
Carbon Black Container
User Guide

15 February 2024

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or

its subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names,

service marks, and logos referenced herein belong to their respective companies. Copyright and trademark

information.

Carbon Black Container User Guide

VMware by Broadcom 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html
https://docs.vmware.com/copyright-trademark.html

Contents

VMware Carbon Black Container User Guide 8

1 Carbon Black Container Overview 9
Why Deploy Security for Containers 11

How Carbon Black Secures Containers 11

Provides Visibility into Kubernetes Security Posture 12

Secures the Complete Lifecycle of Kubernetes Applications 13

Automates Runtime Cluster Scanning 13

Enables Compliance and Policy Automation 15

Containers Architecture 15

Container Agent Components Architecture 17

cbcontainers-operator 19

cbcontainers-monitor 20

cbcontainers-node-agent 21

cbcontainers-hardening-enforcer 23

cbcontainers-hardening-state-reporter 24

cbcontainers-runtime-resolver 25

cbcontainers-image-scanning-reporter 26

Containers Concepts and Terminology 27

2 Setting up the Container Security Environment 33
Roles and Users for Containers 33

Using and Creating Roles for Containers 34

Add a Container Role 36

Create a User Account for Containers 39

Adding Clusters and Installing Kubernetes Sensors 39

Add a Cluster and Install the Kubernetes Sensor 40

Private Container Registry 44

Check the Kubernetes Sensor Status and Health 44

Installing a Containerized Sensor 46

Set up a Containerized Sensor 47

Install a Containerized Sensor 49

Install a Containerized Sensor on a Docker Client 52

Install a Containerized Sensor on an ECS Cluster 53

Validate the Container Image Signature 56

Setting up CLI Client for Image Scanning 58

Download a CLI Client 59

Add and Configure a CLI Client 60

VMware by Broadcom 3

Carbon Black Container Operator Technical Reference 63

Manually Deploy the Container Operator 63

Uninstall the Container Operator 64

Manually Deploy the Container Agent 64

Openshift 65

Reading Metrics by using Prometheus 68

Custom Resources Definitions 69

Changing Components Resources 73

Configuring Container Services to use HTTP Proxy 75

Changing the Image Source 77

Operator Role-based Access Control 78

Container Operator Developer Instructions 79

Helm Charts 81

3 Configuring Container Security 86
Kubernetes Scopes 86

Kubernetes Scopes Hierarchy 87

Built-in Kubernetes Scopes 89

Add a Kubernetes Applications Scope to Kubernetes Resources 90

Add a Kubernetes Deploy Location Scope to Kubernetes Resources 91

Add a Kubernetes Container Images Scope to Kubernetes Resources 92

View a Kubernetes Scope 94

Edit or Delete a Kubernetes Scope 95

Kubernetes Scope Baselines for Runtime Policies 96

View a Kubernetes Scope Baseline for a Runtime Policy 96

Add a Behavior to a Kubernetes Scope Baseline 97

Add a False Positive as Normal Behavior to the Scope Baseline 97

Reset a Kubernetes Scope Baseline 98

Egress Groups 99

Create an Egress Group 99

Edit or Delete an Egress Group 100

Kubernetes Policies 101

Kubernetes Runtime Policies 101

Create a Kubernetes Runtime Policy 101

Edit a Kubernetes Runtime Policy 103

Enable a Kubernetes Runtime Policy Draft 103

View Kubernetes Runtime Policy Details 103

Kubernetes Hardening Policies 105

Built-in Kubernetes Hardening Policies 105

Create a Kubernetes Hardening Policy 105

Enforcement Presets 107

Carbon Black Container User Guide

VMware by Broadcom 4

Edit a Kubernetes Hardening Policy 110

Enable a Kubernetes Hardening Policy Draft 111

Save a Hardening Policy as a Template 111

Duplicate a Hardening Policy 112

Kubernetes Policy Rules 112

Kubernetes Policy Templates 126

Subscribe to Alert Notifications 128

Setting up API Access 129

Create and Manage an API Key 130

Delete API Key with Attached Notification Rule 132

Setting Access Levels 133

Create Access Levels 133

Apply Access Level to an API Key 133

4 Scanning Images 135
Manually Rescan a Container Image 136

5 Monitoring and Analyzing Containers 138
Severity Scoring 138

Kubernetes Risk Severity Scoring 138

Risk Evaluation for Container Images 139

Color Indicators for Image Vulnerabilities Scoring 140

Monitoring Container Images 141

View Container Images - Overview 141

View Deployed Container Image Details 143

View Container Image Repositories 146

View Image Scan Report - Scan Log Details 147

View Container Image Scan Report 148

View a Container Image Scan Report - Overview 149

View a Container Image Scan Report - Layers 150

View a Container Image Scan Report - Packages 153

View a Container Image Scan Report - Suspicious Files 154

View a Container Image Scan Report - Vulnerabilities 156

View a Container Image Scan Report - Vulnerability Details 158

View a Container Image Scan Report - K8s Workloads 160

View a Container Image Scan Report - Scan Log 161

Investigate Container Image Vulnerabilities 161

Allow an Exception for a Vulnerability 163

Managing and Viewing File Reputations in Container Images 164

Detect Malware in a Container Image 164

Override a File Reputation in a Container Image 166

Carbon Black Container User Guide

VMware by Broadcom 5

Manage File Reputations for Container Images 167

Adding File Reputations in Container Images 168

Add a File to the Banned List 169

Add a Reputation to the Approved List 170

Expiration of Approved Certificates 171

Detecting and Preventing Secrets 172

Detect Secrets in Containers on the Scan Log Page 175

Prevent Secrets in Containers 176

Monitoring Kubernetes Workloads 177

View Kubernetes Workloads 178

View a Kubernetes Workload - Overview 181

View a Kubernetes Workload - Runtime Policy 181

View a Kubernetes Workload - Hardening Policy 182

View a Kubernetes Workload - Network Connections 183

View a Kubernetes Workload - Risks 184

View a Kubernetes Workload - Behavior Models 185

Kubernetes Virtual Workloads 186

Analyzing Network Activity 186

Investigate Cluster Activity in the Network Map 187

Visualizing Namespace Data on the Network Map 189

Visualizing Workloads Data on the Network Map 192

6 Investigating and Remediating Container Security Issues 195
Exploring Kubernetes Events (Hardening) 195

Explore Kubernetes Events - Overview 195

Explore Kubernetes Events - Details 197

Investigating Container Events on the Investigate Page 199

Investigate Container Events 203

Investigate Kubernetes Clusters 204

Investigate Kubernetes Namespaces 206

Investigate Kubernetes Workloads 207

Investigate Containers Events on the Process Analysis Page 208

Triaging Kubernetes Alerts 211

Search for Kubernetes Alerts 211

View Kubernetes Alert Details 212

Identify Available Fixes and Patches 213

7 Managing Clusters and Kubernetes Sensors 217
View Clusters 217

Edit a Cluster 218

Delete a Cluster and its Sensor 219

Carbon Black Container User Guide

VMware by Broadcom 6

Upgrading or Downgrading the Kubernetes Sensor 220

Upgrade or Downgrade the Kubernetes Sensor through the Command Line 220

Upgrade or Downgrade the Kubernetes Sensor through the Console 221

Upgrade or Downgrade the Kubernetes Sensor Remotely through the Console 223

Delete a CLI Client 226

8 Carbon Black Container Operator Technical Reference 227
Manually Deploy the Container Operator 228

Uninstall the Container Operator 228

Manually Deploy the Container Agent 229

Openshift 230

Reading Metrics by using Prometheus 232

Custom Resources Definitions 233

Changing Components Resources 237

Configuring Container Services to use HTTP Proxy 239

Changing the Image Source 241

Operator Role-based Access Control 242

Container Operator Developer Instructions 243

Helm Charts 245

Carbon Black Container User Guide

VMware by Broadcom 7

VMware Carbon Black Container User
Guide

VMware Carbon Black Container™ is a comprehensive security solution for both on-premise and
cloud-native workloads by offering visibility, hardening, vulnerability management, and runtime
protection capabilities.

Carbon Black Container helps reducing risk by identifying vulnerabilities and misconfigurations to
harden workloads.

This solution provides security teams with the visibility and ability to enforce compliance while
integrating into existing DevOps processes. With VMware Carbon Black, organizations can
reduce risk, maintain compliance, and simplify security for Kubernetes environments at scale.

Intended Audience

Carbon Black Container is for both Security and DevOps teams. As security shifts left, developers
must take an increased ownership in security and implementing security measures through the
code and the build stage of the modern application lifecycle.

Security teams must enforce compliance requirements and keep applications secure during the
deployment and runtime stages.

This guide is written for Security Analysts, DevSecOps, and DevOps teams. It assumes you have
knowledge of containers and Kubernetes clusters.

VMware by Broadcom 8

Carbon Black Container Overview 1
The Carbon Black Container solution can provide the visibility and control that DevOps and
security teams need to make sure that their Kubernetes clusters and the applications deployed
on them are secure. This topic provides a condensed view of Carbon Black Container benefits.

VMware Carbon Black Container Essentials and VMware
Carbon Black Container Advanced

Carbon Black offers two Carbon Black Container packages that are described in the following
table.

VMware Carbon Black Container Essentials VMware Carbon Black Container Advanced

Security posture dashboard Container Essentials +

Compliance policy automation Threat detection

Prioritized risk assessment Anomaly detection

Governance control and enforcement Egress security

Image scanning and vulnerability management SIEM integration

Shift-left security with CI/CD hardening

Topology map

Auto Enforce

At a Glance

Carbon Black Container delivers policy-based reporting and enforcement of your organization’s
security posture across all workloads deployed in Kubernetes clusters.

With Carbon Black Container, you can:

n Secure the complete lifecycle of Kubernetes applications.

n Detect and fix vulnerabilities and misconfigurations before deployment.

n Meet compliance standards.

VMware by Broadcom 9

n Achieve simple, secure multi-cloud and hybrid cloud Kubernetes at scale.

Use Cases

n Kubernetes Security Posture Management (KSPM)

n Container image scanning

n Container image hardening

n Increased visibility into Kubernetes environments

n Ensured security compliance, governance, and enforcement

n Build behavior models for applications to identify and alert on anomalies

n Secure containers and Kubernetes applications

n Increase visibility into Kubernetes environments

Key Benefits for DevOps Teams

n Fast and easy deployment

n Seamless integration into the CI/CD pipeline and existing processes

n Address vulnerabilities and misconfigurations at build

n Enable speed of delivery without compromising security

n Gain visibility into application connectivity and configuration with in-cluster network visibility
map

n Risk-prioritized vulnerability assessment of container images at runtime

n Understand misconfiguration of secret management in Kubernetes

Key Benefits for Security Teams

n Gain complete visibility into the Kubernetes security posture

n Enable prioritized vulnerability reporting

n Define and customize security policies

n Enable developers to address vulnerabilities and misconfigurations at build

n Enable speed of delivery without compromising security

n Connect image vulnerabilities to specific running workloads

n Secure egress connections to private and public destinations

n Identify malicious egress connections by using IP reputation

n Use machine learning and AI to build network behavior model for workloads

Carbon Black Container User Guide

VMware by Broadcom 10

n Identify malicious network activity

n Consolidate events and alerts to a single dashboard

n Gain visibility into Kubernetes clusters, networking flow, and application architecture

Read the following topics next:

n Why Deploy Security for Containers

n How Carbon Black Secures Containers

n Containers Architecture

n Containers Concepts and Terminology

Why Deploy Security for Containers

You can integrate security into your DevOps processes to easily deploy quality apps faster with
Carbon Black Container. When you secure apps early in development, you reduce vulnerabilities
in production.

Container Security is a critical part of a comprehensive security assessment. It is the practice
of protecting containerized applications from potential risk using a combination of security tools
and policies. Container Security manages risks throughout the environment, including all aspects
of the software supply chain or CI/CD pipeline, infrastructure, container runtime, and lifecycle
management applications that run on containers.

A unified security strategy from development to production is critical for detecting vulnerabilities
and misconfigurations early in development to minimize the attack surface that containers pose.
By starting with the build phase, DevOps and Security teams can create workloads that are
secure by design. These teams require visibility into workloads at the runtime layer to secure
Kubernetes clusters and their applications.

Security must be integrated at each layer throughout the development lifecycle to effectively
protect against attacks. To address threats in increasingly complex environments, security
requires a multilayered approach that spans the full application lifecycle.

Organizations adopting Kubernetes must provide visibility for security teams and set guardrails
for development teams through configuration and compliance policies to avoid vulnerabilities and
misconfigurations. These policies ensure steady governance and minimal disruption to DevOps
workflows and protect the complete deployment lifecycle without impacting business agility and
speed to market.

How Carbon Black Secures Containers

Carbon Black Container delivers visibility into all workloads and provides the ability to enforce
compliance, security, and governance from a single dashboard.

Carbon Black Container User Guide

VMware by Broadcom 11

https://tanzu.vmware.com/cicd

Carbon Black Container enables enterprise-grade container security at the speed of DevOps
from development to production. This solution provides DevOps and Security teams with
detailed visibility, context, and the ability to enforce compliance while integrating into the existing
application build and deploying processes. With Carbon Black Container, organizations of all sizes
can reduce risk, maintain compliance, and simplify security for Kubernetes environments at scale.

Provides Visibility into Kubernetes Security Posture

With Carbon Black Container, Security and DevOps teams gain full visibility into Kubernetes
environments to proactively harden workloads and better identify and reduce the risks posed
by vulnerabilities and misconfigurations. Organizations can use the image repository to take
inventory of the risks associated with an image, and directly align that vulnerability with a running
workload.

Security Posture Dashboard

A single pane of glass provides complete visibility into your security posture across Kubernetes
clusters or applications, including:

n Visibility into Kubernetes clusters and workload inventory.

n A combined view of all vulnerabilities, misconfiguration, and rules violations.

n A consolidated risk score aggregated for all workload attributes to prioritize remediation.

Network Map

The network visibility map lets you view workload connections in a single map of the application
architecture. The network visibility map provides detailed information and context to better
understand the application architecture and network traffic behavior.

To get a clean view of an application, filters allow the connectivity of the map to remove
unnecessary noise such as system namespaces. You can use similar filters to better understand
what connection is encrypted or not encrypted to gain full visibility into your application traffic
posture. The goal of the networking visibility map is to give teams a better understanding of the
connectivity and configuration of applications that are installed in the Kubernetes cluster.

Carbon Black Container User Guide

VMware by Broadcom 12

Secures the Complete Lifecycle of Kubernetes Applications

Carbon Black Container integrates into the developer lifecycle to analyze and control application
risks before they are deployed into production.

This purpose-built solution automates DevSecOps, delivering continuous cloud native security
and compliance for the full lifecycle of workloads running in Kubernetes.

n Integrates with the CI/CD pipeline.

n Scans container images for vulnerabilities at build and runtime.

n Creates and enforces content-based security policies quickly and easily.

n Customizes and automates security policies and controls to harden the desired state and
avoid configuration drift.

n Enables reporting and enforcement of the security posture across all workloads deployed in
Kubernetes clusters.

Automates Runtime Cluster Scanning

CI/CD integration and a shift-left approach is an effective strategy; however, continuously
monitoring the security posture in production is also required.

Cluster scanning provides the same level of visibility as scanning applications developed in CI/CD
to third-party and infrastructure-level components. It is critical to ensure container images used in
any running workload are up-to-date and can detect vulnerabilities.

Carbon Black Container User Guide

VMware by Broadcom 13

Runtime cluster scanning ensures all running images are scanned for misconfigurations
and vulnerabilities to better evaluate overall risk. For example, to confirm that the
applied configuration and manifest still aligns with the policy, thereby identifying vulnerable
misconfigurations and making sure that the cluster itself does not have any clear text secrets or
malicious containers running. This capability enables DevOps and Security teams to understand
the level of security in the run state, and to make any necessary changes to the pipeline to better
secure workloads.

Container images present some security challenges. Images are usually built by layering
other images, which could contain vulnerabilities, and those vulnerabilities can find their way
into production systems. Defects and malware can also affect container images. When the
provenance of a container is unknown, these risks increase.

Container image registries with the following functionality can reduce these risks:

n Scan images for vulnerabilities found in the Common Vulnerabilities and Exploits (CVE)
database.

n Sign images as known and trusted by using a notary.

n Set up secure, encrypted channels for connecting to the registry.

n Authenticate users and control access by using existing enterprise accounts managed in a
standard directory service, such as Active Directory.

n Tightly control access to the registry using the principles of least privilege and separation of
duties.

n Enact policies that let users consume only those images that meet your organization’s
thresholds for vulnerabilities.

Vulnerability Scanning

Most applications use components that are sourced from third-party image registries. Having
realized this, attackers often insert malicious code into these registries. Containers often use
base images of operating systems like Ubuntu and CentOS from a public image repository such
as DockerHub. The packages of an operating system and the applications on it can contain
vulnerabilities.

Carbon Black Container User Guide

VMware by Broadcom 14

Vulnerability scanning helps detect known vulnerabilities to reduce the risk of security breaches.
Identifying an image vulnerability or malware on an image, and keeping those from going into
production, reduces the attack surface of a containerized application.

Enables Compliance and Policy Automation

In this context, compliance refers to industry standards such as CIS Benchmarks and your own
organizational requirements. Typically, the SecOps team defines the security policies for the
organization, and the DevOps team creates the policies and ensures compliance.

Carbon Black Container solution’s compliance and policy automation capabilities:

n Shift into the development cycle to detect and prevent vulnerabilities at build.

n Create automated policies to enforce secure configuration.

n Ensure compliance with organizational requirements and industry standards such as CIS
benchmarking.

n Leverage pre-built templates and customized policies.

Containers Architecture

This topic discusses Carbon Black Container and Kubernetes architecture.

Carbon Black Cloud is a cloud-native SAAS solution. It can protect multiple Kubernetes clusters
on-prem and in the public cloud (Amazon EKS, Azure Kubernetes Service, Google Kubernetes
Engine).

Carbon Black Container User Guide

VMware by Broadcom 15

Kubernetes Cluster Components

On a Kubernetes cluster, Carbon Black Container consists of key components that interact with
each other.

All Carbon Black Container pods run in a dedicated namespace called cbcontainers-dataplane.
The pods must all connect to Carbon Black Cloud through a direct connection or a proxy.

In the preceding diagram, all Carbon Black Cloud components are displayed in green and all
Kubernetes components are displayed in blue.

Carbon Black Container uses eBPF technology (external link) to add the runtime security layer
in Linux. eBPF extends the kernel capabilities safely and efficiently without requiring changing
kernel source code or load kernel modules. Carbon Black uses eBPF in Carbon Black Container
for all Linux kernels version 4.4+. With eBPF, Carbon Black Container can monitor all ingress,
egress, and internal network connections. eBPF detects ports scanning, anomalous behaviors,
and connections to malicious IPs and URLs.

The node agent pod is a Kubernetes DaemonSet. It makes sure that all nodes run a copy of
this pod; therefore, you can add more nodes to your Kubernetes cluster, and Carbon Black
automatically protects them. One node agent exists on each worker node. Daemonset are
commonly used for monitoring, networking, and security solutions. This technology is available in
all Kubernetes.

Kubernetes Admission Controller

VMware Carbon Black Container provides two kinds of policies:

n Runtime policy

n Hardening policy

Carbon Black Container User Guide

VMware by Broadcom 16

https://ebpf.io/what-is-ebpf/

Hardening policies include webhooks, which can extend the admission control (external link) of
Kubernetes clusters. Carbon Black Container can automatically enforce (or mutate), block, or
alert if an admin deploys a resource that is not compliant with Carbon Black Container hardening
policies.

Container Agent Components Architecture

All Carbon Black agent components exist in a single namespace. By default, this namespace is
called cbcontainers-dataplane.

Common components are shared between features.

Carbon Black Container User Guide

VMware by Broadcom 17

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

The following topics describe each component.

Carbon Black Container User Guide

VMware by Broadcom 18

cbcontainers-operator

The cbcontainers-operator is a set of controllers that deploy and manage the Carbon Black

Container components. It is deployed as a Kubernetes Deployment and typically has only one
pod.

manager

The manager is the main container within the cbcontainers-operator component. It acts as a

Kubernetes Custom Resource Controller and it monitors instances of any object type from the
cbcontainersagents.operator.containers.carbonblack.io API group. It provisions other Carbon

Black Agent components through a CRD object. It requires a connection to the API server and it
does not have any open ports.

Image cbartifactory/octarine-operator

Opened ports None

Connects to Kubernetes services kubernetes.default.svc (Kubernetes API server)

Connects to backend defense-prod05.conferdeploy.net:443

NO_PROXY requirements The Kubernetes API server IP addresses (resolved from
kubernetes.default.svcwithin the cluster)

Requested resources CPU- 100m, Memory - 64Mi

Resource limits CPU- 500m, Memory - 256Mi

Replica count (min & def) Min- 1, Default - 1

Horizontal Scaling Not required

Tolerances node.kubernetes.io/memory-pressure:NoSchedule
op=Exists

node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

kube-rbac-proxy

The kube-rbac-proxy container acts as a sidecar to the operator’s manager container. Its

purpose is to protect the manager from malicious attacks. It protects the operator’s metrics
endpoint by requiring callers to have the metrics-reader ClusterRole assigned.

Image cbartifactory/kube-rbac-proxy

Opened ports 8443/TCP

Connects to Kubernetes services kubernetes.default.svc (Kubernetes API server)

Connects to backend No

Carbon Black Container User Guide

VMware by Broadcom 19

NO_PROXY requirements The Kubernetes API server IP addresses (resolved from
kubernetes.default.svcwithin the cluster)

Requested resources CPU- 20m, Memory - 64Mi

Resource limits CPU- 500m, Memory - 128Mi

Replica count (min & def) Min- 1, Default - 1

Horizontal Scaling Not required

Tolerances node.kubernetes.io/memory-pressure:NoSchedule
op=Exists

node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

cbcontainers-monitor

The cbcontainers-monitor is responsible for reporting the health and metadata of the agent

to the Carbon Black Cloud backend. This responsibility includes the state of agent components
(running, waiting, failed) and determines whether the agent is in a healthy state.

The cbcontainers-monitor also acts as a health check for the cluster in Carbon Black Cloud.

Agents that stop reporting this data for 24 hours are considered unhealthy.

Image cbartifactory/monitor

Opened ports None

Connects to Kubernetes services kubernetes.default.svc (Kubernetes API server)

Connects to backend events.containers.carbonblack.io:443 (gRPC)

defense-prod05.conferdeploy.net:443

NO_PROXY requirements The Kubernetes API server IP addresses (resolved from
kubernetes.default.svcwithin the cluster)

Requested resources CPU- 30m, Memory - 64Mi

Resource limits CPU- 200m, Memory - 256Mi

Replica count (min & def) Min- 1, Default - 1

Horizontal Scaling Manual

Tolerances node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

Carbon Black Container User Guide

VMware by Broadcom 20

cbcontainers-node-agent

Need a description here.

cbcontainers-runtime

The cbcontainers-runtime container is part of every pod within the cbcontainers-node-agent
DaemonSet. It is a privileged container that uses eBPF to attach to the Linux kernel on
each Kubernetes node and generate a stream of events of observed network connections.
These events are batched together and sent by gRPC to the cbcontainers-runtime-resolver
deployment. The cbcontainers-runtime container does not connect directly to the Carbon Black

Cloud backend.

Image cbartifactory/runtime-kubernetes-sensor

Opened ports None

Connects to Kubernetes services cbcontainers-runtime-resolver.cbcontainers-
dataplane.svc.cluster.local:8080

Connects to backend No

NO_PROXY requirements cbcontainers-runtime-resolver.cbcontainers-data
plane.svc.cluster.local and the Kubernetes API server

IP addresses (resolved from kubernetes.default.svc
within the cluster)

Requested resources CPU- 30m, Memory - 64Mi

Resource limits CPU- 2, Memory - 4Gi

Replica count (min & def) Min- 1, Default = Kubernetes node count

Horizontal Scaling Because it is a part of DaemonSet, new Kubernetes nodes
automaticallyget a replica. There is no need for manual
scaling.

Tolerances node.kubernetes.io/disk-pressure:NoSchedule
op=Exists

node.kubernetes.io/memory-pressure:NoSchedule
op=Exists

node.kubernetes.io/network-unavailable:NoSchedule
op=Exists

node.kubernetes.io/not-ready:NoExecute op=Exists

node.kubernetes.io/pid-pressure:NoSchedule op=Exists

node.kubernetes.io/unreachable:NoExecute op=Exists

node.kubernetes.io/unschedulable:NoSchedule
op=Exists

Is privileged Yes

Carbon Black Container User Guide

VMware by Broadcom 21

cbcontainers-cluster-scanner

The cbcontainers-cluster-scanner container is part of every pod within the cbcontainers-node-
agent DaemonSet. Different container runtime endpoints (Containerd, dockershim, CRI-O) are

mounted inside the pod to communicate with the container runtime of the node. The cluster
scanner calls the container runtime using gRPC to list containers and images, read their contents,
and perform scans on the images that detect vulnerabilities, malware, and secrets.

For clusters utilizing CRI-O, additional paths from the host are mounted and utilized. These are
paths where CRI-O stores image data and are required to fully scan images because some
operations are not natively supported by the CRI-O API.

Most communication from cbcontainers-cluster-scanner goes through the cbcontainers-
image-scanning-reporterb efore reaching the Carbon Black Cloudbackend — except for

generating certificates for mTLS connections, which is done by directly calling the Carbon Black
Cloud backend.

Image cbartifactory/cluster-scanner

Opened ports None

Connects to Kubernetes services cbcontainers-image-scanning-reporter.cbcontainers-
dataplane.s vc.cluster.local:443
kubernetes.default.svc (Kubernetes API server)

Connects to backend defense-prod05.conferdeploy.net:443

NO_PROXY requirements cbcontainers-runtime-resolver.cbcontainers-data
plane.svc.cluster.local and the Kubernetes API server

IP addresses (resolved from kubernetes.default.svc
within the cluster)

Requested resources CPU- 30m, Memory - 64Mi

Resource limits CPU- 2, Memory - 4Gi

Replica count (min & def) Min- 1, Default = Kubernetes node count

Horizontal Scaling Because it is a part of DaemonSet, new Kubernetes nodes
automaticallyget a replica. There is no need for manual
scaling.

Tolerances node.kubernetes.io/disk-pressure:NoSchedule
op=Exists

node.kubernetes.io/memory-pressure:NoSchedule
op=Exists

node.kubernetes.io/not-ready:NoExecute op=Exists

node.kubernetes.io/pid-pressure:NoSchedule op=Exists

node.kubernetes.io/unreachable:NoExecute op=Exists

node.kubernetes.io/unschedulable:NoSchedule
op=Exists

Is privileged Yes

Carbon Black Container User Guide

VMware by Broadcom 22

cbcontainers-cndr

TheCNDR container contains the Carbon Black Cloud Linux Sensor. It uses eBPF probes for
monitoring container process actions, file access events and network events.

Events are processed, attributed to workloads, passed through a rules engine to generate alerts
if needed, and sent to the Carbon Black Cloud backend for presentation and analysis.

Image cbartifactory/cndr

Opened ports None

Connects to Kubernetes services kubernetes.default.svc (Kubernetes API server)

Connects to backend runtime.events.containers.carbonblack.io:443 (gRPC)

defense-prod05.conferdeploy.net:443

NO_PROXY requirements Kubernetes API server IP addresses (resolved from
kubernetes.default.svc within the cluster)

Requested resources CPU- 30m, Memory - 64Mi

Resource limits CPU- 500m, Memory - 1Gi

Replica count (min & def) Min- 1, Default = Kubernetes node count

Horizontal Scaling Because it is a part of DaemonSet, new Kubernetes nodes
automaticallyget a replica. There is no need for manual
scaling.

Tolerances node.kubernetes.io/disk-pressure:NoSchedule
op=Exists

node.kubernetes.io/memory-pressure:NoSchedule
op=Exists

node.kubernetes.io/network-unavailable:NoSchedule
op=Exists

node.kubernetes.io/not-ready:NoExecute op=Exists

node.kubernetes.io/pid-pressure:NoSchedule op=Exists

node.kubernetes.io/unreachable:NoExecute op=Exists

node.kubernetes.io/unschedulable:NoSchedule
op=Exists

Is privileged Yes

cbcontainers-hardening-enforcer

The cbcontainers-hardening-enforcer component is responsible for enforcing container

security hardening policies.

The cbcontainers-hardening-enforcer component:

n Evaluates policy block rules through a validating webhook and blocks creating and updating
Kubernetes objects accordingly.

n Evaluates policy enforce rules through a mutating webhook and modifies created and
updated Kubernetes objects accordingly.

Carbon Black Container User Guide

VMware by Broadcom 23

Image cbartifactory/guardrails-enforcer

Opened ports 443/TCP (Kubernetes Service), 8080/TCP (Kubernetes
Pods) - mutating and validating webhooks entry point

Note You might need to open port 8080 from the
master nodes to kubelet nodes in the FW.

Connects to Kubernetes services kubernetes.default.svc (Kubernetes API server)

Connects to backend events.containers.carbonblack.io:443 (gRPC)

defense-prod05.conferdeploy.net:443

NO_PROXY requirements The Kubernetes API server IP addresses (resolved from
kubernetes.default.svcwithin the cluster)

Requested resources CPU- 30m, Memory - 64Mi

Resource limits CPU- 200m, Memory - 256Mi

Replica count (min & def) Min- 1, Default - 1

Horizontal Scaling Scaling is done by the operator. You can manually set the
number of replicas in the CRD.

<spec.components.basic.enforcer.replicasCount>

Tolerances node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

cbcontainers-hardening-state-reporter

The cbcontainers-hardening-state-reporter component is responsible for reporting

Kubernetes objects to the backend.

The cbcontainers-hardening-state-reporter component monitors Kubernetes objects (such as

pods, deployments, services, and so forth) by using a Kubernetes API watch method. It reports
changes of objects to the backend.

Image cbartifactory/guardrails-state-reporter

Opened ports None

Connects to Kubernetes services The Kubernetes API server IP addresses (resolved from
kubernetes.default.svc within the cluster)

Connects to backend events.containers.carbonblack.io:443 (gRPC)

defense-prod05.conferdeploy.net:443

NO_PROXY requirements The Kubernetes API server IP addresses (resolved from
kubernetes.default.svcwithin the cluster)

Requested resources CPU- 30m, Memory - 64Mi

Carbon Black Container User Guide

VMware by Broadcom 24

Resource limits CPU- 200m, Memory - 256Mi

Replica count (min & def) Min- 1, Default - 1

Horizontal Scaling None

Tolerances node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

cbcontainers-runtime-resolver

Runtime protection enables the use of policy rules to help secure deployed workloads. The
cbcontainers-runtime-resolver component is responsible for the enrichment of network events

together with their Kubernetes context and sending the events to the Carbon Black Cloud
backend.

The cbcontainers-runtime-resolver component receives network events from the

cbcontainers-runtime container within the cbcontainers-node-agent DaemonSet pods using

inbound gRPC connections. The events have their Kubernetes context attached and are then
batched together and sent via gRPC to the Carbon Black Cloud backend.

The Kubernetes information is taken from the API server by using standard Kubernetes in-cluster
authentication and communication with the API server. List and watch operations are used with
the API server; however, the information is cached locally in the cbcontainers-runtime-resolver
to avoid unnecessary network traffic and improve response times.

Image cbartifactory/runtime-kubernetes-resolver

Opened ports 8080/TCP

Connects to Kubernetes services kubernetes.default.svc (Kubernetes API server)

Connects to backend runtime.events.containers.carbonblack.io:443(gRPC)
defense-prod05.conferdeploy.net:443

NO_PROXY requirements The Kubernetes API server IP addresses (resolved from
kubernetes.default.svc within the cluster)

Requested resources CPU- 200m, Memory - 64Mi

Resource limits CPU- 900m, Memory - 1Gi

Replica count (min & def) Min- 1, Default - 1

Carbon Black Container User Guide

VMware by Broadcom 25

Horizontal Scaling By default, cbcontainers-runtime-resolver is scaled

automatically by the operator. It uses the following
formula:

<node_count>/
<spec.components.runtimeProtection.resolver.nodesTo
ReplicasRatio>
Where <node_count> is the current

number of nodes in the cluster
and <spec.components.runtimeProtection.resolver.nod
esToReplicasRatio> is taken from the CRD (by default this

value is 5, but it can be lowered to accommodate network
traffic intensive clusters).

Tolerances node.kubernetes.io/memory-pressure:NoSchedule
op=Exists

node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

Note See also cbcontainers-runtime.

cbcontainers-image-scanning-reporter

Cluster image scanning enables an initial scan and automatic rescanning of cluster images. The
cbcontainers-image-scanning-reporter component is responsible for aggregating and sending

all scanned image results to the Carbon Black Cloud backend.

The cbcontainers-image-scanning-reporter component acts as a proxy for some calls to the

Carbon Black Cloud backend. Because it maintains a local cache, this action avoids a large
number of calls in the case that the cluster has many nodes (respectively, cluster-scanners).

Image bartifactory/image-scanning-reporter

Opened ports 443/TCP

Connects to Kubernetes services None

Connects to backend defense-prod05.conferdeploy.net:443

NO_PROXY requirements N/A

Requested resources CPU- 200m, Memory - 64Mi

Resource limits CPU- 900m, Memory - 1Gi

Replica count (min & def) Min- 1, Default - 1

Horizontal Scaling None

Carbon Black Container User Guide

VMware by Broadcom 26

Tolerances node.kubernetes.io/not-ready:NoExecute op=Exists for

300s

node.kubernetes.io/unreachable:NoExecute op=Exists

for 300s

Is privileged No

Note See also cbcontainers-cluster-scanner.

Containers Concepts and Terminology

This topic introduces concepts and defines common terms that are used in Carbon Black
Container.

General Terminology

Term Definition

Admission Controller A piece of code that intercepts requests to the
Kubernetes API server. Admission controllers limit
requests to create, delete, or modify objects.

cbctl Command-line tool that lets you control your Carbon
Black Cloud Container and Kubernetes workload security.
Carbon Black Cloud CLI Client scans container images and
reports their health to the Carbon Black Cloud console.

Common Vulnerabilities and Exposures (CVE) A reference method for publicly known information-
security vulnerabilities and exposures.

Container Lightweight, portable executable image. Containers let
you virtualize multiple application runtime environments
on the same operating system (kernel) instance.

Container Orchestration Exposes the API and interfaces. Helps manage the
container lifecycle.

Control Plane Manages worker nodes and pods.

Controller Watches the state of your cluster and makes or requests
changes where needed. Each controller tries to move the
current cluster state closer to the desired state.

Cluster A set of nodes. Each cluster contains at least one node.

DaemonSet Node agent pod in the pod that ensures that all nodes
run a copy of this pod. Using this node enables you to
add more nodes to the pod and have them automatically
protected by Carbon Black. Daemonset are commonly
used for monitoring, networking, and security solutions.
This technology is available in all Kubernetes.

DevOps Integration of traditional development and IT operations
teams.

Carbon Black Container User Guide

VMware by Broadcom 27

Term Definition

Docker Technology that provides operating system level
virtualization (containers). The Docker environment
includes a container runtime as well as container
build and image management. builds an OCI-standard
container image: therefore, Docker images run on any
OCI-compliant container runtime.

eBPF Technology that extends the capabilities of the kernel
safely and efficiently without changing kernel source code
or loading kernel modules.

Egress The traffic going from the cluster to another network
(public or private).

Ingress Exposes HTTP and HTTPS routes from outside the cluster
to services within the cluster.

Kubelet Agent that runs on nodes.

Kubernetes An open-source container orchestrator. Automates
deployment, load balancing, resource allocation, and
security enforcement for containers. Keeps containerized
applications running in their desired state to ensure that
they are scalable and resilient.

Manifest digest A hash of a container image that is encrypted with
SHA-256 and is deterministic based on the image build.

Microservice An application that is divided into a suite of independent,
loosely integrated services.

Namespace A mechanism for isolating groups of resources in a single
cluster.

Node Worker machine that runs containerized applications.

Node Agent Makes sure that all nodes run a copy of the pod.
The node agent allows you to add more nodes to
your Kubernetes cluster and have them be automatically
protected by Carbon Black Container.

Pod A set of running containers.

Registry Docker Hub and other third party repository hosting
services are called registries. A registry stores a collection
of repositories.

Repository Stores one or more versions of a specific image.

Scope A way to group Kubernetes resources for targeted
security protection and analysis. For example, you can
group resources by cluster and namespace and then
create policies for that scope.

Templated Policies Carbon Black Cloud Container deploys with 3 templated
policies: Basic, Restrictive, and CIS Benchmark.

Carbon Black Container User Guide

VMware by Broadcom 28

Term Definition

Vulernability Scanning Vulnerability scanning helps detect known vulnerabilities
to reduce the risk of security breaches. Reduces the
attack surface of a containerized application.

Workload An application running in a container.

Tip For a full glossary of Kubernetes terms, see https://kubernetes.io/docs/reference/glossary/?
fundamental=true.

Runtime Policies Concepts and Terminology

Runtime policies include rules for egress network control, threat protection, and anomaly
detection in your Kubernetes environment. They provide the benchmark to control Kubernetes
workloads behavioral changes. Control of the Kubernetes runtime environment happens at two
levels:

n Scope: you can monitor all Kubernetes resources in a defined scope.

n Workload, you can track the behavior of a specific workload.

Actions

All rules have an associated action: Monitor or Alert. Either action causes an alert in the
Carbon Black Cloud console.

n Monitor: Monitor actions create an event record for informational purposes.

n Alert: Alert actions create an event record signifying a change in behavior. Alert is the
default action for each rule unless it is changed.

Built-in Rules

Runtime policies include built-in rules from the following categories:

n Egress Traffic (Scope) — A list of allowed domains or IP addresses

n Malicious Egress Traffic (Scope) — A list of malicious IP addresses and domains that have
bad reputations

n Workload Anomaly Detection — A change in workload behavior

n Workload Threat Detection — A port scan

Learning Period

The learning period is the time during which all the Kubernetes resources in a scope are
monitored for egress network connections. All egress destinations are recorded in the
scope baseline. After the learning period is complete, the system actively tracks workloads
behavior. Subsequent violations of the Kubernetes runtime policies trigger alerts.

If the learning period of a policy is modified, the policy stops alerting and the learning period
is reset. If you add a new rule, the learning period starts running only for the new rule.

Carbon Black Container User Guide

VMware by Broadcom 29

https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://kubernetes.io/docs/reference/glossary/?fundamental=true

You can see and analyze the alerts in the Triaging Kubernetes Alerts page in the Carbon
Black Cloud console.

Protection Level to Use for Selecting Rules

The runtime policy rules are split among the following protection levels:

Basic

Covers the issues that have the highest priority.

Moderate

Extends the rules included in the Basic protection level.

Strict

Extends the rules included in the Moderate protection level. Provides the broadest coverage
of issues.

Runtime Policy Scope

Kubernetes scope is a grouping of Kubernetes resources, such as clusters or workloads. With
the Kubernetes runtime policies, scopes explicitly define deploy phase or target complete
applications.

Scope Baseline

The scope baseline determines the normal allowed behavior for all Kubernetes resources
inside a scope. You can establish a scope baseline by monitoring the egress traffic of all
workloads in the scope for a certain time, called a learning period. Deviation from the
baseline triggers an alert. The baseline is at scope level and you can amend or reset the
final behavior list in the scope.

Hardening Policies Terminology and Concepts

Actions

All rules have an action associated with them: Alert, Block, or Enforce. The rules
configuration sets an expected value. If the value is not met, a rule violation is triggered.

An Alert action violation displays as a notification.

A Block action blocks the Kubernetes resources. This violation displays as an alert and block
notification.

Carbon Black Container User Guide

VMware by Broadcom 30

An Enforce action enforces the value for a rule. Enforce overwrites the value of one or more
fields to the value that is defined in the rule's preset. In other words, Enforce changes the
setting instead of blocking it. For example, you might set CPU and Memory for all workloads.

Note When you enforce values, the running workload is different from the
deployed workload. This difference can impact workload behavior and cause confusion if
troubleshooting is required.

Built-in Rules

Built-in rules are available for direct use in Kubernetes hardening policies and are based on
the Kubernetes security configuration.

Built-in Policies and Scopes

Policies and scopes that are available are with the Carbon Black Cloud console to facilitate
the initial setup of Kubernetes policies. You can update and delete these policies and scopes.
For more information, see Built-in Kubernetes Hardening Policies and Built-in Kubernetes
Scopes.

Built-in Rules for Container Images

Rules that display the container-shaped icon apply to scopes in the build phase by using
the CLI Client. The rules also apply to Kubernetes workloads based on container images in
the deploy phase. These rules enforce container image properties and behavior. Rules that
do not display this icon are not applicable for the build phase. See Built-in Kubernetes Policy
Rules.

Custom Rules

Custom rules use JSONPaths to specify Kubernetes resources and properties.

Custom Templates

A combination of built-in and custom rules.

Exceptions

Exclusion of workloads from the coverage of a Kubernetes policy due to known and
accepted behavior.

n For most rules, the exceptions are based on a workload name.

n For Role-Based Access Control (RBAC) rules, the exceptions are based on resource name
and username.

n For rules that allow the Enforce action, the exceptions are based on workload name or
workload label.

Hardening Policies

Policies that check rules on your Kubernetes environment configuration.

Carbon Black Container User Guide

VMware by Broadcom 31

Kubernetes Scope

Grouping of Kubernetes resources with a definitive purpose; for example, to apply a policy.

Predefined Templates

Predefined rule sets of built-in rules.

Violations

Notifications on changes that happen in your Kubernetes environment after enabling
Kubernetes hardening policies. Violations trigger actions at the block or alert rule level.
Potential violations can be identified before enabling a policy, thus allowing planning security
strategies such as adding exceptions, enforcing actions, or disabling and enabling rules.

Carbon Black Container User Guide

VMware by Broadcom 32

Setting up the Container Security
Environment 2
This section describes how to prepare your environment for securing Kubernetes with Carbon
Black Container.

Follow these basic steps to set up your container environment: for Carbon Black Container
security:

1 Make sure your Kubernetes environment meets the supported Operating Environment
Requirements for the Kubernetes Sensor. See Kubernetes Sensor OER.

2 Add users and assign user roles so that the appropriate people can install, configure, and
manage Carbon Black Container security features.

3 Optionally review and manually install the Operator and Agent. (This deployment happens
automatically during Step 4.)

4 Add Kubernetes clusters to the Carbon Black Cloud console and install a Kubernetes sensor
into each Kubernetes cluster that you want to protect.

5 Optionally install Containerized Sensors for non-Kubernetes environments.

6 Download, add, and configure a CLI client to scan local images.

You will then be ready to create scopes and policies to manage your containers.

Read the following topics next:

n Roles and Users for Containers

n Adding Clusters and Installing Kubernetes Sensors

n Check the Kubernetes Sensor Status and Health

n Installing a Containerized Sensor

n Setting up CLI Client for Image Scanning

n Carbon Black Container Operator Technical Reference

Roles and Users for Containers

You can add users and assign appropriate roles for their work in Containers.

VMware by Broadcom 33

https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/cbc-k8-sensor-oer/GUID-79FDE397-39AC-4065-98C9-B7A94846EFF0.html

By setting up and managing users and their roles, you give the users access to the Carbon Black
Cloud console and Containers security functionality.

Note This section specifically describes setting up users and user roles for Containers. For
information about managing all Carbon Black Cloud users and their roles, see Managing Users
and User Roles.

Using and Creating Roles for Containers

Every Carbon Black Cloud console user is assigned to a role that defines permissions. The role is
assigned when you create the new user account; this assignment can be modified at any time.

Carbon Black Cloud includes four Kubernetes-related pre-defined roles that you can assign to
users (or you can create custom roles: see Add a Container Role.

n Kubernetes SecOps View Only

n Kubernetes SecOps

n Kubernetes DevOps

n Kubernetes Security Developer

Kubernetes Security DevOps are responsible for the Kubernetes workload posture.
Responsibilities include setting up clusters, scopes, and security policies for Kubernetes
workloads. Security DevOps can monitor the health of the Kubernetes environment, investigate
workloads and violations, and take appropriate actions.

Role Definitions and Recommendations

The following table describes Carbon Black Cloud permissions and recommendations for user
roles for Containers.

Carbon Black Container User Guide

VMware by Broadcom 34

Table 2-1. User Roles/Permissions Matrix - by Role

Role Description Permissions Workflow

Kubernetes SecOps View
Only

Monitors environment.
Cannot take any actions.

n View Notifications

n View Kubernetes
Security

n View Images

n View Workloads

N/A

Kubernetes SecOps Assess and control
the workload’s attack
surface from build
to runtime. Focus on
detecting, responding to,
and preventing container
runtime threads —can
quickly detect runtime
threads.

This role is appropriate for
SOC Analysts.

n Dismiss Alerts

n View and Manage
Alerts, Notes, and Tags

n View and Manage
Notifications

n View and Manage API
Keys

n Manage Users

n View and Manage
Kubernetes Security

n View Images

n Manage Image
Exceptions

1 Monitor and analyze
Containers. See
Monitoring and
Analyzing Containers.

2 Take action
and remediate
security issues. See
Investigating and
Remediating Container
Security Issues.

3 Triage alerts. See
Triaging Kubernetes
Alerts.

Carbon Black Container User Guide

VMware by Broadcom 35

Table 2-1. User Roles/Permissions Matrix - by Role (continued)

Role Description Permissions Workflow

Kubernetes DevOps Assess and control
the workload’s attack
surface from build to
runtime. Troubleshooting
and remediation of security
issues.

Responsible for
determining the
Kubernetes workload
posture. Responsibilities
include setting up
Kubernetes policies,
scopes, and clusters
in the Carbon Black
Cloud console. Security
DevOps can monitor the
health of the Kubernetes
environment, investigate
workloads and violations,
and take appropriate
actions.

n Dismiss Alerts

n View and Manage
Notifications

n View and Manage API
Keys

n Manage Users

n View and Manage
Kubernetes Security

n View Images

n Manage Image
Exceptions

1 Set up user roles and
manage users. See
Roles and Users for
Containers.

2 Add clusters to
the console and
install Kubernetes
Sensors. See Adding
Clusters and Installing
Kubernetes Sensors.

3 Configure Containers.
See Configuring
Container Security.

4 Monitor and analyze
Containers. See
Monitoring and
Analyzing Containers.

5 Triage alerts. See
Triaging Kubernetes
Alerts.

6 Take action
and remediate
security issues. See
Investigating and
Remediating Container
Security Issues.

Kubernetes Security
Developer

Inspects a single container
for security posture and
compliance.

n View and Manage
Kubernetes Security

n View Images

n Manage Image
Exceptions

1 Monitor and
analyze Kubernetes
workloads. See
Monitoring Kubernetes
Workloads .

2 Triage alerts. See
Triaging Kubernetes
Alerts.

Add a Container Role

To add a new role for Containers work, perform the following procedure.

Procedure

1 On the left navigation pane, click Settings > Roles.

2 In the upper right of the page, click Add Role.

3 Enter a unique name and description for the new role. Special characters are not allowed.

Carbon Black Container User Guide

VMware by Broadcom 36

4 Optionally, select a role from the Copy permissions from dropdown to use an existing role
as a template. This allows you to add and remove permissions from an existing set of role
permissions.

Carbon Black Container User Guide

VMware by Broadcom 37

5 Expand the Permissions categories and select or deselect permissions for the role.

Carbon Black Container User Guide

VMware by Broadcom 38

See Using and Creating Roles for Containers for more information about Container role
permissions.

6 Click Save.

Tip Click the Duplicate icon next to the role in the table to make a copy of that role.
Use copied roles to easily make minor adjustments for new roles.

What to do next

n Use the icons to the right of your new role in the table to duplicate, edit, export, or delete the
role.

n Create a User Account for Containers

Create a User Account for Containers

To create a new user account for Containers work, perform the following procedure.

Prerequisites

We recommend that you study the available user roles before you create a user for Containers.
Users are granted specific permissions based on their assigned role. Pre-defined user roles are
available for selection. If existing roles do not suffice for your environment, you can create
custom roles. See Using and Creating Roles for Containers.

Procedure

1 On the left navigation pane, click Settings > Users.

2 In the upper right of the page, click Add User.

3 Enter the details for the new user including name, email address, and role.

4 Click Save.

Results

n An email is sent to the input email address. The email prompts the user to log in and create a
password.

n Added usernames display after the users have confirmed their login credentials.

Adding Clusters and Installing Kubernetes Sensors

To enable Carbon Black Container, you must install one Carbon Black Kubernetes Sensor for each
Kubernetes cluster. To do so, you must add a cluster to the console.

Carbon Black Container User Guide

VMware by Broadcom 39

A Kubernetes extension called Operator and a custom resource definition are used to deploy the
Kubernetes Sensor. Operators consist of set of controllers that deploy and manage user-defined
components and report on their health. You define the components with a custom resource
definition.

The Carbon Black operator deploys the Kubernetes Sensor inside the cluster and manages its
lifecycle. The data in the custom resource file defines which features are enabled for the sensor.
The essential steps of the sensor deployment procedure are:

n Setup and install the Carbon Black Operator

n Deploy the Carbon Black Agent on top of the Operator.

n Allow access to the Carbon Black Cloud console

n Configure the Kubernetes Sensor and scanner

Note
n The Add Cluster wizard walks you through these steps in Add a Cluster and Install the

Kubernetes Sensor.

n A technical overview and separate deployment instructions for the Operator and Agent are
included in Carbon Black Container Operator Technical Reference. You generally do not need
to separately install these components, but the background information and deployment
content is added here for your convenience.

Add a Cluster and Install the Kubernetes Sensor

To add a cluster to the Carbon Black Cloud console and install the Kubernetes Sensor into that
cluster, perform the following procedure.

Prerequisites

Before you begin, open both the Carbon Black Cloud console and a terminal window.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has the
Containers Security feature only, click Inventory > Clusters.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Clusters.

2 In the upper right of the page, click Add Cluster.

Carbon Black Container User Guide

VMware by Broadcom 40

3 Add the Cluster Detail information.

a Enter a unique cluster name using lowercase letters, numbers, and hyphens. The name
cannot contain a colon (:) symbol.

b Type or select an existing cluster group to help specify resources in scopes and policies.
The cluster group is also used for observing the network activity map of your clusters.

When no group is provided, the cluster is added to the default group.

c Optionally add cluster labels. A label consists of a key and a value. You can add multiple
labels.

4 Click Next.

5 Provide a dedicated API key to establish the communication between your Kubernetes
cluster and the console.

n Click Generate a new API key and enter an API key name that is unique to your Carbon
Black Cloud organization.

Carbon Black Container User Guide

VMware by Broadcom 41

n Click Use existing API key and select an existing API key.

Important Do not reuse keys between clusters. Use a separate Carbon Black Cloud API key
for each cluster.

6 Select the version of the Kubernetes Sensor to install on your cluster. The latest sensor
version is set by default.

7 Under Advanced Settings, optionally set up a proxy server or a private container registry.

n Proxy server can include a proxy URL or remain empty. The field is empty by default.

n Private container registry can include a private registry URL or remain empty. The field is
empty by default. For important information about using a private container registry, see
Private Container Registry.

Carbon Black Container User Guide

VMware by Broadcom 42

Note

8 On the Finish Setup page, select Kubectl or Helm Charts.

9 Copy and run each command in sequence into your terminal:

Carbon Black Container User Guide

VMware by Broadcom 43

10 In the console, click Done.

11 Refresh the console browser page to view the new cluster.

The cluster status will be Pending install.

It takes up to 5 minutes for the cluster to stabilize during the initial setup. During this time, the
status might display an error. Wait three to five minutes after submitting the install request to
verify the correct status.

Results

After completing the setup procedure successfully, the status changes to Running.

What to do next

1 Check the Kubernetes Sensor Status and Health

2 Download a CLI Client

3 Add and Configure a CLI Client

Private Container Registry

You can use a private container registry to reduce traffic costs or to provide application teams
with a source of verified container images.

To use Carbon Black Container security through a private container registry, Carbon Black
Container provides you with a script to simplify the task of mapping, downloading, and storing
the container images.

Before you deploy the sensor:

n Upload and tag the container images to your site

n Configure the registry

For configuration information and instructions, see https://github.com/octarinesec/octarine-
operator/tree/main/charts (external link).

Check the Kubernetes Sensor Status and Health

To view the status of a Kubernetes Sensor in a cluster, perform the following procedure.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has the
Containers Security feature only, click Inventory > Clusters.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Clusters.

Carbon Black Container User Guide

VMware by Broadcom 44

https://github.com/octarinesec/octarine-operator/tree/main/charts
https://github.com/octarinesec/octarine-operator/tree/main/charts

2 On the Kubernetes Clusters page, click the Clusters tab and then click the General tab.

3 In the left pane, you can filter the list of displayed clusters by:

n Status

n Sensor Version

n Operator Version

n Cluster Label Key

n Cluster Label Value

4 In the Clusters panel, you can search for a cluster, and you can select a displayed cluster
name to view sensor health data.

5 Select the cluster and view Status in the right panel.

Table 2-2. Kubernetes Sensor Status

Status Description

Critical No activity has been detected from any cluster
components for more than 24 hours

Error A critical component is down or the status cannot be
detected

Pending install Cluster setup is in progress

Running All components are up and running without errors

Warning A non-critical component is down, or the status cannot
be detected

6 Click the Sensor health tab.

To expand any entry, click the arrow icon on the left. For example:

Carbon Black Container User Guide

VMware by Broadcom 45

Installing a Containerized Sensor

The Containerized Sensor is an agent that includes both Carbon Black EDR and Image Scanning
capabilities. It is used for non-Kubernetes container environments.

The sensor runs as a container, and provides container context to the regular Carbon Black EDR
capabilities. This context is known as Cloud Native Detection and Response (CNDR). The sensor
scans the containers on the node for vulnerabilities, malware, and secrets.

Carbon Black Container User Guide

VMware by Broadcom 46

Required Dependencies

Before you install the Containerized Sensor, make sure that the following requirements are
satisfied:

n The sensor is installed as a privileged container on the host network. The installing user must
have permissions that allow the sensor to be installed as a privileged container on the host
network, as well as the permissions to mount root folders and unix sockets to the container.

n Carbon Black Container

n Carbon Black EDR

n 2GB of memory.

n An API key that has these settings:

Setting Description

Access Level type Set to Custom and select
KUBERNETES_SECURITY_DATAPLANE.

Access Token Record the provided API ID and API Secret Key in the

format of API Secret Key/API ID, and use it as the

access token.

See Create and Manage an API key for more information.

Set up a Containerized Sensor

Before you can install the containerized sensor, you must set it up.

The Containerized Sensor includes both Carbon Black EDR and Image Scanning capabilities. It is
used for non-Kubernetes container environments.

Prerequisites

See Installing a Containerized Sensor.

Procedure

1 On the left navigation pane, click Inventory > Endpoints.

2 In the upper right corner, click Sensor Options and select Configure containerized sensors.

3 Select the sensor version. The sensor version is in the format: a.b.c.d-e.f, where a.b.c.d
pertains to the original Linux sensor version and e.f is the version of the image scanning

agent. For example: 2.14.0.12349-1.3.

Carbon Black Container User Guide

VMware by Broadcom 47

https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-F3816FB5-969F-4113-80FC-03981C65F969.html

4 Click Show next to Sensor Labels and enter a key and value; for example, org_unit and

finance.

5 Click Next.

Carbon Black Container User Guide

VMware by Broadcom 48

6 On the Authentication page, click Use existing API key and select the pre-existing API key
from the drop down menu.

7 Click Next.

8 On the Finish Setup page, download the configuration settings as either a JSON or YAML file.

9 Click Done to finish setup and close the setup wizard.

What to do next

Install a Containerized Sensor

Install a Containerized Sensor

After you set up a Containerized Sensor, you can install it.

The Containerized Sensor includes both Carbon Black EDR and Image Scanning capabilities. It is
used for non-Kubernetes container environments.

Carbon Black Container User Guide

VMware by Broadcom 49

Prerequisites

See:

n Installing a Containerized Sensor

n Set up a Containerized Sensor

Procedure

1 Run the container image cbartifactory/cb-containers-sensor:{sensor-version} together with

your selected sensor version.

2 Attach these volume mounts to the container:

a Container runtime unix socket. Currently only supports docker - /var/run/
docker.sock:/var/run/docker.sock:ro

b Host root path - /:/var/opt/root

c Host hostname - /etc/hostname:/etc/hostname

d Host boot folder - /boot:/boot

e Host operating system identification data - /etc/os-release:/etc/os-release

f Carbon Black Metadata Mount - /var/opt/carbonblack:/var/opt/carbonblack

3 During sensor setup, the setup wizard provided these environment variables:

Environment Variable Description

CBC_ACCOUNT Your Carbon Black Organization Key.

CBC_ACCESS_TOKEN API key with appropriate permissions.

CB_COMPANY_CODES Your Carbon Black Company Codes.

CBC_API_HOST Your Carbon Black environment API host.

HOST_ROOT_PATH The mounted location of the root path.

CONTAINER_REPORTER_HOSTNAME_FILEPATH The mounted location of the hostname path.

CONTAINER_REPORTER_LABELS Key Value labels used to identify the host. For example:
key1=value1,key2=value2.

Carbon Black Container User Guide

VMware by Broadcom 50

4 (Optional) You can configure the sensor image with additional advanced environment
variables:

Environment Variable Description

CONTAINER_REPORTER_HOST Value you can to set as the container's
hostname. You can set the hostname instead of
CONTAINER_REPORTER_HOSTNAME_FILEPATH. If both values

are set, this variable takes priority. If this value is set, you
can delete the hostname volume mount.

ENDPOINT Value of the host's container-runtime endpoint Unix
socket. This value is set to docker's /var/run/
docker.sock by default.

Note Currently only the docker container runtime is
supported.

CONTAINER_RUNTIME The name of the host container runtime. This value is set
to docker-daemon by default.

Note Currently only docker container runtime is
supported.

SCANNER_CLI_FLAGS_ENABLE_SECRET_DETECTION Boolean flag to enable/disable container scanning secret
detection. This value is set to true (enabled) by default.

SCANNER_CLI_FLAGS_IGNORE_BUILD_IN_REGEX Boolean flag to determine whether to ignore filenames'
built-in regexes and scan every file for secrets. This value
is set to false by default.

SCANNER_CLI_FLAGS_SCAN_BASE_LAYERS Boolean flag used to decide whether to scan the image
base layers for secrets. This value is set to false by

default.

SCANNER_CLI_FLAGS_SKIP_DIRS_OR_FILES List of files and directories (in Regexes) to ignore when
detecting secrets. This value is set to empty by default.

SCANNER_CLI_FLAGS_CONCURRENT_FILE_LIMIT Number of files to scan at one time for secrets. This
value is set to 200 by default. You can increase or

decrease this number to determine the speed of the
scan. If the number is higher, the service requires more
resources (memory and CPU).

DISABLE_SCANNER Boolean flag to disable the container scanner capability.
This value is set to false by default.

DISABLE_SENSOR Boolean flag to disable CNDR capability. This value is set
to false by default.

5 Install the sensor:

n Using a docker compose file: Install a Containerized Sensor on a Docker Client.

n On an AWS ECS cluster: Install a Containerized Sensor on an ECS Cluster.

Carbon Black Container User Guide

VMware by Broadcom 51

Install a Containerized Sensor on a Docker Client

You can run the Carbon Black Containerized Sensor on a host that has the Docker client to detect
and enforce EDR and Container Scanning capabilities. Additionally, the Containerized Sensor can
detect vulnerabilities, malware, and secrets in the runtime in a Docker container.

Prerequisites

You must have the following products and information:

n Linux Host with docker installed

n Carbon Black Cloud Container

n Carbon Black EDR

n API key with appropriate permissions

n See:

n Installing a Containerized Sensor

n Set up a Containerized Sensor

n Install a Containerized Sensor

Procedure

1 Add the environment variables you received from the setup wizard you ran in Set up a
Containerized Sensor to the docker-compose.yaml file.

version: "3.3"
services:
 sensor:
 pid:host
 network_mode: host
 image: docker.io/cbartifactory/cb-containers-sensor:{sensor-version}
 privileged: true
 environment:
 # fill environment variables here
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock:ro
 - /boot:/boot
 - /var/opt/carbonblack:/var/opt/carbonblack
 - /etc/os-release:/etc/os-release
 - /:/var/opt/root
 - /etc/hostname:/etc/hostname

2 Deploy the agent container by running the following command:

docker-compose up -d

Carbon Black Container User Guide

VMware by Broadcom 52

Install a Containerized Sensor on an ECS Cluster

You can run the Carbon Black Containerized Sensor on an ECS cluster to detect and enforce
EDR and Container Scanning capabilities. Additionally, the Containerized Sensor can detect
vulnerabilities, malware, and secrets in the runtime in an ECS Cluster.

Prerequisites

You must have the following products and information:

n ECS Cluster

n Carbon BlackCarbon Black Cloud Container

n Carbon Black EDR

n API key with appropriate permissions

n See:

n Installing a Containerized Sensor

n Set up a Containerized Sensor

n Install a Containerized Sensor

Procedure

1 Register the agent task definition and update it with the relevant environment variables from
the setup wizard you ran in Set up a Containerized Sensor:

{
 "family": "cbcontainers-daemon",
 "pidMode": "host",
 "networkMode": "bridge",
 "executionRoleArn": "<arn role with ec2 deployment permissions>",
 "containerDefinitions":
 [
 {
 "name": "host-container-scanner",
 "image": "docker.io/cbartifactory/cb-containers-sensor:{sensor-version} >",
 "cpu": 512,
 "memory": 1024,
 "privileged": true,
 "environment":
 [
 // fill environment variables list here
],
 "mountPoints":
 [
 {
 "sourceVolume": "dockersock",
 "containerPath": "/var/run/docker.sock"
 },
 {
 "sourceVolume": "hostname",

Carbon Black Container User Guide

VMware by Broadcom 53

 "containerPath": "/etc/hostname"
 },
 {
 "sourceVolume": "boot",
 "containerPath": "/boot"
 },
 {
 "sourceVolume": "cb-data-dir",
 "containerPath": "/var/opt/carbonblack"
 },
 {
 "sourceVolume": "os-release",
 "containerPath": "/etc/os-release"
 },
 {
 "sourceVolume": "root",
 "containerPath": "/var/opt/root"
 }
],
 "healthCheck": {
 "command": [
 "CMD-SHELL",
 "cat /tmp/ready || exit 1"
],
 "interval": 60,
 "timeout": 15,
 "retries": 3,
 "startPeriod": 60
 }
 }
],
 "volumes":
 [
 {
 "name": "dockersock",
 "host":
 {
 "sourcePath": "/var/run/docker.sock"
 }
 },
 {
 "name": "hostname",
 "host":
 {
 "sourcePath": "/etc/hostname"
 }
 },
 {
 "name": "boot",
 "host":
 {
 "sourcePath": "/boot"
 }
 },
 {

Carbon Black Container User Guide

VMware by Broadcom 54

 "name": "cb-data-dir",
 "host":
 {
 "sourcePath": "/var/opt/carbonblack"
 }
 },
 {
 "name": "os-release",
 "host":
 {
 "sourcePath": "/etc/os-release"
 }
 },
 {
 "name": "root",
 "host":
 {
 "sourcePath": "/"
 }
 }
],
 "requiresCompatibilities":
 [
 "EC2"
]
}

2 Register the agent task definition by using the AWS ECS user interface or the AWS CLI:

aws ecs register-task-definition --cli-input-json file://cbcontainers-daemon.json --region
<region-to-apply-at>

3 (Optional) To write agent logs to AWS CloudWatch, add the logConfiguration section inside

the container definition element in the task definition:

{
"logConfiguration":
 {
 "logDriver": "awslogs",
 "options":
 {
 "awslogs-group": "cbcontainers-agent",
 "awslogs-region": "<region>",
 "awslogs-stream-prefix": "cbcontainers-agent"
 }
 }
}

Add the cbcontainers-agent awslogs-group and add the logs:CreateLogStream and

logs:PutLogEvents Actions to the ECS Role Policy.

Carbon Black Container User Guide

VMware by Broadcom 55

4 To run the agent, create a service to run the task: cbcontainers-daemon-svc:

aws ecs create-service \
 --region <region-to-apply-at> \
 --cluster <your-cluster-name> \
 --service-name cbcontainers-daemon-svc \
 --launch-type EC2 \
 --task-definition cbcontainers-daemon \
 --scheduling-strategy DAEMON

5 To run the agent as an ECS task, add a role with the following permissions in the
executionRoleArn section of the task definition:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags",
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:UpdateContainerInstancesState",
 "ecs:Submit*",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

6 (Optional) To write agent logs to AWS CloudWatch, add the Actions logs:CreateLogStream
and logs:PutLogEvents to the Actions list.

Note To write the containers logs, the policy must have cloudwatch access and permissions
to pull images and run ECS tasks.

Validate the Container Image Signature

To verify the security and integrity of the container image, you can validate the container
signature.

Carbon Black Container User Guide

VMware by Broadcom 56

During verification, use this public key:

-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE1ivoAvFrHGi9lm01ecsBN1juDOp5
6kGA7G5M0WnOS2zc5qNPQSN1fzwOc/EgEIskERJY/NMmCjq0rcZzzKgfxQ==
-----END PUBLIC KEY-----

Prerequisites

Before you can verify the container image signing, you must download the cosign tool.

Procedure

1 Download the containerized sensor image: cbartifactory/cb-containers-sensor using an

image management tool, such as docker.

2 Run the signature verification command using the public key above:

cosign verify --key container-signing-key.pub cbartifactory/cb-containers-
sensor:<sensor-version>

Results

An example of a successful verification:

Verification for docker.io/cbartifactory/cb-containers-sensor:<sensor-version> --
The following checks were performed on each of these signatures:
 - The cosign claims were validated
 - Existence of the claims in the transparency log was verified offline
 - The signatures were verified against the specified public key
[
 {
 "critical": {
 "identity": {
 "docker-reference": "docker.io/cb/cbartifactory/cb-containers-sensor"
 },
 "image": {
 "docker-manifest-digest":
"sha256:a1a0dfe211c0fdcbcae68fccb7629e79f3d9775891584daddc8aff5050237911"
 },
 "type": "cosign container image signature"
 },
 "optional": {
 "Bundle": {
 "SignedEntryTimestamp":
"MEUCIBiIc38wiBow7FT09ylanYEki248tu4kYcJYr3dSwRUkAiEA9R9pK6SnTaTNhPKmK592n0keUGj8mdxTIA1Fc75j7
i4=",
 "Payload": {
 "body":
"eyJhcGlWZXJzaW9uIjoiMC4wLjEiLCJraW5kIjoiaGFzaGVkcmVrb3JkIiwic3BlYyI6eyJkYXRhIjp7Imhhc2giOnsiY
Wxnb3JpdGhtIjoic2hhMjU2IiwidmFsdWUiOiJlZTliNjJiNzI3MjY0NGU0OTQ2M2YxNDllNmU2MGM5NjkxNzc3ODY3YjU
wNWE1OTUwOWVhOGNjN2UyYWI4N2ZiIn19LCJzaWduYXR1cmUiOnsiY29udGVudCI6Ik1FUUNJQU5VY0FlVStYRk9CaEh1T
UpRN2x2NVoycllNa1p3eHk1SnlsNWhWNm1BSkFpQWo1S3p0NVA2ZlkxN1drQ01xQXF2eno5dE1zVFpvOUZPN1hPcis2aHo
4N0E9PSIsInB1YmxpY0tleSI6eyJjb250ZW50IjoiTFMwdExTMUNSVWRKVGlCUVZVSk1TVU1nUzBWWkxTMHRMUzBLVFVac
mQwVjNXVWhMYjFwSmVtb3dRMEZSV1VsTGIxcEplbW93UkVGUlkwUlJaMEZGTVdsMmIwRjJSbkpJUjJrNWJHMHdNV1ZqYzB

Carbon Black Container User Guide

VMware by Broadcom 57

https://github.com/sigstore/cosign

KT01XcDFSRTl3TlFvMmEwZEJOMGMxVFRCWGJrOVRNbnBqTlhGT1VGRlRUakZtZW5kUFl5OUZaMFZKYzJ0RlVrcFpMMDVOY
lVOcWNUQnlZMXA2ZWt0blpuaFJQVDBLTFMwdExTMUZUa1FnVUZWQ1RFbERJRXRGV1MwdExTMHRDZz09In19fX0=",
 "integratedTime": 1699443190,
 "logIndex": 48394752,
 "logID": "c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445c224f98b9591801d"
 }
 }
 }
 }
]

Setting up CLI Client for Image Scanning

To include image scanning in your continuous integration script, configure and use the Carbon
Black Cloud CLI Client (Cbctl). This client is available for Linux and macOS.

You can install the CLI client on a Dev/Sec/Ops machine, or you can include it in a CI/CD pipeline
— for example, Jenkins or Gitlab. The CLI client requires an Internet connection to Carbon Black
Cloud and access to your container registries.

Carbon Black CLI Client performs an image scan for known vulnerabilities and enforces security
or compliance rules. The CLI Client performs the following tasks:

n Vulnerabilities scanning of container images.

Container images are matched against a known vulnerabilities database. The image details
include operating system and non-operating system packages, libraries, licenses, binaries,
and metadata. The vulnerabilities scan result is included in the image metadata.

n Enforcing standards for container images.

To evaluate policy violations, the image scan results are matched against a specific policy
that is configured for the CLI scope. The CLI run fails the build pipeline step if policy violations
are detected. The violation of policy rules is added to the image metadata together with
image rule exceptions.

n Enforcing standards for Kubernetes workloads.

Kubernetes workloads are matched against a Kubernetes hardening policy to evaluate the
workload compliance for security risks. By leveraging the information from both image
vulnerabilities and workload configuration, a complete picture of the workload risk exposure
is available.

The CLI client presents the following interface and command options:

Carbon Black Container User Guide

VMware by Broadcom 58

Secrets File Detection

If secret detection is enabled, Carbon Black Cloud detects all text files in an image. Files can be
ignored; these are specified by using CLI flags. System files are ignored by default to reduce scan
time.

Note To enable or disable secrets detection, see Add a Cluster and Install the Kubernetes
Sensor.

Table 2-3. CLI Flags

Flag Description Default Setting

enableSecretDetection Indicates whether the scan should
scan for secrets

False

skipDirsOrFiles Files or directories to not scan for
secrets

N/A

scanBaseLayers Indicates whether the scan should
scan the base layers for secrets

False

ignoreBuildInRegex Indicates whether the scan should
ignore the build-in regexes of files

False

Download a CLI Client

Add configured CLI instances to enable local scanning of images, workload vulnerability
assessment, and CI integration. The CLI instance scans container images and reports their health
to the Carbon Black Cloud console.

Carbon Black Container User Guide

VMware by Broadcom 59

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has the
Containers Security feature only, click Inventory > Clusters.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Clusters.

2 Click the CLI Config tab.

3 In the upper right of the page, click Download CLI.

4 Select and download the CLI client for your operating system (macOS or Linux).

5 Click Close.

What to do next

Add and Configure a CLI Client

Add and Configure a CLI Client

To set up a CLI instance for image scanning, perform the following procedure.

Add configured CLI instances to enable local scanning of images, workload vulnerability
assessment, and CI integration. The CLI instance scans container images and reports their health
to the Carbon Black Cloud console.

Carbon Black Container User Guide

VMware by Broadcom 60

Prerequisites

Download a CLI Client

Before you begin, open both the Carbon Black Cloud console and a terminal window.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has the
Containers Security feature only, click Inventory > Clusters.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Clusters.

2 Click the CLI Config tab.

3 In the upper right of the page, click Add CLI.

a Enter a unique name for this CLI instance (different from the API key name).

Use lowercase characters, numbers, and hyphens only. The name helps identify and
manage the CLI in the console.

b Enter the build step name (for example, development, production, compliance) to be
used as the default field for CLI runs.

Build steps are used as reference IDs in build-phase scopes to establish a connection with
related configured CLIs. The build step parameter is used to match a scope in Carbon
Black Cloud, and consecutively to apply the policy for that scope. The default scope is
stored in the configuration file.

Note
n The default build step is not unique. Multiple CLI instances can use the same default

scope. The Default build step cannot be modified after the initial setup, unless you
directly edit the configuration file.

n If a scan is invoked without a build step parameter, the default build step from the
configuration file is used.

n Create a Build Phase scope using this value on the Kubernetes > Scopes page in Build
steps. See Kubernetes Scopes.

n You must use the CLI validate command.

c Add an optional description (recommended).

4 Click Next.

5 Enter a unique API key name and click Generate.

6 Click Next.

Carbon Black Container User Guide

VMware by Broadcom 61

7 Copy and run the following command in your terminal window.

mkdir -p ~/.cbctl
cat > ~/.cbctl/.cbctl.yaml <<EOF
active_user_profile: cbctl_default
cbctl_default:
 cb_api_id: UHSZCDKMI1
 cb_api_key: 4AYGEJ1T9ILZTQ6VZG9TTEH8
 org_key: EWRTY2PK
 saas_url: https://defense-dev01.cbdtest.io/containers
 default_build_step: ix-test
EOF

8 If you did not already download the CLI client, you can select and download the CLI instance
binary file now, and run it in your build environment.

9 Click Done.

Results

You can operate the configured CLI Client in a terminal to observe the results from vulnerabilities
scans on your container images.

What to do next

To run the Image Scanning CLI API, see Container Security API and Integrations.

Carbon Black Container User Guide

VMware by Broadcom 62

https://developer.carbonblack.com/reference/carbon-black-cloud/container/

To monitor the Vulnerabilities scan for container images that are deployed on Kubernetes, go to
the Inventory > Kubernetes > Container Images page.

To see the image scanning results for container images that are in particular repositories but not
yet deployed, go to the Inventory > Kubernetes > Container Images page and click the Image
Repos tab.

Carbon Black Container Operator Technical Reference

The Carbon Black Container Operator runs within a Kubernetes cluster. The Container Operator is
a set of controllers that deploy and manage the Carbon Black Container components.

The Operator handles the following actions:

n Deploys and manages the Carbon Black Container product, including the configuration and
the image scanning for Kubernetes security.

n Automatically fetches and deploys the Carbon Black Container private image registry secret.

n Automatically registers the Carbon Black Container cluster.

n Manages the Carbon Black Container validating webhook and dynamically manages the
admission control webhook to avoid possible downtime.

n Monitors and reports agent availability to the Carbon Black Cloud console.

The Carbon Black Container Operator uses the operator-framework to create a GO operator that
is responsible for managing and monitoring the Carbon Black Container components deployment.

To review the Operator compatibility matrix, see Kubernetes Sensor Operator Distributions and
Kubernetes Version.

Note We recommend that you deploy the Operator by using the Add Cluster wizard (see Add a
Cluster and Install the Kubernetes Sensor). However, this technical reference section of the User
Guide also includes manual Operator and Agent installation instructions.

Manually Deploy the Container Operator

To manually deploy the Carbon Black Container Operator, perform the following procedure.

These instructions use an Operator image. To deploy the Operator without using an image, see
Container Operator Developer Instructions.

Prerequisites

Your cluster must be running Kubernetes 1.18+.

Carbon Black Container User Guide

VMware by Broadcom 63

Procedure

u You can initiate the Operator deployment in two ways:

n Script:

export OPERATOR_VERSION=v6.0.2
export OPERATOR_SCRIPT_URL=https://setup.containers.carbonblack.io/$OPERATOR_VERSION/
operator-apply.sh
curl -s $OPERATOR_SCRIPT_URL | bash

{OPERATOR_VERSION} is of the format "v{VERSION}".

n Source code:

a Clone the GIT project and deploy the operator from the source code.

By default, the Operator uses CustomResourceDefinitions v1, which

requires Kubernetes 1.16+. You can also deploy an Operator by using
CustomResourceDefinitions v1beta1 (deprecated in Kubernetes 1.16, removed in

Kubernetes 1.22).

b Create the Operator image:

make docker-build docker-push IMG={IMAGE_NAME}

c Deploy the Operator resources:

make deploy IMG={IMAGE_NAME}

What to do next

Manually Deploy the Container Agent

Uninstall the Container Operator

To uninstall the Carbon Black Container Operator, perform the following procedure.

Procedure

u To uninstall the Carbon Black Container Operator, run the following command:

export OPERATOR_VERSION=v6.0.2
export OPERATOR_SCRIPT_URL=https://setup.containers.carbonblack.io/$OPERATOR_VERSION/
operator-apply.sh
curl -s $OPERATOR_SCRIPT_URL | bash -s -- -u

This command deletes the Carbon Black Container custom resource definitions (CRDs) and
instances.

Manually Deploy the Container Agent

To manually deploy the Carbon Black Container Agent, perform the following procedure.

Carbon Black Container User Guide

VMware by Broadcom 64

Prerequisites

Manually Deploy the Container Operator

Procedure

1 Apply the Carbon Black Container API token secret:

kubectl create secret generic cbcontainers-access-token \
--namespace cbcontainers-dataplane --from-literal=accessToken=\
{API_Secret_Key}/{API_ID}
kubectl create secret generic cbcontainers-company-code --namespace cbcontainers-dataplane
--from-literal=companyCode=RXXXXXXXXXXG\!XXXX

2 Apply the Carbon Black Container Agent custom resource:

Deploy cbcontainersagents.operator.containers.carbonblack.io to prompt the Operator

to deploy the dataplane components:

apiVersion: operator.containers.carbonblack.io/v1
kind: CBContainersAgent
metadata:
 name: cbcontainers-agent
spec:
 account: {ORG_KEY}
 clusterName: {CLUSTER_GROUP}:{CLUSTER_NAME}
 version: {AGENT_VERSION}
 gateways:
 apiGateway:
 host: {API_HOST}
 coreEventsGateway:
 host: {CORE_EVENTS_HOST}
 hardeningEventsGateway:
 host: {HARDENING_EVENTS_HOST}
 runtimeEventsGateway:
 host: {RUNTIME_EVENTS_HOST}

Note See also Custom Resources Definitions.

Openshift

The Carbon Black Container Operator and Agent require elevated permissions to operate
properly. However, this requirement violates the default SecurityContextConstraints on most

Openshift clusters, thereby causing the components to fail to start.

You can resolve this issue by applying the following custom security constraint configurations on
the cluster. This action requires cluster administrator privileges.

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-anyuid
runAsUser:

Carbon Black Container User Guide

VMware by Broadcom 65

 type: MustRunAsNonRoot
allowHostPID: false
allowHostPorts: false
allowHostNetwork: false
allowHostDirVolumePlugin: false
allowHostIPC: false
allowPrivilegedContainer: false
readOnlyRootFilesystem: true
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-operator
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-enforcer
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-state-reporter
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-monitor
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-runtime-resolver

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-image-scanning # This probably needs to be fixed in the actual deployment
runAsUser:
 type: RunAsAny
allowHostPID: false
allowHostPorts: false
allowHostNetwork: false
allowHostDirVolumePlugin: false
allowHostIPC: false
allowPrivilegedContainer: false
readOnlyRootFilesystem: false
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
allowedCapabilities:
- 'NET_BIND_SERVICE'
users:
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-image-scanning

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-node-agent
runAsUser:
 type: RunAsAny
allowHostPID: true
allowHostPorts: false
allowHostNetwork: true
allowHostDirVolumePlugin: true

Carbon Black Container User Guide

VMware by Broadcom 66

allowHostIPC: false
allowPrivilegedContainer: true
readOnlyRootFilesystem: false
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir
- hostPath
- persistentVolumeClaim
- projected
- secret
users:
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-agent-node

Uninstalling the Operator on Openshift

Add this SecurityContextConstraints before running the operator uninstall command:

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-edr-cleaner
runAsUser:
 type: RunAsAny
allowHostPID: true
allowHostPorts: false
allowHostNetwork: true
allowHostDirVolumePlugin: true
allowHostIPC: false
allowPrivilegedContainer: true
readOnlyRootFilesystem: false
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir
- hostPath
- persistentVolumeClaim
- projected
- secret
users:
- system:serviceaccount:cbcontainers-edr-sensor-cleaners:cbcontainers-edr-sensor-cleaner

Carbon Black Container User Guide

VMware by Broadcom 67

Reading Metrics by using Prometheus

Operator metrics are protected by kube-auth-proxy. You must grant permissions to a

Prometheus server before it can scrape the protected metrics.

You can create a ClusterRole and bind it with ClusterRoleBinding to the service account that

your Prometheus server uses.

If you have not configured this cluster role and cluster role binding, you can use the following
configuration:

Cluster Role

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: cbcontainers-metrics-reader
rules:
- nonResourceURLs:
 - /metrics
 verbs:
 - get

Cluster Role Binding

kubectl create clusterrolebinding metrics --clusterrole=cbcontainers-metrics-reader --
serviceaccount=<prometheus-namespace>:<prometheus-service-account-name>

Use the following ServiceMonitor to scrape metrics from the Carbon Black Container Operator.

Your Prometheus custom resource service monitor selectors must match this configuration.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 control-plane: operator
 name: cbcontainers-operator-metrics-monitor
 namespace: cbcontainers-dataplane
spec:
 endpoints:
 - bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
 path: /metrics
 port: https
 scheme: https
 tlsConfig:
 insecureSkipVerify: true
 selector:
 matchLabels:
 control-plane: operator

Carbon Black Container User Guide

VMware by Broadcom 68

Custom Resources Definitions

The Carbon Black Container Operator implements controllers for Carbon Black Container custom
resources definitions (CRDs).

Carbon Black Container Agent Custom Resource

Deploy cbcontainersagents.operator.containers.carbonblack.io to prompt the Operator to

deploy the dataplane components.

Table 2-4. Required Parameters

Parameter Description

spec.account Carbon Black Container org key

spec.clusterName Carbon Black Container cluster name
(<cluster_group:cluster_name>)

spec.version Carbon Black Container Agent version

spec.gateways.apiGateway.host Carbon Black Container API host

spec.gateways.coreEventsGateway.host Carbon Black Container core events host (for example,
health checks)

spec.gateways.hardeningEventsGateway.host Carbon Black Container hardening events host (for
example, deleted, validated, and blocked resources)

spec.gateways.runtimeEventsGateway.host Carbon Black Container runtime events host (for example,
traffic events)

Table 2-5. Optional Parameters

Parameter Description Default Value

spec.apiGateway.port Carbon Black Container API port 443

spec.accessTokenSecretName Carbon Black Container API access
token secret name

cbcontainers-access-token

spec.gateways.coreEventsGateway.p
ort

Carbon Black Container core events
port

443

spec.gateways.hardeningEventsGate
way.port

Carbon Black Container hardening
events port

443

spec.gateways.runtimeEventsGatewa
y.port

Carbon Black Container runtime
events port

443

Table 2-6. Basic Components Optional Parameters

Parameter Description Default Value

spec.components.basic.enforcer.re
plicasCount

Carbon Black Container Hardening
Enforcer number of replicas

1

spec.components.basic.monitor.ima
ge.repository

Carbon Black Container Monitor
image repository

cbartifactory/monitor

Carbon Black Container User Guide

VMware by Broadcom 69

Table 2-6. Basic Components Optional Parameters (continued)

Parameter Description Default Value

spec.components.basic.enforcer.im
age.repository

Carbon Black Container Hardening
Enforcer image repository

cbartifactory/guardrails-enforcer

spec.components.basic.stateReport
er.image.repository

Carbon Black Container Hardening
State Reporter image repository

cbartifactory/guardrails-state-
reporter

spec.components.basic.monitor.res
ources

Carbon Black Container Monitor
resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.components.basic.enforcer.re
sources

Carbon Black Container Hardening
Enforcer resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.components.basic.stateReport
er.resources

Carbon Black Container Hardening
State Reporter resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

Table 2-7. Runtime Components Optional Parameters

Parameter Description Default Value

spec.components.runtimeProtection
.enabled

Carbon Black Container flag
to control Runtime components
deployment

True

spec.components.runtimeProtection
.resolver.image.repository

Carbon Black Container Runtime
Resolver image repository

cbartifactory/runtime-kubernetes-
resolver

spec.components.runtimeProtection
.sensor.image.repository

Carbon Black Container Runtime
Sensor image repository

cbartifactory/runtime-kubernetes-
sensor

spec.components.runtimeProtection
.internalGrpcPort

Carbon Black Container Runtime
gRPC port that the resolver exposes
for the sensor

443

spec.components.runtimeProtection
.resolver.logLevel

Carbon Black Container Runtime
Resolver log level

"panic", "fatal", "error", "warn", "info",
"debug", "trace" (default info)

spec.components.runtimeProtection
.resolver.resources

Carbon Black Container Runtime
Resolver resources

{requests: {memory: "64Mi", cpu:
"200m"}, limits: {memory: "1024Mi",
cpu: "900m"}}

spec.components.runtimeProtection
.sensor.logLevel

Carbon Black Container Runtime
Sensor log level

"panic", "fatal", "error", "warn", "info",
"debug", "trace" (default info)

spec.components.runtimeProtection
.sensor.resources

Carbon Black Container Runtime
Sensor resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "1024Mi",
cpu: "500m"}}

Carbon Black Container User Guide

VMware by Broadcom 70

Table 2-8. Cluster Scanning Components Optional Parameters

Parameter Description Default Value

spec.components.clusterScanning.e
nabled

Carbon Black Container flag to
control Cluster Scanning components
deployment

True

spec.components.clusterScanning.i
mageScanningReporter.image.reposi
tory

Carbon Black Container Image
Scanning Reporter image repository

cbartifactory/image-scanning-
reporter

spec.components.clusterScanning.c
lusterScanner.image.repository

Carbon Black Container Scanner
Agent image repository

cbartifactory/cluster-scanner

spec.components.clusterScanning.i
mageScanningReporter.resources

Carbon Black Container Image
Scanning Reporter resources

{requests: {memory: "64Mi", cpu:
"200m"}, limits: {memory: "1024Mi",
cpu: "900m"}}

spec.components.clusterScanning.c
lusterScanner.resources

Carbon Black Container Cluster
Scanner resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "1024Mi",
cpu: "500m"}}

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
engineType

Carbon Black Container Cluster
Scanner Kubernetes container engine
type. One of these options:
containerd / docker-daemon / cri-o

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
endpoint

Carbon Black Container Cluster
Scanner Kubernetes container engine
endpoint path

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
CRIO.storagePath

Carbon Black Container Cluster
Scanner override default image
storage path (CRI-O only)

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
CRIO.storageConfigPath

Carbon Black Container Cluster
Scanner override default image
storage config path (CRI-O only)

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
CRIO.configPath

Carbon Black Container Cluster
Scanner override default CRI-O config
path (CRI-O only)

N/A

spec.components.clusterScanning.c
lusterScanner.cliFlags.enableSecr
etDetection

Carbon Black Container Cluster
Scanner flag of whether the scan
should scan for secrets

False

spec.components.clusterScanning.c
lusterScanner.cliFlags.skipDirsOr
Files

Carbon Black Container Cluster
Scanner flag of files or directories to
not scan for secrets

N/A

Carbon Black Container User Guide

VMware by Broadcom 71

Table 2-8. Cluster Scanning Components Optional Parameters (continued)

Parameter Description Default Value

spec.components.clusterScanning.c
lusterScanner.cliFlags.scanBaseLa
yers

Carbon Black Container Cluster
Scanner flag of whether the scan
should include the base layers scan
for secrets

False

spec.components.clusterScanning.c
lusterScanner.cliFlags.ignoreBuil
dInRegex

Carbon Black Container Cluster
Scanner flag of whether the scan
should ignore the built-in regexes of
files to skip secret detection

False

Table 2-9. Components Common Optional Parameters

Parameter Description Default Value

labels Carbon Black Container component
deployment and pod labels

Empty map

deploymentAnnotations Carbon Black Container component
deployment annotations

Empty map

podTemplateAnnotations Carbon Black Container component
pod annotations

{}

env Carbon Black Container component
pod environment variables

Empty map

image.tag Carbon Black Container component
image tag

Agent version

image.pullPolicy Carbon Black Container component
pull policy

IfNotPresent

probes.port Carbon Black Container component
probes port

8181

probes.scheme Carbon Black Container component
probes scheme

HTTP

probes.initialDelaySeconds Carbon Black Container component
probes initial delay seconds

3

probes.timeoutSeconds Carbon Black Container component
probes timeout seconds

1

probes.periodSeconds Carbon Black Container component
probes period seconds

30

probes.successThreshold Carbon Black Container component
probes success threshold

1

probes.failureThreshold Carbon Black Container component
probes failure threshold

3

prometheus.enabled Carbon Black Container component
enable Prometheus scraping

False

prometheus.port Carbon Black Container component
Prometheus server port

7071

Carbon Black Container User Guide

VMware by Broadcom 72

Table 2-9. Components Common Optional Parameters (continued)

Parameter Description Default Value

nodeSelector Carbon Black Container component
node selector

{}

affinity Carbon Black Container component
affinity

{}

Table 2-10. Centralized Proxy Parameters

Parameter Description Default Value

spec.components.settings.proxy.en
abled

Enables applying the centralized
proxy settings to all components

False

spec.components.settings.proxy.ht
tpProxy

HTTP proxy server address to use Empty string

spec.components.settings.proxy.ht
tpsProxy

HTTPS proxy server address to use Empty string

spec.components.settings.proxy.no
Proxy

A comma-separated list of hosts to
which to connect without using a
proxy

Empty string

spec.components.settings.proxy.no
ProxySuffix

A comma-separated list of hosts to
which to append the noProxy list of

values

The API server IP addresses
followed by cbcontainers-
dataplane.svc.cluster.local

Table 2-11. Other Components Optional Parameters

spec.components.settings.daemonSe
tsTolerations

Carbon Black DaemonSet component
tolerances

Empty array

Changing Components Resources

Needs description/intro.

spec:
 components:
 basic:
 monitor:
 resources:
 limits:
 cpu: 200m
 memory: 256Mi
 requests:
 cpu: 30m
 memory: 64Mi
 enforcer:
 resources:
 #### DESIRED RESOURCES SPEC - for hardening enforcer container
 stateReporter:

Carbon Black Container User Guide

VMware by Broadcom 73

 resources:
 #### DESIRED RESOURCES SPEC - for hardening state reporter container
 runtimeProtection:
 resolver:
 resources:
 #### DESIRED RESOURCES SPEC - for runtime resolver container
 sensor:
 resources:
 #### DESIRED RESOURCES SPEC - for node-agent runtime container
 clusterScanning:
 imageScanningReporter:
 resources:
 #### DESIRED RESOURCES SPEC - for image scanning reporter pod
 clusterScanner:
 resources:
 #### DESIRED RESOURCES SPEC - for node-agent cluster-scanner container

Cluster Scanner Component Memory

By default, the clusterScanning.clusterScanner component attempts to scan images of sizes up

to 1GB. Its recommended resources are:

resources:
 requests:
 cpu: 100m
 memory: 1Gi
 limits:
 cpu: 2000m
 memory: 6Gi

To scan images larger than 1GB, allocate higher memory resources in the
component's requests.memory and limits.memory, and add an environment variable

MAX_COMPRESSED_IMAGE_SIZE_MB to override the maximum images size in MB that the scanner tries

to scan.

For example, to set the cluster scanner to scan images up to 1.5 GB. the configuration is:

spec:
 components:
 clusterScanning:
 clusterScanner:
 env:
 MAX_COMPRESSED_IMAGE_SIZE_MB: "1536" // 1536 MB == 1.5 GB
 resources:
 requests:
 cpu: 100m
 memory: 2Gi
 limits:
 cpu: 2000m
 memory: 5Gi

Carbon Black Container User Guide

VMware by Broadcom 74

If your nodes have low memory and you want the cluster scanner to consume less memory,
you must reduce the component's rrequests.memory and limits.memory, and override the

MAX_COMPRESSED_IMAGE_SIZE_MB parameter to be less than 1GB (1024MB).

For example, assign lower memory resources and set the cluster-scanner to scan images up to
250MB:

spec:
 components:
 clusterScanning:
 clusterScanner:
 env:
 MAX_COMPRESSED_IMAGE_SIZE_MB: "250" // 250 MB
 resources:
 requests:
 cpu: 100m
 memory: 250Mi
 limits:
 cpu: 2000m
 memory: 1Gi

Configuring Container Services to use HTTP Proxy

You can configure the Carbon Black Container to use an HTTP proxy by enabling the centralized
proxy settings or by manually setting HTTP_PROXY, HTTPS_PROXY, and NO_PROXY environment

variables.

The centralized proxy settings apply an HTTP proxy configuration for all components. The
manual setting of environment variables allows you to set the configuration parameters on a per
component basis. If both HTTP proxy environment variables and centralized proxy settings are
provided, the environment variables take precedence. The Operator does not use the centralized
proxy settings, so you must use the environment variables for it instead.

Configure Centralized Proxy Settings

To configure the proxy environment variables in the Operator, use the following command to
patch the Operator deployment:

kubectl set env -n cbcontainers-dataplane deployment cbcontainers-operator HTTP_PROXY="<proxy-
url>" HTTPS_PROXY="<proxy-url>" NO_PROXY="<kubernetes-api-server-ip>/<range>"

Update the CBContainersAgent CR to use the centralized proxy settings (kubectl edit
cbcontainersagents.operator.containers.carbonblack.io cbcontainers-agent):

spec:
 components:
 settings:
 proxy:

Carbon Black Container User Guide

VMware by Broadcom 75

 enabled: true
 httpProxy: "<proxy-url>"
 httpsProxy: "<proxy-url>"
 noProxy: "<exclusion1>,<exclusion2>"

You can disable the centralized proxy settings without deleting them by setting the enabled key

to false.

By default, the centralized proxy settings determine the API server IP address(es) and the
necessary proxy exclusions for the cbcontainers-dataplane namespace. These determined

values are automatically appended to the noProxy values or the specified NO_PROXY environment

variable for a particular component. To change those pre-determined values, you can specify the
noProxySuffix key at the same level as the noProxy key. It has the same format as the noProxy
key and its values are treated ias if they were pre-determined. You can also force nothing to be
appended to noProxy or NO_PROXY by setting noProxySuffix to an empty string.

Configure HTTP Proxy Per-Component Environment Variables

To configure environment variables for the basic, Runtime, and Image Scanning components,

update the CBContainersAgent CR using the proxy environment variables (kubectl edit
cbcontainersagents.operator.containers.carbonblack.io cbcontainers-agent):

spec:
 components:
 basic:
 enforcer:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"
 stateReporter:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"
 runtimeProtection:
 resolver:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"
 sensor:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>,cbcontainers-runtime-
resolver.cbcontainers-dataplane.svc.cluster.local"
 clusterScanning:
 clusterScanner:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"

Carbon Black Container User Guide

VMware by Broadcom 76

 NO_PROXY: "<kubernetes-api-server-ip>/<range>,cbcontainers-image-scanning-
reporter.cbcontainers-dataplane.svc.cluster.local"
 imageScanningReporter:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"

Important You must configure the NO-PROXY environment variable to use the value of the

Kubernetes API server IP address. To find the API-server IP address, run the following command:

kubectl -n default get service kubernetes -o=jsonpath='{..clusterIP}'

Additional Proxy Considerations

When using a non-transparent HTTPS proxy, you must configure the agent to use the proxy
certificate authority:

spec:
 gateways:
 gatewayTLS:
 rootCAsBundle: <Base64 encoded proxy CA>

Alternatively, you can allow the agent to communicate without verifying the certificate. We do
not recommend this option because it exposes the agent to an MITM attack.

spec:
 gateways:
 gatewayTLS:
 insecureSkipVerify: true

Changing the Image Source

By default, all images for the Operator and Agent deployments are pulled from Docker Hub.
If you prefer to mirror the images in your internal repositories, you can specify the image by
modifying the CBContainersAgent resource that you apply to your cluster.

Modify the following properties to specify the image for each service:

n monitor - spec.components.basic.monitor.image

n enforcer - spec.components.basic.enforcer.image

n state-reporter - spec.components.basic.stateReporter.image

n runtime-resolver - spec.components.runtimeProtection.resolver.image

n runtime-sensor - spec.components.runtimeProtection.sensor.image

n image-scanning-reporter - spec.components.clusterScanning.imageScanningReporter.image

n cluster-scanner - spec.components.clusterScanning.clusterScanner.image

Carbon Black Container User Guide

VMware by Broadcom 77

The image object consists of four properties:

n repository - the repository of the image; for example, docker.io/my-org/monitor

n tag - the version tag of the image; for example, 1.0.0, latest, and so forth.

n pullPolicy - the pull policy for that image; for example, IfNotPresent, Always, or Never. See

Image pull policy (external link).

n pullSecrets - the image pull secrets that are going to be used to pull the container images.

The secrets must already exist in the cluster. See Pull an Image from a Private Registry
(external link).

Sample configuration:

spec:
 monitor:
 image:
 repository: docker.io/my-org/monitor
 tag: 1.0.0
 pullPolicy: Always
 pullSecrets:
 - my-pull-secret

In this case, the operator attempts to run the monitor service from the docker.io/my-org/
monitor:1.0.0 container image and the kubelet is instruted to always pull the image by using

the my-pull-secret secret.

Using a Shared Secret for all Images

To use just one pull secret to pull all the custom images, specify it under
spec.settings.imagePullSecrets.

The secret is added to the imagePullSecrets list of all Agent workloads.

Operator Role-based Access Control

This section describes how to configure and use Carbon Black Container Operator Role-based
Access Control (RBAC).

RBAC Definition and Design

Following the principle of least-privilege, any permission given to the Operator should have good
reason and be scoped as tightly as possible.

In practice, this means:

n If the resource is namespaced and part of the agent, use a Role to give permissions in the

agent's namespace only.

n If the resource is namespaced and not part of the agent:

n To read it, use a ClusterRole unless you are sure what the namespace will be.

Carbon Black Container User Guide

VMware by Broadcom 78

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

n To modify it, examine whether this s absolutely necessary.

n If the resource is non-namespaced, use a ClusterRole and restrict delete, get, update, and

patch through resourceNames. Create, list, and watch either do not support this restriction or

require extra care.

Changing the Operator Access Levels

Operator access level permissions are generated by controller-gen and controlled by using
+kubebuilder directives. See controller definitions (external link). Any change to those directives
requires running make manifests to update the respective role.yaml file. You must also

propagate changes to the helm charts.

Changing the Agent Component Access Levels

Agent component access levels, service accounts, and role bindings are manually maintained in
dataplane_roles.yaml and the helm equivalent. You must apply changes in both locations.

The roles should follow the least-privilege principle. Agent components often need more
permissions than the Operator to work as expected.

Container Operator Developer Instructions

This topic describes instructions using the SDK version 1.29.0 for the Operator.

Deploy the Operator without using an Image

To install dependencies to verify the kubeconfig context:

make deploy OPERATOR_REPLICAS=0

To run the Operator from the terminal to verify the kubeconfig context:

make run

From your editor, run and debug main.go to verify the KUBECONFIG environment variable.

Install the Dataplane on your own Control Plane

Under the Carbon Black Container Cluster CR:

spec:
 apiGatewaySpec:
 adapter: {MY-ADAPTER-NAME}

where {MY-ADAPTER-NAME} is your control plane adapter name. The default value is containers.

Carbon Black Container User Guide

VMware by Broadcom 79

https://github.com/octarinesec/octarine-operator/blob/main/controllers/cbcontainersagent_controller.go

Uninstall the Container Operator

From a terminal, run the following command:

make undeploy

Note This command does not clean up the Carbon Black directory on the dataplane nodes.

Changing Security Context Settings

Hardening enforcer/state_reporter security context settings:

You can change the values under cbcontainers/state/hardening/objects for

enforcer_deployment.go or state_reporter_deployment.go.

Using defaults:

Defaults in the OpenAPISchema is a feature in apiextensions/v1 version of

CustomResourceDefinitions. These default values are supported by kubebuilder by using tags;

for example, kubebuilder:default=something. For backwards compatibility, all defaults should

also be implemented and set in the controllers to make sure that they work on clusters v1.15 and
below.

Note kubebuilder does not support an empty object as a default value. See related issue

(external link). The root issue is in regard to maps, but the same code causes issues with objects.

Therefore, the following specification will not apply the default for test unless the user specifies

bar.

spec:
 properties:
 bar:
 properties:
 test:
 default: 10
 type: integer

Applying this YAML will save an empty object for bar: spec: {}.

Instead, applying spec: { bar: {} } works as expected and saves the following object:

spec: { bar: { test: 10 }}

For example:

spec:
 properties:
 bar:
 default: {}

Carbon Black Container User Guide

VMware by Broadcom 80

https://github.com/kubernetes-sigs/controller-tools/issues/550

 properties:
 test:
 default: 10
 type: integer

kubebuilder cannot currently produce that output. Therefore, replacing all instance of <> with {}
so that using kubebuilder:default=<> produces the correct output.

Defaulting is not supported by v1beta1 versions of CRD.

Local Debugging

To debug locally, run make run-delve. This command builds and starts a delve debugger in

headless mode. Then use an editor to start a remote session and connect to the delve instance.

For goland, the built-in go remote configuration works.

Custom Namespace

If the Operator is not deployed in the default namespace (cbcontainers-dataplane), you must

set the OPERATOR_NAMESPACE environment variable when using make run or make run-delve.

Helm Charts

This topic describes the official Helm charts for installing the Carbon Black Container Agent
(Operator, CRD, and Agent components).

cbcontainers-operator

The cbcontainer-operator chart (external link) is the official Helm chart for installing the Carbon
Black Container Operator and CRD. Helm 3 is supported.

You can install the chart without any customizations or modifications, and you can create the Hel
release in any namespace. You can customize the namespace in which the Operator is installed.

To install the Helm chart from the source:

cd charts/cbcontainers-operator
helm install cbcontainers-operator ./cbcontainers-operator-chart

Table 2-12. Customization

Parameter Description Default Value

spec.operator.image.repository Repository of the Operator image cbartifactory/octarine-operator

spec.operator.image.version Version of the Operator image The latest version of the Operator
image

spec.operator.resources Carbon Black Container Operator
resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

Carbon Black Container User Guide

VMware by Broadcom 81

https://github.com/octarinesec/octarine-operator/tree/main/charts/cbcontainers-operator

Table 2-12. Customization (continued)

Parameter Description Default Value

spec.rbacProxy.resources Kube RBAC proxy resources {requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.operator.environment Environment variables to be set to
the Operator pod

[]

Namespace

By default, the Carbon Black Container Operator is installed in the cbcontainers-dataplane
namespace.

To change the namespace, set the operatorNamespace field in your values.yaml file.

The chart automatically creates the namespace. If you do not want to do that (because you have
already created the namespace), set the createOperatorNamespace field in your values.yaml file

to false.

If the namespace is pre-created, then it must also be labeled properly or the Operator and Agent
might not reconcile successfully. The following commands show an example of creating a custom
namespace and labeling and installing the operator inside.

NAMESPACE=<your_value>
kubectl create namespace $NAMESPACE
kubectl label namespace $NAMESPACE control-plane=operator octarine=ignore
helm install cbcontainers-operator ./cbcontainers-operator-chart --set
createOperatorNamespace=false,operatorNamespace=$NAMESPACE

CRD Installation

By default, installing the chart will also create the CBContainersAgent CRD.

To manage the CRD in a different way and not install it together with the chart, set the
installCRD field in your values.yamlfile to false.

HTTP Proxy

To use an HTTP proxy for the communication with the Carbon Black Cloud backend, you must
set 3 environment variables. These variables are exposed through the Values.operator.proxy
parameters in the values.yaml file:

n Values.operator.proxy.http

n Values.operator.proxy.https

n Values.operator.proxy.noProxy

See also Configuring Container Services to use HTTP Proxy .

Templates

The cbcontainers-operator chart consists of four templates (external link).

Carbon Black Container User Guide

VMware by Broadcom 82

https://github.com/octarinesec/octarine-operator/tree/main/charts/cbcontainers-operator/cbcontainers-operator-chart/templates

The operator.yaml file (external link) contains all resources except for the Operator deployment.
It is generated by kustomize. For more info see config/default_chart (external link).

The deployment.yaml file contains the Operator Deployment resource. It is derived from

this Kustomize configuration. Because it must be configurable through Helm, it is heavily
templated. Therefore, it cannot be generated automatically, so it must be maintained by hand.
If any changes are made to the Kustomize configuration, they must also be reflected in the
deployment.yaml file.

The dataplane_rbac.yaml and dataplane_service_accounts files contain necessary RBAC

objects for the Agent to work as expected.

cbcontainers-agent

The cbcontainer-agent chart (external link) is the official Helm chart for installing the Carbon
Black Container Agent components. Helm 3 is supported.

Note Before installing the Agent components, you must install the Operator and the CRD.

Installation

Before you can install the chart, you must configure it. You must provide the following eight
required fields:

Parameter Description

spec.orgKey Org key of the organization using Carbon Black Cloud

spec.clusterName Name of the cluster that will be added to Carbon Black
Cloud

spec.clusterGroup The group that the cluster belongs to in Carbon Black
Cloud

spec.version Version of the Agent images

spec.gateways.apiGatewayHost URL of the Carbon Black Cloud API gateway

spec.gateways.coreEventsGatewayHost URL of the Carbon Black Cloud core events gateway

spec.gateways.hardeningEventsGatewayHost URL of the Carbon Black Cloud hardening events gateway

spec.gateways.runtimeEventsGatewayHost URL of the Carbon Black Cloud runtime events gateway

After setting these required fields in a values.yaml file, you can install the chart from source:

cd charts/cbcontainers-agent
helm install cbcontainers-agent ./cbcontainers-agent-chart -n cbcontainers-dataplane

Customization

The way in which the Carbon Black Container components are installed is highly customizable.

Carbon Black Container User Guide

VMware by Broadcom 83

https://github.com/octarinesec/octarine-operator/blob/main/charts/cbcontainers-operator/cbcontainers-operator-chart/templates/operator.yaml
https://github.com/octarinesec/octarine-operator/tree/main/config/default_chart
https://github.com/octarinesec/octarine-operator/tree/main/config/manager
https://github.com/octarinesec/octarine-operator/tree/main/config/manager
https://github.com/octarinesec/octarine-operator/tree/main/charts/cbcontainers-agent

You can set different properties for the components or enable and disable components by using
the spec.components section of your values.yaml file.

For a list of all possible values, see Custom Resources Definitions.

Namespace

The Carbon Black Cloud Containers Agent will run in the same namespace as the deployed
Operator. This is by design because only one running agent per cluster is supported. To
customize that namespace, see operator-chart (external link).

The actual namespace where Helm tracks the release (see --namespace flag, external link) is
not important to the Agent chart, but the recommended approach is to also use the same
namespace as the Operator chart.

The agentNamespace value is only required if the Agent chart is responsible for deploying

the Agent's secret as well. If the secret is pre-created before deploying the agent, then
agentNamespace has no effect.

Secret Creation

Carbon Black API Key

For the Agent components to function correctly and communicate with the Carbon Black
Cloud backend, an access token is required. This token is located in a secret. By default,
the secret is named cbcontainers-access-token, but that name is configurable through the

accessTokenSecretName property. If that secret does not exist, the Operator will not start any

of the Agent components.

To create the secret as part of the chart installation, provide the accessToken value to the chart.

Inject this value as part of your pipeline in a secure way: store the secret as plain text in your
values.yaml file.

To create the secret in an alternative and more secure way, do not set the accessToken value: the

chart will not create the secret objects.

Important Do not store the token in your source code.

Carbon Black Company Codes

For the agent CNDR component to function correctly and communicate with the Carbon Black
Cloud backend, a company code is required. This code is located in a secret. By default,
the secret is named cbcontainers-company-code, but that name is configurable through the

components.cndr.companyCodeSecretName property.

If that secret does not exist, the CNDR component will fail.

If you want to create the secret as part of the chart installation, provide the companyCode value to

the chart.

Inject this value as part of your pipeline in a secure way: store the secret as plain text in your
values.yaml file.

Carbon Black Container User Guide

VMware by Broadcom 84

https://github.com/octarinesec/octarine-operator/tree/a4ec106cbafe389996bfaace9dbbe7b4181591eb/charts/cbcontainers-operator
https://helm.sh/docs/helm/helm_install/

To create the secret in an alternative and more secure way, do not set the companyCode value: the

chart will not create the secret objects.

Important Do not store the code in your source code.

Carbon Black Container User Guide

VMware by Broadcom 85

Configuring Container Security 3
This section describes the tasks involved in configuring Container security.

Read the following topics next:

n Kubernetes Scopes

n Egress Groups

n Kubernetes Policies

n Subscribe to Alert Notifications

n Setting up API Access

Kubernetes Scopes

Kubernetes scopes are groups of Kubernetes resources that share a purpose. For example,
clusters are Kubernetes resources that qualify for a scope definition. You can use a scope as a
filter or to apply an identical security policy across Kubernetes resources.

Grouping Kubernetes resources in scopes provides a foundation for targeted planning of security
policies. You can add and edit scopes, and you can delete scopes that are not attached to a
Kubernetes policy.

Default Scope

The default scope is a predefined scope that encompasses all clusters and namespaces. The
default scope is called Any. The Any scope is always available and cannot be deleted. It is the
highest scope in the hierarchy of scopes. The scope resolution process searches for the most
precise scope definition into which a Kubernetes resource falls to apply the policy. If no more
precise scope is found, the policy that is attached to the default scope is considered.

Scopes for the Build Phase

Build Phase refers to defining the container images or Kubernetes objects for scanning or
validating with CLI Client commands. You can integrate the commands in a CI/CD pipeline. You
can define a scope for all resources in the build phase, for Kubernetes namespaces, or for a
particular build step. The build step is a parameter that the CLI Client uses for performing image
scanning. See Setting up CLI Client for Image Scanning and Chapter 4 Scanning Images.

VMware by Broadcom 86

Scopes for the Deploy Phase

Deploy Phase refers to a grouping of Kubernetes workloads that are going to be deployed or are
already deployed.

Scopes can overlap by hierarchy from the most general to the most specific according to the
following order: all clusters, cluster group, cluster, namespace, and workload. For workloads that
are part of overlapping scopes, the policy attached to the narrowest scope is applied. In that
way, a workload resolves to a single policy.

See Kubernetes Scopes Hierarchy.

Example: Examples

Example Scope Purpose

A cluster group for all production clusters Filters or assigns a policy for all clusters in the same tier.

One or more Kubernetes clusters Filter or assigns a policy to different clusters.

Application across clusters by choosing a
Kubernetes namespace that is defined on many
clusters

Filters or assigns policies to a group of resources forming an
application regardless of where they are deployed.

Application Scopes

Application scopes include container images in both build phase and deploy phase. The scope
reflects the practice of separating the applications in their own Kubernetes namespaces. If a
scope is defined as an application scope, the policy assigned to the scope is applied to all
container images in the namespace, regardless of the development phase and regardless of the
clusters where this namespace is located. This scope ensures the same hardening criteria while
building or deploying the application.

Kubernetes Scopes Hierarchy

The Kubernetes scopes hierarchy is important for the scope resolution process. The scope
resolution process finds the most specific scope in which a workload exists, and the scope then
defines the policy to apply on the Kubernetes workload.

Scope Resolution for Kubernetes Workloads in Overlapping Scopes

Scopes are overlapping by design, which means that the workloads might belong to several
overlapping scopes. However, each Kubernetes workload is associated with a single policy. By
implementing a scope resolution logic, the system finds the policy that is related to the most
specific scope for each workload.

By planning the scopes, you can determine which policy to apply to specific areas in your
Kubernetes environment without affecting the rest of the system.

Carbon Black Container User Guide

VMware by Broadcom 87

Scope Ranking

Scopes are ranked by specificity. Specific scopes take precedence over general scopes.

The following diagrams rank scopes. The diagrams display boxes in various colors for workloads
in cluster groups and namespaces, and a green box for the scope that encompasses them. The
most specific scope is at the top of the hierarchy.

Example: Example Illustration of Scopes

Ranking Description

Resources in specific namespaces in
specific clusters

The most specific definition of a scope for using a particular Kubernetes hardening
policy.

Resources in specific namespaces in
specific cluster groups

Only these particular namespaces inside cluster groups are covered.

Resources in specific clusters All namespaces in a cluster are covered. Example scope: test-acme-app to test the
application in an isolated testing cluster:

TEST-
ACME-APP

Resources in specific namespaces in
any cluster

Application scopes that are defined for a namespace and are valid for all clusters
that contain the namespace. Example scope across the Kubernetes environment
to cover the namespace: acme-app:

ACME-APP

Carbon Black Container User Guide

VMware by Broadcom 88

Ranking Description

Resources in specific cluster groups This high-level scope covers groups of clusters. Example two scopes for
Production and Testing environments:

TESTPROD

All resources - refer to the Any
scope

The default Any scope contains all workloads in the system and overlaps with all
other scopes. Scopes for specific Kubernetes resources take precedence over the
default scope.

ANY

Built-in Kubernetes Scopes

When you install and set up your Kubernetes clusters, the system includes three ready-to-use
scopes: Kubernetes System, CBContainers dataplane, and Default Namespace.

The built-in scopes are assigned to built-in hardening policies. The scopes are available as
a starting point for your configuration, and you can either edit or delete them. For more
information about built-in hardening policies, see Built-in Kubernetes Hardening Policies.

Carbon Black Container User Guide

VMware by Broadcom 89

Pre-Packaged
Scope Scope Target Scope Description

Kubernetes System Target:

Deploy phase

Namespaces:

kube-system

Matches the namespace for objects created by the Kubernetes
system. This system typically contains services for DNS, proxy,
controller manager, and other system components.

CBContainers
dataplane

Target:

Deploy phase

Namespaces:

cbcontainers-dataplane

octarine-dataplane

Matches the namespace where the Carbon Black Kubernetes agent
runs and deploys its resources.

Note Two namespaces are listed here. Octarine-dataplane is the
namespace name before version 3.0.0 of the agent. Cbcontainers-
dataplane is the current namespace name.

Default Namespace Target:

Deploy phase

Namespaces:

default

Matches Kubernetes built-in default namespace that holds objects
that have no specified no namespace.

Note If the built-in scopes are not modified, the Last modified by parameter is Carbon Black.
After you edit a scope, the Last modified by parameter changes.

Add a Kubernetes Applications Scope to Kubernetes Resources

You can group Kubernetes resources in a scope. The scope target is Applications.

Prerequisites

Set up your Kubernetes clusters. See Adding Clusters and Installing Kubernetes Sensors.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Scopes.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Scopes.

2 Click Add Scope.

3 Enter a Name for the scope.

4 For target resources, select Applications. This scope will target applications in specific
namespaces. A policy can be enforced during the build, deployment, and execution phases.

5 Click Next.

6 Select the namespaces from the dropdown menu.

Carbon Black Container User Guide

VMware by Broadcom 90

7 Click Save.

The scope is ready for use in a Kubernetes Hardening Policy.

What to do next

Create a Kubernetes Hardening Policy

Add a Kubernetes Deploy Location Scope to Kubernetes Resources

You can group Kubernetes resources in a scope. The scope target is Deploy Locations.

Prerequisites

Set up your Kubernetes clusters. See Adding Clusters and Installing Kubernetes Sensors.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Scopes.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Scopes.

2 Click Add Scope.

3 Enter a Name for the scope.

4 For target resources, select Deploy Locations. This scope will target workloads in specific
clusters or cluster groups. A policy can be enforced during the deployment and execution
phases.

5 Click Next.

Carbon Black Container User Guide

VMware by Broadcom 91

6 Select your scope targets.

n You can group by clusters, namespaces, or both.

n To apply the same policy to multiple clusters, use the cluster group as a basis for your
scope. You can also select individual clusters instead of a cluster group. A cluster group
includes all its existing or future clusters. Thus, cluster group is a broader selection than
choosing a list of clusters.

n If you have namespaces with the same name in multiple clusters, the scope you define
per namespace will span across clusters for that namespace.

n To determine a particular namespace inside a particular cluster, you can point to a cluster
or cluster group and to a specific namespace.

7 Click Save.

The scope is ready for use in a Kubernetes Hardening Policy.

What to do next

Create a Kubernetes Hardening Policy

Add a Kubernetes Container Images Scope to Kubernetes Resources

You can use scopes to enforce policies on container images that are not yet deployed. The
scope target is Build Phase.

Prerequisites

Set up your Kubernetes clusters. See Adding Clusters and Installing Kubernetes Sensors.

Carbon Black Container User Guide

VMware by Broadcom 92

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Scopes.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Scopes.

2 Click Add Scope.

3 Enter a Name for the scope.

4 For target resources, select Container images. This scope will target specific container
images. A policy can be enforced during the build phase.

5 Click Next.

6 Select the target criteria from the dropdown menus.

Option Description

Apply only to specific build steps Harden images by assigning a policy and configuring CLI instances to
perform validation during the build phase.

Apply only to specific
namespaces

A scope can target images in particular namespaces; it will take precedence
over generic scopes covering the same workloads.

Carbon Black Container User Guide

VMware by Broadcom 93

7 Click Save.

The scope is ready for use in a Kubernetes Hardening Policy.

What to do next

Create a Kubernetes Hardening Policy

View a Kubernetes Scope

To view a Kubernetes scope, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Scopes.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Scopes.

The left pane shows the scopes, attached policies, and the number of workloads affected by
each scope.

2 In the left pane, select the scope.

n Click the General tab to view the scope details.

n If there are policies attached to the scope, you can click a policy name to view that policy
summary. For example:

Carbon Black Container User Guide

VMware by Broadcom 94

n You can also view the namespaces and workloads covered by this scope. Click the
Workloads tab to view namespaces. To view workloads within that namespace, click the
namespace.

Edit or Delete a Kubernetes Scope

You can update the configuration of a Kubernetes scope. You can only update the scope name
and the included resources. You cannot update the scope target.

Carbon Black Container User Guide

VMware by Broadcom 95

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Scopes.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Scopes.

2 In the left pane, select the scope. On the General tab, click Edit from the Options dropdown
menu.

Tip To delete the scope, click Delete and then click OK to confirm the deletion.

3 Click Next.

4 Modify the name or included resources and click Save.

Kubernetes Scope Baselines for Runtime Policies

Kubernetes scope baselines apply to runtime policies. Baseline behaviors reflect the normal
activity for all workloads grouped in a scope as discovered during the learning period. The
learning period is the time during which all the Kubernetes resources in a scope are monitored for
egress network connections. All egress destinations are recorded in the scope baseline.

The scope baseline determines the normal allowed behavior for all Kubernetes resources inside a
scope. Deviation from the baseline triggers an alert. The baseline is at scope level, and you can
amend or reset the final behavior list.

View a Kubernetes Scope Baseline for a Runtime Policy

To view a Kubernetes scope baseline for a runtime policy, perform the following procedure.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

3 Select the policy and click the arrow at the end of the row to open the Policy Details
panel.

4 In the Policy details panel, click View scope baseline.

Baseline behaviors display in the left pane. You can remove a behavior from the baseline, or
you can select a behavior to view additional information in the right pane. For example:

Carbon Black Container User Guide

VMware by Broadcom 96

What to do next

You can add a behavior to the scope baseline or reset the scope baseline.

Add a Behavior to a Kubernetes Scope Baseline

You can change the scope baseline for a Kubernetes runtime policy after the completion of the
learning period without resetting the learning period and without removing anything from the
baseline.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

3 Select the policy and click the caret at the end of the row to open the Policy Details panel.

4 In the Policy details panel, click View scope baseline.

5 Click Add Behavior.

6 Select the type of destination. Enter the public or private domain, subdomain, or IP range,
and click Add.

Results

You successfully added a destination of egress traffic to the scope baseline.

Add a False Positive as Normal Behavior to the Scope Baseline

You can adjust the scope baseline of Kubernetes runtime policies for alerts that indicate false
positive workloads behavior. To do so, you can close alerts or add egress traffic destinations to
the scope baseline.

You generally review alerts after you enable or update a Kubernetes runtime policy and after the
learning period completes. You can reduce the number of alerts by resolving the issues or by
closing the alerts.

Note Closing alerts is only recommended for excluding specific workloads that exhibit known
behaviors from the alerts list.

Carbon Black Container User Guide

VMware by Broadcom 97

Procedure

1 On the left navigation pane, select Alerts.

2 Locate and select the alerts of interest and do one of the following:

n On the Actions dropdown menu, click Add to baseline. Click OK to confirm.

n On the Actions dropdown menu, click Close.

a In the Close as dropdown menu, select a reason for closing the alert, for example,
Resolved - Benign/Known.

b Optionally select the check box to close all existing alerts that have the same threat
ID.

c Optionally automatically close all future alerts that have this threat ID.

d Enter an optional note about the reason for closing the alert.

e Click Close Alert.

Reset a Kubernetes Scope Baseline

To reset a Kubernetes scope baseline, perform the following procedure.

Resetting the baseline is valuable when an image has changed and the new behavior differs from
the previously learned behavior.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

Carbon Black Container User Guide

VMware by Broadcom 98

3 Locate the policy that is attached to the scope and click the arrow icon at the end of the
row.

4 Click Reset.

Results

The scope baseline and the policy learning period are reset.

Egress Groups

Egress groups organize the presentation of egress traffic from your cluster on the network map.
You define egress groups for your clusters based on domains and IP addresses.

There are two default egress groups: public and private. Public egress contains the traffic that
goes outside of your network. Private egress comprises the egress traffic that uses a private
address space of IP addresses.

Note If a destination classifies for two or more egress groups, the traffic appears under the
most specific egress group.

Create an Egress Group

To define an egress group, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only
theContainers security feature, click Inventory > Network.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Network.

2 Click the Egress Groups tab and then click Add Group.

3 Enter the Name and Description for the group.

4 Define the Destination subnet and domains for the group. Configure the destination as a set
of rules with logical AND operator. The possible options to configure are the following.

a DNS domain name — exact match of the domain name

b DNS domain name and subdomains — all domain names containing the subdomain suffix

c IP range — classless inter-domain routing (CIDR) using subnet masks or IPv6 notation

Example:

Carbon Black Container User Guide

VMware by Broadcom 99

5 Click Save.

Edit or Delete an Egress Group

To edit or delete an egress group, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Network.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Network.

2 Click the Egress Groups tab.

3 Select the egress group to edit or delete.

n To edit the egress group, click the Edit icon. Update the group configuration and
click Save.

n To delete the egress group, click the trashcan icon ; then click Delete to confirm.

Carbon Black Container User Guide

VMware by Broadcom 100

Kubernetes Policies

Kubernetes policies in Carbon Black Cloud group security rules into policies to help harden the
Kubernetes environment.

Carbon Black Container Kubernetes policies are defined by the type of environment they protect
— runtime or hardening. Each Kubernetes policy binds to a particular Kubernetes scope, and
each scope is assigned to a single policy. A runtime policy and a hardening policy can share a
common scope. This architecture helps track the root of a policy violation.

Note When Kubernetes policies are referenced without specifying type, the reference is to both
types of policy.

Kubernetes Runtime Policies

Kubernetes runtime policies are groups of rules that monitor behavior and changes in the
Kubernetes environment related to egress traffic, threats, and anomalies. Kubernetes runtime
policies define the allowed behavior while the Kubernetes workloads are running.

See Runtime Policies Concepts and Terminology.

Create a Kubernetes Runtime Policy

To create a Kubernetes runtime policy, perform the following procedure.

Prerequisites

All prerequisites are optional.

n Read Runtime Policies Concepts and Terminology.

n Create a Kubernetes scope to link to the Kubernetes runtime policy. To create a Kubernetes
scope, see Kubernetes Scopes. If you do not create the scope in advance, you can do so
when you create the Kubernetes runtime policy.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

3 Click Add Policy.

4 On the Define Policy page, name the policy, select the scope from the list of available
scopes, and click Next.

Note If you have not configured a scope for use with this policy, click Add Scope. For
detailed instructions, see Add a Kubernetes Applications Scope to Kubernetes Resources.

Carbon Black Container User Guide

VMware by Broadcom 101

5 On the Add Rules page, select the rules to include in the policy.

You can add rules from the Basic, Moderate, and Strict templates. For more information
about these templates, see Kubernetes Policy Templates.

Important Carbon Black recommends that you start with the rules from the Basic template
to provide alerts for issues that have the highest severity.

For example, to add all rules from the Basic template:

a Select the Basic rule template on the left.

b Select the type of alerting action (Monitor or Alert) at the top right. Alert is the default
action.

c Click Add all 5 rules at the top right.

You can add individual rules from templates instead of adding rules in bulk. To do so, click the

arrow icon at the right of the rule.

After you have added rules, they display in the right pane of the page. From here, you can
remove individual rules or all rules.

Note You can create your own templates. See Create a Kubernetes Policy Template.

6 Click Next.

7 Review the policy settings. Set the learning period for the scope baseline. The default value
is 7 days. To see the progress of the scope baseline during the learning period, see View a
Kubernetes Scope Baseline for a Runtime Policy.

n Click Enable Policy to create and activate the policy.

Carbon Black Container User Guide

VMware by Broadcom 102

n Click Save as Draft to save the policy in a draft state. In this case, Carbon Black Cloud
saves the policy as Disabled. You can edit and enable the policy. See Edit a Kubernetes
Runtime Policy and Enable a Kubernetes Runtime Policy Draft.

What to do next

After you configure your Kubernetes runtime policies and after the learning period ends, the
behavioral baseline is established, and protection is active. All alerts that are caused by violations
of the runtime policies display on the Alerts page. See Triaging Kubernetes Alerts.

Edit a Kubernetes Runtime Policy

To edit a Kubernetes runtime policy, perform the following procedure.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

3 Select the policy to edit and click Edit policy in the Actions dropdown menu.

Note For more details about fields and rules in a runtime policy, see Kubernetes Runtime
Policies and Create a Kubernetes Runtime Policy.

a Change the scope to which the policy is linked and click Next.

b Add or remove rules as necessary and click Next.

c Adjust the learning period if necessary and click Save.

Enable a Kubernetes Runtime Policy Draft

You can enable a Kubernetes policy that is Disabled. Policies in a Disabled state have been
saved as a draft during creation.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

3 Select the policy that has a Disabled status and click Enable policy in the Actions dropdown
menu.

Results

The policy is immediately enabled.

View Kubernetes Runtime Policy Details

To view Kubernetes runtime policy details, perform the following procedure.

Carbon Black Container User Guide

VMware by Broadcom 103

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Runtime Policies tab.

3 Select the policy to view and click the arrow icon at the right of the rule.

4 You can view the following details:

n Status, Name, Scope, Last modified date, and Last modified by data. To view additional
scope details, click the Scope name.

n Rules status (if in learning mode)

Carbon Black Container User Guide

VMware by Broadcom 104

n Rules and their actions

n Scope baseline. Click View scope baseline to view and manage the baseline. See
Kubernetes Scope Baselines for Runtime Policies.

Kubernetes Hardening Policies

Kubernetes hardening policies combine predefined and user-defined policy rules that describe
the target configuration of Kubernetes resources. Kubernetes hardening policies assure the
security of the workloads configuration.

See Hardening Policies Terminology and Concepts.

Built-in Kubernetes Hardening Policies

When you install and set up your Kubernetes clusters, the system includes two ready-to-use
policies: Kube system and CBContainers dataplane.

The built-in policies are associated with built-in scopes. For more information about built-in
scopes, see Built-in Kubernetes Scopes.

The policies are available as a starting point for your configuration, and you can either edit or
delete them.

Tip You can duplicate the policies and modify the duplicates, thereby maintaining the original
policies for reference.

Built-in Policy Assigned Scope

Kube system Kubernetes System

CBContainers dataplane CBContainers dataplane

As long as the built-in policies are not modified, the Last modified by parameter is Carbon Black.
After you edit a policy, the Last modified by parameter changes.

The built-in policies include a subset of the built-in rules that are available for use in all
Kubernetes hardening policies.

Create a Kubernetes Hardening Policy

You can create Kubernetes hardening policies to enforce rules on your Kubernetes workloads
and container images.

Prerequisites

All prerequisites are optional.

n Read Hardening Policies Terminology and Concepts.

n Create a Kubernetes scope to link to the Kubernetes hardening policy. See Add a Kubernetes
Applications Scope to Kubernetes Resources. If you do not create the scope beforehand, you
can perform this task when you create the Kubernetes hardening policy.

Carbon Black Container User Guide

VMware by Broadcom 105

n To use a custom rule in a Kubernetes hardening policy, you must create the custom rule
before you create the hardening policy. See Custom Rules for Kubernetes Hardening Policies.

n Create custom rule templates to apply to new policies. See Create a Kubernetes Policy
Template.

n To apply the Enforce action to a rule, you must add an enforcement preset. See Enforcement
Presets.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 Click Add Policy.

4 On the Define Policy page:

a Name the policy.

b Select the scope from the list of available scopes or click Add Scope to configure a new
scope for use with this policy. See Add a Kubernetes Applications Scope to Kubernetes
Resources.

c To enable init containers, select the Include init containers text box.

Init containers are special containers that run before app containers in a Kubernetes pod.
Init containers can contain utilities or setup scripts that are not present in an application
image. Init containers often have more privileges, but a shorter life span. They may have
less impact on the overall security of your clusters.

d Ephemeral containers are selected by default.

Ephemeral containers are a special type of container that are useful for debugging within
pods. If you do not want ephemeral containers associated with this policy, deselect
the Include ephemeral containers check box. For more information about ephemeral
containers, see Ephemeral Containers.

e Click Next.

5 On the Add Rules page, select the rules to include in the policy.

n You can add all rules in a category or all rules from a template. All rules have the Alert
action by default. You can reset the action to Block or Enforce.

Important
n Enforcement rules do not operate on the kube-system namespace. In that namespace,

they act as blocking rules to prevent unexpected changes to critical system
resources.

n When required, include a defined or add an enforcement preset for the Enforce
action. The Enforcement preset drop-down menu displays if the rule requires user
input. See Enforcement Presets.

Carbon Black Container User Guide

VMware by Broadcom 106

https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/

n You can add individual rules from templates instead of adding rules in bulk. To do so, click

the arrow icon at the right of the rule.

n After you have added rules, they display in the right pane of the page. From there, you
can remove individual rules or all rules.

6 Click Next.

7 On the Review Violations page, review the possible violations for which notifications are sent
after you enable the policy.

Note You can create exceptions: click the Exceptions tab and then click Add Criteria. See
Create an Exception for a Kubernetes Hardening Policy Rule.

8 Toggle rules On or Off to define the rules that are currently active in the hardening policy.

9 Click Next.

10 On the Confirm Policy page, click Enable Policy.

n Click Enable Policy to create and activate the policy.

n Click Save as Draft to save the policy in a draft state. In this case, Carbon Black Cloud
saves the policy as Disabled. You can edit and enable the policy. See Edit a Kubernetes
Hardening Policy and Enable a Kubernetes Hardening Policy Draft.

What to do next

After you configure your Kubernetes hardening policies, you can observe rule violations on the
Workload Details pane of the Kubernetes Workloads page.

Enforcement Presets

Carbon Black lets you enforce actions on resources by creating rule enforcement presets. The
presets are pre-defined requirements that enforce specific fields and values by automatically
mutating resources that deviate from your organizational standards.

Carbon Black Container User Guide

VMware by Broadcom 107

As a DevSecOps, you can take control of your environment and reduce the number of violations
by enforcing rules instead of changing the configuration sets for existing resources to meet
company-introduced requirements.

Assign an Enforcement Preset to a Kubernetes Hardening Policy

To add an enforcement preset to a Kubernetes hardening policy, perform the following
procedure.

Note This procedure uses the Hardening Policies tab in the Enforce > K8s Policies page. You
can alternatively assign an enforcement preset to a rule on the Rules tab.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 Click a policy name to edit it or add a new policy. See Create a Kubernetes Custom Rule for
Container Images and Edit a Kubernetes Hardening Policy.

4 Click Next.

5 On the Add Rules page, locate a rule that has an Enforce option and select Enforce.

The Enforcement preset dropdown menu displays if the rule requires user input.

6 To assign a preset to the rule, do one of the following:

n Select an existing preset from the Enforcement preset dropdown menu.

n Click Add new preset to create a new preset.

Carbon Black Container User Guide

VMware by Broadcom 108

7 To create a new preset, click Add new preset.

a Enter a name for the preset and select the rule-specific fields from the Field dropdown
menu.

b Select an action from the Action dropdown menu and enter the enforce value.

To add more fields, click the plus + icon.

c Click Save.

The newly defined preset displays in the Enforcement preset dropdown menu.

8 To add the rule to the policy, click the caret icon to the right of the rule.

9 Click Next.

The modified rule appears in the Review Violations section and the rule enforcement preset
name is available in the Action column.

Carbon Black Container User Guide

VMware by Broadcom 109

When a new resource deploys, the system uses the predefined fields for enforcement.

10 Click Save.

Add or Delete an Enforcement Preset

To add or delete an enforcement preset, perform the following procedure.

Note You cannot delete a preset that is currently in use.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

3 Locate and double-click the rule that has enforcement presets.

4 In the Rule Details pane to the right, click the Enforcement Presets dropdown menu.

All available presets for this rule display.

5 Locate an enforcement preset, click the dropdown menu, and select an action.

n To update the value fields of the preset, select Edit and save your changes.

n To delete the preset, select Delete and confirm your action.

Note If the preset is used in a policy, the dropdown menu is deactivated.

Results

After editing the preset, existing workloads are not changed until they are re-deployed in the
environment.

Edit a Kubernetes Hardening Policy

To edit a Kubernetes hardening policy, perform the following procedure.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

Carbon Black Container User Guide

VMware by Broadcom 110

3 Click the policy name to edit it or click Edit policy in the Actions dropdown menu.

Note For more details about fields and rules in a runtime policy, see Kubernetes Runtime
Policies and Create a Kubernetes Runtime Policy.

a Change the scope to which the policy is linked and click Next.

b Add or remove rules as necessary and click Next.

Note To modify or add an enforcement preset, see Assign an Enforcement Preset to a
Kubernetes Hardening Policy.

c Confirm the policy details and click Save.

Note You can deactivate a rule if it triggers too many violations until the issues in your
environment are resolved. To exclude the rule from the policy, toggle the state of the rule
to Off.

Enable a Kubernetes Hardening Policy Draft

You can enable a Kubernetes policy that is Disabled. Policies in a Disabled state have been
saved as a draft during creation.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 Select the policy that has a Disabled status and click Enable policy in the Actions dropdown
menu.

Results

The policy is immediately enabled.

Save a Hardening Policy as a Template

To save the rules from a Kubernetes hardening policy for use in other policies, save a policy as a
template.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 For the selected policy, click Save as template in the Actions dropdown menu.

4 Enter name for the new template and click Save.

Carbon Black Container User Guide

VMware by Broadcom 111

Results

The newly created template is saved. The Templates tab is displayed on the Kubernetes Policies
page, with focus on the new template. See Kubernetes Policy Templates.

Duplicate a Hardening Policy

To use the same rules configuration of a Kubernetes hardening policy for another scope, you can
duplicate the policy.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 For the selected policy, click Duplicate in the Actions dropdown menu.

4 Enter name for the new template and click Save.

The wizard for creating a new policy populates with all the data from the original policy.

5 Modify the policy name and scope and save the duplicated policy.

Kubernetes Policy Rules

Rules are the primary components of Kubernetes policies. Rules are applied on Kubernetes
resources. You can use predefined rules or create custom ones.

n Built-in rules are based on the Kubernetes security configuration. They are divided into
categories and used in predefined templates.

n Custom rules are user-defined rules for Kubernetes workloads or container images. If you
update a custom rule, the change impacts all policies in which the rule is applied.

View Hardening Policy Rules

To view existing hardening policy rules, perform the following procedure.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

You can filter the list of rules by category.

Carbon Black Container User Guide

VMware by Broadcom 112

Add Hardening Rules to a Template

To add hardening policy rules to a template, perform the following procedure.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

3 Select the rules to add to the template.

4 Click Add to Template and select the template from the dropdown list.

5 Click Save.

Built-in Kubernetes Policy Rules

This topic lists the built-in rules for Kubernetes hardening policies in alphabetical order.

Carbon Black Container User Guide

VMware by Broadcom 113

Built-in Rules

Rule Name Description Category

Access to host
namespace

Access to the host's network, PID, and IPC namespace. Workload
Security

Access to host path Limits usage of host directory at the container. Volume

Access to persistent
data

Limits use of non-core volume types to those defined through
PersistentVolumes.

Volume

Additional capabilities Capabilities turn the binary “root/non-root” dichotomy into a fine-grained
access control system. This rule helps to enforce the capabilities being
added when running containers.

Workload
Security

Allow privilege
escalation

AllowPrivilegeEscalation controls whether a process can gain more
privileges than its parent process.

Workload
Security

Allow privileged
container

Runs container in privileged mode. Processes in privileged containers are
essentially equivalent to root on the host.

Workload
Security

AppArmor AppArmor (Application Armor) is a Linux security module that protects an
operating system and its applications from security threats. To use it, a
system administrator associates an AppArmor security profile with each
program.

Workload
Security

Cluster role binding Binds a user or service account to a role in a cluster and all its namespaces. RBAC

Company banned list Prevents deployment of images with company banned files. Container
Images

CPU limits Distributes CPU across workloads and ensures that a single container
cannot bring the system down by exhausting resources.

Quota

Critical vulnerabilities Prevents deployment of images with critical vulnerabilities in OS packages
or libraries.

Container
Images

Deny ephemeral
containers

Ephemeral containers help debug workloads with limited tool sets or
access by running an ad-hoc container within the pod context. While
powerful for an admin, ephemeral containers can be maliciously used by
adversaries to gain privileged access to workloads.

Command

Deny latest tag Identifies container images with a "latest" tag. Latest tags make it difficult
to track image versions and roll back properly.

Container
Images

Deny new resources Identify the deployment of new resources in the associated scope. Workload
Security

Deploy new CRD Extends Kubernetes resources by customizing a particular Kubernetes
installation. Once a custom resource is installed, users can create and
access its objects using kubectl.

CRD

Enforce not root Containers should be prevented from running with a root primary or
supplementary GID. Specifying the user/group ID for the container or
setting runAsNonRoot to true should indicate the container must run as
a non-root user or group.

Workload
Security

Exec to container Kubectl exec allows a user to execute a command in a container. Attackers
with permissions could run ‘kubectl exec’ to execute malicious code and
compromise resources within a cluster.

Command

Host port Allows workloads to be exposed by a host port. Network

Carbon Black Container User Guide

VMware by Broadcom 114

Rule Name Description Category

Image not scanned Identifies workloads with images that have not been scanned within 20
minutes of deployment.

Container
Images

Ingress controller Allows workloads to be exposed by an ingress controller. Network

Known malware Prevents deployment of images with known malware. Container
Images

Load balancer Allows workloads to be exposed by a load balancer. Network

Memory limits Distributes memory across workloads and ensures that a single container
cannot bring the system down by exhausting resources.

Quota

Node port Allows workloads to be exposed by a node port. Network

Port forward Kubectl port-forward allows you to bypass the cluster's perimeter security
and interact directly with internal Kubernetes cluster processes from your
localhost.

Command

Require hash tags Identify container images with named tags. Hash tags are required to
prevent issues with overwritten named tags

Container
Images

Role binding Binds a user or service account to a role in a namespace. RBAC

SecComp profile The seccomp options to be used by this container. If seccomp options
are provided at both the pod and container level, the container options
override the pod options.

Workload
Security

Secret found Prevents deployment of images that have secrets. Container
Images

SeLinux The SELinux context to be applied to the container. If unspecified,
the container runtime will allocate a random SELinux context for each
container.

Workload
Security

Sysctl Sysctls holds a list of namespaced sysctls used for the pod. Pods with
unsupported sysctls (by the container runtime) might fail to launch.

Workload
Security

Unmasked proc
mount

ProcMount indicates the type of proc mount to use for containers. By
default, it uses the container runtime defaults for read-only paths and
masked paths.

Workload
Security

Vulnerabilities with
fixes

Prevents deployment of images with medium, high, or critical
vulnerabilities–if fixes are available.

Container
Images

Writable file system Allows files to be written to the system, which makes it easier for threats to
be introduced and persist in your environment.

Workload
Security

Built-in Rules Specification

Note Due to the width of the Built-in Rules Specification table, it can only be viewed in HTML.
See Built-in Rules Specification in Built-in Policy Rules.

Custom Rules for Kubernetes Hardening Policies

Use the concepts and procedures in this section to create custom rules for Kubernetes hardening
policies.

Carbon Black Container User Guide

VMware by Broadcom 115

https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-D74A9EB1-83FE-4B80-A0AD-F3BF7DB5D85A.html

Each rule type is described in a separate topic. The common characteristics are as follows:

Characteristic Description

Name The name of the rule must be unique

Description Short description of the rule. This information displays in several places in the Carbon Black Cloud
console:

n Enforce > K8s Policies > Rules

n Enforce > K8s Policies > Templates

n Enforce > K8s Policies > Hardening Policies > Add Policy > Review Violations

Basic JSONPath Rules
The JSONPath option for adding custom rules is a guided configuration of a Manageable Access-
Control Policy Language (MAPL) rule that has limited capabilities. MAPL is a language for rules
that controls access in a microservices environment. Use this kind of rule to define the desired
state of your Kubernetes resources.

JSONPath custom rules can contain multiple conditions that are linked with logical operands.
Conditions include a Kubernetes resource — Resource Kind — that is connected to an expected
valued.

You can configure a basic JSONPath custom rule using the guided configuration in the console.

Characteristic Description

Resource kind Type of Kubernetes resource to which the rule refers.

JSONPath The JSONPath selector is used to get to a certain setting and specify its value in the configuration file
of a Kubernetes resource.

Note You must start the JSONPath selector string with the $ sign.

A custom rule can have multiple JSONPath criteria that use AND logic to match individual resources.

JSONPath is a way to represent an element or a selection of elements in a JSON or YAML file. A
jsonpath expression is built as a tree:

{.element} {.child} {.grand-child}
A jsonpath expression starts with a dot (.) to start matching from the root of the configuration,
followed by the name of a child, then grandchild, and so on.

Use [:] to match any element inside an array, such as any label name inside $.metadata.labels. For

example: $*.metadata.labels[:].name*.

Carbon Black Container User Guide

VMware by Broadcom 116

https://goessner.net/articles/JsonPath/index.html#e2

Characteristic Description

Method The method to evaluate the resource value:

n EQ - equal

n NE- not equal

n RE - match a regular expression

n NRE - does not match a regular expression

n LT - lower than

n LE - lower or equal than

n GT - greater than

n GE - greater or equal than

n EX - exists

n NEX - does not exist

n IN - in list of values [val1,val2,val3,...]

n NIN - not in list of values [val1,val2,val3,...]

Value The threshold value to match the resource value. If the value is not matched, the rule is violated.

Example: Example JSON

{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "creationTimestamp": "2021-04-09T00:52:44Z",
 "managedFields": [
 {
 "apiVersion": "v1",
 "fieldsType": "FieldsV1",
 "fieldsV1": {
 "f:status": {
 "f:phase": {}
 }
 }, ...

Example: Example Custom Rule 1

Do not allow workloads that have more than 5 replicas:

$.spec.replicas GT 5

Example: Example Custom Rule 2

Requires presence of CPU quotas for all containers:

$.spec.template.spec.containers[:].resources.limits.cpu NEX

Example: Example Custom Rules 3 and 4

Requires each workload to have a label named serviceOwner and a value that looks like an email

address (2 rules):

n $.spec.template.metadata.label.serviceOwner NEX

Carbon Black Container User Guide

VMware by Broadcom 117

n $.spec.template.metadata.label.serviceOwner NRE .+@example\.com

Create a JSONPath Kubernetes Custom Rule
The Carbon Black Cloud console provides some optional steps for creating and validating
JSONPath criteria.

To build a correct JSONPath selector, you can enter a sample resource configuration or import
the configuration of an already deployed resource in your Kubernetes environment. Based on
this configuration, the Carbon Black Cloud console displays a preview of the selector's result; you
can then build the selector.

Prerequisites

See Basic JSONPath Rules.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

3 Click Add Rule.

4 Define the rule.

a Enter a unique custom rule name and a description.

b Select JSONPath, methods, values as the rule criteria.

c Click Next.

5 Optionally enter the Resource kind from the dropdown menu. The default value is Any.

6 Click Import to open an existing resource file from your Kubernetes environment. You can
also copy/paste your content into the Sample resource JSON text box.

The resource file or copied content displays in the Sample resource JSON text box to the left
of the page.

7 In JSONPath, enter a string (that you can copy from the displayed JSON file), and click the

 icon to the right of the text box.

8 Enter a Method from the dropdown menu and type in a Value.

Carbon Black Container User Guide

VMware by Broadcom 118

9 Preview your selection in the Results for JSONPath area on the right of the page. If the string
you entered is not returning any resources, a message displays to that effect. If you see a
number, for example, [1], there is one matching resource.

10 Click Next.

11 On the Confirm Rule page, review the summary of the rule criteria and the matching
Kubernetes resources and click Save.

The custom rule is added to the Rules page. To review its details, click the arrow icon at
the right of the rule.

Create a Kubernetes Custom Rule for Container Images
You can create a custom rule for container images that is based on built-in rules.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

3 Click Add Rule.

Carbon Black Container User Guide

VMware by Broadcom 119

4 Define the rule.

a Enter a unique custom rule name and a description.

b Select Container image criteria as the rule criteria.

c Click Next.

5 Configure the rule. Options are:

Image Criteria Vulnerability Severity or Registry Domains

Critical vulnerabilities

Note The vulnerabilities with Critical severity are part
of the default Critical vulnerabilities built-in rule. If you
select Critical (9.0 - 10.0), you duplicate the existing
built-in rule.

n Critical (9.0 - 10.0)

n High and above (7.0 - 10.0)

n Medium and above (4.0 - 10.0)

n Low and above (0.1 - 10.0)

Vulnerabilities with fixes n Critical (9.0 - 10.0)

n High and above (7.0 - 10.0)

n Medium and above (4.0 - 10.0)

n Low and above (0.1 - 10.0)

Allowed registries Specify registries you want to allow as source. For
example, docker.io.

6 Click Next.

7 On the Confirm Rule page, review the summary of the rule criteria and the matching
Kubernetes resources and click Save.

Carbon Black Container User Guide

VMware by Broadcom 120

Create an Advanced Kubernetes Custom Rule
To create an advanced Kubernetes custom rule, use a YAML file to describe MAPL rules for
Kubernetes resources and applicable conditions.

MAPL rules in YAML format give more specificity in how you can configure a custom rule for a
Kubernetes environment.

Prerequisites

To successfully configure an advanced custom rule, you must have the YAML file written in MAPL
language that is applicable for your Kubernetes environment.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

3 Click Add Rule.

4 Define the rule.

a Enter a unique custom rule name and a description.

b Select Advanced - MAPL access control rule (YAML format) as the rule criteria.

c Click Next.

5 Enter YAML code in the text area or click Import to import a YAML file.

Note
n The YAML file must include one-attribute conditions, using logical operands, which are

tested against the Kubernetes configuration data.

n The attribute is a JSONpath.

n The method is one of the following (the value is a fixed value):

EQ - equal EX - exists GE - greater than or equal to

GT - greater than IN - in list of values
[val1,val2,val3,...]

LE - lower than or equal to

LT - lower than NE- not equal NEX - not exists

NIN - not in list of values
[val1,val2,val3,...]

NRE - does not match a regular
expression

RE - matches a regular expression

For example:

Carbon Black Container User Guide

VMware by Broadcom 121

See MAPL (Manageable Access-control Policy Language) (external link).

6 Click Next.

7 On the Confirm Rule page, review the summary of the rule criteria and the matching
Kubernetes resources and click Save.

Edit or Delete a Kubernetes Custom Rule
To edit or delete a Kubernetes custom rule, perform the following procedure.

Note
n You can edit custom rules after creating them, even if you have included them in Kubernetes

hardening policies.

n You cannot delete custom rules if they are part of Kubernetes hardening policies.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Rules tab.

3 Locate the rule to edit and click the arrow icon at the end of the row.

4 In the dropdown menu in the right panel, select an action.

n To add a rule to template, click Add to templates, select one or more custom templates,
and click Save.

n To update the rule, click Edit. The Edit Custom Rule window shows. You cannot change
the rule type. Click Next and follow the configuration wizard steps to modify the rule.
Click Save.

n To duplicate a rule, click Duplicate. Rename and customize the new rule.

Carbon Black Container User Guide

VMware by Broadcom 122

https://github.com/octarinesec/MAPL/#readme

n To delete a rule, click Delete and then click OK to confirm the deletion.

Create an Exception for a Kubernetes Hardening Policy Rule

You can review violations when you create or update a Kubernetes hardening policy and you
can reduce the number of violations by creating rule exceptions. Creating exceptions omits
workloads from the rule action.

Important Carbon Black recommends that you only create exceptions to exclude specific
workloads that exhibit known behaviors. Remediate as many violations as possible before
considering an exception.

Tip You can deactivate a rule if it triggers too many violations until the issues in your
environment are resolved. To exclude the rule from the policy, toggle the state of the rule to
Off.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 Click the policy name to edit it.

4 Click Next two times to go to the Review Violations page.

5 Select a rule that has an Alert or Enforce action and click the Exceptions tab.

6 Click Add Criteria.

7 Define the exception criteria in the Resource name dropdown menu. Your options are:

n Resource name: Set to is equal to, starts with, or ends with. Type in the name criteria.

You can specify either a particular workload or criteria that matches multiple workloads —
for example, workloads that have the same prefix or the same suffix.

n Workload label: Define the key value pair.

n Username: is equal to the entered name.

The exception criteria match current and future workloads that are part of the policy scope.

Carbon Black Container User Guide

VMware by Broadcom 123

8 Click Add.

Note You can remove an exception by clicking the trash can icon next to the
exception criteria.

Results

The total count of violations decreases. The workloads that are excluded from the rules violations
show in the Exceptions tab.

Mutate Hardening Rules

You can enforce the values of selected resource properties to temporarily remediate an issue.
When you set an Enforce action for a rule, the mutated value is considered and a violation alert
displays. If a workload still violates the rule after remediation, it is blocked from deployment.

Note In this context, mutation means that a policy changes Kubernetes resources based on new
criteria. For example, allowing privilege escalation.

The rules for which you can apply an Enforce action are described in the following table.

Rules
Category

Rules that
Allow
Enforce
Action Resource Field

Enforced
Value

Workload
Security

Access to
host
namespace

spec.hostNetwork

spec.hostPID

spec.hostIPC

False

Allow
privilege
escalation

spec.containers[*].securityContext.allowPrivilegeEscalation False

Allow
privilege
container

spec.containers[*].securityContext.privileged False

Writable
file system

spec.containers[*].securityContext.readOnlyRootFilesystem True

Carbon Black Container User Guide

VMware by Broadcom 124

Rules
Category

Rules that
Allow
Enforce
Action Resource Field

Enforced
Value

SecComp
profile

metadata.annotations['container.seccomp.security.alpha.kubernetes.io/
*']

metadata.annotations['seccomp.security.alpha.kubernetes.io/pod*']

spec.securityContext.seccompProfile.type

spec.containers[*].securityContext.seccompProfile

User-
Defined

Sysctl spec.securityContext.sysctls User-
Defined

Additional
capabilities

spec.containers[*].securityContext.capabilities.add User-
Defined

AppArmor metadata.annotations['container.apparmor.security.beta.kubernetes.io/
*']

User-
Defined

Unmasked
proc
mount

spec.containers[*].securityContext.procMount Empty
(removes
the field)

Enforce
not root

spec.securityContext.runAsNonRoot

spec.containers[*].securityContext.runAsNonRoot

spec.containers[*].securityContext.runAsGroup

spec.containers[*].securityContext.runAsUser

securityContext.runAsGroup

securityContext.runAsUser

User-
Defined
user and
group ID

Quota CPU limits spec.containers[*].resources.limits.cpu

spec.containers[*].resources.requests.cpu

User-
Defined

Memory
limits

spec.containers[*].resources.limits.memory

spec.containers[*].resources.requests.memory

User-
Defined

Carbon Black Container User Guide

VMware by Broadcom 125

Mutate a Rule Outcome

During the policy creation process, you can set the Enforce action for a rule. This action sets
a predefined value to the rule outcome. You must select a preset for enforcement rules that
require a user-defined value.

Prerequisites

For a list of rules that allow the Enforce action, see Mutate Hardening Rules.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 Click the policy name to edit or click Edit in the Actions dropdown menu.

4 Click Next.

5 On the Add Rules page, review the Added Rules in the right pane, or scroll to the Workload
Security category in the middle pane.

6 For each of the rules listed in the table in Mutate Hardening Rules, select the Enforce action.

7 Click Next two times and click Save.

Results

You have set the property values of the rule to comply with the security standards. No violations
will be triggered.

Kubernetes Policy Templates

Kubernetes policy templates are groups of predefined or custom rules that do not include
exceptions.

Predefined rule sets cover the following categories:

Category Purpose

Command Limits Kubernetes command-line commands

Container Images Identifies vulnerabilities in container images

CRD Limits usage of custom resources

Custom All custom rules that exist in the system

Network Ensures that service types are not exposed outside of
Kubernetes

Quota Establishes CPU and memory quotas

RBAC Limits new roles with extensive privileges

Carbon Black Container User Guide

VMware by Broadcom 126

Category Purpose

Volume Limits access to data

Workload Security Rules based on the Kubernetes security configuration.
See Pod Security Standards (external link).

Create a Kubernetes Policy Template

You can group specific rules in custom templates to reuse them across Kubernetes hardening
policies. Custom templates are a combination of built-in rules and custom rules. They are
applicable when you create a policy.

Note You configure the Alert or Block action in the policy, but not in the template. Thus, you
can have the same rule in different policies with different applied actions.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Templates tab.

3 Click Add Template.

4 Enter the name for the custom template and click Save.

The template is created and visible in the list of Custom Templates.

5 To add rules to the newly created custom template, click Options > Edit template.

6 Select the rules to add to the custom template.

7 Click Save.

Save a Hardening Policy as a Template

To save the rules from a Kubernetes hardening policy for use in other policies, save a policy as a
template.

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 For the selected policy, click Save as template in the Actions dropdown menu.

4 Enter name for the new template and click Save.

Results

The newly created template is saved. The Templates tab is displayed on the Kubernetes Policies
page, with focus on the new template. See Kubernetes Policy Templates.

Carbon Black Container User Guide

VMware by Broadcom 127

https://kubernetes.io/docs/concepts/security/pod-security-standards/

Subscribe to Alert Notifications

To receive notifications when alerts occur, perform the following procedure.

Prerequisites

Email addresses must be associated with registered Carbon Black Cloud console users.

Procedure

1 On the left navigation pane, click Settings > Notifications.

2 Click Add Notification and populate the required text fields.

a Select the Alert crosses a threshold notification type from the dropdown menu. This
setting notifies you if an alert crosses a specified severity threshold.

b Specify the alert severity threshold.

Carbon Black Container User Guide

VMware by Broadcom 128

c Select the alert types for which to receive notifications. The default value is All types.

d Select all policies or specific ones. All policies is the default value.

If you select more than one policy, the Carbon Black Cloud console sends a separate
notification for each policy.

e Select how to get the notifications:

Select either the Email option or the API Key. For either option, select one or more users.

f Optional. To reduce the number of emails that you receive, select the check box for Send
only 1 email notification for each threat type per day.

3 Click Save.

Results

The notification displays in the Notifications List. When an alert surfaces that matches your
notification criteria, you will receive a notification email. For example:

Setting up API Access

You can use the Carbon Black Open API platform to integrate with a variety of security products,
including SIEMs, ticket tracking systems, and your own custom scripts.

To find integration partners, see https://www.vmware.com/products/vmware-marketplace.html
and visit the Carbon Black Developer Network at https://developer.carbonblack.com/.

Tip You can also use the Access Profiles and Grants API to manage (create/read/update/delete)
roles for a principal in your organization.

Carbon Black Container User Guide

VMware by Broadcom 129

https://www.vmware.com/products/vmware-marketplace.html
https://developer.carbonblack.com/
https://developer.carbonblack.com/reference/carbon-black-cloud/cb-threathunter/latest/watchlist-api/

Create and Manage an API Key

You add and manage services integrations into your environment by setting their access level
through creating and managing your API keys.

When creating your API Keys, you must take into account the following limitations and
implications:

n All current APIs use a key of type Custom. Create an Access Level that supports least

privilege.

n Types SIEM and API keys are deprecated and scheduled for deactivation on 31 October 2024

and 31 July 2024, respectively.

n For API migration instructions, see API and Schema Migration (external link).

n We recommend that new integrations use one of the following mechanisms to receive all
available data:

n Data Forwarders: to stream alerts or events to your own S3 bucket where you can
control retention.

n Alerts v7 API (external link): to search up to 180 days of historical alert data.

n It is important that you safeguard the API ID and the API Secret key.

Prerequisites

To use the Custom access permissions for your integrations, you must create an access level.
See Setting Access Levels.

Procedure

1 On the left navigation pane, click Settings > API Access.

2 For Custom API keys, create an access level. See Setting Access Levels.

For more details, see the Carbon Black Cloud API Access (external link).

Carbon Black Container User Guide

VMware by Broadcom 130

https://developer.carbonblack.com/reference/carbon-black-cloud/api-migration/
https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/
https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/

3 Click Add API Key.

a Enter a unique name and description.

b Select the appropriate Access Level Type. The default type is Custom.

c Set the Custom Access Level.

d Optional: Add authorized IP addresses.

You can restrict the use of an API key to a specific set of IP addresses for security
reasons.

4 To apply the changes, click Save.

Results

A pop-up window displays the new API credentials:

Carbon Black Container User Guide

VMware by Broadcom 131

What to do next

Purpose Action

To update the name, description, or the IP addresses for a
specific API key: Click the Edit icon in the Actions column.

To view the credentials for a specific API key: Click the Actions dropdown menu and select API
Credentials.

To generate new credentials: Click the Actions dropdown menu, select API credentials,
and click Generate new API Secret Key.

To see all notifications sent to the API key within a
timeframe:

Click the Actions dropdown menu , click Notification
History, and then select the timeframe.

To delete the API key: Click the Actions dropdown menu and select Delete.

Note You cannot use this procedure to delete API Keys
that are associated with a notification rule. See Delete API
Key with Attached Notification Rule.

Delete API Key with Attached Notification Rule

To delete an API key with attached notification rules, you must delete all of the associated
notifications rules first and then the API key.

Procedure

1 On the left navigation pane, click Settings > API Access.

2 Locate the API ID of the API key to delete.

3 On the left navigation pane, click Settings > Notifications.

4 Find the API ID in the Subscribers column and click the Delete icon to delete all
associated notification rules.

Carbon Black Container User Guide

VMware by Broadcom 132

5 On the left navigation pane, click Settings > API Access and click Delete in the Actions
column to delete the API key.

Setting Access Levels

Access levels offer the ability to create custom levels of access for your integrations with other
security products. Create custom access levels with specific, granular permissions to apply to an
API key.

Create Access Levels

To access the data in your Carbon Black Cloud integrations through APIs, you must determine
the appropriate access level for your API.

Procedure

1 On the left navigation pane, click Settings > API Access.

2 Click the Access Levels tab and click Add Access Level.

3 Enter a name and description for your access level.

4 Select the boxes of the permission functions to include in your access level.

5 Click Save.

Results

You can view the newly created access level listed in the Access Levels tab.

What to do next

To modify or delete an access level, use the Actions column. If you export an access level, you
download a JSON file holding the role definition details.

Apply Access Level to an API Key

You apply a custom access level to an API key when granting access to your integrations.

Note Select a user role from the Custom Access Level drop-down menu for testing purposes
only. User roles can contain unversioned APIs. For information on all currently supported and
versioned APIs, see Carbon Black Developer Network.

Prerequisites

Create a custom access level. See Create Access Levels.

Procedure

1 On the left navigation pane, click Settings > API Access.

2 Click the API Keys tab and click Add API Key.

3 Enter a name for your API Key and a short description.

Carbon Black Container User Guide

VMware by Broadcom 133

https://developer.carbonblack.com/reference/cb-defense/

4 Select Custom from the Access Level Type dropdown menu.

5 Select either a user role or an access level that is available in your organization from the
Custom Access Level dropdown menu.

6 To apply the changes, select Save.

Results

The newly created API key displays in the API Keys tab.

What to do next

Use the Actions column to edit the API key, or the dropdown menu to view the associated API
key credentials and notifications history.

Carbon Black Container User Guide

VMware by Broadcom 134

Scanning Images 4
You can scan container images for known vulnerabilities and you can observe the results from a
system cluster scan or a manual scan in the Carbon Black Cloud console.

Note
n Image scanning is only applicable for images that are based on Linux operating system

packages.

n Image scanning requires CLI Client. See Setting up CLI Client for Image Scanning.

Container images are scanned under the following circumstances:

n Scan is triggered by the Continuous Integration / Continuous Deployment (CI/CD) pipeline or
a manual scan. See Manually Rescan a Container Image.

n Kubernetes sensor version update. See Upgrading or Downgrading the Kubernetes Sensor.

n Initial cluster scan of container images at cluster setup. See Adding Clusters and Installing
Kubernetes Sensors.

n New vulnerabilities in the Carbon Black Cloud vulnerabilities database.

n Updated file reputation.

Cluster image scanning provides the following benefits:

n Visibility for the container images in your environment.

n Information for found vulnerabilities and available fixes.

n Capability to create exceptions at image level from inside the image scan report.

n Kubernetes policies prevent container images that have substantial vulnerabilities from
progressing through the CI/CD pipeline. See Kubernetes Policies.

n File reputation scanning of all deployed images and malware detection. See Detect Malware
in a Container Image.

To have the latest information on file reputations, you must refresh the file reputation data
that comes in from third-party feed providers, and you must consistently rescan your clusters
for newly deployed images.

Read the following topics next:

VMware by Broadcom 135

n Manually Rescan a Container Image

Manually Rescan a Container Image

You can run the scan for a container image in the Carbon Black Cloud console or in a terminal
using the CLI Client. The following procedure performs an image scan in the Carbon Black Cloud
console.

If a container image is built, pushed to a public repository, and deployed to a Kubernetes cluster
between two scans, it will be displayed in the list with a Pending status. If the image scan has
a status Error, you can run the scan for that image in the Carbon Black Cloud console or in a
terminal, using the CLI Client.

Note You can run the manual scan for images in public repositories only. If the image belongs to
a private repository, the Rescan button is inactive.

Prerequisites

Download and configure CLI Client. See Setting up CLI Client for Image Scanning. To use the CLI
Client in a terminal, see Container Security API and Integrations (external link).

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 If they are contracted, expand the filter options by clicking the carets >> in the top left. For
the Scan Status filter, select Error.

The table displays only images that have an Error status.

4 Either use the search field to find a particular image or choose a container image from the list.

Click the arrow icon at the right of the selected image.

Carbon Black Container User Guide

VMware by Broadcom 136

https://developer.carbonblack.com/reference/carbon-black-cloud/container/

5 Click Rescan in the Image Details panel.

Carbon Black Container User Guide

VMware by Broadcom 137

Monitoring and Analyzing
Containers 5
After you create roles and users, set up your Kubernetes clusters, and configure scopes and
policies, you are ready to use the system to monitor and analyze behaviors.

Read the following topics next:

n Severity Scoring

n Monitoring Container Images

n Managing and Viewing File Reputations in Container Images

n Detecting and Preventing Secrets

n Monitoring Kubernetes Workloads

n Analyzing Network Activity

Severity Scoring

This section describes two types of security scoring methods that are used in Containers.

Kubernetes Risk Severity Scoring

Risk Severity is a metric that represents the risk of security vulnerability for your Kubernetes
workload. It uses the Kubernetes Common Configuration Scoring System (KCCSS), which is a
framework for rating security risks associated with misconfigurations.

Note The risk rating for Kubernetes workloads is different than the risk severity for container
image vulnerabilities because they are evaluated using different scales. For more information
about container image risk scores, see Risk Evaluation for Container Images.

Kubernetes Common Configuration Scoring System

KCCSS scores both risks and remediations as separate rules. It calculates risk for every runtime
setting of a workload and then the total risk of the workload. For each workload, a risk score
ranging from 0 (no risk) to 10 (high risk) is assigned.

VMware by Broadcom 138

Measures of Risk

KCCSS shows the potential impact of risky configuration settings in three areas:

Confidentiality

Exposure of Personal Identifiable Information (PII), potential access to keys, and so on.

Integrity

Unwanted changes to the container, host, or cluster; for example, being able to change the
runtime behavior, launch new processes, new pods, and so on.

Availability

Exhaustion of resources, denial of service, and so on.

KCCSS accounts for whether the risk is limited to the container or impacts the entire cluster, the
ease of exploiting the risk, and whether an attack requires local access. It combines all security
risks associated with a workload together with the required remediations to attribute an overall
risk score to the workload.

Risk Score

The scoring system takes into account over 30 security settings for Kubernetes configurations.
The exact rules and scoring formula are part of KCCSS. Based on the score, workloads are
filtered by the level of severity: high, medium, or low. The higher the risk score, the higher is the
severity. Every workload is assigned a risk score of between 0 (low risk) and 10 (high risk).

Score Range Severity

0 - 3 Low

4 - 6 Medium

7 - 10 High

Risk Evaluation for Container Images

The Common Vulnerability Scoring System (CVSS) is a standard measurement system for
describing characteristics and severity of software vulnerabilities. Every vulnerability is assigned
a risk score of between 0.0 (no risk) and 10.0 (maximum risk).

Note The risk rating for container image vulnerabilities is different than the risk severity
for workloads because they are evaluated using different scales. For more information about
Kubernetes workloads risk scores, see Kubernetes Risk Severity Scoring.

CVSS consists of three metric groups:

n Base: characteristics of a vulnerability that are constant over time and across user
environments.

Carbon Black Container User Guide

VMware by Broadcom 139

n Temporal: characteristics of a vulnerability that might change over time but does not span
user environments.

n Environmental: characteristics of a vulnerability that is relevant and unique to a particular
user environment.

For more details, refer to the Common Vulnerability Scoring System SIG (external link).

The risk score range and severity are defined as follows.

Rating Score

None 0.0

Low 0.1 to 3.9

Medium 4.0 to 6.9

High 7.0 to 8.9

Critical 9.0 to 10.0

Note The vulnerabilities for which the threat vectors are not yet known are grouped under
Unknown severity. This means that the system was able to identify a given artifact as vulnerable,
but there might not be CVE attached to the vulnerability. Unknown severity can range between
0-10.

Color Indicators for Image Vulnerabilities Scoring

The Common Vulnerability Scoring System (CVSS) is used for estimating the severity of
discovered vulnerabilities. In addition to the risk scores that are defined in CVSS, the Unknown
category displays in the Carbon Black Cloud console.

For more information about CVSS, see Risk Evaluation for Container Images.

On various Carbon Black Cloud console pages, color bars for the different vulnerabilities risk
scores are displayed. The color bars correspond to the following ratings:

Color Name Color Bar Rating (refer to CVSS)

Green None

Yellow Low

Orange Medium

Red High

Dark Red Critical

Gray Unknown

Carbon Black Container User Guide

VMware by Broadcom 140

https://www.first.org/cvss/

The numbers inside the color bars represent number of vulnerabilities and number of fixes.

Note The risk rating for container image vulnerabilities is different than the risk severity
for workloads because they are evaluated using different scales. For more information about
Kubernetes workloads risk scores, see Kubernetes Risk Severity Scoring.

Monitoring Container Images

A container is a lightweight, portable executable image. Container images exist in either the build
or deploy stage in your continuous integration environment.

This section discusses how to monitor and analyze data on container images.

View Container Images - Overview

This topic provides an overview of the container image data you can retrieve on the Container
Images page in the Carbon Black Cloud console.

Procedure

u On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

The Container Images page includes the following tabs and information.

n The Overview tab shows the following details:

n A summary of the latest scan status

n New vulnerabilities

n Vulnerabilities with fixes

Carbon Black Container User Guide

VMware by Broadcom 141

n Malware and Secret Detection

n Bar or line chart showing all vulnerabilities that were discovered within a specified
timeframe

n The Deployed Images tab shows an inventory of container images running on your
Kubernetes clusters together with vulnerability scan results and available fixes for each
image.

On the Deployed Images tab, you can:

n View detailed container data — click the Image Tag.

n View information about the workload — click the link icon in the Workloads column.

n View details about an image — click the arrow icon to the right of the row. See
View Deployed Container Image Details.

n The Image Repos tab shows an inventory of the repositories where your container
images reside. All the images in a repository are displayed, including old tags that are
no longer in use, images that have not yet been deployed, and images that are deployed.

n The Scan Log tab shows searchable scan activity. For example:

Carbon Black Container User Guide

VMware by Broadcom 142

You can click the Image Tag for an entry to view scan result details. See View Image Scan
Report - Scan Log Details.

View Deployed Container Image Details

To view deployed image scan and vulnerabilities details, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

Carbon Black Container User Guide

VMware by Broadcom 143

3 To expand the Image Details panel, click the arrow icon at the right of the row.

n To rescan the image, click Rescan. See Manually Rescan a Container Image.

n To view more information about a Kubernetes workload, click the link icon next to
Workloads in the Kubernetes section.

n To access information about a file that contains secrets, click the filename in the Secrets
section.

n To view a short description of the CVE code and the package where the vulnerability is

identified, click the carat icon to the left of the CVE.

Carbon Black Container User Guide

VMware by Broadcom 144

n To view all vulnerabilities of this container, click the link icon in the Vulnerabilities
section. See Investigate Container Image Vulnerabilities.

n To view additional details about the deployed image, click View more in the Image
Details section. The Overview tab of the Image Scan Report page opens.

4 You can view additional information about secrets by:

n Clicking the Labels icon. For example:

Carbon Black Container User Guide

VMware by Broadcom 145

n Clicking the Environmental variables icon. For example:

View Container Image Repositories

To view image repositories, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Images Repos tab.

A list of repositories and their registries is displayed. You can sort the list and you can search
for a particular repository or registry.

Carbon Black Container User Guide

VMware by Broadcom 146

3 To view more information about a repository, click its name in the Repository column.

a To open the Container Images page for an image, click its name in the Image Tag column.

b To view details about an image, click the arrow icon at the right of the row. See View
Deployed Container Image Details.

View Image Scan Report - Scan Log Details

To view the scan logs of all image scans in the Carbon Black Cloud console, perform the following
procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Scan Log tab.

The Source column defines the reason that the scan was initiated:

Source Column Description

CLI Scan triggered by the CI/CD pipeline or a manual scan.

Cluster rescan Kubernetes sensor version update.

Cluster scan Initial cluster scan of container images located in the Kubernetes cluster that
you set up in the Carbon Black Cloud console.

Feed update Image scanning based on new vulnerabilities in the Carbon Black Cloud
vulnerabilities database.

Reputation Update Updated file reputation.

Carbon Black Container User Guide

VMware by Broadcom 147

3 For more image details, click the Image Tag icon.

This action opens the Overview tab on the Image Scan Report.

See View Container Image Scan Report.

View Container Image Scan Report

You can review the scan report for a container image and plan your next actions. The Image
Scan Report presents complete information on all aspects of the image scan.

Prerequisites

See Chapter 4 Scanning Images.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report. The
Overview tab is opened by default.

Carbon Black Container User Guide

VMware by Broadcom 148

View a Container Image Scan Report - Overview

You can review the scan report for a container image and plan your next actions. The Image
Scan Report presents complete information on all aspects of the image scan.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report. The
Overview tab is opened by default.

The General Information section lists basic container image data:

Image name Registry Repository

Image layers; the layers number
links to the Layers tab of this report.
See View a Container Image Scan
Report - Layers.

Manifest digest Repo digests

Operating system Operating system version Architecture

Size Last scan date and time User

Labels Environmental variables Command

Volumes Entry point Exposed port

Carbon Black Container User Guide

VMware by Broadcom 149

The Violations section displays a count of violations for Kubernetes hardening policy rules,
including rules for container images. The number of violations is equal to the number of CVE
codes.

The Vulnerability Summary section displays a circular chart of discovered vulnerabilities.
Hover over any section (low, medium, high, critical, or unknown) to view the number of
vulnerabilities in that category. (These numbers are also displayed below the chart.)

The Malware and Secret Detection section displays files that have a suspicious or malevolent
reputation, and files that contain secrets.

View a Container Image Scan Report - Layers

To view layers in a container image scan report, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column.

4 Click the Layers tab.

Carbon Black Container User Guide

VMware by Broadcom 150

5 You can search for a specific layer. You can also limit the layer table results to only
those layers that have vulnerabilities: deselect the check box for Show layers with no
vulnerabilities.

The Layers tab shows the following information:

n Layer name

n A secret or malware tag, if applicable

n Number of packages in the layer

n Vulnerabilities and applicable fixes

n Layer size

Carbon Black Container User Guide

VMware by Broadcom 151

6 For more details about a layer, click the arrow icon at the right of the layer row.

In the Layer Details panel, you can:

n Copy the command that was used to create the image layer from the Layer field.

n View the layer's unique identifier in the Layer digest field.

n View malware.

Carbon Black Container User Guide

VMware by Broadcom 152

n Show all vulnerabilities in this layer. Click Show all in the Vulnerabilities section to
be directed to the Vulnerabilities tab. See View a Container Image Scan Report -
Vulnerabilities.

n View a vulnerability summary. Click the carat icon at the left of the CVE.

n View secrets.

n Show all packages in this layer. Click Show all in the Packages section to be directed to
the Packages tab. See View a Container Image Scan Report - Packages.

View a Container Image Scan Report - Packages

To view packages in a container image scan report, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report.

Carbon Black Container User Guide

VMware by Broadcom 153

4 Click the Packages tab.

The Packages tab shows the following information:

n Package and library

n Package type

n Package version

You can filter the list of displayed packages by Type and by Layer. For example,
when selecting the 74fbdd4b6d6206a97532d4156e0 layer, the search result contains only the

packages that belong to that layer.

View a Container Image Scan Report - Suspicious Files

To view suspicious files in a container image scan report, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report.

Carbon Black Container User Guide

VMware by Broadcom 154

4 Click the Suspicious Files tab.

You can sort the list of displayed files by File, Reputation, Type, and Exception.

Carbon Black Container User Guide

VMware by Broadcom 155

5 For more information about a file, click the arrow icon at the right of the row.

View a Container Image Scan Report - Vulnerabilities

To view vulnerabilities in a container image scan report, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

Carbon Black Container User Guide

VMware by Broadcom 156

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report.

4 Click the Vulnerabilities tab.

You can filter the list of vulnerabilities by severity, available fixes, type, and layer. For
example, you can view only those vulnerabilities that have a high severity, available fixes,
and of type deb:

5 Perform your search or view all vulnerabilities. The resulting list of vulnerabilities contains the
following fields:

n Severity level. Container images can have multiple vulnerabilities, each with a different
risk score. Based on this score, vulnerabilities are filtered on the level of severity - critical,
high, medium, and low. See Severity Scoring.

Carbon Black Container User Guide

VMware by Broadcom 157

n Vulnerability. You can click any CVE tag to see more details. See View a Container Image
Scan Report - Vulnerability Details.

n Type. You can filter vulnerabilities based on the package type. For example, the dpkg
packages on Debian Linux type.

n Package / Library

n Version

n Available fix. If a fix is available, you can view the package and version.

n Exception toggle. See Allow an Exception for a Vulnerability.

n Note. Click Add Note to include a note about this vulnerability; for example, if you create
an exclusion, it is useful to note the reason for the exclusion.

6 To export the vulnerability data into a CSV file, click Export.

View a Container Image Scan Report - Vulnerability Details

You can review details about a container vulnerability in the Container Details panel.

Prerequisites

Perform steps 1 through 5 in View a Container Image Scan Report - Vulnerabilities.

Procedure

1 Select the vulnerability for which to view details. Click the CVE tag in the Vulnerability
column.

Carbon Black Container User Guide

VMware by Broadcom 158

The Overview tab opens by default. On this tab, you can view the following details:

n CVE identifier

n Description

n CVSS Vector

n CVSS Score

To view the CVE in greater detail on an external web site, click National Vulnerability
Database. For example:

2 To view the images that are affected by this vulnerability, click the Affected Images tab.

The following information is displayed:

Carbon Black Container User Guide

VMware by Broadcom 159

3 To view the Kubernetes workloads that are affected by this vulnerability, click the Affected
K8s Workloads tab.

On the Affected K8s Workloads tab, you can:

n Click the workload name to open the Kubernetes Workloads panel. See View a
Kubernetes Workload - Overview.

n Click Scopes to view summary information about the associated scope.

4 If the vulnerability has any exceptions, they are listed on the Exceptions tab. See Allow an
Exception for a Vulnerability.

View a Container Image Scan Report - K8s Workloads

To view Kubernetes workloads in a container image scan report, perform the following
procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report.

4 Click the K8s Workloads tab.

The Kubernetes workloads associated with the container image are listed and include the
following fields:

n Workload Name. Click the name to open the Workload Details panel. See Monitoring
Kubernetes Workloads.

n Resource Kind such as DaemonSet

n Scope

n Cluster that contains the workload

n Namespace

Carbon Black Container User Guide

VMware by Broadcom 160

n Hardening Policy. Click the name of the policy to view its summary.

View a Container Image Scan Report - Scan Log

To view a scan log in a container image scan report, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report.

4 Click the Scan Log tab.

5 Optionally specify the timeframe for the list of scan logs. The default timeframe is All
available. The resulting list of vulnerabilities contains the following fields:

n Scan Time

n Source — what triggered the scan

n Workloads

n New Vulnerabilities

Investigate Container Image Vulnerabilities

The container image is matched against known vulnerabilities in the National Vulnerability
Database. Based on your configured Kubernetes policy, you can view security vulnerabilities,
discover the availability of a fix for that vulnerability, and schedule patches or updates.

Carbon Black Container User Guide

VMware by Broadcom 161

Procedure

1 On the left navigation pane, click Harden > Vulnerabilities.

2 Click the Container Images tab.

The default severity filter is Critical. To view all vulnerabilities regardless of their severity, click
All.

By default, you can see vulnerabilities for all the containers images that are scanned using the
CLI Client. To filter vulnerabilities that are only running in the Kubernetes environment, select
the Running in Kubernetes checkbox on the top right.

3 Double-click a row or click the arrow icon at the right of the row to view the Vulnerability
Details panel.

In this panel, you can:

n Click the link icon next to Images to open the Affected Images tab of the Vulnerability
panel.

n Click the link icon next to Workloads to open the Affected K8s Workloads tab of the
Vulnerability panel.

n Click the link icon next to the Risk category to open the Overview tab on the
Vulnerability panel.

Carbon Black Container User Guide

VMware by Broadcom 162

n Click the vulnerability reference tag or National Vulnerability Database to open a relevant
external web page.

See View a Container Image Scan Report - Vulnerability Details.

Allow an Exception for a Vulnerability

You can create an exception for a vulnerability for an image. The exception will be skipped by
Kubernetes hardening policies.

An image can have many vulnerabilities. If you consider some of them to not incur risk for your
environment, you can enable an exception for those vulnerabilities for a specific image only.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Click the name of an image in the Image Tag column to open the Image Scan Report.

4 Click the Vulnerabilities tab.

5 In the Exception column, toggle ON to enable the exception. Any Kubernetes hardening policy

capturing this vulnerability for this image will not restrict further action.

Carbon Black Container User Guide

VMware by Broadcom 163

6 Click Add Note (or if there is already a note for this vulnerability, click the Edit
icon to edit it). Enter the reason for the exclusion and click Save. This is an optional but
recommended step.

Results

The rule validation for a Kubernetes hardening policy with container image rules skips the images
that have exceptions.

Managing and Viewing File Reputations in Container Images

A reputation is the level of trust or distrust that is given to an application. Reputations are based
on multiple sources of known good and known bad reputations. There are various ways to view
file reputations in your system.

If a file is suspicious or matches known malware, the file reputation service labels it as such in the
Carbon Black Cloud console. Any binaries that are added to the company banned or company
approved list through the SHA-256 hash are also detected and labeled as either malicious or
trusted.

Important Carbon Black is replacing the terms blacklist and whitelist with banned list and
approved list. Notice will be provided in advance of terminology updates to APIs, TTPs, and
Reputations.

Note
n The Carbon Black Cloud console indicates images that have company banned or critical files

with a malware badge .

The malware badge displays only when the Carbon Black Cloud considers the image file to
be partially or fully malicious. For example, a malware badge displays for a malware hash that
has been added to the company banned list. A malware badge does not display for a hash
that has been blocked through a company policy.

n MD5 is not supported. The hash must be in SHA-256 format.

Detect Malware in a Container Image

Cluster image scanning helps you identify and classify discovered software by comparing it to an
extensive database of known files.

As a security admin, you can use image scanning file reputation functionality to analyze all Linux
ELF files of a specific container image against a list of known malicious files.

As a DevSecOps, you can view the suspicious/malicious file reputation for all deployed container
images in your cluster.

Carbon Black Container User Guide

VMware by Broadcom 164

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

The Container Images page contains a general summary of what is currently happening in
your Kubernetes environment. The File Reputations widget summarizes all reputations for
deployed container images in a bar chart.

This visualization reveals the number of images running with suspicious files and their
distribution by reputation.

n Company Approved — indicates the file is added to the Company Approved List through
the SHA-256 hash.

n Company Banned — indicates the file is added to the Company Banned List through the
SHA-256 hash.

n Critical — indicates the file is a known malware. Cloud analytics and threat intelligence
feeds determine the known malware reputation.

n Suspicious — indicates the image file is a suspected malware. Cloud analytics and
threat intelligence feeds determine the suspect malware reputation. The analysis cannot
determine if the file is good or a malware.

2 To further investigate the level of trust or distrust that the file reputation assigns to the files in
container images:

n Click the Deployed Images tab and then click the arrow icon to the right of the image
row.

The File Reputations section in the Image Details panel lists all interesting files in the
container image and their assigned reputations.

Carbon Black Container User Guide

VMware by Broadcom 165

n In the Deployed Images tab, click the link under the Image Tag column for that container
image.

The File Reputations widget displays in the Overview tab of the Container Image page. It
shows the distribution of suspicious and malicious files for that image in a pie chart.

n In the Container Image page, click the Layers tab and double-click a layer row.

In the File Reputations section, you can view the filename and reputation.

Override a File Reputation in a Container Image

If there are suspicious or critical (malicious) files running in your container images, you can
override their Cloud reputation by adding them either to the company approved list or to the
company banned list of reputations.

Note The malware badge displays only when the Carbon Black Cloud considers the
image file to be partially or fully malicious.

You can also use the Enforce > Reputation page to remove or add a suspicious file's hash to the
list of company approved or company banned reputations.

MD5 is not supported. The hash must be in SHA-256 format.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 Locate a container image and click its link under the Image Tag column.

4 On the Container Image page, click the Suspicious files tab.

Only the suspicious or malicious files within the deployed container image display.

Carbon Black Container User Guide

VMware by Broadcom 166

5 Double-click a file of interest.

If the file has a suspicious or critical reputation, you can add it to the list of company
approved or banned hashes.

Note When the file runs within a container image and an endpoint, when you override the
file reputation, it applies to the endpoint as well.

a From the Action drop-down menu, select either Add Hash to approved list or Add Hash
to banned list.

b Optional: Enter a comment.

c Click Add.

It takes up to ten minutes for the feed to update.

If the file is already assigned with the Company Approved or the Company Banned
reputation, you have the option to remove it from that list.

a From the Action dropdown menu, select Remove hash from list.

b Optional: Enter a comment.

c Click Remove.

For more information about the suspicious file using its hash, use the VirusTotal service.

a In the File Details panel, select Find in VirusTotal from the Action dropdown menu.

You are redirected to the web site of the service.

b Observe the basic results and use them to improve your system.

Manage File Reputations for Container Images

There are multiple ways to manage file reputations. This topic describes how to perform
reputation management tasks by using the Enforce > Reputation page.

Procedure

u On the left navigation pane, click Enforce > Reputation.

On this page, you can:

n Filter the list by All, Hash, IT Tools, or Certs.

n Upload a CSV file with a list of hashes, certificates, or IT tools. Click the Upload button at
the top right of the page and follow the onscreen instructions.

Carbon Black Container User Guide

VMware by Broadcom 167

n Add a reputation to a file. See Adding File Reputations in Container Images.

n Export the reputation data to a CSV file. Click the Export button at the top right of the
page.

n Remove a hash. Select the check box to the left of the hash and click Remove.

n Investigate the occurrences of a file. Click the hash value in the Value column.

Adding File Reputations in Container Images

This topic provides conceptual information about adding reputations to the approved list or
banned list.

Using Wildcards in Paths

When adding a path, you can use wildcards to target certain files or directories.

Note Be as specific as possible when approving certs because using wildcards can lead to
incidentally approving malicious software that appears to be signed by a trusted certificate
authority.

Wildcard Description Example

* Matches 0 or more consecutive
characters up to a single subdirectory
level.

C:\program files*\custom application*.exe
Executable files in C:\program files\custom application\
or C:\program files(x86)\custom application\.

** Matches a partial path across all
subdirectory levels and is recursive.

C:\Python27\Lib\site-packages**
Files in that directory and all its subdirectories.

? Matches 0 or 1 character in that position. C:\Program Files\Microsoft Visual Studio 1?.0**
Files in the MS Visual Studio version 1 or versions 10-19.

Approving Files

Adding to the approved list approves the presence and actions of specified applications. Adding
to the approved list is global in its effects and applies to all policies attached to a particular
version of an application.

Use adding to the approved list for use cases such as: software deployment tools, executable
installers, IDEs, compilers, script editors, and so on.

Carbon Black recommends that you routinely update your approved applications to account for
new versions.

Benefits of Approving IT Tools and Certificates

n Minimized performance impact when IT tools drop large amounts of new code that are
immediately executed.

n For IT tools, there will be no interference with new code execution. The dropped code is not
blocked.

Carbon Black Container User Guide

VMware by Broadcom 168

n For certs, there will be no blocking on initial execution of files that are signed with specific
certificates.

n Adding to the approved list is not absolute to prevent exploitation. Deferred analysis of new
code occurs in the background as it executes.

Reputations that Supersede Approved IT Tools and Certificates

n Company Black

n Company White

n Known Malware

n PUP Malware

n Suspect Malware

n Trusted White

Banning Files

Adding to the banned list prohibits the presence and actions of specified applications. Adding to
the banned list is global in its effects.

Add a File to the Banned List

To add a file to the Banned List, perform the following procedure.

Note MD5 is not supported. The hash must be in SHA-256 format.

Procedure

1 On the left navigation pane, click Enforce > Reputation.

2 Click the Add button at the top right of the page.

3 Click Hash for the type.

4 Click Banned List.

Carbon Black Container User Guide

VMware by Broadcom 169

5 Enter she SHA-256 hash of the file, the file name, and a note explaining why you are banning
the file.

6 Click Save.

Add a Reputation to the Approved List

To add a file, trusted IT tools, or certificates to the Approved List, perform the following
procedure.

Procedure

1 On the left navigation pane, click Enforce > Reputation.

2 Click the Add button at the top right of the page.

3 Click Approved List.

Carbon Black Container User Guide

VMware by Broadcom 170

4 Select the Type.

Type Fields to Enter Notes

Hash n SHA-256 hash

n Name of the file

n Note (optional)

MD5 is not supported. The hash
must be in SHA-256 format.

Any hash added to the
approved list is assigned to
the COMPANY_WHITE_LIST with the

highest priority in the reputation
hierarchy. No other reputation takes
precedence over this status.

IT Tools n Path of trusted IT tool

n Select the check box next to
Include all child processes to
enable this option.

n Note (optional)

Tip You can use wildcards in the
path. See Using Wildcards in Paths.

If selected, files dropped by child
processes of the newly defined
trusted IT tool also receive the
initial trust. This option is useful
when IT tools create a child process
to which to delegate work, and
the child process represents a
generic executable such as a copy
command.

Applications added to the approved
list are assigned the LOCAL_WHITE
reputation and are not stalled for
static analysis or cloud reputation
when they are executed.

Certs n Certificate (Signed by)

n Name of the Certificate
Authority

n Note (optional)

To use this functionality, a file must
be signed and verified by a valid
certificate.

Certs added to the approved
list are assigned the LOCAL_WHITE
reputation and are not stalled for
static analysis or cloud reputation
when they are executed.

5 Click Save.

Expiration of Approved Certificates

All certificates have a validity range that defines the time range for when the certificate is
considered valid.

Background

Most digitally signed files carry both content signatures that verify that the content has not been
tampered with, and a separate counter signature to verify when the file was signed.

Carbon Black Container User Guide

VMware by Broadcom 171

For these files, even if the code signing certificate has expired, files signed within the validity
range of the code signing certificate remains valid in terms of expiration because the counter
signature timestamp allows verification that the file was signed during the certificate's valid
lifetime.

Rare files that lack a counter signature/timestamp are no longer be considered valid after the
certificate expires because you can no longer determine whether the file was signed during the
certificate's validity period.

Certificate Revocation is a separate concept from expiration. Revocation is used to state that a
previously valid certificate is no longer trustworthy, and is not trusted even if the validity time
range has not expired.

How Expired Certs are Handled in Carbon Black Cloud

Carbon Black Cloud examines the file signature validity only when Carbon Black Cloud first
discovers the hash. This methodology can lead to the following edge cases:

n If a non-timestamped hash was found on Machine 1 when its certificate was valid, and found
by Machine 2 when it was expired, machine 1 continues to treat the file as eligible for
certificate approval. Machine 2 does not treat the file as eligible, because Machine 2 first
detected it as invalid/expired; Machine 1 initially saw it as valid.

Note This does not apply for timestamped files because you can verify if the file was signed
during the validity range.

n If a hash was discovered before a certificate was known to be revoked, it could be approved
and remains approved on that machine even if the certificate is found to be revoked later.
New hashes signed by the revoked certificate that appear after sensor has realized the
certificate is revoked are not approved by certificate approvals but can still be approved by
other reputations.

In summary, certificate expiration and revocation can affect the reputation of new hashes that
appear on a system but do not affect the hash reputation of existing hashes that are already
on the asset. Machines can enforce certificate approval rules differently based on whether the
certificate is expired, whether there is a counter signature, when the sensor determined that the
certificate was revoked, or if different sensors have different trusted root certificate stores.

Detecting and Preventing Secrets

A secret is an object that contains a small amount of sensitive data such as a password, a
token, or a key. It is often used to authenticate users or services to control access to sensitive
information or external services. Secret management is an essential tool to help control and
enforce the distribution of secrets across workloads. This section describes how to detect and
prevent statically defined secrets that are deployed in Kubernetes environments.

Carbon Black Container User Guide

VMware by Broadcom 172

Carbon Black Cloud secret management can help you detect and prevent static secrets that are
injected into the workload. You can use a policy rule to detect and prevent secrets.

Note Secrets detection is disabled by default. You can enable this feature when you create or
edit a cluster. See Add a Cluster and Install the Kubernetes Sensor.

Data regarding secrets is available on the following pages in the Carbon Black Cloud console:

n View Container Images - Overview

n View Deployed Container Image Details

n Detect Secrets in Containers on the Scan Log Page

n View a Container Image Scan Report - Suspicious Files

n View a Container Image Scan Report - Layers

n Prevent Secrets in Containers

Roles

The following roles can use Carbon Black Cloud secret management.

DevOps and DevSecOps

n Detect and prevent statically defined secrets in containers at the image build phase.

n Inspect image information to help detect potential security or compliance violations.

n Inspect workload information to help detect potential security compliance violations.

n Deny workloads that use images with static secrets through policy to help enforce security
and compliance.

n Explore and mitigate static secret policy violations.

n Include secrets in the existing explore, prioritize, and mitigate risk process.

n Detect files that contain statically defined secrets.

n Scan all deployed images for secrets.

DevOps and Developer

n Inspect image information to help detect potential security compliance violations.

n Explore and mitigate static secret policy violations.

Secret Detection

Secrets are detected in the following ways:

Carbon Black Container User Guide

VMware by Broadcom 173

Data Types

The following table provides an example of the captured secret data types.

Table 5-1. Example of Captured Secrets Data

Source Category Secret Type Secret Key Secret Value

/.aws FILE Keyword Detector aws_access_key_id JKSN...3E3Q

RUN /bin/sh -c
eco hi --password
"pddj...f837" #
buildkit

COMMAND Keyword Detector password pdhj...f837

azure LABEL Azure Storage
Account access key

azure abcd...uv==

GITHUB_KEY ENVIRONMENT_VAR
IABLE

Github authentication GITHUB_KEY ghu_...UKpr

Secret Types

The following table lists the types of secrets that Carbon Black Cloud detects.

Azure Storage Account access key JFrog Artifactory credentials AWS Client ID

AWS Secret Key Amazon Marketplace Web Service
(MWS) Key

HTTP Bearer Authentication

Carbon Black Container User Guide

VMware by Broadcom 174

URL with password Github authentication JSON Web Token

Mailchimp API Key npm auth token Private Key

Sendgrid API key Slack token Square authentication

Stripe API key Twilio authentication

Detect Secrets in Containers on the Scan Log Page

To detect secrets in Containers on the Scan Log page in the Image Scan Report, perform the
following procedure.

Note This topic is offered as an example of one way to view secrets in Containers. For a list of
alternate pages in the Carbon Black Cloud console that present secrets data, see Detecting and
Preventing Secrets.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Scan Log tab.

3 For any image that contains secrets, click the Image Tag icon.

This action opens the Overview tab on the Image Scan Report.

Carbon Black Container User Guide

VMware by Broadcom 175

4 You can view additional information about secrets by:

n Clicking the Labels icon. For example:

n Clicking the Environmental variables icon. For example:

Prevent Secrets in Containers

Set a policy rule to prevent secrets in Containers.

Carbon Black Container User Guide

VMware by Broadcom 176

Procedure

1 On the left navigation pane, click Enforce > K8s Policies.

2 Click the Hardening Policies tab.

3 Select or create a policy to which to add the secret prevention rule.

To edit an existing policy, see Edit a Kubernetes Hardening Policy. To create a new policy,
see Create a Kubernetes Hardening Policy.

4 On the Available rules page, scroll down to the Secret found rule in the Container Images
category. This rule prevents the deployment of images that have secrets. Select Alert or

Block and click the arrow icon at the right of the rule.

The rule is added to the policy.

5 Click Next.

6 Click Next.

7 If you are creating a new policy, click Enable Policy or Save as Draft. If you are editing an
existing policy, click Save.

Monitoring Kubernetes Workloads

You can review the risk exposure and related information for your Kubernetes workloads in the
Carbon Black Cloud console.

To remediate risks and fix issues at a workload level in your Kubernetes environment, you can
view the following:

n Risk severity details

n Details on applied Kubernetes hardening and runtime policies

n Policy violations for the Kubernetes hardening policy

n Alerts for the Kubernetes runtime policy

n Network connections to ingress or egress traffic

Note
n For more information on the risk severity, see Kubernetes Risk Severity Scoring.

n For more information on investigating the alerts related to a workload, see Triaging
Kubernetes Alerts.

Carbon Black Container User Guide

VMware by Broadcom 177

View Kubernetes Workloads

To view and assess Kubernetes workloads, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

The Kubernetes Workloads page opens.

Note If you modified a workload by enforcing values through the rule enforcement presets,
that workload is shown with a mutated label next to its name. See Mutate Hardening Rules

and Mutate a Rule Outcome.

The remaining steps describe your options on this page.

2 View a specific workload page — click the workload name. See View a Kubernetes Workload
- Overview.

3 View the runtime policy that is assigned to a workload — click the runtime policy name. The
Policy Details panel displays a summary of the runtime policy.

Carbon Black Container User Guide

VMware by Broadcom 178

4 View the hardening policy that is assigned to a workload — click the hardening policy name.
The Policy Details panel displays a summary of the hardening policy.

5 View the workload details — click the arrow icon at the right of the row.

From the Workload Details panel, you can view:

n A specific workload page — click View more in the Workload Details section. See View a
Kubernetes Workload - Overview.

Carbon Black Container User Guide

VMware by Broadcom 179

n The workload's configuration risks in order of severity — click the number next to
Configuration risks in the Risk section.

n The workload's vulnerabilities in order of severity — click the number next to
Vulnerabilities in the Risk section.

n The runtime policy, the hardening policy, and associated scopes with either policy by
clicking the name of the policy or scope in the Runtime and Hardening sections.

n The number of alerts that have arisen from policy violations. To view all such alerts, click
View all in the Runtime section. The Alerts page opens and lists the relevant alerts. See
Triaging Kubernetes Alerts.

n A list of hardening policy violations and enforcements.

n Network connections within the past 2 hours.

n Container images in this workload. You can click any hyperlinked container image name to
view information about that container image.

Carbon Black Container User Guide

VMware by Broadcom 180

View a Kubernetes Workload - Overview

To see an overview of a Kubernetes workload, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

2 Click the name of the Workload in the second column.

n The Overview tab shows the following details:

n General information — name, kind, cluster, and namespace.

n Runtime — The assigned runtime policy and scope. You can click the policy or scope
name for additional details. This section lists any alerts associated with the runtime policy,
and shows network connections within the last 2 hours.

n Hardening — The assigned hardening policy and scope. You can click the policy or scope
name for additional details.

n Risk — This section shows the overall risk severity, configuration risks, and vulnerabilities.
To go to the Risk tab for more information, click the number next to Configuration risks
or Vulnerabilities. See View a Kubernetes Workload - Risks.

n Container Images — Lists the container images in the workload. You can click any
hyperlinked container name to go to its Container Image page. See View Container
Images - Overview.

n Pods — Lists the pod name, status, node, and last started date for the associated pods.

View a Kubernetes Workload - Runtime Policy

For information about the runtime policy for a Kubernetes workload, perform the following
procedure.

Carbon Black Container User Guide

VMware by Broadcom 181

See also Kubernetes Runtime Policies.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

2 Click the hyperlinked name of the Workload in the second column.

3 Click the Runtime tab.

The Runtime tab shows the following runtime policy information for this workload.

n Name

n Scope

n Alerts

n Workload Baseline

The Workload Baseline section includes the following data:

n Remote connection

n Protocol

n Port

n Connection type

n Who added the baseline behavior

n Actions

To reset the baseline, click Reset. See Kubernetes Scope Baselines for Runtime Policies.

View a Kubernetes Workload - Hardening Policy

For information about the hardening policy for a Kubernetes workload, perform the following
procedure.

See also Kubernetes Hardening Policies.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

Carbon Black Container User Guide

VMware by Broadcom 182

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

2 Click the hyperlinked name of the Workload in the second column.

3 Click the Hardening tab.

The Hardening tab shows the following hardening policy information for this workload.

n Name

n Scope

n Rule Compliance

In the Rule Compliance section, you can select specific categories to view or you can
view all categories.

View a Kubernetes Workload - Network Connections

For network connection information related to a Kubernetes workload, perform the following
procedure.

See also Analyzing Network Activity and Egress Groups.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

2 Click the hyperlinked name of the Workload in the second column.

3 Click the Network Connections tab.

You can filter the list of connections by:

n Egress

n Ingress

n Internal

Carbon Black Container User Guide

VMware by Broadcom 183

n Outbound cross-namespace

n Inbound cross-namespace

You can also specify whether to show Public destinations, Private destinations, or both.

The following fields display for the selected connections:

n Destination

n Egress Group

n Port

n Protocol

View a Kubernetes Workload - Risks

To see the risks associated with a Kubernetes workload, perform the following procedure.

See also Kubernetes Risk Severity Scoring and Investigate Container Image Vulnerabilities.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

2 Click the hyperlinked name of the Workload in the second column.

3 Click the Risk tab.

The following sections provide risk assessments and related information.

n Risk Severity — Summarizes the risk severity associated with this workload.

n Workload Configuration — Lists the workload configuration risks in order of risk severity.

Carbon Black Container User Guide

VMware by Broadcom 184

n Vulnerabilities — Lists the following details for vulnerabilities of this workload. You can
search for a particular package or CVE to display in the table, and you can filter the list by
severity.

n Risk severity

n Vulnerability name. Click on this hyperlink to view an overview of the vulnerability. In
this panel, you can view all affected images, workloads, and exceptions.

n Type

n Package or library

n Fix, if available

n Affected images. Click any image name to open the related Container Image page.

View a Kubernetes Workload - Behavior Models

To see the behavior models for a Kubernetes workload, perform the following procedure.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Workloads.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Workloads.

2 Click the hyperlinked name of the Workload in the second column.

Carbon Black Container User Guide

VMware by Broadcom 185

3 Click Behavior Models.

The Behavior Models page contains four tabs: Network model, Process activity model, File
access model, and Resource usage model.

n Network model

This tab displays the process name, traffic direction, remote host, remote group, port,
and protocol of the transmission.

n Process activity model

This tab displays a process tree. For example:

n File access model

Displays process, file, and access type.

n Resource usage model

Kubernetes Virtual Workloads

Kubernetes provides workload resources that manage a set of pods on your behalf. These
resources configure controllers for running the right number and kind of pods to match a desired
cluster state.

Some applications do not use the workload controllers in Kubernetes. They overload the Carbon
Black Cloud backend and intensify your user experience with a high volume of objects that are
otherwise hidden. To manage the desired state of your cluster, Carbon Black Cloud automatically
applies a virtual workload logic by grouping pods that are not spawned through the native
Kubernetes controllers. A virtual workload behaves like any native workload. If there are virtual
workloads in your system, they are labeled as such in the Inventory > Kubernetes > Workloads

page by the icon in their names.

Analyzing Network Activity

You can view and analyze the network activity of your Kubernetes clusters in the Carbon
Black Cloud console. The network map is a graphic representation of all the namespaces and
workloads running in the cluster with their network traffic.

Carbon Black Container User Guide

VMware by Broadcom 186

The Network map helps identify alerts that originated from workload and network activity
— these are highlighted on the map for easy usage. The network map displays a high-level
overview of the cluster ingress and egress connections as well as narrowing the focus to
individual namespaces and workloads. The map lets you select a namespace, workload, or
ingress or egress group, and shows traffic and related details including network security
violations of a workload. The map focuses on data collected over the last 24 hours.

Note You can view tabular network data for a workload as well as seeing this activity in the
network map. See View a Kubernetes Workload - Network Connections.

In the Carbon Black Cloud console, you can see how Kubernetes workloads are exposed to the
Internet through either NodePort services or Load Balancer services ingress types. For more
information about ingress, see Ingress (external link).

Egress traffic is the traffic going from the cluster to another network (public or private). In the
Carbon Black Cloud console, you can see the outgoing traffic from the cluster to egress groups.
The default egress groups are public and private. You can create additional egress groups. See
Egress Groups.

Investigate Cluster Activity in the Network Map

You can observe your Kubernetes clusters activity by using the interactive network map. You can
select the map's focus — ingress channel, egress group, namespace, or workload.

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Network.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Network.

2 On the Overview tab, select the cluster to monitor and click View map.

n The Network Map tab becomes active and loads the data for the selected cluster.

Carbon Black Container User Guide

VMware by Broadcom 187

https://kubernetes.io/docs/concepts/services-networking/ingress/

n The left side of the map shows the ingress resources that are available for the cluster —
NodePort services, Load Balancer services, or all. To filter the map for a specific ingress
resource, select the graphical element on the left of the page for that ingress resource;
for example, LoadBalancers.

n The right side of the map shows the egress groups. To filter the map for a specific egress
group, select the graphical element for that group; for example, Public.

n To review the cluster details, the Carbon Black Cloud Kubernetes sensor version, and the
resources allocated to the cluster, see the cluster details panel to the right of the map.

Carbon Black Container User Guide

VMware by Broadcom 188

n Connection colors in the map indicate whether the connection is ingress, egress,
between namespaces, or internal for a namespace. If you click a connection, its network
connection details display to the right of the map. A color legend at the bottom left of the
map defines each color connection.

3 To change the default map settings, click Manage map settings and toggle settings ON or

OFF.

For example, to better analyze your Kubernetes network exposure to risk, you can filter out
the encrypted connections and observe only the unencrypted ones.

n Toggle View encrypted connections OFF.

n Toggle View unencrypted connections ON.

Only the unencrypted connections stay visible on the network map for easier investigation.

Visualizing Namespace Data on the Network Map

The Kubernetes interactive network map displays the namespaces in the cluster and their
network connections.

Note System namespaces are filtered out by default. To see system namespaces in the map,
click Manage map settings and toggle View system namespaces ON.

System namespaces are:

n kube-system

n kube-public

n cbcontainers-dataplane

n vmware-system

n gatekeeper-system

n tanzu-system

n tanzu-observability-saas

To view more information for a namespace, click its visual representation in the map.

The map graphically displays the selected namespace and shows all the workloads running in it.
For example:

Carbon Black Container User Guide

VMware by Broadcom 189

Within the map, you can:

n Click anywhere in the white space of the map to view cluster details and resources.

n Click any line to view alerted network connections.

n Click a workload to view its data. See Visualizing Workloads Data on the Network Map.

Namespace Details Panel

The panel to the right of the map provides detailed information on all egress and ingress
connections for that namespace, inbound and outbound cross namespace traffic going to and
from the namespace, and internal traffic inside the namespace.

Carbon Black Container User Guide

VMware by Broadcom 190

Alerts are indicated in the following ways:

n In the Runtime section.

n In the bar chart in the Network Connections section. Alert results from the last 24 hours are
included.

n In the map, an alerted connection is indicated by an exclamation mark icon on its edge.

The panel offers the following views:

n To view the associated runtime policy, click the hyperlinked policy name. Similarly, you can
view scope summary details by clicking the hyperlinked scope name.

n Clicking View all in the Runtime section of the panel opens the Alerts page, which shows the
network connection alerts for this namespace.

Carbon Black Container User Guide

VMware by Broadcom 191

n To view additional network data, click View all in the Network Connections section of the
panel:

In this panel, you can:

n View ingress, egress, inbound, outbound, and internal network connections.

n Search for specific network connections

n Filter table results. For example, in the Egress tab, you can filter results by Public,
Private, or Alerts only.

n Export the network connection data into a CSV file; for example:

Visualizing Workloads Data on the Network Map

The Kubernetes interactive network map displays workloads in the cluster.

Carbon Black Container User Guide

VMware by Broadcom 192

To view detailed information for a workload, click the respective visual element in the map. This
will be a workload element in a namespace.

Tip You can also select a workload by clicking its name in the Workload dropdown menu above
the map.

The map displays only the specified workload. The panel to the right of the map provides a
summary of the workload data.

Carbon Black Container User Guide

VMware by Broadcom 193

The panel offers the following views:

n To view all data for this workload, exit the network map and go to the specific workloads
summary page by clicking View more next to Workload details.

n Clicking View all in the Runtime section of the panel opens the Alerts page, which shows
alerts for this workload.

n Under Hardening, view the associated runtime policy summary by clicking the hyperlinked
policy name. Similarly, you can view scope summary details by clicking the hyperlinked scope
name.

Carbon Black Container User Guide

VMware by Broadcom 194

Investigating and Remediating
Container Security Issues 6
During your review of container images and vulnerabilities, you can remediate any discovered
container security issues. This section describes the steps you can take to identify and remediate
security issues.

Read the following topics next:

n Exploring Kubernetes Events (Hardening)

n Investigating Container Events on the Investigate Page

n Investigate Containers Events on the Process Analysis Page

n Triaging Kubernetes Alerts

n Identify Available Fixes and Patches

Exploring Kubernetes Events (Hardening)

Kubernetes events are reported each time a resource violates a policy. They can be grouped by
policy or rule and filtered by scope, cluster, and other criteria.

You can reduce violations by:

n Resolving issues in your environment

n Creating exceptions for selected rules

n Modifying policy rules as appropriate

Explore Kubernetes Events - Overview

For an overview of Kubernetes events, perform the following procedure.

Procedure

1 On the left navigation pane, click Harden > K8s Events.

VMware by Broadcom 195

2 Click the Overview tab.

On the Overview tab, you can select what data you want to view and the way in which that
data is presented. Your options are to view:

n All events, cluster scan events, or CLI scan events

n Events that have occurred within one week, two weeks, or one month

n Event data in a bar chart or in a line chart

You can view event details on the Events tab (see Explore Kubernetes Events - Details). To
specify events for which to retrieve detailed information:

n To view the events for a scanned cluster, in the Top Clusters table, click the number in
the Events column. The Events tab will open with the focus on that cluster's events.

n To view the events associated with a policy, in the Top Policies table, click the number in
the Events column. The Events tab will open with the focus on that policy's events.

n To view the events associated with a policy rule, in the Top Rules table, click the number
in the Events column. For example:

The Events tab will open with the focus on that rule.

Carbon Black Container User Guide

VMware by Broadcom 196

n To view the events associated with a container image, in the Top Container Images table,
click the number in the Events column. The Events tab will open with the focus on that
container image's events.

Explore Kubernetes Events - Details

To view Kubernetes event details, perform the following procedure.

Procedure

1 On the left navigation pane, click Harden > K8s Events.

2 Click the Events tab.

This page provides a list of Kubernetes events that you can review and act upon.

You can refine the list of rules in multiple ways:

n Focus rules on certain aspects (such as policy rules or container images). See Explore
Kubernetes Events - Overview.

n Search for events using the Search bar.

n Use a filter in the left panel. You can filter on multiple facets at the same time. For
example, you can set your filter to only include events that match a rule and a policy.

The Events Results table includes the following columns by default.

Column Description

Policy Action The policy action that initiated the event. This is Alert,
Block, or Enforce.

Source How this event was discovered. This can be either
cluster scan or CLI scan.

Resource The Kubernetes resource type. This column includes
the Name, Kind, Cluster, and Namespace data for this
workload. To open a detail panel about this resource,

click the link icon next to Name.

Carbon Black Container User Guide

VMware by Broadcom 197

Column Description

Scope The scope associated with this resource and event. To

display a summary of the scope, click the link icon
next to the scope name.

Policy The policy associated with this resource and event. To

display policy details, click the link icon next to the
policy name.

Count The number of identical events that surfaced due to the
policy action.

Risk The risk severity for this event.

Last Seen The last time this event was discovered.

To customize these columns, click Configure Table in the bottom left of the page.

To view more event details, click the carat icon at the right of the row.

The following links are available to open additional pages:

n To display a summary of the scope, click the link icon next to the scope name.

n To display policy details, click the link icon next to the policy name.

n To open the Workloads page, in the Resource section, click View more.

n To view the violating resource details in JSON format, in the Violations section, click the

link icon next to View JSON. For example:

Carbon Black Container User Guide

VMware by Broadcom 198

Investigating Container Events on the Investigate Page

This section describes how to investigate Container and Kubernetes events on the Investigate
page in the Carbon Black Cloud console.

Note This content is specific to Containers and Kubernetes. For additional documentation
that more broadly describes the Investigate page in the Carbon Black Cloud console, see
Investigating Events in the main Investigate section of the VMware Carbon Black Cloud User
Guide.

Carbon Black Container User Guide

VMware by Broadcom 199

The Investigate page offers five ways to filter events for Containers and Kubernetes:

n Container

n Container Image

n Kubernetes Cluster

n Kubernetes Namespace

n Kubernetes Workload

You can combine filters to achieve a particular result.

n Click the vertical 3-dot Configuration menu to configure the filters that display in the console.

n You can exclude search results by clicking the Exclude icon to the right of a filter value. For
example:

Note
n For a list of Container and Kubernetes event and search fields, see the following tables.

n For a full list of all available Search fields, open the in-product Search Guide in the upper right
corner of the Investigate page.

Container Fields
Table 6-1. Container Fields in Alphabetical Order

Field Name Description Searchable? Example

Container Annotations A key-value list of arbitrary
metadata that is assigned
to the container by the
container admin.

No "com.example.gpu-cores":
"2"

Container Engine The engine that runs
the container: Containerd,
Docker, or CRIO.

No Docker

Container Engine Version The version of the
container engine.

No 1

Container ID ID of the container . Yes f78375b1c487e03c9438c729
345e54db9d20cfa2ac1fc349
4b6eb60872e74778

Carbon Black Container User Guide

VMware by Broadcom 200

Table 6-1. Container Fields in Alphabetical Order (continued)

Field Name Description Searchable? Example

Container Image Hash SHA-256 hash of the
container image.

Yes sha256:83d3456789b9a85b9
8bd162f1ec4d7bc1942f0035
caed0f80b3b98a3eab225a7d
c

Container Image Name Name of the container
image. Images are static
files with executable code
that can create containers.

Yes docker.io/alpine:latest

Container IP Address IP address assigned to the
container.

No 192.168.23.100

Container Name Name of the container;
names are typically
generated by runtime
engines or by platforms.
For example, Kubernetes.

Yes cbcontainers-node-agent

Container Process PID Container process identifier
that is assigned by the
operating system; can be
multi-valued in case of
fork() or exec() process
operations on Linux.

Yes 2134

Container Root Path The host's path of the
container image.

No root@someworkloadname-67
cf888bcd-gk4jl

Entry Point The command that is
executed when the
container is started.

No /bin/nginx -c /etc/
nginx/config.json

Host Name Container's host name. No

Host Process PID Host's process PID. Yes 2345

Mount List List of the container's
mounted volumes.

No

Mount Name Name of the container's
mount.

No mylib

Mount Read/Write Type of access to
the mounted file or
directory. Write access
allows modifying files on
the node.

No RW

Mount Source Path A device name, file, or
directory name at the
container's host.

No /var/lib/somedirectory

Mount Target Path Destination of mount point:
the path inside container.

No /lib/somedirectory

Carbon Black Container User Guide

VMware by Broadcom 201

Table 6-1. Container Fields in Alphabetical Order (continued)

Field Name Description Searchable? Example

Mount Type Container's mount type,
which can be bind, volume,
or tempfs.

No tempfs

Privileged Container Defines whether privileged
capability is enabled for
the running container.
https://github.com/
opencontainers/runtime-
spec/blob/main/config.md.

No True

Start Time Container start time. No

Kubernetes Fields
Table 6-2. Kubernetes Fields in Alphabetical Order

Field Name Description Searchable? Example

Cluster Name Name of the Kubernetes
cluster that is associated
with the alert.

Yes ross:aks-test

Namespace Namespace within the
Kubernetes cluster that is
associated with the alert.

Yes Default, kube-system

Replica Name Name of the pod within a
workload.

Yes example-
workload-1643104800-
b2t7f

Workload ID ID of the workload within
a specific cluster_name/
namespace pair.

Yes example-workload

Workload Kind Type of workload: Pod,
Deployment, Job, etc.

Yes CronJob,Deployment,Demon
Set

Workload Name Name of the workload
within a specific
cluster_name/namespace
pair.

Yes example-workload

Kubernetes Network Security Fields
Table 6-3. Kubernetes Network Security Fields in Alphabetical Order

Field Name Description Searchable? Example

Connection Type Type of connection:
INGRESS, EGRESS,
INTERNAL_INBOUND, etc.

Yes EGRESS

Egress Group Name Name of the egress group. Yes null

Carbon Black Container User Guide

VMware by Broadcom 202

https://github.com/opencontainers/runtime-spec/blob/main/config.md
https://github.com/opencontainers/runtime-spec/blob/main/config.md
https://github.com/opencontainers/runtime-spec/blob/main/config.md

Table 6-3. Kubernetes Network Security Fields in Alphabetical Order (continued)

Field Name Description Searchable? Example

IP Reputation Reputation assigned by
Carbon Black Cloud; ranges
1-100 where 100 is
trustworthy.

Yes 74

Port Listening port: remote or
local.

Yes 80

Protocol Name of the protocol. Yes HTTP

Remote Domain Name of the remote
domain.

Yes archive.ubuntu.com

Remote IP IP address of the remote
side of the communication.

Yes 91.189.88.152

Investigate Container Events

To investigate events associated with Containers, perform the following procedure.

Procedure

1 On the left navigation pane, click Investigate > Processes.

2 In the left pane, filter by Container or Container Image.

3 Optionally define any additional query criteria in the Search bar and press Enter to run the

query.

Note
n For a list of Container and Kubernetes event and search fields, see Investigating Container

Events on the Investigate Page.

n For a list of all available Search fields, open the in-product Search Guide in the upper right
corner of the page.

4 For details about a specific event in the results table, click the arrow icon at the right of the
row.

The Container section in the right panel shows the following details:

Carbon Black Container User Guide

VMware by Broadcom 203

Note For more information about the Event Details panel, see Investigate - Processes in the
main Investigate section of the VMware Carbon Black Cloud User Guide.

Investigate Kubernetes Clusters

To investigate events associated with Kubernetes clusters, perform the following procedure.

Procedure

1 On the left navigation pane, click Investigate > Process.

2 In the left pane, filter by K8s Cluster.

3 Optionally define any additional query criteria in the Search bar and press Enter to run the

query.

Note
n For a list of Container and Kubernetes event and search fields, see Investigating Container

Events on the Investigate Page.

n For a list of all available Search fields, open the in-product Search Guide in the upper right
corner of the page.

Carbon Black Container User Guide

VMware by Broadcom 204

4 For details about a specific event in the results table, click the arrow icon at the right of the
row.

Note For more information about the Event Details panel, see Investigate - Processes in the
main Investigate section of the VMware Carbon Black Cloud User Guide.

Click View more to view the Kubernetes Workloads page. See View Kubernetes Workloads.

To investigate Kubernetes cluster configuration issues, click the number associated with
Configuration risks. See View a Kubernetes Workload - Risks.

To investigate Kubernetes cluster vulnerabilities, click the number associated with
Vulnerabilities. See View a Kubernetes Workload - Risks and click any link in the
Vulnerability column for more information about that vulnerability. For example:

Carbon Black Container User Guide

VMware by Broadcom 205

Investigate Kubernetes Namespaces

To investigate events associated with Kubernetes namespaces, perform the following procedure.

Procedure

1 On the left navigation pane, click Investigate > Process.

2 In the left pane, filter by K8s Namespace.

3 Optionally define any additional query criteria in the Search bar and press Enter to run the

query.

Note
n For a list of Container and Kubernetes event and search fields, see Investigating Container

Events on the Investigate Page.

n For a list of all available Search fields, open the in-product Search Guide in the upper right
corner of the page.

Carbon Black Container User Guide

VMware by Broadcom 206

4 For details about a specific event in the results table, click the arrow icon at the right of the
row.

Note For more information about the Event Details panel, see Investigate - Processes in the
main Investigate section of the VMware Carbon Black Cloud User Guide.

Click View more to view the Kubernetes Workloads page. See View Kubernetes Workloads.

To investigate Kubernetes cluster configuration issues, click the number associated with
Configuration risks. See View a Kubernetes Workload - Risks.

To investigate Kubernetes cluster vulnerabilities, click the number associated with
Vulnerabilities. See View a Kubernetes Workload - Risks and click any link in the
Vulnerability column for more information about that vulnerability.

Investigate Kubernetes Workloads

To investigate events associated with Kubernetes workloads, perform the following procedure.

Procedure

1 On the left navigation pane, click Investigate > Process.

Carbon Black Container User Guide

VMware by Broadcom 207

2 In the left pane, filter by K8s Workload.

3 Optionally define any additional query criteria in the Search bar and press Enter to run the

query.

Note
n For a list of Container and Kubernetes event and search fields, see Investigating Container

Events on the Investigate Page.

n For a list of all available Search fields, open the in-product Search Guide in the upper right
corner of the page.

4 For details about a specific event in the results table, click the arrow icon at the right of the
row.

The right panel shows the following details:

Note For more information about the Event Details panel, see Investigate - Processes in the
main Investigate section of the VMware Carbon Black Cloud User Guide.

Click View more to view the Kubernetes Workloads page. See View Kubernetes Workloads.

Investigate Containers Events on the Process Analysis Page

Note This content is specific to Containers and Kubernetes. For additional documentation
that more broadly describes the Process Analysis page in the Carbon Black Cloud console, see
Process Analysis in the main Investigate section of the VMware Carbon Black Cloud User Guide.

Procedure

1 On the left navigation pane, click Investigate > Processes.

2 Perform a search query for events associated with Containers or Kubernetes.

3 In the results table, click the Process Analysis icon at the right of the row.

The Process Analysis tree displays. For example:

Carbon Black Container User Guide

VMware by Broadcom 208

The information in the right panel depends on the type of event searched for and selected.
The following topics describe each selection by filtered event type. For example:

Carbon Black Container User Guide

VMware by Broadcom 209

n Click View more to view the Kubernetes Workloads page. See View Kubernetes
Workloads.

n To investigate Kubernetes cluster configuration issues, click the number associated with
Configuration risks. See View a Kubernetes Workload - Risks.

n To investigate Kubernetes cluster vulnerabilities, click the number associated with
Vulnerabilities. See View a Kubernetes Workload - Risks and click any link in the
Vulnerability column for more information about that vulnerability.

Carbon Black Container User Guide

VMware by Broadcom 210

Triaging Kubernetes Alerts

This section describes how to triage Kubernetes alerts in the Carbon Black Cloud console.

Note This content is specific to Kubernetes alerts. For additional documentation that more
broadly describes triaging any kind of alert in the Carbon Black Cloud console, see Alerts and
Alert Triage in the main Alerts section of the user guide.

Search for Kubernetes Alerts

To search for Kubernetes policy rule violations (alerts), perform the following procedure.

Procedure

1 On the left navigation pane, click Alerts.

2 Search and filter for Kubernetes violations using the filters in the left pane and the Search text
box. For help constructing a query, see the in-product Search Guide.

Note
n You can define search results by time.

n The Alerts page offers four ways to filter alerts for Containers and Kubernetes:

n K8s Cluster

n K8s Namespace

n K8s Workload

n K8s Policy

You can combine filters to achieve a particular result.

n Click the vertical 3-dot Configuration menu to configure the filters that display in the
console.

n Alerts with Monitor action rules are not visible by default. They are part of the Other
Activity > Observed filter category.

n You can exclude search results by clicking the Exclude icon to the right of a filter value.
For example:

Carbon Black Container User Guide

VMware by Broadcom 211

Example search results table:

n To view details about a workload, click the workload name in the Asset column. See View
a Kubernetes Workload - Overview.

n To view a summary of the policy assigned to a workload, click the policy name.

n To view the Process Analysis tree and details for this alert, click the Process Analysis
icon. See Investigate Containers Events on the Process Analysis Page.

n To investigate the alert on the Investigate page, click the Investigate icon. See
Investigating Container Events on the Investigate Page.

n Click the Actions dropdown menu for actions you can perform on the alert:

n Close the alert.

Important Closing alerts is only recommended for excluding specific workloads that
exhibit known behaviors from the alerts list.

n Mark the alert as being in progress.

n View the notifications that have been sent out about the alert.

n Add the alert behavior to the baseline. See Kubernetes Scope Baselines for Runtime
Policies.

n To view more alert details, click the arrow icon at the right of the fow. See View
Kubernetes Alert Details.

View Kubernetes Alert Details

To investigate Kubernetes alert details in the Carbon Black Cloud console, perform the following
procedure.

This page only describes Kubernetes alert details. For more information about the Alerts page,
see View Alert Details in the main Alerts section of the VMware Carbon Black Cloud User Guide.

Prerequisites

This topic assumes you have conducted a search for Kubernetes alerts and are viewing the
search results. Before you proceed, see Search for Kubernetes Alerts.

Carbon Black Container User Guide

VMware by Broadcom 212

Procedure

1 For details about a specific alert, click the arrow icon at the right of the alert row. The Alert
Details panel includes the following Kubernetes information:

2 To open a specific workload page, click View more next to K8s Workload. See View
Kubernetes Workloads.

3 To access more information about any aspect of the alert or workload, click the relevant
hyperlink in the panel. For example, you can view the associated risks and vulnerabilities by
clicking the numbers next to Configuration risks or Vulnerabilities in the K8s Workload Risk
section.

Identify Available Fixes and Patches

You can identify the available fixes and patches for known vulnerabilities in container images.

Each vulnerability is characterized by the following:

n CVE code

n List of impacted packages or libraries

n Package version

n Available fix or patch and version

Important You can only identify the available fixes or patches in the Carbon Black Cloud
console. To apply them, proceed to your Kubernetes environment.

Prerequisites

Become familiar with the Common Vulnerabilities and Exposures (CVE) list (external link).

Carbon Black Container User Guide

VMware by Broadcom 213

https://cve.mitre.org/cve/

Procedure

1 On the left navigation pane, do one of the following depending on your system configuration
and role:

n If you have the Kubernetes Security DevOps or SecOps role and your system has only the
Container security feature, click Inventory > Container Images.

n If you have any other role and your system has Container security and other Carbon
Black Cloud features, click Inventory > Kubernetes > Container Images.

2 Click the Deployed Images tab.

3 In the Fixes filter in the left pane, select Available Fixes.

The table only displays images for which there are fixes. The Vulnerabilities/Fixes column
indicates the number of fixes per vulnerability severity category inside associated color bars.

Carbon Black Container User Guide

VMware by Broadcom 214

4 To expand the Image Details panel, click the arrow icon at the right of the row.

Carbon Black Container User Guide

VMware by Broadcom 215

5 To view a short description of the CVE code and the package where the vulnerability is

identified, click the arrow icon to the left of the CVE.

What to do next

Apply the fix or patch accordingly.

Carbon Black Container User Guide

VMware by Broadcom 216

Managing Clusters and
Kubernetes Sensors 7
This section describes management tasks on clusters and Kubernetes Sensors after your security
environment is up and running.

For instructions on setting up your Kubernetes clusters and sensors in the Carbon Black Cloud,
see Adding Clusters and Installing Kubernetes Sensors.

Read the following topics next:

n View Clusters

n Edit a Cluster

n Delete a Cluster and its Sensor

n Upgrading or Downgrading the Kubernetes Sensor

n Delete a CLI Client

View Clusters

After you've added clusters to the Carbon Black Cloud console, you can view details about the
clusters.

Prerequisites

Add clusters to the console. See Adding Clusters and Installing Kubernetes Sensors.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you are assigned Kubernetes Security DevOps role and your system has only the
Container Security feature,

select Inventory > Clusters.

n If you are assigned any other role and your system has Container security and other
Carbon Black Cloud features,

select Inventory > Kubernetes > Clusters.

2 Click the Clusters tab and then click the General tab.

VMware by Broadcom 217

3 In the left pane, you can filter the list of displayed clusters by:

n Status

n Sensor Version

n Operator Version

n Cluster Label Key

n Cluster Label Value

4 In the Clusters panel, you can search for a cluster, and you can select a displayed cluster
name to view both general information and sensor health data. For more about sensor health,
see Check the Kubernetes Sensor Status and Health.

The right pane shows the following information:

Edit a Cluster

You can edit a Kubernetes cluster in the Carbon Black Cloud console to enable features of the
Kubernetes Sensor that were not included during the cluster setup.

Prerequisites

Before you begin, open both the Carbon Black Cloud console and a terminal window.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you are assigned Kubernetes Security DevOps role and your system has only
Containers Security feature,

select Inventory > Clusters.

n If you are assigned any other role and your system has Container security and other
Carbon Black Cloud features,

Carbon Black Container User Guide

VMware by Broadcom 218

select Inventory > Kubernetes > Clusters.

2 Locate the cluster to edit and in the Options dropdown menu, click Edit and then click Next.

3 Select the features to include. For example, Runtime protection or Cluster image scanning.
Click Next.

4 To run the update, copy the command from the Finish Setup page, and run it in the terminal
window.

Delete a Cluster and its Sensor

To delete the Kubernetes Sensor from a cluster, you must delete the cluster from the Carbon
Black Cloud console.

Prerequisites

Before you begin, open both the Carbon Black Cloud console and a terminal window.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you are assigned Kubernetes Security DevOps role and your system has only
Containers Security feature,

Click Inventory > Clusters.

n If you are assigned any other role and your system has Container security and other
Carbon Black Cloud features,

click Inventory > Kubernetes > Clusters.

2 Locate the cluster to delete from the console.

3 In the Options dropdown menu, click Delete.

4 Select Bash or PowerShell from the dropdown menu.

Carbon Black Container User Guide

VMware by Broadcom 219

5 Copy the command into your terminal window and run it.

This step deletes the Kubernetes Sensor and the Carbon Black Cloud operator from your
cluster.

Important If you execute the command without removing the cluster from the console in the
next step, the cluster status becomes Critical after a certain time. In this case, you can re-add
or remove the cluster.

6 Click Delete.

Important If you click Delete without executing the command from the previous step, the
Kubernetes Sensor and the Carbon Black Cloud operator remain on your cluster without any
activity.

Upgrading or Downgrading the Kubernetes Sensor

Carbon Black recommends that you use the latest Kubernetes Sensor version.

You can upgrade or downgrade the Kubernetes Sensor in the following ways:

n Direct access to the cluster through a command-line interface.

n Direct access to the cluster through the Carbon Black Cloud console.

n Remotely through the Carbon Black Cloud console without directly accessing the cluster.

Upgrade or Downgrade the Kubernetes Sensor through the
Command Line

You can upgrade or downgrade the Kubernetes Sensor through the Command Line.

This method:

n Requires direct user access to the cluster.

n Simply patches the sensor version.

n Does not enable or disable features.

n Does not override customized values with default values.

n Does not change the cluster or sensor configuration.

For a more thorough upgrade experience, upgrade the sensor through the console instead. See
Upgrade or Downgrade the Kubernetes Sensor through the Console.

Procedure

1 Open a terminal window.

Carbon Black Container User Guide

VMware by Broadcom 220

2 Run the following command, where the value definition is the version of the sensor.

kubectl patch cbcontainersagent.operator.containers.carbonblack.io/cbcontainers-agent --
type='json' -p='[{"op": "replace", "path": "/spec/version", "value":"3.0.2”}]

Note cbcontainers-agent refers to the Kubernetes Sensor. In the preceding code block,

3.0.2 is the latest Kubernetes Sensor version. Substitute this value with the appropriate

version.

You can use the Setup API to list the supported Kubernetes Sensor versions. See /deploy/
sensors and /deploy/compatibility. The former API usage lists available sensor versions; the

latter API usage defines operator and sensor version compatibility.

What to do next

Check the Kubernetes Sensor Status and Health

Upgrade or Downgrade the Kubernetes Sensor through the Console

You can upgrade or downgrade the Kubernetes Sensor through the Carbon Black Cloud console.

This method:

n Requires direct admin access to the cluster.

n Generates a new cluster configuration (custom resource).

n Automatically enables or disables supported features depending on the sensor version that
you select.

n Overwrites customized values with default values when the custom resource is applied.

Procedure

1 Open a terminal window.

2 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you are assigned Kubernetes Security DevOps role and your system has only
Containers Security feature, Click Inventory > Clusters.

n If you are assigned any other role and your system has Container security and other
Carbon Black Cloud features, click Inventory > Kubernetes > Clusters.

3 Locate the cluster to update.

4 In the Options dropdown menu, click Edit.

5 Optionally add any new labels for the cluster. Click Next.

Carbon Black Container User Guide

VMware by Broadcom 221

https://developer.carbonblack.com/reference/carbon-black-cloud/container/latest/setup-api

6 Select the Sensor version from the dropdown list. This should usually be the latest version,
which is the first version listed.

7 Included features for the selected sensor version are displayed. Click Next.

8 Copy the commands from the Finish Edits page and run them in the terminal window.

Important Do not select Apply changes directly to the cluster for this method of upgrade or
downgrade. That option is relevant only if you are not directly accessing the cluster, which is
covered in Upgrade or Downgrade the Kubernetes Sensor Remotely through the Console.

Carbon Black Container User Guide

VMware by Broadcom 222

9 Click Done.

Results

It takes between two and three minutes for the new sensor to become effective. If the upgraded
sensor version supports new functionality, such as CNDR, that new functionality is automatically
enabled by the Operator. This capability assumes that you are running the latest version of the
Operator.

If you are downgrading the sensor version and the downgraded sensor does not support a
particular functionality, the Operator disables that functionality upon the downgrade action.

What to do next

Check the Kubernetes Sensor Status and Health

Upgrade or Downgrade the Kubernetes Sensor Remotely through
the Console

You can upgrade or downgrade the Kubernetes Sensor remotely through the Carbon Black
Cloud console.

This method:

n Does not require direct admin access to the cluster because the operator handles the
upgrade or downgrade.

n Automatically enables or disables supported features depending on the sensor version that
you select.

n Does not override customized values with default values.

n Does not change the cluster or sensor configuration.

n Requires an Operator version 6.1.0 or higher.

Procedure

1 On the left navigation pane of the console, do one of the following depending on your
system configuration and role:

n If you are assigned Kubernetes Security DevOps role and your system has only
Containers Security feature, Click Inventory > Clusters.

n If you are assigned any other role and your system has Container security and other
Carbon Black Cloud features, click Inventory > Kubernetes > Clusters.

2 Locate the cluster to update.

3 In the Options dropdown menu, click Edit.

4 Optionally add any new labels for the cluster. Click Next.

Carbon Black Container User Guide

VMware by Broadcom 223

5 Select the Sensor version from the dropdown list. This should usually be the latest version,
which is the first version listed.

6 Included features for the selected sensor version are displayed. Click Next.

Carbon Black Container User Guide

VMware by Broadcom 224

7 Select the check box for Apply changes directly to the cluster.

Note
n When using the option to Apply changes directly to the cluster, you do not need to copy

and run commands in a terminal window.

n If you manage the cluster using Helm or other infrastructure-as-code, that system will
override the settings you establish using this procedure.

8 Click Done.

Results

It takes between two and three minutes for the new sensor to become effective. If the upgraded
sensor version supports new functionality, such as CNDR, that new functionality is automatically
enabled by the Operator. This capability assumes that you are running the latest version of the
Operator.

If you are downgrading the sensor version and the downgraded sensor does not support a
particular functionality, the Operator disables that functionality upon the downgrade action.

Any remote upgrade or downgrade of the Kubernetes Sensor is noted in the Audit Log.

What to do next

Check the Kubernetes Sensor Status and Health

Carbon Black Container User Guide

VMware by Broadcom 225

Delete a CLI Client

You can delete a CLI instances that is no longer in use.

Procedure

1 On the left navigation pane, click Inventory > Kubernetes > Clusters.

2 Click the CLI Config tab.

3 Under Actions, click the delete icon next to the CLI Client that you want to remove.

Results

Deleting a CLI Client removes the instance and the generated API-key from Carbon Black Cloud.
It does not remove the instance from your environment.

Carbon Black Container User Guide

VMware by Broadcom 226

Carbon Black Container Operator
Technical Reference 8
The Carbon Black Container Operator runs within a Kubernetes cluster. The Container Operator is
a set of controllers that deploy and manage the Carbon Black Container components.

The Operator handles the following actions:

n Deploys and manages the Carbon Black Container product, including the configuration and
the image scanning for Kubernetes security.

n Automatically fetches and deploys the Carbon Black Container private image registry secret.

n Automatically registers the Carbon Black Container cluster.

n Manages the Carbon Black Container validating webhook and dynamically manages the
admission control webhook to avoid possible downtime.

n Monitors and reports agent availability to the Carbon Black Cloud console.

The Carbon Black Container Operator uses the operator-framework to create a GO operator that
is responsible for managing and monitoring the Carbon Black Container components deployment.

To review the Operator compatibility matrix, see Kubernetes Sensor Operator Distributions and
Kubernetes Version.

Note We recommend that you deploy the Operator by using the Add Cluster wizard (see Add a
Cluster and Install the Kubernetes Sensor). However, this technical reference section of the User
Guide also includes manual Operator and Agent installation instructions.

Read the following topics next:

n Manually Deploy the Container Operator

n Manually Deploy the Container Agent

n Openshift

n Reading Metrics by using Prometheus

n Custom Resources Definitions

n Changing Components Resources

n Configuring Container Services to use HTTP Proxy

n Changing the Image Source

VMware by Broadcom 227

n Operator Role-based Access Control

n Container Operator Developer Instructions

n Helm Charts

Manually Deploy the Container Operator

To manually deploy the Carbon Black Container Operator, perform the following procedure.

These instructions use an Operator image. To deploy the Operator without using an image, see
Container Operator Developer Instructions.

Prerequisites

Your cluster must be running Kubernetes 1.18+.

Procedure

u You can initiate the Operator deployment in two ways:

n Script:

export OPERATOR_VERSION=v6.0.2
export OPERATOR_SCRIPT_URL=https://setup.containers.carbonblack.io/$OPERATOR_VERSION/
operator-apply.sh
curl -s $OPERATOR_SCRIPT_URL | bash

{OPERATOR_VERSION} is of the format "v{VERSION}".

n Source code:

a Clone the GIT project and deploy the operator from the source code.

By default, the Operator uses CustomResourceDefinitions v1, which

requires Kubernetes 1.16+. You can also deploy an Operator by using
CustomResourceDefinitions v1beta1 (deprecated in Kubernetes 1.16, removed in

Kubernetes 1.22).

b Create the Operator image:

make docker-build docker-push IMG={IMAGE_NAME}

c Deploy the Operator resources:

make deploy IMG={IMAGE_NAME}

What to do next

Manually Deploy the Container Agent

Uninstall the Container Operator

To uninstall the Carbon Black Container Operator, perform the following procedure.

Carbon Black Container User Guide

VMware by Broadcom 228

Procedure

u To uninstall the Carbon Black Container Operator, run the following command:

export OPERATOR_VERSION=v6.0.2
export OPERATOR_SCRIPT_URL=https://setup.containers.carbonblack.io/$OPERATOR_VERSION/
operator-apply.sh
curl -s $OPERATOR_SCRIPT_URL | bash -s -- -u

This command deletes the Carbon Black Container custom resource definitions (CRDs) and
instances.

Manually Deploy the Container Agent

To manually deploy the Carbon Black Container Agent, perform the following procedure.

Prerequisites

Manually Deploy the Container Operator

Procedure

1 Apply the Carbon Black Container API token secret:

kubectl create secret generic cbcontainers-access-token \
--namespace cbcontainers-dataplane --from-literal=accessToken=\
{API_Secret_Key}/{API_ID}
kubectl create secret generic cbcontainers-company-code --namespace cbcontainers-dataplane
--from-literal=companyCode=RXXXXXXXXXXG\!XXXX

2 Apply the Carbon Black Container Agent custom resource:

Deploy cbcontainersagents.operator.containers.carbonblack.io to prompt the Operator

to deploy the dataplane components:

apiVersion: operator.containers.carbonblack.io/v1
kind: CBContainersAgent
metadata:
 name: cbcontainers-agent
spec:
 account: {ORG_KEY}
 clusterName: {CLUSTER_GROUP}:{CLUSTER_NAME}
 version: {AGENT_VERSION}
 gateways:
 apiGateway:
 host: {API_HOST}
 coreEventsGateway:
 host: {CORE_EVENTS_HOST}

Carbon Black Container User Guide

VMware by Broadcom 229

 hardeningEventsGateway:
 host: {HARDENING_EVENTS_HOST}
 runtimeEventsGateway:
 host: {RUNTIME_EVENTS_HOST}

Note See also Custom Resources Definitions.

Openshift

The Carbon Black Container Operator and Agent require elevated permissions to operate
properly. However, this requirement violates the default SecurityContextConstraints on most

Openshift clusters, thereby causing the components to fail to start.

You can resolve this issue by applying the following custom security constraint configurations on
the cluster. This action requires cluster administrator privileges.

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-anyuid
runAsUser:
 type: MustRunAsNonRoot
allowHostPID: false
allowHostPorts: false
allowHostNetwork: false
allowHostDirVolumePlugin: false
allowHostIPC: false
allowPrivilegedContainer: false
readOnlyRootFilesystem: true
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-operator
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-enforcer
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-state-reporter
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-monitor
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-runtime-resolver

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-image-scanning # This probably needs to be fixed in the actual deployment
runAsUser:
 type: RunAsAny
allowHostPID: false
allowHostPorts: false
allowHostNetwork: false
allowHostDirVolumePlugin: false
allowHostIPC: false

Carbon Black Container User Guide

VMware by Broadcom 230

allowPrivilegedContainer: false
readOnlyRootFilesystem: false
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
allowedCapabilities:
- 'NET_BIND_SERVICE'
users:
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-image-scanning

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-node-agent
runAsUser:
 type: RunAsAny
allowHostPID: true
allowHostPorts: false
allowHostNetwork: true
allowHostDirVolumePlugin: true
allowHostIPC: false
allowPrivilegedContainer: true
readOnlyRootFilesystem: false
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir
- hostPath
- persistentVolumeClaim
- projected
- secret
users:
- system:serviceaccount:cbcontainers-dataplane:cbcontainers-agent-node

Uninstalling the Operator on Openshift

Add this SecurityContextConstraints before running the operator uninstall command:

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-edr-cleaner
runAsUser:
 type: RunAsAny
allowHostPID: true

Carbon Black Container User Guide

VMware by Broadcom 231

allowHostPorts: false
allowHostNetwork: true
allowHostDirVolumePlugin: true
allowHostIPC: false
allowPrivilegedContainer: true
readOnlyRootFilesystem: false
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir
- hostPath
- persistentVolumeClaim
- projected
- secret
users:
- system:serviceaccount:cbcontainers-edr-sensor-cleaners:cbcontainers-edr-sensor-cleaner

Reading Metrics by using Prometheus

Operator metrics are protected by kube-auth-proxy. You must grant permissions to a

Prometheus server before it can scrape the protected metrics.

You can create a ClusterRole and bind it with ClusterRoleBinding to the service account that

your Prometheus server uses.

If you have not configured this cluster role and cluster role binding, you can use the following
configuration:

Cluster Role

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: cbcontainers-metrics-reader
rules:
- nonResourceURLs:
 - /metrics
 verbs:
 - get

Cluster Role Binding

kubectl create clusterrolebinding metrics --clusterrole=cbcontainers-metrics-reader --
serviceaccount=<prometheus-namespace>:<prometheus-service-account-name>

Carbon Black Container User Guide

VMware by Broadcom 232

Use the following ServiceMonitor to scrape metrics from the Carbon Black Container Operator.

Your Prometheus custom resource service monitor selectors must match this configuration.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 control-plane: operator
 name: cbcontainers-operator-metrics-monitor
 namespace: cbcontainers-dataplane
spec:
 endpoints:
 - bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
 path: /metrics
 port: https
 scheme: https
 tlsConfig:
 insecureSkipVerify: true
 selector:
 matchLabels:
 control-plane: operator

Custom Resources Definitions

The Carbon Black Container Operator implements controllers for Carbon Black Container custom
resources definitions (CRDs).

Carbon Black Container Agent Custom Resource

Deploy cbcontainersagents.operator.containers.carbonblack.io to prompt the Operator to

deploy the dataplane components.

Table 8-1. Required Parameters

Parameter Description

spec.account Carbon Black Container org key

spec.clusterName Carbon Black Container cluster name
(<cluster_group:cluster_name>)

spec.version Carbon Black Container Agent version

spec.gateways.apiGateway.host Carbon Black Container API host

spec.gateways.coreEventsGateway.host Carbon Black Container core events host (for example,
health checks)

spec.gateways.hardeningEventsGateway.host Carbon Black Container hardening events host (for
example, deleted, validated, and blocked resources)

spec.gateways.runtimeEventsGateway.host Carbon Black Container runtime events host (for example,
traffic events)

Carbon Black Container User Guide

VMware by Broadcom 233

Table 8-2. Optional Parameters

Parameter Description Default Value

spec.apiGateway.port Carbon Black Container API port 443

spec.accessTokenSecretName Carbon Black Container API access
token secret name

cbcontainers-access-token

spec.gateways.coreEventsGateway.p
ort

Carbon Black Container core events
port

443

spec.gateways.hardeningEventsGate
way.port

Carbon Black Container hardening
events port

443

spec.gateways.runtimeEventsGatewa
y.port

Carbon Black Container runtime
events port

443

Table 8-3. Basic Components Optional Parameters

Parameter Description Default Value

spec.components.basic.enforcer.re
plicasCount

Carbon Black Container Hardening
Enforcer number of replicas

1

spec.components.basic.monitor.ima
ge.repository

Carbon Black Container Monitor
image repository

cbartifactory/monitor

spec.components.basic.enforcer.im
age.repository

Carbon Black Container Hardening
Enforcer image repository

cbartifactory/guardrails-enforcer

spec.components.basic.stateReport
er.image.repository

Carbon Black Container Hardening
State Reporter image repository

cbartifactory/guardrails-state-
reporter

spec.components.basic.monitor.res
ources

Carbon Black Container Monitor
resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.components.basic.enforcer.re
sources

Carbon Black Container Hardening
Enforcer resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.components.basic.stateReport
er.resources

Carbon Black Container Hardening
State Reporter resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

Table 8-4. Runtime Components Optional Parameters

Parameter Description Default Value

spec.components.runtimeProtection
.enabled

Carbon Black Container flag
to control Runtime components
deployment

True

spec.components.runtimeProtection
.resolver.image.repository

Carbon Black Container Runtime
Resolver image repository

cbartifactory/runtime-kubernetes-
resolver

spec.components.runtimeProtection
.sensor.image.repository

Carbon Black Container Runtime
Sensor image repository

cbartifactory/runtime-kubernetes-
sensor

Carbon Black Container User Guide

VMware by Broadcom 234

Table 8-4. Runtime Components Optional Parameters (continued)

Parameter Description Default Value

spec.components.runtimeProtection
.internalGrpcPort

Carbon Black Container Runtime
gRPC port that the resolver exposes
for the sensor

443

spec.components.runtimeProtection
.resolver.logLevel

Carbon Black Container Runtime
Resolver log level

"panic", "fatal", "error", "warn", "info",
"debug", "trace" (default info)

spec.components.runtimeProtection
.resolver.resources

Carbon Black Container Runtime
Resolver resources

{requests: {memory: "64Mi", cpu:
"200m"}, limits: {memory: "1024Mi",
cpu: "900m"}}

spec.components.runtimeProtection
.sensor.logLevel

Carbon Black Container Runtime
Sensor log level

"panic", "fatal", "error", "warn", "info",
"debug", "trace" (default info)

spec.components.runtimeProtection
.sensor.resources

Carbon Black Container Runtime
Sensor resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "1024Mi",
cpu: "500m"}}

Table 8-5. Cluster Scanning Components Optional Parameters

Parameter Description Default Value

spec.components.clusterScanning.e
nabled

Carbon Black Container flag to
control Cluster Scanning components
deployment

True

spec.components.clusterScanning.i
mageScanningReporter.image.reposi
tory

Carbon Black Container Image
Scanning Reporter image repository

cbartifactory/image-scanning-
reporter

spec.components.clusterScanning.c
lusterScanner.image.repository

Carbon Black Container Scanner
Agent image repository

cbartifactory/cluster-scanner

spec.components.clusterScanning.i
mageScanningReporter.resources

Carbon Black Container Image
Scanning Reporter resources

{requests: {memory: "64Mi", cpu:
"200m"}, limits: {memory: "1024Mi",
cpu: "900m"}}

spec.components.clusterScanning.c
lusterScanner.resources

Carbon Black Container Cluster
Scanner resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "1024Mi",
cpu: "500m"}}

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
engineType

Carbon Black Container Cluster
Scanner Kubernetes container engine
type. One of these options:
containerd / docker-daemon / cri-o

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
endpoint

Carbon Black Container Cluster
Scanner Kubernetes container engine
endpoint path

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
CRIO.storagePath

Carbon Black Container Cluster
Scanner override default image
storage path (CRI-O only)

N/A

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
CRIO.storageConfigPath

Carbon Black Container Cluster
Scanner override default image
storage config path (CRI-O only)

N/A

Carbon Black Container User Guide

VMware by Broadcom 235

Table 8-5. Cluster Scanning Components Optional Parameters (continued)

Parameter Description Default Value

spec.components.clusterScanning.c
lusterScanner.k8sContainerEngine.
CRIO.configPath

Carbon Black Container Cluster
Scanner override default CRI-O config
path (CRI-O only)

N/A

spec.components.clusterScanning.c
lusterScanner.cliFlags.enableSecr
etDetection

Carbon Black Container Cluster
Scanner flag of whether the scan
should scan for secrets

False

spec.components.clusterScanning.c
lusterScanner.cliFlags.skipDirsOr
Files

Carbon Black Container Cluster
Scanner flag of files or directories to
not scan for secrets

N/A

spec.components.clusterScanning.c
lusterScanner.cliFlags.scanBaseLa
yers

Carbon Black Container Cluster
Scanner flag of whether the scan
should include the base layers scan
for secrets

False

spec.components.clusterScanning.c
lusterScanner.cliFlags.ignoreBuil
dInRegex

Carbon Black Container Cluster
Scanner flag of whether the scan
should ignore the built-in regexes of
files to skip secret detection

False

Table 8-6. Components Common Optional Parameters

Parameter Description Default Value

labels Carbon Black Container component
deployment and pod labels

Empty map

deploymentAnnotations Carbon Black Container component
deployment annotations

Empty map

podTemplateAnnotations Carbon Black Container component
pod annotations

{}

env Carbon Black Container component
pod environment variables

Empty map

image.tag Carbon Black Container component
image tag

Agent version

image.pullPolicy Carbon Black Container component
pull policy

IfNotPresent

probes.port Carbon Black Container component
probes port

8181

probes.scheme Carbon Black Container component
probes scheme

HTTP

probes.initialDelaySeconds Carbon Black Container component
probes initial delay seconds

3

probes.timeoutSeconds Carbon Black Container component
probes timeout seconds

1

probes.periodSeconds Carbon Black Container component
probes period seconds

30

Carbon Black Container User Guide

VMware by Broadcom 236

Table 8-6. Components Common Optional Parameters (continued)

Parameter Description Default Value

probes.successThreshold Carbon Black Container component
probes success threshold

1

probes.failureThreshold Carbon Black Container component
probes failure threshold

3

prometheus.enabled Carbon Black Container component
enable Prometheus scraping

False

prometheus.port Carbon Black Container component
Prometheus server port

7071

nodeSelector Carbon Black Container component
node selector

{}

affinity Carbon Black Container component
affinity

{}

Table 8-7. Centralized Proxy Parameters

Parameter Description Default Value

spec.components.settings.proxy.en
abled

Enables applying the centralized
proxy settings to all components

False

spec.components.settings.proxy.ht
tpProxy

HTTP proxy server address to use Empty string

spec.components.settings.proxy.ht
tpsProxy

HTTPS proxy server address to use Empty string

spec.components.settings.proxy.no
Proxy

A comma-separated list of hosts to
which to connect without using a
proxy

Empty string

spec.components.settings.proxy.no
ProxySuffix

A comma-separated list of hosts to
which to append the noProxy list of

values

The API server IP addresses
followed by cbcontainers-
dataplane.svc.cluster.local

Table 8-8. Other Components Optional Parameters

spec.components.settings.daemonSe
tsTolerations

Carbon Black DaemonSet component
tolerances

Empty array

Changing Components Resources

Needs description/intro.

spec:
 components:
 basic:
 monitor:

Carbon Black Container User Guide

VMware by Broadcom 237

 resources:
 limits:
 cpu: 200m
 memory: 256Mi
 requests:
 cpu: 30m
 memory: 64Mi
 enforcer:
 resources:
 #### DESIRED RESOURCES SPEC - for hardening enforcer container
 stateReporter:
 resources:
 #### DESIRED RESOURCES SPEC - for hardening state reporter container
 runtimeProtection:
 resolver:
 resources:
 #### DESIRED RESOURCES SPEC - for runtime resolver container
 sensor:
 resources:
 #### DESIRED RESOURCES SPEC - for node-agent runtime container
 clusterScanning:
 imageScanningReporter:
 resources:
 #### DESIRED RESOURCES SPEC - for image scanning reporter pod
 clusterScanner:
 resources:
 #### DESIRED RESOURCES SPEC - for node-agent cluster-scanner container

Cluster Scanner Component Memory

By default, the clusterScanning.clusterScanner component attempts to scan images of sizes up

to 1GB. Its recommended resources are:

resources:
 requests:
 cpu: 100m
 memory: 1Gi
 limits:
 cpu: 2000m
 memory: 6Gi

To scan images larger than 1GB, allocate higher memory resources in the
component's requests.memory and limits.memory, and add an environment variable

MAX_COMPRESSED_IMAGE_SIZE_MB to override the maximum images size in MB that the scanner tries

to scan.

For example, to set the cluster scanner to scan images up to 1.5 GB. the configuration is:

spec:
 components:
 clusterScanning:
 clusterScanner:
 env:

Carbon Black Container User Guide

VMware by Broadcom 238

 MAX_COMPRESSED_IMAGE_SIZE_MB: "1536" // 1536 MB == 1.5 GB
 resources:
 requests:
 cpu: 100m
 memory: 2Gi
 limits:
 cpu: 2000m
 memory: 5Gi

If your nodes have low memory and you want the cluster scanner to consume less memory,
you must reduce the component's rrequests.memory and limits.memory, and override the

MAX_COMPRESSED_IMAGE_SIZE_MB parameter to be less than 1GB (1024MB).

For example, assign lower memory resources and set the cluster-scanner to scan images up to
250MB:

spec:
 components:
 clusterScanning:
 clusterScanner:
 env:
 MAX_COMPRESSED_IMAGE_SIZE_MB: "250" // 250 MB
 resources:
 requests:
 cpu: 100m
 memory: 250Mi
 limits:
 cpu: 2000m
 memory: 1Gi

Configuring Container Services to use HTTP Proxy

You can configure the Carbon Black Container to use an HTTP proxy by enabling the centralized
proxy settings or by manually setting HTTP_PROXY, HTTPS_PROXY, and NO_PROXY environment

variables.

The centralized proxy settings apply an HTTP proxy configuration for all components. The
manual setting of environment variables allows you to set the configuration parameters on a per
component basis. If both HTTP proxy environment variables and centralized proxy settings are
provided, the environment variables take precedence. The Operator does not use the centralized
proxy settings, so you must use the environment variables for it instead.

Configure Centralized Proxy Settings

To configure the proxy environment variables in the Operator, use the following command to
patch the Operator deployment:

kubectl set env -n cbcontainers-dataplane deployment cbcontainers-operator HTTP_PROXY="<proxy-
url>" HTTPS_PROXY="<proxy-url>" NO_PROXY="<kubernetes-api-server-ip>/<range>"

Carbon Black Container User Guide

VMware by Broadcom 239

Update the CBContainersAgent CR to use the centralized proxy settings (kubectl edit
cbcontainersagents.operator.containers.carbonblack.io cbcontainers-agent):

spec:
 components:
 settings:
 proxy:
 enabled: true
 httpProxy: "<proxy-url>"
 httpsProxy: "<proxy-url>"
 noProxy: "<exclusion1>,<exclusion2>"

You can disable the centralized proxy settings without deleting them by setting the enabled key

to false.

By default, the centralized proxy settings determine the API server IP address(es) and the
necessary proxy exclusions for the cbcontainers-dataplane namespace. These determined

values are automatically appended to the noProxy values or the specified NO_PROXY environment

variable for a particular component. To change those pre-determined values, you can specify the
noProxySuffix key at the same level as the noProxy key. It has the same format as the noProxy
key and its values are treated ias if they were pre-determined. You can also force nothing to be
appended to noProxy or NO_PROXY by setting noProxySuffix to an empty string.

Configure HTTP Proxy Per-Component Environment Variables

To configure environment variables for the basic, Runtime, and Image Scanning components,

update the CBContainersAgent CR using the proxy environment variables (kubectl edit
cbcontainersagents.operator.containers.carbonblack.io cbcontainers-agent):

spec:
 components:
 basic:
 enforcer:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"
 stateReporter:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"
 runtimeProtection:
 resolver:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"
 sensor:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"

Carbon Black Container User Guide

VMware by Broadcom 240

 NO_PROXY: "<kubernetes-api-server-ip>/<range>,cbcontainers-runtime-
resolver.cbcontainers-dataplane.svc.cluster.local"
 clusterScanning:
 clusterScanner:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>,cbcontainers-image-scanning-
reporter.cbcontainers-dataplane.svc.cluster.local"
 imageScanningReporter:
 env:
 HTTP_PROXY: "<proxy-url>"
 HTTPS_PROXY: "<proxy-url>"
 NO_PROXY: "<kubernetes-api-server-ip>/<range>"

Important You must configure the NO-PROXY environment variable to use the value of the

Kubernetes API server IP address. To find the API-server IP address, run the following command:

kubectl -n default get service kubernetes -o=jsonpath='{..clusterIP}'

Additional Proxy Considerations

When using a non-transparent HTTPS proxy, you must configure the agent to use the proxy
certificate authority:

spec:
 gateways:
 gatewayTLS:
 rootCAsBundle: <Base64 encoded proxy CA>

Alternatively, you can allow the agent to communicate without verifying the certificate. We do
not recommend this option because it exposes the agent to an MITM attack.

spec:
 gateways:
 gatewayTLS:
 insecureSkipVerify: true

Changing the Image Source

By default, all images for the Operator and Agent deployments are pulled from Docker Hub.
If you prefer to mirror the images in your internal repositories, you can specify the image by
modifying the CBContainersAgent resource that you apply to your cluster.

Modify the following properties to specify the image for each service:

n monitor - spec.components.basic.monitor.image

n enforcer - spec.components.basic.enforcer.image

n state-reporter - spec.components.basic.stateReporter.image

Carbon Black Container User Guide

VMware by Broadcom 241

n runtime-resolver - spec.components.runtimeProtection.resolver.image

n runtime-sensor - spec.components.runtimeProtection.sensor.image

n image-scanning-reporter - spec.components.clusterScanning.imageScanningReporter.image

n cluster-scanner - spec.components.clusterScanning.clusterScanner.image

The image object consists of four properties:

n repository - the repository of the image; for example, docker.io/my-org/monitor

n tag - the version tag of the image; for example, 1.0.0, latest, and so forth.

n pullPolicy - the pull policy for that image; for example, IfNotPresent, Always, or Never. See

Image pull policy (external link).

n pullSecrets - the image pull secrets that are going to be used to pull the container images.

The secrets must already exist in the cluster. See Pull an Image from a Private Registry
(external link).

Sample configuration:

spec:
 monitor:
 image:
 repository: docker.io/my-org/monitor
 tag: 1.0.0
 pullPolicy: Always
 pullSecrets:
 - my-pull-secret

In this case, the operator attempts to run the monitor service from the docker.io/my-org/
monitor:1.0.0 container image and the kubelet is instruted to always pull the image by using

the my-pull-secret secret.

Using a Shared Secret for all Images

To use just one pull secret to pull all the custom images, specify it under
spec.settings.imagePullSecrets.

The secret is added to the imagePullSecrets list of all Agent workloads.

Operator Role-based Access Control

This section describes how to configure and use Carbon Black Container Operator Role-based
Access Control (RBAC).

RBAC Definition and Design

Following the principle of least-privilege, any permission given to the Operator should have good
reason and be scoped as tightly as possible.

Carbon Black Container User Guide

VMware by Broadcom 242

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

In practice, this means:

n If the resource is namespaced and part of the agent, use a Role to give permissions in the

agent's namespace only.

n If the resource is namespaced and not part of the agent:

n To read it, use a ClusterRole unless you are sure what the namespace will be.

n To modify it, examine whether this s absolutely necessary.

n If the resource is non-namespaced, use a ClusterRole and restrict delete, get, update, and

patch through resourceNames. Create, list, and watch either do not support this restriction or

require extra care.

Changing the Operator Access Levels

Operator access level permissions are generated by controller-gen and controlled by using
+kubebuilder directives. See controller definitions (external link). Any change to those directives
requires running make manifests to update the respective role.yaml file. You must also

propagate changes to the helm charts.

Changing the Agent Component Access Levels

Agent component access levels, service accounts, and role bindings are manually maintained in
dataplane_roles.yaml and the helm equivalent. You must apply changes in both locations.

The roles should follow the least-privilege principle. Agent components often need more
permissions than the Operator to work as expected.

Container Operator Developer Instructions

This topic describes instructions using the SDK version 1.29.0 for the Operator.

Deploy the Operator without using an Image

To install dependencies to verify the kubeconfig context:

make deploy OPERATOR_REPLICAS=0

To run the Operator from the terminal to verify the kubeconfig context:

make run

From your editor, run and debug main.go to verify the KUBECONFIG environment variable.

Carbon Black Container User Guide

VMware by Broadcom 243

https://github.com/octarinesec/octarine-operator/blob/main/controllers/cbcontainersagent_controller.go

Install the Dataplane on your own Control Plane

Under the Carbon Black Container Cluster CR:

spec:
 apiGatewaySpec:
 adapter: {MY-ADAPTER-NAME}

where {MY-ADAPTER-NAME} is your control plane adapter name. The default value is containers.

Uninstall the Container Operator

From a terminal, run the following command:

make undeploy

Note This command does not clean up the Carbon Black directory on the dataplane nodes.

Changing Security Context Settings

Hardening enforcer/state_reporter security context settings:

You can change the values under cbcontainers/state/hardening/objects for

enforcer_deployment.go or state_reporter_deployment.go.

Using defaults:

Defaults in the OpenAPISchema is a feature in apiextensions/v1 version of

CustomResourceDefinitions. These default values are supported by kubebuilder by using tags;

for example, kubebuilder:default=something. For backwards compatibility, all defaults should

also be implemented and set in the controllers to make sure that they work on clusters v1.15 and
below.

Note kubebuilder does not support an empty object as a default value. See related issue

(external link). The root issue is in regard to maps, but the same code causes issues with objects.

Therefore, the following specification will not apply the default for test unless the user specifies

bar.

spec:
 properties:
 bar:
 properties:
 test:
 default: 10
 type: integer

Applying this YAML will save an empty object for bar: spec: {}.

Carbon Black Container User Guide

VMware by Broadcom 244

https://github.com/kubernetes-sigs/controller-tools/issues/550

Instead, applying spec: { bar: {} } works as expected and saves the following object:

spec: { bar: { test: 10 }}

For example:

spec:
 properties:
 bar:
 default: {}
 properties:
 test:
 default: 10
 type: integer

kubebuilder cannot currently produce that output. Therefore, replacing all instance of <> with {}
so that using kubebuilder:default=<> produces the correct output.

Defaulting is not supported by v1beta1 versions of CRD.

Local Debugging

To debug locally, run make run-delve. This command builds and starts a delve debugger in

headless mode. Then use an editor to start a remote session and connect to the delve instance.

For goland, the built-in go remote configuration works.

Custom Namespace

If the Operator is not deployed in the default namespace (cbcontainers-dataplane), you must

set the OPERATOR_NAMESPACE environment variable when using make run or make run-delve.

Helm Charts

This topic describes the official Helm charts for installing the Carbon Black Container Agent
(Operator, CRD, and Agent components).

cbcontainers-operator

The cbcontainer-operator chart (external link) is the official Helm chart for installing the Carbon
Black Container Operator and CRD. Helm 3 is supported.

You can install the chart without any customizations or modifications, and you can create the Hel
release in any namespace. You can customize the namespace in which the Operator is installed.

To install the Helm chart from the source:

cd charts/cbcontainers-operator
helm install cbcontainers-operator ./cbcontainers-operator-chart

Carbon Black Container User Guide

VMware by Broadcom 245

https://github.com/octarinesec/octarine-operator/tree/main/charts/cbcontainers-operator

Table 8-9. Customization

Parameter Description Default Value

spec.operator.image.repository Repository of the Operator image cbartifactory/octarine-operator

spec.operator.image.version Version of the Operator image The latest version of the Operator
image

spec.operator.resources Carbon Black Container Operator
resources

{requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.rbacProxy.resources Kube RBAC proxy resources {requests: {memory: "64Mi", cpu:
"30m"}, limits: {memory: "256Mi", cpu:
"200m"}}

spec.operator.environment Environment variables to be set to
the Operator pod

[]

Namespace

By default, the Carbon Black Container Operator is installed in the cbcontainers-dataplane
namespace.

To change the namespace, set the operatorNamespace field in your values.yaml file.

The chart automatically creates the namespace. If you do not want to do that (because you have
already created the namespace), set the createOperatorNamespace field in your values.yaml file

to false.

If the namespace is pre-created, then it must also be labeled properly or the Operator and Agent
might not reconcile successfully. The following commands show an example of creating a custom
namespace and labeling and installing the operator inside.

NAMESPACE=<your_value>
kubectl create namespace $NAMESPACE
kubectl label namespace $NAMESPACE control-plane=operator octarine=ignore
helm install cbcontainers-operator ./cbcontainers-operator-chart --set
createOperatorNamespace=false,operatorNamespace=$NAMESPACE

CRD Installation

By default, installing the chart will also create the CBContainersAgent CRD.

To manage the CRD in a different way and not install it together with the chart, set the
installCRD field in your values.yamlfile to false.

HTTP Proxy

To use an HTTP proxy for the communication with the Carbon Black Cloud backend, you must
set 3 environment variables. These variables are exposed through the Values.operator.proxy
parameters in the values.yaml file:

n Values.operator.proxy.http

Carbon Black Container User Guide

VMware by Broadcom 246

n Values.operator.proxy.https

n Values.operator.proxy.noProxy

See also Configuring Container Services to use HTTP Proxy .

Templates

The cbcontainers-operator chart consists of four templates (external link).

The operator.yaml file (external link) contains all resources except for the Operator deployment.
It is generated by kustomize. For more info see config/default_chart (external link).

The deployment.yaml file contains the Operator Deployment resource. It is derived from

this Kustomize configuration. Because it must be configurable through Helm, it is heavily
templated. Therefore, it cannot be generated automatically, so it must be maintained by hand.
If any changes are made to the Kustomize configuration, they must also be reflected in the
deployment.yaml file.

The dataplane_rbac.yaml and dataplane_service_accounts files contain necessary RBAC

objects for the Agent to work as expected.

cbcontainers-agent

The cbcontainer-agent chart (external link) is the official Helm chart for installing the Carbon
Black Container Agent components. Helm 3 is supported.

Note Before installing the Agent components, you must install the Operator and the CRD.

Installation

Before you can install the chart, you must configure it. You must provide the following eight
required fields:

Parameter Description

spec.orgKey Org key of the organization using Carbon Black Cloud

spec.clusterName Name of the cluster that will be added to Carbon Black
Cloud

spec.clusterGroup The group that the cluster belongs to in Carbon Black
Cloud

spec.version Version of the Agent images

spec.gateways.apiGatewayHost URL of the Carbon Black Cloud API gateway

spec.gateways.coreEventsGatewayHost URL of the Carbon Black Cloud core events gateway

spec.gateways.hardeningEventsGatewayHost URL of the Carbon Black Cloud hardening events gateway

spec.gateways.runtimeEventsGatewayHost URL of the Carbon Black Cloud runtime events gateway

Carbon Black Container User Guide

VMware by Broadcom 247

https://github.com/octarinesec/octarine-operator/tree/main/charts/cbcontainers-operator/cbcontainers-operator-chart/templates
https://github.com/octarinesec/octarine-operator/blob/main/charts/cbcontainers-operator/cbcontainers-operator-chart/templates/operator.yaml
https://github.com/octarinesec/octarine-operator/tree/main/config/default_chart
https://github.com/octarinesec/octarine-operator/tree/main/config/manager
https://github.com/octarinesec/octarine-operator/tree/main/config/manager
https://github.com/octarinesec/octarine-operator/tree/main/charts/cbcontainers-agent

After setting these required fields in a values.yaml file, you can install the chart from source:

cd charts/cbcontainers-agent
helm install cbcontainers-agent ./cbcontainers-agent-chart -n cbcontainers-dataplane

Customization

The way in which the Carbon Black Container components are installed is highly customizable.

You can set different properties for the components or enable and disable components by using
the spec.components section of your values.yaml file.

For a list of all possible values, see Custom Resources Definitions.

Namespace

The Carbon Black Cloud Containers Agent will run in the same namespace as the deployed
Operator. This is by design because only one running agent per cluster is supported. To
customize that namespace, see operator-chart (external link).

The actual namespace where Helm tracks the release (see --namespace flag, external link) is
not important to the Agent chart, but the recommended approach is to also use the same
namespace as the Operator chart.

The agentNamespace value is only required if the Agent chart is responsible for deploying

the Agent's secret as well. If the secret is pre-created before deploying the agent, then
agentNamespace has no effect.

Secret Creation

Carbon Black API Key

For the Agent components to function correctly and communicate with the Carbon Black
Cloud backend, an access token is required. This token is located in a secret. By default,
the secret is named cbcontainers-access-token, but that name is configurable through the

accessTokenSecretName property. If that secret does not exist, the Operator will not start any

of the Agent components.

To create the secret as part of the chart installation, provide the accessToken value to the chart.

Inject this value as part of your pipeline in a secure way: store the secret as plain text in your
values.yaml file.

To create the secret in an alternative and more secure way, do not set the accessToken value: the

chart will not create the secret objects.

Important Do not store the token in your source code.

Carbon Black Company Codes

Carbon Black Container User Guide

VMware by Broadcom 248

https://github.com/octarinesec/octarine-operator/tree/a4ec106cbafe389996bfaace9dbbe7b4181591eb/charts/cbcontainers-operator
https://helm.sh/docs/helm/helm_install/

For the agent CNDR component to function correctly and communicate with the Carbon Black
Cloud backend, a company code is required. This code is located in a secret. By default,
the secret is named cbcontainers-company-code, but that name is configurable through the

components.cndr.companyCodeSecretName property.

If that secret does not exist, the CNDR component will fail.

If you want to create the secret as part of the chart installation, provide the companyCode value to

the chart.

Inject this value as part of your pipeline in a secure way: store the secret as plain text in your
values.yaml file.

To create the secret in an alternative and more secure way, do not set the companyCode value: the

chart will not create the secret objects.

Important Do not store the code in your source code.

Carbon Black Container User Guide

VMware by Broadcom 249

	Carbon Black Container User Guide
	Contents
	VMware Carbon Black Container User Guide
	Carbon Black Container Overview
	Why Deploy Security for Containers
	How Carbon Black Secures Containers
	Provides Visibility into Kubernetes Security Posture
	Secures the Complete Lifecycle of Kubernetes Applications
	Automates Runtime Cluster Scanning
	Enables Compliance and Policy Automation

	Containers Architecture
	Container Agent Components Architecture
	cbcontainers-operator
	cbcontainers-monitor
	cbcontainers-node-agent
	cbcontainers-hardening-enforcer
	cbcontainers-hardening-state-reporter
	cbcontainers-runtime-resolver
	cbcontainers-image-scanning-reporter

	Containers Concepts and Terminology

	Setting up the Container Security Environment
	Roles and Users for Containers
	Using and Creating Roles for Containers
	Add a Container Role

	Create a User Account for Containers

	Adding Clusters and Installing Kubernetes Sensors
	Add a Cluster and Install the Kubernetes Sensor
	Private Container Registry

	Check the Kubernetes Sensor Status and Health
	Installing a Containerized Sensor
	Set up a Containerized Sensor
	Install a Containerized Sensor
	Install a Containerized Sensor on a Docker Client
	Install a Containerized Sensor on an ECS Cluster

	Validate the Container Image Signature

	Setting up CLI Client for Image Scanning
	Download a CLI Client
	Add and Configure a CLI Client

	Carbon Black Container Operator Technical Reference
	Manually Deploy the Container Operator
	Uninstall the Container Operator

	Manually Deploy the Container Agent
	Openshift
	Reading Metrics by using Prometheus
	Custom Resources Definitions
	Changing Components Resources
	Configuring Container Services to use HTTP Proxy
	Changing the Image Source
	Operator Role-based Access Control
	Container Operator Developer Instructions
	Helm Charts

	Configuring Container Security
	Kubernetes Scopes
	Kubernetes Scopes Hierarchy
	Built-in Kubernetes Scopes
	Add a Kubernetes Applications Scope to Kubernetes Resources
	Add a Kubernetes Deploy Location Scope to Kubernetes Resources
	Add a Kubernetes Container Images Scope to Kubernetes Resources
	View a Kubernetes Scope
	Edit or Delete a Kubernetes Scope
	Kubernetes Scope Baselines for Runtime Policies
	View a Kubernetes Scope Baseline for a Runtime Policy
	Add a Behavior to a Kubernetes Scope Baseline
	Add a False Positive as Normal Behavior to the Scope Baseline
	Reset a Kubernetes Scope Baseline

	Egress Groups
	Create an Egress Group
	Edit or Delete an Egress Group

	Kubernetes Policies
	Kubernetes Runtime Policies
	Create a Kubernetes Runtime Policy
	Edit a Kubernetes Runtime Policy
	Enable a Kubernetes Runtime Policy Draft
	View Kubernetes Runtime Policy Details

	Kubernetes Hardening Policies
	Built-in Kubernetes Hardening Policies
	Create a Kubernetes Hardening Policy
	Enforcement Presets
	Assign an Enforcement Preset to a Kubernetes Hardening Policy
	Add or Delete an Enforcement Preset

	Edit a Kubernetes Hardening Policy
	Enable a Kubernetes Hardening Policy Draft
	Save a Hardening Policy as a Template
	Duplicate a Hardening Policy
	Kubernetes Policy Rules
	View Hardening Policy Rules
	Add Hardening Rules to a Template
	Built-in Kubernetes Policy Rules
	Custom Rules for Kubernetes Hardening Policies
	Basic JSONPath Rules
	Create a JSONPath Kubernetes Custom Rule
	Create a Kubernetes Custom Rule for Container Images
	Create an Advanced Kubernetes Custom Rule
	Edit or Delete a Kubernetes Custom Rule

	Create an Exception for a Kubernetes Hardening Policy Rule
	Mutate Hardening Rules
	Mutate a Rule Outcome

	Kubernetes Policy Templates
	Create a Kubernetes Policy Template
	Save a Hardening Policy as a Template

	Subscribe to Alert Notifications
	Setting up API Access
	Create and Manage an API Key
	Delete API Key with Attached Notification Rule
	Setting Access Levels
	Create Access Levels
	Apply Access Level to an API Key

	Scanning Images
	Manually Rescan a Container Image

	Monitoring and Analyzing Containers
	Severity Scoring
	Kubernetes Risk Severity Scoring
	Risk Evaluation for Container Images
	Color Indicators for Image Vulnerabilities Scoring

	Monitoring Container Images
	View Container Images - Overview
	View Deployed Container Image Details
	View Container Image Repositories
	View Image Scan Report - Scan Log Details
	View Container Image Scan Report
	View a Container Image Scan Report - Overview
	View a Container Image Scan Report - Layers
	View a Container Image Scan Report - Packages
	View a Container Image Scan Report - Suspicious Files
	View a Container Image Scan Report - Vulnerabilities
	View a Container Image Scan Report - Vulnerability Details
	View a Container Image Scan Report - K8s Workloads
	View a Container Image Scan Report - Scan Log

	Investigate Container Image Vulnerabilities
	Allow an Exception for a Vulnerability

	Managing and Viewing File Reputations in Container Images
	Detect Malware in a Container Image
	Override a File Reputation in a Container Image
	Manage File Reputations for Container Images
	Adding File Reputations in Container Images
	Add a File to the Banned List
	Add a Reputation to the Approved List
	Expiration of Approved Certificates

	Detecting and Preventing Secrets
	Detect Secrets in Containers on the Scan Log Page
	Prevent Secrets in Containers

	Monitoring Kubernetes Workloads
	View Kubernetes Workloads
	View a Kubernetes Workload - Overview
	View a Kubernetes Workload - Runtime Policy
	View a Kubernetes Workload - Hardening Policy
	View a Kubernetes Workload - Network Connections
	View a Kubernetes Workload - Risks
	View a Kubernetes Workload - Behavior Models
	Kubernetes Virtual Workloads

	Analyzing Network Activity
	Investigate Cluster Activity in the Network Map
	Visualizing Namespace Data on the Network Map
	Visualizing Workloads Data on the Network Map

	Investigating and Remediating Container Security Issues
	Exploring Kubernetes Events (Hardening)
	Explore Kubernetes Events - Overview
	Explore Kubernetes Events - Details

	Investigating Container Events on the Investigate Page
	Investigate Container Events
	Investigate Kubernetes Clusters
	Investigate Kubernetes Namespaces
	Investigate Kubernetes Workloads

	Investigate Containers Events on the Process Analysis Page
	Triaging Kubernetes Alerts
	Search for Kubernetes Alerts
	View Kubernetes Alert Details

	Identify Available Fixes and Patches

	Managing Clusters and Kubernetes Sensors
	View Clusters
	Edit a Cluster
	Delete a Cluster and its Sensor
	Upgrading or Downgrading the Kubernetes Sensor
	Upgrade or Downgrade the Kubernetes Sensor through the Command Line
	Upgrade or Downgrade the Kubernetes Sensor through the Console
	Upgrade or Downgrade the Kubernetes Sensor Remotely through the Console

	Delete a CLI Client

	Carbon Black Container Operator Technical Reference
	Manually Deploy the Container Operator
	Uninstall the Container Operator

	Manually Deploy the Container Agent
	Openshift
	Reading Metrics by using Prometheus
	Custom Resources Definitions
	Changing Components Resources
	Configuring Container Services to use HTTP Proxy
	Changing the Image Source
	Operator Role-based Access Control
	Container Operator Developer Instructions
	Helm Charts

