You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to
docfeedback@vmware.com
Contents

About VMware Cloud on AWS Operations 5

1 About Software-Defined Data Centers 6
Configuration Maximums for VMware Cloud on AWS 6
Deploying and Managing a Software-Defined Data Center 11
Deploy an SDDC from the VMC Console 15
Rename an SDDC 19
Delete an SDDC 19
SDDC Upgrades and Maintenance 20
 View an SDDC Maintenance Schedule Reservation 23
 Convert UTC Time to Local Time 24
 Estimating the Duration of SDDC Maintenance 24
View Billing Information 25
Roles and Permissions in the SDDC 26

2 Managing SDDC Hosts and Clusters 27
VMware Cloud on AWS Host Types 27
Add a Cluster 28
Remove a Cluster 29
Add Hosts 29
Remove Hosts 30
About Elastic DRS 31
 How the Elastic DRS Algorithm Works 32
 Select Elastic DRS Policy 34
Using Policies and Profiles 34
 Create or Delete a VM-Host Affinity Policy 35
 Create or Delete a VM-Host Anti-Affinity Policy 36
 Create or Delete a VM-VM Affinity Policy 37
 Create or Delete a VM-VM Anti-Affinity Policy 38
 Create or Delete a Disable DRS vMotion Policy 39

3 Working With SDDC Add-On Services 41
Using The VMware Log Intelligence Service 41

4 Getting Templates, ISOs, and Other Content into Your SDDC 42
Use the Content Onboarding Assistant to Transfer Content to Your SDDC 43
Use a Content Library to Import Content into Your SDDC 45
Upload Files or Folders to your SDDC 45
5 Migrating Virtual Machines 47
 Hybrid Migration with vMotion Checklist 50
 Required Firewall Rules for vMotion 52
 Hybrid Migration with HCX Checklist 53
 Hybrid Cold Migration Checklist 54
 Required Firewall Rules for Cold Migration 55

6 Accessing AWS Services 57
 Access an EC2 Instance 57
 Access an S3 Bucket Using an S3 Endpoint 59
 Access an S3 Bucket Using the Internet Gateway 61
 Use AWS CloudFormation to Create an SDDC 62
 AWS Roles and Permissions 63

7 Using On-Premises vRealize Automation with Your Cloud SDDC 66
 Prepare Your SDDC to Work with vRealize Products 66
 Connect vRealize Automation to Your SDDC 67
 Enable vRealize Automation Access to the Remote Console 68

8 VMC Console Settings 70
 Set Language for the VMC Console 70

9 Troubleshooting 71
 Get Help and Support 71
 View and Subscribe to the Service Status Page 72
 Unable to Connect to VMware Cloud on AWS 72
 Unable to Connect to vCenter Server 73
 Unable to Select Subnet When Creating SDDC 74
 Unable to Copy Changed Password Into vCenter Login Page 74
 Compute Workloads Are Unable to Reach an On-Premises DNS Server 75
About VMware Cloud on AWS Operations

The *VMware Cloud on AWS Operations Guide* provides information about configuring advanced SDDC features that support ongoing operation of your VMware Cloud on AWS SDDC, including storage management, provisioning, and seamless interoperation with your on-premises data center.

Intended Audience

This guide is primarily for VMware Cloud on AWS organization members who have the CloudAdmin role or another role that includes administrative rights over objects owned by your organization. It covers operational areas like provisioning your SDDC with content from your on-premises datacenter, using AWS services like S3 and Direct Connect, and integrating VMware Cloud on AWS with other VMware and Amazon tools.

We assume you already have experience using an SDDC with a management network as described in the VMware Cloud on AWS *Getting Started* guide. Experience configuring and managing vSphere in an on-premises environment and familiarity with virtualization concepts are assumed. In-depth knowledge of Amazon Web Services is useful, but is not required.
About Software-Defined Data Centers

A VMware Cloud on AWS Software-Defined Data Center (SDDC) includes compute, storage, and networking resources.

Each SDDC runs in an Amazon Virtual Private Cloud (VPC) and provides a full VMware stack, including vCenter Server, NSX for vSphere or NSX-T software-defined networking, vSAN software-defined storage, and one or more ESXi hosts that provide compute and storage resources to your workloads.

This chapter includes the following topics:

- Configuration Maximums for VMware Cloud on AWS
- Deploying and Managing a Software-Defined Data Center
- Deploy an SDDC from the VMC Console
- Rename an SDDC
- Delete an SDDC
- SDDC Upgrades and Maintenance
- View Billing Information
- Roles and Permissions in the SDDC

Configuration Maximums for VMware Cloud on AWS

There are maximums and minimums associated with many features in VMware Cloud on AWS.

All limits listed are hard limits unless otherwise indicated. A hard limit cannot be changed. Any limit described as a soft limit may be increased upon request. Contact VMware Support to request an increase to a soft limit.

SDDC Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of SDDCs per Organization</td>
<td>2</td>
<td>Number of SDDCs per organization. This is a soft limit.</td>
</tr>
<tr>
<td>Number of linked VPCs</td>
<td>1</td>
<td>Maximum number of linked AWS VPCs per SDDC.</td>
</tr>
<tr>
<td>Public IP Addresses (Elastic IPs)</td>
<td>75</td>
<td>Maximum number of elastic IP addresses per SDDC. This is a soft limit.</td>
</tr>
<tr>
<td>Maximum</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Minimum hosts per cluster for full SLA</td>
<td>3</td>
<td>This is the minimum number of ESXi per vSphere cluster to be supported at the full SLA.</td>
</tr>
<tr>
<td>Minimum hosts per cluster for no SLA</td>
<td>1</td>
<td>This is the minimum number of ESXi hosts per vSphere cluster with no SLA.</td>
</tr>
<tr>
<td>Maximum hosts per cluster, including stretched clusters</td>
<td>16</td>
<td>The maximum number of ESXi hosts per vSphere cluster. This limit applies to both single-AZ clusters and stretched clusters.</td>
</tr>
<tr>
<td>Maximum clusters</td>
<td>20</td>
<td>Maximum number of vSphere cluster per SDDC.</td>
</tr>
<tr>
<td>SDDCs per region</td>
<td>5</td>
<td>Maximum number of SDDCs per region. This is a soft limit.</td>
</tr>
</tbody>
</table>

vCenter Server Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum hosts per SDDC</td>
<td>300</td>
<td>Maximum number of ESXi hosts per SDDC. This is a soft limit.</td>
</tr>
<tr>
<td>Maximum VMs per SDDC</td>
<td>4000</td>
<td>Maximum number of virtual machines per SDDC.</td>
</tr>
<tr>
<td>VMs per host</td>
<td>200</td>
<td>Maximum number of VMs per host.</td>
</tr>
</tbody>
</table>

Networking and Security Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP entries per Edge Node</td>
<td>5000</td>
<td>Maximum number of ARP entries.</td>
</tr>
<tr>
<td>IPSec VPN Tunnel</td>
<td>16</td>
<td>Maximum number of IPsec VPN tunnels created per SDDC.</td>
</tr>
<tr>
<td>Logical Segment</td>
<td>200</td>
<td>Maximum number of logical segments per SDDC.</td>
</tr>
<tr>
<td>Logical Ports</td>
<td>1000 per logical segment</td>
<td>Maximum number of ports on a logical segment.</td>
</tr>
<tr>
<td>MGW Firewall Rule</td>
<td>200</td>
<td>Maximum number of Management Gateway firewall rules.</td>
</tr>
<tr>
<td>CGW Firewall Rule</td>
<td>950</td>
<td>Maximum number of Compute Gateway firewall rules.</td>
</tr>
<tr>
<td>CGW NAT Rule</td>
<td>500</td>
<td>Maximum number of Compute Gateway NAT rules.</td>
</tr>
<tr>
<td>Logical segment advertised over DX private VIF</td>
<td>16</td>
<td>Maximum number of logical segments advertised over Direct Connect Private VIF. This is a soft limit.</td>
</tr>
<tr>
<td>Number of L2 VPN Clients</td>
<td>1</td>
<td>Maximum number of sites connecting to L2 VPN server per SDDC.</td>
</tr>
<tr>
<td>Extended Network</td>
<td>100 per L2 VPN</td>
<td>Maximum number of logical segments extended from on-premises.</td>
</tr>
<tr>
<td>Distributed Firewall Grouping Objects</td>
<td>10000</td>
<td>Maximum number of grouping objects (security groups).</td>
</tr>
<tr>
<td>Ports with Grouping Objects Applied</td>
<td>1000</td>
<td>Maximum number of ports with grouping objects (security groups) applied.</td>
</tr>
<tr>
<td>Distributed Firewall Sections</td>
<td>100</td>
<td>Maximum number of distributed firewall sections.</td>
</tr>
</tbody>
</table>
Maximum Values

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Firewall Rules Across All Section Groups</td>
<td>10000</td>
<td>Maximum total number of distributed firewall rules across all sections groups (Emergency Rules, Infrastructure Rules, and so on).</td>
</tr>
<tr>
<td>Distributed Firewall Rules Per Section Group</td>
<td>10000</td>
<td>Maximum number of distributed firewall rules per section group.</td>
</tr>
<tr>
<td>Distributed Firewall Sections Per Section Group</td>
<td>100</td>
<td>Maximum number of distributed firewall sections per section group (Emergency Rules, Infrastructure Rules, and so on).</td>
</tr>
<tr>
<td>Distributed Firewall Sections Across All Section Groups</td>
<td>100</td>
<td>Maximum number of distributed firewall sections across all section groups.</td>
</tr>
<tr>
<td>IPs per IP Set</td>
<td>4000</td>
<td>Maximum number of IP addresses that can be included in an IP set.</td>
</tr>
<tr>
<td>Distributed Firewall Rules per Grouping Object</td>
<td>512</td>
<td>Maximum number of distributed firewall rules per grouping object (security group).</td>
</tr>
<tr>
<td>Security Tags per VM</td>
<td>25</td>
<td>Maximum number of security tags per VM.</td>
</tr>
<tr>
<td>VMs per Grouping Object</td>
<td>5</td>
<td>Maximum number of VMs per grouping object (security group).</td>
</tr>
<tr>
<td>Port Mirroring Source VMs per session</td>
<td>5</td>
<td>Maximum number of source VMs in a port mirroring session.</td>
</tr>
<tr>
<td>Port Mirroring Destination VMs per session</td>
<td>1</td>
<td>Maximum number of destination VMs in a port mirroring session.</td>
</tr>
<tr>
<td>IPFIX Collectors</td>
<td>4</td>
<td>Maximum number of IPFIX Collectors configured.</td>
</tr>
<tr>
<td>IP Discovery ARP Snooping</td>
<td>1</td>
<td>Maximum IPs detected by ARP snooping on a VM.</td>
</tr>
<tr>
<td>IP Discovery VM Tools</td>
<td>1024 (with VMware Tools 10.3.x on a VM)</td>
<td>Maximum IPs detected by VMware Tools 10.3.x on a VM.</td>
</tr>
<tr>
<td>Direct Connect Private VIF Connection per SDDC</td>
<td>4</td>
<td>Maximum number of private virtual interfaces attached to one SDDC.</td>
</tr>
<tr>
<td>Number of VI/Fs/Ports per host</td>
<td>400</td>
<td>Maximum number of VI/Fs or ports per host.</td>
</tr>
</tbody>
</table>

vSAN Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum datastore capacity that can be utilized</td>
<td>75%</td>
<td>You can use up to 75% of available datastore capacity. Usage beyond this point creates a non-compliant environment as described in Service Level Agreement for VMware Cloud on AWS</td>
</tr>
<tr>
<td>Datastore capacity requiring remediation plan</td>
<td>70%</td>
<td>You should prepare a remediation plan when capacity utilization nears 70%. Either add hosts to augment datastore capacity, or reduce storage utilization.</td>
</tr>
<tr>
<td>VMs per vSAN Hosts</td>
<td>200</td>
<td>Maximum number of VMs per ESXi host in a vSAN cluster.</td>
</tr>
</tbody>
</table>
Site Recovery Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMS per SDDC (NSX-T based networking)</td>
<td>1000</td>
<td>This is the supported limit for NSX-T and takes into account both incoming and outgoing replications. Bidirectional protection: The total number of protected VMs across both sites cannot exceed this limit.</td>
</tr>
<tr>
<td>VMs per SDDC (NSX for vSphere based networking)</td>
<td>500</td>
<td>This is the supported limit for NSX for vSphere and takes into account both incoming and outgoing replications. Bidirectional protection: The total number of protected VMs across both sites cannot exceed this limit.</td>
</tr>
<tr>
<td>VMs per protection group</td>
<td>500</td>
<td>Maximum number of VMs per protection group.</td>
</tr>
<tr>
<td>Number of recovery plans</td>
<td>250</td>
<td>Maximum number of recovery plans.</td>
</tr>
<tr>
<td>Protection groups per recovery plan</td>
<td>250</td>
<td>Maximum number of protection groups per recovery plan.</td>
</tr>
<tr>
<td>VMs per recovery plan</td>
<td>1000</td>
<td>Maximum number of VMs per recovery plan.</td>
</tr>
<tr>
<td>Concurrent recoveries</td>
<td>1000</td>
<td>Total number of VM recoveries that you can start simultaneously across multiple recovery plans.</td>
</tr>
<tr>
<td>Multiple-site deployment limits</td>
<td>10</td>
<td>With VMware Site Recovery, you can connect multiple protected and recovery sites to a single SDDC. A single SDDC can support a maximum of 10 paired remote sites.</td>
</tr>
</tbody>
</table>

HCX Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Pairs</td>
<td>10</td>
<td>Registered destination HCX sites (SDDCs) per source HCX Manager</td>
</tr>
<tr>
<td>Service Meshes</td>
<td>1</td>
<td>One per source and destination Compute Profile pair</td>
</tr>
<tr>
<td>HCX Interconnect Appliances</td>
<td>1</td>
<td>One per Service Mesh</td>
</tr>
<tr>
<td>HCX WAN Optimization Appliances</td>
<td>1</td>
<td>One per Service Mesh</td>
</tr>
<tr>
<td>HCX Network Extension Appliances</td>
<td>50</td>
<td>Per HCX Manager</td>
</tr>
<tr>
<td>Concurrent HCX Bulk Migration Operations</td>
<td>100</td>
<td>Per HCX Manager</td>
</tr>
<tr>
<td>Concurrent HCX vMotion Operations</td>
<td>1</td>
<td>Per Service Mesh. Subsequent operations are queued, up to a maximum of 100.</td>
</tr>
<tr>
<td>Concurrent HCX Cold Migration Operations</td>
<td>8</td>
<td>Per Service Mesh. Subsequent operations are queued, up to a maximum of 100.</td>
</tr>
<tr>
<td>Concurrent HCX vMotion w/vSphere Replication (Replication Assisted vMotion)</td>
<td>100</td>
<td>Scheduled switchover is serial. Switchovers are queued with HCX vMotions.</td>
</tr>
<tr>
<td>Maximum HCX Virtual Machine Protections</td>
<td>500</td>
<td>Maximum number of HCX Virtual Machine Protections.</td>
</tr>
<tr>
<td>Maximum</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Maximum Network Extensions to NSX for vSphere SDDCs</td>
<td>200</td>
<td>Maximum number of on-premises networks that can be extended to an NSX for vSphere cloud SDDC.</td>
</tr>
<tr>
<td>Maximum Network Extensions to NSX-T SDDCs</td>
<td>8</td>
<td>Maximum number of on-premises networks that can be extended to an NSX-T cloud SDDC. 10 Network Extension appliance interfaces minus uplink/management</td>
</tr>
<tr>
<td>Maximum Network Extensions with Cisco Nexus 1000v at the Source Site</td>
<td>8</td>
<td>10 Network Extension appliance interfaces minus uplink/management.</td>
</tr>
<tr>
<td>Network Extension Throughput</td>
<td>4-6 Gbps</td>
<td>4-6+ Gbps per HCX Network Extension Appliance. 1+ Gbps per traffic flow. Performance varies depending on: MTU, Latency, Environment Traffic, Network Bandwidth, CPU, Memory resources</td>
</tr>
<tr>
<td>Virtual Machine Hardware Version</td>
<td>HW version 7 or higher is required for Bulk migration Hardware version 9 or higher is required for HCX vMotion, RAV migrations, and cold migrations.</td>
<td>Minimum virtual machine hardware versions required for migration.</td>
</tr>
<tr>
<td>Maximum Virtual Machine Disk Size for HCX Bulk Migration and Replication Assisted vMotion</td>
<td>62 TB with ESXi 5.5 or later, 2 TB with ESXi 5.0 to 5.1</td>
<td>Maximum VM disk size for bulk migration and Replication Assisted vMotion.</td>
</tr>
<tr>
<td>Maximum Virtual Machine Disk size for HCX vMotion</td>
<td>Reference the VMDK limitations for the destination site data store</td>
<td>Maximum VM disk size for HCX vMotion.</td>
</tr>
</tbody>
</table>

Horizon Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of desktops per SDDC</td>
<td>2500</td>
<td>For knowledge worker as defined by Login VSI and WQHD display Actual customer workload might have different characteristics than the benchmark workload used in testing. Therefore, results might vary.</td>
</tr>
</tbody>
</table>
VMware Cloud Services Identity Maximums

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logins per Identity Provider</td>
<td>250 users/minute</td>
<td>Each VIDM tenant has a limitation of 250 users max performing login in a minute.</td>
</tr>
<tr>
<td>Refresh Auth Token flow</td>
<td>9500 users/minute</td>
<td>Maximum number of users that can exchange an API token for an authentication token using the following API: <code>https://console.cloud.vmware.com/csp/gateway/am/api/swagger-ui.html#/Authentication/getAccessTokenByApiRefreshTokenUsingPOST</code>.</td>
</tr>
<tr>
<td>Users in Organizations</td>
<td>no limit</td>
<td>There is no limit to the number of users in an Organization.</td>
</tr>
<tr>
<td>AD Connections</td>
<td>no limit</td>
<td>There is no limit to the number of open AD connections.</td>
</tr>
</tbody>
</table>

Deploying and Managing a Software-Defined Data Center

Deploying a Software-Defined Data Center (SDDC) is the first step in making use of the VMware Cloud on AWS service. After you deploy the SDDC, you can view information about it and perform management tasks.

There are a number of factors to consider before deploying your SDDC.

Connected AWS account

When you deploy an SDDC on VMware Cloud on AWS, it is created within an AWS account and VPC dedicated to your organization and managed by VMware. You must also connect the SDDC to an AWS account belonging to you, referred to as the customer AWS account. This connection allows your SDDC to access AWS services belonging to your customer account.

If you are deploying a Single Host SDDC, you can delay linking your customer AWS account for up to two weeks. You cannot scale up a Single Host SDDC to a multiple host SDDC until you link an AWS account. If you are deploying a multiple host SDDC, you must link your customer AWS account when you deploy the SDDC.

AWS VPC Configuration and Availability Requirements

The VPC and subnet you use to connect the SDDC to your AWS account must meet several requirements:

- It must be in an AWS Availability Zone (AZ) where VMC resources are available. Start by creating a subnet in every AZ in the AWS Region where the SDDC will be created. That way, you can identify all the AZs where an SDDC can be deployed and select the AZ that best meets your SDDC placement needs, whether you want to keep your VMC workloads close to or isolated from your existing AWS workloads running in a particular AZ. See Creating a Subnet in Your VPC in the AWS documentation for information about how to use the Amazon VPC console to create a subnet in your VPC.
The AWS account being linked must have sufficient capacity to create a minimum of 17 ENIs per SDDC in the region, although we recommend sufficient capacity for 32 ENIs per SDDC to support maximum scalability.

If necessary, you can link multiple SDDCs to a VPC as long as the VPC subnet used for ENI connectivity has big enough CIDR block to accommodate them. We recommend a /26 CIDR block (33 IP addresses) per SDDC. At a minimum, you need a /27 CIDR block (17 IP addresses). You can also allocate a separate VPC subnet for each SDDC connection. You must ensure in all cases that the CIDR blocks for the SDDC and the VPC do not overlap.

The subnet(s) used for the SDDC, as well as any subnets on which AWS services or instances communicate with the SDDC must all be associated with the VPC’s main route table.

The IP address range of the subnet must be unique within your enterprise network infrastructure. It cannot overlap the IP address range of any of your on-premises networks.

Note Workload VMs in the SDDC can communicate over the ENI connection with all subnets in the primary CIDR block of the connected VPC. VMC is unaware of other CIDR blocks in the VPC.

Single Host SDDC starter configuration for VMware Cloud on AWS

You can jump start your VMware Cloud on AWS experience with a Single Host SDDC starter configuration. This is a time-limited offering designed for you to prove the value of VMware Cloud on AWS in your environment. The service life of a Single Host environment is limited to 30 days. At any point during the service life of a Single Host SDDC, you can scale it up to a production configuration with three or more hosts with no loss of data. If you don't scale up the Single Host SDDC before the end of the service life, the SDDC is deleted along with all the workloads and data it contains.

Stretched Clusters for VMware Cloud on AWS

You can create an SDDC with a cluster that spans two availability zones. A vSAN stretched cluster is used to create a single datastore for the cluster and replicate the data across both availability zones. If service in one availability zone is disrupted, workload VMs are brought up in the other availability zone.

The following restrictions apply to stretched clusters:

- The linked VPC must have two subnets, one in each AZ in the cluster.
- You can’t convert a stretched cluster to a single availability zone cluster, or vice versa.
- A given SDDC can contain either single availability zone clusters or stretched clusters, but not a mix of both.
- Currently, a given SDDC can contain only one stretched cluster.
- You need a minimum of six hosts (three in each AZ) to create a stretched cluster. Hosts must be added in pairs.
SDDC Networking

When you create an SDDC, it includes a Management Network and a Compute Network. The Management Network has two subnets:

Appliance Subnet
A subnet of the CIDR range you specified for the Management Subnet when you created the SDDC. This subnet is used by the vCenter, NSX, and HCX appliances in the SDDC. When you add appliance-based services such as SRM to the SDDC, they also connect to this subnet.

Infrastructure Subnet
A subnet of the CIDR range you specified for the Management Subnet when you created the SDDC. This subnet is used by the ESXi hosts in the SDDC.

The compute network can have up to 16 segments for your workload VMs. In a Single Host SDDC starter configuration, the compute network is created with one routed segment. In SDDC configurations that have more hosts, you'll have to create compute network segments to meet your needs.

A Tier 0 NSX Edge appliance sits between your on-premises networks and your SDDC networks, and routes traffic to either the management network or the compute network as appropriate.
Figure 1-1. SDDC Network Topology

Tier 0 Edge Appliance
All traffic between your on-premises networks and the SDDC passes through this appliance. Compute Gateway firewall rules, which control access to workload VMs, are applied on its uplink interfaces.

Management Gateway (MGW)
The MGW is an NSX Edge Security gateway that provides north-south network connectivity for the vCenter Server and other management appliances running in the SDDC. The Internet-facing IP address (Public IP #1) is automatically assigned from the pool of AWS public IP addresses when the SDDC is created. Pick an address range (CIDR block) for the management subnet that can support the number of ESXi hosts in your
SDDC. If you don't specify a range when you create the SDDC, the system uses a default of 10.2.0.0/16.

Compute Gateway (CGW)
The CGW provides north-south network connectivity for virtual machines running in the SDDC. In a single-node SDDC, VMware Cloud on AWS creates a default logical network segment (CIDR block 192.168.1.0/24) to provide networking for these VMs. You can create additional logical networks on the **Networking & Security** tab.

Before you can connect your on-premises network to your SDDC so you can migrate and run workload VMs in VMware Cloud on AWS, you'll need to configure, VPNs, firewall rules, AWS Direct Connect (optional) and other networking components.

Deploy an SDDC from the VMC Console

Deploy an SDDC to host your workloads in the cloud.

To create an SDDC, pick an AWS region to host it, give the SDDC a name, and specify how many ESXi hosts you want the SDDC to contain. If you don't already have an AWS account, you can still create a starter configuration SDDC that contains a single ESXi host.

Procedure

1. Log in to the VMC Console at https://vmc.vmware.com.
2. Click Create SDDC.
3 Configure SDDC properties.

a Select the AWS region in which to deploy the SDDC.

The following regions are available:

- US West (Oregon)
- US East (N. Virginia)
- Europe (London)
- Europe (Frankfurt)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- Europe (Ireland)
- US West (N. California)
- US East (Ohio)
- Asia Pacific (Singapore)
- Canada (Central)
- Europe (Paris)
- Asia Pacific (Mumbai)
- Asia Pacific (Seoul)
- South America (São Paulo)

b Select deployment options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Host</td>
<td>Select this option to create Single Host Starter Configuration SDDC. Single Host Starter Configuration SDDCs expire after 30 days. For more information, see Deploying a Single Host SDDC Starter Configuration.</td>
</tr>
<tr>
<td>Multi-Host</td>
<td>Select this option to create an SDDC with three or more hosts.</td>
</tr>
<tr>
<td>Stretched Cluster</td>
<td>If you create a multiple-host SDDC, you also have the option to create a stretched cluster that spans two availability zones. The multiple availability zone stretched cluster provides fault tolerance and availability in the event that there is a problem with one of the availability zones. You must have a minimum of six hosts in a stretched cluster, and you must deploy an even number of hosts.</td>
</tr>
</tbody>
</table>

Note: The US West (N. California), Canada (Central), and South America (São Paulo) regions do not currently support Stretched Clusters.

c Enter a name for your SDDC.

You can change this name later if you want to. See Rename an SDDC in the VMware Cloud on AWS Operations Guide.
d Select the host type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i3 (Local SSD)</td>
<td>Provision hosts with a fixed amount of local SSD storage per host.</td>
</tr>
<tr>
<td>R5 (EBS)</td>
<td>Provision hosts with EBS-based storage. When provisioning R5 hosts, you can select the storage capacity per host. This allows you to provision greater capacity for workloads requiring large storage capacities.</td>
</tr>
</tbody>
</table>

e If you selected R5 (EBS) hosts, select the storage capacity per host.

The value you select is used for all hosts in the cluster, including any hosts you add to the cluster after creation.

f If you are creating a multiple host SDDC, specify the initial **Number of Hosts** you want in the SDDC.

You can add or remove hosts later if you need to.

Note Storage capacity, performance, and redundancy are all affected by the number of hosts in the SDDC. See Storage Capacity and Data Redundancy for more information.

Host Capacity and Total Capacity update to reflect the number of hosts you've specified.

4 Connect to an AWS account.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skip for now</td>
<td>If you don't have an AWS account or don't want to connect to one you have now, you can postpone this step for up to 14 days. This option is currently available for Single Host SDDCs only.</td>
</tr>
<tr>
<td>Use an existing AWS account</td>
<td>From the Choose an AWS account drop-down, select an AWS account to use an AWS account that was previously connected to another SDDC. If no accounts are listed in the drop-down, you must Connect to a new AWS account. Note: Ensure that you do not select an account that is currently connected to an active SDDC. VMware Cloud on AWS does not support connecting multiple SDDCs to the same AWS account.</td>
</tr>
<tr>
<td>Connect a new AWS account</td>
<td>From the Choose an AWS account drop-down, select Connect to a new AWS account and follow the instructions on the page. The VMC Console shows the progress of the connection.</td>
</tr>
</tbody>
</table>

See AWS VPC Configuration and Availability Requirements for important information about requirements for the subnets you create in this AWS account.
5 (Optional) Click **NEXT** to configure the Management Subnet in the SDDC.

Enter an IP address range for the management subnet as a CIDR block or leave the text box blank to use the default, which is 10.2.0.0/16. You can't change these values after the SDDC has been created, so consider the following when you specify this address range:

- Choose a range of IP addresses that does not overlap with the AWS subnet you are connecting to. If you plan to connect your SDDC to an on-premises data center, the IP address range of the subnet must be unique within your enterprise network infrastructure. It cannot overlap the IP address range of any of your on-premises networks.

- If you are deploying a single host SDDC, the IP address range 192.168.1.0/24 is reserved for the default compute gateway logical network of the SDDC. If you specify a management network address range that overlaps with 192.168.1.0/24, the compute gateway logical network is created as 172.168.1.0/24. If you are deploying a full-scale SDDC, no compute gateway logical network is created during deployment, so you'll need to create one after the SDDC is deployed.

In addition, CIDR blocks 10.0.0.0/15 and 172.31.0.0/16 are reserved for internal use. The management network CIDR block cannot overlap either of these ranges.

- CIDR blocks of size 16, 20, or 23 are supported. The primary factor in selecting a Management CIDR block size is the anticipated scalability requirements of the SDDC. If you intend to scale your SDDC beyond four hosts, consider using a /20 CIDR block. For CIDR blocks of size 20 or 16, the maximum number of hosts your SDDC can contain is limited to 160. Regardless of the number of AZs it occupies, an SDDC can have at most ten clusters with at most 16 hosts per cluster.

 A /23 CIDR block is appropriate for testing, or for SDDCs that you know will not require much growth in capacity. For CIDR blocks of size 23, the maximum number of hosts your SDDC can contain depends on the CIDR block size you specify and whether the SDDC occupies a single availability zone (AZ) or multiple AZs.

<table>
<thead>
<tr>
<th>CIDR block size</th>
<th>Number of hosts (Single AZ)</th>
<th>Number of hosts (Multi AZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>20, 16</td>
<td>160 (10 clusters with at most 16 hosts per cluster, regardless of the number of AZs.)</td>
<td></td>
</tr>
</tbody>
</table>

6 Acknowledge that you understand and take responsibility for the costs you incur when you deploy an SDDC, then click **DEPLOY SDDC** to create the SDDC.

Charges begin when you click **DEPLOY SDDC**. You cannot pause or cancel the deployment process after it starts. You won't be able to use the SDDC until deployment is complete. Deployment typically takes about two hours.

What to do next

After your SDDC is created, do the following:

- Configure a VPN connection to the management gateway.
For full-scale SDDCs, you must configure a logical segment for workload VM networking. Single host SDDCs have a default logical segment. A banner is displayed on the SDDC card after creation is complete to indicate whether you need to create a logical segment. See Create a Network Segment.

For single host SDDCs, a banner is displayed on the SDDC card to indicate that a default logical segment has been created for this SDDC. If this default segment causes a conflict, delete it and create a new segment. See Create a Network Segment.

Rename an SDDC

You can rename an existing SDDC.

SDDC names are limited to 128 characters. They are not required to be unique.

Procedure

1. Log in to the VMC Console at https://vmc.vmware.com.
2. On the card for the SDDC you want to rename, click **Actions > Rename SDDC**.
3. Type the new SDDC name and click **RENAME**.

Delete an SDDC

Deleting an SDDC terminates all running workloads and destroys all SDDC data and configuration settings including public IP addresses. Deletion of an SDDC cannot be undone.

Procedure

1. Log in to the VMC Console at https://vmc.vmware.com.
2. On the card for the SDDC you want to remove, click **Actions > Delete SDDC**
3. Confirm that you understand the consequences of deleting an SDDC.

 Select all of the following:

 - All workloads in this SDDC will be terminated.
 - You will lose all data and configuration settings in this SDDC.
 - You will lose all UI and API access to this SDDC.
 - All public IP addresses for this SDDC will be released.
 - All direct connect virtual interfaces will be deleted.

 or click **CANCEL** to cancel the process without affecting the SDDC.

4. Click **DELETE SDDC**.
SDDC Upgrades and Maintenance

VMware Cloud on AWS regularly performs updates on your SDDCs. These updates ensure continuous delivery of new features and bug fixes, and maintain consistent software versions across the SSDC fleet.

When an SDDC update is upcoming, VMware sends a notification email to you. Typically, this occurs 7 days before a regular update and 1-2 days before an emergency update.

You also receive notifications by email when each phase of the update process starts, completed, is rescheduled, or is canceled. To ensure that you receive these notifications, whitelist vmc-services-notices@vmware.com.

The upgrade process differs between SDDCs with networking based on NSX-T and SDDCs using networking based on NSX for vSphere.

Upgrade Process for SDDCs Using NSX-T

The figure below shows the upgrade process for SDDCs with networking based on NSX-T.

Important During upgrades:

- Do not perform hot or cold workload migrations. Migrations fail if they are started or in progress during maintenance.
- Do not perform workload provisioning (New(Clone VM)). Provisioning operations fail if they are started or in progress during maintenance.
- Do not make changes to Storage-based Policy Management settings for workload VMs.
- Ensure that there is enough storage capacity (> 30% slack space) in each cluster.

Maintenance is performed in three phases.
Phase 1: Host Networking Updates. These are the updates to the host networking software (NSX-T) in the SDDC. An additional host is temporarily added to the SDDC to provide enough capacity for the update. vMotion and DRS activities occur to facilitate the update. During this time, your workloads and other resources function as usual subject to the constraints outlined above.

You will receive a notification when Phase 1 starts. After Phase 1 is complete, there is a waiting period until Phase 2 starts. Phase 2 is initiated at a designated start time that is usually days after the Phase 1 start time. This allows for enough time for Phase 1 to finish successfully.

Phase 2: Control Plane Updates. These are the updates to vCenter Server. During this time you do not have access to vCenter Server or other management VMs in your SDDC, but workloads and other resources function as usual subject to the constraints outlined above. However, there is a short downtime of 10-20 seconds for North-South network routes when NSX-T Edges are updated. This downtime usually occurs 45 to 75 minutes after the start of the control plane update.

When Phase 2 is complete, you receive a notification. Phase 3 begins immediately after the Phase 2 update is complete. Therefore, it does not have a designated start time.

Phase 3: Host Updates. These are the updates to the ESXi hosts in the SDDC. As in Phase 1, an additional host is temporarily added to your SDDC to provide enough capacity for the update. vMotion and DRS activities occur to facilitate the update. During this time, your workloads and other resources function as usual subject to the constraints outlined above.

When Phase 3 is complete, you receive a notification.

For more information on estimating the duration of each phase, see Estimating the Duration of SDDC Maintenance.

When an SDDC upgrade for your SDDC is scheduled, you can see information about upcoming or ongoing maintenance in the Maintenance Tab of the VMC Console. For more information, see View an SDDC Maintenance Schedule Reservation.

Upgrade Process for SDDCs Using NSX for vSphere

The SDDC upgrade for an SDDC using NSX for vSphere is slightly different from the process for an SDDC using NSX-T.
Important During upgrades:

- Do not perform hot or cold workload migrations. Migrations fail if they are started or in progress during maintenance.
- Do not perform workload provisioning (New/Clone VM). Provisioning operations fail if they are started or in progress during maintenance.
- Do not make changes to Storage-based Policy Management settings for workload VMs.
- Ensure that there is enough storage capacity (> 30% slack space) in each cluster.

In the case of SDDCs using NSX for vSphere, maintenance is performed in two phases. NSX for vSphere does not require a separate phase for host networking updates.

Phase 1: Control Plane Updates. These are the updates to vCenter Server. During this time you do not have access to vCenter Server or other management VMs in your SDDC, but workloads and other resources function as usual subject to the constraints outlined above. However, there is a short downtime of 10-20 seconds for North-South network routes when NSX for vSphere Edges are updated. This downtime usually occurs 45 to 60 minutes after the start of the control plane update.

You receive an email notification when Phase 1 starts. When Phase 1 is complete, you receive another notification. Phase 2 begins immediately after Phase 1 is complete.

Phase 2: Host Updates. These are the updates to the ESXi hosts in the SDDC. An additional host is temporarily added to your SDDC to provide enough capacity for the update. vMotion and DRS activities occur to facilitate the update. During this time, your workloads and other resources function as usual subject to the constraints outlined above.

For more information on estimating the duration of each phase, see Estimating the Duration of SDDC Maintenance.
When an SDDC upgrade for your SDDC is scheduled, you can see information about upcoming or ongoing maintenance in the Maintenance Tab of the VMC Console. For more information, see View an SDDC Maintenance Schedule Reservation.

View an SDDC Maintenance Schedule Reservation

You can specify a day and time range for scheduled SDDC maintenance. You can also reschedule upcoming maintenance.

VMware periodically schedules software maintenance for its services, including VMware Cloud on AWS. During maintenance, your workload VMs will remain online, but you won't be able to view or modify your vCenter Server and SDDC networking.

VMware periodically schedules software maintenance for its services, including VMware Cloud on AWS. During maintenance, your workload VMs will remain online, but you won't be able to view or modify your vCenter Server and SDDC networking. If you don't specify a date and time preference, the maintenance takes places on a default schedule.

Note You cannot specify a start time for critical patches.

Prerequisites

This operation is restricted to users who have the CloudAdmin role.

Procedure

2. Navigate to the Maintenance tab of your SDDC.

 If maintenance is scheduled for this SDDC, you'll see an Upcoming maintenance card showing a date and time range for the maintenance.

3. (Optional) Reschedule upcoming maintenance.

 a. On the an Upcoming maintenance card, click RESCHEDULE to see a list of available days and start times for the upcoming maintenance.

 b. Choose a maintenance day and start time and click SAVE.

 All available start times are listed. Some times might not be available because they have already been taken by other SDDCs.

4. (Optional) Choose a preferred maintenance day and start time.

 The Maintenance window preference card displays your current maintenance window preference.

 a. Click EDIT PREFERENCE to open the Edit Maintenance Schedule Preference page.

 b. Choose a preferred maintenance day and start time and click SAVE.

 All available start times are listed. Some times might not be available because they have already been taken by other SDDCs. Changes in preference do not affect your existing reservations.

 The system updates your maintenance window preferences and displays the updated preferences.
Convert UTC Time to Local Time

Maintenance windows are scheduled using UTC time. You can convert this to your local time.

Procedure

- Calculate your local time from a UTC time using one of the following methods.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a time zone calculator</td>
<td>Use the time zone calculator at https://www.timeanddate.com/worldclock/</td>
</tr>
<tr>
<td></td>
<td>converter.html to convert from UTC time to your time.</td>
</tr>
<tr>
<td>Compute local time using UTC offset</td>
<td>a Determine the time offset from UTC time for your local time zone. See</td>
</tr>
<tr>
<td></td>
<td>b Add the time offset to the UTC time (expressed in 24-hour time).</td>
</tr>
<tr>
<td></td>
<td>c If daylight saving time is in effect in your local time zone, adjust for</td>
</tr>
<tr>
<td></td>
<td>daylight saving time.</td>
</tr>
</tbody>
</table>

Estimating the Duration of SDDC Maintenance

VMware Cloud on AWS performs regular maintenance for your SDDC to keep it up-to-date with new features and capabilities.

The length of maintenance depends on many factors, including but not limited to:

- The number of clusters in the SDDC.
- The number of hosts in the SDDC
- The amount of data in vCenter Server, ESXi hosts, and NSX-T databases
- Time required to add and remove hosts
- Time to execute multiple service actions such as backup, pre-update, and post-update actions
- Transient environmental or infrastructure conditions

The number of factors makes it difficult to provide a precise estimate of the maintenance time. However, the numbers given below are based on historical data and should give you a good idea of the duration of upcoming maintenance for your SDDC.

For all SDDCs that have clusters with FTT = 2 and 6 or more hosts, the update rollout process has been altered to prefer waiting for in-progress vSAN replication operations to complete, rather than proceeding with the update as quickly as possible. This is a trade-off that allows a cluster to more gracefully tolerate hardware failures during host updates, but can significantly increase the time required to perform the update.

For a multi-cluster SDDC, the updates are handled on three clusters at a time in parallel. This parallel processing must be taken into account in estimating the duration of the host update phases.

Phase 1: Host Networking Updates

The first phase consists of updates to the host networking software in the SDDC.
Use the table below to estimate the duration of Phase 1 based on the number of clusters and hosts you have in your SDDC. These estimates are for single AZ SDDCs using NSX-T.

<table>
<thead>
<tr>
<th>Number of clusters</th>
<th>3-5 hosts/cluster</th>
<th>6 or more hosts/cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cluster</td>
<td>30 minutes/host + 1 to 2 hours</td>
<td>45 minutes/host + 1 to 2 hours</td>
</tr>
<tr>
<td>2-3 clusters</td>
<td>30 minutes/host only for the cluster with the largest number of hosts + 1 to 2 hours</td>
<td>45 minutes/host only for the cluster with the largest number of hosts + 1 to 2 hours</td>
</tr>
<tr>
<td>4 or more clusters</td>
<td>30 minutes/host; however, due to the cluster parallel processing, the overall duration estimate will vary greatly depending on the number of the hosts in your clusters</td>
<td>45 minutes/host; however, due to the cluster parallel processing, the overall duration estimate will vary greatly depending on the number of the hosts in your clusters</td>
</tr>
</tbody>
</table>

Phase 2: Control Plane Updates

The second phase consists of updates to the vCenter Server.

You can expect this phase to take approximately 2 to 4 hours.

Phase 3: Host Updates

The third phase consists of updates to the hosts in the SDDC.

Use the table below to estimate the duration of Phase 3.

<table>
<thead>
<tr>
<th>Number of clusters</th>
<th>3-5 hosts/cluster</th>
<th>6 or more hosts/cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cluster</td>
<td>45 minutes/host + 2 to 4 hours</td>
<td>90 minutes/host + 2 to 4 hours</td>
</tr>
<tr>
<td>2-3 clusters</td>
<td>45 minutes/host only for the cluster with the largest number of hosts + 2 to 4 hours</td>
<td>90 minutes/host only for the cluster with the largest number of hosts + 2 to 4 hours</td>
</tr>
<tr>
<td>4 or more clusters</td>
<td>45 minutes/host; however, due to the cluster parallel processing, the overall duration estimate will vary greatly depending on the number of the hosts in your clusters</td>
<td>90 minutes/host; however, due to the cluster parallel processing, the overall duration estimate will vary greatly depending on the numbers of the hosts in your clusters</td>
</tr>
</tbody>
</table>

View Billing Information

Billing for VMware Cloud on AWS is handled through VMware Cloud services.

Your billing cycle begins on the day of the month when the first service for your organization was set up. For example, if you set up the first service in your organization on the 15th of the month, your billing cycle runs from the 15th of the month through the 14th of the following month.

Host usage for VMware Cloud on AWS is tracked in alignment with your billing cycle. The host usage shown on your bill is the entirety of your host usage during the billing period.
Other types of usage, including data transfer out, IP address usage and remaps, and EBS usage are received on the 5th of each month and include usage up to the last day of the previous month. For these types of usage, there is a time lag between when the usage occurs and when it shows up on your bill. The amount of time lag depends on where the beginning of your billing cycle is in relation to the 5th of the month.

For example, consider two users, Alice and Bob. Alice's billing cycle begins on the 3rd of the month, while Bob's billing cycle begins on the 12th.

Alice’s bill on the 3rd of June shows:
- Host usage from May 3 through June 2
- Other usage from April 1 through April 30

Bob's bill on the 12th of June shows:
- Host usage from May 12 through June 11
- Other usage from May 1 through May 31

Procedure

Roles and Permissions in the SDDC

The CloudAdmin role and the CloudGlobalAdmin role are predefined in your cloud SDDC. When you log in VMware assigns you one of those roles on each object in the object hierarchy.

CloudAdmin

The CloudAdmin role has the necessary privileges for you to create and manage workloads on your SDDC. However, you cannot access or configuring the certain management components that are supported and managed by VMware, such as hosts, clusters, and management virtual machines.

CloudGlobalAdmin

The CloudGlobalAdmin role is associated with global privileges and allows you to create and manage content library objects and perform some other global tasks.

Understanding Authorization in vSphere in Managing the VMware Cloud on AWS Data Center has more information about roles and rights in the system.
Managing SDDC Hosts and Clusters

You can add and remove clusters and hosts from your cloud SDDC, as long as this would not bring your SDDC below the minimum or above the maximum number of allowed clusters and hosts.

The initial cluster created during SDDC creation is named Cluster-1. Additional clusters that you create are numbered sequentially, Cluster-2, Cluster-3, and so on.

When you add hosts to an SDDC with multiple clusters, you can select the cluster to add them to.

This chapter includes the following topics:

- VMware Cloud on AWS Host Types
- Add a Cluster
- Remove a Cluster
- Add Hosts
- Remove Hosts
- About Elastic DRS
- Using Policies and Profiles

VMware Cloud on AWS Host Types

VMware Cloud on AWS provides different host types for use in your SDDC.

A given cluster in your SDDC must contain hosts of the same type.

Some host types might not be available within a particular region or availability zone.

i3

The i3 host type is the default host type and is always used for the initial SDDC creation. i3 hosts have a fixed compute, memory, and storage allocation of 36 cores, 512GB RAM, and 10.7TB per host.

r5

When you create an SDDC or add an additional cluster, you have the option to select the r5 host type. r5 hosts use EBS-based storage. When you create a cluster using this host type, you can select the storage capacity per host. These hosts are ideal for workloads requiring large storage capacities.
Add a Cluster

You can add clusters to a cloud SDDC up to the maximum configured for your account. Additional clusters are created in the same availability zone as the initial SDDC.

If your SDDC uses networking based on NSX-T, you can add a cluster to an SDDC deployed in multiple availability zones. If your SDDC uses networking based on NSX for vSphere, adding a cluster to an SDDC deployed in multiple availability zones is not supported.

Logical networks you have created for your SDDC are automatically shared across all clusters. Compute and storage resources are configured similarly for all clusters. For example:

- Each cluster contains a Compute-ResourcePool and a Mgmt-ResourcePool, with the same permissions that these have in the initial SDDC cluster.
- Each cluster contains a vsanDatastore and a workloadDatastore, with the same permissions that these have in the initial SDDC cluster.

Procedure

2. On the card for the SDDC you want to add a cluster to, select Actions > Add Cluster.
3. Select the host type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i3 (Local SSD)</td>
<td>Provision hosts with a fixed amount of local SSD storage per host.</td>
</tr>
<tr>
<td>R5 (EBS)</td>
<td>Provision hosts with EBS-based storage. When provisioning R5 hosts, you can select the storage capacity per host. This allows you to provision greater capacity for workloads requiring large storage capacities.</td>
</tr>
</tbody>
</table>

4. Specify the number of CPU cores to enable for each host in the cluster.

All CPU cores are enabled by default on each host in the cluster. If you'd like to disable some of the cores to save on licensing costs for applications that are licensed on a per-core basis, you can enable a subset of the available cores. This subset applies to all hosts in the cluster. Other cores on each host are disabled and remain disabled for the lifetime of the host.

Important Reducing core count affects the compute performance of all workloads on the host and increases the likelihood of system performance degradation. For example, vCenter and vSAN overhead can become more noticeable, and operations like adding clusters and hosts can take longer to complete.

5. Select the number of hosts in the cluster.

6. If you selected R5 (EBS) hosts, select the storage capacity per host.

 The value you select is used for all hosts in the cluster, including any hosts you add to the cluster after creation.
7 click **Add Cluster**.

A progress bar shows the progress of cluster creation.

Remove a Cluster

You can remove any cluster in an SDDC except for the initial cluster, Cluster-1.

When you delete a cluster, all workload VMs in the cluster are immediately terminated and all data and configuration information is deleted. You lose API and UI access to the cluster. Public IP addresses associated with VMs in the cluster are released.

Currently deleting a cluster from an SDDC deployed with a multiple availability zone cluster is not supported.

Prerequisites

- Migrate any workload VMs that you want to keep to another cluster in the SDDC.
- Make a copy of any data that you want to retain.

Procedure

1. Log in to the VMC Console at https://vmc.vmware.com.
2. Click on the SDDC and then click **Summary**.
3. On the card for the cluster you want to remove, click **Delete Cluster**.

 Before you can delete the cluster, you must select all of the check boxes to confirm that you understand the consequences of this action. When all the check boxes are selected, the Delete Cluster button is enabled. Click it to delete the cluster.

Add Hosts

Add hosts to your SDDC to increase the amount of computing and storage capacity available in your SDDC.

You can add hosts to your SDDC as long as you do not exceed the maximum number of hosts allotted to your account.

Procedure

1. Log in to the VMC Console at https://vmc.vmware.com.
2. Click on the SDDC and then click **Summary**.
3. Select where to add the hosts.
 - If the SDDC has only one cluster, select Actions > **Add Hosts** from the SDDC card.
If the SDDC has more than one cluster, select **Actions > Add Hosts** from the card for the cluster where you want to add the hosts.

The Add Hosts page is displayed.

- **Name**: MasterDemo
- **Region**:
- **Number of Hosts**: 6
- **Current Capacity**: 12 Sockets, 216 Cores, 3 TB RAM, 84.2 TB Storage
- **Extra Hosts to Be Added**
 - **Number of Hosts to Add**: 1
 - **Host Type**: 2 Sockets, 36 Cores, 512 GB RAM, 10.7 TB Storage
 - **Extra Capacity**: 2 Sockets, 36 Cores, 512 GB RAM, 10.7 TB Storage

Please note: it may take a few minutes to resize the SDDC. Your workload VMs will still function as normal.

4. Select the number of hosts to add, and click **Add Hosts**.

If you are adding hosts to a multiple availability zone cluster, you must add them in multiples of two hosts at a time.

One or more hosts are added to your SDDC cluster.

Remove Hosts

You can remove hosts from your SDDC as long as the number of hosts in your SDDC cluster remains above the minimum.

The minimum number of hosts for a single availability zone cluster is 3. The minimum number for a multiple availability zone cluster is 6.

Whenever you reduce cluster size, storage latency increases due to process overhead introduced by host removal. The duration of this overhead varies with the amount of data involved. It can take as little as an hour, though an extreme case could require more than 24 hours. While cluster-size reduction (scale-in) is underway, workload VMs supported by the affected clusters can experience significant increases in storage latency.
When you remove a host, VMs running on that host are evacuated to other hosts in the SDDC cluster. The host is placed into maintenance mode and then removed.

Prerequisites

Ensure that you have sufficient capacity in your cluster to hold the workload VMs that will be evacuated from the hosts that you remove.

Procedure

2. Click on your SDDC and then click **Summary**.
3. Select **Actions > Remove Hosts**

 - If the SDDC has only one cluster, select **Actions > Remove Hosts** from the SDDC card.
 - If the SDDC has more than one cluster, select **Actions > Remove Hosts** from the card for the cluster from which you want to remove the hosts.
4. Select the number of hosts you want to remove.

 If you are removing hosts from a multiple availability zone cluster, you must remove them in multiples of two.

 Note All vSAN storage policies have requirements for a minimum number of hosts. If you attempt to reduce the number of hosts below this minimum, the operation fails. See vSAN Policies in *Managing the VMware Cloud on AWS Data Center*.

5. Select the **I understand that this action cannot be undone** check box.
6. Click **Remove**.

About Elastic DRS

Elastic DRS allows you to set policies to automatically scale your cloud SDDC by adding or removing hosts in response to demand.

To enable Elastic DRS, you apply a policy to a cluster in your SDDC. The policy has the following elements:

- Turn on or turn off Elastic DRS for the cluster.
- Specify the minimum and maximum number of hosts for the cluster.
- Specify whether the policy applied should optimize for cost or performance in applying recommendations.

Elastic DRS uses an algorithm to monitor the current demand on your SDDC and make recommendations to either scale-in or scale-out the cluster. A decision engine responds to a scale-out recommendation by provisioning a new host into the cluster. It responds to a scale-in recommendation by removing the least-utilized host from the cluster.
Elastic DRS is not supported for the following types of SDDCs:

- SDDCs deployed with multiple availability zone stretched clusters.
- Single host starter SDDCs

When the Elastic DRS algorithm initiates a scale-out, all Organization users receive a notification in the VMC Console and through email.

How the Elastic DRS Algorithm Works

Elastic DRS uses and algorithm to maintain an optimal number of provisioned hosts to keep cluster utilization high while maintaining desired CPU, memory, and storage performance.

The algorithm uses the following parameters:

- Minimum and maximum number of hosts the algorithm should scale up or down to.
- Thresholds for CPU, memory and storage utilization such that host allocation is optimized for cost or performance. These thresholds are predefined for each policy type and cannot be altered by user.

The algorithm runs every 5 minutes and monitors resource utilization over a period of time. Taking into consideration spikes and randomness in the utilization, the algorithm makes a determination to scale out or scale in a cluster by generating an alert. This alert is processed immediately by provisioning a new host or removing a host from the cluster.

Scale-out Recommendation

A scale-out recommendation is generated when any of CPU, memory, or storage utilization remains consistently above thresholds. For example, if storage utilization goes above 75% but memory and CPU utilization remain below their respective thresholds, a scale-out recommendation is generated. A vCenter Server event is posted to indicate the start, completion, or failure of scaling out on the cluster.

Scale-in Recommendation

A scale-in recommendation is generated when CPU, memory, and storage utilization all remain consistently below thresholds. The scale-in recommendation is not acted upon if the number of hosts in the cluster is at the minimum specified value. A vCenter Server event is posted to indicate the start, completion, or failure of the scaling in operation on the cluster.

Note Whenever you reduce cluster size, storage latency increases due to process overhead introduced by host removal. The duration of this overhead varies with the amount of data involved. It can take as little as an hour, though an extreme case could require more than 24 hours. While cluster-size reduction (scale-in) is underway, workload VMs supported by the affected clusters can experience significant increases in storage latency.
Time Delays Between Two Recommendations

A safety check is included in the algorithm to avoid processing frequently generated events and to provide some time to the cluster to cool off with changes due to last event processed. The following time intervals between events are enforced:

- 30 minutes delay between two successive scale-out events.
- 3 hour delay to process a scale-in event after scaling out the cluster.

Interactions of Recommendations with Other Operations

The following operations might interact with Elastic DRS recommendations:

- User-initiated addition or removal of hosts.

 Normally, you would not need to manually add or remove hosts from a cluster with Elastic DRS enabled. You can still perform these operations, but an Elastic DRS recommendation might revert them at some point.

 If a user-initiated add or remove host operation is in progress, the current recommendation by the Elastic DRS algorithm is ignored. After the user-initiated operation completes, the algorithm may recommend a scale-in or scale-out operation based on the changes in the resource utilization and current selected policy.

 If you start an add or remove host operation while an Elastic DRS recommendation is being applied, the operation fails with an error indicating a concurrent update exception.

- Planned Maintenance Operation

 A planned maintenance operation means a particular host needs to be replaced by a new host. While a planned maintenance operation is in progress, current recommendations by the Elastic DRS algorithm are ignored. After the planned maintenance completes, fresh recommendations will be applied. If a planned maintenance event is received while an Elastic DRS recommendation is being applied for that cluster, the planned maintenance task will be queued. After the Elastic DRS recommendation task completes, the planned maintenance task starts.

- Auto-remediation

 As a result of auto-remediation, a failed host is replaced by a new host. While auto-remediation is in progress, the current recommendation by the Elastic DRS algorithm are ignored. After the auto-remediation operation completes, fresh recommendations will be applied. If an auto-remediation event is received while an Elastic DRS recommendation is being applied to that cluster, the auto-remediation is queued. After the Elastic DRS recommendation task completes, the auto-remediation task starts.

- SDDC maintenance window

 If an SDDC is undergoing maintenance or is scheduled to undergo maintenance in the next 6 hours, EDRS recommendations are ignored.
Select Elastic DRS Policy

Set the Elastic DRS policy on a cluster to optimize for either cost or performance in scale-in and scale-out.

Elastic DRS is turned off by default.

Procedure

2. Click on the SDDC and then click Summary.
3. On the card for the SDDC or cluster, click Edit EDRS Settings.
4. Select the Elastic DRS policy you want to use.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize for Best Performance</td>
<td>Select the Minimum cluster size and Maximum cluster size. Elastic DRS adds hosts more quickly and removes hosts more slowly in order to provide best performance.</td>
</tr>
<tr>
<td>Optimize for Lowest Cost</td>
<td>Select the Minimum cluster size and Maximum cluster size. Elastic DRS adds hosts more slowly and removes hosts more quickly in order to provide the lowest cost.</td>
</tr>
</tbody>
</table>

5. Click Save.

Using Policies and Profiles

A CloudAdmin user can establish policies and profiles in the SDDC that govern the placement of workload VMs.

Creating and Managing Compute Policies

Compute policies provide a way to specify how the vSphere Distributed Resource Scheduler (DRS) should place VMs on hosts in a resource pool. Use the vSphere client Compute Policies editor to create and delete compute policies.

You can create or delete, but not modify, a compute policy. If you delete a category tag used in the definition of the policy, the policy is also deleted. The system does not check for policy conflicts. If, for example, multiple VMs subject to the same VM-Host affinity policy are also subject to a VM-VM anti-affinity policy, DRS will be unable to place the VMs in a way that complies with both policies.

Note: Affinity policies in your VMware Cloud on AWS SDDC are not the same as the vSphere DRS affinity rules you can create on premises. They can be used in many of the same ways, but have significant operational differences. A compute policy applies to all hosts in an SDDC, and cannot typically be enforced in the same way that a DRS "must" policy is enforced. The policy create/delete pages have more information about operational details for each policy type.
Monitoring Compliance

Open the VM Summary page in the vSphere client to view the compute policies that apply to a VM and its compliance status with each policy.

Create or Delete a VM-Host Affinity Policy

A VM-Host affinity policy describes a relationship between a category of VMs and a category of hosts. VM-Host affinity policies can be useful when host-based licensing requires VMs that are running certain applications to be placed on hosts that are licensed to run those applications. They can also be useful when virtual machines with workload-specific configurations require placement on hosts that have certain characteristics.

A VM-Host affinity policy establishes an affinity relationship between a category of virtual machines and a category of hosts. After the policy is created, the placement engine in your SDDC deploys VMs in the category covered by the policy on hosts in the category covered by the policy.

To prevent a VM-Host affinity policy from blocking the upgrade of a host or cluster, VM-Host affinity policies are constrained in several ways.

- A policy cannot force a host to enter maintenance mode.
- A policy cannot prevent a host configured for HA from executing a failover. VMs with an affinity for the failed host can be migrated to any available host in the cluster.
- A policy cannot prevent a VM from powering-on. If a VM subject to a host affinity policy specifies a resource reservation that no host can meet, it is powered on on any available host.

These constraints are lifted as soon as a compliant host becomes available.

Prerequisites

This operation is restricted to users who have the CloudAdmin role.

Procedure

1. Create a category and tag for VMs that you want to include in a VM-Host affinity policy.
 - Pick a category name that describes common characteristics, such as license requirements, of VMs you plan to tag as members of that category.

2. Create a category and tag for hosts that you want to include in a VM-Host affinity policy.
 - You can use existing tags and categories or create new ones specific to your needs. See vSphere Tags and Attributes for more about creating and using tags.

3. Tag the VMs and hosts that you want to include in a VM-Host affinity policy.

4. Create a VM-Host affinity policy.
 - a In your SDDC, click **OPEN VCENTER**.
 - b From the vSphere Client Home, click **Policies and Profiles > Compute Policies**.
 - c Click **Add** to open the **New Compute Policy** Wizard.
d Fill in the policy **Name** and choose **VM-Host affinity** from the **Policy type** drop-down control.

 The policy **Name** must be unique within your SDDC.

e Provide a **Description** of the policy, then use the **VM tag** and **Host Tag** drop-down controls to choose a **Category** and **Tag** to which the policy applies.

 Unless you have multiple VM tags associated with a category, the wizard fills in the VM tag after you select the tag **Category**.

f Click **Create** to create the policy.

5 (Optional) To delete a compute policy, open the vSphere Web Client, click **Policies and Profiles > Compute Policies** to show each policy as a card. Click DELETE to delete a policy.

Create or Delete a VM-Host Anti-Affinity Policy

A VM-Host anti-affinity policy describes a relationship between a category of VMs and a category of hosts.

A VM-Host anti-affinity policy can be useful when you want to avoid placing virtual machines that have specific host requirements such as a GPU or other devices, or capabilities such as IOPS control, on hosts that can't support those requirements. After the policy is created, the placement engine in your SDDC avoids deploying VMs covered by the policy on hosts covered by the policy.

To prevent a VM-Host anti-affinity policy from blocking the upgrade of a host or cluster, these policies are constrained in several ways.

- A policy cannot force a host to enter maintenance mode.
- A policy cannot prevent a host configured for HA from executing a failover. VMs with an anti-affinity for the failed host can be migrated to any available host in the cluster.
- A policy cannot prevent a VM from powering-on. If a VM subject to a VM-Host anti-affinity policy specifies a resource reservation that no host can meet, it is powered on on any available host.

These constraints are lifted as soon as a compliant host becomes available.

Prerequisites

This operation is restricted to users who have the CloudAdmin role.

Procedure

1 Create a category and tag for VMs that you want to include in a VM-Host anti-affinity policy.

 Pick a category name that describes common characteristics of VMs you plan to tag as members of that category.

2 Create a category and tag for hosts that you want to include in a VM-Host anti-affinity policy.

 You can use existing tags and categories or create new ones specific to your needs. See [vSphere Tags and Attributes](#) for more about creating and using tags.

3 Tag the VMs and hosts that you want to include in a VM-Host anti-affinity policy.
Create a VM-Host anti-affinity policy.

a. In your SDDC, click **OPEN VCENTER**.

b. From the vSphere Client Home, click **Policies and Profiles > Compute Policies**.

c. Click **Add** to open the **New Compute Policy** Wizard.

d. Fill in the policy **Name** and choose **VM-Host anti-affinity** from the **Policy type** drop-down control.

 The policy **Name** must be unique within your SDDC.

e. Provide a **Description** of the policy, then use the **VM tag** and **Host Tag** drop-down controls to choose a **Category** and **Tag** to which the policy applies.

 Unless you have multiple tags associated with a VM or host in a given category, the wizard fills in the VM tag and Host tag after you select the tag **Category**.

f. Click **Create** to create the policy.

(Optional) To delete a compute policy, open the vSphere Web Client, click **Policies and Profiles > Compute Policies** to show each policy as a card. Click **DELETE** to delete a policy.

Create or Delete a VM-VM Affinity Policy

A VM-VM affinity policy describes a relationship between members of a category of VMs.

VM-VM affinity policies can be useful when two or more VMs in a category can benefit from locality of data reference or where placement on the same host can simplify auditing.

A VM-VM affinity policy establishes an affinity relationship between virtual machines in a given category. After the policy is created, the placement engine in your SDDC attempts to deploy all VMs in the category covered by the policy on the same host.

Prerequisites

This operation is restricted to users who have the CloudAdmin role.

Procedure

1. Create a category and tag for each group of VMs that you want to include in a VM-VM affinity policy.

 You can use existing tags and categories or create new ones specific to your needs. See **vSphere Tags and Attributes** for more about creating and using tags.

2. Tag the VMs that you want to include in each group.

3. Create a VM-VM affinity policy.

 a. In your SDDC, click **OPEN VCENTER**.

 b. From the vSphere Client Home, click **Policies and Profiles > Compute Policies**.

 c. Click **Add** to open the **New Compute Policy** Wizard
d Fill in the policy **Name** and choose **VM-VM affinity** from the **Policy type** drop-down control. The policy **Name** must be unique within your SDDC.

e Provide a **Description** of the policy, then use the **VM tag** drop-down control to choose the **Category** and **Tag** to which the policy applies.

Unless you have multiple VM tags associated with a category, the wizard fills in the VM tag after you select the tag **Category**.

f Click **Create** to create the policy.

4 (Optional) To delete a compute policy, open the vSphere Web Client, click **Policies and Profiles > Compute Policies** to show each policy as a card. Click **DELETE** on the policy card to delete the policy.

Create or Delete a VM-VM Anti-Affinity Policy

A VM-VM anti-affinity policy describes a relationship among a category of VMs. A VM-VM anti-affinity policy discourages placement of virtual machines in the same category on the same host. This kind of policy can be useful when you want to place virtual machines running critical workloads on separate hosts, so that the failure of one host does not affect other VMs in the category. After the policy is created, the placement engine in your SDDC attempts to deploy VMs in the category on separate hosts.

Enforcement of a VM-VM anti-affinity policy can be affected in several ways:

- If the policy applies to more VMs that there are hosts in the SDDC, or if it's not possible to place a VM on a host that satisfies the policy, DRS attempts to place the VM on any suitable host.

- If a provisioning operation specifies a destination host, that specification is always honored even if it violates the policy. DRS will try to move the VM to a compliant host in a subsequent remediation cycle.

Prerequisites

This operation is restricted to users who have the CloudAdmin role.

Procedure

1 Create a category and tag for each group of VMs that you want to include in a VM-VM anti-affinity policy.

You can use existing tags and categories or create new ones specific to your needs. See [vSphere Tags and Attributes](#) for more about creating and using tags.

2 Tag the VMs that you want to include in each group.

3 Create a VM-VM anti-affinity policy.

 a In your SDDC, click **OPEN VCENTER**.

 b From the vSphere Client Home, click **Policies and Profiles > Compute Policies**.
c Click Add to open the New Compute Policy Wizard.

d Fill in the policy Name and choose VM-VM anti affinity from the Policy type drop-down control. The policy Name must be unique within your SDDC.

e Provide a Description of the policy, then use the VM tag drop-down control to choose the Category and Tag to which the policy applies.

Unless you have multiple VM tags associated with a category, the wizard fills in the VM tag after you select the tag Category.

f Click Create to create the policy.

4 (Optional) To delete a compute policy, open the vSphere Web Client, click Policies and Profiles > Compute Policies to show each policy as a card. Click DELETE to delete a policy.

Create or Delete a Disable DRS vMotion Policy

A DisableDRSvMotion policy applied to a VM prevents DRS from migrating the VM to a different host unless the current host fails or is put into maintenance mode.

This type of policy can be useful for a VM running an application that creates resources on the local host and expects those resources to remain local. If DRS moves the VM to another host for load-balancing or to meet reservation requirements, resources created by the application are left behind and performance can be degraded when locality of reference is compromised.

A Disable DRS vMotion policy takes effect after a tagged VM is powered on, and is intended to keep the VM on its current host as long as the host remains available. The policy does not affect the choice of the host where a VM is powered on.

Prerequisites

This operation is restricted to users who have the CloudAdmin role.

Procedure

1 Create a category and tag for each group of VMs that you want to include in a DisableDRSvMotion policy.

2 Tag the VMs that you want to include in each group.

You can use existing tags and categories or create new ones specific to your needs. See vSphere Tags and Attributes for more about creating and using tags.

3 Create a Disable DRS vMotion policy.

 a In your SDDC, click OPEN VCENTER.

 b From the vSphere Client Home, click Policies and Profiles > Compute Policies.

 c Click Add to open the New Compute Policy Wizard.
d Fill in the policy **Name** and choose **Disable DRS vMotion** from the **Policy type** drop-down control.

The policy **Name** must be unique within your SDDC.

e Provide a **Description** of the policy, then use the **VM tag** drop-down control to choose the VM category to which the policy applies.

Unless you have multiple VM tags associated with a category, the wizard fills in the VM tag after you select the tag category.

f Click **Create** to create the policy.

4 (Optional) To delete a compute policy, open the vSphere Web Client, click **Policies and Profiles > Compute Policies** to show each policy as a card. Click **DELETE** to delete a policy.
Working With SDDC Add-On Services

When you log in to the VMC Console, you'll see cards for My Services and More Services. You can add services from the More Services list to your My Services list to make them available in your SDDC.

This chapter includes the following topics:
- Using The VMware Log Intelligence Service

Using The VMware Log Intelligence Service

The VMware Log Intelligence Service enables you to collect and analyze logs generated in your SDDC.

A trial version of the VMware Log Intelligence Service is enabled by default in a new SDDC. The trial period begins when a user in your organization accesses the Log Intelligence add-on and expires in thirty days. After the trial period, you can choose to subscribe to this service or continue to use a subset of service features at no additional cost. For more information about using VMware Log Intelligence, see the VMware Log Intelligence Documentation.

SDDC Audit Log Events

Log Intelligence classifies following SDDC events matching the following rules as audit data.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi Audit Events</td>
<td>"text=(esx AND audit)"</td>
</tr>
<tr>
<td></td>
<td>"text =(hostd AND vmsvc AND vm AND snapshot)"</td>
</tr>
<tr>
<td></td>
<td>"text =(vim.event.HostConnectionLostEvent)"</td>
</tr>
<tr>
<td>vCenter Audit Events</td>
<td>"text = (vpxd AND event AND vim AND NOT originator)"</td>
</tr>
<tr>
<td>NSX-T Audit Events</td>
<td>"text = (nsx AND audit AND true AND comp AND reqid)"</td>
</tr>
<tr>
<td>NSX-T Firewall and</td>
<td>"text = (nsx AND firewall AND inet)"</td>
</tr>
<tr>
<td>Packet Log Events</td>
<td>"text = (firewall_pktlog AND inet)"</td>
</tr>
</tbody>
</table>
Getting Templates, ISOs, and Other Content into Your SDDC

You might have a variety of .vmtx templates, OVF and OVA templates, ISO images, scripts, and other content that you want to use in your SDDC.

<table>
<thead>
<tr>
<th>Content Type</th>
<th>How to transfer it to your SDDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.vmtx template</td>
<td>Use the Content Onboarding Assistant to transfer the template to your SDDC.</td>
</tr>
<tr>
<td></td>
<td>Clone the templates to OVF template in an on-premises Content Library and subscribe to the Content Library from your SDDC.</td>
</tr>
<tr>
<td>OVF template</td>
<td>Add the template to an on-premises Content Library and subscribe to the content library from your SDDC.</td>
</tr>
<tr>
<td></td>
<td>Create a local Content Library in your SDDC, and upload the OVF template to it.</td>
</tr>
<tr>
<td></td>
<td>Deploy the OVF template directly from a client machine to your SDDC in the vSphere Web Client. Right-click the Compute-ResourcePool resource pool and select Deploy OVF template.</td>
</tr>
<tr>
<td>OVA template</td>
<td>Deploy the OVA template directly from a client machine to your SDDC using the vSphere Web Client. Right-click the Compute-ResourcePool resource pool and select Deploy OVF template.</td>
</tr>
<tr>
<td>ISO image</td>
<td>Upload the ISO image to the workloadDatastore.</td>
</tr>
<tr>
<td></td>
<td>Import the ISO image into an on-premises Content Library and subscribe to the Content Library from your SDDC.</td>
</tr>
<tr>
<td></td>
<td>Create a local Content Library in your SDDC, and upload the ISO image to it.</td>
</tr>
<tr>
<td></td>
<td>Use the Content Onboarding Assistant to transfer the ISO image to your SDDC.</td>
</tr>
<tr>
<td>scripts or text files</td>
<td>Import the file into an on-premises Content Library and subscribe to the Content Library from your SDDC.</td>
</tr>
<tr>
<td></td>
<td>Create a local Content Library in your SDDC and upload the file to it.</td>
</tr>
<tr>
<td></td>
<td>Use the Content Onboarding Assistant to transfer the file to your SDDC.</td>
</tr>
</tbody>
</table>

This chapter includes the following topics:

- Use the Content Onboarding Assistant to Transfer Content to Your SDDC
Use a Content Library to Import Content into Your SDDC

Upload Files or Folders to your SDDC

Use the Content Onboarding Assistant to Transfer Content to Your SDDC

The Content Onboarding Assistant automates the transfer of .vmtx templates, ISO images, scripts, and other files to your cloud SDDC.

You have two options for how the Content Onboarding Assistant transfers .vmtx templates to your SDDC:

- Convert these templates to OVF templates in the SDDC Content Library. This option takes less time.
- Transfer these templates as .vmtx templates in the vCenter Server inventory. In this case, the templates undergo an intermediate conversion to OVF and then back to .vmtx templates.

You can use the Content Onboarding Assistant on any MacOS, Linux, or Windows machine that has network access to your on-premises data center and your SDDC.

If you use the Content Onboarding Assistant to transfer content to your SDDC, and then find that there are additional items you want to transfer, you can run the Content Onboarding Assistant again. The Content Onboarding Assistant recognizes which .vmtx templates have already been transferred and does not allow you to select those to be transferred again. It also recognizes ISO images and script files that have been transferred, and will only transfer new ISO images and scripts.

Prerequisites

Before you run Content Onboarding Assistant, do the following:

- Make sure that your on-premises data center is running vCenter Server 6.0 or later.
- Install the Java Runtime Environment (JRE) 1.8 or later. You can download the Java Runtime installer from the Oracle website at http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html.
- Set the $JAVA_HOME environment variable to the location where you installed the JRE.
- Set up a VPN connection between your on-premises data center and your SDDC. See "Configuring VPNs and Gateways" in Getting Started With VMware Cloud on AWS.

Procedure

1. Prepare scripts and ISO images for addition to the Content Library by moving them into a single folder in your on-premises data center.
 .vmtx templates need no special preparation.

2. Download the Content Onboarding Assistant from the download location.
3 In the terminal or command line, switch to the directory where you placed the Content-Onboarding-Assistant.jar file and enter the command

```
java -jar jar_file_name --cfg full_path_to_config_file.
```

In the configuration file, specify each parameter on its own line, and follow it with a space and the value. For example

```
onpremServer vcenter.onprem.example.com
onpremInfraServer psc.onprem.example.com
```

You can also specify many parameters on the command line by specifying them as

```
--parameter parameter_value
```

Type `java --jar jar_file_name --help` to see a full list of parameters, or consult the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onpremServer server</td>
<td>The host name of the vCenter Server for your on-premises data center.</td>
</tr>
<tr>
<td>onpremInfraServer psc-server</td>
<td>The host name of the on-premises Platform Services Controller. This is optional for embedded configurations.</td>
</tr>
<tr>
<td>onpremUsername username</td>
<td>The user name used to log in to the on-premises vCenter Server.</td>
</tr>
<tr>
<td>location foldername</td>
<td>The location of files such as scripts or ISO images on the on-premises datastore. Use the format datastore-name:folder/.</td>
</tr>
<tr>
<td>cloudServer server</td>
<td>The host name of the cloud SDDC vCenter Server.</td>
</tr>
<tr>
<td>cloudInfraServer psc-server</td>
<td>The host name of the cloud SDDC Platform Services Controller. This is optional for embedded configurations.</td>
</tr>
<tr>
<td>cloudFolderName foldername</td>
<td>The name of the vCenter Server folder on the cloud SDDC where .vmtx templates will be stored.</td>
</tr>
<tr>
<td>cloudRpName resource-pool-name</td>
<td>The resource pool on the cloud SDDC for the .vmtx templates.</td>
</tr>
<tr>
<td>cloudNetworkName network-name</td>
<td>The distributed virtual port group on the cloud SDDC for the .vmtx templates.</td>
</tr>
<tr>
<td>sessionUpdate value</td>
<td>The time in milliseconds between session update calls. The default value is 60000 ms (10 minutes). If you experience issues with sessions timing out while the</td>
</tr>
</tbody>
</table>

4 Enter the passwords for the on-premises data center and the cloud SDDC when you are prompted. Content Onboarding Assistant tests the connections to the on-premises data center and SDDC, and then displays a table showing all the .vmtx templates it has discovered.

5 Enter the numbers for the templates you want to transfer.

You can enter single numbers separated by commas, or a range separated by a dash.

6 Confirm that the folder for ISO images and scripts is correct.

7 Select how to transfer your .vmtx templates.

- Select option 1 to transfer the templates as OVF templates in the SDDC Content Library.
Select option 2 to transfer the templates as .vmtx templates in the vCenter Server inventory.

The Content Onboarding Assistant does the following:

- Copies .vmtx templates from your on-premises data center to your SDDC, using the options you specified.
- Creates a Content Library in your on-premises data center, adds the ISO images and scripts to that Content Library, and publishes it.
- Creates a subscribed Content Library in your SDDC and synchronizes the ISO images and scripts to the SDDC.

What to do next

You can now use the .vmtx templates and ISO images to create virtual machines in your SDDC.

Use a Content Library to Import Content into Your SDDC

If you have a Content Library in your on-premises data center, you can create a Content Library in your SDDC that subscribes to it, then publish it to import library items into your SDDC.

This method works for transferring OVF templates, ISO images, scripts, and other files.

Prerequisites

- You must have a Content Library in your on-premises data center. See Create a Library
- Set up a VPN connection between your on-premises data center and your SDDC. See "ConfiguringVPNs and Gateways" in Getting Started With VMware Cloud on AWS.

Procedure

1. Add your templates, ISO images, and scripts to the on-premises Content Library.
 All .vmtx templates are converted to OVF templates.
2. Publish your on-premises Content Library.
3. In your SDDC, create a Content Library that subscribes to the one you published in Step 2. Content is synchronized from your on-premises data center to your SDDC in VMware Cloud on AWS.

Upload Files or Folders to your SDDC

You can use the vSphere Client to upload files or folders to your SDDC.

You can upload content to your SDDC's WorkloadDatastore. The vsanDatastore is managed by VMware.

Prerequisites

You must have the CloudAdmin role on the datastore.

Procedure

1. In the vSphere Client, select the Storage icon and select WorkloadDatastore and click Files.
2 You can create a new folder, upload files, or upload a folder.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To create a new folder</td>
<td>a Select the WorkloadDatastore or an existing folder.</td>
</tr>
<tr>
<td></td>
<td>b Select New Folder.</td>
</tr>
<tr>
<td>To upload a file</td>
<td>a Select a folder.</td>
</tr>
<tr>
<td></td>
<td>b Click Upload Files.</td>
</tr>
<tr>
<td></td>
<td>c Select a file and click OK.</td>
</tr>
<tr>
<td>To upload a folder</td>
<td>a Select a folder.</td>
</tr>
<tr>
<td></td>
<td>b Select Upload Folder.</td>
</tr>
<tr>
<td></td>
<td>c Select a folder and click OK.</td>
</tr>
</tbody>
</table>
Migrating Virtual Machines

Migration refers to the process of moving virtual machines. VMware Cloud on AWS supports a number of different migration scenarios.

Types of Migration

There are three basic types of migration.

migration with vMotion
Migration with vMotion allows moving a powered on virtual machine from one host and/or datastore to another. Migration with vMotion is also referred to as "hot migration" or "live migration". Migration with vMotion is the best option for migrating small workloads without any downtime during migration.

bulk migration
You can perform bulk migration using the VMware Hybrid Cloud Extension (HCX). Bulk migration uses host-based replication to move large scale VMs between on-premises data centers and cloud SDDCs with low downtime. To reduce downtime, the source VM remains powered-on during the replication and then is powered off and booted on the destination immediately after migration or during a scheduled window.

cold migration
Cold migration is moving a powered-off virtual machine from one host and/or datastore to another. Cold migration is a good option when you can tolerate some virtual machine downtime during the migration process.

Migration within SDDC and Hybrid Migration Use Cases

Migration within SDDC refers to migrating virtual machines within your VMware Cloud on AWS SDDC. Cloud migration does not require additional configuration of your SDDC. The following cloud migration use cases are supported:

- cold migration and migration with vMotion between hosts within the same cluster within an SDDC
- cold migration and migration with vMotion between hosts in different clusters within the same SDDC
Hybrid migration refers to migrating virtual machines between an on-premises data center and a VMware Cloud on AWS SDDC. Hybrid migration use cases require additional prerequisites and configuration to ensure both compatibility of the virtual machines and appropriate network bandwidth and latency to support the migration. The following hybrid migration use cases are supported:

- Migration with vMotion from on-premises data center to cloud SDDC
- Migration with vMotion from cloud SDDC to on-premises data center (with some restrictions for VMs previously migrated from on-premises data centers)
- Cold migration from on-premises data center to cloud SDDC and from cloud SDDC to on-premises data center.
- Using HCX, bulk migration, migration with vMotion, and cold migration from the on-premises data center to the cloud SDDC and back. See the section "Migrating Virtual Machines" in https://hcx.vmware.com/content/docs/vmware-hcx-user-manual.pdf for more information on migration with HCX.

Restrictions on VMs Migrated with vMotion

The restrictions on migration with vMotion that apply to VMs previously migrated from on-premises data centers are as follows:

- VMs that use standard virtual switches for networking cannot be migrated back to an on-premises data center after being migrated to the cloud SDDC.
- Any VM that has been power-cycled in the cloud SDDC can only be migrated back to an on-premises host or cluster with the Broadwell chipset or EVC mode.
- If your on-premises hosts haven’t been patched to address vulnerability to side channel analysis due to speculative execution (also referred to as the Spectre Variant 2 vulnerability), this may affect vMotion compatibility as shown in Table 5-1. vMotion Compatibility Effects of Spectre patch. To find the correct patch for your on-premises hosts, see https://kb.vmware.com/s/article/52245. All hosts in VMware Cloud on AWS SDDCs have been patched.

<table>
<thead>
<tr>
<th>On-premises Host Processor Family and Patch Status</th>
<th>Virtual Machine Hardware Version</th>
<th>Has the VM been power-cycled in VMware Cloud on AWS SDDC?</th>
<th>vMotion from On-premises to VMware Cloud on AWS</th>
<th>vMotion from VMware Cloud on AWS to On-premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadwell (SPECTRE patched)</td>
<td>< 9</td>
<td>No</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>9-13</td>
<td>No</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Broadwell (Not SPECTRE patched)</td>
<td>< 9</td>
<td>No</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>9-13</td>
<td>No</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
On-premises Host Processor Family and Patch Status

<table>
<thead>
<tr>
<th>Virtual Machine Hardware Version</th>
<th>Has the VM been power-cycled in VMware Cloud on AWS SDDC?</th>
<th>vMotion from On-premises to VMware Cloud on AWS</th>
<th>vMotion from VMware Cloud on AWS to On-premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 9</td>
<td>Yes</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Not supported</td>
<td>Supported</td>
</tr>
<tr>
<td>9-13</td>
<td>Yes</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Note You can find the Virtual Machine Hardware Version on the Summary tab for the virtual machine. You can find the host processor type on the Summary tab for the host. For a list of processor types in the Broadwell processor family, see https://ark.intel.com/products/codename/38530/Broadwell.

These restrictions don't apply to cold migration.

Migration Options

You have different options for how you carry out migration depending on how many virtual machines you want to migrate and what type of interface you want to use.

<table>
<thead>
<tr>
<th>Migration Type</th>
<th>Interface type</th>
<th>Use:</th>
</tr>
</thead>
<tbody>
<tr>
<td>migration with vMotion</td>
<td>UI</td>
<td>■ For single VMs: vSphere Client (requires Hybrid Linked Mode configuration)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ HCX</td>
</tr>
<tr>
<td></td>
<td>command-line/automation</td>
<td>■ API</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ PowerCLI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ HCX</td>
</tr>
<tr>
<td>bulk migration</td>
<td>UI or command-line/automation</td>
<td>HCX</td>
</tr>
<tr>
<td>cold migration</td>
<td>UI</td>
<td>■ For single VMs: vSphere Client (requires Hybrid Linked Mode configuration)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ HCX</td>
</tr>
<tr>
<td></td>
<td>command-line/automation</td>
<td>■ API</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ PowerCLI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ HCX</td>
</tr>
</tbody>
</table>
Summary of Supported Configurations for Hybrid Migration

The following table summarizes the supported configurations for hybrid migration. For detailed requirements and configuration instructions, see Hybrid Cold Migration Checklist and Hybrid Migration with vMotion Checklist.

<table>
<thead>
<tr>
<th>Migration Type</th>
<th>On-premises vSphere Version</th>
<th>Network Connectivity</th>
<th>VDS version on-premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>migration with vMotion</td>
<td>vSphere 6.0u3</td>
<td>AWS Direct Connect with private virtual interface and L2 VPN</td>
<td>VMware Distributed Switch version 6.0</td>
</tr>
<tr>
<td></td>
<td>vSphere 6.5 patch d</td>
<td>AWS Direct Connect with private virtual interface and L2 VPN</td>
<td>VMware Distributed Switch version 6.0</td>
</tr>
<tr>
<td></td>
<td>vSphere 5.5, 6.0, and 6.5</td>
<td>Internet or AWS Direct Connect and L2 VPN created through HCX</td>
<td>Any VMware Distributed Switch, vSphere standard switch, or Cisco Nexus 1000v</td>
</tr>
<tr>
<td>bulk migration</td>
<td>vSphere 5.0, 5.1, 5.5, 6.0, and 6.5</td>
<td>Internet or AWS Direct Connect and L2 VPN created through HCX</td>
<td>Any VMware Distributed Switch, vSphere standard switch, or Cisco Nexus 1000v</td>
</tr>
<tr>
<td>cold migration</td>
<td>vSphere 6.0u3</td>
<td>AWS Direct Connect or IPsec VPN</td>
<td>VMware Distributed Switch version 6.0</td>
</tr>
<tr>
<td></td>
<td>vSphere 6.5 patch d</td>
<td>AWS Direct Connect or IPsec VPN</td>
<td>VMware Distributed Switch version 6.0 or 6.5</td>
</tr>
<tr>
<td></td>
<td>vSphere 5.5, 6.0, and 6.5</td>
<td>Internet or AWS Direct Connect and L2 VPN created through HCX</td>
<td>Any VMware Distributed Switch, vSphere standard switch, or Cisco Nexus 1000v</td>
</tr>
</tbody>
</table>

This chapter includes the following topics:

- Hybrid Migration with vMotion Checklist
- Required Firewall Rules for vMotion
- Hybrid Migration with HCX Checklist
- Hybrid Cold Migration Checklist
- Required Firewall Rules for Cold Migration

Hybrid Migration with vMotion Checklist

This checklist describes end to end requirements and configurations needed for migration with vMotion between your on-premises data center and your cloud SDDC.
vMotion Requirements for SDDCs With NSX-T

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networking speed and latency</td>
<td>Migration with vMotion requires sustained minimum bandwidth of 250 Mbps between source and destination vMotion vMotion vMotion vMotion vMotion vMotion vMotion vMotion interfaces, and a maximum latency of 100 ms round trip between source and destination.</td>
</tr>
<tr>
<td>On-premises vSphere version</td>
<td>One of:</td>
</tr>
<tr>
<td></td>
<td>- vSphere 6.7u1</td>
</tr>
<tr>
<td></td>
<td>- vSphere 6.5P03 or higher.</td>
</tr>
<tr>
<td>On-premises DVS version</td>
<td>6.0 higher.</td>
</tr>
<tr>
<td>On-premises NSX version</td>
<td>any</td>
</tr>
<tr>
<td></td>
<td>Note SDDCs configured with NSX-T do not support hot vMotion to or from on-premises VXLAN encapsulated networks (NSX for vSphere) or Geneve Datacenter Overlay networks (NSX-T).</td>
</tr>
<tr>
<td>IPsec VPN</td>
<td>Configure an IPsec VPN for the management gateway. See "Configuring VPNs and Gateways" in Getting Started With VMware Cloud on AWS.</td>
</tr>
<tr>
<td>Direct Connect</td>
<td>Direct Connect over a private virtual interface between your on-premise datacenter and your VMware Cloud on AWS SDDC is required for migration with vMotion. See Using AWS Direct Connect with VMware Cloud on AWS.</td>
</tr>
<tr>
<td>Hybrid Linked Mode</td>
<td>Hybrid Linked Mode is required to initiate migration from the vSphere Client. It is not required to initiate migration using the API or PowerCLI. See "Hybrid Linked Mode" in Managing the VMware Cloud on AWS Data Center.</td>
</tr>
<tr>
<td>L2 VPN</td>
<td>Configure a Layer 2 VPN to extend virtual machine networks between your on-premises data center and cloud SDDC. Routed networks are not supported. See VMware Cloud on AWS Networking and Security.</td>
</tr>
<tr>
<td>VMware Cloud on AWS firewall rules</td>
<td>Ensure that you have created the necessary firewall rules as described in Required Firewall Rules for vMotion.</td>
</tr>
</tbody>
</table>
On-premises firewall rules
Ensure that you have created the necessary firewall rules as described in Required Firewall Rules for vMotion.

Virtual machine hardware and settings
Ensure that these requirements are met for virtual machine hardware.
- Virtual machine hardware version 9 or later is required for migration with vMotion from the on-premises data center to the cloud SDDC.
- EVC is not supported in the VMware Cloud on AWS SDDC.
- VMs that are created in the cloud SDDC or that have been power-cycled after migration to the cloud SDDC can't be migrated back to the on-premises data center with vMotion unless the on-premises EVC baseline is Broadwell. You can relocate these VMs after powering them off, as long as their virtual machine hardware version is compatible with the on-premises data center.
- Migration of VMs with DRS or HA VM overrides is not supported. For more information on VM overrides, see Customize an Individual Virtual Machine.

Note
Source switch configurations (including NIOC, spoofguard, distributed firewall, and Switch Security) and runtime state are not applied at the destination as part of migration in either direction. Before you initiate vMotion, apply the source switch configuration to the destination network.

Required Firewall Rules for vMotion

This topic summarizes the firewall rules required for migration with vMotion, both in your on-premises and cloud data centers.

VMC on AWS Firewall Rules for vMotion

Ensure that the following firewall rule are configured in the VMC Console.

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide access to vCenter Server from the on premises. Use for general vSphere Client access as well as for monitoring vCenter Server.</td>
<td>remote (on-premises) vSphere Client IP address</td>
<td>vCenter</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Allow outbound vCenter Server access to on-premises vCenter Server.</td>
<td>vCenter</td>
<td>remote (on-premises) vCenter Server IP address</td>
<td>Any (All Traffic)</td>
</tr>
<tr>
<td>Allow SSO vCenter Server</td>
<td>remote (on-premises) Platform Services Controller IP address</td>
<td>vCenter</td>
<td>SSO (TCP 7444)</td>
</tr>
<tr>
<td>ESXi NFC traffic</td>
<td>remote (on-premises) ESXi VMkernel networks used for NFC.</td>
<td>ESXi</td>
<td>Provisioning (TCP 902)</td>
</tr>
</tbody>
</table>
Use Cases

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow outbound ESXi access to on-premises.</td>
<td>ESXi</td>
<td>remote (on-premises) ESXi management VMkernel networks</td>
<td>Any (All Traffic)</td>
</tr>
<tr>
<td>Allow vMotion traffic.</td>
<td>remote (on-premises) ESXi vMotion VMkernel networks</td>
<td>ESXi</td>
<td>vMotion (TCP 8000)</td>
</tr>
</tbody>
</table>

On-Premises Firewall Rules for vMotion

Ensure that the following firewall rules are configured in your on-premises firewall.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-premises to vCenter Server</td>
<td>Allow</td>
<td>remote (on-premises) vSphere Client subnet</td>
<td>VMware Cloud on AWS vCenter Server IP address</td>
<td>HTTPS</td>
<td>443</td>
</tr>
<tr>
<td>Remote to ESXi provisioning</td>
<td>Allow</td>
<td>remote (on-premises) subnet</td>
<td></td>
<td>TCP 902</td>
<td>902</td>
</tr>
<tr>
<td>Cloud SDDC to vCenter Server</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>On-premises vCenter Server, PSC, Active Directory subnet</td>
<td>HTTPS</td>
<td>443</td>
</tr>
<tr>
<td>Cloud SDDC to ESXi Remote Console</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>VMware Cloud on AWS vCenter Server IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud SDDC to Remote LDAP</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>Remote LDAP Server</td>
<td>TCP</td>
<td>389, 636</td>
</tr>
<tr>
<td>Cloud SDDC to ESXi vMotion</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>Remote ESXi host subnet</td>
<td>TCP</td>
<td>8000</td>
</tr>
</tbody>
</table>

Hybrid Migration with HCX Checklist

This checklist describes end to end the requirements and configurations needed for migration using the VMware Hybrid Cloud Extension (HCX).

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networking speed</td>
<td>Migration with vMotion using HCX requires a minimum of 100 Mbps throughput between source and destination.</td>
</tr>
</tbody>
</table>
| On-premises vSphere version | - For vMotion: vSphere 5.5, 6.0, 6.5, 6.7
- For bulk migration: vSphere 5.0, 5.1, 5.5, 6.0, 6.5, 6.7
- For cold migration: vSphere 5.5, 6.0, 6.5, 6.7 |
| On-premises virtual switch configuration | vSphere Distributed Switch |
Hybrid Cold Migration Checklist

This checklist describes end to end the requirements and configurations needed for cold migration between your on-premises data center and your cloud SDDC.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-premises vSphere version</td>
<td>vSphere 6.5 patch d and later</td>
</tr>
<tr>
<td></td>
<td>vSphere 6.0 update 3 and later</td>
</tr>
<tr>
<td>On-premises virtual switch configuration</td>
<td>Standard switches, vSphere Distributed Switch 6.0, or vSphere Distributed Switch 6.5</td>
</tr>
</tbody>
</table>

Virtual machine hardware and settings

- Virtual machine hardware version 9.
- EVC is not supported in the VMware Cloud on AWS SDDC.
- VMs that are created in the cloud SDDC or that have been power-cycled after migration to the cloud SDDC can't be migrated back to the on-premises data center with vMotion unless the on-premises EVC baseline is Broadwell. You can relocate these VMs after powering them off, as long as their virtual machine hardware version is compatible with the on-premises data center.

The following virtual machines are not supported:
- VMs with hard disks larger than 2TB.
- VMs with shared .vmdk files.
- VMs with virtual media or ISOs attached.

Hybrid Cold Migration Checklist

This checklist describes end to end the requirements and configurations needed for cold migration between your on-premises data center and your cloud SDDC.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-premises vSphere version</td>
<td>vSphere 6.5 patch d and later</td>
</tr>
<tr>
<td></td>
<td>vSphere 6.0 update 3 and later</td>
</tr>
<tr>
<td>On-premises virtual switch configuration</td>
<td>Standard switches, vSphere Distributed Switch 6.0, or vSphere Distributed Switch 6.5</td>
</tr>
<tr>
<td>Requirement</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IPsec VPN</td>
<td>Configure an IPsec VPN for the management gateway. See "Configuring VPNs and Gateways" in Getting Started With VMware Cloud on AWS.</td>
</tr>
<tr>
<td>Hybrid Linked Mode</td>
<td>Hybrid Linked Mode is required to initiate migration from the vSphere Client. It is not required to initiate migration using the API or PowerCLI.</td>
</tr>
<tr>
<td></td>
<td>See "Hybrid Linked Mode" in Managing the VMware Cloud on AWS Data Center.</td>
</tr>
<tr>
<td>VMware Cloud on AWS and on-premises firewall rules</td>
<td>Ensure that you have created the necessary firewall rules as described in Required Firewall Rules for Cold Migration.</td>
</tr>
<tr>
<td>On-premises DNS configuration</td>
<td>Ensure that your on-premises DNS server can correctly resolve the address for the cloud vCenter Server.</td>
</tr>
</tbody>
</table>

Required Firewall Rules for Cold Migration

VMC on AWS Firewall Rules for Cold Migration

Ensure that the following firewall rule are configured in the VMC Console.

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide access to vCenter Server from the on premises. Use for general vSphere Client access as well as for monitoring vCenter Server</td>
<td>remote (on-premises) vSphere Client IP address</td>
<td>vCenter</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Allow outbound vCenter Server access to on-premises vCenter Server.</td>
<td>vCenter</td>
<td>remote (on-premises) vCenter Server IP address</td>
<td>Any (All Traffic)</td>
</tr>
<tr>
<td>Allow SSO vCenter Server</td>
<td>remote (on-premises) Platform Services Controller IP address</td>
<td>vCenter</td>
<td>SSO (TCP 7444)</td>
</tr>
<tr>
<td>ESXi NFC traffic</td>
<td>remote (on-premises) ESXi VMkernel networks used for NFC.</td>
<td>ESXi</td>
<td>Provisioning (TCP 902)</td>
</tr>
<tr>
<td>Allow outbound ESXi access to on-premises ESXi</td>
<td>ESXi</td>
<td>remote (on-premises) ESXi management VMkernel networks</td>
<td>Any (All Traffic)</td>
</tr>
</tbody>
</table>

On-Premises Firewall Rules for Cold Migration

Ensure that the following firewall rules are configured in your on-premises firewall.
<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-premises to vCenter Server</td>
<td>Allow</td>
<td>remote (on-premises) vSphere Client subnet</td>
<td>VMware Cloud on AWS vCenter Server IP address</td>
<td>HTTPS</td>
<td>443</td>
</tr>
<tr>
<td>Remote to ESXi provisioning</td>
<td>Allow</td>
<td>remote (on-premises) subnet</td>
<td>TCP 902</td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>Cloud SDDC to on-premises vCenter Server</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>On-premises vCenter Server, PSC, Active Directory subnet</td>
<td>HTTPS</td>
<td>443</td>
</tr>
<tr>
<td>Cloud SDDC to ESXi Remote Console</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>VMware Cloud on AWS vCenter Server IP address</td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td>Cloud SDDC to Remote LDAP (Required for HLM only)</td>
<td>Allow</td>
<td>CIDR block for cloud SDDC management network</td>
<td>Remote LDAP Server</td>
<td>TCP</td>
<td>389, 636</td>
</tr>
</tbody>
</table>
During SDDC deployment, you connected your SDDC to an Amazon VPC in your AWS account, creating a high-bandwidth, low-latency interface between your SDDC and services in the Amazon VPC.

Using this connection, you can enable access between VMs in your SDDC and services in your AWS account, such as EC2 and S3.

This chapter includes the following topics:

- Access an EC2 Instance
- Access an S3 Bucket Using an S3 Endpoint
- Access an S3 Bucket Using the Internet Gateway
- Use AWS CloudFormation to Create an SDDC

Access an EC2 Instance

You can deploy an EC2 instance in your connected Amazon VPC and configure AWS security policies and compute gateway firewall rules to allow a connection between VMs in your SDDC and that instance.

The default AWS Security Group in the connected VPC controls traffic from EC2 instances in the VPC to VMs in the SDDC. This traffic must also pass through the Compute Gateway firewall (and the Distributed Firewall if you’re using that). All of these controls must allow the intended traffic for a connection to be established.

When you deploy an EC2 instance, the EC2 Launch Wizard associates it with a new Security Group unless you have specified another group. A new AWS Security Group allows all outbound traffic from the instance and no inbound traffic to it. To allow a connection between an EC2 instance and a VM in your SDDC, you typically need only create inbound rules.

- To allow traffic to be initiated from the EC2 instance to a VM in the SDDC, create an inbound rule on the default Security Group.
- To allow traffic to be initiated from the VM to the EC2 instance, create an inbound rule on the Security Group applied to the EC2 instance.

Bear in mind that when you use the default AWS Security Group with the instance, its inbound rules are applied to traffic both when it transits the EC2 instance, and when it transits the SDDC. To allow traffic initiated by either the VM in the SDDC or the EC2 instance to reach other, inbound rules must allow inbound traffic from both the EC2 instance and the VM.
Prerequisites

To complete this task, you need the following information:

- The CIDR blocks of the network segments the VMs in your SDDC are connected to. Click **Segments** on the **Networking & Security** tab to list all segments.

- The connected Amazon VPC and subnet. Click **Connected VPC** in the **System** category on the **Networking & Security** tab to open the **Connected Amazon VPC** page, which provides this information under **VPC ID** and **VPC Subnet**.

Procedure

1. Deploy the EC2 instance in your AWS account.

 Keep in mind the following when creating the EC2 instance:

 - The EC2 instance must be in the VPC that you selected during deployment of your SDDC, or a connection can’t be established over a private IP address.

 - The EC2 instance can be deployed in any subnet within the VPC, but you might incur cross-AZ traffic charges if it is a different AZ than the one you selected during SDDC deployment.

 - If possible, select a Security Group for your EC2 instance that already has an inbound traffic rule configured as described in **Step 2**.

 - The VPC subnet(s) used for the SDDC, as well as any VPC subnets on which AWS services or instances communicate with the SDDC must all be associated with the VPC’s main route table.

 - Workload VMs in the SDDC can communicate over the ENI connection with all subnets in the primary CIDR block of the connected VPC. VMC is unaware of other CIDR blocks in the VPC.

2. Add inbound rules to the Security Group applied to the instance. Select the EC2 instance that you deployed in **Step 1** and configure its Security Group to allow inbound traffic from the logical network or IP address associated with the VM in your SDDC.

 a. Select the instance that you deployed in **Step 1**.

 b. In the instance description, click the instance’s Security Group and click the **Inbound** tab.

 c. Click **Edit**.

 d. Click **Add Rule**.

 e. In the **Type** dropdown menu, select the type of traffic that you want to allow.

 f. In the **Source** text box, select **Custom** and enter the IP addresses or CIDR block of VMs in the SDDC that need to communicate with the instance.

 g. (Optional) Add rules as needed for additional CIDR blocks or traffic type you want to connect to the instance from VMs in your SDDC.

 h. Click **Save**.
3 (Optional) If you need to allow traffic initiated by the instance that you deployed in Step 1 to a VM in your SDDC, edit the default Security Group for the connected Amazon VPC to add inbound rules that identify the instances by CIDR block or Security Group.

 a In the AWS console, select the default Security Group for the Connected Amazon VPC and click the **Inbound** tab.

 b Click **Edit**.

 c Click **Add Rule**.

 d In the **Type** dropdown menu, select the type of traffic that you want to allow.

 e In the **Source** text box, select **Custom** and enter the IP addresses or CIDR block of VMs in the SDDC that need to communicate with the instance.

 If all the VMs are associated with the same SDDC Inventory Group, you can specify that Group as the **Source** rather than using an IP address or CIDR block.

 f (Optional) Add rules as needed for additional CIDR blocks or traffic type you want to connect to the instance from VMs in your SDDC.

 g Click **Save**.

4 Configure the necessary compute gateway firewall rules.

 See **Add or Modify Compute Gateway Firewall Rules** in **VMware Cloud on AWS Networking and Security**.

 ■ To allow inbound traffic from the instances in the connected Amazon VPC, create a rule where the **Source** is **Connected VPC Prefixes** and the **Destination** is an inventory group containing the VMs that require inbound access from the instance.

 ■ To allow outbound traffic to instances in the connected Amazon VPC, create a rule where the **Source** is an inventory group containing the VMs that require outbound access to the instance and the **Destination** is **Connected VPC Prefixes**.

 Note In either case, you can limit traffic to or from a subset of EC2 instances by defining a workload inventory group in your SDDC that includes only the IP addresses or CIDR blocks for those instances.

5 (Optional) Configure distributed firewall rules.

 If any of the VMs that communicate with the instance is protected by distributed firewall, you might need to adjust the rules for that firewall to allow the expected traffic. See **Add or Modify Distributed Firewall Rules**.

Access an S3 Bucket Using an S3 Endpoint

You can access an S3 bucket in your connected AWS account by creating an S3 endpoint.
Procedure

1 Create an S3 endpoint.
 a Log in to your AWS account.
 b Click VPC and then click Endpoints.
 c Click Create Endpoint.
 d In the VPC drop down, select the VPC that is connected to your VMware Cloud on AWS account.
 e In the Service drop down, select the S3 service.
 f Click Next Step.
 g Select the route table for the subnet you selected when you deployed your SDDC.
 h Click Create Endpoint.

2 Configure the security group for your connected Amazon VPC to allow traffic to the logical network associated with the VM in your SDDC.
 a Select VPC.
 b Click Security Groups
 c Click your connected Amazon VPC's security group and click the Inbound tab.
 d Click Edit.
 e Click Add Rule.
 f In the Type dropdown menu, select HTTPS.
 g In the Source text box, enter the CIDR block for the logical network that the VMs in your SDDC are attached to.
 h Repeat steps 2.d through 2.f for each logical network that you want to be able to connect to.
 i Click Save.

3 Ensure that access to S3 through the elastic network interface is enabled.
 By default, S3 access through the elastic network interface in the connected Amazon VPC is enabled. If you disabled this access to allow S3 access through the internet gateway, you must re-enable it.
 b View Details
 c Networking & Security
 d Click Connected Amazon VPCs, and then click Enable next to S3 Endpoint.
4 From the VMC Console, create a compute gateway firewall rule to allow https access to the connected Amazon VPC.
 a Under **Compute Gateway**, click **Firewall Rules**.
 b Add a compute gateway firewall rule with the following parameters.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>The CIDR block for the logical network that the VM in your SDDC is connected to.</td>
</tr>
<tr>
<td>Destination</td>
<td>Select All Linked AWS VPC.</td>
</tr>
<tr>
<td>Service</td>
<td>Select HTTPS.</td>
</tr>
</tbody>
</table>

VMs in your SDDC can now access files on the S3 bucket using their https paths.

Access an S3 Bucket Using the Internet Gateway

If you don't want to use an S3 Endpoint to access an S3 bucket, you can access it using the internet gateway. For example, you might do this

Procedure

1 Ensure that the access permissions for the S3 bucket permit access from your cloud SDDC from the internet.

 See [Managing Access Permissions to Your Amazon S3 Resources](#) for more information.

2 Enable access to S3 through the internet gateway.

 By default, S3 access goes through the S3 endpoint of your connected Amazon VPC. You must enable access to S3 over the internet before you can use it.
 a Log in to the VMC Console at https://vmc.vmware.com.
 b **View Details**
 c **Networking & Security**
 d Click **Connected Amazon VPCs**, and then click **Disable** next to **S3 Endpoint**.

3 From the VMC Console, create a compute gateway firewall rule to allow https access to the internet.
 a Under **Compute Gateway**, click **Firewall Rules**.
 b Add a compute gateway firewall rule with the following parameters.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>The CIDR block for the logical network that the VM in your SDDC is connected to.</td>
</tr>
<tr>
<td>Destination</td>
<td>Any</td>
</tr>
<tr>
<td>Service</td>
<td>Select HTTPS.</td>
</tr>
</tbody>
</table>
VMs in your SDDC can now access files on the S3 bucket using their https paths.

Use AWS CloudFormation to Create an SDDC

AWS CloudFormation is a text-based modeling tool that enables you to create templates that describe all the features of an VMware Cloud on AWS SDDC or any other AWS infrastructure.

To introduce this capability to VMware Cloud on AWS customers, VMware has made a CloudFormation SDDC template available on code.vmware.com. Use this template as a starting point for working with AWS CloudFormation tools to create a CloudFormation stack and an AWS Lambda function that you can run to deploy an SDDC based on the template. For a more detailed explanation of this procedure, see VMware Cloud on AWS Integrations with CloudFormation on the VMware blog and https://github.com/vmwaresamples/vmware-cloud-on-aws-integration-examples/blob/master/CloudFormation/README.md.

Procedure

1. Log in to the AWS console and go to the US West (Oregon) region. Log in with an AWS identity authorized to view and deploy CloudFormation templates.

2. Retrieve the CloudFormation Create SDDC Template from the vmwaresamples repository on Github.

3. Open the AWS CloudFormation service and click Create new stack.

4. Upload the template you retrieved in Step 2. In the AWS CloudFormation > Stacks > Create stack window, click Upload a template to Amazon S3 and choose the vmc-aws-cloud-cf-template.txt template. Click Next.

5. Specify a name for the new stack, then click Next and Create.

6. Specify SDDC variables for use by the AWS Lambda function. In the AWS CloudFormation > Stacks > Stack Detail window. In the Resources section, you can see an IAM role and a Lambda Function. Click the Physical ID value of the Lambda function and enter the Environment variables that provide configuration details for the SDDC.

Table 6-1. Environment Variables for Cloud Formation SDDC Stack

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected_account_id</td>
<td>The Amazon account ID used to connect the SDDC. Returned by the VMC API request GET /orgs/{org}/account-link/connected-accounts as the value of id.</td>
</tr>
<tr>
<td>customer_subnet_ids</td>
<td>This is the ID of the subnet (not the actual subnet address). Returned by the VMC API request GET /orgs/{org}/account-link/compatible-subnets as the subnet_id of the subnet_cidr_block that you want to use.</td>
</tr>
<tr>
<td>Email</td>
<td>currently unimplemented</td>
</tr>
<tr>
<td>vpc_cidr</td>
<td>Subnet CIDR block for management traffic. Default is 10.2.0.0/16</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>name</td>
<td>The name of the SDDC to be created</td>
</tr>
<tr>
<td>numOfHosts</td>
<td>The number of hosts initially added to the SDDC</td>
</tr>
<tr>
<td>orgId</td>
<td>Can be found in the VMware Cloud on AWS API or as part of the UI under an existing SDDC connection and the Support Info tab</td>
</tr>
<tr>
<td>region</td>
<td>Must be US_WEST_2</td>
</tr>
<tr>
<td>user_refresh_token</td>
<td>Can be found in the VMware Cloud on AWS UI by clicking on your name at the top right and then the Oauth Refresh Token button.</td>
</tr>
</tbody>
</table>

7 Save and run the AWS Lambda function to create the SDDC from the template.

Click Save, then click Test to open the Configure test event window. Give the test event a name and click Create.

The AWS Lambda function runs and creates an SDDC based on the template and environment variables you supplied. You can monitor the SDDC creation process on the SDDCs tab of the VMC Console or use the AWS Tasks API.

AWS Roles and Permissions

To create an SDDC, VMware must add several required AWS roles and permissions to your AWS account.

Permissions Statement

Initial permissions required to create the SDDC are shown in italics. These permissions are removed from the role after the SDDC has been created. The others remain with this role in your AWS account.

```json
{"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"ec2:DescribeRouteTables",
"ec2:CreateRoute",
"ec2:DeleteRoute",
"ec2:ReplaceRoute"
],
"Resource": [
"*"
]
},
{
"Effect": "Allow",
"Action": [
"ec2:DescribeNetworkInterfaces",
"ec2:CreateNetworkInterface",
"ec2:DeleteNetworkInterface",
"ec2:CreateNetworkInterfacePermission",
"ec2:ModifyNetworkInterfaceAttribute"
]}
```
"ec2:DescribeNetworkInterfaceAttribute",
"ec2:DescribeVpcs",
"ec2:DescribeSubnets"
],
"Resource": [
 "*
]
},
{
 "Effect": "Allow",
 "Action": [
 "ec2:AssignPrivateIpAddresses",
 "ec2:UnassignPrivateIpAddresses"
],
 "Resource": [
 "*
]
},
{
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DescribeStacks",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources",
 "cloudformation:GetTemplateSummary",
 "cloudformation:GetStackPolicy",
 "cloudformation:GetTemplate",
 "cloudformation:ListChangeSets",
 "cloudformation:ListStackResources",
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources"
],
 "Resource": "*
]
},
{
 "Effect": "Allow",
 "Action": [
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy",
 "iam:GetRole",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "lambda:CreateFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:GetFunction",
 "lambda:InvokeFunction",
 "cloudformation:CreateStack",
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources"
],
 "Resource": "*
]
}
To see the associated Policy Permissions document, log into the AWS Console and open https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/AmazonVPCCrossAccountNetworkInterfaceOperations$jsonEditor. Here’s the summary description of that policy.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [  
                "ec2:DescribeRouteTables",
                "ec2:CreateRoute",
                "ec2:DeleteRoute",
                "ec2:ReplaceRoute"
            ],
            "Resource": [  
                "*"  
            ]
        },
        {
            "Effect": "Allow",
            "Action": [  
                "ec2:DescribeNetworkInterfaces",
                "ec2:CreateNetworkInterface",
                "ec2:DeleteNetworkInterface",
                "ec2:CreateNetworkInterfacePermission",
                "ec2:DeleteNetworkInterfacePermission",
                "ec2:DescribeNetworkInterfacePermissions",
                "ec2:ModifyNetworkInterfaceAttribute",
                "ec2:DescribeNetworkInterfaceAttribute",
                "ec2:DescribeAvailabilityZones",
                "ec2:DescribeVpcs",
                "ec2:DescribeSubnets"
            ],
            "Resource": [  
                "*"  
            ]
        },
        {
            "Effect": "Allow",
            "Action": [  
                "ec2:AssignPrivateIpAddresses",
                "ec2:UnassignPrivateIpAddresses"
            ],
            "Resource": [  
                "*"  
            ]
        }
    ]
}
```
Using On-Premises vRealize Automation with Your Cloud SDDC

You can use your on-premises vRealize Automation with your VMware Cloud on AWS SDDC.

Currently vRealize Automation 7.2, 7.3, and 7.4 are supported for use with VMware Cloud on AWS.

This chapter includes the following topics:

- Prepare Your SDDC to Work with vRealize Products
- Connect vRealize Automation to Your SDDC
- Enable vRealize Automation Access to the Remote Console

Prepare Your SDDC to Work with vRealize Products

Before you connect vRealize Automation to your VMware Cloud on AWS SDDC, you must configure networking and firewall rules for your SDDC.

Procedure

1. Configure a VPN connection over the public Internet or AWS Direct connect.

 See Configure VPN Connectivity to the On-Premises Data Center and Configure AWS Direct Connect for VMware Cloud on AWS in VMware Cloud on AWS Networking and Security.

2. Verify that the vCenter Server FQDN is resolvable at a private IP address on the management network.

 See Set vCenter Server FQDN Resolution Address VMware Cloud on AWS Networking and Security.

3. Configure additional firewall rules if necessary.

 vRealize Automation requires the following Management Gateway firewall rules.

Table 7-1. Management Gateway Firewall Rules Required by vRealize Automation

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Destination</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter</td>
<td>CIDR block of on-premises data center</td>
<td>vCenter</td>
<td>Any (All Traffic)</td>
</tr>
<tr>
<td>vCenter Ping</td>
<td>Any</td>
<td>vCenter</td>
<td>ICMP (All ICMP)</td>
</tr>
<tr>
<td>Name</td>
<td>Source</td>
<td>Destination</td>
<td>Service</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>On Premises to ESXi Ping</td>
<td>CIDR block of on-premises data center</td>
<td>ESXi Management Only</td>
<td>ICMP (All ICMP)</td>
</tr>
<tr>
<td>On Premises to ESXi Remote Console and Provisioning</td>
<td>CIDR block of on-premises data center</td>
<td>ESXi Management Only</td>
<td>TCP 902</td>
</tr>
<tr>
<td>On-Premises to SDDC VM</td>
<td>CIDR block of on-premises data center</td>
<td>CIDR block of SDDC logical network</td>
<td>Any (All Traffic)</td>
</tr>
<tr>
<td>SDDC VM to On-Premises</td>
<td>CIDR block of SDDC logical network</td>
<td>CIDR block of on-premises data center</td>
<td>Any (All Traffic)</td>
</tr>
</tbody>
</table>

See Add or Modify Management Gateway Firewall Rules VMware Cloud on AWS Networking and Security.

Connect vRealize Automation to Your SDDC

You can connect vRealize Automation to your cloud SDDC and create blueprints allowing users to deploy VMs.

Prerequisites

- Ensure that you have completed all the steps in Prepare Your SDDC to Work with vRealize Products.
- Ensure that all vRealize Automation VMs are configured to use TLS 1.2.

Procedure

1. In vRealize Automation, select **Infrastructure > Endpoints**.
2. Select **New > Virtual > vSphere (vCenter)**.
4. Specify the cloud admin credentials.
5. (Optional) If you are using vRealize Automation 7.3 or 7.4, click **Test Connection** and **Accept Certificate**.
6. Create a Fabric Group.
 a. Add the cloud admin as the fabric administrator.
 b. Add the default SDDC cluster Cluster-1 to the Compute Resources.
 For more information on creating a Fabric Group, see Create a Fabric Group.
7. Create reservations for the components that the cloud admin has access to.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Pool</td>
<td>Compute-ResourcePool</td>
</tr>
<tr>
<td>Datastore</td>
<td>WorkloadDatastore</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>VM & Template Folder</td>
<td>Workloads</td>
</tr>
<tr>
<td>Network</td>
<td>Use the logical network that you created as part of the prerequisites</td>
</tr>
</tbody>
</table>

Important Because VMware Cloud on AWS places VMs provisioned for vRealize Automation Business Groups in a non-standard folder, you must set the vRealize Automation custom property
`VMware.VirtualCenter.Folder` to reference the workloads folder (VM & Template Folder). See the vRealize Automation Custom Properties Reference.

8 Create a Network Profile for the logical network you created as part of the prerequisites.

 For more information on creating a network profile, see Create a Network Profile.

9 Create a Blueprint.

 For more information on Blueprints, see Providing Service Blueprints to Users.

What to do next

If you plan to access the Remote Console from vRealize Automation, follow the steps in Enable vRealize Automation Access to the Remote Console.

Enable vRealize Automation Access to the Remote Console

To access the Remote Console from vRealize Automation, you must add the host management IP address of the ESXi hosts to the `/etc/hosts` file in the vRealize Automation appliance.

Procedure

1 For each ESXi host in your SDDC, determine the IP address of the host management network.
 a Log in to the vSphere Client for your SDDC.
 b In the Hosts and Clusters inventory list, select the host.
 c Click the **Configure** tab.
 d Under **Networking**, click **VMkernel Adapters**.
 e Note the FQDN for the host and the IP address for the vmk0 device.
2 Connect to the vRealize Automation appliance using ssh.

3 Edit the /etc/hosts file and add a line for each host as shown.

```
host-management-ip esxi-host-name
```
VMC Console Settings

You can modify VMC Console settings to change the function of the console.

This chapter includes the following topics:

- Set Language for the VMC Console

Set Language for the VMC Console

The VMC Console supports a number of languages, based on the language setting of your web browser. The VMC Console UI supports English, French, German, Japanese, Korean, Spanish, Simplified Chinese, and Traditional Chinese.

To set the language used by the VMC Console, set your language preferences in your VMware Cloud Services account.

Procedure

1. From the VMC Console, click the services icon () and select Cloud Services Console.
2. In the Cloud Services Console, click your user name and select My Account.
3. Click Preferences.
4. Next to Language and Regional Format, click Edit.
5. Select the language and regional format and click Save.
You have a number of options for getting help and support for your VMware Cloud on AWS environment.

This section also documents a number of known issues and workarounds that can help you resolve problems.

This chapter includes the following topics:

- Get Help and Support
- View and Subscribe to the Service Status Page
- Unable to Connect to VMware Cloud on AWS
- Unable to Connect to vCenter Server
- Unable to Select Subnet When Creating SDDC
- Unable to Copy Changed Password Into vCenter Login Page
- Compute Workloads Are Unable to Reach an On-Premises DNS Server

Get Help and Support

You have a number of options for getting help and support in using your VMware Cloud on AWS environment.

Procedure

1. Before you contact VMware for support, have the support information for your SDDC ready.
 b. Click View Details on the SDDC card.
 c. Click Support to view the support information.
2 Select a method for getting help or support.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chat</td>
<td>Click the help icon and click Chat with VMware Support. Type your message in the chat window. You can include images by dragging them into the chat window. The chat window is available in the VMC Console, cloud vSphere Client connected to your cloud vCenter Server, and in the Cloud Gateway Appliance.</td>
</tr>
<tr>
<td>File a support request</td>
<td>Click the help icon and click Support Requests. You are taken to the Cloud services console. Click Support Center to file a support request.</td>
</tr>
<tr>
<td>View contextual help</td>
<td>Click the help icon. Browse the topics under the Help Topics heading, or type a question or keywords in the Type your question here field to search the available topics.</td>
</tr>
<tr>
<td>Ask a question in the forums</td>
<td>Click the help icon and click Ask the Community. You can post questions and discuss the product with other users in these forums.</td>
</tr>
</tbody>
</table>

View and Subscribe to the Service Status Page

VMware publishes service operational status and maintenance schedules at status.vmware-services.io. Subscribe to the status page to get real-time email or SMS notifications on the service status.

Procedure

1. Go to https://status.vmware-services.io to view the service status dashboard and incidents.
2. Click Subscribe to Updates.
3. Select the notification methods you prefer to subscribe to for the service.

Unable to Connect to VMware Cloud on AWS

Problem

You might experience problems connecting to resources on VMware Cloud on AWS. For example:

- You log in to the VMC Console and see only a blank screen.
- You try to log in to the vSphere Client or vSphere Web Client and see the error message, *User name and password are required.*
Cause

This error is caused by a problem with the site cookies.

Solution

- You can resolve this issue either by deleting the site cookies or opening an incognito or private browsing window in your browser.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete cookies</td>
<td>Follow the instructions for your browser. If you want to delete only specific cookies, delete ones with “vmware” and “vidm” in the name.</td>
</tr>
<tr>
<td></td>
<td>- Google Chrome: See https://support.google.com/chrome/answer/95647</td>
</tr>
<tr>
<td></td>
<td>- Mozilla Firefox: See https://support.mozilla.org/en-US/kb/delete-cookies-remove-info-websites-stored</td>
</tr>
<tr>
<td>Open an incognito or private browsing window</td>
<td>Follow the instructions for your browser:</td>
</tr>
<tr>
<td></td>
<td>- Google Chrome: Click the menu button and select New incognito window.</td>
</tr>
<tr>
<td></td>
<td>- Mozilla Firefox: Click the menu button and select New Private Window.</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Internet Explorer: Click the tools button and select Safety > InPrivate Browsing.</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Edge: Click the More icon, and select New InPrivate window.</td>
</tr>
<tr>
<td></td>
<td>- Safari: Select File > New Private Window.</td>
</tr>
</tbody>
</table>

Unable to Connect to vCenter Server

You are unable to connect to the vSphere Client interface for your SDDC.

Problem

When you click the link on the connection tab to open the vSphere Client interface to vCenter Server, your browser reports that the site cannot be reached.

Cause

By default, the management gateway firewall is set to deny all traffic between the internet and vCenter Server. If you used the Firewall Rule Accelerator to create firewall rules for your Management Gateway, or used the MGW VPN wizard to create the management VPN and gateway, the required firewall rules should be created automatically. If you created your management network and gateway manually, be sure that the appropriate firewall rules are in place.
Solution

◆ Create the following firewall rules.

Table 9-1. Firewall Rules Required for vCenter Access

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>Service</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide access to vCenter Server from the internet.</td>
<td>HTTPS</td>
<td>public IP address</td>
<td>vCenter</td>
</tr>
<tr>
<td>Use for general vSphere Client access as well as for monitoring vCenter Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide access to vCenter Server over VPN tunnel.</td>
<td>HTTPS</td>
<td>IP address or CIDR block from on-premises data center</td>
<td>vCenter</td>
</tr>
<tr>
<td>Required for Management Gateway VPN, Hybrid Linked Mode, Content Library.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide access from cloud vCenter Server to on-premises services such as Active Directory, Platform Services Controller, and Content Library.</td>
<td>Any</td>
<td>vCenter</td>
<td>IP address or CIDR block from on-premises data center.</td>
</tr>
</tbody>
</table>

Unable to Select Subnet When Creating SDDC

While creating your SDDC and connecting a VPC and subnet to connect to in your AWS account, you are unable to select a subnet.

Problem

While deploying an SDDC, there is a step in which you select an Amazon VPC and subnet in your AWS account to connect to your SDDC. You might be unable to select a subnet during this step. A message in the UI indicates that you do not have capacity in any of your current subnet AZs.

Cause

You must select a subnet in the same availability zone (AZ) as your SDDC. Currently, it isn't possible to ensure which AZ your SDDC will match up to. If you have only created a single subnet, it might be in the incorrect AZ and not available for selection in this step.

Solution

◆ Create an appropriate subnet in each availability zone in your Amazon VPC.

Unable to Copy Changed Password Into vCenter Login Page
Problem
You changed the clouadmin@vmc.local for a vCenter Server system from the vSphere Client. Now you no longer remember the password, so you use the Copy icon on the Default vCenter Credentials page and paste the password into the VMware vCenter Single Sign-On Login Screen. The login process fails.

Cause
When you change the password for your SDDC from the vSphere Client, the new password is not synchronized with the password that is displayed on the Default vCenter Credentials page. That page shows only the Default credentials. If you change the credentials, you are responsible for keeping track of the new password.

Solution
Contact Technical Support and request a password change. See Get Help and Support.

Compute Workloads Are Unable to Reach an On-Premises DNS Server

Compute workloads connected to a user-created logical network using DHCP are unable to reach an on-premises DNS server.

Problem
If you selected a non-default logical network when creating your compute gateway VPN, and that network uses DHCP, workload VMs might be unable to reach an on-premises DNS server.

Cause
The problem occurs if the compute gateway VPN has not been configured to allow DNS requests over the VPN.

Solution
1. Configure the VMware Cloud on AWS side of the VPN tunnel to allow DNS requests over the VPN.
 b. Navigate to the Networking tab of your SDDC.
 c. Under Compute Gateway and click VPN.
 d. Select Actions > Edit.
 e. Under Local Network, select cgw-dns-network.
 f. Click Save.
2. Configure the on-premises side of the tunnel of connect to local_gateway_ip/32 in addition to the Local Gateway IP address. This allows DNS requests to be routed over the VPN.