using Secrets
	Debugging with Image Resource Status

	Image Resource Service Bindings
	Creating an Image Resource with Service Bindings

	Builds
	Listing Builds
	Viewing Build Details for an Image
	Image Resource Status shows ImagePullBackOff

	Getting Build Logs
	Viewing Bill of Materials
	Offline Builds
	Image Signing with cosign
	Cosign Signing Secret
	Adding Cosign Annotations
	Push Cosign Signature to a Different Location
	Cosign Legacy Docker Media Types

	Managing ClusterStacks
	Create a ClusterStack
	Update a ClusterStack
	Save a ClusterStack
	Get ClusterStack Status
	Delete a ClusterStack
	List all ClusterStacks
	How to update an Image for Stack updates only?

	Managing Stores
	Creating Buildpacks and Buildpackages
	Listing ClusterStores
	Creating a ClusterStore
	Saving a ClusterStore
	Adding Buildpackages to a ClusterStore
	Adding Buildpackages to a ClusterStore from Tanzu Network
	Offline Adding Buildpackages to a ClusterStore from Tanzu Network

	Removing Buildpackages from a ClusterStore
	Get ClusterStore Status
	Migrating Buildpacks
	Corresponding kpack Resource

	Descriptors
	About descriptors
	Lite descriptor
	Full descriptor
	Descriptor comparison

	Managing Builders
	Creating a Builder
	Patching a Builder
	Saving Builders
	Deleting Builders
	Retrieving Builder Details
	Listing Builders
	Corresponding kpack Resources
	Pinning Buildpack versions
	Update Lifecycle

	Managing Custom Stacks
	Creating a CustomStack
	Source Configuration
	Destination Configuration
	Example CustomStack from Registry Images
	Example CustomStack from ClusterStack

	Debugging CustomStacks

	RBAC in Tanzu Build Service
	RBAC using Projects Operator
	RBAC Support in Tanzu Build Service
	Build Service User Role
	Build Service Admin Role

	Using Tanzu Build Service in CI
	Example: Using Tanzu Build Service in CI/CD

	Frequently Asked Questions
	How do Cloud Native Buildpacks (CNBs), kpack, and Tanzu Build Service overlap and differ?
	Why do I see two images in the image registry after a successful build?
	How does TBS work in air gapped environments?
	Is there documentation on supported Tanzu Buildpacks?
	Why do I get an X509 error from Build Service when trying to create an image in my registry?
	How do I configure a secret to publish images to Dockerhub?
	How can I configure an image resource to pull from a private GitHub repository?
	Why do some builds fail with "Error: could not read run image: *"?
	Why don't my image builds appear in my Harbor v1.X.X registry?
	How do I fix "unsupported status code 500" when creating a builder on my Harbor v2.X.X registry?
	How do I configure credentials for using gcr as my installation registry?
	Can I configure a proxy for my Tanzu Build Service?
	How do I build my app locally using kpack builders?
	What can I do with the kp --dry-run and --output flags?
	Does TBS support Azure Devops for git repositories
	Why do I get a "repository does not exist" error when I use ECR Registry?
	How do I troubleshoot a failed build?
	How do I troubleshoot an UNAUTHENTICATED error?
	Why does TBS leave behind pods after builds on my Cluster?
	How do I check what version of TBS I am using?
	How does TBS use windows-based images?
	What is the relationship between a kpack image resource and an OCI image?
	Pinning the Tanzu Net Updater

	Additional resources for Tanzu Build Service
	Concourse Kpack resource
	Helpful Articles
	Helpful Videos
	Helpful Repositories

