Deploying and Configuring VMware Unified Access Gateway

Unified Access Gateway 2.9

vmware®
You can find the most up-to-date technical documentation on the VMware Web site at:
https://docs.vmware.com/

The VMware Web site also provides the latest product updates.
If you have comments about this documentation, submit your feedback to:
docfeedback@vmware.com
Deploying and Configuring VMware Unified Access Gateway  5

1 Preparing to Deploy VMware Unified Access Gateway  7
   Unified Access Gateway as a Secure Gateway  7
   Using Unified Access Gateway Instead of a Virtual Private Network  8
   Unified Access Gateway System and Network Requirements  8
   Firewall Rules for DMZ-Based Unified Access Gateway Appliances  10
   Unified Access Gateway Load Balancing Topologies  11
   DMZ Design for Unified Access Gateway with Multiple Network Interface Cards  13
   Upgrade with Zero Down Time  16

2 Deploying Unified Access Gateway Appliance  19
   Using the OVF Template Wizard to Deploy Unified Access Gateway  19
      Deploy Unified Access Gateway Using the OVF Template Wizard  20
   Configuring Unified Access Gateway From the Admin Configuration Pages  23
      Configure Unified Access Gateway System Settings  24
   Update SSL Server Signed Certificates  25

3 Using PowerShell to Deploy Unified Access Gateway  27
   System Requirements to Deploy Unified Access Gateway Using PowerShell  27
   Using PowerShell to Deploy the Unified Access Gateway Appliance  27

4 Deployment Use Cases for Unified Access Gateway  31
   Deployment with Horizon View and Horizon Cloud with On-Premises Infrastructure  31
      Configure Horizon Settings  34
      Blast TCP and UDP External URL Configuration Options  36
   Deployment as Reverse Proxy  36
      Configure Reverse Proxy  38
   Deployment for Single Sign-on Access to On-Premises Legacy Web Apps  41
      Identity Bridging Deployment Scenarios  42
      Configuring Identity Bridging Settings  43
      Configure a Web Reverse Proxy for Identity Bridging  46
      Add the Unified Access Gateway Service Provider Metadata File to VMware Identity Manager Service  47
   Deployment with AirWatch Tunnel  48
      Tunnel Proxy Deployment for AirWatch  48
      Relay Endpoint Deployment Model  49
Deploying and Configuring VMware Unified Access Gateway

*Deploying and Configuring Unified Access Gateway* provides information about designing VMware Horizon®, VMware Identity Manager™, and VMware AirWatch® deployment that uses VMware Unified Access Gateway™ for secure external access to your organization’s applications. These applications can be Windows applications, software as a service (SaaS) applications, and desktops. This guide also provides instructions for deploying Unified Access Gateway virtual appliances and changing the configuration settings after deployment.

**Intended Audience**

This information is intended for anyone who wants to deploy and use Unified Access Gateway appliances. The information is written for experienced Linux and Windows system administrators who are familiar with virtual machine technology and data center operations.
Preparing to Deploy VMware Unified Access Gateway

Unified Access Gateway functions as a secure gateway for users who want to access remote desktops and applications from outside the corporate firewall.

**Note** VMware Unified Access Gateway® was formerly names VMware Access Point.

This chapter includes the following topics:
- “Unified Access Gateway as a Secure Gateway,” on page 7
- “Using Unified Access Gateway Instead of a Virtual Private Network,” on page 8
- “Unified Access Gateway System and Network Requirements,” on page 8
- “Firewall Rules for DMZ-Based Unified Access Gateway Appliances,” on page 10
- “Unified Access Gateway Load Balancing Topologies,” on page 11
- “DMZ Design for Unified Access Gateway with Multiple Network Interface Cards,” on page 13
- “Upgrade with Zero Down Time,” on page 16

**Unified Access Gateway as a Secure Gateway**

Unified Access Gateway is an appliance that is normally installed in a demilitarized zone (DMZ). Unified Access Gateway is used to ensure that the only traffic entering the corporate data center is traffic on behalf of a strongly authenticated remote user.

Unified Access Gateway directs authentication requests to the appropriate server and discards any unauthenticated request. Users can access only the resources that they are authorized to access.

Unified Access Gateway also ensure that the traffic for an authenticated user can be directed only to desktop and application resources to which the user is actually entitled. This level of protection involves specific inspection of desktop protocols and coordination of potentially rapid changing policies and network addresses, to accurately control access.

Unified Access Gateway acts as a proxy host for connections inside your company’s trusted network. This design provides an extra layer of security by shielding virtual desktops, application hosts, and servers from the public-facing Internet.

Unified Access Gateway is designed specifically for the DMZ. The following hardening settings are implemented.
- Up-to-date Linux Kernel and software patches
- Multiple NIC support for Internet and intranet traffic
- Disabled SSH
- Disabled FTP, Telnet, Rlogin, or Rsh services
- Disabled unwanted services

**Using Unified Access Gateway Instead of a Virtual Private Network**

Unified Access Gateway and generic VPN solutions are similar as they both ensure that traffic is forwarded to an internal network only on behalf of strongly authenticated users.

Unified Access Gateway advantages over generic VPN include the following.

- **Access Control Manager.** Unified Access Gateway applies access rules automatically. Unified Access Gateway recognizes the entitlements of the users and the addressing required to connect internally. A VPN does the same, because most VPNs allow an administrator to configure network connection rules for every user or group of users individually. At first, this works well with a VPN, but requires significant administrative effort to maintain the required rules.

- **User Interface.** Unified Access Gateway does not alter the straightforward Horizon Client user interface. With Unified Access Gateway, when the Horizon Client is launched, authenticated users are in their View environment and have controlled access to their desktops and applications. A VPN requires that you must set up the VPN software first and authenticate separately before launching the Horizon Client.

- **Performance.** Unified Access Gateway is designed to maximize security and performance. With Unified Access Gateway, PCoIP, HTML access, and WebSocket protocols are secured without requiring additional encapsulation. VPNs are implemented as SSL VPNs. This implementation meets security requirements and, with Transport Layer Security (TLS) enabled, is considered secure, but the underlying protocol with SSL/TLS is just TCP-based. With modern video remoting protocols exploiting connectionless UDP-based transports, the performance benefits can be significantly eroded when forced over a TCP-based transport. This does not apply to all VPN technologies, as those that can also operate with DTLS or IPsec instead of SSL/TLS can work well with View desktop protocols.

**Unified Access Gateway System and Network Requirements**

To deploy the Unified Access Gateway appliance, ensure that your system meets the hardware and software requirements.

**VMware Product Versions Supported**


**Hardware Requirements for ESXi Server**

The Unified Access Gateway appliance must be deployed on a version of vSphere that is the same as a version supported for the VMware products and versions you are using.

If you plan to use the vSphere Web Client, verify that the client integration plug-in is installed. For more information, see the vSphere documentation. If you do not install this plug-in before you start the deployment wizard, the wizard prompts you to install the plug-in. This requires that you close the browser and exit the wizard.

**NOTE** Configure the clock (UTC) on the Unified Access Gateway appliance so that the appliance has the correct time. For example, open a console window on the Unified Access Gateway virtual machine and use arrow buttons to select the correct time zone. Also verify that the ESXi host time is synchronized with the NTP server and verify that VMware Tools, which is running in the appliance virtual machine, synchronizes the time on the virtual machine with the time on the ESXi host.
Virtual Appliance Requirements

The OVF package for the Unified Access Gateway appliance automatically selects the virtual machine configuration that the Unified Access Gateway requires. Although you can change these settings, VMware recommends that you not change the CPU, memory, or disk space to smaller values than the default OVF settings.

Ensure that the data store you use for the appliance has enough free disk space and meets other system requirements.

- Virtual appliance download size is 1.4 GB
- Thin-provisioned disk minimum requirement is 2.3 GB
- Thick-provisioned disk minimum requirement is 20 GB

The following information is required to deploy the virtual appliance.

- Static IP address (recommended)
- IP address of the DNS server
- Password for the root user
- Password for the admin user
- URL of the server instance of the load balancer that the Unified Access Gateway appliance points to

Hardware Requirements When Using Windows Hyper-V Server

When you use Unified Access Gateway for an AirWatch Per-App Tunnel deployment, you can install the Unified Access Gateway appliance on a Microsoft Hyper-V server.

Supported Microsoft servers are Windows Server 2012 R2 and Windows Server 2016.

Networking Configuration Requirements

You can use one, two, or three network interfaces and Unified Access Gateway requires a separate static IP address for each. Many DMZ implementations use separated networks to secure the different traffic types. Configure Unified Access Gateway according to the network design of the DMZ in which it is deployed.

- One network interface is appropriate for POCs (proof of concept) or testing. With one NIC, external, internal, and management traffic is all on the same subnet.
- With two network interfaces, external traffic is on one subnet, and internal and management traffic are on another subnet.
- Using three network interfaces is the most secure option. With a third NIC, external, internal, and management traffic all have their own subnets.

**IMPORTANT** Verify that you have assigned an IP pool to each network. The Unified Access Gateway appliance can then pick up the subnet mask and gateway settings at deployment time. To add an IP pool, in vCenter Server, if you are using the native vSphere Client, go to the **IP Pools** tab of the data center. Alternatively, if you are using the vSphere Web Client, you can create a network protocol profile. Go to the **Manage** tab of the data center and select the **Network Protocol Profiles** tab. For more information, see Configuring Protocol Profiles for Virtual Machine Networking.

If Unified Access Gateway is deployed without IP Pools (vCenter Server), the deployment is successful, but when you try to access Unified Access Gateway using the Admin UI from the browser, the Admin UI service does not launch.
Log Retention Requirements

The log files are configured by default to use a certain amount of space which is smaller than the total disk size in the aggregate. The logs for Unified Access Gateway are rotated by default. You must use syslog to preserve these log entries. See “Collecting Logs from the Unified Access Gateway Appliance,” on page 71.

Firewall Rules for DMZ-Based Unified Access Gateway Appliances

DMZ-based Unified Access Gateway appliances require certain firewall rules on the front-end and back-end firewalls. During installation, Unified Access Gateway services are set up to listen on certain network ports by default.

A DMZ-based Unified Access Gateway appliance deployment usually includes two firewalls.

- An external network-facing, front-end firewall is required to protect both the DMZ and the internal network. You configure this firewall to allow external network traffic to reach the DMZ.
- A back-end firewall, between the DMZ and the internal network, is required to provide a second tier of security. You configure this firewall to accept only traffic that originates from the services within the DMZ.

Firewall policy strictly controls inbound communications from DMZ service, which greatly reduces the risk of compromising your internal network.

To allow external client devices to connect to a Unified Access Gateway appliance within the DMZ, the front-end firewall must allow traffic on certain ports. By default the external client devices and external Web clients (HTML Access) connect to a Unified Access Gateway appliance within the DMZ on TCP port 443. If you use the Blast protocol, port 8443 must be open on the firewall, but you can configure Blast for port 443 as well.

Table 1-1. Port Requirements

<table>
<thead>
<tr>
<th>Port</th>
<th>Portal</th>
<th>Source</th>
<th>Target</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>TCP</td>
<td>Internet</td>
<td>Unified Access Gateway</td>
<td>For Web traffic, Horizon Client XML-API, Horizon Tunnel, and Blast Extreme</td>
</tr>
<tr>
<td>443</td>
<td>UDP</td>
<td>Internet</td>
<td>Unified Access Gateway</td>
<td>UDP (optional)</td>
</tr>
<tr>
<td>8443</td>
<td>UDP</td>
<td>Internet</td>
<td>Unified Access Gateway</td>
<td>Blast Extreme (optional)</td>
</tr>
<tr>
<td>8443</td>
<td>TCP</td>
<td>Internet</td>
<td>Unified Access Gateway</td>
<td>Blast Extreme</td>
</tr>
<tr>
<td>4172</td>
<td>TCP and UDP</td>
<td>Internet</td>
<td>Unified Access Gateway</td>
<td>PCoIP (optional)</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>Unified Access Gateway</td>
<td>Horizon Broker</td>
<td>Horizon Client XML-API</td>
</tr>
<tr>
<td>22443</td>
<td>TCP and UDP</td>
<td>Unified Access Gateway</td>
<td>Desksops and RDS Hosts</td>
<td>Blast Extreme</td>
</tr>
<tr>
<td>4172</td>
<td>TCP and UDP</td>
<td>Unified Access Gateway</td>
<td>Desksops and RDS Hosts</td>
<td>PCoIP (optional)</td>
</tr>
<tr>
<td>32111</td>
<td>TCP</td>
<td>Unified Access Gateway</td>
<td>Desksops and RDS Hosts</td>
<td>Framework channel for USB Redirection</td>
</tr>
<tr>
<td>9427</td>
<td>TCP</td>
<td>Unified Access Gateway</td>
<td>Desksops and RDS Hosts</td>
<td>MMR and CDR</td>
</tr>
<tr>
<td>9443</td>
<td>TCP</td>
<td>Admin UI</td>
<td>Unified Access Gateway</td>
<td>Management interface</td>
</tr>
</tbody>
</table>

Note: All UDP ports require forward datagrams and reply datagrams to be allowed.

The following figure shows an example of a configuration that includes front-end and back-end firewalls.
Unified Access Gateway Load Balancing Topologies

A Unified Access Gateway appliance in the DMZ can be configured to point to a server or a load balancer that fronts a group of servers. Unified Access Gateway appliances work with standard third-party load balancing solutions that are configured for HTTPS.

If the Unified Access Gateway appliance points to a load balancer in front of servers, the selection of the server instance is dynamic. For example, the load balancer might make a selection based on availability and the load balancer’s knowledge of the number of current sessions on each server instance. The server instances inside the corporate firewall usually have a load balancer to support internal access. With Unified Access Gateway, you can point the Unified Access Gateway appliance to this same load balancer that is often already being used.

You can alternatively have one or more Unified Access Gateway appliances point to an individual server instance. In both approaches, use a load balancer in front of two or more Unified Access Gateway appliances in the DMZ.
When a Horizon Client user connects to a Horizon environment, several different protocols are used. The first connection is always the primary XML-API protocol over HTTPS. Following successful authentication, one or more secondary protocols are also made.

- **Primary Horizon Protocol**

  The user enters a hostname at the Horizon Client and this starts the primary Horizon protocol. This is a control protocol for authentication authorization, and session management. The protocol uses XML structured messages over HTTPS. This protocol is sometimes known as the Horizon XML-API control protocol. In a load balanced environment as shown in the Multiple Unified Access Gateway Appliances Behind a Load Balancer figure, the load balancer routes this connection to one of the Unified Access Gateway appliances. The load balancer usually selects the appliance based first on availability, and then out of the available appliances, routes traffic based on the least number of current sessions. This configuration evenly distributes the traffic from different clients across the available set of Unified Access Gateway appliances.

- **Secondary Horizon Protocols**

  After the Horizon Client establishes secure communication to one of the Unified Access Gateway appliances, the user authenticates. If this authentication attempt is successful, then one or more secondary connections are made from the Horizon Client. These secondary connections can include the following:

  - HTTPS Tunnel used for encapsulating TCP protocols such as RDP, MMR/CDR and the client framework channel. (TCP 443)
- Blast Extreme display protocol (TCP 443, TCP 8443, UDP 443 and UDP 8443)
- PCoIP display protocol (TCP 443, UDP 443)

These secondary Horizon protocols must be routed to the same Access Point appliance to which the primary Horizon protocol was routed. Unified Access Gateway can then authorize the secondary protocols based on the authenticated user session. An important security capability of Unified Access Gateway is that Unified Access Gateway only forwards traffic into the corporate data center if the traffic is on behalf of an authenticated user. If the secondary protocol is routed incorrectly to a different Unified Access Gateway appliance than the primary protocol appliance, users are not authorized and are dropped in the DMZ. The connection fails. Incorrectly routing the secondary protocols is a common problem, if the load balancer is not configured correctly.

**DMZ Design for Unified Access Gateway with Multiple Network Interface Cards**

One of the configuration settings for Unified Access Gateway is the number of virtual Network Interface Cards (NICs) to use. When you deploy Unified Access Gateway, you select a deployment configuration for your network.

You can specify one, two, or three NICS settings which are specified as onenic, twonic or threenic.

Reducing the number of open ports on each virtual LAN and separating out the different types of network traffic can significantly improve security. The benefits are mainly in terms of separating and isolating the different types of network traffic as part of a defense-in-depth DMZ security design strategy. This can be achieved either by implementing separate physical switches within the DMZ, with multiple virtual LANs within the DMZ, or as part of a full VMware NSX managed DMZ.

**Typical Single NIC DMZ Deployment**

The simplest deployment of Unified Access Gateway is with a single NIC where all network traffic is combined onto a single network. Traffic from the Internet-facing firewall is directed to one of the available Unified Access Gateway appliances. Unified Access Gateway then forwards the authorized traffic through the inner firewall to resources on the internal network. Unified Access Gateway discards unauthorized traffic.
Separating Unauthenticated User Traffic from Back-End and Management Traffic

An improvement over the single NIC deployment is to specify two NICs. The first is still used for Internet facing unauthenticated access, but the back-end authenticated traffic and management traffic are separated onto a different network.
Figure 1-4. Unified Access Gateway Two NIC Option

In a two NIC deployment, Unified Access Gateway must authorize the traffic going to the internal network through the inner firewall. Unauthorized traffic is not on this back-end network. Management traffic such as the REST API for Unified Access Gateway is only on this second network.

If a device on the unauthenticated front-end network, such as the load balancer, was compromised then reconfiguring that device to bypass Unified Access Gateway is not possible in this two NIC deployment. It combines layer 4 firewall rules with layer 7 Unified Access Gateway security. Similarly, if the Internet facing firewall was misconfigured to allow TCP port 9443 through, this would not expose the Unified Access Gateway Management REST API to Internet users. A defense-in-depth principle uses multiple levels of protection, such as knowing that a single configuration mistake or system attack does not necessarily create an overall vulnerability.

In a two NIC deployment, you can put additional infrastructure systems such as DNS servers, RSA SecurID Authentication Manager servers on the back-end network within the DMZ so that these servers cannot be visible on the Internet facing network. Putting infrastructure systems within the DMZ guards against layer 2 attacks from the Internet facing LAN from a compromised front-end system and effectively reduces the overall attack surface.

Most Unified Access Gateway network traffic is the display protocols for Blast and PCoIP. With a single NIC, display protocol traffic to and from the Internet is combined with traffic to and from the back-end systems. When two or more NICs are used, the traffic is spread across front-end and back-end NICs and networks. This reduces the potential bottleneck of a single NIC and results in performance benefits.

Unified Access Gateway supports a further separation by also allowing separation of the management traffic onto a specific management LAN. HTTPS management traffic to port 9443 is then only possible from the management LAN.
Upgrade with Zero Down Time

Zero down time upgrades let you upgrade Unified Access Gateway with no downtime for the users. Before you upgrade a Unified Access Gateway appliance, the quiesce mode in the Unified Access Gateway system configuration pages is changed from NO to YES.

When the quiesce mode value is YES, the Unified Access Gateway appliance is shown as not available when the load balancer checks the health of the appliance. Requests that come to the load balancer are sent to the next Unified Access Gateway appliance that is behind the load balancer.

Prerequisites

- Two or more Unified Access Gateway appliances configured behind the load balancer
- The Health Check URL setting configured with a URL that the load balancer connects to check the health of Unified Access Gateway appliance
- Check the health of the appliance in the load balancer. Type the REST API command GET https://mycoUnifiedAccessGateway.com:443/favicon.ico.

The response is HTTP/1.1 200 OK, if the Quiesce Mode is set to No, or HTTP/1.1 503, if the Quiesce Mode is set to Yes.

Procedure

1. In the admin UI Configure Manual section, click Select.
2. In the Advanced Settings section, click the System Configuration gearbox icon.
3 In the **Quiesce Mode** row, enable **YES** to pause the Unified Access Gateway appliance.

   When the appliance is stopped, existing sessions that the appliance is serving are honored for 10 hours, after which the sessions are closed.

4 Click **Save**.

New requests that come to the load balancer are sent to next Unified Access Gateway appliance.

**What to do next**

Export the settings from the paused Unified Access Gateway appliance. Deploy a new version of Unified Access Gateway and import the settings. The new version of Unified Access Gateway appliance can be added to the load balancer.
Deploying Unified Access Gateway Appliance

Unified Access Gateway is packaged as an OVF and is deployed onto a vSphere ESX or ESXi host as a pre-configured virtual appliance.

Two primary methods can be used to install the Unified Access Gateway appliance on a vSphere ESX or ESXi host. Microsoft Server 2012 and 2016 Hyper-V roles are supported.

- The vSphere Client or vSphere Web Client can be used to deploy the Unified Access Gateway OVF template. You are prompted for basic settings, including the NIC deployment configuration, IP address, and management interface passwords. After the OVF is deployed, log in to the Unified Access Gateway admin user interface to configure Unified Access Gateway system settings, set up secure edge services in multiple use cases, and configure authentication in the DMZ. See “Deploy Unified Access Gateway Using the OVF Template Wizard,” on page 20.

- PowerShell scripts can be used to deploy Unified Access Gateway and set up secure edge services in multiple use cases. You download the ZIP file, configure the PowerShell script for your environment, and run the script to deploy Unified Access Gateway. See “Using PowerShell to Deploy the Unified Access Gateway Appliance,” on page 27.

**Note** When using the Unified Access Gateway appliance in an AirWatch environment for Per-app Tunnel and Proxy deployments, you can install Unified Access Gateway on a Windows Hyper-V virtual machine.

This chapter includes the following topics:
- “Using the OVF Template Wizard to Deploy Unified Access Gateway,” on page 19
- “Configuring Unified Access Gateway From the Admin Configuration Pages,” on page 23
- “Update SSL Server Signed Certificates,” on page 25

### Using the OVF Template Wizard to Deploy Unified Access Gateway

To deploy Unified Access Gateway, you deploy the OVF template using the vSphere Client or vSphere Web Client, power on the appliance, and configure settings.

When you deploy the OVF, you configure how many network interfaces (NIC) are required, the IP address and set up the administrator and root passwords.

After the Unified Access Gateway is deployed, go to the administration user interface (UI) to set up the Unified Access Gateway environment. In the admin UI, configure the desktop and application resources and the authentication methods to use in the DMZ. To log in to the admin UI pages, go to https://<mycoUnifiedGatewayAppliance>.com:9443/admin/index.html.
Deploy Unified Access Gateway Using the OVF Template Wizard

You can deploy the Unified Access Gateway appliance by logging in to vCenter Server and using the Deploy OVF Template wizard.

Two versions of the Unified Access Gateway OVA are available, standard OVA and a FIPS version of the OVA. The FIPS 140-2 version runs with the FIPS certified set of ciphers and hashes and has restrictive services enabled that support FIPS certified libraries. When Unified Access Gateway is deployed in FIPS mode, the appliance cannot be changed to the standard OVA deployment mode.

**Note** If you use the native vSphere Client, verify that you have assigned an IP pool to each network. To add an IP pool in vCenter Server using the native vSphere Client, go to the IP Pools tab of the data center. Alternatively, if you are using the vSphere Web Client, you can create a network protocol profile. Go to the Manage tab of the data center and select the Network Protocol Profiles tab.

**Prerequisites**

- Review the deployment options that are available in the wizard. See “Unified Access Gateway System and Network Requirements,” on page 8.

- Determine the number of network interfaces and static IP addresses to configure for the Unified Access Gateway appliance. See “Networking Configuration Requirements,” on page 9.

- Download the .ova installer file for the Unified Access Gateway appliance from the VMware Web site at https://my.vmware.com/web/vmware/downloads, or determine the URL to use (example: http://example.com/vapps/euc-access-point-Y.Y.0.0-xxxxxxx_OVF10.ova), where Y.Y is the version number and xxxxxxx is the build number.

**Procedure**

1. Use the native vSphere Client or the vSphere Web Client to log in to a vCenter Server instance.
   
   For an IPv4 network, use the native vSphere Client or the vSphere Web Client. For an IPv6 network, use the vSphere Web Client.

2. Select a menu command for launching the Deploy OVF Template wizard.

<table>
<thead>
<tr>
<th>Option</th>
<th>Menu Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>Select File &gt; Deploy OVF Template.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>Select any inventory object that is a valid parent object of a virtual machine, such as a data center, folder, cluster, resource pool, or host, and from the Actions menu, select Deploy OVF Template.</td>
</tr>
</tbody>
</table>

3. On the Select Source page, browse to the .ova file that you downloaded or enter a URL and click Next.
   
   Review the product details, version, and size requirements.
Follow the wizard prompts and take the following guidelines into consideration as you complete the wizard.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and Location</td>
<td>Enter a name for the Unified Access Gateway virtual appliance. The name must be unique within the inventory folder. Names are case sensitive. Select a location for the virtual appliance.</td>
</tr>
<tr>
<td>Deployment Configuration</td>
<td>For an IPv4 network, you can use one, two, or three network interfaces (NICs). For an IPv6 network, use three NICs. Unified Access Gateway requires a separate static IP address for each NIC. Many DMZ implementations use separated networks to secure the different traffic types. Configure Unified Access Gateway according to the network design of the DMZ in which it is deployed.</td>
</tr>
<tr>
<td>Host / Cluster</td>
<td>Select the host or cluster in which to run the virtual appliance.</td>
</tr>
<tr>
<td>Disk format</td>
<td>For evaluation and testing environments, select the Thin Provision format. For production environments, select one of the Thick Provision formats. Thick Provision Eager Zeroed is a type of thick virtual disk format that supports clustering features such as fault tolerance but takes much longer to create than other types of virtual disks.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Setup Networks/Network Mapping</td>
<td>If you are using vSphere Web Client, the Setup Networks page allows you to map each NIC to a network and specify protocol settings. Map the networks used in the OVF template to networks in your inventory.</td>
</tr>
<tr>
<td>a</td>
<td>Select IPv4 or IPv6 from the <strong>IP protocol</strong> drop-down list.</td>
</tr>
<tr>
<td>b</td>
<td>Select the first row in the table <strong>Internet</strong> and then click the down arrow to select the destination network. If you select IPv6 as the IP protocol, you must select the network that has IPv6 capabilities.</td>
</tr>
<tr>
<td>c</td>
<td>After you select the row, you can also enter IP addresses for the DNS server, gateway, and netmask in the lower portion of the window.</td>
</tr>
<tr>
<td>d</td>
<td>If you are using only one NIC, all the rows are mapped to the same network.</td>
</tr>
<tr>
<td></td>
<td>If you are using more than one NIC, select the next row <strong>ManagementNetwork</strong>, select the destination network, and then you can enter the IP addresses for the DNS server, gateway, and netmask for that network.</td>
</tr>
<tr>
<td></td>
<td>If you are using only two NICs, select the same network that you used for <strong>ManagementNetwork</strong>.</td>
</tr>
<tr>
<td></td>
<td>With the vSphere Web Client, a network protocol profile is automatically created after you complete the wizard if one does not exist.</td>
</tr>
<tr>
<td></td>
<td>If you use the native vSphere Client, the Network Mapping page allows you to map each NIC to a network, but there are no fields for specifying the DNS server, gateway, and netmask addresses. As described in the prerequisites, you must already have assigned an IP pool to each network or created a network protocol profile.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customize Network Properties</th>
<th>The text boxes on the Properties page are specific to Unified Access Gateway and might not be required for other types of virtual appliances. Text in the wizard page explains each setting. If the text is truncated on the right side of the wizard, resize the window by dragging from the lower-right corner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Mode: STATICV4/STATICV6</td>
<td>If you enter STATICV4, you must enter the IPv4 address for the NIC. If you enter STATICV6, you must enter the IPv6 address for the NIC.</td>
</tr>
<tr>
<td>Comma separated list of forward rules</td>
<td>**Comma separated list of forward rules in the form [tcp</td>
</tr>
<tr>
<td>NIC 1 (ETH0) IPv4 address</td>
<td><strong>NIC 1 (ETH0) IPv4 address.</strong> Enter the IPv4 address for the NIC if you entered STATICV4 for the NIC mode.</td>
</tr>
<tr>
<td>Comma separated list of IPv4 custom routes</td>
<td><strong>Comma separated list of IPv4 custom routes for NIC 1 (eth0) in the form ipv4-network-address/bits.ipv4-gateway-address</strong></td>
</tr>
<tr>
<td>NIC 1 (eth0) IPv6 address</td>
<td><strong>NIC 1 (eth0) IPv6 address.</strong> Enter the IPv6 address for the NIC if you entered STATICV6 for the NIC mode.</td>
</tr>
<tr>
<td>DNS server addresses</td>
<td><strong>DNS server addresses.</strong> Enter space-separated IPv4 or IPv6 addresses of the domain name serves for the Unified Access Gateway appliance.</td>
</tr>
<tr>
<td>NIC 2 (eth1) IPv4 address</td>
<td><strong>NIC 2 (eth1) IPv4 address.</strong> Enter the IPv4 address for the NIC if you entered STATICV4 for the NIC mode.</td>
</tr>
<tr>
<td>Comma separated list of IPv4 custom routes</td>
<td><strong>Comma separated list of IPv4 custom routes for NIC 2 (eth1) in the form ipv4-network-address/bits.ipv4-gateway-address</strong></td>
</tr>
<tr>
<td>NIC 2 (eth1) IPv6 address</td>
<td><strong>NIC 2 (eth1) IPv6 address.</strong> Enter the IPv6 address for the NIC if you entered STATICV6 for the NIC mode.</td>
</tr>
<tr>
<td>NIC 3 (eth2) IPv4 address</td>
<td><strong>NIC 3 (eth2) IPv4 address.</strong> Enter the IPv4 address for the NIC if you entered STATICV4 for the NIC mode.</td>
</tr>
<tr>
<td>Comma separated list of IPv4 custom routes</td>
<td><strong>Comma separated list of IPv4 custom routes for NIC 3 (eth2) in the form ipv4-network-address/bits.ipv4-gateway-address</strong></td>
</tr>
</tbody>
</table>
### Option | Description
---|---
- **NIC 3 (eth2) IPv6 address.** Enter the IPv6 address for the NIC if you entered STATICV6 for the NIC mode.  
- **Password options.** Enter the password for the root user of this VM and the password for the administrator user who accesses the administration console and enables REST API access.  
- **Password options.** Enter the password for the admin user who logs in to the Admin UI to configure Unified Access Gateway and who can enable the REST API access.

Other settings are either optional or already have a default setting entered.

5 On the Ready to Complete page, select **Power on after deployment**, and click **Finish**.

A Deploy OVF Template task appears in the vCenter Server status area so that you can monitor deployment. You can also open a console on the virtual machine to view the console messages that are displayed during system boot. A log of these messages is also available in the file `/var/log/boot.msg`

6 When deployment is complete, verify that end users can connect to the appliance by opening a browser and entering the following URL:

   https://FQDN-of-UAG-appliance

   In this URL, *FQDN-of-UAG-appliance* is the DNS-resolvable, fully qualified domain name of the Unified Access Gateway appliance.

   If deployment was successful, you see the Web page provided by the server that Unified Access Gateway is pointing to. If deployment was not successful, you can delete the appliance virtual machine and deploy the appliance again. The most common error is not entering certificate thumbprints correctly.

The Unified Access Gateway appliance is deployed and starts automatically.

**What to do next**

Log in to the Unified Access Gateway admin user interface (UI) and configure the desktop and application resources to allow remote access from the Internet through Unified Access Gateway and the authentication methods to use in the DMZ. The administration console URL is in the format https://<mycoUnified Access Gatewayappliance.com:9443/admin/index.html

**Note** If you are not able to access the admin UI log in screen, check to see if the virtual machine has the IP address displayed during the installation of the OVA. If the IP address is not configured, use the vami command mentioned in the UI to reconfigure the NICs. Run the command as "cd /opt/vmware/share/vami" then the command "/vami_config_net".

### Configuring Unified Access Gateway From the Admin Configuration Pages

After you deploy the OVF and the Unified Access Gateway appliance is powered on, log in to the Unified Access Gateway admin User Interface to configure the settings.

The General Settings and Advanced Settings pages include the following.

- Unified Access Gateway system configuration and SSL server certificate  
- Edge service settings for Horizon, Reverse Proxy, Per App Tunnel and Proxy Settings for AirWatch  
- Authentication settings for RSA SecurID, RADIUS, X.509 Certificate, and RSA Adaptive Authentication  
- SAML identity provider and service provider settings  
- Identity Bridging setting configuration
The following options can be accessed from the Support Settings pages.

- Download Unified Access Gateway log zip files
- Export Unified Access Gateway settings to retrieve the configuration settings
- Set the log level settings
- Import Unified Access Gateway settings to create and update an entire Unified Access Gateway configuration

**Configure Unified Access Gateway System Settings**

You can configure the security protocols and cryptographic algorithms that are used to encrypt communications between clients and the Unified Access Gateway appliance from the admin configuration pages.

The Unified Access Gateway admin user interface URL is in the format https://<mycoUnifiedAccessGatewayappliance.com>:9443/admin/index.html. To log in, enter the administrator user name and password you configured when you deployed the OVF.

**Prerequisites**

- Review the Unified Access Gateway Deployment Properties. The following settings information is required
  - Static IP address for the Unified Access Gateway appliance
  - IP Address of the DNS server
  - Password for the administration console
  - URL of the server instance or load balancer that the Unified Access Gateway appliance points to
  - Syslog server URL to save the event log files

**Procedure**

1. In the admin UI Configure Manual section, click **Select**.
2. In the Advanced Settings section, click the **System Configuration** gearbox icon.
3. Edit the following Unified Access Gateway appliance configuration values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Locale</strong></td>
<td>Specifies the locale to use when generating error messages.</td>
</tr>
<tr>
<td></td>
<td>- en_US for English</td>
</tr>
<tr>
<td></td>
<td>- ja_JP for Japanese</td>
</tr>
<tr>
<td></td>
<td>- fr_Fr for French</td>
</tr>
<tr>
<td></td>
<td>- de_DE for German</td>
</tr>
<tr>
<td></td>
<td>- zh_CN for Simplified Chinese</td>
</tr>
<tr>
<td></td>
<td>- zh_TW for Traditional Chinese</td>
</tr>
<tr>
<td></td>
<td>- ko_KR for Korean</td>
</tr>
<tr>
<td><strong>Admin Password</strong></td>
<td>This password was set when you deployed the appliance. You can reset it.</td>
</tr>
<tr>
<td></td>
<td>Passwords must be at least 8 characters long, contain at least one uppercase and one lowercase letter, one digit, and one special character, which includes ! @ # $ % ^ &amp; * ( ).</td>
</tr>
<tr>
<td><strong>Cipher Suites</strong></td>
<td>Most cases, the default settings do not need to be changed. This is the cryptographic algorithms that are used to encrypt communications between clients and the Unified Access Gateway appliance. Cipher settings are used for enabling various security protocols.</td>
</tr>
<tr>
<td><strong>Honor Cipher Order</strong></td>
<td>Default is NO. Select YES to enable TLS cipher list order control.</td>
</tr>
</tbody>
</table>

Deploying and Configuring VMware Unified Access Gateway
Table of Contents

Chapter 2 Deploying Unified Access Gateway Appliance

Option | Default Value and Description
--- | ---
TLS 1.0 Enabled | Default is NO. Select YES to enable TLS 1.0 security protocol.
TLS 1.1 Enabled | Default is YES. The TLS 1.1 security protocol is enabled.
TLS 1.2 Enabled | Default is YES. The TLS 1.2 security protocol is enabled.
Syslog URL | Enter the Syslog server URL that is used for logging Unified Access Gateway events. This value can be a URL or a host name or IP address. If you do not set the syslog server URL, no events are logged. Enter as syslog://server.example.com:514.
Health Check URL | Enter a URL that the load balancer connects to and checks the health of Unified Access Gateway. For example, https://mycoUnifiedAccessGateway.com:443/favicon.ico
Cookies to be Cached | The set of cookies that Unified Access Gateway caches. The default is none.
IP Mode | Select the static IP mode, either STATICV4 OR STATICV6.
Session Timeout | Default value is 36000000 milliseconds.
Quiesce Mode | When performing an upgrade, set this mode to YES only if Unified Access Gateway is used with a load balancer. After the upgrade is complete, set this mode to NO.
Monitor Interval | Default value is 60.
Request Timeout | Default settings is 3000.
Body Receive Timeout | Default is 5000.

4 Click Save.

What to do next

Configure the edge service settings for the components that Unified Access Gateway is deployed with. After the edge settings are configured, configure the authentication settings.

Update SSL Server Signed Certificates

You can replace your signed certificates when they expire.

For production environments, VMware strongly recommends that you replace the default certificate as soon as possible. The default TLS/SSL server certificate that is generated when you deploy an Unified Access Gateway appliance is not signed by a trusted Certificate Authority.

Prerequisites

- New signed certificate and private key saved to a computer that you can access.
- Convert the certificate to PEM-format files and convert the .pem to one-line format. See Convert Certificate Files to One-Line PEM Format.

Procedure

1 In the administration console, click Select.
2 In the Advanced Settings section, click the SSL Server Certificate Settings gearbox icon.
3 In the Private Key row, click Select and browse to the private key file.
4 Click Open to upload the file.
5 In the Certificate Chain row, click Select and browse to the certificate chain file.
6 Click Open to upload the file.
7 Click Save.
What to do next

If the CA that signed the certificate is not well known, configure clients to trust the root and intermediate certificates.
A PowerShell script can be used to deploy Unified Access Gateway. The PowerShell script is delivered as a sample script that you can adapt to your environment specific needs.

When you use the PowerShell script, to deploy Unified Access Gateway, the script calls the OVF Tool command and validates the settings to automatically construct the correct command-line syntax. This method also allows advanced settings such as configuration of the TLS/SSL server certificate to be applied at deployment time.

This chapter includes the following topics:

- “System Requirements to Deploy Unified Access Gateway Using PowerShell,” on page 27
- “Using PowerShell to Deploy the Unified Access Gateway Appliance,” on page 27

### System Requirements to Deploy Unified Access Gateway Using PowerShell

To deploy Unified Access Gateway using PowerShell script, you must use specific versions of VMware products.

- vSphere ESX host with a vCenter Server.
- PowerShell script runs on Windows 8.1 or later machines or Windows Server 2008 R2 or later.
  - The machine can also be a vCenter Server running on Windows or a separate Windows machine.
- The Windows machine running the script must have VMware OVF Tool command installed.
  - You must install OVF Tool 4.0.1 or later from [https://www.vmware.com/support/developer/ovf/](https://www.vmware.com/support/developer/ovf/).

You must select the vSphere data store and the network to use.

A vSphere Network Protocol Profile must be associated with every referenced network name. This Network Protocol Profile specifies network settings such as IPv4 subnet mask, gateway etc. The deployment of Unified Access Gateway uses these values so make sure the values are correct.

### Using PowerShell to Deploy the Unified Access Gateway Appliance

PowerShell scripts prepare you environment with all the configuration settings. When you run the PowerShell script to deploy Unified Access Gateway, the solution is ready for production on first system boot.

**Prerequisites**

- Verify that the system requirements are appropriate and available for use.
This is a sample script to deploy Unified Access Gateway in your environment.

**Figure 3-1. Sample PowerShell Script**

![Sample PowerShell Script](image)

**Procedure**

1. Download the Unified Access Gateway OVA from My VMware to your Windows machine.
2. Download the ap-deploy-XXX.zip files into a folder on the Windows machine.
   
   The zip files are available at [https://communities.vmware.com/docs/DOC-30835](https://communities.vmware.com/docs/DOC-30835).
3. Open a PowerShell script and modify the directory to the location of your script.
   
   For example: Deploy a new Unified Access Gateway appliance AP1. The configuration file is named ap1.ini. This file contains all the configuration settings for AP1. You can use the sample .INI files in the apdeploy ZIP file to create the .INI file and modify the settings appropriately.

**Note** You can have unique .INI files for multiple Unified Access Gateway deployments in your environment. You must change the IP Addresses and the name parameters in the .INI file appropriately to deploy multiple appliances.

**Example of the .INI File to modify.**

```ini
name=AP1
source=C:\APs\euc-access-point-2.8.0.0-0000000000_OVF10.ova
target=vi://administrator@vsphere.local:PASSWORD@192.168.0.21/Datacenter1/host/esx1.myco.int
ds=Local Disk 1
netInternet=VM Network
netManagementNetwork=VM Network
netBackendNetwork=VM Network

[Horizon/WebReverseProxy/AirwatchTunnel]
proxyDestinationUrl=https://192.168.0.209

# For IPv4, proxyDestinationURL=https://192.168.0.209
# For IPv6, proxyDestinationUrl=[fc00:10:112:54::220]
```
To make sure that the script execution is successful, type the PowerShell `set-executionpolicy` command.

```powershell
set-executionpolicy -scope currentuser unrestricted
```

You must run this command once and only if it is currently restricted.

If there is a warning for the script, run the command to unblock the warning:

```powershell
unblock-file -path .\apdeploy.ps1
```

Run the command to start the deployment. If you do not specify the .INI file, the script defaults to `ap.ini`.

```powershell
.\apdeploy.ps1 -iniFile ap1.ini
```

Enter the credentials when prompted and complete the script.

**NOTE** If you are prompted to add the fingerprint for the target machine, enter **yes**.

Unified Access Gateway appliance is deployed and available for production.

For more information on PowerShell scripts, see [https://communities.vmware.com/docs/DOC-30835](https://communities.vmware.com/docs/DOC-30835).
The deployment scenarios described in this chapter can help you identify and organize the Unified Access Gateway deployment in your environment.

You can deploy Unified Access Gateway with Horizon View, Horizon Cloud with On-Premises Infrastructure, VMware Identity Manager, and VMware AirWatch.

This chapter includes the following topics:
- “Deployment with Horizon View and Horizon Cloud with On-Premises Infrastructure,” on page 31
- “Deployment as Reverse Proxy,” on page 36
- “Deployment for Single Sign-on Access to On-Premises Legacy Web Apps,” on page 41
- “Deployment with AirWatch Tunnel,” on page 48

### Deployment with Horizon View and Horizon Cloud with On-Premises Infrastructure

You can deploy Unified Access Gateway with Horizon View and Horizon Cloud with On-Premises Infrastructure. For the View component of VMware Horizon, Unified Access Gateway appliances fulfill the same role that was previously played by View security servers.

**Deployment Scenario**

Unified Access Gateway provides secure remote access to on-premises virtual desktops and applications in a customer data center. This operates with an on-premises deployment of Horizon View or Horizon Cloud for unified management.

Unified Access Gateway provides the enterprise with strong assurance of the identity of the user, and precisely controls access to their entitled desktops and applications.

Unified Access Gateway virtual appliances are typically deployed in a network demilitarized zone (DMZ). Deploying in the DMZ ensure that all traffic entering the data center to desktop and application resources is traffic on behalf of a strongly authenticated user. Unified Access Gateway virtual appliances also ensure that the traffic for an authenticated user can be directed only to desktop and application resources to which the user is entitled. This level of protection involves specific inspection of desktop protocols and coordination of potentially rapid changing policies and network addresses, to accurately control access.

You must verify the requirements for seamless Unified Access Gateway deployment with Horizon.

- Unified Access Gateway appliance points to a load balancer in front of the Horizon servers, the selection of the server instance is dynamic.
- Unified Access Gateway replaces the Horizon security server.
By default, port 8443 must be available for Blast TCP/UDP. However, port 443 can also be configured for Blast TCP/UDP.

- The Blast Secure Gateway and PCoIP Secure Gateway must be enabled when Unified Access Gateway is deployed with Horizon. This ensures that the display protocols can serve as proxies automatically through Unified Access Gateway. The BlastExternalURL and pcopExternalURL settings specify connection addresses used by the Horizon Clients to route these display protocol connections through the appropriate gateways on Unified Access Gateway. This provides improved security as these gateways ensure that the display protocol traffic is controlled on behalf of an authenticated user. Unauthorized display protocol traffic is disregarded by Unified Access Gateway.

- Disable the secure gateways on View Connection Server instances and enable these gateways on the Unified Access Gateway appliances.

The main difference from View security server is that Unified Access Gateway is as follows.

- Secure deployment. Unified Access Gateway is implemented as a hardened, locked-down, preconfigured Linux-based virtual machine

- Scalable. You can connect Unified Access Gateway to an individual View Connection Server, or you can connect it through a load balancer in front of multiple View Connection Servers, giving improved high availability. It acts as a layer between Horizon Clients and back end View Connection Servers. As the deployment is fast, it can rapidly scale up or down to meet the demands of fast-changing enterprises.

**Figure 4-1.** Unified Access Gateway Appliance Pointing to a Load Balancer
Alternatively you can have one or more Unified Access Gateway appliances pointing to an individual server instance. In both approaches, use a load balancer in front of two or more Unified Access Gateway appliances in the DMZ.

Figure 4-2. Unified Access Gateway Appliance Pointing to a Horizon Server Instance

Authentication

User authentication is similar to View security server. Supported user authentication methods in Unified Access Gateway include the following.

- Active Directory user name and password
- Kiosk mode. For details about Kiosk mode, see the Horizon documentation
- RSA SecurID two-factor authentication, formally certified by RSA for SecurID
- RADIUS via various third party, two-factor security-vendor solutions
- Smart card, CAC, or PIV X.509 user certificates
SAML

These authentication methods are supported with View Connection Server. Unified Access Gateway is not required to communicate directly with Active Directory. This communication serves as a proxy through the View Connection Server, which can directly access Active Directory. After the user session is authenticated according to the authentication policy, Unified Access Gateway can forward requests for entitlement information, and desktop and application launch requests, to the View Connection Server. Unified Access Gateway also manages its desktop and application protocol handlers to allow them to forward only authorized protocol traffic.

Unified Access Gateway handles smart card authentication itself. This includes options for Unified Access Gateway to communicate with Online Certificate Status Protocol (OCSP) servers to check for X.509 certificate revocation, and so on.

Configure Horizon Settings

You can deploy Unified Access Gateway from Horizon View and Horizon Cloud with On-Premises Infrastructure. For the View component of VMware Horizon, the Unified Access Gateway appliance fulfills the same role that was previously played by the View security server.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings > Edge Service Settings line, click Show.
3. Click the Horizon Settings gearbox icon.
4. In the Horizon Settings page, change NO to YES to enable Horizon
5. Configure the following edge service settings resources for Horizon

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>Set by default to View. Unified Access Gateway can communicate with servers that use the View XML protocol, such as View Connection Server, Horizon Cloud, and Horizon Cloud with On-Premises Infrastructure.</td>
</tr>
<tr>
<td>Connection Server URL</td>
<td>Enter the address of the Horizon server or load balancer. Enter as <a href="https://00.00.00.00">https://00.00.00.00</a></td>
</tr>
<tr>
<td>Proxy Destination URL Thumb Prints</td>
<td>Enter the list of Horizon server thumbprints. If you do not provide a list of thumbprints, the server certificates must be issued by a trusted CA. Enter the hexadecimal thumbprint digits. For example, sha1= C3 89 A2 19 DC 7A 48 2B 85 1C 81 EC 5E 8F 6A 3C 35 F2 95 C3</td>
</tr>
</tbody>
</table>
To configure the authentication method rule, and other advanced settings, click **More**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Auth Methods**| Select the authentication methods to use. The default is to use pass-through authentication of the user name and password. The authentication methods you configured in Unified Access Gateway are listed in the drop-down menus. To configure authentication that includes applying a second authentication method if the first authentication attempt fails:  
  a. Select one authentication method from the first drop-down menu.  
  b. Click the + and select either AND or OR.  
  c. Select the second authentication method from the third drop-down menu.  
  To require users to authenticate through two authentication methods, change OR to AND in the drop-down. |
| **Health Check URL** | If a load balancer is configured, enter the URL that the load balancer uses to connect and check the health of the Unified Access Gateway appliance. |
| **SAML SP**     | Enter the name of the SAML service provider for the View XMLAPI broker. This name must either match the name of a configured service provider metadata or be the special value DEMO. |
| **PCOIP Enabled** | Change NO to YES to specify whether the PCoIP Secure Gateway is enabled. |
| **Proxy External URL** | Enter the external URL of the Unified Access Gateway appliance. Clients use this URL for secure connections through the PCoIP Secure Gateway. This connection is used for PCoIP traffic. The default is the Unified Access Gateway IP address and port 4172. |
| **Smart Card Hint Prompt** | Change NO to YES to enable Unified Access Gateway appliance to support the smart card user name hints feature. With the smart card hint feature, a user's smart card certificate can map to multiple Active directory domain user accounts. |
| **Blast Enabled** | To use the Blast Secure Gateway, change NO to YES. |
| **Blast External URL** | Enter the FQDN URL of the Unified Access Gateway appliance that end users use to make a secure connection from the Web browsers through the Blast Secure Gateway. Enter as https://exampleappliance:443 |
| **UDP Tunnel Server Enabled** | Enable this if the Horizon Clients use a poor network condition. |
| **Tunnel Enabled** | If the View secure tunnel is used, change NO to YES. The Client uses the external URL for tunnel connections through the View Secure Gateway. The tunnel is used for RDP, USB, and multimedia redirection (MMR) traffic. |
| **Tunnel External URL** | Enter the external URL of the Unified Access Gateway appliance. The default value is used if not set. |
| **Proxy Pattern** | Enter the regular expression that matches the URIs that are related to the Horizon Server URL (proxyDestinationUrl). For the View Connection server, a forward slash (/) is a typical value to redirect to the HTML Access Web client when using the Unified Access Gateway appliance. |
| **Match Windows User Name** | Change NO to YES to match RSA SecurID and Windows user name. When set to YES, securID-auth is set to true and the securID and Windows user name matching is enforced. |
| **Gateway Location** | Change NO to YES to enable the location from where the requests originate. The security server and Unified Access Gateway set the gateway location. The location can be external or internal. |
7  Click Save.

**Blast TCP and UDP External URL Configuration Options**

The Blast Secure Gateway includes Blast Extreme Adaptive Transport (BEAT) networking, which dynamically adjusts to network conditions such as varying speeds and packet loss. In Unified Access Gateway, you can configure the ports used by the BEAT protocol.

Blast uses the standard ports TCP 8443 and UDP 8443. UDP 443 can also be used to access a desktop through the UDP tunnel server. The port configuration is set through the Blast External URL property.

<table>
<thead>
<tr>
<th>Blast External URL</th>
<th>TCP Port Used by Client</th>
<th>UDP Port Used by Client</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="https://ap1.myco.com">https://ap1.myco.com</a></td>
<td>8443</td>
<td>8443</td>
<td>This form is the default and requires that TCP 8443, and optionally UDP 8443, to be opened at the firewall to allow the connections from the Internet to Unified Access Gateway</td>
</tr>
<tr>
<td><a href="https://ap1.myco.com:443">https://ap1.myco.com:443</a></td>
<td>443</td>
<td>8443</td>
<td>Use this form when TCP 443 or UDP 8443 are required to be opened.</td>
</tr>
<tr>
<td><a href="https://ap1.myco.com:xxxx">https://ap1.myco.com:xxxx</a></td>
<td>xxxx</td>
<td>8443</td>
<td></td>
</tr>
<tr>
<td><a href="https://ap1.myco.com:xxx">https://ap1.myco.com:xxx</a> x/?UDPPort=yyyy</td>
<td>xxxx</td>
<td>yyyy</td>
<td></td>
</tr>
</tbody>
</table>

To configure ports other than the default, an internal IP forwarding rule must be added for the respective protocol when deployed. The forwarding rules might be specified on the deployment in the OVF template or through the INI files that are input through the PowerShell commands.

**Deployment as Reverse Proxy**

Unified Access Gateway can be used as a Web reverse proxy and can act as either a plain reverse proxy or an authenticating reverse proxy in the DMZ.

**Deployment Scenario**

Unified Access Gateway provides secure remote access to an on-premises deployment of VMware Identity Manager. Unified Access Gateway appliances are typically deployed in a network demilitarized zone (DMZ). With VMware Identity Manager, the Unified Access Gateway appliance operates as a Web reverse proxy between a user’s browser and the VMware Identity Manager service in the data center. Unified Access Gateway also enables remote access to the Workspace ONE catalog to launch Horizon applications.
Requirements for Unified Access Gateway deployment with VMware Identity Manager.

- Split DNS
- VMware Identity Manager appliance must have a fully qualified domain name (FQDN) as hostname.
- Unified Access Gateway must use internal DNS. This means that the proxyDestinationURL must use FQDN.

**Figure 4-3. Unified Access Gateway Appliance Pointing VMware Identity Manager**

**Understanding Reverse Proxy**

Unified Access Gateway, as a solution, provides access to the app portal for remote users to single-sign-on and access their resources. You enable authn reverse proxy on an edge service manager. Currently, RSA SecurID and RADIUS authentication methods are supported.

**Note** You must generate the identity provider metadata before enabling authentication on Web reverse proxy.
Unified Access Gateway provides remote access to VMware Identity Manager and Web applications with or without authentication from browser-based client and then launch Horizon desktop.

- Browser-based clients are supported using RADIUS and RSA SecurID as the authentication methods.

You can configure multiple instances of the reverse proxy.

**Note** The `authCookie` and `unSecurePattern` properties are not valid for authn reverse proxy. You must use `authMethods` property to define the authentication method.

### Configure Reverse Proxy

You can configure the Web reverse proxy service to use Unified Access Gateway with VMware Identity Manager.

**Prerequisites**

Requirements for deployment with VMware Identity Manager.

- Split DNS. The split DNS can be used to resolve the name to different IP addresses depending on whether the IP is internal or external.
- VMware Identity Manager service must have fully qualified domain name (FQDN) as hostname.
- Unified Access Gateway must use internal DNS. This means that the proxy Destination URL must use FQDN.

**Procedure**

1. In the admin UI Configure Manually section, click **Select**.
2. In the General Settings > Edge Service Settings line, click **Show**.
3. Click the **Reverse Proxy Settings** gearbox icon.
4. In the Reverse Proxy Setting page, click **Add**.
5. In the Enable Reverse Proxy Settings section, change NO to **YES** to enable reverse proxy.
6. Configure the following edge service settings.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Identifier</strong></td>
<td>The edge service identifier is set to Web reverse proxy.</td>
</tr>
<tr>
<td><strong>Instance Id</strong></td>
<td>The unique name to identify and differentiate a Web reverse proxy instance from all other Web reverse proxy instances.</td>
</tr>
<tr>
<td><strong>Proxy Destination URL</strong></td>
<td>Enter the address of the Web application.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| **Proxy Destination URL Thumbprints** | Enter a list of acceptable SSL server certificate thumbprints for the proxyDestination URL. If you include the wildcard *, any certificate is allowed. A thumbprint is in the format [alg=]xx:xx, where alg can be sha1, the default or md5. For example, sha=C3 89 A2 19 DC 7A 48 2B 85 1C 81 EC 5E 8F 6A 3C 33 F2 95 C3  
If you do not configure the thumbprints, the server certificates must be issued by a trusted CA.                                                                                                                   |
| **Proxy Pattern**                  | Enter the matching URI paths that forward to the destination URL. For example, enter as (/|/SAAS(.*)|/hc(.*)|/web(.*)|/catalog-portal(.*)).  
**NOTE** When you are configuring multiple reverse proxies, provide the hostname in the proxy host pattern.                                                                                                                     |
<p>|                                    | To configure other advanced settings, click More.                                                                                                                                                                                                                                                                                           |
| <strong>Option</strong>                         | <strong>Description</strong>                                                                                                                                                                                                                                                                                                                              |
| <strong>Auth Methods</strong>                   | The default is to use pass-through authentication of the user name and password. The authentication methods you configured in Unified Access Gateway are listed in the drop-down menus.                                                                                                            |
| <strong>Health Check URL</strong>               | If a load balancer is configured, enter the URL that the load balancer uses to connect and check the health of the Unified Access Gateway appliance.                                                                                                                                                                                        |
| <strong>SAML SP</strong>                        | This field is required when configuring UAG as authenticated reverse proxy for VMware Identity Manager. Enter the name of the SAML service provider for the View XML API broker. This name must either match the name of a service provider you configured with Unified Access Gateway or be the special value DEMO. If there are multiple service providers configured with Unified Access Gateway, their names must be unique. |
| <strong>Activation Code</strong>                | Enter the code generated by VMware Identity Manager service and imported into Unified Access Gateway to set up trust between VMware Identity Manager and Unified Access Gateway. Note that the Activation Code is not required for on-premise deployments. See VMware Identity Manager Cloud Deployment for details on how to generate an Activation Code. |
| <strong>External URL</strong>                   | The default value is the Unified Access Gateway host URL, port 443. You can enter another external URL. Enter as https://<a href="">host:port</a>.                                                                                                                                                                                                          |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>UnSecure Pattern</strong></td>
<td>Enter the known VMware Identity Manager redirection pattern. For example: (/catalog-portal(/.*)</td>
</tr>
<tr>
<td><strong>Auth Cookie</strong></td>
<td>Enter the authentication cookie name. For example: HZN</td>
</tr>
<tr>
<td><strong>Login Redirect URL</strong></td>
<td>If the user logs out of the portal, enter the redirect URL to log back in. For example: /SAAS/auth/login?dest=%s</td>
</tr>
<tr>
<td><strong>Proxy Host Pattern</strong></td>
<td>External hostname used to check the incoming host to see whether it matches the pattern for that particular instance. Host pattern is optional, when configuring Web reverse proxy instances.</td>
</tr>
<tr>
<td><strong>Host Entries</strong></td>
<td>Enter a comma separated list of host entries to be added in /etc/hosts file. Each entry includes an IP, a hostname, and an optional hostname alias in that order, separated by a space. For example, 10.192.168.1 example1.com, 10.192.168.2 example2.com example-alias.</td>
</tr>
</tbody>
</table>

**Note**  UnSecure Pattern, Auth Cookie, and Login Redirect URL options are applicable only with VMware Identity Manager. The values provided here are also applicable to Access Point 2.8 and Access Point 2.9.

**Note**  The Auth Cookie and UnSecure Pattern properties are not valid for authn reverse proxy. You must use the Auth Methods property to define the authentication method.

8  Click Save.

**What to do next**

To enable identity bridging, see “Configuring Identity Bridging Settings,” on page 43.
Deployment for Single Sign-on Access to On-Premises Legacy Web Apps

The Unified Access Gateway identity bridging feature can be configured to provide single sign-on (SSO) to legacy Web applications that use Kerberos Constrained Delegation (KCD) or header-based authentication.

Unified Access Gateway in identity bridging mode acts as the service provider that passes user authentication to the configured legacy applications. VMware Identity Manager acts as an identity provider and provides SSO into SAML applications. When users access legacy applications that require KCD or header-based authentication, Identity Manager authenticates the user. A SAML assertion with the user’s information is sent to the Unified Access Gateway. Unified Access Gateway uses this authentication to allow users to access the application.

**Figure 4-5. Unified Access Gateway Identity Bridging Mode**
Identity Bridging Deployment Scenarios

Unified Access Gateway identity bridging mode can be configured to work with VMware Workspace ONE® either in the cloud or in an on-premises environment.

Using Unified Access Gateway Identity Bridging with Workspace ONE Clients in the Cloud

The identity bridging mode can be set up to work with Workspace ONE in the cloud to authenticate users. When a user requests access to a legacy Web application, the identity provider applies applicable authentication and authorization policies.

If the user is validated, the identity provider creates a SAML token and sends it to the user. The user passes the SAML token to Unified Access Gateway in the DMZ. Unified Access Gateway validates the SAML token and retrieves the User Principal Name from the token.

If the request is for Kerberos authentication, Kerberos Constrained Delegation is used to negotiate with the Active Directory server. Unified Access Gateway impersonates the user to retrieve the Kerberos token to authenticate with the application.

If the request is for header-based authentication, the user header name is sent to the Web server to request authentication with the application.

The application sends the response back to Unified Access Gateway. The response is returned to the user.

Figure 4-6. Unified Access Gateway Identity Bridging with Workspace ONE in the Cloud

Using Identity Bridging with Workspace ONE Clients On Premises

When the identity bridging mode is set up to authentication users with Workspace ONE in an on premise environment, users enter the URL to access the on-premise legacy Web application through the Unified Access Gateway proxy. Unified Access Gateway redirects the request to the identity provider for authentication. The identity provider applies authentication and authorization policies to the request. If the user is validated, the identity provider creates a SAML token and sends the token to the user.
The user passes the SAML token to Unified Access Gateway. Unified Access Gateway validates the SAML token and retrieves the User Principal Name from the token.

If the request is for Kerberos authentication, Kerberos Constrained Delegation is used to negotiate with the Active Directory server. Unified Access Gateway impersonates the user to retrieve the Kerberos token to authenticate with the application.

If the request is for header-based authentication, the user header name is sent to the Web server to request authentication with the application.

The application sends the response back to Unified Access Gateway. The response is returned to the user.

**Figure 4-7.** Unified Access Gateway Identity Bridging On-Premises

---

**Configuring Identity Bridging Settings**

When Kerberos is configured in the backend application, to set up identity bridging in Unified Access Gateway, you upload the identity provider metadata and keytab file and configure the KCD realm settings.

When identity bridging is enabled with header-based authentication, keytab settings and KCD realm settings are not required.

Before you configure the identity bridging settings for Kerberos authentication, make sure that the following is available.

- An identity provider is configured and the SAML metadata of the identity provider saved. The SAML metadata file is uploaded to Unified Access Gateway.

- For Kerberos authentication, a server with Kerberos enabled with the realm names for the Key Distribution Centers to use identified.

- For Kerberos authentication, upload the Kerberos keytab file to Unified Access Gateway. The keytab file includes the credentials for the Active Directory service account that is set up to get the Kerberos ticket on behalf of any user in the domain for a given back-end service.
Upload Identity Provider Metadata

To configure the identity bridging feature, you must upload the identity provider’s SAML certificate metadata XML file to Unified Access Gateway.

Prerequisites

SAML metadata XML file saved to a computer you can access.

If using VMware Identity Manager as the identity provider, download and save the SAML metadata file from the VMware Identity Manager admin console, Catalog > Settings SAML Metadata > Identity Provider (IdP) metadata link.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the Advanced Settings > Identity Bridging Settings section, select the Upload Identity Provider Metadata gearbox icon.
3. Enter the entity ID for the identity provider in the Entity ID text box.
   - If you do not enter a value in the Entity ID text box, the identity provider name in the metadata file is parsed and used as the entity ID of the identity provider.
4. In the IDP Metadata section, click Select and browse to the metadata file you saved. Click Open.
5. Click Save.

What to do next

For KDC authentication, configure the realm settings and the keytab settings.

For header-based authentication, when you configure the identity bridging feature, complete the User Header Name option with the name of the HTTP header that includes the user ID.

Configure Realm Settings

Configure the domain realm name, the key distribution centers for the realm, and the KDC timeout.

The realm is the name of an administrative entity that maintains authentication data. Selecting a descriptive name for the Kerberos authentication realm is important. Configure the realm, also known as the domain name, and the corresponding KDC service in Unified Access Gateway. When a UPN request comes to a specific realm, Unified Access Gateway internally resolves the KDC to use the Kerberos serviced ticket.

The convention is to make the realm name the same as your domain name, entered in uppercase letters. For example, a realm name is EXAMPLE.NET. The realm name is used by a Kerberos client to generate DNS names.

Prerequisites

A server with Kerberos enabled with the realm names for the Key Distribution Centers to use identified.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the Advanced Settings > Identity Bridging Settings section, select the Realm Settings gearbox icon.
3. Click Add.
4 Complete the form.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the realm</td>
<td>Enter the realm with the domain name. Enter the realm in uppercase letters. The realm must match the domain name set up in the Active Directory.</td>
</tr>
<tr>
<td>Key Distribution Centers</td>
<td>Enter the KDC servers for the realm. Comma separate the list if adding more than one server.</td>
</tr>
<tr>
<td>KDC Timeout (in seconds)</td>
<td>Enter the time to wait for the KDC response. The default is 3 seconds.</td>
</tr>
</tbody>
</table>

5 Click **Save**.

**What to do next**

Configure the keytab settings.

**Upload Keytab Settings**

A keytab is a file containing pairs of Kerberos principals and encrypted keys. A keytab file is created for applications that require single sign-on. Unified Access Gateway identity bridging uses a keytab file to authenticate to remote systems using Kerberos without entering a password.

When a user is authenticated into Unified Access Gateway from the identity provider, Unified Access Gateway requests a Kerberos ticket from the Kerberos Domain Controller to authenticate the user.

Unified Access Gateway uses the keytab file to impersonate the user to authenticate to the internal Active Directory domain. Unified Access Gateway must have a domain user service account on the Active Directory domain. Unified Access Gateway is not directly joined to the domain.

**Note** If the admin regenerates the keytab file for a service account, the keytab file must be uploaded again into Unified Access Gateway.

**Prerequisites**

Access to the Kerberos keytab file to upload to Unified Access Gateway. The keytab file is a binary file. If possible, use SCP or another secure method to transfer the keytab between computers.

**Procedure**

1 In the admin UI Configure Manually section, click **Select**.

2 In the **Advanced Settings > Identity Bridging Settings** section, select the **Upload Keytab settings** gearbox icon.

3 (Optional) Enter the Kerberos principal name in the **Principal Name** text box.

   Each principal is always fully qualified with the name of the realm. The realm should be in uppercase.

   Make sure that the principal name entered here is the first principal found in the keytab file. If the same principal name is not in the keytab file that is uploaded, uploading the keytab file fails.

4 In the **Select Keytab file** field, click **Select** and browse to the keytab file you saved. Click **Open**.

   If you did not enter the principal name, the first principal found in the keytab is used. You can merge multiple keytabs into one file.

5 Click **Save**.

**What to do next**

Configure the Web reverse proxy for Unified Access Gateway identity bridging.
Configure a Web Reverse Proxy for Identity Bridging

Enable identity bridging, configure the external host name for the service, and download the Unified Access Gateway service provider metadata file.

This metadata file is uploaded to the Web application configuration page in the VMware Identity Manager service.

Prerequisites

Identity Bridging Settings configured in the Unified Access Gateway admin UI, Advanced Settings section. The following settings must be configured.

- Identity provider metadata uploaded to Unified Access Gateway.
- The Kerberos principal name configured and the keytab file uploaded to Unified Access Gateway.
- The realm name and key distribution center information.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings > Edge Service Settings line, click Show.
3. Click the Reverse Proxy Settings gearbox icon.
4. In the Reverse Proxy Setting page, click Add to create a new proxy setting.
5. Configure the following edge service settings.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>The edge service identifier is set to Web reverse proxy.</td>
</tr>
<tr>
<td>Instance Id</td>
<td>Unique name for the Web reverse proxy instance.</td>
</tr>
<tr>
<td>Proxy Destination URL</td>
<td>Specify the internal URI for the Web application. Unified Access Gateway must be able to resolve and access this URL.</td>
</tr>
<tr>
<td>Proxy Destination URL Thumbprints</td>
<td>Enter the URI to match with this proxy setting. A thumbprint is in the format [alg=]xx, where alg can be sha1, the default or md5. The 'xx' are hexadecimal digits. For example, sha=C3 89 A2 19 DC 7A 48 85 1C 81 EC 5E 8F 6A 3C 33 F2 95 C3. If you do not configure the thumbprints, the server certificates must be issued by a trusted CA.</td>
</tr>
<tr>
<td>Proxy Pattern</td>
<td>(Optional) Specify a host pattern. The host pattern tells Unified Access Gateway when to forward traffic using this proxy setting if the proxy pattern is not unique. This is decided using the URL used by the client’s Web browser. For example, enter as (//</td>
</tr>
</tbody>
</table>

6. In the Enable Identity Bridging section, change NO to YES.
7. Configure the following Identity Bridging settings.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity Provider</td>
<td>In the drop-down menu, select the identity provider to use.</td>
</tr>
<tr>
<td>Keytab</td>
<td>In the drop-down menu, select the configured keytab for this reverse proxy.</td>
</tr>
<tr>
<td>Target Service Principal Name</td>
<td>Enter the Kerberos service principal name. Each principal is always fully qualified with the name of the realm. For example, myco_hostname@MYCOMPANY. Type the realm name in uppercase. If you do not add a name to the text box, the service principal name is derived from the host name of the proxy destination URL.</td>
</tr>
</tbody>
</table>
### Option Description

**Service Landing Page**
Enter the page that users are redirected to in the identity provider after the assertion is validated. The default setting is `/`.

**User Header Name**
For header-based authentication, enter the name of the HTTP header that includes the user ID derived from the assertion.

---

8 In the Download SP Metadata section, click **Download**.

Save the service provider metadata file.

9 Click **Save**.

**What to do next**
Add the Unified Access Gateway service provider metadata file to the Web application configuration page in the VMware Identity Manager service.

### Add the Unified Access Gateway Service Provider Metadata File to VMware Identity Manager Service

The Unified Access Gateway service provider metadata file that you downloaded must be uploaded to the Web application configuration page in the VMware Identity Manager service.

The SSL certificate used must be the same certificate used across multiple load-balanced Unified Access Gateway servers.

**Prerequisites**
Unified Access Gateway Service Provider Metadata file saved to the computer

**Procedure**

1 Log in to the VMware Identity Manager admin console.

2 In the Catalog tab, click **Add Application** and select **create a new one**.

3 In the Application Details page, enter an end-user friendly name in the Name text box.

4 Select the **SAML 2.0 POST** authentication profile.
   
   You can also add a description of this application and an icon to display to end users in the Workspace ONE portal.

5 Click **Next** and in the Application Configuration page, scroll down to the **Configure Via** section.

6 Select the Meta-data XML radio button and paste the Unified Access Gateway service provider metadata text into the Meta-data XML text box.

7 (Optional) In the Attribute Mapping section, map the following attribute names to the user profile values. The FORMAT field value is Basic. The attribute names must be entered in lower case.

<table>
<thead>
<tr>
<th>Name</th>
<th>Configured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>upn</td>
<td>userPrincipalName</td>
</tr>
<tr>
<td>userid</td>
<td>Active Directory user ID</td>
</tr>
</tbody>
</table>

8 Click **Save**.
What to do next

Entitle users and groups to this application.

**Note**  Unified Access Gateway supports only single domain users. If the identity provider is set up with multiple domains, the application can be entitled only to users in a single domain.

### Deployment with AirWatch Tunnel

The Unified Access Gateway appliance is deployed on the DMZ. Deployment involves installing the Unified Access Gateway components and the AirWatch components such as Agent and Tunnel Proxy services.

Deploying the AirWatch Tunnel for your AirWatch environment involves setting up the initial hardware, configuring the server information, and app settings in the AirWatch Admin Console, downloading an installer file, and running the installer on your AirWatch Tunnel server.

You can manually configure each of the edge services after the OVF installation is completed and the values are changed.

For more information on deploying Unified Access Gateway with AirWatch, see [https://resources.air-watch.com/view/vb7zp7wwhpw756m2pfxy](https://resources.air-watch.com/view/vb7zp7wwhpw756m2pfxy).

### Tunnel Proxy Deployment for AirWatch

The tunnel proxy deployment secures the network traffic between an end user device and a website through the VMware Browser mobile application from AirWatch.

The mobile application creates a secure HTTPS connection with the Tunnel Proxy server and protects the sensitive data. To use an internal application with AirWatch Tunnel Proxy, ensure that the AirWatch SDK is embedded in your application, which gives you tunneling capabilities with this component.

**Figure 4-8.** Tunnel Proxy Deployment
Relay Endpoint Deployment Model

The relay-endpoint deployment model architecture includes two instances of the AirWatch Tunnel with separate roles.

The AirWatch Tunnel relay server resides in the DMZ and can be accessed from the public DNS over the configured ports.

The ports to access the public DNS are port 8443 for per app tunnel and port 2020 for proxy. The AirWatch Tunnel endpoint server is installed in the internal network that hosts intranet sites and Web applications. The AirWatch Tunnel endpoint server must have an internal DNS record that can be resolved by the relay server. This deployment model separates the publicly available server from the server that connects directly to internal resources, which provides an added layer of security.

The relay server role includes communicating with the AirWatch API and the AWCM components and authenticating devices when requests are made to AirWatch Tunnel. In this deployment model, AirWatch Tunnel supports an outbound proxy for communicating with the API and AWCM from the relay. The per app tunnel service must communicate with API and AWCM directly. When a device makes a request to the AirWatch Tunnel, the relay server determines if the device is authorized to access the service. Once authenticated, the request is forwarded securely using HTTPS over a single port to the AirWatch Tunnel endpoint server.

**Note** The default port is 2010.

The role of the endpoint server is to connect to the internal DNS or IP requested by the device. The endpoint server does not communicate with the API or AWCM unless Enable API and AWCM outbound calls via proxy is set to Enabled in the AirWatch Tunnel settings in the AirWatch console. The relay server performs health checks at a regular interval to ensure that the endpoint is active and available.

These components can be installed on shared or dedicated servers. Install AirWatch Tunnel on dedicated Linux servers to ensure that performance is not impacted by other applications running on the same server. For a relay-endpoint deployment, the proxy and per app tunnel components are installed on the same relay server. Only the proxy component is installed on the endpoint server. The per app tunnel relay component uses the proxy endpoint to connect to internal applications, so the components share a relay-endpoint port and the same endpoint hostname.

Per-App Tunnel Deployment with AirWatch

The Per-App Tunnel Deployment allows both internal and public applications to securely access corporate resources that reside in your secure internal network.

It uses the Per-App capabilities offered by the operating systems such as iOS 7+ or Android 5.0+. These operating systems allow specific applications approved by the mobility administrators to access internal resources on an app-by-app basis. The advantage of using this solution is that no code change is required to the mobile applications. The support from operating system provides a seamless user experience and added security than any other custom solution.
Configure Per-App Tunnel and Proxy Settings for AirWatch

Tunnel proxy deployment secures the network traffic between an end user device and a Website through the VMware Browser mobile application.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings > Edge Service Settings line, click Show.
3. Click Per App Tunnel and Proxy Settings gearbox icon.
4. Change NO to YES to enable tunnel proxy.
5. Configure the following edge service settings resources.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>Set by default to View. Unified Access Gateway can communicate with servers that use the View XML protocol, such as View Connection Server, Horizon Air, and Horizon Air Hybrid-mode.</td>
</tr>
<tr>
<td>API Server URL</td>
<td>Enter the AirWatch API server URL. For example, enter as <a href="https://example.com">https://example.com</a>:&lt;port&gt;.</td>
</tr>
<tr>
<td>API Server User Name</td>
<td>Enter the user name to log in to the API server.</td>
</tr>
<tr>
<td>API Server Password</td>
<td>Enter the password to log in to the API server.</td>
</tr>
<tr>
<td>Organization Group Code</td>
<td>Enter the organization of the user.</td>
</tr>
<tr>
<td>AirWatch Server Hostname</td>
<td>Enter the AirWatch server host name.</td>
</tr>
</tbody>
</table>
To configure other advanced settings, click **More**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Outbound Proxy Host</strong></td>
<td>Enter the host name where the outbound proxy is installed. <strong>Note</strong>: This is not the Tunnel Proxy.</td>
</tr>
<tr>
<td><strong>Outbound Proxy Port</strong></td>
<td>Enter the port number of the outbound proxy.</td>
</tr>
<tr>
<td><strong>Outbound Proxy User Name</strong></td>
<td>Enter the user name to log in to the outbound proxy.</td>
</tr>
<tr>
<td><strong>Outbound Proxy Password</strong></td>
<td>Enter the password to log in to the outbound proxy.</td>
</tr>
<tr>
<td><strong>NTLM Authentication</strong></td>
<td>Change NO to <strong>YES</strong> to specify that the outbound proxy request requires NTLM authentication.</td>
</tr>
<tr>
<td><strong>Use for AirWatch Tunnel Proxy</strong></td>
<td>Change NO to <strong>YES</strong> to use this proxy as an outbound proxy for AirWatch Tunnel. If not enabled, Unified Access Gateway uses this proxy for the initial API call to get the configuration from the AirWatch admin console.</td>
</tr>
<tr>
<td><strong>Host Entries</strong></td>
<td>Enter a comma separated list of host entries to be added in /etc/hosts file. Each entry includes an IP, a hostname, and an optional hostname alias in that order, separated by a space. For example, 10.192.168.1 example1.com, 10.192.168.2 example2.com example-alias</td>
</tr>
<tr>
<td><strong>Trusted Certificates</strong></td>
<td>Select the trusted certificate files to be added to the trust store.</td>
</tr>
</tbody>
</table>

Click **Save**.
You must configure the TLS/SSL Certificates for Unified Access Gateway appliances.

**Note** Configuring the TLS/SSL certificates for the Unified Access Gateway appliance applies to Horizon View, Horizon Cloud, and Web Reverse Proxy only.

### Configuring TLS/SSL Certificates for Unified Access Gateway Appliances


TLS/SSL server certificates are signed by a Certificate Authority (CA). A CA is a trusted entity that guarantees the identity of the certificate and its creator. When a certificate is signed by a trusted CA, users no longer receive messages asking them to verify the certificate, and thin client devices can connect without requiring additional configuration.

A default TLS/SSL server certificate is generated when you deploy a Unified Access Gateway appliance. For production environments, VMware recommends that you replace the default certificate as soon as possible. The default certificate is not signed by a trusted CA. Use the default certificate only in a non-production environment.

### Selecting the Correct Certificate Type

You can use various types of TLS/SSL certificates with Unified Access Gateway. Selecting the correct certificate type for your deployment is crucial. Different certificate types vary in cost, depending on the number of servers on which they can be used.

Follow VMware security recommendations by using fully qualified domain names (FQDNs) for your certificates, no matter which type you select. Do not use a simple server name or IP address, even for communications within your internal domain.

#### Single-Server Name Certificate

You can generate a certificate with a subject name for a specific server. For example: `dept.example.com`.

This type of certificate is useful if, for example, only one Unified Access Gateway appliance needs a certificate.

When you submit a certificate signing request to a CA, provide the server name to associate with the certificate. Be sure that the Unified Access Gateway appliance can resolve the server name you provide so that it matches the name associated with the certificate.
Subject Alternative Names

A Subject Alternative Name (SAN) is an attribute that can be added to a certificate when it is being issued. You use this attribute to add subject names (URLs) to a certificate so that it can validate more than one server.

For example, three certificates might be issued for the Unified Access Gateway appliances that are behind a load balancer: ap1.example.com, ap2.example.com, and ap3.example.com. By adding a Subject Alternative Name that represents the load balancer host name, such as horizon.example.com in this example, the certificate is valid because it matches the host name specified by the client.

When you submit a certificate signing request to a CA, provide the external interface load balancer virtual IP address (VIP) as the common name and the SAN name. Be sure that the Unified Access Gateway appliance can resolve the server name you provide so that it matches the name associated with the certificate.

The certificate is used on port 443.

Wildcard Certificate

A wildcard certificate is generated so that it can be used for multiple services. For example: *.example.com.

A wildcard is useful if many servers need a certificate. If other applications in your environment in addition to Unified Access Gateway appliances need TLS/SSL certificates, you can use a wildcard certificate for those servers, too. However, if you use a wildcard certificate that is shared with other services, the security of the VMware Horizon product also depends on the security of those other services.

**Note** You can use a wildcard certificate only on a single level of domain. For example, a wildcard certificate with the subject name *.example.com can be used for the subdomain dept.example.com but not dept.it.example.com.

Certificates that you import into the Unified Access Gateway appliance must be trusted by client machines and must also be applicable to all instances of Unified Access Gateway and any load balancer, either by using wildcards or by using Subject Alternative Name (SAN) certificates.

Convert Certificate Files to One-Line PEM Format

To use the Unified Access Gateway REST API to configure certificate settings, or to use the PowerShell scripts, you must convert the certificate into PEM-format files for the certificate chain and the private key, and you must then convert the .pem files to a one-line format that includes embedded newline characters.

When configuring Unified Access Gateway, there are three possible types of certificates you might need to convert.

- You should always install and configure a TLS/SSL server certificate for the Unified Access Gateway appliance.
- If you plan to use smart card authentication, you must install and configure the trusted CA issuer certificate for the certificate that will be put on the smart card.
- If you plan to use smart card authentication, VMware recommends that you install and configure a root certificate for the signing CA for the SAML server certificate that is installed on the Unified Access Gateway appliance.

For all of these types of certificates, you perform the same procedure to convert the certificate into a PEM-format file that contains the certificate chain. For TLS/SSL server certificates and root certificates, you also convert each file to a PEM file that contains the private key. You must then convert each .pem file to a one-line format that can be passed in a JSON string to the Unified Access Gateway REST API.
Prerequisites

- Verify that you have the certificate file. The file can be in PKCS#12 (.p12 or .pfx) format or in Java JKS or JCEKS format.
- Familiarize yourself with the openssl command-line tool that you will use to convert the certificate. See https://www.openssl.org/docs/apps/openssl.html.
- If the certificate is in Java JKS or JCEKS format, familiarize yourself with the Java keytool command-line tool to first convert the certificate to .p12 or .pks format before converting to .pem files.

Procedure

1. If your certificate is in Java JKS or JCEKS format, use keytool to convert the certificate to .p12 or .pks format.

   **IMPORTANT** Use the same source and destination password during this conversion.

2. If your certificate is in PKCS#12 (.p12 or .pfx) format, or after the certificate is converted to PKCS#12 format, use openssl to convert the certificate to .pem files.

   For example, if the name of the certificate is mycaservercert.pfx, use the following commands to convert the certificate:

   ```
   openssl pkcs12 -in mycaservercert.pfx -nokeys -out mycaservercert.pem
   openssl pkcs12 -in mycaservercert.pfx -nodes -nocerts -out mycaservercertkey.pem
   openssl rsa -in mycaservercertkey.pem -check -out mycaservercertkeyrsa.pem
   ```

3. Edit mycaservercert.pem and remove any unnecessary certificate entries. It should contain the one SSL server certificate followed by any necessary intermediate CA certificates and root CA certificate.

4. Use the following UNIX command to convert each .pem file to a value that can be passed in a JSON string to the Unified Access Gateway REST API:

   ```awk 'NF {sub(/\r/, "\n", $0); printf "%s\n", $0;}' cert-name.pem
   ```

   In this example, `cert-name.pem` is the name of the certificate file. The certificate looks similar to this example.
The new format places all the certificate information on a single line with embedded newline characters. If you have an intermediate certificate, that certificate must also be in one-line format and add to the first certificate so that both certificates are on the same line.

You can now configure certificates for Unified Access Gateway by using these .pem files with the PowerShell scripts attached to the blog post “Using PowerShell to Deploy VMware Access Point,” available at https://communities.vmware.com/docs/DOC-30835. Alternatively, you can create and use a JSON request to configure the certificate.

**What to do next**


**Replace the Default TLS/SSL Server Certificate for Unified Access Gateway**

To store a trusted CA-signed TLS/SSL server certificate on the Unified Access Gateway appliance, you must convert the certificate to the correct format and use the admin UI or the PowerShell scripts to configure the certificate.

For production environments, VMware strongly recommends that you replace the default certificate as soon as possible. The default TLS/SSL server certificate that is generated when you deploy an Unified Access Gateway appliance is not signed by a trusted Certificate Authority.

**Important** Also use this procedure for periodically replacing a certificate that has been signed by a trusted CA before the certificate expires, which might be every two years.

This procedure describes how to use the REST API to replace the certificate.

**Prerequisites**

- Unless you already have a valid TLS/SSL server certificate and its private key, obtain a new signed certificate from a Certificate Authority. When you generate a certificate signing request (CSR) to obtain a certificate, make sure that a private key is generated also. Do not generate certificates for servers using a KeyLength value under 1024.
To generate the CSR, you must know the fully qualified domain name (FQDN) that client devices will use to connect to the Unified Access Gateway appliance and the organizational unit, organization, city, state, and country to complete the Subject name.

- Convert the certificate to PEM-format files and convert the .pem files to one-line format. See “Convert Certificate Files to One-Line PEM Format,” on page 54.

**Procedure**

1. In the admin UI Configure Manually Section, click Select.
2. In the Advanced Settings > TLS Server Certificate Settings, click the gearbox icon.
3. Click Select for the Private Key and browse to the private key file. Click Open to upload the file.
4. Click Select for the Certificate Chain and browse to the certificate file. Click Open to upload the file.
5. Click Save.

If the certificate is accepted, a success message displays.

**What to do next**

If the CA that signed the certificate is not well known, configure clients to trust the root and intermediate certificates.

**Change the Security Protocols and Cipher Suites Used for TLS or SSL Communication**

Although in almost all cases, the default settings do not need to be changed, you can configure the security protocols and cryptographic algorithms that are used to encrypt communications between clients and the Unified Access Gateway appliance.

The default setting includes cipher suites that use either 128-bit or 256-bit AES encryption, except for anonymous DH algorithms, and sorts them by strength. By default, TLS v1.1 and TLS v1.2 are enabled. TLS v1.0 and SSL v3.0 are disabled.

**Prerequisites**

- Familiarize yourself with the Unified Access Gateway REST API. The specification for this API is available at the following URL on the virtual machine where Unified Access Gateway is installed: https://access-point-appliance.example.com:9443/rest/swagger.yaml.
- Familiarize yourself with the specific properties for configuring the cipher suites and protocols: cipherSuites, ssl30Enabled, tls10Enabled, tls11Enabled, and tls12Enabled.

**Procedure**

1. Create a JSON request for specifying the protocols and cipher suites to use.

   The following example has the default settings.

   ```json
   {
   "cipherSuites":
   "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_RC4_128_SHA",
   "ssl30Enabled": "false",
   "tls10Enabled": "false",
   "tls11Enabled": "true",
   "tls12Enabled": "true"
   }
   ```
2 Use a REST client, such as curl or postman, to use the JSON request to invoke the Unified Access Gateway REST API and configure the protocols and cipher suites. In the example, access-point-appliance.example.com is the fully qualified domain name of the Unified Access Gateway appliance.

curl -k -d @- -u 'admin' -H "Content-Type: application/json" -X PUT https://access-point-appliance.example.com:9443/rest/v1/config/system < ~/ciphers.json

ciphers.json is the JSON request you created in the previous step.

The cipher suites and protocols that you specified are used.
Configuring Authentication in DMZ

When you initially deploy Unified Access Gateway, Active Directory password authentication is set up as the default. Users enter their Active Directory user name and password and these credentials are sent through to a back-end system for authentication.

You can configure the Unified Access Gateway service to perform Certificate/Smart Card authentication, RSA SecurID authentication, RADIUS authentication, and RSA Adaptive Authentication.

**Note**  
Password authentication with Active Directory is the only authentication method that can be used with an AirWatch deployment.

This chapter includes the following topics:

- “Configuring Certificate or Smart Card Authentication on the Unified Access Gateway Appliance,” on page 59
- “Configure RSA SecurID Authentication in Unified Access Gateway,” on page 62
- “Configuring RADIUS for Unified Access Gateway,” on page 63
- “Configuring RSA Adaptive Authentication in Unified Access Gateway,” on page 65
- “Generate Unified Access Gateway SAML Metadata,” on page 67

### Configuring Certificate or Smart Card Authentication on the Unified Access Gateway Appliance

You can configure x509 certificate authentication in Unified Access Gateway to allow clients to authenticate with certificates on their desktop or mobile devices or to use a smart card adapter for authentication.

Certificate-based authentication is based on what the user has (the private key or smart card), and what the person knows (the password to the private key or the smart card PIN). Smart card authentication provides two-factor authentication by verifying both what the person has (the smart card) and what the person knows (the PIN). End users can use smart cards for logging in to a remote View desktop operating system and to access smart-card enabled applications, such as an email application that uses the certificate for signing emails to prove the identity of the sender.

With this feature, smart card certificate authentication is performed against the Unified Access Gateway service. Unified Access Gateway uses a SAML assertion to communicate information about the end user’s X.509 certificate and the smart card PIN to the Horizon server.
You can configure certificate revocation checking to prevent users who have their user certificates revoked from authenticating. Certificates are often revoked when a user leaves an organization, loses a smart card, or moves from one department to another. Certificate revocation checking with certificate revocation lists (CRLs) and with the Online Certificate Status Protocol (OCSP) is supported. A CRL is a list of revoked certificates published by the CA that issued the certificates. OCSP is a certificate validation protocol that is used to get the revocation status of a certificate.

You can configure both CRL and OCSP in the same certificate authentication adapter configuration. When you configure both types of certificate revocation checking and the Use CRL in case of OCSP failure check box is enabled, OCSP is checked first and if OCSP fails, revocation checking falls back to CRL. Revocation checking does not fall back to OCSP if CRL fails.

You can also set up authentication so that Unified Access Gateway requires smart card authentication but then authentication is also passed through to the server, which might require Active Directory authentication.

**NOTE** For VMware Identity Manager, authentication is always passed through Unified Access Gateway to the VMware Identity Manager service. You can configure smart card authentication to be performed on the Unified Access Gateway appliance only if Unified Access Gateway is being used with Horizon 7.

### Configure Certificate Authentication on Unified Access Gateway

You enable and configure certificate authentication from the Unified Access Gateway administration console.

**Prerequisites**

- Obtain the root certificate and intermediate certificates from the CA that signed the certificates presented by your users. See “Obtain the Certificate Authority Certificates,” on page 61
- Verify that the Unified Access Gateway SAML metadata is added on the service provider and the service provider SAML metadata is copied the Unified Access Gateway appliance.
- (Optional) List of Object Identifier (OID) of valid certificate policies for certificate authentication.
- (Optional) OCSP Response Signing certificate file location.
- Consent form content, if a consent form displays before authentication.

**Procedure**

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings Authentication Settings section, click Show.
3. Click the gearbox in the X.509 Certificate line.

An asterisk indicates a required text box. All other text boxes are optional.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable X.509 Certificate</td>
<td>Change NO to YES to enable certificate authentication.</td>
</tr>
<tr>
<td>*Name</td>
<td>Name this authentication method.</td>
</tr>
<tr>
<td>*Root and Intermediate CA Certificates</td>
<td>Click Select to select the certificate files to upload. You can select multiple root CA and intermediate CA certificates that are encoded as DER or PEM.</td>
</tr>
<tr>
<td>CRL Cache Size</td>
<td>Enter the certificate revocation list cache size. The default is 100</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Enable Cert Revocation</td>
<td>Change NO to YES to enable certificate revocation checking. Revocation checking prevents users who have revoked user certificates from authenticating.</td>
</tr>
<tr>
<td>Use CRL from Certificates</td>
<td>Select the check box to use the certificate revocation list (CRL) published by the CA that issued the certificates to validate the status of a certificate, revoked or not revoked.</td>
</tr>
<tr>
<td>CRL Location</td>
<td>Enter the server file path or the local file path from which to retrieve the CRL.</td>
</tr>
<tr>
<td>Enable OCSP Revocation</td>
<td>Select the check box to use the Online Certificate Status Protocol (OCSP) certificate validation protocol to get the revocation status of a certificate.</td>
</tr>
<tr>
<td>Use CRL in case of OCSP Failure</td>
<td>If you configure both CRL and OCSP, you can select this box to fall back to using CRL if OCSP checking is not available.</td>
</tr>
<tr>
<td>Send OCSP Nonce</td>
<td>Select this check box if you want the unique identifier of the OCSP request to be sent in the response.</td>
</tr>
<tr>
<td>OCSP URL</td>
<td>If you enabled OCSP revocation, enter the OCSP server address for revocation checking.</td>
</tr>
<tr>
<td>OCSP Responder's Signing Certificate</td>
<td>Enter the path to the OCSP certificate for the responder, /path/to/file.cer.</td>
</tr>
<tr>
<td>Enable Consent Form before Authentication</td>
<td>Select this check box to include a consent form page to appear before users log in to their Workspace ONE portal using certificate authentication.</td>
</tr>
<tr>
<td>Consent Form Content</td>
<td>Type the text here that displays in the consent form.</td>
</tr>
</tbody>
</table>

5 Click **Save**.

**What to do next**

When X.509 Certificate authentication is configured and Unified Access Gateway appliance is set up behind a load balancer, make sure that Unified Access Gateway is configured with SSL pass-through at the load balancer and not configured to terminate SSL at the load balancer. This configuration ensures that the SSL handshake is between the Unified Access Gateway and the client in order to pass the certificate to Unified Access Gateway.

**Obtain the Certificate Authority Certificates**

You must obtain all applicable CA (certificate authority) certificates for all trusted user certificates on the smart cards presented by your users and administrators. These certificates include root certificates and can include intermediate certificates if the user’s smart card certificate was issued by an intermediate certificate authority.

If you do not have the root or intermediate certificate of the CA that signed the certificates on the smart cards presented by your users and administrators, you can export the certificates from a CA-signed user certificate or a smart card that contains one. See “Obtain the CA Certificate from Windows,” on page 62.

**Procedure**

- Obtain the CA certificates from one of the following sources.
  - A Microsoft IIS server running Microsoft Certificate Services. See the Microsoft TechNet Web site for information on installing Microsoft IIS, issuing certificates, and distributing certificates in your organization.
  - The public root certificate of a trusted CA. This is the most common source of a root certificate in environments that already have a smart card infrastructure and a standardized approach to smart card distribution and authentication.

**What to do next**

Add the root certificate, intermediate certificate, or both to a server truststore file.
Obtain the CA Certificate from Windows

If you have a CA-signed user certificate or a smart card that contains one, and Windows trusts the root certificate, you can export the root certificate from Windows. If the issuer of the user certificate is an intermediate certificate authority, you can export that certificate.

Procedure

1. If the user certificate is on a smart card, insert the smart card into the reader to add the user certificate to your personal store.
   - If the user certificate does not appear in your personal store, use the reader software to export the user certificate to a file. This file is used in Step 4 of this procedure.
2. In Internet Explorer, select Tools > Internet Options.
3. On the Content tab, click Certificates.
4. On the Personal tab, select the certificate you want to use and click View.
   - If the user certificate does not appear on the list, click Import to manually import it from a file. After the certificate is imported, you can select it from the list.
5. On the Certification Path tab, select the certificate at the top of the tree and click View Certificate.
   - If the user certificate is signed as part of a trust hierarchy, the signing certificate might be signed by another higher-level certificate. Select the parent certificate (the one that actually signed the user certificate) as your root certificate. In some cases, the issuer might be an intermediate CA.
6. On the Details tab, click Copy to File.
   - The Certificate Export Wizard appears.
7. Click Next > Next and type a name and location for the file that you want to export.
8. Click Next to save the file as a root certificate in the specified location.

What to do next

Add the CA certificate to a server truststore file.

Configure RSA SecurID Authentication in Unified Access Gateway

After the Unified Access Gateway appliance is configured as the authentication agent in the RSA SecurID server, you must add the RSA SecurID configuration information to the Unified Access Gateway appliance.

Prerequisites

- Verify that RSA Authentication Manager (the RSA SecurID server) is installed and properly configured.
- Download the compressed sdconf.rec file from the RSA SecurID server and extract the server configuration file.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings Authentication Settings section, click Show.
3. Click the gearbox in the RSA SecurID line.
4. Configure the RSA SecurID page.
   - Information used and files generated on the RSA SecurID server are required when you configure the SecurID page.
<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable RSA SecurID</td>
<td>Change NO to YES to enable SecurID authentication.</td>
</tr>
<tr>
<td>*Name</td>
<td>The name is securid-auth.</td>
</tr>
<tr>
<td>*Number of Iterations</td>
<td>Enter the number of authentication attempts that are allowed. This is the maximum number of failed login attempts when using the RSA SecurID token. The default is 5 attempts. <strong>Note</strong> When more than one directory is configured and you implement RSA SecurID authentication with additional directories, configure Number of authentication attempts allowed with the same value for each RSA SecurID configuration. If the value is not the same, SecurID authentication fails.</td>
</tr>
<tr>
<td>*External HOST Name</td>
<td>Enter the IP address of the Unified Access Gateway instance. The value you enter must match the value you used when you added the Unified Access Gateway appliance as an authentication agent to the RSA SecurID server.</td>
</tr>
<tr>
<td>*Internal HOST Name</td>
<td>Enter the value assigned to the IP address prompt in the RSA SecurID server.</td>
</tr>
<tr>
<td>*Server Configuration</td>
<td>Click Change to upload the RSA SecurID server configuration file. First, you must download the compressed file from the RSA SecurID server and extract the server configuration file, which by default is named sdconf.rec.</td>
</tr>
<tr>
<td>*Name Id Suffix</td>
<td>Enter the nameId that enables View to provide TrueSSO experience.</td>
</tr>
</tbody>
</table>

### Configuring RADIUS for Unified Access Gateway

You can configure Unified Access Gateway so that users are required to use RADIUS authentication. You configure the RADIUS server information on the Unified Access Gateway appliance.

RADIUS support offers a wide range of alternative two-factor token-based authentication options. Because two-factor authentication solutions, such as RADIUS, work with authentication managers installed on separate servers, you must have the RADIUS server configured and accessible to the identity manager service.

When users sign in and RADIUS authentication is enabled, a special login dialog box appears in the browser. Users enter their RADIUS authentication user name and passcode in the login dialog box. If the RADIUS server issues an access challenge, Unified Access Gateway displays a dialog box prompting for a second passcode. Currently support for RADIUS challenges is limited to prompting for text input.

After a user enters credentials in the dialog box, the RADIUS server can send an SMS text message or email, or text using some other out-of-band mechanism to the user’s cell phone with a code. The user can enter this text and code into the login dialog box to complete the authentication.

If the RADIUS server provides the ability to import users from Active Directory, end users might first be prompted to supply Active Directory credentials before being prompted for a RADIUS authentication username and passcode.

### Configure RADIUS Authentication

On the Unified Access Gateway appliance, you must enable RADIUS authentication, enter the configuration settings from the RADIUS server, and change the authentication type to RADIUS authentication.

**Prerequisites**

- Verify that the server to be used as the authentication manager server has the RADIUS software installed and configured. Set up the RADIUS server and then configure the RADIUS requests from Unified Access Gateway. Refer to your RADIUS vendor’s setup guides for information about setting up the RADIUS server.
The following RADIUS server information is required.

- IP address or DNS name of the RADIUS server.
- Authentication port numbers. Authentication port is usually 1812.
- Authentication type. The authentication types include PAP (Password Authentication Protocol), CHAP (Challenge Handshake Authentication Protocol), MSCHAP1, MSCHAP2 (Microsoft Challenge Handshake Authentication Protocol, versions 1 and 2).
- RADIUS shared secret that is used for encryption and decryption in RADIUS protocol messages.
- Specific timeout and retry values needed for RADIUS authentication

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings Authenticating Settings section, click Show.
3. Click the gearbox in the RADIUS line.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable RADIUS</td>
<td>Change NO to YES to enable RADIUS authentication.</td>
</tr>
<tr>
<td>Name*</td>
<td>The name is radius-auth</td>
</tr>
<tr>
<td>Authentication type*</td>
<td>Enter the authentication protocol that is supported by the RADIUS server. Either PAP, CHAP, MSCHAP1, OR MSCHAP2.</td>
</tr>
<tr>
<td>Shared secret*</td>
<td>Enter the RADIUS shared secret.</td>
</tr>
<tr>
<td>Number of attempts allowed *</td>
<td>Enter the maximum number of failed login attempts when using RADIUS to log in. The default is three attempts.</td>
</tr>
<tr>
<td>Number of attempts to RADIUS server*</td>
<td>Enter the total number of retry attempts. If the primary server does not respond, the service waits for the configured time before retrying again.</td>
</tr>
<tr>
<td>Server Timeout in Seconds*</td>
<td>Enter the RADIUS server timeout in seconds, after which a retry is sent if the RADIUS server does not respond.</td>
</tr>
<tr>
<td>Radius Server Host name *</td>
<td>Enter the host name or the IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Authentication Port*</td>
<td>Enter the Radius authentication port number. The port is usually 1812.</td>
</tr>
<tr>
<td>Realm Prefix*</td>
<td>(Optional) The user account location is called the realm.</td>
</tr>
<tr>
<td></td>
<td>If you specify a realm prefix string, the string is placed at the beginning of the user name when the name is sent to the RADIUS server. For example, if the user name is entered as jdoe and the realm prefix DOMAIN-A \ is specified, the user name DOMAIN-A \jdoe is sent to the RADIUS server. If you do not configure these fields, only the user name that is entered is sent.</td>
</tr>
<tr>
<td>Realm Suffix*</td>
<td>(Optional) If you configure a realm suffix, the string is placed at the end of the user name. For example, if the suffix is @myco.com, the user name <a href="mailto:jdoe@myco.com">jdoe@myco.com</a> is sent to the RADIUS server.</td>
</tr>
<tr>
<td>Name ID Suffix</td>
<td>Enter the nameId that enables View to provide a True SSO experience.</td>
</tr>
</tbody>
</table>
Option | Action
---|---
Login page passphrase hint | Enter the text string to display in the message on the user login page to direct users to enter the correct Radius passcode. For example, if this field is configured with **AD password first and then SMS passcode**, the login page message would read **Enter your AD password first and then SMS passcode**. The default text string is **RADIUS Passcode**.
Enable secondary server | Change NO to YES to configure a secondary RADIUS server for high availability. Configure the secondary server information as described in step 3.

4  Click Save.

**Configuring RSA Adaptive Authentication in Unified Access Gateway**

RSA Adaptive Authentication can be implemented to provide a stronger multi-factor authentication than only user name and password authentication against Active Directory. Adaptive Authentication monitors and authenticates user login attempts based on risk levels and policies.

When Adaptive Authentication is enabled, the risk indicators specified in the risk policies set up in the RSA Policy Management application and the Unified Access Gateway configuration of adaptive authentication are used to determine whether a user is authenticated with user name and password or whether additional information is needed to authenticate the user.

**Supported RSA Adaptive Authentication Methods of Authentication**

The RSA Adaptive Authentication strong authentication methods supported in Access Point are out-of-band authentication via phone, email, or SMS text message and challenge questions. You enable on the service the methods of RSA Adaptive Auth that can be provided. RSA Adaptive Auth policies determine which secondary authentication method is used.

Out-of-band authentication is a process that requires sending additional verification along with the user name and password. When users enroll in the RSA Adaptive Authentication server, they provide an email address, a phone number, or both, depending on the server configuration. When additional verification is required, RSA adaptive authentication server sends a one-time passcode through the provided channel. Users enter that passcode along with their user name and password.

Challenge questions require the user to answer a series of questions when they enroll in the RSA Adaptive Authentication server. You can configure how many enrollment questions to ask and the number of challenge questions to present on the login page.

**Enrolling Users with RSA Adaptive Authentication Server**

Users must be provisioned in the RSA Adaptive Authentication database to use adaptive authentication for authentication. Users are added to the RSA Adaptive Authentication database when they log in the first time with their user name and password. Depending on how you configured RSA Adaptive Authentication in the service, when users log in, they can be asked to provide their email address, phone number, text messaging service number (SMS), or they might be asked to set up responses to challenge questions.

*Note*  RSA Adaptive Authentication does not allow for international characters in user names. If you intend to allow multi-byte characters in the user names, contact RSA support to configure RSA Adaptive Authentication and RSA Authentication Manager.
Configure RSA Adaptive Authentication in Unified Access Gateway

To configure RSA Adaptive Authentication on the service, you enable RSA Adaptive Authentication; select the adaptive authentication methods to apply, and add the Active Directory connection information and certificate.

Prerequisites

- RSA Adaptive Authentication correctly configured with the authentication methods to use for secondary authentication.
- Details about the SOAP endpoint address and the SOAP user name.
- Active Directory configuration information and the Active Directory SSL certificate available.

Procedure

1. In the admin UI Configure Manually section, click Select.
2. In the General Settings Authentication Settings section, click Show.
3. Click the gearbox in the RSA Adaptive Authentication line.
4. Select the appropriate settings for your environment.

**NOTE** An asterisk indicates a required field. The other fields are optional.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable RSA AA Adapter</td>
<td>Change NO to YES to enable RSA Adaptive Authentication.</td>
</tr>
<tr>
<td>Name*</td>
<td>The name is rsaaa-auth.</td>
</tr>
<tr>
<td>SOAP Endpoint*</td>
<td>Enter the SOAP endpoint address for integration between the RSA Adaptive Authentication adapter and the service.</td>
</tr>
<tr>
<td>SOAP Username*</td>
<td>Enter the user name and password that is used to sign SOAP messages.</td>
</tr>
<tr>
<td>SOAP Password*</td>
<td>Enter the RSA Adaptive Authentication SOAP API password.</td>
</tr>
<tr>
<td>RSA Domain</td>
<td>Enter the domain address of the Adaptive Authentication server.</td>
</tr>
<tr>
<td>Enable OOB Email</td>
<td>Select YES to enable out-of-band authentication that sends a onetime passcode to the end user by way of an email message.</td>
</tr>
<tr>
<td>Enable OOB SMS</td>
<td>Select YES to enable out-of-band authentication that sends a onetime passcode to the end user by way of a SMS text message.</td>
</tr>
<tr>
<td>Enable SecurID</td>
<td>Select YES to enable SecurID. Users are asked to enter their RSA token and passcode.</td>
</tr>
<tr>
<td>Enable Secret Question</td>
<td>Select YES if you are going to use enrollment and challenge questions for authentication.</td>
</tr>
<tr>
<td>Number Enrollment Questions*</td>
<td>Enter the number of questions the user will need to setup when they enroll in the Authentication Adapter server.</td>
</tr>
<tr>
<td>Number Challenge Questions*</td>
<td>Enter the number of challenge questions users must answer correctly to login.</td>
</tr>
<tr>
<td>Number of authentication attempts allowed*</td>
<td>Enter the number of times to display challenge questions to a user trying to log in before authentication fails.</td>
</tr>
<tr>
<td>Type of Directory*</td>
<td>The only directory supported is Active Directory.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Select YES if you use SSL for your directory connection. You add the Active Directory SSL certificate in the Directory Certificate field.</td>
</tr>
<tr>
<td>Server Host*</td>
<td>Enter the Active Directory host name.</td>
</tr>
<tr>
<td>Server Port</td>
<td>Enter the Active Directory port number.</td>
</tr>
<tr>
<td>Use DNS Service Location</td>
<td>Select YES if DNS service location is used for directory connection.</td>
</tr>
</tbody>
</table>
## Generate Unified Access Gateway SAML Metadata

You must generate SAML metadata on the Unified Access Gateway appliance and exchange metadata with the server to establish the mutual trust required for smart card authentication.

The Security Assertion Markup Language (SAML) is an XML-based standard that is used to describe and exchange authentication and authorization information between different security domains. SAML passes information about users between identity providers and service providers in XML documents called SAML assertions. In this scenario, Unified Access Gateway is the identity provider and the server is the service provider.

### Prerequisites

- Configure the clock (UTC) on the Unified Access Gateway appliance so that the appliance has the correct time. For example, open a console window on the Unified Access Gateway virtual machine and use arrow buttons to select the correct time zone. Also verify that the ESXi host’s time is synchronized with an NTP server. Verify that VMware Tools, which is running in the appliance virtual machine, synchronizes the time on the virtual machine with the time on the ESXi host.

**IMPORTANT** If the clock on the Unified Access Gateway appliance does not match the clock on the server host, smart card authentication might not work.

- Obtain a SAML signing certificate that you can use to sign the Unified Access Gateway metadata.

**NOTE** VMware recommends that you create and use a specific SAML signing certificate when you have more than one Unified Access Gateway appliance in your setup. In this case, all appliances must be configured with the same signing certificate so that the server can accept assertions from any of the Unified Access Gateway appliances. With a specific SAML signing certificate, the SAML metadata from all the appliances is the same.

- If you have not done so already, convert the SAML signing certificate to PEM-format files and convert the .pem files to one-line format. See “Convert Certificate Files to One-Line PEM Format,” on page 54.

### Procedure

1. In the admin UI Configure Manually section, click **Select**.
2. In the Advanced Settings section, click the **SAML Identity Provider Settings** gearbox icon.
3. Select the **Provide Certificate** check box.
4. To add the Private Key file, click **Select** and browse to the private key file for the certificate.
5. For add the Certificate Chain file, click **Select** and browse to the certificate chain file.
6 Click Save.

7 In the Hostname text box, enter the hostname and download the identity provider settings.

### Creating a SAML Authenticator Used by Other Service Providers

After you generate the SAML metadata on the Unified Access Gateway appliance, you can copy that data to the back-end service provider. Copying this data to the service provider is part of the process of creating a SAML authenticator so that Unified Access Gateway can be used as an identity provider.

For a Horizon Cloud server, see the product documentation for specific instructions.

### Copy Service Provider SAML Metadata to Unified Access Gateway

After you create and enable a SAML authenticator so that Unified Access Gateway can be used as an identity provider, you can generate SAML metadata on that back-end system and use the metadata to create a service provider on the Unified Access Gateway appliance. This exchange of data establishes trust between the identity provider (Unified Access Gateway) and the back-end service provider, such as View Connection Server.

#### Prerequisites

Verify that you have created a SAML authenticator for Unified Access Gateway on the back-end service provider server.

#### Procedure

1 Retrieve the service provider SAML metadata, which is generally in the form of an XML file.
   
   For instructions, refer to the documentation for the service provider.
   
   Different service providers have different procedures. For example, you must open a browser and enter a URL such as: https://connection-server.example.com/SAML/metadata/sp.xml
   
   You can then use a Save As command to save the Web page to an XML file. The contents of this file begin with the following text:
   
   ```xml
   <md:EntityDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" ...
   ```

2 In the Unified Access Gateway admin UI Configure Manually section, click Select.

3 In the Advanced Settings section, click the SAML Server Provider Settings gearbox icon.

4 In the Service Provider Name text box, enter the service provider name.

5 In the Metadata XML text box, paste the metadata file you created in step 1.

6 Click Save.

Unified Access Gateway and the service provider can now exchange authentication and authorization information.
You can use a variety of procedures to diagnose and fix problems that you encounter when you deploy Unified Access Gateway in your environment.

You can use troubleshooting procedures to investigate the causes of such problems and attempt to correct them yourself, or you can obtain assistance from VMware Technical Support.

This chapter includes the following topics:

- “Monitoring the Health of Deployed Services,” on page 69
- “Troubleshooting Deployment Errors,” on page 70
- “Collecting Logs from the Unified Access Gateway Appliance,” on page 71

**Monitoring the Health of Deployed Services**

You can quickly see that services you deployed are configured, up and running successfully from the admin UI for Edge Settings.

**Figure 7-1. Health Check**

A circle displays before the service. The color coding is as follows.

- Blank circle means that the setting is not configured.
- A red circle means that the service is down.
- An amber circle means that the service is partially running.
- A green circle means that the service is running without any issues.
Troubleshooting Deployment Errors

You might experience difficulty when you deploy Unified Access Gateway in your environment. You can use a variety of procedures for diagnosing and fixing problems with your deployment.

Security warning when running scripts downloaded from internet

Verify that the PowerShell script is the script you intend to run, and then from the PowerShell console, run the following command:

    unblock-file .\apdeploy.ps1

ovftool command not found

Verify that you have installed the OVF Tool software on your Windows machine and that it is installed in the location expected by the script.

Invalid Network in property netmask1

- The message might state netmask0, netmask1 or netmask2. Check that a value has been set in the .INI file for each of the three networks such as netInternet, netManagementNetwork, and netBackendNetwork.
- Verify that a vSphere Network Protocol Profile has been associated with every referenced network name. This specifies network settings such as IPv4 subnet mask, gateway, and so on. Ensure the associated Network Protocol Profile has correct values for each of the settings.

Warning message about the operating system identifier being not supported

The warning message displays that the specified operating system identifier SUSE Linux Enterprise Server 12.0 64-bit (id:85) is not supported on the selected host. It is mapped to the following OS identifier: Other Linux (64-bit).

Ignore this warning message. It is mapped to a supported operating system automatically.

Configure Unified Access Gateway for RSA SecurID authentication

Add the following lines to the Horizon section of the .INI file.

    authMethods=securid-auth && sp-auth
    matchWindowsUserName=true

Add a new section at the bottom of you .INI file.

    [SecurIDAuth]
    serverConfigFile=C:\temp\sdconf.rec
    externalHostName=192.168.0.90
    internalHostName=192.168.0.90

The IP addresses should both be set to the IP address of Unified Access Gateway. The sdconf.rec file is obtained from RSA Authentication Manager which must be fully configured. Verify that you are using Access Point 2.5 or later version and that the RSA Authentication Manager server is accessible on the network from Access Point. Rerun apdeploy Powershell command to redeploy your Access Point configured for RSA SecurID.
Locator does not refer to an object error

The error notifies that the target= value that is used by vSphere OVF Tool is not correct for your vCenter environment. Use the table listed in https://communities.vmware.com/docs/DOC-30835 for examples of the target format used to refer to a vCenter host or cluster. The top level object is specified as follows:

```
target=vi://administrator@vsphere.local:PASSWORD@192.168.0.21/
```

The object now lists the possible names to use at the next level.

```
target=vi://administrator@vsphere.local:PASSWORD@192.168.0.21/Datacenter1/
target=vi://administrator@vsphere.local:PASSWORD@192.168.0.21/Datacenter1/host
```

```
target=vi://administrator@vsphere.local:PASSWORD@192.168.0.21/Datacenter1/host/Cluster1/
```
or

```
target=vi://administrator@vsphere.local:PASSWORD@192.168.0.21/Datacenter1/host/esxhost1
```

The folder names, hostnames, and cluster names used in the target are case sensitive.

Collecting Logs from the Unified Access Gateway Appliance

Download the AP-Log Archive.zip file from the support settings in admin UI. The ZIP file contains all logs from your Unified Access Gateway appliance.

Set the Logging Level

You can manage the log level settings from the admin UI. Go to the Support Settings page and select Log Level Settings. The log levels that can be generated are INFO, WARNING, ERROR, and DEBUG. The logging level is set by default to INFO.

A description of the type of information that the log levels collect follows.

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of Information Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO</td>
<td>The INFO level designates information messages that highlight the progress of the service.</td>
</tr>
<tr>
<td>ERROR</td>
<td>The ERROR level designates error events that might still allow the service to continue running.</td>
</tr>
<tr>
<td>WARNING</td>
<td>The WARNING level designates potentially harmful situations but are usually recoverable or can be ignored.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Events that would generally be useful to debug problems. You can enable the debug mode to view or manipulate the internal state of the appliance. The debug mode lets you test the deployment scenario in your environment.</td>
</tr>
</tbody>
</table>

Collect Logs

Download the log ZIP files from the Support Settings section of the admin UI.

These log files are collected from the /opt/vmware/gateway/logs directory on the appliance.

The following tables contain descriptions of the various files included in the ZIP file.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df.log</td>
<td>Contains information about disk space usage.</td>
</tr>
<tr>
<td>netstat.log</td>
<td>Contains information about network connections.</td>
</tr>
<tr>
<td>ap_config.json</td>
<td>Contains the current configuration settings for the Unified Access Gateway appliance.</td>
</tr>
</tbody>
</table>
Table 7-2. Files That Contain System Information to Aid in Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps.log</td>
<td>Includes a process listing.</td>
</tr>
<tr>
<td>ifconfig.log</td>
<td>Contains information about network interfaces.</td>
</tr>
<tr>
<td>free.log</td>
<td>Contains information about memory usage.</td>
</tr>
</tbody>
</table>

Table 7-3. Log Files for Unified Access Gateway

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>esmanager.log</td>
<td>Contains log messages from the Edge Service Manager process, which listens on ports 443 and 80.</td>
</tr>
<tr>
<td>authbroker.log</td>
<td>Contains log messages from the AuthBroker process, which handles authentication adapters.</td>
</tr>
<tr>
<td>admin.log</td>
<td>Contains log messages from the process that provides the Unified Access Gateway REST API on port 9443.</td>
</tr>
<tr>
<td>admin-zookeeper.log</td>
<td>Contains log messages related to the data layer that is used to store Unified Access Gateway configuration information.</td>
</tr>
<tr>
<td>tunnel.log</td>
<td>Contains log messages from the tunnel process that is used as part of XML API processing.</td>
</tr>
<tr>
<td>bsg.log</td>
<td>Contains log messages from the Blast Secure Gateway.</td>
</tr>
<tr>
<td>SecurityGateway_*.log</td>
<td>Contains log messages from the PCoIP Secure Gateway.</td>
</tr>
</tbody>
</table>

The log files that end in "-std-out.log" contain the information written to stdout of various processes and are usually empty files.

Unified Access Gateway Log Files for AirWatch

- /var/log/airwatch/tunnel/vpnd
  The tunnel-init.log and tunnel.log are captured from this directory.
- /var/log/airwatch/proxy
  The proxy.log is captured from this directory.
- /var/log/airwatch/appliance-agent
  The appliance-agent.log is captured from this directory.
Index

A
Access Point overview 7
Access Point documentation 5
admin UI, configure system settings 24
AirWatch, per-app tunnel 49
AirWatch, deploying Access Point 48
AirWatch, tunnel proxy deployment 48
AirWatch, configure per-app tunnel 50
authentication 59
authentication methods 59

B
backend traffic, DMZ 13
BEAT 36
Blast, BEAT configuration 36

C
certificate, replace 25
certificate authentication 59
certificate revocation 59
cipher suites 57
configure reverse proxy 38
   RSA SecurID Authentication 62
Configure, Horizon 34
configure settings 24
configure RSA Adaptive Authentication 66
configuring access point 53

D
deploying 23
deploying with horizon 31
deployment, appliance 19
deployment wizard 20
deployment using OVF 19
DMZ, network internet cards 13

E
executing powershell script 27

F
firewall rules 10

G
gateway 7

H
hardware requirements 8
health check 69
Horizon, configure 34

I
identity bridging, keytab 45
identity bridging, overview 41
identity bridging settings, configure 43
identity bridging, configure 46
identity bridging, deployment scenarios 42
identity bridging, realm settings 44

K
keytab 45

L
logs, collecting 71

M
management traffic, DMZ 13
network internet cards 13

N
one NIC in DMZ 13
OVF deployment 19

O
private key, certificate update 25
proxy, configure for AirWatch 50

Q
quiesce mode 16

R
RADIUS, configuring 63
realm settings for identity bridging 44
replace signed certificates 25
requirements 8
reverse proxy 36
reverse proxy, configure for VMware Identity Manager 38
root certificates
  exporting 62
  obtaining 61
RSA SecurID Authentication, configure 62
RSA Adaptive Authentication, enrolling users 65
RSA Adaptive Authentication, configure 66

S
SAML 67, 68
SAML metadata for service providers 68
security protocols 57
service provider metadata 47
smart card authentication, configure 60
smart cards, exporting user certificates 62
software requirements 8
SSL server certificates 56
system requirements 8

T
TLS/SSL certificates 53
topologies 11
troubleshooting access point 69
troubleshooting errors 70
tunnel proxy deployment 48

U
update certificate 25
upgrade, prepare for 16
use cases 31

V
View, vpn 8
VMware Identity Manager
  configure reverse proxy 38
  reverse proxy 36
VPN, with View 8

W
Web reverse proxy for identity bridging 46

X
X.509 60