
VMware GemFire 9.10
Documentation

VMware GemFire 9.10

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its

subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies. Copyright and trademark

information.

VMware GemFire 9.10 Documentation

VMware by Broadcom 2

https://docs.vmware.com/copyright-trademark.html

Contents

VMware GemFire® 9.10 Documentation 68
VMware GemFire 9.10 68

API Reference Documentation 68

Documentation of Related Products 68

VMware GemFire® 9.10 Documentation 69
VMware GemFire 9.10 69

API Reference Documentation 69

Documentation of Related Products 69

VMware GemFire 9.10 Release Notes 70
What’s New in VMware GemFire 9.10.18 70

What’s New in VMware GemFire 9.10.17 70

What’s New in VMware GemFire 9.10.16 71

What’s New in VMware GemFire 9.10.15 71

What’s New in VMware GemFire 9.10.14 72

What’s New in VMware GemFire 9.10.13 72

What’s New in VMware GemFire 9.10.12 72

What’s New in VMware GemFire 9.10.11 72

What’s New in VMware GemFire 9.10.10 72

What’s New in VMware GemFire 9.10.9 72

What’s New in VMware GemFire 9.10.8 73

What’s New in VMware GemFire 9.10.7 73

What’s New in VMware GemFire 9.10 73

Installing VMware GemFire 9.10 74

Upgrading to VMware GemFire 9.10 74

Upgrading to Version 9.10.6 74

Upgrading from a Version prior to 9.1.1 74

Resolved Issues 75

Issues Resolved in VMware GemFire 9.10.18 75

Issues Resolved in VMware GemFire 9.10.17 75

Issues Resolved in VMware GemFire 9.10.16 75

Issues Resolved in VMware GemFire 9.10.15 76

VMware GemFire 9.10 Documentation

VMware by Broadcom 3

Issues Resolved in VMware GemFire 9.10.14 76

Issues Resolved in VMware GemFire 9.10.13 77

Issues Resolved in VMware GemFire 9.10.12 77

Issues Resolved in VMware GemFire 9.10.11 77

Issues Resolved in VMware GemFire 9.10.10 77

Issues Resolved in VMware GemFire 9.10.9 78

Issues Resolved in VMware GemFire 9.10.8 78

Issues Resolved in VMware GemFire 9.10.7 78

Issues Resolved in VMware GemFire 9.10.6 79

Issues Resolved in VMware GemFire 9.10.5 80

Issues Resolved in VMware GemFire 9.10.4 81

Issues Resolved in VMware GemFire 9.10.3 81

Issues Resolved in VMware GemFire 9.10.2 81

Issues Resolved in VMware GemFire 9.10.1 82

Issues Resolved in VMware GemFire 9.10 82

Support 83

Obtaining and Installing Security Updates 84

Supported Configurations and System Requirements 85

Tanzu GemFire Supported Configurations 85

Supported Platforms 85

Java Support Notes 86

File System Type for Linux Platforms 86

Host Machine Requirements 86

Getting Started with VMware GemFire 88

About VMware GemFire 88
Main Concepts and Components 88

Main Features 89
High Read-and-Write Throughput 89

Low and Predictable Latency 89

High Scalability 90

Continuous Availability 90

Reliable Event Notifications 90

Parallelized Application Behavior on Data Stores 91

Shared-Nothing Disk Persistence 91

VMware GemFire 9.10 Documentation

VMware by Broadcom 4

Reduced Cost of Ownership 91

Single-Hop Capability for Client/Server 91

Client/Server Security 91

Multisite Data Distribution 92

Continuous Querying 92

Heterogeneous Data Sharing 92

Installing VMware GemFire 92
Obtaining and Installing Security Updates 93

Windows/Unix/Linux—Install VMware Tanzu GemFire from a
Compressed TAR File

93

Prerequisites 93

Procedure 93

Obtaining Pivotal GemFire from a Maven Repository 95

Setting Up the CLASSPATH 96

Modifying the CLASSPATH in gfsh-Managed Processes 97

Setting the CLASSPATH for Applications and Standalone Java Processes 97

Uninstalling GemFire 98

Upgrading VMware GemFire 98
Upgrade Details 99

Planning an Upgrade 99

Guidelines for Upgrading 100

Version Compatibilities 100

Upgrade to the Latest Version 9 from an Earlier Version 9 100

Upgrade to Version 9 from Version 8.2.3 or a More Recent 8.2 Version 101

Upgrade to Version 9 from Version 8.2.2 or an Earlier Version 101

Upgrade a Multi-Site System to Version 9 from Version 8.2.3 or Later 101

Java Notes 101

Rolling Upgrade 102
Rolling Upgrade Limitations and Requirements 102

Rolling Upgrade Guidelines 102

Rolling Upgrade Procedure 103

Upgrade Locators 103

Upgrade Servers 105

VMware GemFire 9.10 Documentation

VMware by Broadcom 5

Upgrade Clients 106

Offline Upgrade 106
Offline Upgrade Guidelines 106

Offline Upgrade Procedure 106

Upgrading Clients 108
Remove or Replace Obsolete Identifiers 108

Rename Packages 108

Reinstate Secure Client/Server Messaging After Upgrading 109

Upgrade from Version 8.2 to Version 9 109
General Upgrade Steps 109

Java Notes 110

RHEL/Centos: with previous installation via RPM 110

Ubuntu: with previous installation via Debian packaging 110

Package Renaming 110

The Upgrade Procedure, Step by Step 111

Multi-site Upgrade from Version 8.2 to Version 9 112

Pivotal GemFire in 15 Minutes or Less 115
Step 1. Install Pivotal GemFire 115

Step 2. Use gfsh to start a locator 115

Step 3. Start GemFire Pulse 116

Step 4. Start a server 117

Step 5. Create a replicated, persistent region 117

Step 6. Manipulate data in the region and demonstrate persistence 118

Step 7. Examine the effects of replication 120

Step 8. Restart the cache servers in parallel 121

Step 9. Shut down the system including your locators 124

Step 10. What to do next… 124

Configuring and Running a Cluster 125

Overview of the Cluster Configuration Service 126

Why Use the Cluster Configuration Service 126

Using the Cluster Configuration Service 127

How the Cluster Configuration Service Works 127

gfsh Commands that Create Cluster Configurations 128

VMware GemFire 9.10 Documentation

VMware by Broadcom 6

gfsh Limitations 129

Deactivating the Cluster Configuration Service 130

Tutorial—Creating and Using a Cluster Configuration 130

Deploying Application JARs to VMware GemFire Members 136
Deployment Location for JAR Files 137

About Deploying JAR Files and the Cluster Configuration Service 138

Versioning of JAR Files 138

Automatic Class Path Loading 138

Automatic Function Registration 139

Using Member Groups 139

Exporting and Importing Cluster Configurations 140
Exporting a Cluster Configuration 140

Importing a Cluster Configuration 140

Cluster Configuration Files and Troubleshooting 141
Troubleshooting Tips 141

Sizing a GemFire Cluster 142

Overview 142

Resource Considerations 142

Experimentation and Testing 142

Requirements and Assumptions 143

Architectural and Design Considerations 143

Serialization 143

Per-entry Memory Overhead 144

Partitioned Region Scalability 144

Redundancy 145

Relationship Between Horizontal and Vertical Scale 145

NUMA Considerations 145

GemFire Queues 145

Sizing Process 146

Step 1: Domain object sizing 146

Step 2: Estimating total memory and system requirements 146

Step 3: Vertical Sizing 147

Locator Sizing 148

Notes on GC 148

VMware GemFire 9.10 Documentation

VMware by Broadcom 7

Step 4: Scale-out Validation 149

Step 5: Projection to Full Scale 149

Sizing Quick Reference 149

Using gfsh to Manage a Remote Cluster Over HTTP or HTTPS 150

Deploying Configuration Files without the Cluster Configuration Service 151

Main Steps to Deploying Configuration Files 151

VMware GemFire Configuration Files 152

Default File Specifications and Search Locations 152

Changing the File Specifications 153

Deploying Configuration Files in JAR Files 153

Starting Up and Shutting Down Your System 154
Starting Up Your System 154

Starting Up After Losing Data on Disk 155

Shutting Down the System 155

Using the shutdown Command 155

Shutting Down System Members Individually 156

Option for System Member Shutdown Behavior 157

Running VMware GemFire Locator Processes 157
Locator Configuration and Log Files 157

Locators and the Cluster Configuration Service 158

Start the Locator 159

Check Locator Status 161

Stop the Locator 161

Locators and Multi-Site (WAN) Deployments 162

Running VMware GemFire Server Processes 162
Default Server Configuration and Log Files 162

Start the Server with gfsh 163

Start the Server Programmatically 164

Check Server Status 165

Stop Server 165

Managing System Output Files 165

VMware GemFire 9.10 Documentation

VMware by Broadcom 8

Firewall Considerations 166

Firewalls and Connections 166

Firewalls and Ports 167

Limiting Ephemeral Ports for Peer-to-Peer Membership 167

Properties for Firewall and Port Configuration 167

Default Port Configurations 168

Properties for Firewall and Port Configuration in Multi-Site (WAN) Configurations 169

Basic Configuration and Programming 170

Cluster and Cache Configuration 170

Cluster Members 171

Member Overview 171

Membership and System Topologies 171

Multi-site Installations 172

Setting Properties 172

Options for Configuring the Cache and Data Regions 173

Local and Remote Membership and Caching 174

Cache Management 174

Introduction to Cache Management 175
The Caching APIs 175

The Cache XML 176

Create and Close a Cache 176

Export and Import a Cache Snapshot 177

Cache Management with gfsh and the Cluster Configuration Service 177

Managing a Peer or Server Cache 177

Managing a Client Cache 178

Managing a Cache in a Secure System 180

Managing RegionServices for Multiple Secure Users 180
Requirements and Caveats for RegionService 181

VMware GemFire 9.10 Documentation

VMware by Broadcom 9

Launching an Application after Initializing the Cache 181

Data Regions 182

Region Management 183

Creating a Region 183
Creating a Region with gfsh 183

Creating a Region Through the cache.xml File 183

cache.xml File Examples 184

Creating a Region Through the API 184

API Examples 185

Create and Access Data Subregions 186

Update the Configuration of Data Regions 187

Invalidate a Region 187

Clear a Region 188

Destroy a Region 188

Close a Region 189

Region Naming 189

Region Shortcuts and Custom Named Region Attributes 189
Shortcut Attribute Options 190

RegionShortcuts for Peers and Servers 191

ClientRegionShortcuts for Clients 191

Storing and Retrieving Region Shortcuts and Custom Named Region
Attributes

192

Examples 192

Managing Region Attributes 193
Define Region Attributes 193

Modify Region Attributes 194

Creating Custom Attributes for Regions and Entries 195

Limitations and Alternatives 195

Building a New Region with Existing Content 196

Data Entries 196

Managing Data Entries 196

VMware GemFire 9.10 Documentation

VMware by Broadcom 10

Keys 196

Create and Update Entries 197

The getAll Operation 197

The putAll Operation 197

The removeAll Operation 198

Retrieving Region Entries from Proxy Members 198

Using gfsh to get and put 198

Copy on Read Behavior 199

Requirements for Using Custom Classes in Data Caching 200
CLASSPATH 200

Data Serialization 200

Classes Used as Keys 200

Topologies and Communication 202

Topology and Communication General Concepts 202

Topology Types 203
Peer-to-Peer Configuration 203

Client/Server Configuration 203

Multi-site Configuration 204

Planning Topology and Communication 204

Determine Protocols and Addresses 205

Set Up Membership and Communication 205

How Member Discovery Works 205

Peer Member Discovery 205

Standalone Member 206

Client Discovery of Servers 206

Multi-site Discovery 207

How Communication Works 207
TCP 208

UDP Unicast and Multicast 208

UDP Unicast 208

UDP Multicast 208

Using Bind Addresses 209

VMware GemFire 9.10 Documentation

VMware by Broadcom 11

Peer and Server Communication 209

Gateway Receiver Communication 210

Locator Communication 211

Choosing Between IPv4 and IPv6 211

Peer-to-Peer Configuration 212

Configuring Peer-to-Peer Discovery 212

Configuring Peer Communication 213

Organizing Peers into Logical Member Groups 213

Client/Server Configuration 214

Standard Client/Server Deployment 215

How Server Discovery Works 216
Basic Configuration 216

Using Member Groups 217

How Client/Server Connections Work 218
How the Pool Chooses a Server Connection 219

How the Pool Connects to a Server 220

How the Pool Manages Pool Connections 220

How the Pool Manages Subscription Connections 221

How the Pool Conditions Server Load 221

Configuring a Client/Server System 221

Organizing Servers Into Logical Member Groups 223

Client/Server Example Configurations 223

Examples of Standard Client/Server Configuration 224

Example—Standalone Publisher Client, Client Pool, and Region 225

Example—Standalone Subscriber Client 225

Example of a Static Server List in Client/Server Configuration 226

Fine-Tuning Your Client/Server Configuration 226
How Server Load Conditioning Works 226

Multi-site (WAN) Configuration 227

VMware GemFire 9.10 Documentation

VMware by Broadcom 12

How Multi-site (WAN) Systems Work 228

Multi-site (WAN) Topologies 228
Fully Connected Mesh Topology 229

Ring Topology 229

Hybrid Multi-site Topology 229

Unsupported Topologies 230

Configuring a Multi-site (WAN) System 230
Prerequisites 230

Main Steps 231

Configure Gateway Senders 231

Create Data Regions for Multi-site Communication 234

Configure Gateway Receivers 236

Configuring One IP Address and Port to Access All Gateway Receivers in a Site 239

Filtering Events for Multi-Site (WAN) Distribution 240
Configuring Multi-Site Event Filters 241

Resolving Conflicting Events 243

Implementing a GatewayConflictResolver 243

Managing VMware GemFire 245

VMware GemFire Management and Monitoring 246

Management and Monitoring Features 246
References 247

Overview of VMware GemFire Management and Monitoring Tools 247

gfsh Command-line tool 248

Executing gfsh commands with the management API 248

Member Configuration Management 249

Java Management Extension (JMX) MBeans 249

VMware GemFire Java API 249

VMware GemFire Pulse 249

JConsole 249

Architecture and Components 249
Architecture 250

Managed Node 250

VMware GemFire 9.10 Documentation

VMware by Broadcom 13

JMX Manager Node 250

JMX Integration 251

Management APIs 252

VMware GemFire Management and Monitoring Tools 252

Starting a JMX Manager 253
Configuring a JMX Manager 254

Stopping a JMX Manager 257

Federated MBean Architecture 257
Federation of VMware GemFire MBeans and MBeanServers 258

MBean Proxy Naming Conventions 258

Use of MXBeans 258

MBean Proxy Creation 258

List of VMware GemFire JMX MBeans 258

JMX Manager MBeans 259
ManagerMXBean 260

DistributedSystemMXBean 260

DistributedRegionMXBean 260

DistributedLockServiceMXBean 261

Managed Node MBeans 261

MemberMXBean 262

CacheServerMXBean 262

RegionMXBean 262

LockServiceMXBean 263

DiskStoreMXBean 263

AsyncEventQueueMXBean 263

LocatorMXBean 264

LuceneServiceMXBean 264

GatewaySenderMXBean 264

GatewayReceiverMXBean 265

Browsing VMware GemFire MBeans through JConsole 265

VMware GemFire JMX MBean Notifications 266

Notification Federation 266

Attaching Listeners to MXBeans 267

VMware GemFire 9.10 Documentation

VMware by Broadcom 14

System Alert Notifications 267

List of JMX MBean Notifications 268
MemberMXBean Notifications 268

MemberMXBean Gateway Notifications 268

CacheServerMXBean Notifications 269

DistributedSystemMXBean Notifications 269

Configuring RMI Registry Ports and RMI Connectors 269
Configuring JMX Manager Port and Bind Addresses 269

Using Out-of-the-Box RMI Connectors 270

Executing gfsh Commands through the Management API 270

Managing Heap and Off-heap Memory 271
Tuning the JVM’s Garbage Collection Parameters 271

Using the VMware GemFire Resource Manager 272

How Background Eviction Is Performed 273

Controlling Heap Use with the Resource Manager 273

Configure VMware GemFire for Heap LRU Management 274

Set the JVM GC Tuning Parameters 275

Monitor and Tune Heap LRU Configurations 275

Resource Manager Example Configurations 277

Use Case for the Example Code 278

Managing Off-Heap Memory 278
On-heap and Off-heap Objects 278

Off-heap Recommendations 279

Implementation Details 279

Controlling Off-heap Use with the Resource Manager 279

Specifying Off-heap Memory 280

gfsh Off-heap Support 281

ResourceManager API 281

Tuning Off-heap Memory Usage 282

Locking Memory (Linux Systems Only) 283

Disk Storage 283

How Disk Stores Work 284

VMware GemFire 9.10 Documentation

VMware by Broadcom 15

What VMware GemFire Writes to the Disk Store 285

Disk Store State 285

Disk Store File Names and Extensions 286

File Names 286

File Extensions 286

Disk Store Operation Logs 287

When Disk Store Oplogs Reach the Configured Disk Capacity 288

Configuring Disk Stores 288

Designing and Configuring Disk Stores 289
Design Your Disk Stores 289

Create and Configure Your Disk Stores 290

Modifying Disk Stores 292

Configuring Regions, Queues, and PDX Serialization to Use the Disk Stores 292

Configuring Disk Stores on Gateway Senders 293

Disk Store Configuration Parameters 293
Disk Store Configuration Attributes and Elements 294

disk-dirs Element 295

Modifying the Default Disk Store 295
Change the Behavior of the Default Disk Store 296

Optimizing a System with Disk Stores 296

Start Up and Shut Down with Disk Stores 297
Start Up 297

Start Up Procedure 298

Example Startup to Illustrate Ordering 299

Shutdown 299

Disk Store Management 300

Disk Store Management Commands and Operations 300
Online Disk Store Operations 301

Offline Disk Store Operations 301

Validating a Disk Store 301

VMware GemFire 9.10 Documentation

VMware by Broadcom 16

Running Compaction on Disk Store Log Files 302
Log File Compaction for the Online Disk Store 302

Run Online Compaction 303

Run Offline Compaction 303

Performance Benefits of Manual Compaction 304

Directory Size Limits 304

Example Compaction Run 304

Keeping a Disk Store Synchronized with the Cache 305
Change Region Configuration 305

Take a Region Out of Your Cache Configuration and Disk Store 306

Configuring Disk Free Space Monitoring 306

Handling Missing Disk Stores 307
Show Missing Disk Stores 307

Revoke Missing Disk Stores 308

Altering When Buffers Are Flushed to Disk 308
Modifying Disk Flushes for the Operating System 308

Modifying VMware GemFire to Flush Buffers on Disk Writes 309

Creating Backups for System Recovery and Operational Management 309
Making a Backup While the System Is Online 309

What a Full Online Backup Saves 311

What an Incremental Online Backup Saves 312

Disk Store Backup Directory Structure and Contents 312

Offline Members—Manual Catch-Up to an Online Backup 313

Restore Using a Backup Made While the System Was Online 313

Cache and Region Snapshots 313

Usage and Performance Notes 314

Cache Consistency and Concurrent Operations 314

Performance Considerations 315

Exporting Cache and Region Snapshots 315

Exporting Cache Snapshots 315

Exporting a Region Snapshot 315

Export Example with Options 316

VMware GemFire 9.10 Documentation

VMware by Broadcom 17

Importing Cache and Region Snapshots 316
Import Requirements 317

Import Limitations 317

Importing Cache Snapshots 317

Importing a Region Snapshot 317

Filtering Entries During Import or Export 318

Reading Snapshots Programmatically 318

Region Compression 319
What Gets Compressed 319

Guidelines on Using Compression 319

How to Enable Compression in a Region 321

How to Check Whether Compression is Enabled 321

Working with Compressors 322

Changing the Compressor for an Already Compressed Region 323

Comparing Performance of Compressed and Non-Compressed Regions 323

Monitoring Compression Performance 323

Network Partitioning 324

How Network Partitioning Management Works 324

Failure Detection and Membership Views 326

Failure Detection 326

Membership Views 327

Membership Coordinators, Lead Members and Member Weighting 328

Membership Coordinators and Lead Members 328

Member Weighting System 328

Sample Member Weight Calculations 328

Network Partitioning Scenarios 329

What the Losing Side Does 330

What Isolated Members Do 331

Configure VMware GemFire to Handle Network Partitioning 331

Preventing Network Partitions 332

VMware GemFire 9.10 Documentation

VMware by Broadcom 18

Security 333

Security Implementation Introduction and Overview 333
Security Features 333

Overview 333

Security Detail Considerations 334

External Interfaces, Ports, and Services 334

Resources That Must Be Protected 335

Log File Locations 335

Where to Place Security Configuration Settings 336

Enable Security with Property Definitions 336

security-manager Property 336

Apply security-manager to All Members 336

Is Cluster Management Enabled? 336

Apply security-manager to Non-participating Servers 337

Callbacks 337

security-post-processor Property 337

Authentication 337

Implementing Authentication 338
How Authentication Works 338

How a Server Sets Its Credential 338

How a Client Cache Sets Its Credential 339

How Other Components Set Their Credentials 340

Implement SecurityManager Interface 340

Authentication Example 340

Authorization 341

Implementing Authorization 341

How Authorization Works 341

Resource Permissions 341

Implement Authorization 348

Authorization of Function Execution 348

Authorization of Methods Invoked from Queries 348

VMware GemFire 9.10 Documentation

VMware by Broadcom 19

Method Invocation Authorizers 348
Overview 348

VMware GemFire Authorizers 349

RestrictedMethodAuthorizer 350

UnrestrictedMethodAuthorizer 351

JavaBeanAccessorMethodAuthorizer 351

RegExMethodAuthorizer 352

Custom Authorizers 352

How Authorization Works 352

Implementing a Method Authorizer 352

Changing the Method Authorizer 353

Authorization Example 353
Disclaimer 353

User Authorization Example 354

Method Invocation Authorization Example 354

Post Processing of Region Data 355

Implement Post Processing 355

SSL 355

Configuring SSL 356

SSL-Configurable Components 356

SSL Configuration Properties 357

Example: secure communications throughout 358

Example: non-secure cluster communications, secure client/server 358

SSL Property Reference Tables 359

Procedure 360

SSL Sample Implementation 361

Provider-Specific Configuration File 361

gemfire.properties File 361

gfsecurity.properties File 361

Locator Startup 362

Other Member Startup 362

Connecting to a Running Cluster 362

Performance Tuning and Configuration 362

VMware GemFire 9.10 Documentation

VMware by Broadcom 20

Improving Performance on vSphere 363
Operating System Guidelines 363

NUMA, CPU, and BIOS Settings 364

Physical and Virtual NIC Settings 364

VMware vSphere vMotion and DRS Cluster Usage 365

Placement and Organization of Virtual Machines 365

Virtual Machine Memory Reservation 366

vSphere High Availability and VMware GemFire 366

Storage Guidelines 366

Additional Resources 366

Performance Controls 367

Data Serialization 367

Setting Cache Timeouts 367

Controlling Socket Use 368

Management of Slow Receivers 369

Increasing the Ratio of Cache Hits 371

System Member Performance 372

Member Properties 372

JVM Memory Settings and System Performance 372

Garbage Collection and System Performance 374

Slow Receivers with TCP/IP 375

Preventing Slow Receivers 375

Managing Slow Receivers 376

Slow distributed-ack Messages 380

Socket Communication 380

Setting Socket Buffer Sizes 381

Ephemeral TCP Port Limits 383

VMware GemFire 9.10 Documentation

VMware by Broadcom 21

Making Sure You Have Enough Sockets 384
Socket Sharing 384

Socket Lease Time 384

Calculating Connection Requirements 384

Peer-to-Peer Socket Requirements Per Member 385

Server Socket Requirements Per Server 386

Client Socket Requirements per Client 387

TCP/IP KeepAlive Configuration 387

TCP/IP Peer-to-Peer Handshake Timeouts 387

Configuring Sockets in Multi-Site (WAN) Deployments 388

Multi-site (WAN) Socket Requirements 388

Member produces SocketTimeoutException 389

UDP Communication 389

UDP Datagram Size 389

UDP Flow Control 390

UDP Retransmission Statistics 390

Multicast Communication 390

Provisioning Bandwidth for Multicast 391

Testing Multicast Speed Limits 392

Configuring Multicast Speed Limits 394

Run-time Considerations for Multicast 395

Troubleshooting the Multicast Tuning Process 396

Maintaining Cache Consistency 396
General Guidelines 396

Guidelines for Multi-Site Deployments 397

Logging 398

How VMware GemFire Logging Works 398

Understanding Log Messages and Their Categories 399
Structure of a Log Message 399

VMware GemFire 9.10 Documentation

VMware by Broadcom 22

Log File Name 400

How the System Renames Logs 401

Log Level 401

Naming, Searching, and Creating Log Files 404
Log File Naming Recommendation 404

Searching the Log Files 404

Creating Your Own Log Messages 405

Set Up Logging 405

Advanced Users—Configuring Log4j 2 for VMware GemFire 407
Using Different Front-End Logging APIs to Log to Log4j2 407

Customizing Your Own log4j2.xml File 407

Statistics 408

How Statistics Work 409

Transient Region and Entry Statistics 409

Application-Defined and Custom Statistics 410

Configuring and Using Statistics 412

Configure Cluster or Server Statistics 412

Configure Transient Region and Entry Statistics 413

Configure Custom Statistics 414

Controlling the Size of Archive Files 414

Viewing Archived Statistics 415

Troubleshooting and System Recovery 415

Producing Artifacts for Troubleshooting 416

Diagnosing System Problems 417
Locator does not start 418

Application or cache server process does not start 419

Application or cache server does not join the cluster 419

Member process seems to hang 420

Member process does not read settings from the gemfire.properties file 420

Cache creation fails - must match schema definition root 421

VMware GemFire 9.10 Documentation

VMware by Broadcom 23

Cache is not configured properly 421

Unexpected results for keySetOnServer and containsKeyOnServer 422

Data operation returns PartitionOfflineException 423

Entries are not being evicted or expired as expected 423

Cannot find the log file 423

OutOfMemoryError 423

PartitionedRegionDistributionException 424

PartitionedRegionStorageException 424

Application crashes without producing an exception 425

Timeout alert 425

Member produces SocketTimeoutException 425

Member logs ForcedDisconnectException, Cache and DistributedSystem forcibly closed 425

Members cannot see each other 426

One part of the cluster cannot see another part 426

Data distribution has stopped, although member processes are running 426

Distributed-ack operations take a very long time to complete 427

Slow system performance 427

Can’t get Windows performance data 427

Java applications on 64-bit platforms hang or use 100% CPU 428

System Failure and Recovery 428
Planning for Data Recovery 428

Network Partitioning, Slow Response, and Member Removal Alerts 429

Network Partitioning Detected 429

Member Taking Too Long to Respond 430

No Locators Can Be Found 431

Warning Notifications Before Removal 432

Member Is Forced Out 433

How Data is Recovered From Persistent Regions 433

Handling Forced Cache Disconnection Using Autoreconnect 434

How the Autoreconnection Process Works 434

Managing the Autoreconnection Process 435

Operator Intervention 436

Recovering from Application and Cache Server Crashes 436

Recovering from Crashes with a Peer-to-Peer Configuration 436
Recovery for Partitioned Regions 437

VMware GemFire 9.10 Documentation

VMware by Broadcom 24

Recovery for Distributed Regions 439

Recovery for Regions of Local Scope 439

Recovering Data from Disk 439

Recovering from Crashes with a Client/Server Configuration 441
Recovering from Server Failure 441

Recovering from Client Failure 442

Recovering from Machine Crashes 442
Recovery Procedure 443

Data Recovery for Partitioned Regions 443

Data Recovery for Distributed Regions 443

Data Recovery in a Client/Server Configuration 444

Recovering from ConfictingPersistentDataExceptions 444
Independently Created Copies 444

Starting New Members First 444

A Network Failure Occurs and Network Partitioning Detection is Disabled 445

Salvaging Data 445

Preventing and Recovering from Disk Full Errors 445
Recovering from Disk Full Errors 446

Understanding and Recovering from Network Outages 446

What Happens During a Network Outage 446

Recovery Procedure 447

Effect of Network Failure on Partitioned Regions 447

Effect of Network Failure on Distributed Regions 447

Effect of Network Failure on Persistent Regions 448

Effect of Network Failure on Client/Server Installations 448

Log Messages and Solutions 448

above heap eviction threshold 448

below heap eviction threshold 449

above heap critical threshold 449

Query execution canceled after exceeding max execution time 450

Query execution canceled due to memory threshold crossed in system 450

There are <n> stuck threads in this node 451

Thread <n> is stuck 451

Thread <n> that was executed at <time> has been stuck for <nn> seconds 451

VMware GemFire 9.10 Documentation

VMware by Broadcom 25

Disconnecting old DistributedSystem to prepare for a reconnect attempt 452

Attempting to reconnect to the DistributedSystem. This is attempt #n 452

Unable to form a TCP/IP connection in a reasonable amount of time 453

Received Suspect Message 453

<n> Seconds Have Elapsed 454

Member isn’t responding to heartbeat requests 455

Enabled-network-partition-detection is set to false 455

Statistics sampling thread detected a wakeup delay 456

Redundancy has dropped below <n> configured copies 457

Rejected connection 457

PCC service metrics component failing to connect to locator/server 458

SSLHandshakeException: <version> is disabled 459

Unable To Create New Native Thread 459

Too Many Open Files 460

CommitConflictException 461

Initialization of Region <_B__RegionName_BucketNumber> Completed 461

Unknown pdx Type error 462

Error calculating expiration 463

PdxType limitations for GFSH queries 464

Apache.Geode.Client.AllConnectionsInUseException 466

org.apache.geode.pdx.PdxInitializationException 466

Format of the string <<cache xml file’s content>> used for parameterization is unresolvable 467

RegionExistException 468

Missing Diskstore Exception 468

Could not create an instance of a class 469

PartitionedRegion#cleanupFailedInitialization: Failed to clean the PartitionRegion

allPartitionedRegions
469

Could not find any server to create primary client queue on. 470

Cluster configuration service not available 470

The secondary map already contained an event from hub null so ignoring new event 471

Create is present in more than one Oplog. This should not be possible. The Oplog Key ID for

this entry is
471

Detected conflicting PDX types during import 472

A tenured heap garbage collection has occurred 472

Allocating larger network read buffer 473

Socket send buffer size is <m> instead of the requested <n> 473

quorum has been lost 473

possible loss of quorum due to the loss of <n> cache processes 474

VMware GemFire 9.10 Documentation

VMware by Broadcom 26

Membership service failure: Exiting due to possible network partition event due to loss of

cache processes
474

<member> had a weight of <n> 475

An additional Function Execution Processor thread is being launched 475

Sending new view 476

Received new view 476

Admitting member 476

Member at <memberIP> unexpectedly left the distributed cache 477

Cache server: failed accepting client connection 477

Remote host closed connection during handshake 477

SSL peer shut down incorrectly 477

Function: <functionName> cannot be executed because the members [list of members] are

running low on memory
478

Region <regionName> bucket <n> has persistent data that is no longer online stored at these

locations
479

Region has potentially stale data. Buckets [list] are waiting for another offline member 479

Developing with VMware GemFire 481

Region Data Storage and Distribution 482

Storage and Distribution Options 482

Peer-to-Peer Region Storage and Distribution 482

Storing Data in the Local Cache 483

Region Types 483

Partitioned Regions 484

Replicated Regions 485

Distributed, Non-Replicated Regions 486

Local Regions 486

Region Data Stores and Data Accessors 486

Creating Regions Dynamically 487

Partitioned Regions 489

Understanding Partitioning 490
Data Partitioning 492

Partitioned Region Operation 493

Additional Information About Partitioned Regions 493

VMware GemFire 9.10 Documentation

VMware by Broadcom 27

Configuring Partitioned Regions 493

Configuring the Number of Buckets for a Partitioned Region 494
Calculate the Total Number of Buckets for a Partitioned Region 495

Custom-Partitioning and Colocating Data 497

Understanding Custom Partitioning and Data Colocation 498
Custom Partitioning 498

Data Colocation Between Regions 498

Standard Custom Partitioning 499

Fixed Custom Partitioning 502

Colocate Data from Different Partitioned Regions 505

Configuring High Availability for Partitioned Regions 507

Understanding High Availability for Partitioned Regions 507
Controlling Where Your Primaries and Secondaries Reside 508

Running Processes in Virtual Machines 508

Reads and Writes in Highly-Available Partitioned Regions 509

Configure High Availability for a Partitioned Region 510

Set the Number of Redundant Copies 511

Configure Redundancy Zones for Members 511

Set Enforce Unique Host 512

Configure Member Crash Redundancy Recovery for a Partitioned Region 512

Configure Member Join Redundancy Recovery for a Partitioned Region 513

Configuring Single-Hop Client Access to Server-Partitioned Regions 514

Understanding Client Single-Hop Access to Server-Partitioned Regions 514
Single Hop and the Pool max-connections Setting 514

Balancing Single-Hop Server Connection Use 515

Configure Client Single-Hop Access to Server-Partitioned Regions 515

VMware GemFire 9.10 Documentation

VMware by Broadcom 28

Rebalancing Partitioned Region Data 515
How Partitioned Region Rebalancing Works 516

When to Rebalance a Partitioned Region 517

How to Simulate Region Rebalancing 517

Automated Rebalancing 518

Checking Redundancy in Partitioned Regions 518

Moving Partitioned Region Data to Another Member 518

Distributed and Replicated Regions 520

How Distribution Works 520

Options for Region Distribution 522

How Replication and Preloading Work 522
Initialization of Replicated and Preloaded Regions 522

Behavior of Replicated and Preloaded Regions After Initialization 523

Configure Distributed, Replicated, and Preloaded Regions 524
Local Destroy and Invalidate in the Replicated Region 524

Locking in Global Regions 525

Lock Timeouts 525

Optimize Locking Performance 526

Examples 526

Consistency for Region Updates 527

Consistency Checking by Region Type 528
Partitioned Region Consistency 528

Replicated Region Consistency 528

Non-Replicated Regions and Client Cache Consistency 528

Configuring Consistency Checking 529

Overhead for Consistency Checks 529

How Consistency Checking Works for Replicated Regions 529

How Destroy and Clear Operations Are Resolved 531

About Region.clear() Operations 532

Transactions with Consistent Regions 532

VMware GemFire 9.10 Documentation

VMware by Broadcom 29

How Consistency Is Achieved in WAN Deployments 532

General Region Data Management 533

Persistence and Overflow 534

How Persistence and Overflow Work 534
How Data Is Persisted and Overflowed 535

Persistence 535

Overflow 535

Persistence and Overflow Together 536

Persistence and Multi-Site Configurations 536

Configure Region Persistence and Overflow 536

Overflow Configuration Examples 537

Eviction 538

How Eviction Works 538

Eviction Actions 539

Eviction in Partitioned Regions 539

Configure Data Eviction 539

Expiration 540

How Expiration Works 540
Expiration Types 541

Expiration Actions 541

Entry Expiration in Replicated Regions and Partitioned Regions 542

Interaction Between Expiration Settings and netSearch 542

Configure Data Expiration 542
Configuring the Number of Threads for Expiration 544

Keeping the Cache in Sync with Outside Data Sources 544

Overview of Outside Data Sources 545

Configuring Database Connections Using JNDI 545
Example DataSource Configurations in cache.xml 546

XAPooledDataSource cache.xml Example (Derby) 546

VMware GemFire 9.10 Documentation

VMware by Broadcom 30

JNDI Binding Configuration Properties for Different XAPooledDataSource Connections 547

ManagedDataSource Connection Example (Derby) 548

PooledDataSource Example (Derby) 549

SimpleDataSource Connection Example (Derby) 550

How Data Loaders Work 551
Data Loading in Partitioned Regions 551

Data Loading in Distributed Regions 552

Data Loading in Local Regions 552

Implement a Data Loader 552
Implement the CacheLoader Interface 553

Configure and Deploy 553

Implementing a Server or Peer with a Cache Loader 555

Data Serialization 555

Overview of Data Serialization 555
Data Serialization Options 556

Differences between VMware GemFire Serialization (PDX or Data Serializable) and Java

Serialization
557

VMware GemFire PDX Serialization 557

VMware GemFire PDX Serialization Features 558
Application Versioning of PDX Domain Objects 558

Portability of PDX Serializable Objects 558

Reduced Deserialization of Serialized Objects 559

High Level Steps for Using PDX Serialization 559

PDX and Multi-Site (WAN) Deployments 560

Using Automatic Reflection-Based PDX Serialization 560

Customizing Serialization with Class Pattern Strings 562

Extending the ReflectionBasedAutoSerializer 563

Reasons to Extend the ReflectionBasedAutoSerializer 563

Overriding ReflectionBasedAutoSerializer Behavior 564

Example of Optimizing Autoserialization of BigInteger and BigDecimal Types 564

Serializing Your Domain Object with a PdxSerializer 566

VMware GemFire 9.10 Documentation

VMware by Broadcom 31

Implementing PdxSerializable in Your Domain Object 568

Programming Your Application to Use PdxInstances 570

Adding JSON Documents to the Tanzu GemFire Cache 572

Sorting Behavior of Serialized JSON Fields 573

Using PdxInstanceFactory to Create PdxInstances 573
Enum Objects as PdxInstances 574

Persisting PDX Metadata to Disk 574

Using PDX Objects as Region Entry Keys 575

VMware GemFire Data Serialization (DataSerializable and DataSerializer) 575
Data Serialization with the DataSerializable Interface 575

Serializing Your Domain Object with DataSerializer 576

Standard Java Serialization 576

Events and Event Handling 576

How Events Work 577
Events Features 577

Types of Events 577

Event Cycle 577

Event Objects 578

Event Distribution 578

Event Handlers and Region Data Storage 578

Multiple Listeners 579

Event Ordering 579

Peer-to-Peer Event Distribution 579
Events in a Partitioned Region 579

Events in a Distributed Region 580

Managing Events in Multi-threaded Applications 581

Client-to-Server Event Distribution 581
Server-to-Client Event Distribution 583

Server-to-Client Message Tracking 583

Client Interest Registration on the Server 584

VMware GemFire 9.10 Documentation

VMware by Broadcom 32

Server Failover 585

Multi-Site (WAN) Event Distribution 586
Queuing Events for Distribution 586

Operation Distribution from a Gateway Sender 586

How a Gateway Sender Processes Its Queue 587

How a Gateway Sender Handles Batch Processing Failure 587

List of Event Handlers and Events 588
Event Handlers 588

Events 590

Implementing VMware GemFire Event Handlers 591

Implementing Cache Event Handlers 591
Installing Multiple Listeners on a Region 593

Implementing an AsyncEventListener for Write-Behind Cache Event
Handling

594

How an AsyncEventListener Works 594

Operation Distribution from an AsyncEventQueue 595

Guidelines for Using an AsyncEventListener 595

Implementing an AsyncEventListener 596

Processing AsyncEvents 596

Configuring an AsyncEventListener 597

How to Safely Modify the Cache from an Event Handler Callback 599
Operations to Avoid in Event Handlers 599

How to Perform Distributed Operations Based on Events 600

Cache Event Handler Examples 600
Declaring and Loading an Event Handler with Parameters 600

Installing an Event Handler Through the API 601

Installing Multiple Listeners on a Region 602

Installing a Write-Behind Cache Listener 602

Configuring Peer-to-Peer Event Messaging 603

Configuring Client/Server Event Messaging 603

Configuring Highly Available Servers 605

VMware GemFire 9.10 Documentation

VMware by Broadcom 33

Highly Available Client/Server Event Messaging 605
Change Server Queue Synchronization Frequency 606

Set Frequency of Orphan Removal from the Secondary Queues 607

Implementing Durable Client/Server Messaging 608
Configure the Client as Durable 608

Configure Durable Subscriptions and Continuous Queries 609

Program the Client to Manage Durable Messaging 609

Initial Operation 611

Disconnection 611

Reconnection 611

Durable Event Replay 612

Application Operations During Interest Registration 613

Tuning Client/Server Event Messaging 613

Conflate the Server Subscription Queue 614

Limit the Server's Subscription Queue Memory Use 615

Tune the Client's Subscription Message Tracking Timeout 616

Configuring Multi-Site (WAN) Event Queues 617

Persisting an Event Queue 618

Configuring Dispatcher Threads and Order Policy for Event Distribution 619

Using Multiple Dispatcher Threads to Process a Queue 620

Performance and Memory Considerations 621

Configuring the Ordering Policy for Serial Queues 621

Examples—Configuring Dispatcher Threads and Ordering Policy for a Serial Gateway Sender

Queue
622

Conflating Events in a Queue 623
Examples—Configuring Conflation for a Gateway Sender Queue 624

Delta Propagation 626

How Delta Propagation Works 626
General Characteristics of Delta Propagation 627

Supported Topologies and Limitations 628

VMware GemFire 9.10 Documentation

VMware by Broadcom 34

When to Avoid Delta Propagation 629

Delta Propagation Properties 629
delta-propagation 629

cloning-enabled 630

Implementing Delta Propagation 631

Errors In Delta Propagation 632

Delta Propagation Example 633

Querying 635

Querying FAQ and Examples 636
How do I write and execute a query against a VMware GemFire region? 636

Can I see query string examples, listed by query type? 637

Which APIs should I use to write my queries? 646

How do I invoke an object’s method in a query? 646

Can I invoke a static method on an object in a query? 646

How do I write a reusable query? 646

When should I create indexes to use in my queries? 647

How do I create an index? 647

Can I create indexes on overflow regions? 647

Can I query a partitioned region? Can I perform a join query on a partitioned region? 647

How can I improve the performance of a partitioned region query? 648

Which query language elements are supported in VMware GemFire? 648

How do I debug queries? 648

Can I use implicit attributes or methods in my query? 649

Can I instruct the query engine to use specific indexes with my queries? 649

How do I perform a case-insensitive search on a field in OQL? 649

Querying with OQL 650

Advantages of OQL 650

Writing and Executing a Query in VMware GemFire 651
Querying a Local Cache 651

Querying a Server Cache from a Client 651

Building a Query String 652

VMware GemFire 9.10 Documentation

VMware by Broadcom 35

IMPORT Statement 653

FROM Clause 653
Path Expressions 653

Aliases and Synonyms 654

Object Typing 654

WHERE Clause 655

Implementing equals and hashCode Methods 655

Querying Serialized Objects 656

Attribute Visibility 656

Joins 657

LIKE 657

Case Insensitive Fields 658

Method Invocations 658

Enum Objects 659

IN and SET 660

Double.NaN and Float.NaN Comparisons 661

Arithmetic Operations 662

SELECT Statement 662
SELECT Statement Results 663

DISTINCT 663

LIMIT 663

ORDER BY 664

Preset Query Functions 664

OQL Aggregate Functions 665
GROUP BY 665

MIN 666

MAX 666

COUNT 667

SUM 668

AVG 669

OQL Syntax and Semantics 670

Supported Character Sets 671

Supported Keywords 671

VMware GemFire 9.10 Documentation

VMware by Broadcom 36

Case Sensitivity 672

Comments in Query Strings 673

Query Language Grammar 673

Language Grammar 673

Language Notes 675

Operators 676

Comparison Operators 676

Logical Operators 676

Unary Operators 676

Arithmetic Operators 677

Map and Index Operators 677

Dot, Right Arrow, and Forward Slash Operators 677

Reserved Words 677

Reserved Words 678

Supported Literals 678
The Difference Between NULL and UNDEFINED 679

Comparing Values With java.util.Date 679

Type Conversion 680

Binary Numeric Promotion 680

Method Invocation Conversion 680

Temporal Type Conversion 680

Enum Conversion 680

Query Evaulation of Float.NaN and Double.NaN 681

Query Language Restrictions and Unsupported Features 681

Advanced Querying 681

Performance Considerations 682

Monitoring Low Memory When Querying 682
Partitioned Region Queries and Low Memory 683

Timeouts for Long-Running Queries 683

Using Query Bind Parameters 683

VMware GemFire 9.10 Documentation

VMware by Broadcom 37

Sample Code 684

Using Query Bind Parameters in the Path Expression 684

Querying Partitioned Regions 684

Using ORDER BY on Partitioned Regions 685

Querying a Partitioned Region on a Single Node 685

Optimizing Queries on Data Partitioned by a Key or Field Value 688

Performing an Equi-Join Query on Partitioned Regions 689

Partitioned Region Query Restrictions 691
Query Restrictions in Partitioned Regions 691

Query Debugging 692

Working with Indexes 693

Tips and Guidelines on Using Indexes 695
Tips for Writing Queries that Use Indexes 695

Creating, Listing and Removing Indexes 695
Creating Indexes 696

Listing Indexes 696

Removing Indexes 697

Creating Key Indexes 697
Examples of Creating a Key Index 698

Creating Hash Indexes 698
Hash Index Performance 698

Performance Considerations 698

Limitations 699

Examples of Creating a Hash Index 699

Creating Indexes on Map Fields ("Map Indexes") 699

Creating Multiple Indexes at Once 700

Maintaining Indexes (Synchronously or Asynchronously) and Index
Storage

701

VMware GemFire 9.10 Documentation

VMware by Broadcom 38

Index Maintenance Behavior 701

Internal Index Structure and Storage 701

Using Query Index Hints 702

Using Indexes on Single Region Queries 703

Using Indexes with Equi-Join Queries 703

Using Indexes with Overflow Regions 704

Using Indexes on Equi-Join Queries using Multiple Regions 705

Index Samples 706

Continuous Querying 707

How Continuous Querying Works 707

Logical Architecture of Continuous Querying 708

Data Flow with CQs 708

CQ Events 709

Region Type Restrictions for CQs 710

Implementing Continuous Querying 710
Continuous Query Implementation 713

Managing Continuous Querying 714
Using CQs from a RegionService Instance 714

States of a CQ 714

CQ Management Options 715

Managing CQs and Durable Clients Using gfsh 715

Retrieving an Initial Result Set of a CQ 715

Transactions 716

Adherence to ACID Promises 716
Atomicity 716

Consistency 717

Isolation 717

Durability 717

Code Examples 717

VMware GemFire 9.10 Documentation

VMware by Broadcom 39

Transaction within an Application 717

Transaction within a Function 719

Design Considerations 721

Colocate Partitioned Regions 721

Region Operations Return References 721

First Operation with Mixed Region Types 722

Allowing Transactions to Work on Persistent Regions 722

Mixing Transactions with Queries and Indexes 722

Mixing Transactions with Eviction 722

Mixing Transactions with Expiration 722

Mixing Transactions with Non-transactional Operations 723

Changing the Handling of Dirty Reads 723

Function Execution 723

How Function Execution Works 724
Where Functions Are Executed 724

How Functions Are Executed 724

Highly Available Functions 725

Function Execution Scenarios 725

Executing a Function in VMware GemFire 730

Write the Function Code 730

Register the Function Automatically by Deploying a JAR 732

Register the Function Programmatically 733

Run the Function 733

Write a Custom Results Collector 735

Targeting Single Members of a Member Group or Entire Member Groups 735

Developing REST Applications for VMware GemFire 736

VMware GemFire REST API Overview 737

Prerequisites and Limitations for Writing REST Applications 737

Setup and Configuration 738

REST API Libraries 738

Enabling the REST API 738

VMware GemFire 9.10 Documentation

VMware by Broadcom 40

Enabling the REST API on Multiple Servers 738

Starting the REST API Service 739
Configure PDX for your cluster 739

Start the REST API Service on One or More Servers 740

Verify That The Service is Running 740

Implementing Authentication 741

Programmatic Startup 742

Using the Swagger UI to Browse REST APIs 742

Developing REST Applications 747
Working with Regions 747

Listing Available Regions 747

Reading Region Data 748

Adding or Modifying Region Data 750

Deleting Region Data 753

Working with Queries 754

Listing Queries 754

Creating a New Query 754

Executing a Prepared Query 754

Modifying a Prepared Query 756

Deleting a Prepared Query 757

Executing an Ad-Hoc Query 757

Working with Functions 757

Listing Functions 757

Executing Functions 757

Sample REST Applications 758
#1. REST Java Client (RestClientApp.java) 759

#1a. VMware GemFire Cache Java Client (MyJavaClient.java) 760

#1b. REST Client Utilities (RestClientUtils.java) 762

#1c. Date and Time Utilities (DateTimeUtils.java) 763

#1d. Person Class (Person.java) 764

#1e. Gender Class (Gender.java) 767

#2. Ruby REST Client (restClient.rb) 767

#3. Python REST Client (restClient.py) 769

VMware GemFire 9.10 Documentation

VMware by Broadcom 41

Troubleshooting and FAQ 771
Checking if the REST API Service is Up and Running 771

Key Types and JSON Support 771

Unsupported JSON Example 1 771

Unsupported JSON Example 2 772

Unsupported JSON Example 3 772

Unsupported JSON Example 4 772

VMware GemFire REST API Reference 773

Region Endpoints 774

GET /geode/v1 775

Resource URL 775

Parameters 775

Example Request 775

Example Success Response 775

Error Codes 776

GET /geode/v1/{region} 776

Resource URL 776

Parameters 776

Example Request 777

Example Success Response 777

Error Codes 778

GET /geode/v1/{region}/keys 778

Resource URL 778

Parameters 778

Example Request 778

Example Success Response 778

Error Codes 779

GET /geode/v1/{region}/{key} 779
Resource URL 779

Parameters 779

Example Request 779

Example Responses 779

Error Codes 780

VMware GemFire 9.10 Documentation

VMware by Broadcom 42

GET /geode/v1/{region}/{key1},{key2},...,{keyN} 780
Resource URL 780

Parameters 780

Example Requests 781

Example Success Responses 781

Error Codes 783

Example Error Response 783

Implementation Notes 784

HEAD /geode/v1/{region} 784
Resource URL 784

Parameters 784

Example Request 784

Example Success Response 784

Error Codes 785

POST /geode/v1/{region}?key=<key> 785
Resource URL 785

Parameters 785

Example Request 785

Example Success Response 786

Error Codes 786

Example Error Response 786

PUT /geode/v1/{region}/{key} 787

Resource URL 787

Parameters 787

Example Request 787

Example Success Response 787

Error Codes 788

Implementation Notes 788

PUT /geode/v1/{region}/{key1},{key2},...{keyN} 788

Resource URL 788

Parameters 788

Example Request 788

Example Success Response 789

Error Codes 789

VMware GemFire 9.10 Documentation

VMware by Broadcom 43

PUT /geode/v1/{region}/{key}?op=REPLACE 790
Resource URL 790

Parameters 790

Example Request 790

Example Success Response 790

Error Codes 791

PUT /geode/v1/{region}/{key}?op=CAS 791
Resource URL 791

Parameters 791

Example Request 793

Example Success Response 794

Error Codes 794

Example Error Response 794

Implementation Notes 795

DELETE /geode/v1/{region} 795
Resource URL 795

Parameters 795

Example Request 796

Example Success Response 796

Error Codes 796

DELETE /geode/v1/{region}/{key} 796
Resource URL 796

Parameters 796

Example Request 796

Example Success Response 796

Error Codes 796

DELETE /geode/v1/{region}/{key1},{key2},...{keyN} 797
Resource URL 797

Parameters 797

Example Request 797

Example Success Response 797

Error Codes 797

Query Endpoints 797

GET /geode/v1/queries 798

VMware GemFire 9.10 Documentation

VMware by Broadcom 44

Resource URL 798

Parameters 798

Example Request 798

Example Response 798

Error Codes 799

POST /geode/v1/queries?id=<queryId>&q=<OQL-statement> 799

Resource URL 799

Parameters 799

Example Request 799

Example Success Response 800

Error Codes 800

POST /geode/v1/queries/{queryId} 800
Resource URL 800

Parameters 800

Example Request 801

Example Success Response 801

Error Codes 802

PUT /geode/v1/queries/{queryId} 803
Resource URL 803

Parameters 803

Example Request 803

Example Success Response 804

Error Codes 804

Implementation Notes 804

DELETE /geode/v1/queries/{queryId} 804
Resource URL 804

Parameters 804

Example Request 804

Example Success Response 805

Error Codes 805

GET /geode/v1/queries/adhoc?q=<OQL-statement> 805
Resource URL 805

Parameters 805

Example Request 806

VMware GemFire 9.10 Documentation

VMware by Broadcom 45

Example Success Response 806

Error Codes 806

Function Endpoints 807

GET /geode/v1/functions 807
Resource URL 807

Parameters 807

Example Request 808

Example Success Response 808

Error Codes 808

POST /geode/v1/functions/{functionId} 808

Resource URL 808

Parameters 808

Example Requests 810

Example Success Responses 811

Error Codes 811

Administrative Endpoints 811

\[HEAD | GET\] /geode/v1/ping 812
Resource URL 812

Parameters 812

Example Request 812

Example Success Response 812

Error Codes 812

GET /geode/v1/servers 812
Resource URL 812

Parameters 812

Example Request 813

Example Success Response 813

Error Codes 813

Tools and Modules 814

gfsh 814

What You Can Do with gfsh 815

VMware GemFire 9.10 Documentation

VMware by Broadcom 46

Starting gfsh 816

Configuring the gfsh Environment 817
JAR Libraries in CLASSPATH 817

Machine Hostname 817

Configuring gfsh Security 817

Configuring gfsh Environment Variables 818

Configuring gfsh Session Logging 818

Member Log Files 818

Viewing Standard Output and Standard Error 819

Tab Completion 819

Command History and gfsh.history 819

JMX Manager Update Rate and System Monitoring 820

Formatting of Results 820

Useful gfsh Shell Variables 820

Basic Shell Features and Command-Line Usage 821

Tutorial—Performing Common Tasks with gfsh 824

Quick Reference of gfsh Commands by Functional Area 831

gfsh Command Help 832

alter 835

alter async-event-queue 835

alter disk-store 836

alter query-service 838

alter region 839

alter runtime 843

backup disk-store 845

change loglevel 845

clear defined indexes 846

close 847
close durable-client 847

close durable-cq 848

VMware GemFire 9.10 Documentation

VMware by Broadcom 47

compact 849
compact disk-store 849

compact offline-disk-store 850

configure 850
configure pdx 850

connect 852

create 854
create async-event-queue 855

create defined indexes 857

create disk-store 858

create gateway-receiver 859

create gateway-sender 861

create index 864

create jndi-binding 865

create lucene index 867

create region 868

debug 873

define index 874

deploy 875

describe 876
describe client 876

describe config 877

describe connection 878

describe disk-store 878

describe jndi-binding 879

describe lucene index 880

describe member 880

describe offline-disk-store 881

describe query-service 883

describe region 883

destroy 884
destroy async-event-queue 885

VMware GemFire 9.10 Documentation

VMware by Broadcom 48

destroy disk-store 885

destroy function 886

destroy gateway-receiver 886

destroy gateway-sender 887

destroy index 888

destroy jndi-binding 888

destroy lucene index 889

destroy region 889

disconnect 890

echo 890

execute function 891
execute function 891

exit 892

export 892
export cluster-configuration 893

export config 893

export data 894

export logs 895

export offline-disk-store 897

export stack-traces 897

gc 898

get 898

help 899

hint 900

history 901

import 902

import cluster-configuration 902

import data 903

list 904

list async-event-queues 905

VMware GemFire 9.10 Documentation

VMware by Broadcom 49

list clients 905

list deployed 906

list disk-stores 906

list durable-cqs 907

list functions 908

list gateways 909

list indexes 910

list jndi-binding 911

list lucene indexes 912

list members 912

list regions 913

load-balance gateway-sender 914

locate entry 914

locate entry 915

netstat 915

pause gateway-sender 917

pdx rename 918

put 919

query 920

rebalance 921

remove 922

resume 923

resume async-event-queue-dispatcher 923

resume gateway-sender 923

revoke missing-disk-store 924

run 925

search lucene 926
search lucene 926

set variable 927

VMware GemFire 9.10 Documentation

VMware by Broadcom 50

sh 927

show 928
show dead-locks 928

show log 929

show metrics 930

show missing-disk-stores 931

show subscription-queue-size 932

shutdown 932

sleep 933

start 934

start gateway-receiver 934

start gateway-sender 935

start jconsole 936

start jvisualvm 938

start locator 939

start pulse 941

start server 942

Examples 947

start vsd 947

status 948
status cluster-config-service 948

status gateway-receiver 949

status gateway-sender 950

status locator 951

status server 952

stop 952

stop gateway-receiver 952

stop gateway-sender 953

stop locator 955

stop server 955

undeploy 956

validate offline-disk-store 957

VMware GemFire 9.10 Documentation

VMware by Broadcom 51

version 957

Creating and Running gfsh Command Scripts 958
Running gfsh Scripts 958

Running gfsh Commands on the OS Command Line 958
Running Multiple gfsh Commands on the OS Command Line 959

Mapping cache.xml Elements to gfsh Configuration Commands 959

Gemcached 960

How Gemcached Works 960

Deploying and Configuring a Gemcached Server 962
Embedding a Gemcached server in a VMware GemFire Java Application 962

Starting a Gemcached Server Using a gfsh Command 962

Configuring a Gemcached Server with the gemfire.properties File 962

Advantages of Gemcached over Memcached 963

HTTP Session Management Modules 964

HTTP Session Management Quick Start 965
Quick Start Instructions 965

Additional Quick Start Instructions for tc Server Module 966

Additional Quick Start Instructions for Tomcat Module 966

Additional Instructions for AppServers Module 967

Advantages of Using VMware GemFire for Session Management 967

Common Topologies for HTTP Session Management 969
Peer-to-Peer Configuration 969

Client/Server Configuration 969

General Information on HTTP Session Management 970
Sticky Load Balancers 970

Session Expiration 970

Making Additional VMware GemFire Property Changes 970

Module Version Information 971

Object Serialization 971

VMware GemFire 9.10 Documentation

VMware by Broadcom 52

Session State Log Files 971
Adding FINE Debug Logging to catalina.log 971

Add Session State Logging to the VMware GemFire Server Log 972

Adding Additional Debug Logging to the VMware GemFire Server Log 972

Add Debug Logging to gemfire_modules.log 972

HTTP Session Management Module for Pivotal tc Server 973

Installing the HTTP Module for tc Server 973

Setting Up the HTTP Module for tc Server 974
Setup and Start 974

Starting the Application Server 975

Changing the Default VMware GemFire Configuration in the tc Server
Module

975

Using a Different Locator Port 976

Overriding Region Attributes 977

Interactive Configuration Reference for the tc Server Module 977

HTTP Session Management Module for Tomcat 979

Installing the HTTP Module for Tomcat 980

Setting Up the HTTP Module for Tomcat 980
Peer-to-Peer Setup 981

Client/Server Setup 981

Starting the Application Server 983

Verifying that VMware GemFire Started 983

Changing the Default GemFire Configuration in the Tomcat Module 983

Changing VMware GemFire Distributed System Properties 984

Changing Cache Configuration Properties 985

HTTP Session Management Module for AppServers 987

Setting Up the HTTP Module for AppServers 987

Manual Configuration 987

Peer-to-Peer Setup 989

Client/Server Setup 990

Starting the Application Server 991

VMware GemFire 9.10 Documentation

VMware by Broadcom 53

Verifying that VMware GemFire Started 991

Changing the Default VMware GemFire Configuration in the AppServers
Module

991

Changing VMware GemFire Distributed System Properties 992

Changing Cache Configuration Properties 993

Common VMware GemFire Configuration Changes for AppServers 995
Overriding Region Attributes 995

Apache Lucene® Integration 996

Using the Apache Lucene Integration 996
Key Points 996

Creating a Lucene Index 996

Creating a Lucene Index: Java API Example 997

Creating a Lucene Index: Gfsh Example 997

Creating a Lucene Index: XML Example 998

Using FlatFormatSerializer to Index Fields within Nested Objects 998

Queries 1000

Querying a Lucene Index: Gfsh Example 1000

Querying a Lucene Index: Java API Example 1000

Destroying an Index 1000

Destroying a Lucene Index: Java API Example 1000

Destroying a Lucene Index: Gfsh Example 1000

Changing an Index 1000

Additional Gfsh Commands 1001

Requirements and Caveats 1001

Tanzu Observability by Wavefront 1003
Configure GemFire Metrics 1003

Enable Wavefront-Viewable Metrics 1004

Example 1006

GemFire Setup 1006

Telegraf and Wavefront Proxy Setup 1007

Verification and Troubleshooting suggestions 1008

Default Dashboard Metrics 1009

Tanzu GemFire Cluster Metrics 1009

Tanzu GemFire Features Metrics 1009

VMware GemFire 9.10 Documentation

VMware by Broadcom 54

WAN Gateway Metrics 1011

VMware GemFire Pulse 1011

Pulse System Requirements 1012

Running Pulse in Embedded Mode (Quick Start) 1012

Hosting Pulse on a Web Application Server 1013

Configuring Pulse Authentication 1015

Configuring Pulse to use HTTPS 1015

Configuring Pulse to use Security Manager 1016

Configuring Pulse to use a Custom Security Profile 1016

Configuring Pulse to use an OAuth Authentication Provider 1017

Using Pulse Views 1019
Cluster View 1019

Member View 1023

Region View 1026

Data Browser 1028

Alerts Widget 1029

Visual Statistics Display 1030

VSD System Requirements 1031

VSD Overview 1031

Installing and Running VSD 1033
Install VSD 1033

Configure Statistics Sampling in GemFire 1034

Start VSD 1034

Load a Statistics File into VSD 1035

Maintain a Current View of the Data File 1035

About Statistics 1035

.gfs Time Zone Information for Matching Statistics to Log Files 1035

Viewing Statistics in VSD 1036
Statistic Levels 1036

Select Statistics for Viewing 1036

VMware GemFire 9.10 Documentation

VMware by Broadcom 55

Using VSD Chart Templates 1037

Chart Menu (Chart Window) 1038

Line Menu (Chart Window) 1039

Customizing Your VSD Chart 1040

View Statistic Information 1040

Quick Guide to Useful Statistics 1040

Runtime Configuration 1041

Resources 1041

Throughput for Different Operations 1042

VMware GemFire Reference 1044

gemfire.properties and gfsecurity.properties: VMware GemFire
Properties

1044

Using Non-ASCII Strings in VMware GemFire Property Files 1064

cache.xml 1064

cache.xml Quick Reference 1065
Cache XML Requirements 1065

Variables in cache.xml 1066

Configuration Quick Reference 1066

<cache> Element Hierarchy 1067

<cache> Element Reference 1069

<cache-transaction-manager> 1071

<transaction-listener> 1071

<transaction-writer> 1071

<dynamic-region-factory> 1071

<disk-dir> 1072

<gateway-sender> 1072

<gateway-event-filter> 1075

<gateway-event-substitution-filter> 1075

<gateway-transport-filter> 1076

<gateway-receiver> 1076

<gateway-transport-filter> 1077

<gateway-conflict-resolver> 1078

<async-event-queue> 1078

VMware GemFire 9.10 Documentation

VMware by Broadcom 56

<async-event-listener> 1080

<cache-server> 1081

<client-subscription> 1082

<custom-load-probe> 1083

<pool> 1083

<locator> 1085

<server> 1086

<disk-store> 1086

<disk-dirs> 1087

<disk-dir> 1088

<pdx> 1088

<pdx-serializer> 1089

<region-attributes> 1089

<key-constraint> 1099

<value-constraint> 1099

<region-time-to-live> 1100

<expiration-attributes> 1100

<custom-expiry> 1101

<region-idle-time> 1102

<expiration-attributes> 1102

<custom-expiry> 1103

<entry-time-to-live> 1104

<expiration-attributes> 1104

<custom-expiry> 1105

<entry-idle-time> 1106

<expiration-attributes> 1106

<custom-expiry> 1107

<partition-attributes> 1108

<partition-resolver> 1109

<partition-listener> 1109

<fixed-partition-attributes> 1109

<membership-attributes> 1110

<required-role> 1111

<subscription-attributes> 1112

<cache-loader> 1112

<cache-writer> 1113

<cache-listener> 1113

VMware GemFire 9.10 Documentation

VMware by Broadcom 57

<compressor> 1113

<eviction-attributes> 1114

<lru-entry-count> 1114

<lru-heap-percentage> 1115

<lru-memory-size> 1115

<jndi-bindings> 1116

<jndi-binding> 1117

<config-property> 1120

<config-property-name> 1121

<config-property-type> 1121

<config-property-value> 1121

<region> 1121

<index> 1122

<lucene:index> 1123

<lucene:field> 1123

<entry> 1124

<key> 1124

<string> 1124

<declarable> 1124

<value> 1125

<string> 1125

<declarable> 1125

<region> 1125

<function-service> 1126

<function> 1126

<resource-manager> 1126

<serialization-registration> 1127

<serializer> 1128

<instantiator> 1128

<backup> 1128

<initializer> 1128

<declarable> 1129

<class-name> and <parameter> 1129

<declarable> 1129

<string> 1130

<client-cache> Element Hierarchy 1130

VMware GemFire 9.10 Documentation

VMware by Broadcom 58

<client-cache> Element Reference 1132
<cache-transaction-manager> 1133

<transaction-listener> 1133

<transaction-writer> 1133

<pool> 1134

<locator> 1136

<server> 1137

<disk-store> 1137

<disk-dirs> 1138

<disk-dir> 1139

<pdx> 1139

<pdx-serializer> 1140

<region-attributes> 1140

<key-constraint> 1151

<value-constraint> 1152

<region-time-to-live> 1152

<expiration-attributes> 1153

<custom-expiry> 1153

<region-idle-time> 1154

<expiration-attributes> 1154

<custom-expiry> 1155

<entry-time-to-live> 1156

<expiration-attributes> 1156

<custom-expiry> 1157

<entry-idle-time> 1158

<expiration-attributes> 1158

<custom-expiry> 1159

<cache-loader> 1160

<cache-writer> 1160

<cache-listener> 1161

<eviction-attributes> 1161

<lru-entry-count> 1161

<lru-heap-percentage> 1162

<lru-memory-size> 1162

<jndi-bindings> 1163

<jndi-binding> 1163

<config-property> 1166

VMware GemFire 9.10 Documentation

VMware by Broadcom 59

<config-property-name> 1166

<config-property-type> 1166

<config-property-value> 1167

<region> 1167

<region-attributes> 1167

<index> 1179

<entry> 1180

<key> 1181

<string> 1181

<declarable> 1181

<value> 1181

<string> 1181

<declarable> 1182

<region> 1182

<function-service> 1183

<function> 1183

<resource-manager> 1184

<serialization-registration> 1185

<serializer> 1185

<instantiator> 1186

<initializer> 1186

Region Shortcuts 1186

Region Shortcuts Quick Reference 1187

Exceptions and System Failures 1190

Memory Requirements for Cached Data 1190

Core Guidelines for VMware GemFire Data Region Design 1191

Memory Usage Overview 1191

Calculating Application Object Overhead 1192

Using Key Storage Optimization 1193

Measuring Cache Overhead 1194

Estimating Management and Monitoring Overhead 1195

Determining Object Serialization Overhead 1195

Calculating Socket Memory Requirements 1196

VMware GemFire Statistics List 1198

VMware GemFire 9.10 Documentation

VMware by Broadcom 60

Cache Performance (CachePerfStats) 1199

Cache Server (CacheServerStats) 1202

Client-Side Notifications (CacheClientUpdaterStats) 1205

Client-to-Server Messaging Performance (ClientStats & ClientSendStats) 1206

Client Connection Pool (PoolStats) 1215

Continuous Querying (CqQueryStats) 1216

Delta Propagation (DeltaPropagationStatistics) 1218

Disk Space Usage (DiskDirStatistics) 1219

Disk Store Statistics (DiskStoreStatistics) 1219

Disk Usage and Performance (DiskRegionStatistics) 1221

Distributed System Messaging (DistributionStats) 1222

Distribution Statistics Related to Slow Receivers 1230

Distributed Lock Services (DLockStats) 1230

Function Execution (FunctionStatistics) 1233

Gateway Queue (GatewaySenderStatistics) 1233

Indexes (IndexStats) 1234

Query-Independent Statistics on Indexes 1234

Query-Dependent Statistics on Indexes 1234

JVM Performance 1235

VMware GemFire JVM Resource Manager (ResourceManagerStats) 1235

JVM Java Runtime (VMStats) 1235

JVM Garbage Collection (VMGCStats) 1236

JVM Garbage Collector Memory Pools (VMMemoryPoolStats) 1236

JVM Heap Memory Usage (VMMemoryUsageStats) 1237

JVM Thread stats (VMThreadStats) 1237

Locator (LocatorStats) 1237

Lucene Indexes (LuceneIndexStats) 1238

Off-Heap (OffHeapMemoryStats) 1238

Operating System Statistics - Linux 1239

Linux Process Performance (LinuxProcessStats) 1239

Linux Operating System (LinuxSystemStats) 1239

Partitioned Regions
(PartitionedRegion<partitioned_region_name>Statistics)

1241

Partitioned Region Statistics on Partition Messages 1242

Partitioned Region Statistics on Data Entry Caching 1243

Partitioned Region Statistics on Redundancy 1243

Region Entry Eviction – Count-Based (LRUStatistics) 1244

VMware GemFire 9.10 Documentation

VMware by Broadcom 61

Region Entry Eviction – Heap-based eviction (HeapLRUStatistics) 1245

Region Entry Eviction – Size-based (MemLRUStatistics) 1245

Server Notifications for All Clients (CacheClientNotifierStatistics) 1246

Server Notifications for Single Client (CacheClientProxyStatistics) 1246

Server-to-Client Messaging Performance (ClientSubscriptionStats) 1247

Statistics Collection (StatSampler) 1247

Transaction Reference Material 1247

JTA Global Transactions with VMware GemFire 1248

Coordinating with External JTA Transaction Managers 1249
How to Run a JTA Transaction Coordinated by an External Transaction Manager 1249

Using VMware GemFire as the “Last Resource” in a Container-Managed
JTA Transaction

1250

How to Run JTA Transactions with VMware GemFire as a “Last Resource” 1251

Behavior of VMware GemFire Cache Writers and Loaders Under JTA 1252

Turning Off JTA Transactions 1252

Experimental Features 1254

Cluster Management Service 1254

Cluster Management Service REST API 1255

Cluster Management Service Java API 1255

VMware GemFire Micrometer 1256

Configuration and Publishing 1256
Meter configuration 1256

Publishing metrics using a meter registry 1256

Add Your jar File to the classpath When You Start a Server or Locator 1258

Micrometer Meters and Tags 1258
Micrometer Meters 1258

Meters supplied by Micrometer 1259

Meters specific to VMware GemFire 1259

Common tags 1260

Redis Adapter 1260

VMware GemFire 9.10 Documentation

VMware by Broadcom 62

Using the Redis Adapter 1260

How the Redis Adapter Works 1261

Advantages of VMware GemFire over a Redis Server 1262

Automated Rebalancing of Partitioned Region Data 1262

Glossary 1264
ACK wait threshold 1264

administrative event 1264

API 1264

application program 1264

attribute 1264

attribute path 1264

blocking 1264

cache 1264

cache-local 1265

cache.xml 1265

cache event 1265

cache listener 1265

cache loader 1265

cache miss 1265

cache server 1265

cache transaction 1265

cache writer 1266

client 1266

client region 1266

cluster configuration service 1266

collection 1266

commit 1266

concurrency-level 1266

conflation 1267

connection 1267

consumer 1267

coordinator 1267

data accessor 1267

data entry 1267

data fabric 1267

data-policy 1268

VMware GemFire 9.10 Documentation

VMware by Broadcom 63

data region (region) 1268

data store 1268

deadlock 1268

destroy 1268

disk region 1268

disk-store 1268

distributed cache 1268

distributed system 1269

distributed-ack scope 1269

distributed-no-ack scope 1269

entry 1269

entry key 1269

entry value 1269

event 1269

eviction-attributes 1269

expiration 1269

expiration action 1270

factory method 1270

forced disconnect 1270

gateway receiver 1270

gateway sender 1270

gemfire.properties 1270

global scope 1270

global transaction 1270

HTTP 1271

idle timeout 1271

initial capacity 1271

invalid 1271

invalidate 1271

JDBC 1271

JMX 1271

JNDI 1271

JTA 1271

JVM 1272

key constraint 1272

listener 1272

load factor 1272

VMware GemFire 9.10 Documentation

VMware by Broadcom 64

local 1272

local scope 1272

locator 1272

LRU 1273

machine 1273

member 1273

message queue 1273

mirroring 1273

multicast 1273

named region attributes 1273

netLoad 1273

netSearch 1274

netWrite 1274

network partitioning 1274

OQL 1274

off-heap memory 1274

overflow 1274

oplog / operation log 1274

partition 1274

partitioned region 1274

peer 1275

persistent region 1275

persistent-partition 1275

persistent-replicate 1275

producer 1275

pull model 1275

push model 1275

query string 1276

race condition 1276

range-index 1276

region 1276

region attributes 1276

region data 1276

region entry 1276

region shortcut 1276

remote 1276

replicated region 1277

VMware GemFire 9.10 Documentation

VMware by Broadcom 65

replicate 1277

resource manager 1277

rollback 1277

scope 1277

SELECT statement 1277

serialization 1277

server 1277

server group 1278

server connection pool 1278

socket 1278

SQL 1278

SSL 1278

standalone distributed system 1278

statistics enabled 1278

struct 1278

structure-index 1278

system member 1279

TCP 1279

timeout 1279

time-to-live 1279

transaction 1279

transaction listener 1279

transaction writer 1279

transactional view 1279

transport layer 1279

TTL 1280

UDP 1280

unicast 1280

URI 1280

user attribute 1280

value constraint 1280

value-index 1280

view 1280

Virtual Machine 1281

VMware virtual machine 1281

XML 1281

XML schema definition 1281

VMware GemFire 9.10 Documentation

VMware by Broadcom 66

XPath 1281

XSD 1281

VMware GemFire 9.10 Documentation

VMware by Broadcom 67

VMware GemFire® 9.10 Documentation

This documentation describes product concepts and provides complete setup instructions for
VMware GemFire.

VMware GemFire shares a code base and documentation with Apache Geode. In this
documentation, “VMware GemFire” and “Apache Geode” are equivalent terms.

VMware GemFire 9.10

VMware GemFire 9.10 Release Notes

Supported Configurations and System Requirements

Getting Started

VMware GemFire in 15 Minutes or Less

Installing VMware GemFire

Upgrading VMware GemFire

Configuring and Running a Cluster

Basic Configuration and Programming

Topologies and Communication

Managing VMware GemFire

Developing with VMware GemFire

Developing REST Applications for VMware GemFire

Tools and Modules

Reference

Experimental Features

API Reference Documentation

VMware GemFire 9.10 Java API

VMware GemFire Developer REST API

Documentation of Related Products

Native Client for VMware GemFire

Node.js Client for VMware GemFire

VMware GemFire 9.10 Documentation

VMware by Broadcom 68

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference
https://docs.vmware.com/en/Native-Client-for-VMware-GemFire/index.html
https://docs.vmware.com/en/Node.js-Client-for-VMware-GemFire/2.0/gf-nodeclient/about-client-users-guide.html

VMware GemFire® 9.10 Documentation

This documentation describes product concepts and provides complete setup instructions for
VMware GemFire.

VMware GemFire shares a code base and documentation with Apache Geode. In this
documentation, “VMware GemFire” and “Apache Geode” are equivalent terms.

VMware GemFire 9.10

VMware GemFire 9.10 Release Notes

Supported Configurations and System Requirements

Getting Started

VMware GemFire in 15 Minutes or Less

Installing VMware GemFire

Upgrading VMware GemFire

Configuring and Running a Cluster

Basic Configuration and Programming

Topologies and Communication

Managing VMware GemFire

Developing with VMware GemFire

Developing REST Applications for VMware GemFire

Tools and Modules

Reference

Experimental Features

API Reference Documentation

VMware GemFire 9.10 Java API

VMware GemFire Developer REST API

Documentation of Related Products

Native Client for VMware GemFire

Node.js Client for VMware GemFire

VMware GemFire 9.10 Documentation

VMware by Broadcom 69

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference
https://docs.vmware.com/en/Native-Client-for-VMware-GemFire/index.html
https://docs.vmware.com/en/Node.js-Client-for-VMware-GemFire/2.0/gf-nodeclient/about-client-users-guide.html

VMware GemFire 9.10 Release Notes

VMware GemFire is based on Apache Geode, and they share a common set of documentation.
Therefore, references to both VMware GemFire and Apache Geode appear throughout this
documentation; consider them equivalents.

What’s New in VMware GemFire 9.10.18
Released: June 13, 2023

VMware GemFire 9.10.18 is a maintenance release, which includes fixes for the following security
issues:

CVE-2022-1471

CVE-2022-41881

CVE-2022-45688

CVE-2023-20860

CVE-2023-22602

CVE-2023-24998

See Issues Resolved in VMware GemFire 9.10.18 for details.

What’s New in VMware GemFire 9.10.17
Released: November 3, 2022

VMware GemFire 9.10.17 is a maintenance release, which includes fixes for the following security
issues:

CVE-2022-3171

CVE-2022-40664

CVE-2022-42003

NOTE: Version 9.10.14 of VMware GemFire incorporates the fix for a security issue
in the log4j component. We recommend that all customers running versions prior to
9.10.14 update to the latest maintenance release. For more information on these
vulnerabilities and their impact on VMware products please see VMSA-2021-0028.

Note: VMware GemFire version 9.10 requires Java 8 release 272 or a more recent
version 8 update.

VMware GemFire 9.10 Documentation

VMware by Broadcom 70

https://www.vmware.com/security/advisories/VMSA-2021-0028.html

CVE-2022-42889

See Issues Resolved in VMware GemFire 9.10.17 for details.

What’s New in VMware GemFire 9.10.16

VMware GemFire 9.10.16 is a maintenance release, which includes fixes for the following security
issues:

CVE-2022-32532

CVE-2022-25647

CVE-2022-22978

CVE-2022-22968

CVE-2020-36518

CVE-2019-17495

CVE-2016-1000027

See Issues Resolved in VMware GemFire 9.10.16 for details.

What’s New in VMware GemFire 9.10.15

VMware GemFire 9.10.15 is based on Apache Geode 1.12.9.

VMware GemFire 9.10.15 includes a fix for the following security issues:

CVE-2022-23207

CVE-2022-34870

The VMware GemFire 9.10.15 release includes the following improvement:

GEM-3518: Prometheus metrics, formerly a single JAR file (prometheus-metrics.jar), are now
distributed as a directory containing multiple JARs (gemfire-prometheus-metrics/*.jar). If you load
the Prometheus JAR explicitly, in a gfsh command for example, you must change the syntax of the
path to load the JARs from the directory.

For example, if your product distribution is located in /gemfire, replace the single-JAR specification

/gemfire/tools/Modules/prometheus-metrics.jar

with

/gemfire/tools/Modules/gemfire-prometheus-metrics/*.jar

In the gfsh start locator or start server command, this would appear as:

--classpath=/gemfire/tools/Modules/gemfire-prometheus-metrics/*.jar

See Issues Resolved in VMware GemFire 9.10.15 for details regarding issues addressed in this
release.

VMware GemFire 9.10 Documentation

VMware by Broadcom 71

What’s New in VMware GemFire 9.10.14

VMware GemFire 9.10.14 is based on Apache Geode 1.12.8.

VMware GemFire 9.10.14 is a maintenance release. See Issues Resolved in VMware GemFire
9.10.14 for details regarding issues addressed in this release.

GEODE-9905, GEM-3490: Upgraded log4j to v2.17.1 to address CVE-2021-44832 and CVE-2021-
45105.

What’s New in VMware GemFire 9.10.13

VMware GemFire 9.10.13 is based on Apache Geode 1.12.7.

VMware GemFire 9.10.13 is a maintenance release.

GEODE-9898, GEM-3486: Upgraded log4j to v2.16.0 to address CVE-2021-45046.

What’s New in VMware GemFire 9.10.12

VMware GemFire 9.10.12 is based on Apache Geode 1.12.6.

VMware GemFire 9.10.12 is a maintenance release.

GEODE-9888, GEM-3478: Upgraded log4j to v2.15.0 to address CVE-2021-44228.

What’s New in VMware GemFire 9.10.11

VMware GemFire 9.10.11 is based on Apache Geode 1.12.5.

VMware GemFire 9.10.11 is a maintenance release. See Issues Resolved in VMware GemFire 9.10.11
for details regarding issues addressed in this release.

New in this release:

VMware GemFire no longer supports Homebrew installation.

What’s New in VMware GemFire 9.10.10

VMware GemFire 9.10.10 is based on Apache Geode 1.12.5.

VMware GemFire 9.10.10 is a maintenance release. See Issues Resolved in VMware GemFire
9.10.10 for details regarding issues addressed in this release.

What’s New in VMware GemFire 9.10.9

VMware GemFire 9.10.9 is based on Apache Geode 1.12.4.

VMware GemFire 9.10.9 includes the following new features and improvements:

VMware GemFire 9.10.9 provides a new option enabling automatic retries in response to
PdxSerializationException. To apply this mode, the client application must set the system
property gemfire.enableQueryRetryOnPdxSerializationException=true.

For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 72

client.invoke(() -> {

 System.setProperty(

 GeodeGlossary.GEMFIRE_PREFIX + "enableQueryRetryOnPdxSerializationExceptio

n", "true");

 QueryService remoteQueryService = (PoolManager.find(poolName)).getQueryServic

e();

 Query query = remoteQueryService.newQuery("SELECT DISTINCT id FROM pdxTest");

 SelectResults<TestObjectThrowsPdxSerializationException> selectResults = (Sel

ectResults)query.execute();

});

What’s New in VMware GemFire 9.10.8

VMware GemFire 9.10.8 is based on Apache Geode 1.12.3.

VMware GemFire 9.10.8 includes the following new features and improvements:

VMware GemFire version 9.10.8 introduces a VMware GemFire metrics module that
provides out-of-the-box integration with Tanzu Observability by Wavefront. Metrics can be
forwarded to Wavefront for analysis and alerting. For more information, see Tanzu
Observability by Wavefront.

Documentation was added for VMware GemFire Micrometer, an interface for emitting
user-focused metrics to a variety of different consuming Application Performance
Monitoring (APM) tools. This feature was released in Apache Geode v1.11, and so was
included in the Tanzu Gemfire 9.10 release, but it was not previously documented in the
VMware GemFire User Guide.

Addressed an issue with deserialization of configuration information from old locators during
rolling upgrades (GEODE-9289, GEM-3253).

A new default setting for a JMX property affecting users of the Java 11 JDK (GEODE-9064,
GEM-3185).

What’s New in VMware GemFire 9.10.7

VMware GemFire 9.10.7 is based on Apache Geode 1.12.2.

VMware GemFire versions 9.10.1 through 9.10.7 are maintenance releases that resolve a variety of
issues—see Resolved Issues for more information.

What’s New in VMware GemFire 9.10

VMware GemFire 9.10 includes the following improvements:

VMware GemFire 9.10 is based on Apache Geode version 1.12, so it also includes features
and bug fixes from Apache Geode version 1.11.

JMX now exposes the free disk space percentage as a statistic.

Asynchronous event queues may now be created in a paused state. This allows better
control of event dispatch, as the dispatch may be delayed until the application is ready for
event consumption.

VMware GemFire 9.10 Documentation

VMware by Broadcom 73

The new pluggable OQL security framework restrict which classes and methods can be
called from queries. A system administrator can change the security posture at runtime.
Provided implementations cover several use cases, as described in Method Invocation
Authorizers.

There are new endpoints in the REST API for Management, including create and delete
index, list deployed jars, show PDX configuration, and show the supported REST API
versions.

Installing VMware GemFire 9.10
You can download VMware GemFire 9.10 from the VMware GemFire product download page.

For details on how to install VMware GemFire 9.10, see Installing VMware GemFire.

Upgrading to VMware GemFire 9.10
To upgrade from an earlier version of VMware GemFire to the current version, see Upgrading
VMware GemFire. Version-specific upgrade details follow.

Upgrading to Version 9.10.6

The fix for issues GEODE-8799 and GEM-3041: addressed a performance issue by increasing the
defaults for maximum number of pooled message processor threads and maximum partitioned
region message processor threads. NOTE: Users should be aware that if their system had been
hitting the old, lower default maximums, then upgrading may cause increased use of system
resources as the system is no longer constrained to the old values. If your system depends on
constraining system resources to the old default values, you can set these properties explicitly
using DistributionManager.MAX_THREADS and DistributionManager.MAX_PR_THREADS,
respectively.

The following table shows the old and new maximum values.

System Resource Old Default Value New Default Value

DistributionManager.MAX_THREADS 100 1000

DistributionManager.MAX_PR_THREADS The greater of (CPUs * 4) or 16 The greater of (CPUs * 32) or 200

Upgrading from a Version prior to 9.1.1

When servers are upgraded to this VMware GemFire version from a version prior to version 9.1.1,
their authentication of client messages is deactivated to facilitate rolling upgrades. If your clients are
configured to send authenticated messages, the servers will honor those messages, but will not
enforce authentication until you reinstate authentication on each of the upgraded servers.

To reinstate secure client/server messaging, restart each server with the geode.disallow-
internal-messages-without-credentials system property set to true. For example:

Note: VMware GemFire version 9.10 requires Java 8 release 272 or a more recent
version 8 update.

VMware GemFire 9.10 Documentation

VMware by Broadcom 74

https://network.tanzu.vmware.com/products/pivotal-gemfire

gfsh>start server --name=server_name --dir=server_config_dir \

--J=-Dgeode.disallow-internal-messages-without-credentials=true

Resolved Issues

The VMware GemFire 9.10 release is based on the Apache Geode 1.12 release, which also includes
bug fixes from the Apache Geode 1.11 release. This section describes issue resolutions that
significantly affect VMware GemFire applications. For a list of all issues resolved in Apache Geode
1.12, see the [Geode 1.12 Release Notes]
(https://cwiki.apache.org/confluence/display/GEODE/Release+Notes#ReleaseNotes-1.12.0). For a
list of all issues resolved in Apache Geode 1.11, see the [Geode 1.11 Release Notes]
(https://cwiki.apache.org/confluence/display/GEODE/Release+Notes#ReleaseNotes-1.11.0). Ticket
numbers of the form GEODE‑NNNN can be inspected at the Apache Software Foundation site for
Geode issues.

Issues Resolved in VMware GemFire 9.10.18

GEM-4717: Fixed an issue with session MaxInactiveTime. Setting a new session inactive time now
supersedes the old value as expected.

GEM-4864: Allow an older gfsh client to connect to a newer cluster across major versions.

GEM-5053: Updated netty-transport to 4.1.86 to address CVE-2022-41881.

GEM-5144: Updated shiro-core to 1.11.0 to address CVE-2023-22602.

GEM-5253: Updated commons-fileupload to 1.5 address CVE-2023-24998.

GEM-5318: Updated snakeyaml to 2.0 to address CVE-2022-1471.

GEM-5335: Updated spring_framework to 5.3.26 to address CVE-2023-20860.

GEM-4096: In Pulse, fixed StatRate to correctly calculate the rate per specified period.

GEM-4915: Improved tombstone expiration time calculations to consider large clock jumps.

Issues Resolved in VMware GemFire 9.10.17

GEM-2230: Fixed a hang that occurred during initialization in fixed partitioning when the
configured primary bucket is still being initialized.

GEM-3103: Fixed a hang that could occur when rebalancing a partioned region.

GEM-3168, GEM-3729: Fixed an issue that prevented recovery following a network partition.

GEM-4331: Implemented wider protections against cross-site scripting (XSS) attacks.

GEM-4647: Updated FasterXML Jackson Databind to version 2.13.4.2. This addresses CVE-2022-
42003.

GEM-4746: Updated protobuf-java to version 3.21.8. This addresses CVE-2022-3171.

GEM-4703: Updated Apache Shiro to version 1.10.0. This addresses CVE-2022-40664.

GEM-4710: Updated Apache commons-text to version 1.10.0. This addresses CVE-2022-42889.

Issues Resolved in VMware GemFire 9.10.16

VMware GemFire 9.10 Documentation

VMware by Broadcom 75

https://issues.apache.org/jira/browse/GEODE

GEM-3036, GEM-3507, GEM-3691: Fixed a performance issue caused by a memberId leak in non-
persistent regions.

GEM-3214: Introduce a performance improvement by increasing the default
BridgeServer.HANDSHAKE_POOL_SIZE from 4 to 50.

GEM-3342: Fixed a problem with stuck function threads in long-running TSL 1.3 sessions.

GEM-3433: Restored the visibility of processCpuTime statistics hidden by Java 11.

GEM-3549: Removed an unnecessary restriction on subregion rebalancing. The –include-region
option is no longer mandatory.

GEM-3567: Upgraded jackson to v2.13.2.2 to address CVE-2020-36518.

GEM-3580, GEM-3627: Upgraded spring to v5.3.20 to address CVE-2016-1000027 and CVE-
2022-22968.

GEM-3581: Upgraded springdoc to v2.2.0 and classgraph to v4.8.146 to address CVE-2019-17495.

GEM-3647: Upgraded gson to v2.8.9 to address CVE-2022-25647.

GEM-3677: Upgraded spring-security to v5.5.8, commons-lang3 to v3.12.0, and slf4j to v1.7.32 to
address CVE-2022-22978.

GEM-3684: Removed Server: header from all HTTP responses to mitigate a potential security risk in
the REST API.

GEM-3722: Corrected a cross-site scripting (XSS) vulnerability in Pulse.

GEM-3749: Each GemfireHttpSession is now sized, instead of only the first instance being sized.

GEM-3750: To improve size estimation, modified the ObjectSizer to not size Thread and
ThreadGroup instances by default.

GEM-3761: Fixed ExtendedNumericComparator to properly handle NULL and UNDEFINED
comparison.

GEM-3766: Fixed a case in which findDistributedMembers() throws an unsupported operation
exception.

GEM-3773: Upgraded shiro to v1.9.1 to address CVE-2022-32532.

GEODE-9910: Fixed a problem in which nodes with embedded locators failed to auto-reconnect
following a network partition.

Issues Resolved in VMware GemFire 9.10.15

GEODE-9819: Repaired a server socket leak. The leak happened only when using durable clients. If
a durable client failed to connect with ServerRefusedConnectionException, then a socket was
leaked on the server.

GEODE-9372: Added createSenderTime and createSenderInProgress stats to DistributionStats to
help diagnose data replication spikes.

GEODE-10093, GEM-3541: Fixed an issue in which the DeltaSession getAttribute method logs an
NPE and returns an unserialized value when called on an attribute with a null value.

Issues Resolved in VMware GemFire 9.10.14

VMware GemFire 9.10 Documentation

VMware by Broadcom 76

GEODE-9060, GEM-3488 Cleaned up replicates list for the GII (Get Initial Image) provider to
improve restarts.

GEODE-9905, GEM-3490: Upgraded log4j to v2.17.1 to address CVE-2021-44832 and CVE-2021-
45105.

Issues Resolved in VMware GemFire 9.10.13

GEODE-9898, GEM-3486: Upgraded log4j to v2.16.0 to address CVE-2021-45046.

Issues Resolved in VMware GemFire 9.10.12

GEODE-9888, GEM-3478: Upgraded log4j to address CVE-2021-44228.

Issues Resolved in VMware GemFire 9.10.11

GEODE-7920, GEM-2863: Improved responsiveness of membership messaging by disallowing the
processing of cache operations directly on the limited pool of membership messaging threads.

GEODE-8542: Limited the size of message chunks to the maximum message size allowed by
org.apache.geode.internal.tcp.Connection.

GEODE-9714, GEODE-9486: Fixed a problem in which some serialized classes failed to deserialize
when validate-serializable-objects is enabled.

GEODE-9767, GEM-3423: Upgraded netty to address CVE-2021-37136 and CVE-2021-37137.

GEODE-9783, GEM-3422: Removed unnecessary .jar files from pulse.war.

GEODE-9825, GEM-3444: Fixed network buffer handling problem (when TLS was deactivated, and
cluster members used disparate socket-buffer-size settings) that could result in hangs.

GEODE-9838, GEM-3445: Improved index maintenance and reliability by adding key details to
debug-level index update logs when an operation fails.

Issues Resolved in VMware GemFire 9.10.10

GEODE-9486: Fixed a case in which serialized classes failed to deserialize when validate-
serializable-objects was enabled.

GEODE-9515: Fixed a situation in which JMX manager failed to start because initialization of an
MBeanServer object was attempted twice.

GEODE-9554, GEM-3345: Fixed a case in which rebalancing a region with multiple redundancy
zones could fail due to the deletion of a bucket in the wrong redundancy zone.

GEODE-9578, GEM-3362: Upgraded spring-security to address CVE-2021-22119.

GEODE-9596, GEM-3326: Fixed an issue in which continuous query events could be lost due to an
HAContainer’s eviction policy.

GEODE-9640, GEM-3373: Fixed a case in which cluster restart issued duplicate event IDs, causing
new operations to be lost on the client.

GEODE-9655, GEM-3245: Updated the Shiro component to take advantage of its improved
parsing behavior.

VMware GemFire 9.10 Documentation

VMware by Broadcom 77

Issues Resolved in VMware GemFire 9.10.9

GEODE-9141, GEM-3219: Fixed a corrupted DestroyRegionMessage that could cause a cache
server to hang during shutdown.

GEODE-9180: Improved diagnostic logging by adding a warning when a heartbeat generation
thread oversleeps.

GEODE-9295, GEM-3310: Corrected an issue with entry idle expiration that could deactivate all
expiration, resulting in symptoms such as a drastic increase in session state region entry counts
following an upgrade.

GEODE-9346, GEM-2816: Introduced an option allowing a client application to enable automatic
retries in response to PdxSerializationException by setting the system property
gemfire.enableQueryRetryOnPdxSerializationException=true.

GEODE-9380, GEM-3301: Addressed a significant performance degradation in peer-to-peer TLS
handshake times by replacing sleep() calls with thread yields.

Issues Resolved in VMware GemFire 9.10.8

GEODE-9064, GEM-3185: Serialization filtering for JMX/RMI is configured by default on Java 11.

GEODE-9146, GEM-3223: Entry idle expiration on regions with eviction policy set to “destroy” will
now expire entries consistently across the cluster.

GEODE-9289, GEM-3253: Addressed an issue with deserialization of configuration information
from old locators during rolling upgrades.

GEODE-9307, GEM-3293: Corrected increased heap consumption following auto-reconnection
caused by region references that should have been destroyed following a forced disconnect.

GEODE-9331, GEM-3300: Improved the efficiency of creating peer-to-peer connections when
conserve-sockets=false by eliminating a redundant list of weak references.

GEODE-9339, GEM-3302: Upgraded json-smart to address CVE-2021-27568.

GEODE-9363, GEM-3306: Upgraded spring-core to address CVE‑2021‑22118.

Issues Resolved in VMware GemFire 9.10.7

GEODE-8217, GEM-2909: Fixed a problem with session state serialization and deserialization.

GEODE-8221, GEM-2908: Fixed a failure to update session state.

GEODE-8513, GEM-3030: Cleaned up inefficiencies and spurious errors when storing and
retrieving session state information.

GEODE-8558, GEM-3077: Fixed syntax issue in the syntax for commented Pulse queries.

GEODE-8623, GEM-3088: Corrected a timing issue between DNS and Geode startup that could
result in permanent unknown host exceptions.

GEODE-8671, GEM-3095: Fixed a serialization data corruption issue that arose when two threads
simultaneously accessed a single PdxInstance.

GEODE-8684, GEM-3254: Ensured that the maxInactiveInterval setting is honored when the
commit valve is deactivated.

VMware GemFire 9.10 Documentation

VMware by Broadcom 78

GEODE-8781, GEM- 3252: Fixed a problem with upgrades when attempting to restart from API-
configured regions.

GEODE-8815, GEM-3128: Fixed a case in which cache closure due to an uncaught exception
during member startup was incorrectly treated as a graceful shutdown.

GEODE-8926, GEM-3184: Fixed a problem with missed Continuous Query events when they
occurred at the same time a post-CQ function was executing.

GEODE-8958, GEM-3027: Improved tombstone expiration logic with regard to the handling of
future timestamps.

GEODE-8974, GEM-3205: Fixed vulnerability CVE-2020-13956 in apache-httpclient.

GEODE-8989, GEM-3211: Fixed vulnerability CVE-2021-22112 in spring-security.

GEODE-8996, GEM-3158: Re-established backward compatibility for rebalance and restore
redundancy commands.

GEODE-9010, GEM-3218: Fixed vulnerability CVE-2020-27223 in jetty.

GEODE-9016, GEM-3212: Fixed a null-pointer exception that could occur when a continuous query
generated a local-destroy event.

GEODE-9030, GEM-3221: Fixed a spurious Region Destroyed exception that could occur when a
query was initiated on a partitioned region immediately following a startup or rebalance operation.

GEODE-9040, GEM-3215: Improved the handling of missing colocated regions, so that the
SingleThreadColocationLogger now stops, as it should.

GEODE-9051: Added a feature to measure tenured heap consumption and record the information
in the logs after garbage collection.

GEODE-9126, GEM-3251: Fixed vulnerability CVE-2021-28165 and CVE-2021-28164 in jetty.

Issues Resolved in VMware GemFire 9.10.6

GEODE-2644, GEM-3138: Restored member name to log entries.

GEODE-5922, GEM-3155: Fixed a performance issue in the event queues of WAN-connected
clusters.

GEODE-7884, GEM-1535: Fixed a condition in which a server would hang during a cache close
operation with an IllegalStateException error, due to a timer being set on an already-completed
operation.

GEODE-8261, GEM-2975, GEM-3130: Fixed a null-pointer error that could occur when a client
attempts to register interest after server shutdown has been initiated.

GEODE-8419, GEM-3079: SSL/TLS protocol, cipher suite configurations and per-component TLS
properties were being ignored in some cases; these settings are now respected.

GEODE-8447, GEM-3019: The output of localized dates in log timestamps and Pulse query results
now always include seconds. A previous fix for GEODE-8447 revised Pulse to display dates using
the local time zone.

GEODE-8536, GEM-2872, GEM-2961, GEM-2997: Fixed a stack overflow that could occur when
Lucene IndexWriter was unable to be created.

VMware GemFire 9.10 Documentation

VMware by Broadcom 79

GEODE-8685, GEM-3174: Fixed export feature to no longer deserialize region values and classes.

GEODE-8686, GEM-1681: Dispensed with a rarely-called tombstone removal optimization that
could occasionally cause a deadlock that prevented the completion of region creation.

GEODE-8721, GEM-3110: Fixed a condition under which the losing side of a network partition failed
to shut down.

GEODE-8734, GEM-3104: Implemented a more robust approach for generating Geode statistics
that accommodates a variety of /proc/net/netstat formats produced by different versions of Linux.

GEODE-8764, GEM-3148: Fixed an authentication problem that erroneously blocked the execution
of Lucene queries requiring region-level permissions.

GEODE-8779, GEM-3143: Eliminated a case in which session management messages were sent
unnecessarily to clients whose local caches were not enabled.

GEODE-8782: Added the ability to retrieve the Principal from the FunctionContext when a
SecurityManager is enabled.

GEODE-8795, GEM-3111: Lucene queries now utilize security post-processing, if enabled.

GEODE-8799, GEM-3041: Addressed a performance issue by increasing the defaults for maximum
number of pooled message processor threads and maximum partitioned region message processor
threads. If your system depends on constraining system resources to the old default values, you
can set these properties explicitly using DistributionManager.MAX_THREADS and
DistributionManager.MAX_PR_THREADS, respectively.

The following table shows the old and new maximum values.

System Resource Old Default Value New Default Value

DistributionManager.MAX_THREADS 100 1000

DistributionManager.MAX_PR_THREADS The greater of (CPUs * 4) or 16 The greater of (CPUs * 32) or 200

GEODE-8895, GEM-3170: Handle an unexpected socket closure with more grace by implementing
retries internally, such that the client no longer needs to deal with an InternalGemFireException.

GEODE-8930, GEM-2677: Fixed a race condition that caused a deadlock when executing a create
operation within a transaction with conserve-sockets set to true. With this fix, the deadlock no
longer occurs, but best practice is to set conserve-sockets to false when using transactions.

Issues Resolved in VMware GemFire 9.10.5

GEODE-8238, GEM-2901: Improved connection close behavior to ensure final delivery of cluster
messages during shutdown and avoid potential hangs.

GEODE-8432, GEM-2778, GEM-3026, GEM-3029: Fixed a hang that occurred with asynchronous
event queues during rebalance operations.

GEODE-8475, GEM-1589: Resolved a deadlock in ParallelGatewaySenderQueue.

GEODE-8520, GEM-3056: GarbageCollectionCount metric no longer shows negative values.
GCStatsMonitor now sums up all the GC stats to get the total GC count and GC time.

GEODE-8557, GEM-3066, GEM-3067: Reclassified “java.lang.IllegalStateException: NioSslEngine
has been closed” to IOException, which allows retries of server connection failures.

VMware GemFire 9.10 Documentation

VMware by Broadcom 80

GEODE-8564, GEM-3081: Fixed an exception thrown by an attempt to remove a managed
connection that has already been invalidated. Corrected functionality to avoid unnecessary
intermediary collection creations.

GEODE-8584, GEM-3092: Corrected a peer-to-peer messaging failure with TLS when attempting
to replicate data while a connection is being closed.

GEODE-8651, GEM-3109: Corrected a problem that caused TLS-encrypted messaging to hang
when conserve-sockets is set to false.

GEODE-8652, GEM-3099: Corrected a synchronization issue that caused TLS-encrypted message
transmission to hang during shutdown.

Issues Resolved in VMware GemFire 9.10.4

GEODE-8385, GEM-2936: Fixed a problem with cluster shutdown which caused a hang on restart,
due to ambiguity as to which node had the most up-to-date disk store. This could occur if nodes
(locators or servers) were simultaneously shut down.

GEODE-8463, GEODE-8506, GEM-3020: Refined the behavior of BufferPool to always return a
buffer that has exactly the requested capacity. In the past, BufferPool could return a buffer larger
than the size requested, which could lead to decryption errors and lost messages when using
TLS(SSL) protocol TLSv1.3.

GEODE-8478, GEM-3069: Fixed an issue that caused a gateway sender to shut down if (1) its alert-
threshold was configured, (2) an event was on the queue longer than that specified threshold, (3)
the logger was attempting to record an alert for that message, and (4) a field in the event object
threw an exception while undergoing toString conversion.

GEODE-8489, GEM-3043: Restored the behavior of Pulse queries for consistency with earlier
versions. For example, the result of a select * query once again includes attributes without values.

Issues Resolved in VMware GemFire 9.10.3

GEODE-6564, GEM-3001: Fixed a memory leak that occurred when a replicated region,
configured with entry expiration, was cleared.

GEODE-8331: Fixed an issue that prevented gfsh v1.12 (GemFire 9.10) from connecting to a Geode
v1.10 (GemFire 9.9) server. Now, if a Geode v1.10 (GemFire 9.9) command is incompatible with a
command issued by the newer version of gfsh, it will fail with a detailed error message.

GEODE-8394, GEM-2989: Fixed an issue in which putAll operations or put operations with large
objects could result in data corruption if invoked without having a sufficiently large read-timeout.
Subsequent get operations or queries could experience failures due to this corruption.

GEODE-8447, GEM-3019: Pulse displays dates using the local time zone.

GEODE-8483, GEM-3004: Introduced a correction to JCA transaction logic that restores the ability
of the system to detect commit conflict exceptions in concurrent access situations.

Issues Resolved in VMware GemFire 9.10.2

GEODE-8174, GEM-2884: Fixed an issue that caused an incorrect
ConcurrentModificationException to be thrown when using JTA transactions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 81

GEODE-8029, GEM-2919: Unused disk store backups (.drf files) are now deleted to
prevent the proliferation of unused records and files, which could cause members to fail
during startup while recovering disk stores.

GEODE-8131, GEM-2938: Eliminated a point of contention in the alert logging system that could
occasionally block cache operations.

GEODE-8195: Improved WAN retry logic.

GEODE-8240: After a rolling upgrade, even though all locators were upgraded, the membership
view indicated some were running the old version. This would have been evident in the gfsh list
members command and in logs. The correct version number is now reported.

GEODE-8259, GEM-2943: When a client performs a single-hop getAll() operation and
encounters a serialization error, the operation is now re-tried.

GEODE-8287, GEM-2897, GEM-2950: Ironed out a recently-introduced problem that caused a
degradation in performance for join queries or queries that use multiple indexes. Performance in
such cases has been restored to v8.2 levels.

Issues Resolved in VMware GemFire 9.10.1

GEODE-7851: Pulse logging has been restored.

GEODE-7940: Fixed a problem in which a parallel gateway sender stopped sending events if
another gateway sender attached to the same region was destroyed.

GEODE-8055, GEM-2890: Indexes can now be created on subregions.

GEODE-8071, GEM-2896: Fixed the gfsh rebalance command to prevent locators from hanging
during shutdown.

GEODE-8091, GEM-2898: Locators failed to start after upgrade to v9.10 if a deprecated gfsh start
locator option, --load-cluster-configuration-from-dir, was in use. Support for the deprecated
option has been restored to allow startup to proceed. Beginning with GemFire 9.5 and Geode 1.6,
the gfsh command import cluster-configuration supersedes start locator --load-cluster-
configuration-from-dir.

Issues Resolved in VMware GemFire 9.10

GEODE-7465, GEM-2773: Fixed an issue that threw RegionDestroyedException when an
asynchronous event queue was stopped and then restarted.

GEODE-7473, GEM-2774: Fixed a memory leak in the accumulation of entry event objects that
could occur when a gateway receiver existed for the same region as a gateway sender.

GEODE-7593, GEM-2795: Fixed a memory leak that caused a higher than expected heap size
when eviction was enabled. The issue was due to indexes that retained references to serialized
values when the indexed key was a PDX string.

GEODE-7374, GEM-2748: VMware GemFire no longer throws a ClassCastException when using
the deprecated MemberCommandService.

GEODE-7373, GEM-2746: Enforce JMX credentials to be either a string or an array of strings.

GEODE-7036, GEM-2723: Fixed a bug that could result in a NullPointerException when restarting
members and a locator rejoins the cluster to form a quorum.

VMware GemFire 9.10 Documentation

VMware by Broadcom 82

GEODE-7264, GEM-2706: Updated the Jackson dependency to version 2.10.0.

GEODE-7334, GEM-2705: VMware GemFire no longer throws a ClassCastException when the
developer REST API is enabled and JodaModule is in the classpath.

GEODE-7208, GEM-2698: Fixed Lucene index creation when there are non-primitive fields in a
child class, and the fields are defined in the parent class.

GEODE-7268, GEM-2692: A gfsh alter region no longer causes a soft hang when many gateway
senders exist, by making the gfsh command implementation work more like the equivalent Java
API.

GEODE-7535, GEM-2654: Fixed a race condition that could improperly result in an
EntryDestroyedException during a getAll operation, if a client proxy region exists and there are no
transactions.

GEODE-7085, GEM-2647: Eliminated an IndexOutOfBoundsException while recovering values from
disk when the region version value overflowed.

GEODE-7015, GEM-2604: Fixed a bug that could result in a hung server if a move bucket
operation failed during rebalance due to a forced disconnect with recreated persistent partitioned
regions.

GEODE-7042: The server launcher now waits until all of the server’s startup tasks have completed
before updating the server’s status to “online”. The ServerLauncher.start() method now blocks
until redundancy recovery and recovery of values from disk have completed. This change has the
effect of making the gfsh start server command wait for all server startup tasks to complete
before returning.

GEODE-4993: GatewaySender connection statistics are now stored after being captured.

GEODE-6973: Improved creation time performance when there are a large number of PDX types.

GEODE-7628, GEM-2747: Block JMX MBean creation when no SecurityManager interface is
implemented.

GEODE-7755, GEM-2614: Fixed a bug that resulted in locator processes continuing to run even
when the logs show them shut down.

GEODE-7728, GEM-2819: Fixed an exception thrown when executing an equi-join query and both
fields are indexed.

GEODE-7294: Moved to Spring 5 and updated other third-party libraries to their latest security
patch versions.

GEODE-7310: Fixed an issue in which taking a backup was not properly aborted if a member of the
distributed system was lost during the backup process.

GEODE-7750, GEODE-7760, GEODE-7796, GEM-2821, GEM-2823: Fixed an issue which could
cause a locator to fail to restart properly, and also corrupted the cluster configuration.

GEODE-7763: Reduced the performance degradation caused when a client has multiple threads,
and each client thread does operations on the same region key.

Support

VMware GemFire 9.10 Documentation

VMware by Broadcom 83

General support includes security vulnerability resolutions and critical bug fixes in all supported
minor versions, while other maintenance is applied only to the latest supported minor release.

Obtaining and Installing Security Updates

New versions of VMware GemFire often include important security fixes, so VMware recommends
you keep up to date with the latest releases.

For details about any security fixes in a particular release, see the Application Security Team page.

VMware GemFire 9.10 Documentation

VMware by Broadcom 84

http://www.pivotal.io/security

Supported Configurations and System
Requirements

The sections that follow document supported operating system platforms and describe additional
system requirements for VMware GemFire.

VMware GemFire Supported Configurations

VMware GemFire is supported on a variety of platforms.

Host Machine Requirements

Each machine must meet a set of system requirements.

Supported Platforms and System Requirements for Tools:

Tools, including Pulse and VSD, are supported on a variety of platforms.

Pulse System Requirements

Verify that your system meets the installation and runtime requirements for Pulse.

VSD System Requirements

View a list of platforms that are known to work with VSD.

Tanzu GemFire Supported Configurations

VMware GemFire is supported on a variety of platforms.

Note: Running VMware GemFire clusters with a mix of different platforms has not been tested. We
recommend that you use a consistent platform on all machines in your cluster.

Supported Platforms

All platforms listed as deprecated may be removed in a future release of the product.

These VMware GemFire 9.10 platforms provide support for production systems:

CentOS 7 for the x86-64 processor

RHEL 8 for the x86-64 processor

RHEL 7 for the x86-64 processor

RHEL 6 for the x86-64 processor (Deprecated)

Ubuntu 14.04 for the x86-64 processor

Ubuntu 16.04 for the x86-64 processor

SUSE Linux Enterprise Server 11 for the x86-64 processor

VMware GemFire 9.10 Documentation

VMware by Broadcom 85

Solaris 11 for the x86-64 processor

Solaris 11 for a 64-bit SPARC processor

Windows 2012 Server R2 for the x86-64 processor

Windows 2012 Server for the x86-64 processor (Deprecated)

AIX 7 with IBM SDK, Java Technology Edition, Version 8*. This platform is only supported
for GemFire application clients. The GemFire cluster must be configured on one of the
other supported platforms.

These cloud platforms are supported for VMware GemFire 9.10:

Linux platforms under AWS

Linux platforms under Microsoft Azure

These VMware GemFire 9.10 platforms provide support for development systems:

MacOS 10.12 (Sierra) for the x86-64 processor

Windows 10 for the x86-64 processor

Java Support Notes

This version of VMware GemFire requires Java 8 release 272 or a more recent version 8 update.
The same versions are supported with OpenJDK (HotSpot).

VMware GemFire is compatible with Open JDK 11.

The VMware GemFire product download does not include Java. Download and install a supported
JRE or JDK on each system running GemFire. VMware recommends the installation of a full JDK
(and not just a JRE) to obtain better performance with gfsh status and gfsh stop commands.

The IBM SDK, Java Technology Edition, Version 8 is supported for application clients only. Some
client region eviction configurations such as HEAP_LRU are known to not function properly in this
release.

File System Type for Linux Platforms

For optimal disk-store performance, VMware recommends avoiding the use of ext3 file systems
when operating on Linux platforms.

Host Machine Requirements

Each machine that will run VMware GemFire must meet the following requirements:

Java SE Development Kit 8 with update 272 or a more recent version 8 update. The same
versions are supported with OpenJDK. VMware GemFire is compatible with Open JDK 11
(HotSpot).

An adequate per-user limit on the number of file descriptors; for Unix/Linux, the
recommended soft limit is 8192, and the hard limit is 81920.

An adequate per-user limit on the number of processes (nproc); for Unix/Linux, the
recommended soft limit is 501408, with an unlimited hard limit.

VMware GemFire 9.10 Documentation

VMware by Broadcom 86

TCP/IP.

A system clock set to the correct time and a time synchronization service such as Network
Time Protocol (NTP). Correct time stamps permit the following activities:

Logs that are useful for troubleshooting. Synchronized time stamps ensure that log
messages from different hosts can be merged to reproduce an accurate
chronological history of a distributed run.

Aggregate product-level and application-level time statistics.

Accurate monitoring of the Geode system with scripts and other tools that read the
system statistics and log files.

The host name and host files are properly configured for the machine. The host name and
host file configuration can affect gfsh and Pulse functionality.

Deactivate TCP SYN cookies. Most default Linux installations use SYN cookies to protect
the system against malicious attacks that flood TCP SYN packets, but this feature is not
compatible with stable and busy VMware GemFire clusters. Security implementations
should instead seek to prevent attacks by placing VMware GemFire server clusters behind
advanced firewall protection.

To deactivate SYN cookies permanently: 1. Edit the /etc/sysctl.conf file to include the
following line:

``` pre

net.ipv4.tcp_syncookies = 0

```

Setting this value to zero deactivates SYN cookies.

1. Reload sysctl.conf:

sysctl -p

VMware GemFire 9.10 Documentation

VMware by Broadcom 87

Getting Started with VMware GemFire

A tutorial demonstrates features, and a main features section describes key functionality.

About VMware GemFire

VMware GemFire is a data management platform that provides real-time, consistent access
to data-intensive applications throughout widely distributed cloud architectures.

Main Features

This section summarizes the main features and key functionality.

Installing VMware GemFire

Upgrading VMware GemFire

VMware GemFire in 15 Minutes or Less

Take this brief tour to try out basic features and functionality.

About VMware GemFire

VMware GemFire is a data management platform that provides real-time, consistent access to
data-intensive applications throughout widely distributed cloud architectures.

VMware GemFire pools memory, CPU, network resources, and optionally local disk across multiple
processes to manage application objects and behavior. It uses dynamic replication and data
partitioning techniques to implement high availability, improved performance, scalability, and fault
tolerance. In addition to being a distributed data container, VMware GemFire is an in-memory data
management system that provides reliable asynchronous event notifications and guaranteed
message delivery.

Main Concepts and Components

Caches are an abstraction that describe a node in a VMware GemFire distributed system.
Application architects can arrange these nodes in peer-to-peer or client/server topologies.

Within each cache, you define data regions. Data regions are analogous to tables in a relational
database and manage data in a distributed fashion as name/value pairs. A replicated region stores
identical copies of the data on each cache member of a distributed system. A partitioned region
spreads the data among cache members. After the system is configured, client applications can
access the distributed data in regions without knowledge of the underlying system architecture.
You can define listeners to create notifications about when data has changed, and you can define
expiration criteria to delete obsolete data from a region.

VMware GemFire locators provide both member discovery and load-balancing services. You
configure clients with a list of locator services and the locators maintain a dynamic list of member

VMware GemFire 9.10 Documentation

VMware by Broadcom 88

servers.

VMware GemFire uses continuous querying to enable event-driven architectures. VMware
GemFire ties events and data together so that when an event is processed, the data required to
process the event is available without additional queries to a disk-based database. Clients can
subscribe to change notifications so that they can execute tasks when a specific piece of data
changes.

In addition to peer-to-peer and client/server topologies, VMware GemFire supports multi-site
configurations that allow you to scale horizontally between disparate, loosely-coupled distributed
systems over a wide geographically separated network. A wide-area network (WAN) is the main
use case for the multi-site topology.

Main Features

This section summarizes main features and key functionality.

High Read-and-Write Throughput

Low and Predictable Latency

High Scalability

Continuous Availability

Reliable Event Notifications

Parallelized Application Behavior on Data Stores

Shared-Nothing Disk Persistence

Reduced Cost of Ownership

Single-Hop Capability for Client/Server

Client/Server Security

Multisite Data Distribution

Continuous Querying

Heterogeneous Data Sharing

High Read-and-Write Throughput

Read-and-write throughput is provided by concurrent main-memory data structures and a highly
optimized distribution infrastructure. Applications can make copies of data dynamically in memory
through synchronous or asynchronous replication for high read throughput or partition the data
across many system members to achieve high read-and-write throughput. Data partitioning
doubles the aggregate throughput if the data access is fairly balanced across the entire data set.
Linear increase in throughput is limited only by the backbone network capacity.

Low and Predictable Latency

The optimized caching layer minimizes context switches between threads and processes. It
manages data in highly concurrent structures to minimize contention points. Communication to

VMware GemFire 9.10 Documentation

VMware by Broadcom 89

peer members is synchronous if the receivers can keep up, which keeps the latency for data
distribution to a minimum. Servers manage object graphs in serialized form to reduce the strain on
the garbage collector.

Subscription management (interest registration and continuous queries) is partitioned across server
data stores, ensuring that a subscription is processed only once for all interested clients. The
resulting improvements in CPU use and bandwidth utilization improve throughput and reduce
latency for client subscriptions.

High Scalability

Scalability is achieved through dynamic partitioning of data across many members and spreading
the data load uniformly across the servers. For “hot” data, you can configure the system to expand
dynamically to create more copies of the data. You can also provision application behavior to run in
a distributed manner in close proximity to the data it needs.

If you need to support high and unpredictable bursts of concurrent client load, you can increase the
number of servers managing the data and distribute the data and behavior across them to provide
uniform and predictable response times. Clients are continuously load balanced to the server farm
based on continuous feedback from the servers on their load conditions. With data partitioned and
replicated across servers, clients can dynamically move to different servers to uniformly load the
servers and deliver the best response times.

You can also improve scalability by implementing asynchronous “write behind” of data changes to
external data stores, like a database. This avoids a bottleneck by queuing all updates in order and
redundantly. You can also conflate updates and propagate them in batch to the database.

Continuous Availability

In addition to guaranteed consistent copies of data in memory, applications can persist data to disk
on one or more members synchronously or asynchronously by using a “shared nothing disk
architecture.” All asynchronous events (store-forward events) are redundantly managed in at least
two members such that if one server fails, the redundant one takes over. All clients connect to
logical servers, and the client fails over automatically to alternate servers in a group during failures
or when servers become unresponsive.

Reliable Event Notifications

Publish/subscribe systems offer a data-distribution service where new events are published into the
system and routed to all interested subscribers in a reliable manner. Traditional messaging platforms
focus on message delivery, but often the receiving applications need access to related data before
they can process the event. This requires them to access a standard database when the event is
delivered, limiting the subscriber by the speed of the database.

Data and events are offered through a single system. Data is managed as objects in one or more
distributed data regions, similar to tables in a database. Applications simply insert, update, or delete
objects in data regions, and the platform delivers the object changes to the subscribers. The
subscriber receiving the event has direct access to the related data in local memory or can fetch
the data from one of the other members through a single hop.

VMware GemFire 9.10 Documentation

VMware by Broadcom 90

Parallelized Application Behavior on Data Stores

You can execute application business logic in parallel on members. The data-aware function-
execution service permits execution of arbitrary, data-dependent application functions on the
members where the data is partitioned for locality of reference and scale.

By colocating the relevant data and parallelizing the calculation, you increase overall throughput.
The calculation latency is inversely proportional to the number of members on which it can be
parallelized.

The fundamental premise is to route the function transparently to the application that carries the
data subset required by the function and to avoid moving data around on the network. Application
function can be executed on only one member, in parallel on a subset of members, or in parallel
across all members. This programming model is similar to the popular Map-Reduce model from
Google. Data-aware function routing is most appropriate for applications that require iteration over
multiple data items (such as a query or custom aggregation function).

Shared-Nothing Disk Persistence

Each cluster member manages data on disk files independent of other members. Failures in disks or
cache failures in one member do not affect the ability of another cache instance to operate safely
on its disk files. This “shared nothing” persistence architecture allows applications to be configured
such that different classes of data are persisted on different members across the system,
dramatically increasing the overall throughput of the application even when disk persistence is
configured for application objects.

Unlike a traditional database system, separate files are not used to manage data and transaction
logs. All data updates are appended to files that are similar to transactional logs of traditional
databases. You can avoid disk-seek times if the disk is not concurrently used by other processes,
and the only cost incurred is the rotational latency.

Reduced Cost of Ownership

You can configure caching in tiers. The client application process can host a cache locally (in
memory and overflow to disk) and delegate to a cache server farm on misses. Even a 30 percent
hit ratio on the local cache translates to significant savings in costs. The total cost associated with
every single transaction comes from the CPU cycles spent, the network cost, the access to the
database, and intangible costs associated with database maintenance. By managing the data as
application objects, you avoid the additional cost (CPU cycles) associated with mapping SQL rows to
objects.

Single-Hop Capability for Client/Server

Clients can send individual data requests directly to the server holding the data key, avoiding
multiple hops to locate data that is partitioned. Metadata in the client identifies the correct server.
This feature improves performance and client access to partitioned regions in the server tier.

Client/Server Security

VMware GemFire 9.10 Documentation

VMware by Broadcom 91

There may be multiple, distinct users in client applications. This feature accommodates installations
in which clients are embedded in application servers and each application server supports data
requests from many users. Each user may be authorized to access a small subset of data on the
servers, as in a customer application where each customer can access only their own orders and
shipments. Each user in the client connects to the server with its own set of credentials and has its
own access authorization to the server cache.

Multisite Data Distribution

Scalability problems can result from data sites being spread out geographically across a wide-area
network (WAN). Models address these topologies, ranging from a single peer-to-peer cluster to
reliable communications between data centers across the WAN. This model allows clusters to scale
out in an unbounded and loosely coupled fashion without loss of performance, reliability or data
consistency.

At the core of this architecture is the gateway sender configuration used for distributing region
events to a remote site. You can deploy gateway sender instances in parallel, which enables an
increase in throughput for distributing region events across the WAN. You can also configure
gateway sender queues for persistence and high availability to avoid data loss in the case of a
member failure.

Continuous Querying

In messaging systems like Java Message Service, clients subscribe to topics and queues. Any
message delivered to a topic is sent to the subscriber. VMware GemFire allows continuous
querying by having applications express complex interest using Object Query Language.

Heterogeneous Data Sharing

C#, C++ and Java applications can share application business objects without going through a
transformation layer such as SOAP or XML. The server side behavior, though implemented in Java,
provides a unique native cache for C++ and .NET applications. Application objects can be managed
in the C++ process heap and distributed to other processes using a common “on-the-wire”
representation for objects. A C++ serialized object can be directly deserialized as an equivalent Java
or C# object. A change to a business object in one language can trigger reliable notifications in
applications written in the other supported languages.

Installing VMware GemFire

This section describes how to install VMware GemFire.

When you install a new version of VMware GemFire software on an existing VMware GemFire
system, keep the previous version available until the system upgrade has been completed and
verified.

Install VMware GemFire from a Compressed TAR File

Use the compressed TAR file distribution to install and configure VMware GemFire on every
physical and virtual machine where you will run VMware GemFire.

VMware GemFire 9.10 Documentation

VMware by Broadcom 92

Obtaining VMware GemFire from a Maven Repository

You can use Maven to add VMware GemFire to your Java project build.

Setting Up the CLASSPATH

This topic describes how VMware GemFire processes set their CLASSPATH.

Uninstalling VMware GemFire

This section describes how to remove VMware GemFire.

Obtaining and Installing Security Updates

New versions of VMware GemFire often include important security fixes, so Pivotal recommends
you keep up to date with the latest releases.

For details about any security fixes in a particular release, see the Pivotal security page.

Windows/Unix/Linux—Install VMware Tanzu GemFire from
a Compressed TAR File
Use the compressed TAR file distribution to install and configure VMware Tanzu GemFire on every
physical and virtual machine where you will run VMware Tanzu GemFire.

Prerequisites
Before you install GemFire, you must complete the following prerequisites:

Confirm that your system meets the hardware and software requirements described in
Supported Configurations and System Requirements.

From the VMware Tanzu GemFire product page on the VMware Tanzu Network, select the
version of GemFire to download, then click the box marked VMware Tanzu GemFire to
download the compressed TAR distribution of GemFire.

Know how to configure environment variables for your system. If you have not done so
already, set the JAVA_HOME environment variable to point to a Java runtime installation
supported by GemFire. (You should find a bin directory under JAVA_HOME.)

Procedure
Use the following procedure to install VMware Tanzu GemFire:

1. Navigate to the directory where you downloaded the GemFire software, and expand the
compressed TAR file after creating the path_to_product directory.

$ tar -xzvf pivotal-gemfire-N.N.N.tgz -C path_to_product

path_to_product corresponds to the location where you want to install GemFire, and
N.N.N is the version number.

2. Configure the JAVA_HOME environment variable.

VMware GemFire 9.10 Documentation

VMware by Broadcom 93

http://www.pivotal.io/security
https://network.tanzu.vmware.com/products/pivotal-gemfire/

If you will be using the gfsh command-line utility or managing servers and locators with the
ServerLauncher and LocatorLauncher APIs, then you must set JAVA_HOME to a JDK
installation. For example: - UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

``` pre

JAVA_HOME=/usr/java/jdk1.8.0_272

export JAVA_HOME

```

Windows

set JAVA_HOME="C:\Program Files\Java\jdk1.8.0_272"

3. This step only applies to environments where you are running GemFire processes or
GemFire client applications outside of gfsh. The gfsh script sets these environment variables
for you. If you are running GemFire processes or applications outside of gfsh, then
configure the following environment variables for GemFire.

Set the GEMFIRE environment variable to point to your GemFire installation top-
level directory. (You should see bin, lib, dtd, and other directories under
GEMFIRE.) The following variables definitions are examples; your installation path
will vary, depending on where you install GemFire and the version (N.N.N) you are
installing.

UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

GEMFIRE=/opt/pivotal/pivotal-gemfire-N.N.N

export GEMFIRE

Windows

set GEMFIRE=C:\pivotal\gemfire\pivotal-gemfire-N.N.N

Configure your GF_JAVA environment variables as shown in these examples.
GF_JAVA must point to the java executable file under your JAVA_HOME. (If you
have not done so already, you should also set your JAVA_HOME variable to a
supported Java installation.)

UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

GF_JAVA=$JAVA_HOME/bin/java

export GF_JAVA

Windows

set GF_JAVA=%JAVA_HOME%\bin\java.exe

4. Add GemFire scripts to your the PATH environment variable. For example:

UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

PATH=$PATH:$JAVA_HOME/bin:/opt/pivotal/pivotal-gemfire-N.N.N/bin

export PATH

VMware GemFire 9.10 Documentation

VMware by Broadcom 94

Windows

set PATH=%PATH%;%JAVA_HOME%\bin;%GEMFIRE%\bin

5. Type gfsh version at the command line and verify that the output lists the version of
VMware Tanzu GemFire that you wish to install. For example:

$ gfsh version

v9.0.0

If you want more detailed version information such as the date of the build, build number
and JDK version being used, type gfsh version --full.

6. Repeat this procedure for every virtual or physical machine on which you will run VMware
Tanzu GemFire.

Obtaining Pivotal GemFire from a Maven Repository
You can use Maven to add Pivotal GemFire to your Java project build.

1. Access to the Pivotal Commercial Maven Repository requires a one-time registration step
to obtain an account. The URL for both registration and subsequent logins after registration
is https://commercial-repo.pivotal.io/login/auth. Click on the Create Account link to
register. You will receive a confirmation email; follow the directions in this email to activate
your account.

2. After account activation, log in at https://commercial-repo.pivotal.io/login/auth to access
the configuration information in the Pivotal GemFire Release Repository.

3. To add GemFire to your Java project, you need to modify your project’s pom.xml file. Add
the following repository definition to your pom.xml file:

 <repository>

 <id>gemfire-release-repo</id>

 <name>Pivotal GemFire Release Repository</name>

 <url>https://commercial-repo.pivotal.io/data3/gemfire-release-repo/gemfi

re</url>

 </repository>

4. Add the following dependencies to your pom.xml file:

<dependencies>

 <dependency>

 <groupId>io.pivotal.gemfire</groupId>

 <artifactId>geode-core</artifactId>

 <version>VERSION-ID</version>

 </dependency>

 <dependency>

 <groupId>io.pivotal.gemfire</groupId>

 <artifactId>geode-wan</artifactId>

 <version>VERSION-ID</version>

 </dependency>

 <dependency>

 <groupId>io.pivotal.gemfire</groupId>

 <artifactId>geode-cq</artifactId>

VMware GemFire 9.10 Documentation

VMware by Broadcom 95

https://commercial-repo.pivotal.io/login/auth
https://commercial-repo.pivotal.io/login/auth

 <version>VERSION-ID</version>

 </dependency>

</dependencies>

where VERSION-ID is the version identifier of GemFire that you wish to install. For
example, 9.0.0.

5. To access these artifacts, you must add an entry to your .m2/settings.xml file:

 <settings>

 <servers>

 <server>

 <id>gemfire-release-repo</id>

 <username>MY-USERNAME@example.com</username>

 <password>MY-DECRYPTED-PASSWORD</password>

 </server>

 </servers>

 </settings>

where you provide the values for MY-USERNAME@example.com and MY-DECRYPTED-PASSWORD. As of
Maven version 2.1.0, encrypted passwords are supported in this settings.xml file. See
https://maven.apache.org/guides/mini/guide-encryption.html for details on the encryption.

Setting Up the CLASSPATH

This topic describes how VMware GemFire processes set their CLASSPATH.

To simplify CLASSPATH environment settings, VMware GemFire has organized all application
libraries required by VMware GemFire processes into *-dependencies.jar files. All dependency
JAR files are located in the path_to_product/lib directory.

When starting a server or locator process using gfsh, application JAR files are automatically loaded
into the process’s CLASSPATH from two directories:

path_to_product/lib/

path_to_product/extensions/

Note: To embed VMware GemFire in your application, add path_to_product/lib/geode-
dependencies.jar to your CLASSPATH.

The following table lists the dependency JAR files associated with various VMware GemFire
processes:

VMware GemFire Process Associated JAR Files

gfsh gfsh-dependencies.jar

server and locator geode-dependencies.jar

Note:

Use this library for all standalone or
embedded VMware GemFire processes
(including Java clients) that host cache
data.

VMware GemFire 9.10 Documentation

VMware by Broadcom 96

https://maven.apache.org/guides/mini/guide-encryption.html

Modifying the CLASSPATH in gfsh-Managed Processes

There are two options for updating the CLASSPATH of VMware GemFire server and locator
processes that are started on the gfsh command line.

Option 1: Specify the --classpath parameter upon process startup. For example, to modify the
CLASSPATH of a locator:

gfsh> start locator --name=locator1 --classpath=/path/to/applications/classes.jar

And to modify the CLASSPATH of a server:

gfsh> start server --name=server1 --classpath=/path/to/applications/classes.jar

Application classes supplied as arguments to the --classpath option are prepended to the server
or locator’s CLASSPATH, beginning in second position. The first entry in the CLASSPATH is
reserved for the core VMware GemFire jar file, for security reasons.

Option 2: Define the CLASSPATH environment variable in your OS environment. Then, specify the
--include-system-classpath parameter upon process startup. For example:

gfsh> start locator --name=locator1 --include-system-classpath=true

The same can also be done for server processes:

gfsh> start server --name=server1 --include-system-classpath=true

This option appends the contents of the system CLASSPATH environment variable to the locator or
server’s CLASSPATH upon startup. Specifying this option without a value sets it to true.

Setting the CLASSPATH for Applications and Standalone
Java Processes

If you are starting a VMware GemFire process programmatically (standalone or embedded), we
recommend that you specify the CLASSPATH upon program execution using the java -classpath
or java -cp command-line option. This method is preferred to setting the CLASSPATH as an
environment variable since it allows you to set the value individually for each application without
affecting other applications and without other applications modifying its value.

For example, to start up a VMware GemFire locator process using the LocatorLauncher API, you
can execute the following on the command line:

prompt# java -cp "path_to_product/lib/geode-dependencies.jar"

org.apache.geode.distributed.LocatorLauncher start locator1

<locator-launcher-options>

To start up a VMware GemFire server process using the ServerLauncher API:

prompt# java -cp "path_to_product/lib/geode-dependencies.jar:/path/to/your/application

s/classes.jar"

org.apache.geode.distributed.ServerLauncher start server1

<server-launcher-options>

VMware GemFire 9.10 Documentation

VMware by Broadcom 97

Note that in addition to the *-dependencies.jar file associated with the process, you must also
specify any custom application JARs that you wish to access in your VMware GemFire process. For
example, if you are planning on using a customized compressor on your regions, you should specify
the application JAR that contains the compressor application you wish to use.

To start up an application with an embedded cache:

java -cp "path_to_product/lib/geode-dependencies.jar:/path/to/your/applications/classe

s.jar"

com.mycompany.package.ApplicationWithEmbeddedCache

Note: Another method for updating the CLASSPATH of a server process with your own
applications is to use the gfsh deploy command. Deploying application JAR files will automatically
update the CLASSPATH of all members that are targeted for deployment. See Deploying
Application JARs to VMware GemFire Members for more details.

For systems running an embedded HTTP or HTTPS service, setting a GEODE_HOME environment
variable with a path to the VMware GemFire installation directory allows a server launcher to find
the WAR file without any changes to the CLASSPATH.

Uninstalling GemFire

This section describes how to remove GemFire from your system.

If you installed Pivotal GemFire from a ZIP file, shut down any running GemFire processes and
then simply delete the product tree to uninstall the product. No additional registry entries or
system modifications are needed.

If the old version of GemFire was installed with an RPM, uninstall using

rpm -e Pivotal_GemFire_XXX

where XXX is replaced by the GemFire version number and also corresponds to the name of the
product installation directory. As an example, the command for removing the GemFire 8.2.5
release would be

rpm -e Pivotal_GemFire_825

If the old version of GemFire was installed with DEBs, uninstall using

dpkg --remove pivotal-gemfire

If you installed Pivotal GemFire by using macOS brew packages, issue the following command:

brew uninstall gemfire

Upgrading VMware GemFire
To upgrade an existing installation to a new version of VMware GemFire, follow these general
steps:

1. Back up your current system.

VMware GemFire 9.10 Documentation

VMware by Broadcom 98

2. Install the new version of the software.

3. Stop your distributed system using the current software.

4. Restart the system using the new software.

In many cases, components running under the current version can be stopped selectively, then
restarted under the new version so that the distributed system as a whole remains functional
during the upgrade process; this is known as a “rolling upgrade.”

In other cases, the entire system must be stopped in order to accomplish the upgrade, as when
upgrading from one major version to another (for example, from GemFire 8.2 to 9.0), which will
require some downtime for your system.

See Planning an Upgrade to choose the upgrade scenario that best suits your implementation and
to understand the resources you will need to accomplish the upgrade. Then select the appropriate
upgrade procedure for more detailed instructions that fit your specific needs.

Upgrade Details

Planning an Upgrade

This section discusses the upgrade paths for various VMware GemFire versions, and it lists
information you need to know before you begin the upgrade process.

Rolling Upgrade

A rolling upgrade allows you to keep your existing distributed system running while you
upgrade your members gradually.

Offline Upgrade

An offline upgrade can handle the widest variety of software versions and cluster
configurations, but requires shutting down the entire system for at least a short time.

Upgrading Clients

Upgrade from Version 8.2 to Version 9

Details on how to upgrade GemFire from version 8.2.3 or a more recent 8.2 version to
version 9.

Multi-site Upgrade from Version 8.2 to Version 9

A special procedure allows some multi-site systems to upgrade to version 9 on a site-by-
site basis, eliminating the need for system-wide down time.

Planning an Upgrade

Before you upgrade your system, back it up. Make backup copies of all existing disk-stores, server-
side code, configuration files, and data across the entire cluster. To get a backup of the data that
includes the most recent changes may require that traffic across the cluster is stopped before the
backup is made. The discussion at Creating Backups for System Recovery and Operational
Management explains the process, and the backup disk-store command reference page describes
how to use the gfsh backup disk-store command to make a backup.

VMware GemFire 9.10 Documentation

VMware by Broadcom 99

Guidelines for Upgrading

Schedule your upgrade during a period of low user activity for your system and network.

Important: After all locators have been upgraded, do not start or restart any processes that
use the older version of the software. The older process will either not be allowed to join
the distributed system or, if allowed to join, can potentially cause a deadlock.

Verify that all members that you wish to upgrade are members of the same distributed
system cluster. A list of cluster members will be output with the gfsh command:

gfsh>list members

Locate a copy of your system’s startup script, if your site has one (most do). The startup
script can be a handy reference for restarting upgraded locators and servers with the same
gfsh command lines that were used in your current installation.

Identify how your current cluster configuration was specified. The way in which your cluster
configuration was created determines which commands you use to save and restore that
cluster configuration during the upgrade procedure. There are two possibilites:

With gfsh commands, relying on the underlying cluster configuration service to
record the configuration: see Exporting and Importing Cluster Configurations.

With XML properties specified through the Java API or configuration files: see
Deploying Configuration Files without the Cluster Configuration Service.

Do not modify region attributes or data, either via gfsh or cache.xml configuration, during
the upgrade process.

Version Compatibilities
Your choice of upgrade procedure depends, in part, on the versions of VMware GemFire involved.

Version Compatibility Between Peers and Cache Servers

For best reliability and performance, all server components of a VMware GemFire system
should run the same version of the software. For the purposes of a rolling upgrade, you can
have peers or cache servers running different minor versions of VMware GemFire at the
same time, as long as the major version is the same. For example, some components can
continue to run under version 9.0 while you are in the process of upgrading to version 9.1.

Version Compatibility Between Clients and Servers

VMware GemFire clients can run version 8.2.3 or a more recent 8.2 version of VMware
GemFire and still connect to VMware GemFire servers running version 9.x. Version 9.x
clients, however, cannot connect to servers running older versions of VMware GemFire.

Version Compatibility Between Sites in Multi-Site (WAN) Deployments

In multi-site (WAN) deployments, one site can be running VMware GemFire 8.2.3 or a
more recent VMware GemFire 8.2 version, and another site can be running VMware
GemFire 9.x. The sites should still be able to communicate with one another.

Upgrade to the Latest Version 9 from an Earlier Version 9

VMware GemFire 9.10 Documentation

VMware by Broadcom 100

If possible, follow the Rolling Upgrade procedure. A multi-site installation can also do rolling
upgrades within each site. If a rolling upgrade is not possible, follow the Off-Line Upgrade
procedure. A rolling upgrade is not possible for a cluster that has partitioned regions without
redundancy. Without the redundancy, region entries will be lost when individual servers are taken
out of the cluster during a rolling upgrade.

Upgrade to Version 9 from Version 8.2.3 or a More Recent
8.2 Version
To upgrade all servers from version 8.2.3 or a more recent version of 8.2 to this version of Pivotal
VMware GemFire 9, follow the Upgrade from Version 8.2 to Version 9 procedure.

Upgrade to Version 9 from Version 8.2.2 or an Earlier
Version

All upgrades to this VMware GemFire version 9 from VMware GemFire versions earlier than
version 8.2.3 follow a two-step process:

1. Upgrade all servers to the most recent version of VMware GemFire version 8.2 (which must
be 8.2.3 or later). If possible, follow the Rolling Upgrade procedure. If a rolling upgrade is
not possible, follow the Off-Line Upgrade procedure.

A rolling upgrade is not possible for a cluster that has partitioned regions without
redundancy. Without the redundancy, region entries will be lost when individual servers are
taken out of the cluster during a rolling upgrade.

2. Upgrade all servers from the most recent version of 8.2 to this version of VMware GemFire
9. Follow the Upgrade from Version 8.2 to Version 9 procedure.

Upgrade a Multi-Site System to Version 9 from Version
8.2.3 or Later

Multi-site systems that have both persistent disk stores and use bidirectional WAN gateways to
replicate data among sites may be able to avoid taking the entire system down to upgrade to
version 9. This Multi-site Upgrade from Version 8.2 to Version 9 procedure requires multiple
reconfigurations during the upgrade as one site at a time is upgraded.

Java Notes

To check your current Java version, type java -version at a command-line prompt.

VMware GemFire 9.x requires Java SE 8, version 92 or a more recent version. VMware
GemFire 8.0 was the last VMware GemFire release to support Java SE 6, and Java SE 7 is
in End-of-Life status.

The VMware GemFire product download does not include Java. You must download and
install a supported JRE or JDK on each system running VMware GemFire. To obtain best
performance with commands such as gfsh status and gfsh stop, install a full JDK (not just
a JRE).

VMware GemFire 9.10 Documentation

VMware by Broadcom 101

Rolling Upgrade

A rolling upgrade eliminates system downtime by keeping your existing distributed system running
while you upgrade one member at a time. Each upgraded member can communicate with other
members that are still running the earlier version of GemFire, so servers can respond to client
requests even as the upgrade is underway. Interdependent data members can be stopped and
started without mutually blocking, a problem that can occur when multiple data members are
stopped at the same time.

Rolling Upgrade Limitations and Requirements

Versions

Rolling upgrade requires that the older and newer versions of VMware GemFire are mutually
compatible, which usually means that they share the same major version number. Therefore, you
can perform a rolling upgrade to upgrade from:

Earlier versions of 9.x up to the most recent version of 9.10.

Earlier versions of 8.x up to the most recent version of 8.2.

See Version Compatibilities for more details on how different versions of GemFire can interoperate.

Components

Rolling upgrades apply to the peer members or cache servers within a distributed system. Under
some circumstances, rolling upgrades can also be applied within individual sites of multi-site (WAN)
deployments.

Redundancy

All partitioned regions in your system must have full redundancy. Check the redundancy state of all
your regions before you begin the rolling upgrade and before stopping any members. See Checking
Redundancy in Partitioned Regions for details.

If a rolling update is not possible for your system, follow the Off-Line Upgrade procedure.

Rolling Upgrade Guidelines

Do not create or destroy regions

When you perform a rolling upgrade, your online cluster will have a mix of members running
different versions of GemFire. During this time period, do not execute region operations such as
region creation or region destruction.

Region rebalancing affects the restart process

If you have startup-recovery-delay deactivated (set to -1) for your partitioned region, you must
perform a rebalance on your region after you restart each member. If rebalance occurs
automatically, as it will if startup-recovery-delay is enabled (set to a value other than -1), make
sure that the rebalance completes before you stop the next server. If you have startup-recovery-
delay enabled and set to a high number, you may need to wait extra time until the region has
recovered redundancy, because rebalance must complete before new servers are restarted. The
partitioned region attribute startup-recovery-delay is described in Configure Member Join
Redundancy Recovery for a Partitioned Region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 102

Checking component versions while upgrading

During a rolling upgrade, you can check the current GemFire version of all members in the cluster
by looking at the server or locator logs.

When an upgraded member reconnects to the distributed system, it logs all the members it can
see as well as the GemFire version of those members. For example, an upgraded locator will now
detect GemFire members running the older version of GemFire (in this case, the version being
upgraded– GFE 9.0.0) :

[info 2013/06/03 10:03:29.206 PDT frodo <vm_1_thr_1_frodo> tid=0x1a] DistributionMana

ger frodo(locator1:21869:locator)<v16>:28242 started on frodo[15001]. There

 were 2 other DMs. others: [frodo(server2:21617)<v4>:14973(version:GFE 9.0.0), fr

odo(server1:21069)<v1>:60929(version:GFE 9.0.0)] (locator)

After some members have been upgraded, non-upgraded members will log the following message
when they receive a new membership view:

Membership: received new view [frodo(locator1:20786)<v0>:32240|4]

 [frodo(locator1:20786)<v0>:32240/51878, frodo(server1:21069)<v1>:60929/46949,

 frodo(server2:21617)<v4>(version:UNKNOWN[ordinal=23]):14973/33919]

Non-upgraded members identify members that have been upgraded to the next version with
version: UNKNOWN.

Cluster configuration affects save and restore

The way in which your cluster configuration was created determines which commands you use to
save and restore that cluster configuration during the upgrade procedure.

If your system was configured with gfsh commands, relying on the underlying cluster
configuration service, the configuration can be saved in one central location, then applied
to all newly-upgraded members. See Exporting and Importing Cluster Configurations.

If your system was configured with XML properties specified through the Java API or
configuration files, you must save the configuration for each member before you bring it
down, then re-import it for that member’s upgraded counterpart. See Deploying
Configuration Files without the Cluster Configuration Service.

Rolling Upgrade Procedure
Begin by installing the new version of the software alongside the older version of the software on
all hosts. You will need both versions of the software during the upgrade procedure. See Installing
Pivotal GemFire.

Upgrade locators first, then data members, then clients.

Upgrade Locators

1. On the machine hosting the first locator you wish to upgrade, open a terminal console.

2. Start a gfsh prompt, using the version from your current GemFire installation, and connect
to the currently running locator. For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 103

gfsh>connect --locator=locator_hostname_or_ip_address[port]

3. Use gfsh commands to characterize your current installation so you can compare your post-
upgrade system to the current one. For example, use the list members command to view
locators and data members:

 Name | Id

-------- | --

locator1 | 172.16.71.1(locator1:26510:locator)<ec><v0>:1024

locator2 | 172.16.71.1(locator2:26511:locator)<ec><v1>:1025

server1 | 172.16.71.1(server1:26514)<v2>:1026

server2 | 172.16.71.1(server2:26518)<v3>:1027

4. Save your cluster configuration.

If you are using the cluster configuration service, use the gfsh export cluster-
configuration command. You only need to do this once, as the newly-upgraded
locator will propagate the configuration to newly-upgraded members as they come
online.

For an XML configuration, save cache.xml, gemfire.properties, and any other
relevant configuration files to a well-known location. You must repeat this step for
each member you upgrade.

5. Stop the locator. For example:

gfsh>stop locator --name=locator1

Stopping Locator running in /Users/username/sandbox/locator on 172.16.71.1[1033

4] as locator...

Process ID: 96686

Log File: /Users/username/sandbox/locator/locator.log

....

No longer connected to 172.16.71.1[1099].

6. Start gfsh from the new GemFire installation. Verify that you are running the newer version
with

gfsh>version

7. Start a locator and import the saved configuration. If you are using the cluster configuration
service, use the same name and directory as the older version you stopped, and the new
locator will access the old locator’s cluster configuration without having to import it in a
separate step:

gfsh>start locator --name=locator1 --enable-cluster-configuration=true --dir=/d

ata/locator1

Otherwise, use the gfsh import cluster-configuration command or explicitly import .xml
and .properties files, as appropriate.

8. The new locator should reconnect to the same members as the older locator. Use list
members to verify:

VMware GemFire 9.10 Documentation

VMware by Broadcom 104

gfsh>list members

 Name | Id

-------- | --

locator1 | 172.16.71.1(locator1:26752:locator)<ec><v17>:1024(version:UNKNOWN[or

dinal=65])

locator2 | 172.16.71.1(locator2:26511:locator)<ec><v1>:1025

server1 | 172.16.71.1(server1:26514)<v2>:1026

server2 | 172.16.71.1(server2:26518)<v3>:1027

9. Upgrade the remaining locators by stopping and restarting them. When you have
completed that step, the system gives a more coherent view of version numbers:

gfsh>list members

 Name | Id

-------- | --

locator1 | 172.16.71.1(locator1:26752:locator)<ec><v17>:1024

locator2 | 172.16.71.1(locator2:26808:locator)<ec><v30>:1025

server1 | 172.16.71.1(server1:26514)<v2>:1026(version:GFE 9.0)

server2 | 172.16.71.1(server2:26518)<v3>:1027(version:GFE 9.0)

The server entries show that the servers are running an older version of gemfire, in this
case (version:GFE 9.0).

Upgrade Servers

After you have upgraded all of the system’s locators, upgrade the servers.

1. Upgrade each server, one at a time, by stopping it and restarting it. Restart the server with
the same command-line options with which it was originally started in the previous
installation. For example:

gfsh>stop server --name=server1

Stopping Cache Server running in /Users/share/server1 on 172.16.71.1[52139] as

server1...

gfsh>start server --name=server1 --use-cluster-configuration=true --server-port

=0 --dir=/data/server1

Starting a Geode Server in /Users/share/server1...

Use the list members command to verify that the server is now running the new version of
GemFire:

gfsh>list members

 Name | Id

-------- | --

locator1 | 172.16.71.1(locator1:26752:locator)<ec><v17>:1024

locator2 | 172.16.71.1(locator2:26808:locator)<ec><v30>:1025

server1 | 172.16.71.1(server1:26835)<v32>:1026

server2 | 172.16.71.1(server2:26518)<v3>:1027(version:GFE 9.0)

2. Restore data to the data member. If automatic rebalancing is enabled (partitioned region
attribute startup-recovery-delay is set to a value other than -1), data restoration will start
automatically. If automatic rebalancing is deactivated (partitioned region attribute startup-
recovery-delay=-1), you must initiate data restoration by issuing the gfsh rebalance
command.

VMware GemFire 9.10 Documentation

VMware by Broadcom 105

Wait until the newly-started server has been restored before upgrading the next server.
You can repeat various gfsh show metrics command with the --member option or the --
region option to verify that the data member is hosting data and that the amount of data it
is hosting has stabilized.

3. Shut down,restart, and rebalance servers until all data members are running the new
version of GemFire.

Upgrade Clients

Upgrade VMware GemFire clients, following the guidelines described in Upgrading Clients.

Offline Upgrade

Use the offline upgrade procedure when you cannot, or choose not to, perform a rolling upgrade.
For example, a rolling upgrade is not possible for a cluster that has partitioned regions without
redundancy. (Without the redundancy, region entries would be lost when individual servers were
taken out of the cluster during a rolling upgrade.)

Offline Upgrade Guidelines

Versions

For best reliability and performance, all server components of a VMware GemFire system should
run the same version of the software. See Version Compatibilities for more details on how different
versions of GemFire can interoperate.

Data member interdependencies

When you restart your upgraded servers, interdependent data members may hang on startup
waiting for each other. In this case, start the servers in separate command shells so they can start
simultaneously and communicate with one another to resolve dependencies.

Offline Upgrade Procedure

1. Stop any connected clients.

2. On a machine hosting a locator, open a terminal console.

3. Start a gfsh prompt, using the version from your current GemFire installation, and connect
to a currently running locator. For example:

gfsh>connect --locator=locator_hostname_or_ip_address[port]

4. Use gfsh commands to characterize your current installation so you can compare your post-
upgrade system to the current one. For example, use the list members command to view
locators and data members:

 Name | Id

-------- | --

locator1 | 172.16.71.1(locator1:26510:locator)<ec><v0>:1024

locator2 | 172.16.71.1(locator2:26511:locator)<ec><v1>:1025

VMware GemFire 9.10 Documentation

VMware by Broadcom 106

server1 | 172.16.71.1(server1:26514)<v2>:1026

server2 | 172.16.71.1(server2:26518)<v3>:1027

5. Save your cluster configuration.

If you are using the cluster configuration service, use the gfsh export cluster-
configuration command. You only need to do this once, as the newly-upgraded
locator will propagate the configuration to newly-upgraded members as they come
online.

For an XML configuration, save cache.xml, gemfire.properties, and any other
relevant configuration files to a well-known location. You must repeat this step for
each member you upgrade.

6. Shut down the entire cluster (by pressing Y at the prompt, this will lose no persisted data):

gfsh>shutdown --include-locators=true

As a lot of data in memory will be lost, including possibly events in queues, d

o you really want to shutdown the entire distributed system? (Y/n): y

Shutdown is triggered

gfsh>

No longer connected to 172.16.71.1[1099].

gfsh>quit

Since GemFire is a Java process, to check before continuing that all GemFire members
successfully stopped, it is useful to use the JDK-included jps command to check running
java processes:

% jps

29664 Jps

7. On each machine in the cluster, install the new version of the software (alongside the older
version of the software). See Installing Pivotal GemFire.

8. Redeploy your environment’s configuration files to the new version installation. If you are
using the cluster configuration service, one copy of the exported .zip configuration file is
sufficient, as the first upgraded locator will propagate it to the other members. For XML
configurations, you should have a copy of the saved configuration files for each data
member.

9. On each machine in the cluster, install any updated server code. Point all client applications
to the new installation of GemFire.

10. Run the new version of gfsh.

11. Start a locator and import the saved configuration. If you are using the cluster configuration
service, use the same name and directory as the older version you stopped, and the new
locator will access the old locator’s cluster configuration without having to import it in a
separate step:

gfsh>start locator --name=locator1 --enable-cluster-configuration=true --dir=/d

ata/locator1

VMware GemFire 9.10 Documentation

VMware by Broadcom 107

Otherwise, use the gfsh import cluster-configuration command or explicitly import .xml
and .properties files, as appropriate.

12. Restart all system data members using the new version of gfsh. Use the same names,
directories, and other properties that were used when starting the system under the
previous version of the software. (Here is where a system startup script comes in handy as a
reference.) Interdependent data members may hang on startup waiting for each other. In
this case, start servers in separate shells so they can communicate with one another to
resolve dependencies.

13. Upgrade VMware GemFire clients, following the guidelines described in Upgrading Clients.

Upgrading Clients

When you upgrade your GemFire server software, you will likely need to update your client
applications in order to maintain compatibility with the upgraded servers. To support real-world
implementations, servers can usually interoperate with a few different versions of the client
software. In general, you will have best performance and reliability if:

All clients run the same version of the client software.

Clients and servers both run the latest versions of their respective software.

GemFire server and native client software releases follow similar numbering schemes, but they are
not released in lockstep. For more detailed information regarding version compatibility, see the
Native Client for VMware GemFire product documentation.

Changes you may need to make when you update, recompile, and link your client code include:

Removing or replacing obsolete identifiers

Renaming packages

Reinstating secure client/server messaging

Remove or Replace Obsolete Identifiers

Review the Release Notes for a list of classes, methods, and other identifiers that are no longer
present in the current release. Update client code so it no longer uses any of these removed
identifiers.

Rename Packages

Pivotal GemFire 9 uses the same packages as open-source Apache Geode. Beginning with Gemfire
version 9.0, com.gemstone.gemfire package names are now org.apache.geode. The server class
path uses geode-dependencies.jar in place of the no-longer-used gemfire.jar and server-
dependencies.jar. If you have written code that explicitly imports gemfire packages, you must
change those references to use the geode names and recompile.

For C++ clients, update the namespace to use apache::geode::client in place of gemfire.

For .NET clients, use Apache.Geode.Client in place of Gemstone.GemFire.Cache.Generic.

The Pivotal GemFire 9.x release is backwards compatible with Pivotal GemFire 8.2.3 and more
recent 8.2 clients, so a version 9 server will understand calls from an 8.2.3 client that uses the old

VMware GemFire 9.10 Documentation

VMware by Broadcom 108

https://docs.vmware.com/en/Native-Client-for-VMware-GemFire/index.html

com.gemstone.gemfire package names. There is one exception: Pivotal GemFire 8.x clients that run
functions on servers using the Execution interface’s execute(Function function) signature cannot
work with GemFire 9.x servers. Clients that run server-side functions with this signature must be
reimplemented as 9.x clients that use the 9.x package names.

Reinstate Secure Client/Server Messaging After Upgrading

When servers are upgraded to GemFire v9.1.1 or later from an earlier release, their authentication
of client messages is deactivated to facilitate rolling upgrades. If your clients are configured to send
authenticated messages, the servers will honor those messages but will not enforce authentication
until you reinstate authentication on each of the upgraded servers. To reinstate secure
client/server messaging, restart each server with the geode.disallow-internal-messages-without-
credentials system property set to true. For example:

gfsh>start server --name=server_name --dir=server_config_dir \

--J=-Dgeode.disallow-internal-messages-without-credentials=true

Upgrade from Version 8.2 to Version 9

This is the upgrade procedure to a GemFire 9 version from Pivotal GemFire 8.2.3 or a more recent
release of Pivotal GemFire 8.2.

General Upgrade Steps

These steps identify the ordering of an upgrade. A more detailed procedure is given below.

1. Implement package renaming for server-side callbacks in a test environment. The server
class path uses geode-dependencies.jar in place of the no longer used gemfire.jar and
server-dependencies.jar. Change your server-side callbacks and functions to use
org.apache.geode packages instead of com.gemstone.gemfire packages. Also implement
package renaming for any client applications that are to be upgraded to a Pivotal GemFire 9
version.

2. Make backups, so you can restore your GemFire version 8 cluster if the upgrade does not
complete to your satisfaction.

Back up all existing disk-stores and data.

Back up all configuration files including gemfire.properties and .xml configurations.

3. Check system requirements and make changes where applicable.

4. Shut down the cluster.

5. Upgrade the Java JDK to v1.8.0_92 or later, if necessary.

6. Install the new version of GemFire, and update environment variables to point to the new
installation.

7. Install revised server-side callbacks and any upgraded clients.

8. Start the cluster using the new GemFire version 9 installation.

9. Test the new installation to assure that the cluster has been properly redeployed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 109

10. Redeploy client applications.

11. Test client applications for proper functionality.

12. Remove the old distribution to prevent inadvertent version conflicts.

Java Notes

The Pivotal GemFire product download does not include Java. You must download and
install a supported JRE or JDK on each system running GemFire. GemFire recommends the
installation of a full JDK (and not just a JRE) to obtain better performance with gfsh status
and gfsh stop commands.

To check your current Java version, type java -version at a command-line prompt.

Pivotal GemFire 9.x requires Java SE 8, version 92 or a more recent version. Pivotal
GemFire 8.0 was the last GemFire release to support Java SE 6, and Java SE 7 is in End-of-
Life status.

RHEL/Centos: with previous installation via RPM

RPMs existed for GemFire 8.x, but they are not available for GemFire 9.x. To install on a
RHEL/Centos system, follow these upgrade procedure instructions, with a modified final step of
uninstalling the GemFire 8.x version using rpm -e.

Ubuntu: with previous installation via Debian packaging

DEBs existed for GemFire 8.x, but they are not available for GemFire 9.x. To install on an Ubuntu
system, follow the upgrade procedure instructions, with a modified final step of uninstalling the
GemFire 8.x version using dpkg --remove or dpkg --purge.

Package Renaming

Pivotal GemFire 9.x uses the same packages as open-source Apache Geode. Pivotal GemFire 8.x
did not use the Apache Geode package naming. All com.gemstone.gemfire package names are now
org.apache.geode. If you have written code that explicitly imports gemfire packages, you must
change those references to use the geode names. This applies to all server side code. Search and
replace com.gemstone.gemfire with org.apache.geode.

The Pivotal GemFire 9.x release is backwards compatible with Pivotal GemFire 8.2.3 and more
recent 8.2 clients, so a version 9 server will understand calls from an 8.2.3 client that uses the old
com.gemstone.gemfire package names. Pivotal GemFire 9.x peers and servers are not compatible
with Pivotal GemFire 8.2.3 peers or servers.

Pivotal GemFire 8.2.3 and more recent version 8.2 clients that run functions on servers using the
Execution interface’s execute(Function function) signature can not work with 9.x servers. The
clients that run functions with this signature must be reimplemented as 9.x clients which use the
9.x package names.

Any backups or exports using data from a version prior to 8.2.3 cannot be used to restore that
backup, or import that data, into any GemFire version 9.x or later cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 110

The Upgrade Procedure, Step by Step

Follow these steps to upgrade to Pivotal GemFire 9.x on Linux, Unix, or Windows.

1. Implement package renaming for server-side callbacks in a test environment. The server
class path uses geode-dependencies.jar in place of the no longer used gemfire.jar and
server-dependencies.jar. Change your server-side callbacks and functions to use
org.apache.geode packages instead of com.gemstone.gemfire packages. Also implement
package renaming for any client applications that are to be upgraded to a Pivotal GemFire 9
version.

2. Make backup copies of all existing disk-stores, server-side code, configuration files, and data
across the entire cluster. To get a backup of the data that includes the most recent changes
may require that traffic across the cluster is stopped before the backup is made.

3. Shut down the cluster running with the prior version. Open a gfsh prompt:

% gfsh

Connect to the locator:

gfsh>connect --locator=localhost[10334]

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=192.0.2.0, port=1099] ..

Successfully connected to: [host=192.0.2.0, port=1099]

gfsh>list members

 Name | Id

------- | ---

server2 | 192.0.2.0(server2:29368)<v2>:35840

locator | 192.0.2.0(locator:29181:locator):36278

server1 | 192.0.2.0(server1:29285)<v1>:40574

Shut down the entire cluster (by pressing Y at the prompt, this will lose no persisted data):

gfsh>shutdown --include-locators=true

As a lot of data in memory will be lost, including possibly events in queues, do you really want to
shutdown the entire distributed system? (Y/n): Y succeeded in shutting down ```

Since GemFire is a Java process,

to check before continuing that all GemFire members successfully stopped, it is useful to use the
JDK-included jps command to check running java processes:

``` pre

% jps

29664 Jps

```

1. On each machine in the cluster, upgrade Java, if needed.

2. On the machine hosting the locator you wish to upgrade, install the new version of the
software (alongside the older version of the software). See Installing Pivotal GemFire.

VMware GemFire 9.10 Documentation

VMware by Broadcom 111

3. On each machine in the cluster, install the new version of the software (alongside the older
version of the software). See Installing Pivotal GemFire.

To check that the system finds the new installation, open a gfsh prompt and check the
GemFire version:

% gfsh --version

v9.0.0

4. On each machine in the cluster, redeploy your environment’s configuration files to the new
version installation.

5. Restart all system members according to your usual procedures.

6. Upgrade VMware GemFire clients. See Upgrading Clients for details.

7. Once all systems are functioning normally and all tests are successful, remove the old
version of GemFire from each machine in the cluster, to reduce possibility of version
complications in the future. See Uninstalling GemFire for instructions.

Multi-site Upgrade from Version 8.2 to Version 9

Systems that have both persistent disk stores and a bidirectional WAN gateway to replicate data
among sites can implement an upgrade that does not require system down time. It requires
multiple reconfigurations during the process, so that each site can be individually upgraded while
the rest of the system continues.

This procedure will not work reliably for you if any of your WAN-connected systems includes clients
that use continuous queries or subscriptions. In those cases, upgrade each system separately using
the procedure described in Upgrade from Version 8.2 to Version 9.

This procedure assumes that each site has already been upgraded to Pivotal GemFire version 8.2.3
or a more recent 8.2 version.

This diagram shows the initial state of the system.

The procedure for upgrading two sites, Site A and Site B:

1. Reconfigure to redirect all traffic away from Site B (which will be the first site that gets
upgraded).

VMware GemFire 9.10 Documentation

VMware by Broadcom 112

2. Pause the gateway senders on Site A.

3. Upgrade Site B to GemFire 9.x.

4. Start GemFire 9.x on Site B.

VMware GemFire 9.10 Documentation

VMware by Broadcom 113

5. Pause the gateway senders on Site B.

6. Start the gateway senders on Site A and wait for Site A’s queues to drain.

7. Once the queues have drained sufficiently, reconfigure to redirect all traffic to Site B. Site
A’s queues should now drain the rest of the way.

8. Upgrade Site A to GemFire 9.x.

9. Once Site A is back up, start Site B’s gateway senders and wait for the queues to drain
sufficiently.

VMware GemFire 9.10 Documentation

VMware by Broadcom 114

10. Reconfigure to redistribute the load across both Site A and Site B.

Pivotal GemFire in 15 Minutes or Less

Need a quick introduction to Pivotal GemFire? Take this brief tour to try out basic features and
functionality.

Step 1. Install Pivotal GemFire

See Installing Pivotal GemFire for instructions.

Step 2. Use gfsh to start a locator

In a terminal window, use the gfsh command line interface to start up a locator. gfsh (pronounced
“jee-fish”) provides a single, intuitive command-line interface from which you can launch, manage,
and monitor Pivotal GemFire processes, data, and applications. See gfsh.

The locator is a GemFire process that tells new, connecting members where running members are
located and provides load balancing for server use. A locator, by default, starts up a JMX Manager,
which is used for monitoring and managing a GemFire cluster. The cluster configuration service
uses locators to persist and distribute cluster configurations to cluster members. See Running
GemFire Locator Processes and Overview of the Cluster Configuration Service.

1. Create a scratch working directory (for example, my_gemfire) and change directories into it.
gfsh saves locator and server working directories and log files in this location.

2. Start gfsh by typing gfsh at the command line (or gfsh.bat if you are using Windows).

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/

VMware GemFire 9.10 Documentation

VMware by Broadcom 115

Monitor and Manage GemFire

gfsh>

3. At the gfsh prompt, type the start locator command and specify a name for the locator:

gfsh>start locator --name=locator1

Starting a GemFire Locator in /home/username/my_gemfire/locator1...

.................................

Locator in /home/username/my_gemfire/locator1 on ubuntu.local[10334] as locator

1 is currently online.

Process ID: 3529

Uptime: 18 seconds

GemFire Version: 9.0.0

Java Version: 1.8.0_272

Log File: /home/username/my_gemfire/locator1/locator1.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-clust

er-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /home/username/pivotal_gemfire-9.0.0/lib/geode-dependencies.jar

Successfully connected to: [host=ubuntu.local, port=1099]

Cluster configuration service is up and running.

Step 3. Start GemFire Pulse

Start up the browser-based GemFire Pulse monitoring tool. GemFire Pulse is a Web Application
that provides a graphical dashboard for monitoring vital, real-time health and performance of
GemFire clusters, members, and regions. See GemFire Pulse.

gfsh>start pulse

Launched GemFire Pulse

>This command launches Pulse and automatically connects you to the JMX Manager running in the
Locator. At the Pulse login screen, type in the default username admin and password admin.

The Pulse application now displays the locator you just started (locator1):

VMware GemFire 9.10 Documentation

VMware by Broadcom 116

Step 4. Start a server
A GemFire server is a Pivotal GemFire process that runs as a long-lived, configurable member of a
cluster (also called a distributed system). The GemFire server is used primarily for hosting long-lived
data regions and for running standard GemFire processes such as the server in a client/server
configuration. See Running GemFire Server Processes.

Start the cache server:

gfsh>start server --name=server1 --server-port=40411

This commands starts a cache server named “server1” on the specified port of 40411.

Observe the changes (new member and server) in Pulse. Try expanding the distributed system icon
to see the locator and cache server graphically.

Step 5. Create a replicated, persistent region

In this step you create a region with the gfsh command line utility. Regions are the core building
blocks of the GemFire cluster and provide the means for organizing your data. The region you
create for this exercise employs replication to replicate data across members of the cluster and
utilizes persistence to save the data to disk. See Data Regions.

1. Create a replicated, persistent region:

gfsh>create region --name=regionA --type=REPLICATE_PERSISTENT

Member | Status

VMware GemFire 9.10 Documentation

VMware by Broadcom 117

------- | --------------------------------------

server1 | Region "/regionA" created on "server1"

Note that the region is hosted on server1.

2. Use the gfsh command line to view a list of the regions in the cluster.

gfsh>list regions

List of regions

regionA

3. List the members of your cluster. The locator and cache server you started appear in the
list:

gfsh>list members

 Name | Id

-------- | ---------------------------------------

locator1 | 192.0.2.0(locator1:3529:locator)<v0>:59926

server1 | 192.0.2.0(server1:3883)<v1>:65390

4. To view specifics about a region, type the following:

gfsh>describe region --name=regionA

..

Name : regionA

Data Policy : persistent replicate

Hosting Members : server1

Non-Default Attributes Shared By Hosting Members

 Type | Name | Value

------ | ---- | -----

Region | size | 0

5. In Pulse, click the green cluster icon to see all the new members and new regions that you
just added to your cluster.

Note: Keep this gfsh prompt open for the next steps.

Step 6. Manipulate data in the region and demonstrate
persistence
Pivotal GemFire manages data as key/value pairs. In most applications, a Java program adds,
deletes and modifies stored data. You can also use gfsh commands to add and retrieve data. See
Basic GemFire gfsh Commands.

1. Run the following put commands to add some data to the region:

gfsh>put --region=regionA --key="1" --value="one"

Result : true

Key Class : java.lang.String

Key : 1

Value Class : java.lang.String

Old Value : <NULL>

VMware GemFire 9.10 Documentation

VMware by Broadcom 118

gfsh>put --region=regionA --key="2" --value="two"

Result : true

Key Class : java.lang.String

Key : 2

Value Class : java.lang.String

Old Value : <NULL>

2. Run the following command to retrieve data from the region:

gfsh>query --query="select * from /regionA"

Result : true

startCount : 0

endCount : 20

Rows : 2

Result

two

one

Note that the result displays the values for the two data entries you created with the put
commands.

See Data Entries.

3. Stop the cache server using the following command:

gfsh>stop server --name=server1

Stopping Cache Server running in /home/username/my_gemfire/server1 on ubuntu.lo

cal[40411] as server1...

Process ID: 3883

Log File: /home/username/my_gemfire/server1/server1.log

....

4. Restart the cache server using the following command:

gfsh>start server --name=server1 --server-port=40411

5. Run the following command to retrieve data from the region again – notice that the data is
still available:

gfsh>query --query="select * from /regionA"

Result : true

startCount : 0

endCount : 20

Rows : 2

Result

two

one

VMware GemFire 9.10 Documentation

VMware by Broadcom 119

Because regionA uses persistence, it writes a copy of the data to disk. When a server
hosting regionA starts, the data is populated into the cache. Note that the result displays
the values for the two data entries you created with the put commands prior to stopping
the server.

See Data Entries.

See Data Regions.

Step 7. Examine the effects of replication

In this step, you start a second cache server. Because regionA is replicated, the data will be
available on any server hosting the region.

1. Start a second cache server:

gfsh>start server --name=server2 --server-port=40412

2. Run the describe region command to view information about regionA:

gfsh>describe region --name=regionA

..

Name : regionA

Data Policy : persistent replicate

Hosting Members : server1

 server2

Non-Default Attributes Shared By Hosting Members

 Type | Name | Value

------ | ---- | -----

Region | size | 2

Note that you do not need to create regionA again for server2. The output of the
command shows that regionA is hosted on both server1 and server2. When gfsh starts a
server, it requests the configuration from the cluster configuration service which then
distributes the shared configuration to any new servers joining the cluster.

3. Add a third data entry:

gfsh>put --region=regionA --key="3" --value="three"

Result : true

Key Class : java.lang.String

Key : 3

Value Class : java.lang.String

Old Value : <NULL>

4. Open the Pulse application (in a Web browser) and observe the cluster topology. You
should see a locator with two attached servers. Click the Data tab to view information
about regionA.

5. Stop the first cache server with the following command:

gfsh>stop server --name=server1

Stopping Cache Server running in /home/username/my_gemfire/server1 on ubuntu.lo

VMware GemFire 9.10 Documentation

VMware by Broadcom 120

cal[40411] as server1...

Process ID: 4064

Log File: /home/username/my_gemfire/server1/server1.log

....

6. Retrieve data from the remaining cache server.

gfsh>query --query="select * from /regionA"

Result : true

startCount : 0

endCount : 20

Rows : 3

Result

two

one

three

Note that the data contains 3 entries, including the entry you just added.

7. Add a fourth data entry:

gfsh>put --region=regionA --key="4" --value="four"

Result : true

Key Class : java.lang.String

Key : 3

Value Class : java.lang.String

Old Value : <NULL>

Note that only server2 is running. Because the data is replicated and persisted, all of the
data is still available. But the new data entry is currently only available on server 2.

gfsh>describe region --name=regionA

..

Name : regionA

Data Policy : persistent replicate

Hosting Members : server2

Non-Default Attributes Shared By Hosting Members

 Type | Name | Value

------ | ---- | -----

Region | size | 4

8. Stop the remaining cache server:

gfsh>stop server --name=server2

Stopping Cache Server running in /home/username/my_gemfire/server2 on ubuntu.lo

cal[40412] as server2...

Process ID: 4185

Log File: /home/username/my_gemfire/server2/server2.log

.....

Step 8. Restart the cache servers in parallel

VMware GemFire 9.10 Documentation

VMware by Broadcom 121

In this step you restart the cache servers in parallel. Because the data is persisted, the data is
available when the servers restart. Because the data is replicated, you must start the servers in
parallel so that they can synchronize their data before starting.

1. Start server1. Because regionA is replicated and persistent, it needs data from the other
server to start and waits for the server to start:

gfsh>start server --name=server1 --server-port=40411

Starting a GemFire Server in /home/username/my_gemfire/server1...

..

..

Note that if you look in the server1.log file for the restarted server, you will see a log
message similar to the following:

[info 2015/01/14 09:08:13.610 PST server1 <main> tid=0x1] Region /regionA has p

ot

entially stale data. It is waiting for another member to recover the latest dat

a.

 My persistent id:

 DiskStore ID: 8e2d99a9-4725-47e6-800d-28a26e1d59b1

 Name: server1

 Location: /192.0.2.0:/home/username/my_gemfire/server1/.

 Members with potentially new data:

 [

 DiskStore ID: 2e91b003-8954-43f9-8ba9-3c5b0cdd4dfa

 Name: server2

 Location: /192.0.2.0:/home/username/my_gemfire/server2/.

]

 Use the "gemfire list-missing-disk-stores" command to see all disk stores tha

t

are being waited on by other members.

2. In a second terminal window, change directories to the scratch working directory (for
example, my_gemfire) and start gfsh:

[username@localhost ~/my_gemfire]$ gfsh

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/

Monitor and Manage GemFire

3. Run the following command to connect to the cluster:

gfsh>connect --locator=localhost[10334]

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=ubuntu.local, port=1099] ..

Successfully connected to: [host=ubuntu.local, port=1099]

4. Start server2:

VMware GemFire 9.10 Documentation

VMware by Broadcom 122

gfsh>start server --name=server2 --server-port=40412

When server2 starts, note that server1 completes its start up in the first gfsh window:

Server in /home/username/my_gemfire/server1 on ubuntu.local[40411] as server1 i

s currently online.

Process ID: 3402

Uptime: 1 minute 46 seconds

GemFire Version: 9.0.0

Java Version: 1.8.0_272

Log File: /home/username/my_gemfire/server1/server1.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334] -Dgemfire.use-cluste

r-configuration=true

-XX:OnOutOfMemoryError=kill -KILL %p -Dgemfire.launcher.registerSignalHandlers=

true

-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /home/username/pivotal_gemfire-9.0.0/lib/geode-dependencies.jar

5. Verify that the locator and two servers are running:

gfsh>list members

 Name | Id

-------- | ---------------------------------------

server2 | ubuntu(server2:3992)<v8>:21507

server1 | ubuntu(server1:3402)<v7>:36532

locator1 | ubuntu(locator1:2813:locator)<v0>:46644

6. Run a query to verify that all the data you entered with the put commands is available:

gfsh>query --query="select * from /regionA"

Result : true

startCount : 0

endCount : 20

Rows : 5

Result

one

two

four

Three

NEXT_STEP_NAME : END

7. Stop server2 with the following command:

gfsh>stop server --dir=server2

Stopping Cache Server running in /home/username/my_gemfire/server2 on 192.0.2.0

[40412] as server2...

Process ID: 3992

Log File: /home/username/my_gemfire/server2/server2.log

....

8. Run a query to verify that all the data you entered with the put commands is still available:

VMware GemFire 9.10 Documentation

VMware by Broadcom 123

gfsh>query --query="select * from /regionA"

Result : true

startCount : 0

endCount : 20

Rows : 5

Result

one

two

four

Three

NEXT_STEP_NAME : END

Step 9. Shut down the system including your locators

To shut down your cluster, do the following:

1. In the current gfsh session, stop the cluster:

gfsh>shutdown --include-locators=true

See the shutdown manual page.

2. When prompted, type ‘Y’ to confirm the shutdown of the cluster.

As a lot of data in memory will be lost, including possibly events in queues,

do you really want to shutdown the entire distributed system? (Y/n): Y

Shutdown is triggered

gfsh>

No longer connected to ubuntu.local[1099].

gfsh>

3. Type exit to quit the gfsh shell.

Step 10. What to do next…
Here are some suggestions on what to explore next with Pivotal GemFire:

Continue reading the next section to learn more about the components and concepts that
were just introduced.

To get more practice using gfsh, see Tutorial—Performing Common Tasks with gfsh.

To learn about the cluster configuration service, see Tutorial—Creating and Using a Cluster
Configuration.

VMware GemFire 9.10 Documentation

VMware by Broadcom 124

Configuring and Running a Cluster

Use the gfsh command-line utility to configure your VMware GemFire cluster. The cluster
configuration service persists the cluster configurations and distributes the configurations to
members of the cluster. There are also several additional ways to configure a cluster.

Use gfsh to configure regions, disk stores, members, and other VMware GemFire objects. You can
also use gfsh to start and stop locators, servers, and VMware GemFire monitoring tools. As you
execute these commands, the cluster configuration service persists the configuration. When new
members join the cluster, the service distributes the configuration to the new members.

gfsh is the recommended means of configuring and managing your VMware GemFire cluster,
however you can still configure many aspects of a cluster using the older methods of the cache.xml
and gemfire.properties files. See cache.xml and the Reference for configuration parameters. You
can also configure some aspects of a cluster using a Java API. See Managing VMware GemFire.

Overview of the Cluster Configuration Service

The VMware GemFire cluster configuration service persists cluster configurations created
by gfsh commands to the locators in a cluster and distributes the configurations to
members of the cluster.

Tutorial—Creating and Using a Cluster Configuration

A short walk-through that uses a single computer to demonstrate how to use gfsh to
create a cluster configuration for a VMware GemFire cluster.

Deploying Application JARs to VMware GemFire Members

You can dynamically deploy your application JAR files to specific members or to all
members in your cluster. VMware GemFire automatically keeps track of JAR file versions;
autoloads the deployed JAR files to the CLASSPATH; and auto-registers any functions that
the JAR contains.

Using Member Groups

VMware GemFire allows you to organize your cluster members into logical member groups.

Exporting and Importing Cluster Configurations

The cluster configuration service exports and imports configurations created using gfsh for
an entire VMware GemFire cluster.

Cluster Configuration Files and Troubleshooting

When you use the cluster configuration service in VMware GemFire, you can examine the
generated configuration files in the cluster_config directory on the locator. gfsh saves
configuration files at the cluster-level and at the individual group-level.

Using gfsh to Manage a Remote Cluster Over HTTP or HTTPS

VMware GemFire 9.10 Documentation

VMware by Broadcom 125

You can connect gfsh via HTTP or HTTPS to a remote cluster and manage the cluster using
gfsh commands.

Deploying Configuration Files without the Cluster Configuration Service

You can deploy your VMware GemFire configuration files in your system directory structure
or in jar files. You determine how you want to deploy your configuration files and set them
up accordingly.

Starting Up and Shutting Down Your System

Determine the proper startup and shutdown procedures, and write your startup and
shutdown scripts.

Running VMware GemFire Locator Processes

The locator is a VMware GemFire process that tells new, connecting members where
running members are located and provides load balancing for server use.

Running VMware GemFire Server Processes

A VMware GemFire server is a process that runs as a long-lived, configurable member of a
client/server system.

Managing System Output Files

VMware GemFire output files are optional and can become quite large. Work with your
system administrator to determine where to place them to avoid interfering with other
system activities.

Firewall Considerations

You can configure and limit port usage for situations that involve firewalls, for example,
between client-server or server-server connections.

Overview of the Cluster Configuration Service

The VMware GemFire cluster configuration service persists cluster configurations created by gfsh
commands to the locators in a cluster and distributes the configurations to members of the cluster.

Why Use the Cluster Configuration Service

We highly recommend that you use the gfsh command line and the cluster configuration service as
the primary mechanism to manage your cluster configuration. Specify configuration within a
cache.xml file for only those items that cannot be specified or altered using gfsh. Using a common
cluster configuration reduces the amount of time you spend configuring individual members and
enforces consistent configurations when bringing up new members in your cluster. You no longer
need to reconfigure each new member that you add to the cluster. You no longer need to worry
about validating your cache.xml file. It also becomes easier to propagate configuration changes
across your cluster and deploy your configuration changes to different environments.

You can use the cluster configuration service to:

Save the configuration for an entire VMware GemFire cluster.

Restart members using a previously-saved configuration.

VMware GemFire 9.10 Documentation

VMware by Broadcom 126

Export a configuration from a development environment and migrate that configuration to
create a testing or production system.

Start additional servers without having to configure each server separately.

Configure some servers to host certain regions and other servers to host different regions,
and configure all servers to host a set of common regions.

Using the Cluster Configuration Service

To use the cluster configuration service in VMware GemFire, you must use dedicated, standalone
locators in your deployment. You cannot use the cluster configuration service with co-located
locators (locators running in another process such as a server) or in multicast environments.

The standalone locators distribute configuration to all locators in a cluster. Every locator in the
cluster with --enable-cluster-configuration set to true keeps a record of all cluster-level and
group-level configuration settings.

Note: The default behavior for gfsh is to create and save cluster configurations. You can deactivate
the cluster configuration service by using the --enable-cluster-configuration=false option when
starting locators.

You can load existing configuration into the cluster by using the gfsh import cluster-
configuration command after starting up a locator.

Subsequently, any servers that you start with gfsh that have --use-cluster-configuration set to
true will pick up the cluster configuration from the locator as well as any appropriate group-level
configurations (for member groups they belong to). To deactivate the cluster configuration service
on a server, you must start the server with the --use-cluster-configuration parameter set to
false. By default, the parameter is set to true.

How the Cluster Configuration Service Works

When you use gfsh commands to create VMware GemFire regions, disk-stores, and other objects,
the cluster configuration service saves the configurations on each locator in the cluster. If you
specify a group when issuing these commands, a separate configuration is saved containing only
configurations that apply to the group.

When you use gfsh to start new VMware GemFire servers, the locator distributes the persisted
configurations to the new server. If you specify a group when starting the server, the server
receives the group-level configuration in addition to the cluster-level configuration. Group-level
configurations are applied after cluster-wide configurations; therefore you can use group-level to
override cluster-level settings.

VMware GemFire 9.10 Documentation

VMware by Broadcom 127

Locator(s)

server3

4. New members request

the configuration from a

locator.

5. Locator distributes the configuration

(including regions, disk-stores, jar files) to

new servers joining the cluster.

server2

st ar t loc at or

start server1

c reate d isk-store

create index

create region

deploy

. . .

1. Developer/Administrator

executes gfsh commands

to configure the cluster.

start server --name=server2

start server --name=server3

start server --name=server4

3. Developer/Administrator

executes gfsh commands to

add new members to the cluster.

server4

server1

2. gfsh saves the cluster

configuration on the

locator(s). Existing server(s)

using cluster configuration

service are configured.

1. Developer or Administrator executes gfsh commands to configure the cluster.

2. gfsh saves the cluster information on the locators. Existing servers using cluster
configuration are configured.

3. Developer or Administrator executes gfsh to add new members to the cluster.

4. New members request the configuration from a locator.

5. Locator distributes the configuration to new servers joining the cluster. Configuration
includes regions, disk stores, and jar files,

gfsh Commands that Create Cluster Configurations
The following gfsh commands cause the configuration to be written to all locators in the cluster
(the locators write the configuration to disk):

configure pdx*

VMware GemFire 9.10 Documentation

VMware by Broadcom 128

create region

alter region

alter runtime

destroy region

create index

destroy index

create disk-store

destroy disk-store

create async-event-queue

alter async-event-queue

destroy async-event-queue

deploy jar

undeploy jar

create gateway-sender

destroy gateway-sender

create gateway-receiver

destroy gateway-receiver

alter query-service

* Note that the configure pdx command must be executed before starting your data members.
This command does not affect any currently running members in the system. Data members (with
cluster configuration enabled) that are started after running this command will pick up the new PDX
configuration.

gfsh Limitations

These are the configurations that you cannot create or alter using gfsh. These configurations must
be within a cache.xml file or be applied by using the API:

Client cache configuration

You cannot directly modify the attributes of the following objects:

function

custom-load-probe

compressor

serializer

instantiator

pdx-serializer

Note: The configure pdx command always specifies the
org.apache.geode.pdx.ReflectionBasedAutoSerializer class. You cannot specify a

VMware GemFire 9.10 Documentation

VMware by Broadcom 129

custom PDX serializer in gfsh.

initializer

lru-heap-percentage

lru-memory-size

partition-resolver

partition-listener

transaction-listener

transaction-writer

Adding or removing a TransactionListener

Configuring a GatewayConflictResolver

You cannot specify parameters and values for Java classes for the following:

gateway-listener

gateway-conflict-resolver

gateway-event-filter

gateway-transport-filter

gateway-event-substitution-filter

Deactivating the Cluster Configuration Service

If you do not want to use the cluster configuration service, start up your locator with the --enable-
cluster-configuration parameter set to false or do not use standalone locators. You will then
need to configure the cache (via cache.xml or API) separately on all your cluster members.

Tutorial—Creating and Using a Cluster Configuration

A short walk-through that uses a single computer to demonstrate how to use gfsh to create a
cluster configuration for a VMware GemFire cluster.

The gfsh command-line tool allows you to configure and start a VMware GemFire cluster. The
cluster configuration service uses VMware GemFire locators to store the configuration at the group
and cluster levels and serves these configurations to new members as they are started. The
locators store the configurations in a hidden region that is available to all locators and also write the
configuration data to disk as XML files. Configuration data is updated as gfsh commands are
executed.

This section provides a walk-through example of configuring a simple VMware GemFire cluster and
then re-using that configuration in a new context.

1. Create a working directory (For example:/home/username/my_geode) and switch to the new
directory. This directory will contain the configurations for your cluster.

2. Start the gfsh command-line tool. For example:

$ gfsh

VMware GemFire 9.10 Documentation

VMware by Broadcom 130

The gfsh command prompt displays.

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/ 9.10

Monitor and Manage VMware GemFire

gfsh>

3. Start a locator using the command in the following example:

gfsh>start locator --name=locator1

Starting a VMware GemFire Locator in /Users/username/my_geode/locator1...

.............................

Locator in /Users/username/my_geode/locator1 on 192.0.2.0[10334] as locator1

 is currently online.

Process ID: 70919

Uptime: 12 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/my_geode/locator1/locator1.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true

-Dgemfire.load-cluster-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

Cluster configuration service is up and running.

Note that gfsh responds with a message indicating that the cluster configuration service is
up and running. If you see a message indicating a problem, review the locator log file for
possible errors. The path to the log file is displayed in the output from gfsh.

4. Start VMware GemFire servers using the commands in the following example:

gfsh>start server --name=server1 --groups=group1

Starting a VMware GemFire Server in /Users/username/my_geode/server1...

.....

Server in /Users/username/my_geode/server1 on 192.0.2.0[40404] as server1

 is currently online.

Process ID: 5627

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/my_geode/server1/server1.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334] -Dgemfire.groups=gro

up1

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

gfsh>start server --name=server2 --groups=group1 --server-port=40405

VMware GemFire 9.10 Documentation

VMware by Broadcom 131

Starting a VMware GemFire Server in /Users/username/my_geode/server2...

.....

Server in /Users/username/my_geode/server2 on 192.0.2.0[40405] as server2

 is currently online.

Process ID: 5634

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/my_geode/server2/server2.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334] -Dgemfire.groups=gro

up1

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

gfsh>start server --name=server3 --server-port=40406

Starting a VMware GemFire Server in /Users/username/my_geode/server3...

.....

Server in /Users/username/my_geode/server3 on 192.0.2.0[40406] as server3

 is currently online.

Process ID: 5637

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/my_geode/server3/server3.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334]

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

Note that the gfsh commands you used to start server1 and server2 specify a group
named group1 while the command for server3 did not specify a group name.

5. Create some regions using the commands in the following example:

gfsh>create region --name=region1 --groups=group1 --type=REPLICATE

Member | Status | Message

------- | ------ | --------------------------------------

server1 | OK | Region "/region1" created on "server1"

server2 | OK | Region "/region1" created on "server2"

Cluster configuration for group 'group1' is updated.

gfsh>create region --name=region2 --type=REPLICATE

Member | Status | Message

------- | ------ | --------------------------------------

server1 | OK | Region "/region2" created on "server1"

server2 | OK | Region "/region2" created on "server2"

server3 | OK | Region "/region2" created on "server3"

Cluster configuration for group 'cluster' is updated.

VMware GemFire 9.10 Documentation

VMware by Broadcom 132

Note that region1 is created on all cache servers that specified the group named group1
when starting the cache server (server1 and server2, in this example). region2 is created
on all members because no group was specified.

6. Deploy jar files. Use the gfsh deploy command to deploy application jar files to all members
or to a specified group of members. The following example deploys the mx4j-3.0.2.jar and
ra.jar files from the distribution. (Note: This is only an example, you do not need to deploy
these files to use the Cluster Configuration Service. Alternately, you can use any two jar
files for this demonstration.)

gfsh>deploy --groups=group1 --jars=/lib/mx4j-3.0.2.jar

Deploying files: mx4j-3.0.2.jar

Total file size is: 0.39MB

Continue? (Y/n): y

Member | Deployed JAR | Deployed JAR Location

------- | -------------- | --

server1 | mx4j-3.0.2.jar | /Users/username/my_geode/server1/mx4j-3.0.2.v1.jar

server2 | mx4j-3.0.2.jar | /Users/username/my_geode/server2/mx4j-3.0.2.v1.jar

gfsh>deploy --jars=/lib/ra.jar

Deploying files: ra.jar

Total file size is: 0.03MB

Continue? (Y/n): y

Member | Deployed JAR | Deployed JAR Location

------- | ------------ | --

server1 | ra.jar | /Users/username/my_geode/server1/ra.v1.jar

server2 | ra.jar | /Users/username/my_geode/server2/ra.v1.jar

server3 | ra.jar | /Users/username/my_geode/server2/ra.v1.jar

Note that the mx4j-3.0.2.jar file was deployed only to the members of group1 and the
ra.jar was deployed to all members.

7. Export the cluster configuration. You can use the gfsh export cluster-configuration
command to create a zip file that contains the cluster’s persisted configuration. The zip file
contains a copy of the contents of the cluster_config directory. For example:

gfsh>export cluster-configuration --zip-file-name=/Users/username/myClConfig.zi

p

VMware GemFire writes the cluster configuration to the specified zip file.

File saved to /Users/username/myClConfig.zip

The remaining steps demonstrate how to use the cluster configuration you just created.

8. Shut down the cluster using the following commands:

gfsh>shutdown --include-locators=true

As a lot of data in memory will be lost, including possibly events in queues, d

o you

really want to shutdown the entire distributed system? (Y/n): Y

VMware GemFire 9.10 Documentation

VMware by Broadcom 133

Shutdown is triggered

gfsh>

No longer connected to 192.0.2.0[1099].

gfsh>

9. Exit the gfsh command shell:

gfsh>quit

Exiting...

10. Create a new working directory (for example: new_geode) and switch to the new directory.

11. Start the gfsh command shell:

$ gfsh

12. Start a new locator. For example:

gfsh>start locator --name=locator2 --port=10335

Starting a VMware GemFire Locator in /Users/username/new_geode/locator2...

.............................

Locator in /Users/username/new_geode/locator2 on 192.0.2.0[10335] as locator2

 is currently online.

Process ID: 5749

Uptime: 15 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/new_geode/locator2/locator2.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true

-Dgemfire.load-cluster-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

Cluster configuration service is up and running.

13. Import the cluster configuration using the import cluster-configuration command. For
example:

gfsh>import cluster-configuration --zip-file-name=/Users/username/myClConfig.zi

p

This command will replace the existing cluster configuration, if any, The old c

onfiguration will be backed up in the working directory.

Continue? (Y/n): y

Cluster configuration successfully imported

Note that the locator2 directory now contains a cluster_config subdirectory.

14. Start a server that does not reference a group:

gfsh>start server --name=server4 --server-port=40414

Starting a VMware GemFire Server in /Users/username/new_geode/server4...

VMware GemFire 9.10 Documentation

VMware by Broadcom 134

........

Server in /Users/username/new_geode/server4 on 192.0.2.0[40414] as server4

is currently online.

Process ID: 5813

Uptime: 4 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/new_geode/server4/server4.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10335]

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

15. Start another server that references group1:

gfsh>start server --name=server5 --groups=group1 --server-port=40415

Starting a VMware GemFire Server in /Users/username/new_geode/server5...

.....

Server in /Users/username/new_geode/server2 on 192.0.2.0[40415] as server5

is currently online.

Process ID: 5954

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/new_geode/server5/server5.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10335] -Dgemfire.groups=gro

up1

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/lib/geode-dependencies.jar

16. Use the list regions command to display the configured regions. Note that region1 and
region2, which were configured in the original cluster level are available.

gfsh>list regions

List of regions

region1

region2

17. Use the describe region command to see which members host each region. Note that
region1 is hosted only by server5 because server5 was started using the group1
configuration. region2 is hosted on both server4 and server5 because region2 was created
without a group specified.

gfsh>describe region --name=region1

Name : region1

Data Policy : replicate

Hosting Members : server5

Non-Default Attributes Shared By Hosting Members

 Type | Name | Value

------ | ----------- | ---------------

VMware GemFire 9.10 Documentation

VMware by Broadcom 135

Region | data-policy | REPLICATE

 | size | 0

 | scope | distributed-ack

gfsh>describe region --name=region2

..

Name : region2

Data Policy : replicate

Hosting Members : server5

 server4

Non-Default Attributes Shared By Hosting Members

 Type | Name | Value

------ | ----------- | ---------------

Region | data-policy | REPLICATE

 | size | 0

 | scope | distributed-ack

This new cluster uses the same configuration as the original system. You can start any
number of servers using this cluster configuration. All servers will receive the cluster-level
configuration. Servers that specify group1 also receive the group1 configuration.

18. Shut down your cluster using the following commands:

gfsh>shutdown --include-locators=true

As a lot of data in memory will be lost, including possibly events in queues,

 do you really want to shutdown the entire distributed system? (Y/n): Y

Shutdown is triggered

gfsh>

No longer connected to 192.0.2.0[1099].

Deploying Application JARs to VMware GemFire Members

You can dynamically deploy your application JAR files to specific members or to all members in your
cluster. VMware GemFire automatically keeps track of JAR file versions; autoloads the deployed
JAR files to the CLASSPATH; and auto-registers any functions that the JAR contains.

To deploy and undeploy application JAR files in VMware GemFire, use the gfsh deploy or undeploy
command. You can deploy a single JAR or multiple JARs (by either specifying the JAR filenames or
by specifying a directory that contains the JAR files), and you can also target the deployment to a
member group or multiple member group. For example, after connecting to the cluster where you
want to deploy the JAR files, you could type at the gfsh prompt:

gfsh> deploy --jars=group1_functions.jar

This command deploys the group1_functions.jar file to all members in the cluster.

To deploy the JAR file to a subset of members, use the --groups argument. For example:

gfsh> deploy --jars=group1_functions.jar --groups=MemberGroup1

In the example it is assumed that you have already defined the member group that you want to use
when starting up your members. See Configuring and Running a Cluster for more information on

VMware GemFire 9.10 Documentation

VMware by Broadcom 136

how to define member groups and add a member to a group.

To deploy all the JAR files that are located in a specific directory to all members:

gfsh> deploy --dir=libs/group1-libs

You can either provide a JAR file name or a directory of JARs for deployment, but you cannot
specify both at once.

To undeploy all previously deployed JAR files throughout the cluster:

gfsh> undeploy

To undeploy a specific JAR file:

gfsh> undeploy --jars=group1_functions.jar

To target a specific member group when undeploying all JAR files:

gfsh> undeploy --groups=MemberGroup1

Only JAR files that have been previously deployed on members in the MemberGroup1 group will be
undeployed.

To see a list of all deployed JAR files in your cluster:

gfsh> list deployed

To see a list of all deployed JARs in a specific member group:

gfsh> list deployed --groups=MemberGroup1

Sample output:

 Member | Deployed JAR | JAR Location

--------- | -------------------- | ---

datanode1 | group1_functions.jar | /usr/local/gemfire/deploy/group1_functions.v1.jar

datanode2 | group1_functions.jar | /usr/local/gemfire/deploy/group1_functions.v1.jar

For more information on gfsh usage, see gfsh.

Deployment Location for JAR Files

The system location where JAR files are written on each member is determined by the deploy-
working-dir VMware GemFire property configured for that member. For example, you could have
the following configured in the gemfire.properties file for your member:

#gemfire.properties

deploy-working-dir=/usr/local/gemfire/deploy

This deployment location can be local or a shared network resource (such as a mount location) used
by multiple members in order to reduce disk space usage. If you use a shared directory, you still

VMware GemFire 9.10 Documentation

VMware by Broadcom 137

need to deploy the JAR file on every member that you want to have access to the application,
because deployment updates the CLASSPATH and auto-registers functions.

About Deploying JAR Files and the Cluster Configuration
Service
By default, the cluster configuration service distributes deployed JAR files to all locators in the
cluster. When you start a new server using gfsh, the locator supplies configuration files and
deployed jar files to the member and writes them to the server’s directory.

See Overview of the Cluster Configuration Service.

Versioning of JAR Files
When you deploy JAR files to a cluster or member group, the JAR file is modified to indicate
version information in its name. Each JAR filename contains a version number inserted just before
the .jar suffix. For example, if you deploy MyClasses.jar five times, the filename is displayed as
MyClasses.v5.jar when you list all deployed jars.

When you deploy a new JAR file, the member receiving the deployment checks whether the JAR
file is a duplicate, either because the JAR file has already been deployed on that member or
because the JAR file has already been deployed to a shared deployment working directory that
other members are also using. If another member has already deployed this JAR file to the shared
directory (determined by doing a byte-for-byte compare to the latest version in its directory), the
member receiving the latest deployment does not write the file to disk. Instead, the member
updates the ClassPathLoader to use the already deployed JAR file. If a newer version of the JAR
file is detected on disk and is already in use, the deployment is canceled.

When a member begins using a JAR file, the member obtains a shared lock on the file. If the
member receives a newer version by deployment, the member releases the shared lock and tries
to delete the existing JAR file in favor of the newer version. If no other member has a shared lock
on the existing JAR, the existing, older version JAR is deleted.

Automatic Class Path Loading
When a cache is started, the new cache requests that the latest versions of each JAR file in the
current working directory be added to the ClassPathLoader. If a JAR file has already been deployed
to the ClassPathLoader, the ClassPathLoader updates its loaded version if a newer version is found;
otherwise, there is no change. If detected, older versions of the JAR files are deleted if no other
member has a shared lock on them.

Undeploying a JAR file does not automatically unload the classes that were loaded during
deployment. You need to restart your members to unload those classes.

When a cache is closed it requests that all currently deployed JAR files be removed from the
ClassPathLoader.

If you are using a shared deployment working directory, all members sharing the directory should
belong to the same member group. Upon restart, all members that share the same deployment
working directory will deploy and autoload their CLASSPATH with any JARs found in the current

VMware GemFire 9.10 Documentation

VMware by Broadcom 138

working directory. This means that some members may load the JARs even though they are not
part of the member group that received the original deployment.

Automatic Function Registration

When you deploy a JAR file that contains a function (in other words, contains a class that
implements the Function interface), the function is automatically registered through the
FunctionService.registerFunction method. If another JAR file is deployed (either with the same
JAR filename or another filename) with the same function, the new implementation of the function
is registered, overwriting the old one. If a JAR file is undeployed, any functions that were auto-
registered at the time of deployment are unregistered. Because deploying a JAR file that has the
same name multiple times results in the JAR being un-deployed and re-deployed, functions in the
JAR are unregistered and re-registered each time this occurs. If a function with the same ID is
registered from multiple differently named JAR files, the function is unregistered if any of those
JAR files are re-deployed or un-deployed.

During cache.xml load, the parameters for any declarables are saved. If functions found in a JAR file
are also declarable, and have the same class name as the declarables whose parameters were
saved after loading cache.xml, then function instances are created using those Parameters and are
also registered. Therefore, if the same function is declared multiple times in the cache.xml with
different sets of parameters, when the JAR is deployed a function is instantiated for each set of
parameters. If any functions are registered using parameters from a cache.xml load, the default, no-
argument function is not registered.

Using Member Groups

VMware GemFire allows you to organize your cluster members into logical member groups.

The use of member groups in VMware GemFire is optional. The benefit of using member groups is
the ability to coordinate certain operations on members based on logical group membership. For
example, by defining and using member groups you can:

Alter a subset of configuration properties for a specific member or members. See alter
runtime in gfsh.

Perform certain disk operations like disk-store compaction across a member group. See
Disk Store Commands for a list of commands.

Manage specific indexes or regions across all members of a group.

Start and stop multi-site (WAN) services such as gateway senders and gateway receivers
across a member group.

Deploy or undeploy JAR applications on all members in a group.

Execute functions on all members of a specific group.

You define group names in the groups property of your member’s gemfire.properties file or upon
member startup in gfsh.

Note: Any roles defined in the currently existing roles property will now be considered a group. If
you wish to add membership roles to your cluster, you should add them as member groups in the
groups property. The roles property has been deprecated in favor of using the groups property.

VMware GemFire 9.10 Documentation

VMware by Broadcom 139

To add a member to a group, add the name of a member group to the gemfire.properties file of
the member prior to startup or you can start up a member in gfsh and pass in the --groups
argument at startup time.

A single member can belong to more than one group.

Member groups can also be used to organize members from either a client’s perspective or from a
peer member’s perspective. See Organizing Peers into Logical Member Groups and Organizing
Servers Into Logical Member Groups for more information. On the client side, you can supply the
member group name when configuring a client’s connection pool. Use the <pool server-group>
element in the client’s cache.xml.

Exporting and Importing Cluster Configurations

The cluster configuration service exports and imports configurations created using gfsh for an
entire VMware GemFire cluster.

The cluster configuration service saves the cluster configuration as you create regions, disk-stores
and other objects using gfsh commands. You can export this configuration as well as any jar files
that contain application files to a ZIP archive and then import this configuration to create a new
cluster.

Exporting a Cluster Configuration

Issue the gfsh export cluster-configuration command to save the configuration data for your
cluster in a ZIP archive. This ZIP file contains subdirectories for cluster-level configurations and a
directory for each group specified in the cluster. The contents of these directories are described in
Cluster Configuration Files and Troubleshooting.

To export a cluster configuration, run the gfsh export cluster-configuration command while
connected to a VMware GemFire cluster. For example:

export cluster-configuration --zip-file-name=/home/username/configs/myClusterConfig.zi

p

See export cluster-configuration.

Note: gfsh only saves cluster configuration values for configurations specified using gfsh.
Configurations created by the management API are not saved with the cluster configurations.

Importing a Cluster Configuration

Use the gfsh import cluster-configuration command to configure a new cluster based on a
configuration exported from another system. You can import a cluster configuration only into a new
cluster, or into a running cluster that has not yet been configured and contains no defined regions.
That is, when:

There are no running cache servers

or

The only running cache servers meet all of the following criteria:

Have been recently started

VMware GemFire 9.10 Documentation

VMware by Broadcom 140

Have no regions defined in them

Have been given no other configuration changes since they started

After you have imported the configuration, any servers you start receive this cluster configuration.

To import a cluster configuration, start one or more locators and then run the gfsh import
cluster-configuration command. For example:

import cluster-configuration --zip-file-name=/home/username/configs/myClusterConfig.zi

p

See import cluster-configuration.

Cluster Configuration Files and Troubleshooting

When you use the cluster configuration service in VMware GemFire, you can examine the
generated configuration. The gfsh export cluster-configuration command outputs configured
properties, the configuration on a per-group basis or for the entire cluster, and the list of deployed
JAR files.

If the output is written to either a ZIP file or an XML file, you can import this configuration to a new
cluster. See Exporting and Importing Cluster Configurations.

Upon the deploy of a JAR file, the JAR file is added to a created directory called cluster_config
within the locator’s directory of files. Within cluster_config will be another directory named for the
member group that has the configuration. For configurations that apply to all members of a cluster,
the directory is named either cluster or the name specified when starting up the locator with the -
-cluster-config-dir option.

Troubleshooting Tips

When you start a locator using gfsh, you should see the following message:

Cluster configuration service is up and running.

If you do not see this message, there may be a problem with the cluster configuration
service. Use the status cluster-config-service command to check the status of the
cluster configuration.

If the command returns RUNNING, the cluster configuration is running normally.

If the command returns WAITING, run the status locator command. The output of
this command returns the cause of the WAITING status.

When using a cache.xml file for configuration, there is a specific order to the application of
the configuration in these files. VMware GemFire applies the cluster-wide configuration files
first. Group-level configurations follow. Last will be the configuration in a member’s own
configuration files (cache.xml and gemfire.properties files).

If a server start fails with the following exception:
ClusterConfigurationNotAvailableException, the cluster configuration service may not be
in the RUNNING state. Because the server requests the cluster configuration from the
locator, which is not available, the start server command fails.

VMware GemFire 9.10 Documentation

VMware by Broadcom 141

You can determine what configurations a server received from a locator by examining the
server’s log file. See Logging.

If a start server command specifies a cache.xml file that conflicts with the existing cluster
configuration, the server startup may fail.

If a gfsh command fails because the cluster configuration cannot be saved, the following
message displays:

Failed to persist the configuration changes due to this command,

Revert the command to maintain consistency. Please use "status cluster-config-s

ervice"

to determine whether Cluster configuration service is RUNNING."

There are some types of configurations that cannot be made using gfsh. See gfsh
Limitations.

Sizing a GemFire Cluster

This topic describes GemFire cluster sizing.

Overview

Sizing a GemFire deployment is a process that involves calculation, as well as experimentation and
testing. Some experimentation and testing is required to arrive at reasonably accurate values for
the key sizing parameters that will work well in practice. This experimentation and testing involves
representative data and workload, starting at a very small scale.

Experimentation and testing is required because memory overhead can vary greatly due to
variations in data and workload. This makes it impractical to calculate the overhead precisely, as it is
a function of too many variables, many of which stem from the Java runtime environment (JVM)
and its memory management mechanism.

Resource Considerations

Memory is the primary means of data storage in GemFire and is the first resource to consider for
sizing purposes.

Horizontal scaling to satisfy memory requirements also scales out all the other hardware resources,
the CPU, network, and disk. Because of this, when memory requirements are satisfied and the
adequate cluster size is determined, often only small adjustments are needed to cover all the other
required resources and complete the sizing process.

Typically, memory drives horizontal scaling, but it can be any of the hardware resources. In addition
to hardware resources, soft resources should be considered. The most important software
resources to consider are file descriptors, mostly for sockets in use, and threads (processes).

Experimentation and Testing

To size a GemFire cluster:

1. Deploy a small representative data set and workload in a small cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 142

2. Tune the cluster to the desired performance.

3. Scale out the cluster while ensuring that key performance metrics stay within the desired
SLA.

Testing at full scale is ideal, if you have sufficient resources available to use in testing. If sufficient
resources are not available to use in testing, you can scale out multiple times, a few nodes at a
time, to provide data points to use to project resource usage at full scale. This is an iterative
process that involves analysis and tuning at each step. GemFire statistics can assist in this analysis.
can be aided greatly by GemFire statistics.

For large scale deployments that involve large data volumes, the general guideline is to scale
vertically as much as possible to fit as much data as possible in a single GemFire instance. This helps
minimize the size of the cluster. The limit to vertical scaling may depend on the desired SLA around
node failure.

Requirements and Assumptions

To maximize the accuracy of your GemFire cluster sizing, and to minimize unexpected situations in
your production environment, VMware recommends that you first run tests to characterize
memory and other resource usage under a representative workload.

Requirements:

A subset of representative data. Typically, representative data that more closely matches
the real data produces more accurate results.

A matching subset of workload that matches the production workload as closely as possible.

Hardware resources for testing, ideally the same category as would be used in production:
the same CPU, memory, network, and disk resources per node. At a minimum, you must be
able to run three GemFire data nodes to start, then be able to add a few more node to
validate the scalability. In addition, you must have the same number of hosts for GemFire
clients to be able to create an adequate workload.

Familiarity with key GemFire concepts and features, such as partitioned regions,
serialization, etc.

You should follow the documented best practices, such as the JVM GC configuration (CMS and
ParNew), and use the currently supported platforms.

Architectural and Design Considerations

Before a sizing effort can start, the overarching architectural decisions have to be made, such as
which GemFire regions to use for different types of data or what redundancy level to use. The
results of sizing can inform architectural and design decisions for which multiple options are
possible.

Serialization

Serialization can make a significant difference in the per-entry data overhead in memory, and
subsequently in the overall memory requirements.

VMware GemFire 9.10 Documentation

VMware by Broadcom 143

GemFire’s PDX serialization is a serialization format that keeps data in a usable serialized form. This
allows most operations on data entries without having to deserialize them, resulting in both space
and performance benefits. These qualities make the PDX serialization the recommended
serialization approach for most use cases.

DataSerializable is another GemFire serialization mechanism that is more space efficient than either
PDX or Java Serializable. However, unlike PDX, it requires deserialization on any kind of access.

Per-entry Memory Overhead

Listed below are factors that can have significant impact on the memory overhead for data on a per
entry basis, as well as performance:

Choice of GemFire region type: Different regions have different per-entry overheads. This
overhead is documented below and is included in the sizing spreadsheet.

Choice of the serialization mechanism: GemFire offers multiple serialization options, as
well as the ability to have values stored serialized. As mentioned above, GemFire PDX
serialization is the generally recommended serialization mechanism due to its space and
performance benefits.

Choice of Keys: Smaller and simpler keys are more efficient in terms of both space and
performance.

Use of indexes: Indexing incurs a per-entry overhead, as documented in Memory
Requirements for Cached Data.

For more detailed information and guidelines, see Memory Requirements for Cached Data.

If the data value objects are small but great in number, the per-entry overhead can add up to a
significant memory requirement. You can reduce this overhead by grouping multiple data values
into a single entry or by using containment relationships. For example, you can choose to have
your Order objects contain their line items instead of having a separate OrderLineItems region. If
this option is available, using it may yield performance improvements in addition to space savings.

Partitioned Region Scalability

GemFire partitioned regions scale out by rebalancing their data buckets (partitions) to distribute the
data evenly across all available nodes in a cluster. When new nodes are added to the cluster,
rebalancing causes some buckets to move from the old to the new nodes such that the data is
evenly balanced across all the nodes. For this to work effectively, with the end result being a well-
balanced cluster, there should be at least one order of magnitude more buckets than data nodes
for each partitioned region.

Typically, increasing the number of buckets improves data distribution. However, since the number
of buckets cannot be changed dynamically and without downtime, the projected horizontal scale-
out taken into account when determining the optimal number of buckets. Otherwise, as the system
scales out over time, the data may become less evenly distributed. In the extreme case, when the
number of nodes exceeds the number of buckets, adding new nodes has no effect, and the ability
to scale out is lost.

Related to this is the choice of data partitioning scheme, the goal of which is to yield even data and
workload distribution in the cluster. If problem with the partitioning scheme exists, the data, and
likely the workload, will not be evenly balanced, and scalability will be lost.

VMware GemFire 9.10 Documentation

VMware by Broadcom 144

https://docs.vmware.com/en/VMware-GemFire/9.10/gf/reference-topics-memory_requirements_for_cache_data.html
https://docs.vmware.com/en/VMware-GemFire/9.10/gf/reference-topics-memory_requirements_for_cache_data.html

Redundancy

Typically, choice of redundancy may be driven by data size and by whether or not data can be
retrieved from some other backing store besides GemFire. Other considerations might also be a
factor in the decision.

For example, GemFire can be deployed in an active/active configuration in two data centers such
that each can take on the entire load, but will do so only if necessitated by a failure. Typically, in
such deployments there are four live copies of the data at any time, with two in each datacenter. If
two nodes failed in a single datacenter, the other datacenter would take over the entire workload
until those two nodes were restored. This avoids data loss in the first datacenter. You could instead
set redundancy to two, for a total of three copies of data). This would provide high availability even
in case of a single node failure, and avoids paying the price of rebalancing when a single node fails.
In this case, instead of rebalancing, a single failed node is restarted, while two copies of data still
exist.

Relationship Between Horizontal and Vertical Scale

For deployments that can grow very large, you should allow for the growth by taking advantage of
not just horizontal scalability, but also the ability to store as much data as possible in a single node.
GemFire has been deployed in clusters of over 100 nodes. However, smaller clusters are easier to
manage. So, as a general rule, you should store as much data as possible in a single node while
maintaining a comfortable data movement requirement for re-establishing the redundancy SLA
after a single point of failure. GemFire has been used with heaps of well over 64GB in size..

NUMA Considerations

You should understand the Non-Uniform Memory Architecture (NUMA) memory boundaries when
deciding on the JVM size, and VM size in virtualized deployments.

Most modern CPUs implement this kind of architecture where memory is divided across the CPUs
such that memory directly connected to the bus of each CPU has very fast access whereas memory
accesses by that same CPU on the other portions of memory (directly connected to the other
CPUs) can pay a significant wait-state penalty for accessing data. An example is a system that has
four CPUs with eight cores each and a Non-Uniform Memory Architecture that assigns each CPU
its own portion of the memory. As an example, assume that the total memory on the machine is
256GB. In this case, each NUMA node is 64GB. Growing a JVM larger than 64GB on this machine
will cause wait-states to be induced when the CPUs must cross NUMA node boundaries to access
memory within the heap. For this reason, you should size GemFire JVMs to fit within a single
NUMA node to optimize performance.

GemFire Queues

If any GemFire queueing capabilities are used, such as for WAN distribution, client subscription, or
asynchronous event listeners, you should evaluate the queues’ capacity in the context of the
desired SLA. For example, for how long should gateway or client subscription queues be able to
keep queueing events when the connection is lost? Given that, how large should the queues be
able to grow? An effective way to learn the answers to these kinds of questions is to watch the
queues’ growth during sizing experiments, using GemFire statistics. For more information about
this, see Step 3: Vertical Sizing below.

VMware GemFire 9.10 Documentation

VMware by Broadcom 145

For WAN distribution, you should evaluate the distribution volume requirements and ensure
adequate network bandwidth sizing. If sites connected by the WAN gateway may be down for
extended periods of time, such as days or weeks, you must overflow the gateway queues to disk
and ensure that you have sufficient disk space for those queues. If you have insufficient disk space
for the queues, you may need to shut off the Gateway senders to prevent running out of space.

Sizing Process

To size a GemFire cluster:

1. Domain object sizing: Produce an entry size estimate for all the domain objects. Use this
with number of entries to estimate the total memory requirements.

2. Estimating total memory and system requirements: Based on the data sizes, estimate the
total memory and system requirements using the sizing spreadsheet, which takes into
account GemFire region overhead. This does not account for other overhead, but provides
a starting point.

3. Vertical sizing: Use the results of the previous step as the starting point in configuring a
three-node cluster. Vertical sizing determines the “building block” – the sizing,
configuration, and workload for a single node – by experimentation.

4. Scale-out validation: Iteratively test and adjust the single “building block” node from the
previous step to verify near-linear scalability and performance.

5. Projection to full scale: Use the results of scale-out validation to arrive at the sizing
configuration that meets your desired capacity and SLA.

The following sections provide details about each step.

Step 1: Domain object sizing

Before you can make any other estimates, you must estimate the size of the domain objects to be
stored in the cluster.

An effective way to size a domain object is to run a single instance GemFire test with GemFire
statistics enabled. In this instance, store each domain object to be sized in a dedicated partitioned
region. The test loads a number of instances of each domain object, making sure they all stay in
memory, with no overflow. After running the test, load the statistics file from it into VSD and
examine dataStoreBytesInUse and dataStoreEntryCount partition region stats for each partitioned
region. Dividing the value of dataStoreBytesInUse by the value of dataStoreEntryCount provides an
estimate for the average value size that is as accurate as is possible.

Another way to size domain objects is to use a heap histogram. In this approach you should run a
separate test for each domain object. This simplifies the process of determining what classes are
associated with data entries, based on the number of entries in memory, to figure out what classes

Step 2: Estimating total memory and system requirements

Note: This estimate does not include the key size and entry overhead.

VMware GemFire 9.10 Documentation

VMware by Broadcom 146

You can use the System Sizing Worksheet to approximate your total memory and system
requirements. The System Sizing Worksheet takes into account all the GemFire region related per-
entry overhead, and the desired memory headroom.

The spreadsheet formulas are rough approximations that serve to inform a high-level estimate, as
they do not account for any other overhead such as buffers, threads, queues, application workload,
etc. Additionally, the results obtained from the spreadsheet do not have any performance context.
For this reason, the steps in Step 3: Vertical Sizing use the results for memory allocation per server
obtained from the spreadsheet as the starting point for the vertical sizing process.

Step 3: Vertical Sizing

Use vertical sizing to determine what fraction of the total requirements for storage and workload
can be satisfied with a single data node, and with what resources. This represents a “building block”
(a unit of scale) and includes both the size of the resources and the workload capacity. It also
includes the complete configuration of the building block (system, VM if present, JVM, and
GemFire).

For example, a result of this step for a simple read-only application might be that a single data node
with a JVM sized to 64G can store 40G of data and support a workload of 5000 get operations per
second within the required latency SLA, without exhausting any resources. You should capture all
the key performance indicators for the application, and verify that they meet the desired SLA. A
complete output of the vertical sizing step includes all the relevant details such as hardware
resources per node, peak capacity, and performance at peak capacity, and notes which resource
becomes a bottleneck at peak capacity.

This approach uses experimentation to determine the optimal values for all relevant configuration
settings, including the system, VM if virtualization is used, JVM, and GemFire configuration to be
used.

To run experiments and tests, you musy have a cluster of three data nodes and a locator, as well as
additional hosts to run clients to generate the application workload. Three data nodes are required
to fully exercise the partitioning of data in partitioned regions across multiple nodes in presence of
data redundancy. As a starting point, the data nodes should be sized based on the estimates
obtained from the sizing spreadsheet completed in Step 2: Estimating total memory and system
requirements.

Typically, the following configuration is used to begin:

A heap headroom of 50% of the old generation

CMSInitiatingOccupancyFraction is set to 65%

The young generation is sized to 10% of the total heap

GemFire logging and statistics should be enabled for all the test runs. The logs should be routinely
checked for problems. The statistics are analyzed for problems, verification of resources, and
performance. Performance metrics can be collected by the application test logic as well. Any
relevant latency metrics must be collected by the test application.

If WAN distribution is needed, you should set up an identical twin cluster and configure the WAN
distribution between the two clusters. You should also size WAN capacity.

Test runs should exercise a representative application workload, with duration long enough to incur
multiple GC cycles, so that stable resource usage can be confirmed. If any GemFire queues are

VMware GemFire 9.10 Documentation

VMware by Broadcom 147

used, run tests to determine adequate queue sizes that meet the SLA. If disk storage is used,
determine adequate disk store size and configuration per node as part of this exercise.

After each test run, examine the latency metrics collected by the application. Use VSD to examine
the statistics and correlate the resource usage with latencies and throughput observed. You should
examine the following:

Memory (heap, and non-heap, GC)

CPU

System load

Network

File descriptors

Threads

Queue statistics

For information about VSD and these statistics, see Quick Guide to Useful Statistics.

One of the objectives of vertical sizing is to determine the headroom required to accomplish the
desired performance. This might take several tests to tune the headroom to no more and no less
than needed. A much larger headroom than needed could amount to a significant waste of
resources. A smaller headroom could cause higher GC activity and CPU usage and hurt
performance.

Locator Sizing

Locator JVM sizing may be necessary when JMX Manager is running in the locator JVM, and JMX
is used for monitoring. An effective way to do this is to set the locator heap to 0.5G and monitor it
during the scale-out.

Notes on GC

The most important goal of GC is to avoid full GCs, as they cause pauses which can result in a
GemFire data node to be unresponsive, and, as a result, be expelled from the cluster. The
permanent generation space can trigger a full GC as well, which happens when it fills completely.
You should size this appropriately to avoid this. Additionally, you can instruct the JVM to garbage
collect the permanent generation space along with CMS GC using the following option:

 -XX:+CMSClassUnloadingEnabled

You can tune GC for two of the following three:

Latency

Throughput

Memory footprint

Heap headroom is important because with GemFire we sacrifice the memory footprint to
accomplish latency and throughput goals.

VMware GemFire 9.10 Documentation

VMware by Broadcom 148

https://docs.vmware.com/en/VMware-GemFire/9.10/gf/tools_modules-vsd-vsd_useful_statistics.html

Long minor GC pauses can be shortened by reducing the young generation. This will likely increase
the frequency of minor collections. Additionally, for very large heaps, for example those of 64G and
above, the old generation impact on minor GC pauses may be reduced by using the following GC
settings:

 -XX:+UnlockDiagnosticVMOptions XX:ParGCCardsPerStrideChunk=32768

Step 4: Scale-out Validation

During this step, you scale out the initial three node cluster at least twice, adding at least a few
nodes each time. You should also scale out the client hosts accordingly to be able to create
adequate workload at each step. You should increase the workload proportionally to the scale-out.

There is no definitive rule about how much to increase the cluster size, or in what increments.
Typically, this determination is dictated by available hardware resources.

The goal of this step is to validate the “building block” configuration and capacity at some, larger
than initial, scale. This allows you to project the capacity to full scale with confidence. You may
need to tune the configuration at various points. For example, when you add more nodes to the
cluster, more socket connections, buffers, and threads will be in use on each node, resulting in
higher memory usage per node (both heap and non-heap), as well as increased file descriptors in
use.

If you use JMX for monitoring, watch the heap usage of the locator running the JMX Manager.

Step 5: Projection to Full Scale

After you have completed Step 4: Scale-out Validation, you can determine the total cluster size.
You know the storage and workload capacity of a single node and that you can scale horizontally to
meet the full requirements. Additionally, you have already tuned the cluster configuration to meet
the demands of the application workload.

Sizing Quick Reference
General recommendations to use as a starting point in capacity planning and sizing

Data Node Heap Size Use

Up to 32GB Smaller data volumes (up to a few hundred GB); very low latency required

64GB+ Larger data volumes (500GB+)

CPU Cores per Data Node Use

2 to 4 Development; smaller heaps

6 to 8 Production; performance/system testing; larger heaps

Network Bandwidth Use

1GbE Development

High bandwidth (e.g.
10GbE)

Production; performance/system testing

Disk Storage Use

VMware GemFire 9.10 Documentation

VMware by Broadcom 149

Data Node Heap Size Use

DAS, or SAN Always

NAS Do not use; performance and resilience issues

Memory/CPU relationship: mind the NUMA boundary

Virtualization: Do not oversubscribe resources (memory, CPU, storage). Run a single
GemFire data node JVM per VM.

Using gfsh to Manage a Remote Cluster Over HTTP or
HTTPS

You can connect gfsh via HTTP or HTTPS to a remote cluster and manage the cluster using gfsh
commands.

To connect gfsh using the HTTP protocol to a remote cluster:

1. Launch gfsh. See Starting gfsh.

2. When starting the remote cluster on the remote host, you can optionally specify --http-
bind-address and --http-service-port as VMware GemFire properties when starting up
your JMX manager (server or locator). These properties can be then used in the URL used
when connecting from your local system to the HTTP service in the remote cluster. For
example:

gfsh>start server --name=server1 --J=-Dgemfire.jmx-manager=true \

--J=-Dgemfire.jmx-manager-start=true --http-service-port=8080 \

--http-service-bind-address=myremotecluster.example.com

This command must be executed directly on the host machine that will ultimately act as the
remote server that hosts the HTTP service for remote administration. (You cannot launch a
server remotely.)

3. On your local system, run the gfsh connect command to connect to the remote system.
Include the --use-http and --url parameters. For example:

gfsh>connect --use-http=true --url="http://myremotecluster.example.com:8080/geo

de/v1"

Successfully connected to: VMware GemFire Manager's HTTP service @ http://myrem

otecluster.example.com:8080/geode/v1

See connect.

gfsh is now connected to the remote system. Most gfsh commands will now execute on
the remote system; however, there are exceptions. The following commands are executed
on the local cluster: - alter disk-store - compact offline-disk-store - describe
offline-disk-store - help - hint - sh (for executing OS commands) - sleep - start
jconsole (however, you can connect JConsole to a remote cluster when gfsh is connected
to the cluster via JMX) - start jvisualvm - start locator - start server - start vsd -
status locator``* - status server``* - stop locator``* - stop server``* - run (for
executing gfsh scripts) - validate disk-store - version

VMware GemFire 9.10 Documentation

VMware by Broadcom 150

*You can stop and obtain the status of remote locators and servers when gfsh is connected
to the cluster via JMX or HTTP/S by using the --name option for these stop/status
commands. If you are using the --pid or --dir option for these commands, then
thestop/status commands are executed only locally.

To configure SSL for the remote connection (HTTPS), enable SSL for the http component in
gemfire.properties or gfsecurity-properties or upon server startup. See SSL for details on
configuring SSL parameters. These SSL parameters also apply to all HTTP services hosted on the
configured JMX Manager, which can include the following:

Developer REST API service

Pulse monitoring tool

Deploying Configuration Files without the Cluster
Configuration Service
You can deploy your VMware GemFire configuration files in your system directory structure or in
jar files. You determine how you want to deploy your configuration files and set them up
accordingly.

Note: If you use the cluster configuration service to create and manage your VMware GemFire
cluster configuration, the procedures described in this section are not needed because VMware
GemFire automatically manages the distribution of the configuration files and jar files to members of
the cluster. See Overview of the Cluster Configuration Service.

You can use the procedures described in this section to distribute configurations that are member-
specific, or for situations where you do not want to use the cluster configuration service.

Main Steps to Deploying Configuration Files

These are the basic steps for deploying configuration files, with related detail in sections
that follow.

Default File Specifications and Search Locations

Each file has a default name, a set of file search locations, and a system property you can
use to override the defaults.

Changing the File Specifications

You can change all file specifications in the gemfire.properties file and at the command
line.

Deploying Configuration Files in JAR Files

This section provides a procedure and an example for deploying configuration files in JAR
files.

Main Steps to Deploying Configuration Files
These are the basic steps for deploying configuration files, with related detail in sections that follow.

1. Determine which configuration files you need for your installation.

2. Place the files in your directories or jar files.

VMware GemFire 9.10 Documentation

VMware by Broadcom 151

3. For any file with a non-default name or location, provide the file specification in the system
properties file and/or in the member CLASSPATH.

VMware GemFire Configuration Files

gemfire.properties. Contains the settings required by members of a cluster. These settings
include licensing, system member discovery, communication parameters, logging, and
statistics. See the VMware GemFire Properties Reference.

gfsecurity.properties. An optional separate file that contains security-related (security-*)
settings that are otherwise defined in gemfire.properties. Placing these member
properties into a separate file allows you to restrict user access to those specific settings.
See the VMware GemFire Properties Reference.

cache.xml. Declarative cache configuration file. This file contains XML declarations for
cache, region, and region entry configuration. You also use it to configure disk stores,
database login credentials, server and remote site location information, and socket
information. See cache.xml.

Default File Specifications and Search Locations

Each file has a default name, a set of file search locations, and a system property you can use to
override the defaults.

To use the default specifications, place the file at the top level of its directory or jar file. The system
properties are standard file specifications that can have absolute or relative pathnames and
filenames.

Note: If you do not specify an absolute file path and name, the search examines all search locations
for the file.

Default File Specification
Search Locations for Relative File
Specifications

Available Property for File
Specification

gemfire.properties 1. current directory

2. home directory

3. CLASSPATH

As a Java system property, use
gemfirePropertyFile

cache.xml 1. current directory

2. CLASSPATH

In gemfire.properties, use the
cache-xml-file property

Examples of valid gemfirePropertyFile specifications:

/zippy/users/jpearson/gemfiretest/gemfire.properties

c:\gemfiretest\gemfire.prp

myGF.properties

test1/gfprops

For the test1/gfprops specification, if you launch your VMware GemFire system member from
/testDir in a Unix file system, VMware GemFire looks for the file in this order until it finds the file

VMware GemFire 9.10 Documentation

VMware by Broadcom 152

or exhausts all locations:

1. /testDir/test1/gfprops

2. <yourHomeDir>/test1/gfprops

3. under every location in your CLASSPATH for test1/gfprops

Changing the File Specifications

You can change all file specifications in the gemfire.properties file and at the command line.

Note: VMware GemFire applications can use the API to pass java.lang.System properties to the
cluster connection. This changes file specifications made at the command line and in the
gemfire.properties file. You can verify an application’s property settings in the configuration
information logged at application startup. The configuration is listed when the gemfire.properties
log-level is set to config or lower.

This invocation of the application, testApplication.TestApp1, provides non-default specifications
for both the cache.xml and gemfire.properties files:

java -Dgemfire.cache-xml-file=\

/gemfireSamples/examples/dist/cacheRunner/queryPortfolios.xml \

-DgemfirePropertyFile=defaultConfigs/gemfire.properties \

testApplication.TestApp1

The gfsh start server command can use the same specifications:

gfsh>start server \

--J=-Dgemfire.cache-xml-file=/gemfireSamples/examples/dist/cacheRunner/queryPortfolio

s.xml \

--J=-DgemfirePropertyFile=defaultConfigs/gemfire.properties

You can also change the specifications for the cache.xml file inside the gemfire.properties file.

Note: Specifications in gemfire.properties files cannot use environment variables.

Example gemfire.properties file with non-default cache.xml specification:

#Tue May 09 17:53:54 PDT 2006

mcast-address=192.0.2.0

mcast-port=10333

locators=cache-xml-file=/gemfireSamples/examples/dist/cacheRunner/queryPortfolios.xml

Deploying Configuration Files in JAR Files

This section provides a procedure and an example for deploying configuration files in JAR files.

Procedure

1. Jar the files.

2. Set the VMware GemFire system properties to point to the files as they reside in the jar file.

3. Include the jar file in your CLASSPATH.

VMware GemFire 9.10 Documentation

VMware by Broadcom 153

4. Verify the jar file copies are the only ones visible to the application at runtime. VMware
GemFire searches the CLASSPATH after searching other locations, so the files cannot be
available in the other search areas.

5. Start your application. The configuration file is loaded from the jar file.

Example of Deploying a Configuration JAR

The following example deploys the cache configuration file, myCache.xml, in my.jar. The following
displays the contents of my.jar:

% jar -tf my.jar

META-INF

META-INF/MANIFEST.MF

myConfig/

myConfig/myCache.xml

In this example, you would perform the following steps to deploy the configuration jar file:

1. Set the system property gemfire.cache-xml-file to myConfig/myCache.xml.

2. Set your CLASSPATH to include my.jar.

3. Verify there is no file already in the filesystem named ./myConfig/myCache.xml, so VMware
GemFire will be forced to search the jar file to find it.

When you start your application, the configuration file is loaded from the jar file.

Starting Up and Shutting Down Your System

Determine the proper startup and shutdown procedures, and write your startup and shutdown
scripts.

Well-designed procedures for starting and stopping your system can speed startup and protect
your data. The processes you need to start and stop include server and locator processes and your
other VMware GemFire applications, including clients. The procedures you use depend in part on
your system’s configuration and the dependencies between your system processes.

Use the following guidelines to create startup and shutdown procedures and scripts. Some of these
instructions use gfsh.

Starting Up Your System

You should follow certain order guidelines when starting your VMware GemFire system.

Start servers before you start their client applications. In each cluster, follow these guidelines for
member startup:

Start locators first. See Running VMware GemFire Locator Processes for examples of
locator start up commands.

Start cache servers before the rest of your processes unless the implementation requires
that other processes be started ahead of them. See Running VMware GemFire Server
Processes for examples of server start up commands.

VMware GemFire 9.10 Documentation

VMware by Broadcom 154

If your cluster uses both persistent replicated and non-persistent replicated regions, you
should start up all the persistent replicated members in parallel before starting the non-
persistent regions. This way, persistent members will not delay their startup for other
persistent members with later data.

For a system that includes persistent regions, see Start Up and Shut Down with Disk Stores.

If you are running producer processes and consumer or event listener processes, start the
consumers first. This ensures the consumers and listeners do not miss any notifications or
updates.

If you are starting up your locators and peer members all at once, you can use the locator-
wait-time property (in seconds) upon process start up. This timeout allows peers to wait for
the locators to finish starting up before attempting to join the cluster.

If the process cannot initially reach a locator, it will sleep for join-retry-sleep milliseconds
between retries until it either connects or the number of seconds specified in locator-
wait-time has elapsed. By default, locator-wait-time is set to zero meaning that a process
that cannot connect to a locator upon startup will throw an exception.

Note: You can optionally override the default timeout period for shutting down individual
processes. This override setting must be specified during member startup. See Shutting Down the
System for details.

Starting Up After Losing Data on Disk

This information pertains to catastrophic loss of VMware GemFire disk store files. If you lose disk
store files, your next startup may hang, waiting for the lost disk stores to come back online. If your
system hangs at startup, use the gfsh command show missing-disk-store to list missing disk stores
and, if needed, revoke missing disk stores so your system startup can complete. You must use the
Disk Store ID to revoke a disk store. These are the two commands:

gfsh>show missing-disk-stores

Disk Store ID | Host | Directory

------------------------------------ | --------- | -----------------------------------

--

60399215-532b-406f-b81f-9b5bd8d1b55a | excalibur | /usr/local/gemfire/deploy/disk_stor

e1

gfsh>revoke missing-disk-store --id=60399215-532b-406f-b81f-9b5bd8d1b55a

Note: This gfsh commands require that you are connected to the cluster via a JMX Manager node.

Shutting Down the System

Shut down your VMware GemFire system by using either the gfsh shutdown command or by
shutting down individual members one at a time.

Using the shutdown Command

VMware GemFire 9.10 Documentation

VMware by Broadcom 155

If you are using persistent regions, (members are persisting data to disk), you should use the gfsh
shutdown command to stop the running system in an orderly fashion. This command synchronizes
persistent partitioned regions before shutting down, which makes the next startup of the cluster as
efficient as possible.

If possible, all members should be running before you shut them down so synchronization can
occur. Shut down the system using the following gfsh command:

gfsh>shutdown

By default, the shutdown command will only shut down data nodes. If you want to shut down all
nodes including locators, specify the --include-locators=true parameter. For example:

gfsh>shutdown --include-locators=true

This will shut down all locators one by one, shutting down the manager last.

To shutdown all data members after a grace period, specify a time-out option (in seconds).

gfsh>shutdown --time-out=60

To shutdown all members including locators after a grace period, specify a time-out option (in
seconds).

gfsh>shutdown --include-locators=true --time-out=60

Shutting Down System Members Individually

If you are not using persistent regions, you can shut down the cluster by shutting down each
member in the reverse order of their startup. (See Starting Up Your System for the recommended
order of member startup.)

Shut down the cluster members according to the type of member. For example, use the following
mechanisms to shut down members:

Use the appropriate mechanism to shut down any VMware GemFire-connected client
applications that are running in the cluster.

Shut down any cache servers. To shut down a server, issue the following gfsh command:

gfsh>stop server --name=<...>

or

gfsh>stop server --dir=<server_working_dir>

Shut down any locators. To shut down a locator, issue the following gfsh command:

gfsh>stop locator --name=<...>

or

VMware GemFire 9.10 Documentation

VMware by Broadcom 156

gfsh>stop locator --dir=<locator_working_dir>

Do not use the command line kill -9 to shut down a server under ordinary circumstances.
Especially on systems with a small number of members, using a kill instead of a gfsh stop
can cause the partition detection mechanism to place the system in an end state that will
wait forever to reconnect to the terminated server, and there will be no way to restart that
terminated server. If a kill command appears the only way to rid the system of a server,
then kill all the processes of the cluster or use kill -INT, which will allow an orderly
shutdown of the process.

Option for System Member Shutdown Behavior

The DISCONNECT_WAIT command line argument sets the maximum time for each individual step in
the shutdown process. If any step takes longer than the specified amount, it is forced to end. Each
operation is given this grace period, so the total length of time the cache member takes to shut
down depends on the number of operations and the DISCONNECT_WAIT setting. During the
shutdown process, VMware GemFire produces messages such as:

Disconnect listener still running

The DISCONNECT_WAIT default is 10000 milliseconds.

To change it, set this system property on the Java command line used for member startup. For
example:

gfsh>start server --J=-DDistributionManager.DISCONNECT_WAIT=<milliseconds>

Each process can have different DISCONNECT_WAIT settings.

Running VMware GemFire Locator Processes
The locator is a VMware GemFire process that tells new, connecting members where running
members are located and provides load balancing for server use.

You can run locators as peer locators, server locators, or both:

Peer locators give joining members connection information to members already running in
the locator’s cluster.

Server locators give clients connection information to servers running in the locator’s
cluster. Server locators also monitor server load and send clients to the least-loaded
servers.

By default, locators run as peer and server locators.

You can run the locator standalone or embedded within another VMware GemFire process.
Running your locators standalone provides the highest reliability and availability of the locator
service as a whole.

Locator Configuration and Log Files
Locator configuration and log files have the following properties:

VMware GemFire 9.10 Documentation

VMware by Broadcom 157

When you start a standalone locator using gfsh, gfsh will automatically load the required
JAR file lib/geode-dependencies.jar into the CLASSPATH of the JVM process. If you start
a standalone locator using the LocatorLauncher API, you must specify this JAR file inside
the command used to launch the locator process. For more information on CLASSPATH
settings in VMware GemFire, see Setting Up the CLASSPATH. You can modify the
CLASSPATH by specifying the --classpath parameter.

Locators are members of the cluster just like any other member. In terms of mcast-port and
locators configuration, a locator should be configured in the same manner as a server.
Therefore, if there are two other locators in the cluster, each locator should reference the
other locators (just like a server member would). For example:

gfsh> start locator --name=locator1 --port=9009 --mcast-port=0 \

--locators='host1[9001],host2[9003]'

You can configure locators within the gemfire.properties file or by specifying start-up
parameters on the command line. If you are specifying the locator’s configuration in a
properties file, locators require the same gemfire.properties settings as other members of
the cluster and the same gfsecurity.properties settings if you are using a separate,
restricted access security settings file.

For example, to configure both locators and a multicast port in gemfire.properties:

locators=host1[9001],host2[9003]

mcast-port=0

There is no cache configuration specific to locators.

For logging output, the locator creates a log file in its current working directory. Log file
output defaults to locator_name.log in the locator’s working directory. If you restart a
locator with a previously used locator name, the existing locator_name.log file is
automatically renamed for you (for example, locator1-01-01.log or locator1-02-01.log).
You can modify the level of logging details in this file by specifying a level in the --log-
level argument when starting up the locator.

By default, a locator will start in a subdirectory (named after the locator) under the directory
where gfsh is executed. This subdirectory is considered the current working directory. You
can also specify a different working directory when starting the locator in gfsh.

By default, a locator that has been shutdown and disconnected due to a network partition
event or member unresponsiveness will restart itself and automatically try to reconnect to
the existing cluster. When a locator is in the reconnecting state, it provides no discovery
services for the cluster. See Handling Forced Cache Disconnection Using Autoreconnect for
more details.

Locators and the Cluster Configuration Service
Locators use the cluster configuration service to save configurations that apply to all cluster
members, or to members of a specified group. The configurations are saved in the Locator’s
directory and are propagated to all locators in a cluster. When you start servers using gfsh, the
servers receive the group-level and cluster-level configurations from the locators.

VMware GemFire 9.10 Documentation

VMware by Broadcom 158

See Overview of the Cluster Configuration Service.

Start the Locator

Use the following guidelines to start the locator:

Standalone locator. Start a standalone locator in one of these ways:

Use the gfsh command-line utility. See gfsh for more information on using gfsh. For
example:

gfsh>start locator --name=locator1

gfsh> start locator --name=locator2 --bind-address=192.0.2.0 --port=13489

Start the locator using the main method in the
org.apache.geode.distributed.LocatorLauncher class and the Java executable.
Specifically, you use the LocatorLauncher class API to run an embedded Locator
service in Java application processes that you have created. The directory where
you execute the java command becomes the working directory for the locator
process.

When starting up multiple locators, do not start them up in parallel (in other words,
simultaneously). As a best practice, you should wait approximately 30 seconds for
the first locator to complete startup before starting any other locators. To check the
successful startup of a locator, check for locator log files. To view the uptime of a
running locator, you can use the gfsh status locator command.

Embedded (colocated) locator. Manage a colocated locator at member startup or through
the APIs:

Use the gemfire.properties start-locator setting to start the locator automatically
inside your VMware GemFire member. See the Reference. The locator stops
automatically when the member exits. The property has the following syntax:

#gemfire.properties

start-locator=[address]port[,server={true|false},peer={true|false}]

Example:

#gemfire.properties

start-locator=13489

Use org.apache.geode.distributed.LocatorLauncher API to start the locator inside
your code. Use the LocatorLauncher.Builder class to construct an instance of the
LocatorLauncher, and then use the start() method to start a Locator service
embedded in your Java application process. The other methods in the
LocatorLauncher class provide status information about the locator and allow you to
stop the locator.

import org.apache.geode.distributed.LocatorLauncher;

 public class MyEmbeddedLocator {

VMware GemFire 9.10 Documentation

VMware by Broadcom 159

 public static void main(String[] args){

 LocatorLauncher locatorLauncher = new LocatorLauncher.Builder()

 .setMemberName("locator1")

 .setPort(13489)

 .build();

 locatorLauncher.start();

 System.out.println("Locator successfully started");

 }

 }

Here’s another example that embeds the locator within an application, starts it and
then checks the status of the locator before allowing other members to access it:

package example;

import ...

class MyApplication implements Runnable {

 private final LocatorLauncher locatorLauncher;

 public MyApplication(final String... args) {

 validateArgs(args);

 locatorLauncher = new LocatorLauncher.Builder()

 .setMemberName(args[0])

 .setPort(Integer.parseInt(args[1])

 .setRedirectOutput(true)

 .build();

 }

 protected void args(final String[] args) {

 ...

 }

 public void run() {

 ...

 // start the Locator in-process

 locatorLauncher.start();

 // wait for Locator to start and be ready to accept member (client) c

onnections

 locatorLauncher.waitOnStatusResponse(30, 5, TimeUnit.SECONDS);

 ...

 }

 public static void main(final String... args) {

 new MyApplication(args).run();

 }

}

Then to execute the application, you would run:

VMware GemFire 9.10 Documentation

VMware by Broadcom 160

/working/directory/of/MyApplication$ java \

 -server -classpath "path/to/installation/lib/geode-dependencies.jar:/pat

h/to/application/classes.jar" \

 example.MyApplication Locator1 11235

The directory where you execute the java command becomes the working directory
for the locator process.

Check Locator Status

If you are connected to the cluster with gfsh, you can check the status of a running locator by
providing the locator name. For example:

gfsh>status locator --name=locator1

If you are not connected to a cluster, you can check the status of a local locator by providing the
process ID, the Locator’s host name and port, or the locator’s current working directory. For
example:

gfsh>status locator --pid=2986

or

gfsh>status locator --host=host1 --port=1035

or

$ gfsh status locator --dir=<locator_working_directory>

where <locator_working_directory> corresponds to the local working directory where the locator
is running.

If successful, the command returns the following information (with the JVM arguments that were
provided at startup):

$ gfsh status locator --dir=locator1

Locator in /home/user/locator1 on ubuntu.local[10334] as locator1 is currently online.

Process ID: 2359

Uptime: 17 minutes 3 seconds

GemFire Version: 8.0.0

Java Version: 1..0_272

Log File: /home/user/locator1/locator1.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster-conf

iguration-from-dir=false

 -Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true -Dsun.rmi.dg

c.server.gcInterval=9223372036854775806

Class-Path: /Users/username/apache_geode/lib/geode-dependencies.jar

Cluster configuration service is up and running.

Stop the Locator

VMware GemFire 9.10 Documentation

VMware by Broadcom 161

If you are connected to the cluster with gfsh, you can stop a running locator by providing the
locator name. For example:

gfsh>stop locator --name=locator1

If you are not connected to a cluster, you can stop a local locator by specifying the locator’s
process ID or the locator’s current working directory. For example:

gfsh>stop locator --pid=2986

or

gfsh>stop locator --dir=<locator_working_directory>

where <locator_working_directory> corresponds to the local working directory where the locator
is running.

Locators and Multi-Site (WAN) Deployments

If you use a multi-site (WAN) configuration, you can connect a locator to a remote site when
starting the locator.

To connect a new locator process to a remote locator in a WAN configuration, specify the following
at startup:

gfsh> start locator --name=locator1 --port=9009 --mcast-port=0 \

--J='-Dgemfire.remote-locators=192.0.2.0[9009],198.51.100.0[9009]'

Running VMware GemFire Server Processes

A VMware GemFire server is a process that runs as a long-lived, configurable member of a
client/server system.

The VMware GemFire server is used primarily for hosting long-lived data regions and for running
standard VMware GemFire processes such as the server in a client/server configuration. You can
start and stop servers using the following methods:

The gfsh command-line tool.

Programmatically, through the org.apache.geode.distributed.ServerLauncher API. The
ServerLauncher API can only be used for VMware GemFire Servers that were started with
gfsh or with the ServerLauncher class itself.

Default Server Configuration and Log Files

The gfsh utility uses a working directory for its configuration files and log files. These are the
defaults and configuration options:

When you start a standalone server using gfsh, gfsh will automatically load the required
JAR file lib/geode-dependencies.jar into the CLASSPATH of the JVM process. If you start
a standalone server using the ServerLauncher API, you must specify this JAR file inside

VMware GemFire 9.10 Documentation

VMware by Broadcom 162

your command to launch the process. For more information on CLASSPATH settings in
VMware GemFire, see Setting Up the CLASSPATH.

Servers are configured like any other VMware GemFire process, with gemfire.properties
and shared cluster configuration files. It is not programmable except through application
plug-ins. Typically, you provide the gemfire.properties file and the gfsecurity.properties
file. You can also specify a cache.xml file in the cache server’s working directory.

By default, a new server started with gfsh receives its initial cache configuration from the
cluster configuration service, assuming the locator is running the cluster configuration
service. If you specify a group when starting the server, the server also receives
configurations that apply to a group. The shared configuration consists of cache.xml files,
gemfire.properties files, and deployed jar files. You can disable use of the cluster
configuration service by specifying --use-cluster-configuration=false when starting the
server using gfsh. See Overview of the Cluster Configuration Service.

If you are using the Spring Framework, you can specify a Spring ApplicationContext XML
file when starting up your server in gfsh by using the --spring-xml-location command-line
option. This option allows you to bootstrap your VMware GemFire server process with your
Spring application’s configuration. See Spring documentation for more information on this
file.

For logging output, log file output defaults to <server-name>.log in the cache server’s
working directory. If you restart a server with the same server name, the existing log file is
automatically renamed, for example, server1-01-01.log and server1-02-01.log. You can
modify the level of logging details in this file by specifying a level in the --log-level
argument when starting up the server.

By default, the server will start in a subdirectory, named after the server’s specified name,
under the directory where gfsh is executed. This subdirectory is considered the current
working directory. You can also specify a different working directory when starting the
cache server in gfsh.

By default, a server process that has been shutdown and disconnected due to a network
partition event or member unresponsiveness will restart itself and automatically try to
reconnect to the existing cluster. See Handling Forced Cache Disconnection Using
Autoreconnect for more details.

You can pass JVM parameters to the server’s JVM by using the --J=-
Dproperty.name=value upon server startup. These parameters can be Java properties or
VMware GemFire properties such as gemfire.jmx-manager. For example:

gfsh>start server --name=server1 --J=-Dgemfire.jmx-manager=true \

--J=-Dgemfire.jmx-manager-start=true --J=-Dgemfire.http-port=8080

We recommend that you do not use the -XX:+UseCompressedStrings and -
XX:+UseStringCache JVM configuration properties when starting up servers. These JVM
options can cause issues with data corruption and compatibility.

Start the Server with gfsh

See the gfsh start server command reference page for syntax information.

VMware GemFire 9.10 Documentation

VMware by Broadcom 163

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-app-ctx

These example gfsh start server start commands specify a cache.xml file for cache configuration,
and use different incoming client connection ports:

gfsh>start server --name=server1 \

--cache-xml-file=../ServerConfigs/cache.xml --server-port=40404

gfsh>start server --name=server2 \

--cache-xml-file=../ServerConfigs/cache.xml --server-port=40405

The location of the cache.xml file and the setting for the client connection port could instead be
defined within a gemfire.properties file. Then, start the server specifying the gemfire.properties
file, as in the example command:

gfsh>start server --name=server1 \

--properties-file=/home/username/cluster/gemfire.properties

To start a server with an embedded JMX Manager:

gfsh>start server --name=server2 \

--J=-Dgemfire.jmx-manager=true --J=-Dgemfire.jmx-manager-start=true

When both --max-heap and --initial-heap are specified during server startup, additional GC
parameters are specified on your behalf. If you do not want additional default GC properties set,
then use the -Xms & -Xmx JVM options to set just these parameters. See Controlling Heap Use with
the Resource Manager for more information. To start a server, providing JVM configuration
settings:

gfsh>start server --name=server3 \

--J=-Xms80m,-Xmx80m --J=-XX:+UseConcMarkSweepGC,-XX:CMSInitiatingOccupancyFraction=65

Start the Server Programmatically

Use the org.apache.geode.distributed.ServerLauncher API to start the cache server process
inside your code. Use the ServerLauncher.Builder class to construct an instance of the
ServerLauncher, and then use the start() method to start the server service. The other methods
in the ServerLauncher class provide status information about the server and allow you to stop the
server.

import org.apache.geode.distributed.ServerLauncher;

 public class MyEmbeddedServer {

 public static void main(String[] args){

 ServerLauncher serverLauncher = new ServerLauncher.Builder()

 .setMemberName("server1")

 .setServerPort(40405)

 .set("jmx-manager", "true")

 .set("jmx-manager-start", "true")

 .build();

 serverLauncher.start();

 System.out.println("Cache server successfully started");

VMware GemFire 9.10 Documentation

VMware by Broadcom 164

 }

}

Check Server Status

Once connected to the cluster in gfsh, check the status of a running cache server by providing the
server name:

gfsh>status server --name=server1

If you are not connected to a cluster, you can check the status of a local cache server by providing
the process ID or the server’s current working directory. For example:

gfsh>status server --pid=2484

or

% gfsh status server --dir=server1

If successful, the output provides information as in this sample:

% gfsh status server --dir=server4

Server in /home/username/server4 on 192.0.2.0[40404] as server4 is currently online.

Process ID: 49008

Uptime: 2 minutes 4 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /home/username/server4/server4.log

JVM Arguments:

...

Stop Server

When connected to the cluster in gfsh, stop a running cache server by providing the server name:

gfsh>stop server --name=server1

If not connected, you can stop a local cache server by specify the server’s current working
directory or the process ID. For example:

gfsh>stop server --pid=2484

or

gfsh>stop server --dir=server1

You can also use the gfsh shutdown command to shut down all cache servers in an orderly fashion.
Doing a shutdown is the correct approach for systems with persistent regions. See Starting Up and
Shutting Down Your System for more details.

Managing System Output Files

VMware GemFire 9.10 Documentation

VMware by Broadcom 165

VMware GemFire output files are optional and can become quite large. Work with your system
administrator to determine where to place them to avoid interfering with other system activities.

VMware GemFire includes several types of optional output files as described below.

Log Files. Comprehensive logging messages to help you confirm system configuration and
to debug problems in configuration and code. Configure log file behavior in the
gemfire.properties file. See Logging.

Statistics Archive Files. Standard statistics for caching and distribution activities, which you
can archive on disk. Configure statistics collection and archival in the gemfire.properties,
archive-disk-space-limit and archive-file-size-limit. See the Reference.

Disk Store Files. Hold persistent and overflow data from the cache. You can configure
regions to persist data to disk for backup purposes or overflow to disk to control memory
use. The subscription queues that servers use to send events to clients can be overflowed
to disk. Gateway sender queues overflow to disk automatically and can be persisted for high
availability. Configure these through the cache.xml. See Disk Storage.

Firewall Considerations

You can configure and limit port usage for situations that involve firewalls, for example, between
client-server or server-server connections.

Firewalls and Connections

Be aware of possible connection problems that can result from running a firewall on your
machine.

Firewalls and Ports

Make sure your port settings are configured correctly for firewalls.

Firewalls and Connections

Be aware of possible connection problems that can result from running a firewall on your machine.

VMware GemFire is a network-centric distributed system, so if you have a firewall running on your
machine it could cause connection problems. For example, your connections may fail if your firewall
places restrictions on inbound or outbound permissions for Java-based sockets. You may need to
modify your firewall configuration to permit traffic to Java applications running on your machine.
The specific configuration depends on the firewall you are using.

As one example, firewalls may close connections to VMware GemFire due to timeout settings. If a
firewall senses no activity in a certain time period, it may close a connection and open a new
connection when activity resumes, which can cause some confusion about which connections you
have.

For more information on how VMware GemFire client and servers connect, see the following
topics:

How Client/Server Connections Work

Socket Communication

Controlling Socket Use

VMware GemFire 9.10 Documentation

VMware by Broadcom 166

Setting Socket Buffer Sizes

Firewalls and Ports

Make sure your port settings are configured correctly for firewalls.

There are several different port settings that need to be considered when using firewalls:

Port that the cache server listens on. This is configurable using the cache-server element in
cache.xml, on the CacheServer class in Java APIs, and as a command line option to the
gfsh start server command.

By default, if not otherwise specified, VMware GemFire clients and servers discover each
other on a pre-defined port (40404) on the localhost.

Locator port. VMware GemFire clients can use the locator to automatically discover cache
servers. The locator port is configurable as a command-line option to the gfsh start
locator command. Locators are used in the peer-to-peer cache deployments to discover
other processes. They can be used by clients to locate servers as an alternative to
configuring clients with a collection of server addresses and ports.

By default, if not otherwise specified, VMware GemFire locators use the default port 10334.

Since locators start up the cluster, locators must also have their ephemeral port range and
TCP port accessible to other members through the firewall.

For clients, you configure the client to connect to servers using the client’s pool
configuration. The client’s pool configuration has two options: you can create a pool with
either a list of server elements or a list of locator elements. For each element, you specify
the host and port. The ports specified must be made accessible through your firewall.

Limiting Ephemeral Ports for Peer-to-Peer Membership

By default, VMware GemFire assigns ephemeral ports, that is, temporary ports assigned from a
designated range, which can encompass a large number of possible ports. When a firewall is
present, the ephemeral port range usually must be limited to a much smaller number, for example
six. If you are configuring P2P communications through a firewall, you must also set the TCP port
for each process and ensure that UDP traffic is allowed through the firewall.

Properties for Firewall and Port Configuration

This table contains properties potentially involved in firewall behavior, with a brief description of
each property.

Configuration area Property or Setting Definition

peer-to-peer config
conserve-sockets Specifies whether sockets are shared

by the system member's threads.

VMware GemFire 9.10 Documentation

VMware by Broadcom 167

Configuration area Property or Setting Definition

peer-to-peer config
locators The list of locators used by system

members. The list must be configured
consistently for every member of the
cluster.

peer-to-peer config
mcast-address Address used to discover other

members of the cluster. Only used if
mcast-port is non-zero. This attribute
must be consistent across the cluster.

peer-to-peer config
mcast-port Port used, along with the mcast-

address, for multicast communication
with other members of the cluster. If
zero, multicast is disabled for data
distribution.

peer-to-peer config
membership-port-range The range of ephemeral ports available

for unicast UDP messaging and for TCP
failure detection in the peer-to-peer
cluster.

peer-to-peer config
tcp-port The TCP port to listen on for cache

communications.

Configuration Area Property or Setting Definition

cache server config
hostname-for-clients Hostname or IP address to pass to the

client as the location where the server
is listening.

cache server config
max-connections Maximum number of client

connections for the server. When the
maximum is reached, the server refuses
additional client connections.

cache server config
port (cache.xml) or --port
parameter to the gfsh start server
command

Port that the server listens on for client
communication.

Default Port Configurations

Port Name Related Configuration Setting Default Port

Cache Server port (cache.xml)
40404

HTTP
http-service-port 7070

VMware GemFire 9.10 Documentation

VMware by Broadcom 168

Port Name Related Configuration Setting Default Port

Locator
start-locator (for embedded
locators) or --port parameter to the
gfsh start locator command.

if not specified upon startup or in the
start-locator property, uses default
port 10334

Membership Port Range
membership-port-range 41000 to 61000

Memcached Port
memcached-port not set

Multicast
mcast-port 0

RMI
jmx-manager-port 1099

TCP
tcp-port ephemeral port

Properties for Firewall and Port Configuration in Multi-Site
(WAN) Configurations
Each gateway receiver uses a single port to accept connections from gateway senders in other
systems. The configuration of a gateway receiver specifies a range of possible port values to use.
VMware GemFire selects an available port from the specified range when the gateway receiver
starts. Configure your firewall so that the full range of possible port values is accessible by gateway
senders from across the WAN.

Configuration Area Property or Setting Definition

multi-site (WAN) config
for gateway sender

hostname-for-senders Hostname or IP address of the
gateway receiver used by gateway
senders to connect.

multi-site (WAN) config
for locator

remote-locators List of locators (and their ports) that
are available on the remote WAN site.

multi-site (WAN) config
for gateway receiver

start-port and end-port (cache.xml) or –start-
port and –end-port parameters to the gfsh start
gateway receiver command

Port range that the gateway receiver
can use to listen for gateway sender
communication.

VMware GemFire 9.10 Documentation

VMware by Broadcom 169

Basic Configuration and Programming

Basic Configuration and Programming describes how to configure cluster and cache properties for
your VMware GemFire installation. For your applications, it provides guidance for writing code to
manage your cache and cluster connection, data regions, and data entries, including custom
classes.

Cluster and Cache Configuration

To work with your VMware GemFire applications, you use a combination of configuration
files and application code.

Cache Management

The VMware GemFire cache is the entry point to VMware GemFire caching management.
VMware GemFire provides different APIs and XML configuration models to support the
behaviors of different members.

Data Regions

The region is the core building block of the VMware GemFire cluster. All cached data is
organized into data regions and you do all of your data puts, gets, and querying activities
against them.

Data Entries

The data entry is the key/value pair where you store your data. You can manage your
entries individually and in batches. To use domain objects for your entry values and keys,
you need to follow VMware GemFire requirements for data storage and distribution.

Cluster and Cache Configuration

To work with your VMware GemFire applications, you use a combination of configuration files and
application code.

Cluster Members

Cluster members are programs that connect to a VMware GemFire cluster. You configure
members to belong to a single cluster, and you can optionally configure them to be clients
or servers to members in other clusters, and to communicate with other clusters.

Setting Properties

VMware GemFire provides a default cluster configuration for out-of-the-box systems. To
use non-default configurations and to fine-tune your member communication, you can use
a mix of various options to customize your cluster configuration.

Options for Configuring the Cache and Data Regions

VMware GemFire 9.10 Documentation

VMware by Broadcom 170

To populate your VMware GemFire cache and fine-tune its storage and distribution
behavior, you need to define cached data regions and provide custom configuration for the
cache and regions.

Local and Remote Membership and Caching

For many VMware GemFire discussions, you need to understand the difference between
local and remote membership and caching.

Cluster Members

Cluster members are programs that connect to a VMware GemFire cluster. You configure
members to belong to a single cluster, and you can optionally configure them to be clients or
servers to members in other clusters, and to communicate with other clusters.

Member Overview

Cluster members (or simply “members”) connect to the VMware GemFire cluster when they create
the VMware GemFire data cache. The members’ cluster is configured through VMware GemFire
properties. See gemfire.properties and gfsecurity.properties (VMware GemFire Properties).
VMware GemFire properties specify all necessary information for member startup, initialization, and
communication.

Note: You cannot change a member’s properties while the member is connected to the cluster.

Use the properties to define:

How to find and communicate with other members

How to perform logging and statistics activities

Which persistent configuration or cache.xml file to use for cache and data region
initialization

Other options, including event conflation, how to handle network loss, and security settings

Membership and System Topologies

Every VMware GemFire process is a member of a cluster, even if the cluster is defined as
standalone, with just one member. You can run an individual cluster in isolation or you can combine
clusters for vertical and horizontal scaling. See Topology and Communication General Concepts.

Peer-to-Peer Clusters. Members that define the same member discovery properties
belong to the same cluster and are peers to one another.

Client/Server Installations. The client/server topology uses relationships that you
configure between members of multiple clusters. You configure some or all of the peers in
one cluster to act as cache servers to clients connecting from outside the cluster. Each
server can host many client processes, managing cache access for all in an efficient,
vertically hierarchical cache configuration. You configure the client applications to connect
to the servers, using a client cache configuration. Clients run as members of standalone
VMware GemFire clusters, with no peers, so all data updates and requests go to the
servers.

VMware GemFire 9.10 Documentation

VMware by Broadcom 171

Multi-site Installations

The multi-site topology uses relationships that you configure between members of multiple
clusters. Through this configuration, you loosely couple two or more clusters for automated data
distribution. This is usually done for sites at geographically separate locations. You configure a
subset of peers in each cluster site with gateway senders and/or gateway receivers to manage
events that are distributed between the sites.

In the context of a single cluster, unless otherwise specified, “remote member” refers to another
member of the same cluster. In client/server and multi-site installations, “remote” generally refers
to members in other clusters. For example, all servers are “remote” to the clients that connect to
them. Each client runs standalone, with connections only to the server tier, so all servers and their
other clients are “remote” to the individual client. All gateway receivers are “remote” to the
gateway senders that connect to them from other clusters, and to those gateway senders’ peers.

Setting Properties

VMware GemFire provides a default configuration for out-of-the-box systems. To use non-default
configurations and to fine-tune your member communication, you can use a mix of various options
to customize your configuration.

VMware GemFire properties are used to join a cluster and configure system member behavior.
Configure your VMware GemFire properties through the gemfire.properties file, the Java API, or
command-line input. Generally, you store all your properties in the gemfire.properties file, but you
may need to provide properties through other means, for example, to pass in security properties
for a username and password that you have received from keyboard input.

Note: Check with your VMware GemFire system administrator before changing properties through
the API, including the gemfire.properties and gfsecurity.properties settings. The system
administrator may need to set properties at the command line or in configuration files. Any change
made through the API overrides those other settings.

Note: The product defaultConfigs directory has a sample gemfire.properties file with all default
settings.

Set properties by any combination of the following. The system looks for the settings in the order
listed:

1. java.lang.System property setting. Usually set at the command line. For applications, set
these in your code or at the command line.

Naming: Specify these properties in the format gemfire.property-name, where property-
name matches the name in the gemfire.properties file. To set the gemfire property file
name, use gemfirePropertyFile by itself - In the API, set the System properties before the
cache creation call. Example:

``` pre

System.setProperty("gemfirePropertyFile", "gfTest");

System.setProperty("gemfire.mcast-port", "10999");

Cache cache = new CacheFactory().create();

```

VMware GemFire 9.10 Documentation

VMware by Broadcom 172

At the java command line, pass in System properties using the -D switch. Example:

java -DgemfirePropertyFile=gfTest -Dgemfire.mcast-port=10999 test.Program

2. Entry in a Properties object.

Naming: Specify these properties using the names in the gemfire.properties file. To set
the gemfire property file name, use gemfirePropertyFile. - In the API, create a Properties
object and pass it to the cache create method. Example:

``` pre

Properties properties= new Properties();

properties.setProperty("log-level", "warning");

properties.setProperty("name", "testMember2");

ClientCache userCache = 

    new ClientCacheFactory(properties).create();

```

For the cache server, pass the properties files on the gfsh command line as
command-line options. Example:

gfsh>start server --name=server_name --mcast-port=10338 --properties-file

=serverConfig/gemfire.properties --security-properties-file=gfsecurity.pr

operties

See Running VMware GemFire Server Processes for more information on running
cache servers.

3. Entry in a gemfire.properties file. See Deploying Configuration Files without the Cluster
Configuration Service. Example:

cache-xml-file=cache.xml

conserve-sockets=true

disable-tcp=false

4. Default value. The default values are defined within the API for
org.apache.geode.distributed.ConfigurationProperties.

Options for Configuring the Cache and Data Regions

To populate your VMware GemFire cache and fine-tune its storage and distribution behavior, you
need to define cached data regions and provide custom configuration for the cache and regions.

Cache configuration properties define:

Cache-wide settings such as disk stores, communication timeouts, and settings designating
the member as a server

Cache data regions

Configure the cache and its data regions through one or more of these methods:

Through a persistent configuration that you define when issuing commands that use the
gfsh command line utility. The gfsh utility supports the administration, debugging, and

VMware GemFire 9.10 Documentation

VMware by Broadcom 173

deployment of VMware GemFire processes and applications. You can use gfsh to configure
regions, locators, servers, disk stores, event queues, and other objects.

As you issue commands, gfsh saves a set of configurations that apply to the entire cluster
and also saves configurations that only apply to defined groups of members within the
cluster. You can re-use these configurations to create a cluster. See Overview of the
Cluster Configuration Service.

Through declarations in the XML file named in the cache-xml-file gemfire.properties
setting. This file is generally referred to as the cache.xml file, but it can have any name. See
cache.xml.

Through application calls to the org.apache.geode.cache.CacheFactory,
org.apache.geode.cache.Cache and org.apache.geode.cache.Region APIs.

Local and Remote Membership and Caching

For many VMware GemFire discussions, you need to understand the difference between local and
remote membership and caching.

Discussions of VMware GemFire membership and caching activities often differentiate between
local and remote. Local caching always refers to the central member under discussion, if there is
one such obvious member, and remote refers to other members. If there is no clear, single local
member, the discussion assigns names to the members to differentiate. Operations, data,
configuration, and so forth that are “local to member Q” are running or resident inside the member
Q process. Operations, data, configuration, and so on, that are “remote to member Q” are running
or resident inside some other member.

The local cache is the cache belonging to the local member. All other caches are remote, whether
in other members of the same cluster or in different clusters.

Cache Management

The VMware GemFire cache is the entry point to VMware GemFire caching management. VMware
GemFire provides different APIs and XML configuration models to support the behaviors of
different members.

Introduction to Cache Management

The cache provides in-memory storage and management for your data.

Managing a Peer or Server Cache

You start your peer or server cache using a combination of XML declarations and API calls.
Close the cache when you are done.

Managing a Client Cache

You have several options for client cache configuration. Start your client cache using a
combination of XML declarations and API calls. Close the client cache when you are done.

Managing a Cache in a Secure System

When you create your cache in a secure system, you provide credentials to the connection
process for authentication by already-running, secure members. Clients connect to secure

VMware GemFire 9.10 Documentation

VMware by Broadcom 174

servers. Peers are authenticated by secure locators or peer members.

Managing RegionServices for Multiple Secure Users

In a secure system, you can create clients with multiple, secure connections to the servers
from each client. The most common use case is a VMware GemFire client embedded in an
application server that supports data requests from many users. Each user may be
authorized to access a subset of data on the servers. For example, customer users may be
allowed to see and update only their own orders and shipments.

Launching an Application after Initializing the Cache

You can specify a callback application that is launched after the cache initialization.

Introduction to Cache Management

The cache provides in-memory storage and management for your data.

You organize your data in the cache into data regions, each with its own configurable behavior. You
store your data into your regions in key/value pairs called data entries. The cache also provides
features like transactions, data querying, disk storage management, and logging. See the Javadocs
for org.apache.geode.cache.Cache.

You generally configure caches using the gfsh command-line utility or a combination of XML
declarations and API calls. VMware GemFire loads and processes your XML declarations when you
first create the cache.

VMware GemFire has one cache type for managing server and peer caches and one for managing
client caches. The cache server process automatically creates its server cache at startup. In your
application process, the cache creation returns an instance of the server/peer or client cache. From
that point on, you manage the cache through API calls in your application.

The Caching APIs

VMware GemFire’s caching APIs provide specialized behavior for different system member types
and security settings.

org.apache.geode.cache.RegionService. Generally, you use the RegionService functionality
through instances of Cache and ClientCache. You only specifically use instances of
RegionService for limited-access users in secure client applications that service many users.
The RegionService API provides access to existing cache data regions and to the standard
query service for the cache. For client caches, queries are sent to the server tier. For
server and peer caches, queries are run in the current cache and any available peers.
RegionService is implemented by GemFireCache.

org.apache.geode.cache.GemFireCache. You do not specifically use instances of
GemFireCache, but you use GemFireCache functionality in your instances of Cache and
ClientCache. GemFireCache extends RegionService and adds general caching features like
region attributes, disk stores for region persistence and overflow, and access to the
underlying cluster. GemFireCache is implemented by Cache and ClientCache.

org.apache.geode.cache.Cache. Use the Cache interface to manage server and peer caches.
You have one Cache per server or peer process. The Cache extends GemFireCache and adds

VMware GemFire 9.10 Documentation

VMware by Broadcom 175

server/peer caching features like communication within the cluster, region creation,
transactions and querying, and cache server functionality.

org.apache.geode≈setting_cache_initializer.cache.ClientCache. Use the ClientCache
interface to manage the cache in your clients. You have one ClientCache per client
process. The ClientCache extends GemFireCache and adds client-specific caching features
like client region creation, subscription keep-alive management for durable clients, querying
on server and client tiers, and RegionService creation for secure access by multiple users
within the client.

The Cache XML

Your cache.xml must be formatted according to the product XML schema definition cache-1.0.xsd.
The schema definition file is available at http://geode.apache.org/schema/cache/cache-1.0.xsd.

You use one format for peer and server caches and another for client caches.

cache.xml for Peer/Server:

<?xml version="1.0" encoding="UTF-8"?>

<cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0”>

...

</cache>

cache.xml for Client:

<?xml version="1.0" encoding="UTF-8"?>

<client-cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0”>

...

</client-cache>

For more information on the cache.xml file, see cache.xml.

Create and Close a Cache
Your system configuration and cache configuration are initialized when you start your member
processes and create each member’s VMware GemFire cache. If you are using the cluster
configuration service, member processes can pick up its cache configuration from the cluster or
group’s current configuration. See Overview of the Cluster Configuration Service.

The steps in this section use gemfire.properties and cache.xml file examples, except where API is
required. You can configure your cluster properties and cache through the API as well, and you can
use a combination of file configuration and API configuration.

VMware GemFire 9.10 Documentation

VMware by Broadcom 176

http://geode.apache.org/schema/cache/cache-1.0.xsd

The XML examples may not include the full cache.xml file listing. All of your declarative cache
configuration must conform to the cache XSD at http://geode.apache.org/schema/cache/cache-
1.0.xsd.

For all of your VMware GemFire applications:

1. Create your Cache, for peer/server applications, or ClientCache, for client applications. This
connects to the VMware GemFire system you have configured and initializes any
configured data regions. Use your cache instance to access your regions and perform your
application work.

2. Close your cache when you are done. This frees up resources and disconnects your
application from the cluster in an orderly manner.

Follow the instructions in the subtopics under Cache Management to customize your cache
creation and closure for your application needs. You may need to combine more than one of the
sets of instructions. For example, to create a client cache in a system with security, you would
follow the instructions for creating and closing a client cache and for creating and closing a cache in
a secure system.

Export and Import a Cache Snapshot

To aid in the administration of cache data and speed the setup of new environments, you can
export a snapshot of the entire cache (all regions) and then import the snapshot into a new cache.
For example, you could take a snapshot of the production environment cache in order to import
the cache’s data into a testing environment.

For more details on exporting and importing snapshots of a cache, see Cache and Region
Snapshots.

Cache Management with gfsh and the Cluster Configuration
Service
You can use gfsh commands to mange a server cache. There are gfsh commands to create regions,
start servers, and to create queues and other objects. As you issue these commands, the Cluster
Configuration Service saves cache.xml and gemfire.properties files on the locators and distributes
those configurations to any new members that join the cluster. See Overview of the Cluster
Configuration Service.

Managing a Peer or Server Cache
You start your peer or server cache using a combination of XML declarations and API calls. Close
the cache when you are done.

VMware GemFire peers are members of a VMware GemFire cluster that do not act as clients to
another VMware GemFire cluster. VMware GemFire servers are peers that also listen for and
process client requests.

1. Create your cache:

1. Start up a cluster and the cluster configuration service:

VMware GemFire 9.10 Documentation

VMware by Broadcom 177

http://geode.apache.org/schema/cache/cache-1.0.xsd

1. Start a locator with --enable-cluster-configuration set to true. (It is set
true by default.)

gfsh>start locator --name=locator1

2. Start up member processes that use the cluster configuration service
(enabled by default):

gfsh>start server --name=server1 --server-port=40404

3. Create regions:

gfsh>create region --name=customerRegion --type=REPLICATE

gfsh>create region --name=ordersRegion --type=PARTITION

2. Or if you are not using the cluster configuration service, directly configure cache.xml
in each member of your cluster. In your cache.xml, use the cache DOCTYPE and
configure your cache inside a <cache> element. Example:

<?xml version="1.0" encoding="UTF-8"?>

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geod

e.apache.org/schema/cache/cache-1.0.xsd"

 version="1.0”>

 // NOTE: Use this <cache-server> element only for server processes

 <cache-server port="40404"/>

 <region name="customerRegion" refid="REPLICATE" />

 <region name="ordersRegion" refid="PARTITION" />

</cache>

3. To programmatically create the Cache instance:

In your Java application, use the CacheFactory create method:

Cache cache = new CacheFactory().create();

If you are running a server using the VMware GemFire cacheserver process,
it automatically creates the cache and connection at startup and closes both
when it exits.

The system creates the connection and initializes the cache according to your
gemfire.properties and cache.xml specifications.

2. Close your cache when you are done using the inherited close method of the Cache
instance:

cache.close();

Managing a Client Cache

VMware GemFire 9.10 Documentation

VMware by Broadcom 178

You have several options for client cache configuration. Start your client cache using a combination
of XML declarations and API calls. Close the client cache when you are done.

VMware GemFire clients are processes that send most or all of their data requests and updates to a
VMware GemFire server system. Clients run as standalone processes, without peers of their own.

Note: VMware GemFire automatically configures the cluster for your ClientCache as standalone,
which means the client has no peers. Do not try to set the gemfire.properties mcast-port or
locators for a client application or the system will throw an exception.

1. Create your client cache:

1. In your cache.xml, use the client-cache DOCTYPE and configure your cache inside
a <client-cache> element. Configure your server connection pool and your regions
as needed. Example:

<?xml version="1.0" encoding="UTF-8"?>

<client-cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geod

e.apache.org/schema/cache/cache-1.0.xsd"

 version="1.0">

 <pool name="serverPool">

 <locator host="host1" port="44444"/>

 </pool>

 <region name="exampleRegion" refid="PROXY"/>

</client-cache>

Note: Applications that use a client-cache may want to set concurrency-checks-
enabled to false for a region in order to see all events for that region. VMware
GemFire server members can continue using concurrency checks, but they will pass
all events to the client cache. This configuration ensures that the client sees all
region events, but it does not prevent the client cache region from becoming out-
of-sync with the server cache. See Consistency for Region Updates.

2. If you use multiple server pools, configure the pool name explicitly for each client
region. Example:

<pool name="svrPool1">

 <locator host="host1" port="40404"/>

</pool>

<pool name="svrPool2">

 <locator host="host2" port="40404"/>

</pool>

<region name="clientR1" refid="PROXY" pool-name="svrPool1"/>

<region name="clientR2" refid="PROXY" pool-name="svrPool2"/>

<region name="clientsPrivateR" refid="LOCAL"/>

3. In your Java client application, create the cache using the ClientCacheFactory
create method. Example:

ClientCache clientCache = new ClientCacheFactory().create();

VMware GemFire 9.10 Documentation

VMware by Broadcom 179

This creates the server connections and initializes the client’s cache according to
your gemfire.properties and cache.xml specifications.

2. Close your cache when you are done using the close method of your Cache instance:

cache.close();

If your client is durable and you want to maintain your durable queues while the client
cache is closed, use:

clientCache.close(true);

Managing a Cache in a Secure System
A secured system does both authentication at connection time and authorization prior to cache
operations. Client apps and cluster members (servers and locators) require configuration and setup
when the SecurityManager is enabled.

See the section on Security for details. For authentication, see Implementing Authentication.

Managing RegionServices for Multiple Secure Users
In a secure system, you can create clients with multiple, secure connections to the servers from
each client. The most common use case is a VMware GemFire client embedded in an application
server that supports data requests from many users. Each user may be authorized to access a
subset of data on the servers. For example, customer users may be allowed to see and update only
their own orders and shipments.

In a single client, multiple authenticated users can all access the same ClientCache through
instances of the RegionService interface. Because there are multiple users with varying
authorization levels, access to cached data is done entirely through the servers, where each user’s
authorization can be managed. Follow these steps in addition to the steps in Managing a Cache in a
Secure System.

1. Create your cache and RegionService instances:

1. Configure your client’s server pool for multiple secure user authentication. Example:

<pool name="serverPool" multiuser-authentication="true">

 <locator host="host1" port="44444"/>

 </pool>

This enables access through the pool for the RegionService instances and disables it
for the ClientCache instance.

2. After you create your ClientCache, from your ClientCache instance, for each user
call the createAuthenticatedView method, providing the user’s particular
credentials. These are create method calls for two users:

Properties properties = new Properties();

properties.setProperty("security-username", cust1Name);

properties.setProperty("security-password", cust1Pwd);

RegionService regionService1 =

VMware GemFire 9.10 Documentation

VMware by Broadcom 180

 clientCache.createAuthenticatedView(properties);

properties = new Properties();

properties.setProperty("security-username", cust2Name);

properties.setProperty("security-password", cust2Pwd);

RegionService regionService2 =

 clientCache.createAuthenticatedView(properties);

For each user, do all of your caching and region work through the assigned RegionService
instance. Access to the server cache will be governed by the server’s configured
authorization rules for each individual user.

2. Close your cache by closing the ClientCache instance only. Do not close the RegionService
instances first. This is especially important for durable clients.

Requirements and Caveats for RegionService

Once each region is created, you can perform operations on it through the ClientCache instance or
the RegionService instances, but not both.

Note: You can use the ClientCache to create a region that uses a pool configured for multi-user
authentication, then access and do work on the region using your RegionService instances.

To use RegionService, regions must be configured as EMPTY. Depending on your data access
requirements, this configuration might affect performance, because the client goes to the server
for every get.

Launching an Application after Initializing the Cache

You can specify a callback application that is launched after the cache initialization.

By specifying an <initializer> element in your cache.xml file, you can trigger a callback
application, which is run after the cache has been initialized. Applications that use the cacheserver
script to start up a server can also use this feature to hook into a callback application. To use this
feature, you need to specify the callback class within the <initializer> element. This element
should be added to the end of your cache.xml file.

You can specify the <initializer> element for either server caches or client caches.

The callback class must implement the Declarable interface. When the callback class is loaded, its
init method is called, and any parameters defined in the <initializer> element are passed as
properties.

The following is an example specification.

In cache.xml:

<initializer>

 <class-name>MyInitializer</class-name>

 <parameter name="members">

 <string>2</string>

 </parameter>

</initializer>

Here’s the corresponding class definition:

VMware GemFire 9.10 Documentation

VMware by Broadcom 181

import org.apache.geode.cache.Declarable;

public class MyInitializer implements Declarable {

 public void init(Properties properties) {

 System.out.println(properties.getProperty("members"));

 }

}

The following are some additional real-world usage scenarios:

1. Start a SystemMembershipListener

<initializer>

 <class-name>TestSystemMembershipListener</class-name>

</initializer>

2. Write a custom tool that monitors cache resources

<initializer>

 <class-name>ResourceMonitorCacheXmlLoader</class-name>

</initializer>

Any singleton or timer task or thread can be instantiated and started using the initializer element.

Data Regions
The region is the core building block of the VMware GemFire cluster. All cached data is organized
into data regions and you do all of your data puts, gets, and querying activities against them.

Region Management

VMware GemFire provides gfsh commands, APIs, and XML configuration models to
support the configuration and management of data regions.

Region Naming

To be able to perform all available operations on your data regions, follow these region
naming guidelines.

Region Shortcuts and Custom Named Region Attributes

VMware GemFire provides region shortcut settings, with preset region configurations for
the most common region types. For the easiest configuration, start with a shortcut setting
and customize as needed. You can also store your own custom configurations in the cache
for use by multiple regions.

Storing and Retrieving Region Shortcuts and Custom Named Region Attributes

Use these examples to get started with VMware GemFire region shortcuts.

Managing Region Attributes

Use region attributes to fine-tune the region configuration provided by the region shortcut
settings.

Creating Custom Attributes for Regions and Entries

VMware GemFire 9.10 Documentation

VMware by Broadcom 182

Use custom attributes to store information related to your region or its entries in your
cache. These attributes are only visible to the local application and are not distributed.

Building a New Region with Existing Content

A new region or cluster may need to be loaded with the data of an existing system. There
are two approaches to accomplish this task. The approach used depends upon the
organization of both the new and the existing cluster.

Region Management

Operations that create, destroy, invalidate, clear, and change the configuration of regions work
with gfsh commands, through an XML description, and via API calls.

You store your data in region entry key/value pairs, with keys and values being any object types
your application needs. The org.apache.geode.cache.Region interface implements java.util.Map.

Each region’s attributes define how the data in the region is stored, distributed, and managed. Data
regions can be distributed, partitioned among system members, or local to the member.

Region shortcuts identify commonly-used types of regions. See Region Shortcuts for more
information.

Note: If you change attributes that define a region, you must restart the member for the changes
to take effect.

Creating a Region

Creating a Region with gfsh

A simple and fast way to create a data region in the VMware GemFire cache is to use the gfsh
command-line tool.

Region creation is subject to attribute consistency checks, both internal to the cache and, if the
region is not local, between all caches where the region is defined.

The gfsh create region command reference page details command line options for creating a
region with gfsh.

With gfsh connected to a JMX server, an example command that creates a replicated region is

gfsh>create region --name=region1 --type=REPLICATE

Export the configuration files of your server so that you can save your region’s configuration and
recreate the region with the same attributes the next time you start up your cache server. See
export config for details.

Note: The cluster configuration service, which is enabled by default, automatically saves the
configuration on the locators in the cluster. After you use the gfsh create region command, any
new servers that you start that attach to the same locator receive the same configuration. You can
also create alternate configurations within a cluster by specifying a group when creating the region
and starting servers. See Overview of the Cluster Configuration Service.

Creating a Region Through the cache.xml File

VMware GemFire 9.10 Documentation

VMware by Broadcom 183

A common way to create a data region in the VMware GemFire cache is through cache.xml
declarations. When starting the member with the cache.xml file, the region will be created.

Region creation is subject to attribute consistency checks, both internal to the cache and, if the
region is not local, between all caches where the region is defined.

In the cache.xml file, create a <region> element for the new region as a subelement to the
<cache> element or the <client-cache> element.

Define the region’s name and use a region shortcut, if one applies.

Add other attributes as needed to customize the region’s behavior.

cache.xml File Examples

The region declaration of a replicated region named Portfolios:

<region name="Portfolios" refid="REPLICATE"/>

The region declaration of a partitioned region named myRegion:

<region name="myRegion" refid="PARTITION"/>

The region declaration of a partitioned region that backs up content to disk:

<region name="myRegion" refid="PARTITION_PERSISTENT"/>

The region declaration of a partitioned region configured with high availability and a modified
storage capacity in the host member:

<region name="myRegion" refid="PARTITION_REDUNDANT">

 <region-attributes>

 <partition-attributes local-max-memory="512" />

 </region-attributes>

</region>

The region declaration of a replicated region configured with an event listener in which entries
expire:

<region name="myRegion" refid="REPLICATE">

 <region-attributes statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes timeout="60" action="destroy"/>

 </entry-time-to-live>

 <cache-listener>

 <class-name>myPackage.MyCacheListener</class-name>

 </cache-listener>

 </region-attributes>

</region>

Creating a Region Through the API

VMware GemFire’s regions APIs provide specialized behavior for different system member types.

VMware GemFire 9.10 Documentation

VMware by Broadcom 184

Peer/Server Region APIs. Use these methods, interfaces, and classes for peer/server
region creation. These are in the org.apache.geode.cache package. They correspond to
cache.xml declarations within the <cache> element for creating and configuring regions.

org.apache.geode.cache.Cache.createRegionFactory . This method takes a
RegionShortcut enum to initiate region configuration, and it returns a RegionFactory.
Use createRegionFactory(), not new RegionFactory, to create a RegionFactory.

org.apache.geode.cache.RegionFactory. Provides methods to set individual region
attributes and to create the region. The create call returns a Region.

org.apache.geode.cache.RegionShortcut. Defines common region configurations.

Client Region APIs. Use these methods, interfaces, and classes for client region creation.
These are in the org.apache.geode.cache.client package. They correspond to cache.xml
declarations in the <client-cache> element for creating and configuring regions.

These are client versions of the Peer/Server Region APIs. These client APIs provide similar
functionality, but are tailored to the needs and behaviors of client regions.

org.apache.geode.cache.clientCache.createRegionFactory . This method takes a
ClientRegionShortcut enum to initiate region configuration, and returns a
ClientRegionFactory.

org.apache.geode.cache.client.ClientRegionFactory. Provides methods to set
individual region attributes and to create the region. The create call returns Region.

org.apache.geode.cache.client.ClientRegionShortcut . Defines common region
configurations.

Region APIs Used For All Member Types. These interfaces and classes are used
universally for region management. These are in the org.apache.geode.cache package.
They correspond to cache.xml declarations in the <cache> and <client-cache> elements for
creating and configuring regions.

org.apache.geode.cache.Region . Interface for managing regions and their entries.

org.apache.geode.cache.RegionAttributes . Object holding region configuration
settings.

Use the API to create regions in the cache after startup. For run-time region creation, you need to
use the API.

Region creation is subject to attribute consistency checks, both internal to the cache and, if the
region is not local, between all caches where the region is defined.

1. Use a region shortcut to create your region factory.

In peers and servers, use org.apache.geode.cache.RegionFactory.

In clients, use org.apache.geode.cache.client.ClientRegionFactory.

2. (Optional) Use the region factory to further configure your region.

3. Create your region from the configured region factory.

API Examples

Create a replicated region named Portfolios:

VMware GemFire 9.10 Documentation

VMware by Broadcom 185

Cache cache = CacheFactory.create();

RegionFactory rf = cache.createRegionFactory(REPLICATE);

Region pfloRegion = rf.create("Portfolios");

Create a partitioned region with a listener:

RegionFactory rf =

 cache.createRegionFactory(RegionShortcut.PARTITION);

rf.addCacheListener(new LoggingCacheListener());

custRegion = rf.create("customer");

Create a partitioned region with a partition resolver for colocated regions:

PartitionAttributesFactory paf = new PartitionAttributesFactory<CustomerId, String>();

paf.setPartitionResolver(new CustomerOrderResolver());

RegionFactory rf =

 cache.createRegionFactory(RegionShortcut.PARTITION);

rf.setPartitionAttributes(paf.create());

rf.addCacheListener(new LoggingCacheListener());

custRegion = rf.create("customer");

Create a client region with a pool specification:

ClientRegionFactory<String,String> cRegionFactory =

 cache.createClientRegionFactory(PROXY);

Region<String, String> region =

 cRegionFactory.setPoolName("Pool3").create("DATA");

Create and Access Data Subregions

An individual region can contain multiple subregions. Subregions are an older feature that will not
be useful in new designs and applications. They are used to create a hierarchical namespace within
a cache, providing naming that feels like paths in a file system. Here are limitations on the use of
subregions:

A region with LOCAL scope can only have subregions with LOCAL scope.

Partitioned region types may not be used with subregions. A subregion may not have a
parent that is a partitioned region, and a subregion may not be of type PARTITION.

A subregion must have the same scope (GLOBAL, DISTRIBUTED_ACK,
DISTRIBUTED_NO_ACK) as its parent region.

Subregion names must be unique within the cache.

You can create subregions using one of the following methods:

Declaration in the cache.xml:

<?xml version="1.0"?>

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apach

e.org/schema/cache/cache-1.0.xsd"

VMware GemFire 9.10 Documentation

VMware by Broadcom 186

 version="1.0"

 lock-lease="120"

 lock-timeout="60"

 search-timeout="300">

<!-- Create a region named Portfolios -->

 <region name="Portfolios" refid="REPLICATE">

 <region name="Private" refid="REPLICATE">

 ...

 </region>

 </region>

</cache>

When the cache.xml is loaded at cache creation, the system automatically creates any
declared regions and subregions.

RegionFactory API calls:

Cache cache = CacheFactory.create();

RegionFactory rf = cache.createRegionFactory(REPLICATE);

Region pfloRegion = rf.create("Portfolios");

Region pvtSubregion = rf.createSubregion(pfloRegion, "Private");

Region method calls with a recursive parameter operate on the given region(s) and then
recursively on all contained subregions.

Update the Configuration of Data Regions

Update your region properties and contents through alter region command, the API or from
cache.xml file declarations.

Use the gfsh alter region command.

In the API, use Cache and Region methods to change configuration parameters and modify
region structure and data.

Load new XML declarations using the Cache.loadCacheXml method. Where possible,
declarations in the new cache.xml file supersede existing definitions. For example, if a
region declared in the cache.xml file already exists in the cache, its mutable attributes are
modified according to the file declarations. Immutable attributes are not affected. If a region
does not already exist, it is created. Entries and indexes are created or updated according
to the state of the cache and the file declarations.

Invalidate a Region

An invalidate region operation removes all entry values for a region, while leaving the entry keys
intact. This operation can be invoked only through the API on a Region instance. Event notification
occurs.

// Invalidate the entire distributed region

Region.invalidateRegion();

The API also offers a method to invalidate only the entries within the local cache. This method may
not be used on a replicated region, as doing so would invalidate the replication contract.

VMware GemFire 9.10 Documentation

VMware by Broadcom 187

// Invalidate the region within this member

Region.localInvalidateRegion();

Clear a Region

A clear region operation removes all entries from a region. This operation is not available for
partitioned regions. This operation can be invoked through the API on a Region instance:

// Remove all entries for the region

Region.clear();

It can be invoked with the gfsh command:

gfsh>remove --region=Region1 --all

Event notification occurs for a clear region operation.

Destroy a Region
A destroy region operation removes the entire region. This operation can be invoked through the
API on a Region instance:

// Remove the entire region

Region.destroyRegion();

A destroy region operation can be invoked with the gfsh command:

gfsh>destroy region --name=Region1

Event notification occurs for a destroy region operation.

A region can be destroyed by removing the region’s specification from the cache.xml file.

Destroying the region by an API invocation or by using the gfsh destroy command while all
members are online is the best way to remove a region, as VMware GemFire handles all aspects of
the removal, including removing the region’s persistent disk stores across the online members
hosting the region. Destroying the region by removing its specification from the cache.xml file does
not remove the region’s existing persistent disk stores.

The destroy operation can be propagated only to online members. The system will encounter
restart issues if a region is destroyed while some members are online and others are offline. As
those members that were offline restart, they will block indefinitely, waiting for persistent region
data that no longer exists. To fix this issue, shut down all members that are blocked waiting for the
removed region. Once those members are in the offline state, use the gfsh alter disk-store
command with the --remove option on each offline member to remove the region. Then, restart
each member.

An edge case results in issues when destroying a persistent region (R-removed) by removing its
specification from the cache.xml file, and region R-removed was colocated with another persistent
region (R-remains). The issue occurs because the persistent information contained within R-
remains is inconsistent with the (lack of) specification of R-removed. Upon restart of R-remains, its

VMware GemFire 9.10 Documentation

VMware by Broadcom 188

persisted metadata refers to R-removed as a colocated region, and the startup of R-remains is
dependent on that removed region. Thus, the startup of R-remains blocks, unable to complete.
The issue may manifest with operations on the R-remains region such as a query, put, or get, that
never finishes. To fix this issue, shut down all members with the persisted metadata that refers to
the removed region. Once those members are in the offline state, use the gfsh alter disk-store
command with the --remove option on each offline member to remove the region. Then, restart
each member.

Close a Region

Use this to stop local caching of persistent and partitioned regions without closing the entire cache:

Region.close();

The Region.close operation works like the Region.localDestroyRegion operation with these
significant differences:

The close method is called for every callback installed on the region.

No events are invoked. Of particular note, the entry events, beforeDestroy and
afterDestroy, and the region events, beforeRegionDestroy and afterRegionDestroy, are
not invoked. See Events and Event Handling.

If persistent, the region is removed from memory but its disk files are retained.

If partitioned, the region is removed from the local cache. If the partitioned region is
redundant, local data caching fails over to another cache. Otherwise, local data is lost.

Region Naming

To be able to perform all available operations on your data regions, follow these region naming
guidelines.

Characters permitted in region names are alphanumeric characters
(ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789), period (.),
underscore (_), square brackets ([]), hyphen (-), caret (^) and backquote (`).

Region names are case sensitive.

Do not use the slash character (/).

Do not begin region names with two underscore characters (__), as this is reserved for
internal use.

Region Shortcuts and Custom Named Region Attributes

VMware GemFire provides region shortcut settings, with preset region configurations for the most
common region types. For the easiest configuration, start with a shortcut setting and customize as
needed. You can also store your own custom configurations in the cache for use by multiple
regions.

You configure automated management of data regions and their entries through region shortcuts
and region attributes. These region configuration settings determine such things as where the data

VMware GemFire 9.10 Documentation

VMware by Broadcom 189

resides, how the region is managed in memory, reliability behavior, and the automatic loading,
distribution, and expiration of data entries.

Note: Whenever possible, use region shortcuts to configure your region, and further customize
behavior using region attributes. The shortcut settings are preset with the most common region
configurations.

VMware GemFire provides a number of predefined, shortcut region attributes settings for your use.
You can also define your own custom region attributes and store them with an identifier for later
retrieval. Both types of stored attributes are referred to as named region attributes. You can create
and store your attribute settings in the cache.xml file and through the API.

Retrieve region shortcuts and custom named attributes by providing the ID to the region creation,
in the refid attribute setting. This example uses the shortcut REPLICATE attributes to create a
region:

<region name="testREP" refid="REPLICATE"/>

You can create your own named attributes as needed, by providing an id in your region attributes
declaration. The following region declaration:

1. Retrieves all of the attribute settings provided by the persistent partitioned region shortcut

2. Modifies the shortcut attribute settings by specifying a disk store name to use for
persistence

3. Assigns the new attribute settings to the new region named testPR

4. Stores the attribute settings in a new custom attributes named testPRPersist:

<disk-store name="testDiskStore" >

 <disk-dirs>

 <disk-dir>PRPersist1</disk-dir>

 <disk-dir>PRPersist2</disk-dir>

 </disk-dirs>

</disk-store>

<region name="testPR" >

 <region-attributes id="testPRPersist"

 refid="PARTITION_PERSISTENT" disk-store-name="testDiskStore"/>

</region>

Shortcut Attribute Options
You can select the most common region attributes settings from VMware GemFire’s predefined
named region attributes in these classes:

org.apache.geode.cache.RegionShortcut. For peers and servers.

org.apache.geode.cache.client.ClientRegionShortcut. For clients.

Shortcut attributes are a convenience only. They are just named attributes that VMware GemFire
has already stored for you. You can override their settings by storing new attributes with the same
id as the predefined attributes.

For a full list of all available region shortcuts, see Region Shortcuts Quick Reference.

The org.apache.geode.cache.RegionShortcut Javadocs give complete listings of the options.

VMware GemFire 9.10 Documentation

VMware by Broadcom 190

RegionShortcuts for Peers and Servers

These are the primary options available in the region shortcut settings. The names listed appear in
the shortcut identifier alone or in combination, like “PARTITION” in PARTITION, PARTITION_PROXY, and
PARTITION_REDUNDANT.

Cache Data Storage Mode

PARTITION . Creates a partitioned region. This is a data store for the region. You can also
specify these options with PARTITION:

PROXY. Data is not stored in the local cache and the member is a data accessor to
the region. This requires other members to create non-proxy copies of the region,
so the data is stored somewhere.

REDUNDANT. The region stores a secondary copy of all data, for high availability.

REPLICATE. Creates a replicated region. This is a data store for the region. You can also
specify these options with REPLICATE:

PROXY. Data is not stored in the local cache and the member is a data accessor to
the region. This requires other members to create non-proxy copies of the region,
so the data is stored somewhere.

LOCAL. Creates a region private to the defining member.

Data Eviction

HEAP_LRU. Causes least recently used data to be evicted from memory when the VMware
GemFire resource manager determines that the cache has reached configured storage
limits.

Disk Storage

You can specify these alone or in combination:

PERSISTENT. Backs up all data to disk, in addition to storing it in memory.

OVERFLOW. Moves data out of memory and on to disk, when memory use becomes too high.

ClientRegionShortcuts for Clients

These are the primary options available in the client region shortcut settings. The names listed
appear in the shortcut identifier alone or in combination, like “PROXY” in PROXY and CACHING_PROXY.

Communication with Servers and Data Storage

PROXY. Does not store data in the client cache, but connects the region to the servers for
data requests and updates, interest registrations, and so on. The client is a data accessor to
the region.

CACHING_PROXY. Stores data in the client cache and connects the region to the servers for
data requests and updates, interest registrations, and so on.

LOCAL. Stores data in the client cache and does not connect the region to the servers. This
is a client-side-only region. Note that this is not the same as setting the region’s scope
attribute to LOCAL.

Data Eviction

VMware GemFire 9.10 Documentation

VMware by Broadcom 191

HEAP_LRU. Causes least recently used data to be evicted from memory when the VMware
GemFire resource manager determines that the cache has reached configured storage
limits.

Disk Storage

With the LOCAL and CACHING data storage shortcut options, you can also specify these disk
storage options, alone or in combination:

PERSISTENT. Backs up all data to disk, in addition to storing it in memory.

OVERFLOW. Moves data out of memory and on to disk, when memory use becomes too high.

Storing and Retrieving Region Shortcuts and Custom
Named Region Attributes
Use these examples to get started with VMware GemFire region shortcuts.

VMware GemFire region shortcuts, in org.apache.geode.cache.RegionShortcut for peers and
servers and org.apache.geode.cache.client.ClientRegionShortcut for clients, are available
wherever you create a region in the cache.xml or through the API. Custom named attributes,
stored by you, are available from the moment you store them on.

The region shortcuts are special VMware GemFire named region attributes, with identifying names.
Create custom named region attributes by setting the attributes and storing them with a unique
identifier in the region attribute id. Retrieve named attributes by providing the shortcut enum
value or the name you assigned in the id to the region creation:

In the API, use the identifier in the region factory creation

In the cache.xml, use the identifier in the <region> or <region-attribute> refid setting.
The refid is available in both elements for convenience

Examples
Example #1

This example shows partitioned region creation in the cache.xml:

The first region-attributes declaration starts with the predefined PARTITION_REDUNDANT
attributes, modifies the local-max-memory setting, and stores the resulting attributes in the
custom-named myPartition attributes.

The region declarations use the new stored attributes, but each has its own interest policy,
which is specified in the individual region creation.

<!-- Retrieving and storing attributes -->

<region-attributes id="myPartition" refid="PARTITION_REDUNDANT">

 <partition-attributes local-max-memory="512"/>

</region-attributes>

<!-- Two partitioned regions, one colocated with the other -->

<!-- Attributes are retrieved and applied in the first region -->

<region name="PartitionedRegion1" refid="myPartition"/>

VMware GemFire 9.10 Documentation

VMware by Broadcom 192

<!-- Same stored attributes, modification for this region-->

<region name="PartitionedRegion2" refid="myPartition">

 <region-attributes>

 <partition-attributes colocated-with="PartitionedRegion1" />

 </region-attributes>

</region>

Example #2

This example uses the RegionFactory API to create a region based on the predefined PARTITION
region shortcut:

final Region diskPortfolios =

 new RegionFactory("PARTITION").create("Portfolios");

This example retrieves an attributes template and passes it to the region creation with a modified
pool specification:

ClientRegionFactory<String,String> regionFactory =

 cache.createClientRegionFactory(PROXY);

Region<String, String> region = regionFactory

 .setPoolName("publisher")

 .create("DATA");

Managing Region Attributes
Use region attributes to fine-tune the region configuration provided by the region shortcut
settings.

All region attributes have default settings, so you only need to use region attributes to set the ones
you want to override. See <region-attributes>.

Define Region Attributes
Create region attributes using any of these methods:

Declarations inside the cache.xml <region> element:

<cache>

 <region name="exampleRegion" refid="REPLICATE">

 <region-attributes statistics-enabled="true">

 <entry-idle-time>

 <expiration-attributes timeout="10" action="destroy"/>

 </entry-idle-time>

 <cache-listener>

 <class-name>quickstart.SimpleCacheListener</class-name>

 </cache-listener>

 </region-attributes>

 </region>

</cache>

When the cache.xml is loaded at startup, declared region attributes are automatically
created and applied to the region.

RegionFactory API set* method calls:

VMware GemFire 9.10 Documentation

VMware by Broadcom 193

// Creating a partitioned region using the RegionFactory

RegionFactory rf = cache.createRegionFactory(RegionShortcut.PARTITION);

rf.addCacheListener(new LoggingCacheListener());

custRegion = rf.create("customer");

// Creating a partitioned region using the RegionFactory, with attribute modifi

cations

RegionFactory rf =

 cache.createRegionFactory(RegionShortcut.PARTITION);

rf.setPartitionResolver(new CustomerOrderResolver());

rf.addCacheListener(new LoggingCacheListener());

custRegion = rf.create("customer");

// Creating a client with a Pool Specification Using ClientRegionFactory

ClientRegionFactory<String,String> cRegionFactory =

 cache.createClientRegionFactory(PROXY);

Region<String, String> region =

 cRegionFactory.setPoolName("Pool3").create("DATA");

By issuing the gfsh create region command.

Modify Region Attributes
You can modify a region’s event handlers and expiration and eviction attributes after the region is
created.

Note: Do not modify attributes for existing regions unless absolutely necessary. Creating the
attributes you need at region creation is more efficient.

Modify attributes in one of these ways:

By loading a cache.xml with modified region attribute specifications:

<!-- Change the listener for exampleRegion

...

 <region name="exampleRegion">

 <region-attributes statistics-enabled="true">

 <cache-listener>

 <class-name>quickstart.ComplicatedCacheListener</class-name>

 </cache-listener>

 </region-attributes>

 </region>

...

Using the AttributesMutator API:

1. Retrieve the AttributesMutator from the region

2. Call the mutator set methods to modify attributes:

currRegion = cache.getRegion("root");

AttributesMutator mutator = this.currRegion.getAttributesMutator();

mutator.addCacheListener(new LoggingCacheListener());

By issuing the gfsh alter region command. See alter region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 194

Creating Custom Attributes for Regions and Entries

Use custom attributes to store information related to your region or its entries in your cache. These
attributes are only visible to the local application and are not distributed.

You can define custom user attributes so you can associate data with the region or entry and
retrieve it later. Unlike the other configuration settings, these attributes are used only by your
application.

Note: User attributes are not distributed.

1. Create a Java Object with your attribute definitions.

2. Attach the object to the region or to an entry:

Region.setUserAttribute(userAttributeObject)

Region.getEntry(key).setUserAttribute(userAttributeObject)

3. Get the attribute value:

Region.getUserAttribute()

Region.getEntry(key).getUserAttribute()

This example stores attributes for later retrieval by a cache writer.

// Attach a user attribute to a Region with database info for table portfolio

Object myAttribute = "portfolio";

final Region portfolios =

 new RegionFactory().setCacheWriter(new PortfolioDBWriter()).create("Portfolio

s");

Portfolios.setUserAttribute(myAttribute);

//Implement a cache writer that reads the user attribute setting

public class PortfolioDBWriter extends CacheWriterAdapter {

 public void beforeCreate(RegionEvent event) {

 table = (String)event.getRegion().getUserAttribute();

 // update database table using name from attribute

 . . .

 }

}

Limitations and Alternatives

User attributes are not distributed to other processes, so if you need to define each attribute in
every process that uses the region or entry. You need to update every instance of the region
separately. User attributes are not stored to disk for region persistence or overflow, so they cannot
be recovered to reinitialize the region.

If your application requires features not supported by user attributes, an alternative is to create a
separate region to hold this data instead. For instance, a region, AttributesRegion, defined by you,
could use region names as keys and the user attributes as values. Changes to AttributesRegion
would be distributed to other processes, and you could configure the region for persistence or
overflow if needed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 195

Building a New Region with Existing Content

A new region or cluster may need to be loaded with the data of an existing system. There are two
approaches to accomplish this task. The approach used depends upon the organization of both the
new and the existing cluster.

If both the number and the type of members is the same in both the new and the existing cluster,
then the simplest option is to use backup and restore on the persistent disk store contents. Make a
full online backup of the persistent data in the disk store of the existing cluster. Copy the files that
comprise the backup to the new cluster location. A restore instills the data into the new cluster.
See Creating Backups for System Recovery and Operational Management for details on how to
make a backup and use the backup to restore a disk store.

Take a different approach when the number or the type of members is not the same in both the
new and the existing cluster. This approach uses export and import of region data. Export the
region data of the existing cluster to create a snapshot. Copy the snapshot to the new cluster
location. Import the snapshot into the new cluster. See appropriate sections within Cache and
Region Snapshots for details on making and using a snapshot.

Data Entries

The data entry is the key/value pair where you store your data. You can manage your entries
individually and in batches. To use domain objects for your entry values and keys, you need to
follow VMware GemFire requirements for data storage and distribution.

Managing Data Entries

Program your applications to create, modify, and manage your cached data entries.

Copy on Read Behavior

Set the copy-on-read region attribute to cause operations that get data to make a copy of
the data, instead of returning a reference to the data.

Requirements for Using Custom Classes in Data Caching

Follow these guidelines to use custom domain classes for your cached entry keys and
values.

Managing Data Entries

Program your applications to create, modify, and manage your cached data entries.

Note: If you do not have the cache’s copy-on-read attribute set to true, do not change the objects
returned from the Java entry access methods. See Copy on Read Behavior.

Keys

VMware GemFire calls hashCode() on the key to map an entry within the region. The hashCode()
return value must be the same for a given key on every server that hosts the region.

An equals() call return value on a given key also must be the same on every server that hosts the
region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 196

A key may be a primitive type or a custom class. For custom classes, see Classes Used as Keys.

Do not use an enumerated type (enum) for a key. The enum hashCode() may not be overridden, and
its hash code is based upon an address. Therefore, the return value for a hashCode() call can be
different on each server, violating the restriction that it must return the same value on every server
that hosts the region.

Create and Update Entries

To create or update an entry in the cache, use Region.put. For example:

String name = ...

String value = ...

this.currRegion.put(name,value);

Note: You can also use the gfsh put command to add entries to a region, and the get command to
retrieve entries from a region. See get and put for more information.

If you want only to create the entry (with a null value and with method failure if the entry already
exists), use Region.create instead.

The getAll Operation

The batch operation Region.getAll takes a collection of keys and returns a Map of key-value pairs
for the provided keys. If a given key does not exist in the region, then that key’s value in the
returned map will be null.

The putAll Operation

The batch operation Region.putAll takes a Map of key-value pairs, puts them into the cache, and
then distributes them to all other members.

The design of a client application within a client-server design pattern faces the possibility that a
partial operation can occur. Some, all, or none of the specified key-value pairs may be written with
putAll. If either ServerOperationException or ServerConnectivityException is thrown, it can
indicate an incomplete operation.

// Retry if the exception may be due to a transient cause.

for (int retry = 0; retry < 3; retry++) {

 throwable = null;

 try {

 region.putAll(map);

 } catch (ServerOperationException e) {

 throwable = e.getCause();

 if (!(e.getCause() instanceof TimeoutException ||

 e.getCause() instanceof LowMemoryException)) {

 // Not a transient exception. Do not retry.

 break;

 }

 } catch (ServerConnectivityException e) {

 throwable = e;

 }

}

VMware GemFire 9.10 Documentation

VMware by Broadcom 197

if (throwable != null) {

 // Take appropriate action,

 // such as logging the exception and rethrowing it.

 System.out.println("putAll failed due to " + throwable);

 throw new Exception(throwable);

}

Either a ServerConnectivityException or a ServerOperationException with a cause of
TimeoutException or LowMemoryException can indicate a transient error. A limited quantity of retries
of putAll may result in a completed operation. A repeated timeout may imply that the read-
timeout value is not long enough to complete the bulk operation; use the
org.apache.geode.cache.client.PoolFactory.setReadTimeout method to set the read-timeout
value.

Client applications that cannot tolerate partial completion of a putAll operation may embed the
operation into a transaction. See Transactions for details.

The processing of a map with many entries and/or extra-large data values may affect system
performance and cause cache update timeouts, especially if the region uses overflow or
persistence to disk. The processing may also cause a LowMemoryException to be thrown.

The removeAll Operation

The removeAll method takes a collection of keys and removes all of the entries for the specified
keys from this region. This call performs the equivalent of callingdestroy(Object) on this region
once for each key in the specified collection. If an entry does not exist, then that key is skipped. An
EntryNotFoundException is not thrown. This operation will be distributed to other caches if the
region’s scope is not set to Scope.LOCAL.

The processing of a map with many entries and/or extra-large data values may affect system
performance and cause cache update timeouts, especially if the region uses overflow or
persistence to disk. The processing may also cause a LowMemoryException to be thrown.

Retrieving Region Entries from Proxy Members

The Region.values method call applies to the local region instance only. If you call the values
method from a client region using the PROXY shortcut, the method call will not be redirected to
the server region. To obtain a collection of all values in the Region from a client, you should use
interest registration on ALL_KEYS, or use a query.

If you use the Region.get method from a proxy member, the method call will redirect to the region
on the server if it cannot find the key locally.

Using gfsh to get and put

You can use the gfsh get and put commands to manage data. See get and put.

For example:

get --key=('id':'133abg124') --region=region1

// Retrieving when key type is a wrapper(primitive)/String

VMware GemFire 9.10 Documentation

VMware by Broadcom 198

get --key=('133abg124') --region=/region1/region12 --value-class=data.ProfileDetails

get --key=('100L') --region=/region1/region12 --value-class=data.ProfileDetails

--key-class=java.lang.Long

put --key=('id':'133abg125') --value=('firstname':'James','lastname':'Gosling')

--region=/region1 --key-class=data.ProfileKey --value-class=data.ProfileDetails

put --key=('133abg124') --value=('Hello World!!') --region=/region2

put --key=('100F') --value=('2146547689879658564') --region=/region1/region12

--key-class=java.lang.Float --value-class=java.lang.Long

Copy on Read Behavior

Methods that do a get type of operation receive as a return value a direct reference to the cached
object. This provides the value as quickly as possible, but it also makes possible code
implementations that could incorrectly modify the referenced object, bypassing the distribution
framework and causing region entries that are no longer consistent across cluster members.

The code that has the potential for harming cache consistency by using a reference to access and
change a region entry is code that executes within the servers. Examples are cache writers and
listeners, transactions, and functions. A client invocation of a get type of operation that is handled
by the servers is not subject to this potential for harm, as the clients are in a distinct JVM from the
servers, and references do not cross JVM boundaries. That client cannot receive a return value that
is a direct reference to a region entry, as the servers hold the region entries and the servers do not
reside within the client JVM.

To avoid modification of the referenced object, create a copy in one of two ways:

Change the entry retrieval behavior for your cache by setting the copy-on-read cache
attribute to true; its default value is false. When copy-on-read is true, all entry access
methods return copies of the entries. This protects all server-side code from inadvertently
modifying in-place. This attribute will negatively impact performance and memory
consumption when a copy is not needed, as it takes time and memory to create the copy.
Note that the copy-on-read attribute is applied at the cache level; it cannot be set for
individual regions.

There are two ways to set the copy-on-read attribute:

Set the attribute in the cache.xml file that defines the cache.

<cache copy-on-read="true">

 ...

</cache>

Use gfsh alter runtime to set the copy-on-read attribute once the servers have
been started.

Implement server-side code that creates and uses a copy of the returned object. For
objects that are cloneable or serializable, copy the entry value to a new object using
org.apache.geode.CopyHelper.copy. Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 199

Object o = region.get(key);

StringBuffer s = (StringBuffer) CopyHelper.copy(o);

// further operations on the region entry value will use s

s.toUpperCase();

Always use a Region method to then change data in the region. Do not use the reference
returned from the entry access method. If the upper case string should become the new
value for the region entry:

region.put(key, s);

Requirements for Using Custom Classes in Data Caching

Follow these guidelines to use custom domain classes for your cached entry keys and values.

CLASSPATH

Each member’s CLASSPATH must include classes for all objects the member accesses.

For Java applications, use the standard Java CLASSPATH.

For the cache server process, use the CLASSPATH environment variable or the gfsh start
server’s --classpath parameter. See Running VMware GemFire Server Processes.

Data is sent between clients and servers in serialized form and the server stores client data in
serialized form. The server does not need to deserialize data to send it to another client or to
access it through a PDXInstance, but it does need to deserialize it to access it in other ways. The
server CLASSPATH must include the classes for:

All entry keys

Entry values in regions that the server persists to disk

Entry values the server accesses for any reason other than access using a PdxInstance or
transfer of the full entry value to a client

For information on PdxInstances, see Data Serialization.

Data Serialization

VMware GemFire serializes data entry keys and values for distribution, so all data that VMware
GemFire moves out of the local cache for any reason must be serializable. Additionally, partitioned
regions store data in serialized form. Almost every configuration requires serialization.

For information on the requirements and options for data serialization, see Data Serialization.

Classes Used as Keys

The region uses hashing on keys. If you define a custom class to use as a key, for the class,
override:

equals

VMware GemFire 9.10 Documentation

VMware by Broadcom 200

hashCode. The default hashCode inherited from Object uses identity, which is different in
every system member. In partitioned regions, hashing based on identity puts data in the
wrong place. For details, see the Java API documentation for java.lang.Object.

Do not call hashCode() on an enum type data member within the key’s custom hashCode()
implementation. The enum hashCode() may not be overridden, and its hash is based upon an
address. Therefore, an enumerated type’s hashCode() return value can be different on each server,
violating the restriction that hashCode() must return the same value on every server that hosts the
region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 201

Topologies and Communication

Topologies and Communication explains how to plan and configure VMware GemFire member
discovery, peer-to-peer and client/server communication topologies.

Topology and Communication General Concepts

Before you configure your VMware GemFire members, make sure you understand the
options for topology and communication.

Peer-to-Peer Configuration

Use peer-to-peer configuration to set member discovery and communication within a single
cluster.

Client/Server Configuration

In the client/server architecture, a relatively small server farm manages the cached data of
and access to the same data for many client applications. Clients can update and access
data efficiently, leaving the servers to manage data distribution to other clients and any
synchronization with outside data stores.

Multi-site (WAN) Configuration

Use the multi-site configuration to scale horizontally between disparate, loosely-coupled
clusters. A wide-area network (WAN) is the main use case for the multi-site topology.

Topology and Communication General Concepts

Before you configure your VMware GemFire members, make sure you understand the options for
topology and communication.

Topology Types

The VMware GemFire topology options allow you to scale horizontally and vertically.

Planning Topology and Communication

Create a topology plan and a detailed list of machines and communication ports that your
members will use. Configure your VMware GemFire systems and the communication
between systems.

How Member Discovery Works

VMware GemFire provides various options for member discovery within a cluster and
between clients and servers.

How Communication Works

VMware GemFire uses a combination of TCP and UDP unicast and multicast for
communication between members. You can change the default behavior to optimize

VMware GemFire 9.10 Documentation

VMware by Broadcom 202

communication for your system.

Using Bind Addresses

You use a bind address configuration to send network traffic through non-default network
cards and to distribute the load of network traffic for VMware GemFire across multiple
cards. If no bind address setting is found, VMware GemFire uses the host machine’s default
address.

Choosing Between IPv4 and IPv6

By default, VMware GemFire uses Internet Protocol version 4 for VMware GemFire address
specifications. You can switch to Internet Protocol version 6 if all your machines support it.
You may lose performance, so you need to understand the costs of making the switch.

Topology Types

The VMware GemFire topology options allow you to scale horizontally and vertically.

VMware GemFire provides a variety of cache topologies:

At the core of all systems is the single, peer-to-peer cluster.

For horizontal and vertical scaling, you can combine individual systems into client/server
and multi-site (WAN) topologies:

In client/server systems, a small number of server processes manage data and event
processing for a much larger client group.

In multi-site systems, several geographically disparate systems are loosely coupled
into a single, cohesive processing unit.

Peer-to-Peer Configuration

The peer-to-peer cluster is the building block for all VMware GemFire installations. Peer-to-peer
alone is the simplest topology. Each cache instance, or member, directly communicates with every
other member in the cluster. This cache configuration is primarily designed for applications that
need to embed a cache within the application process space and participate in a cluster. A typical
example is an application server cluster in which the application and the cache are co-located and
share the same heap.

Application Process

Peer

Application Process

Peer

Application Process

Peer

Cache

Data

Cache

Data

Cache

Data

Client/Server Configuration
The client/server topology is the model for vertical scaling, where clients typically host a small
subset of the data in the application process space and delegate to the server system for the rest.

VMware GemFire 9.10 Documentation

VMware by Broadcom 203

Compared to peer-to-peer by itself, the client/server architecture provides better data isolation,
high fetch performance, and more scalability. If data distribution will put a very heavy load on the
network, a client/server architecture usually gives better performance. In any client/server
installation, the server system is itself a peer-to-peer system, with data distributed between
servers. A client system has a connection pool, which it uses to communicate with servers and
other VMware GemFire members. A client may also contain a local cache.

Server Server Server

Application Process

Client

Local

Cache

connection pool

Cache

Data

Cache

Data

Cache

Data

Multi-site Configuration

For horizontal scaling, you can use a loosely coupled multi-site topology. With multi-site, multiple
VMware GemFire systems are loosely coupled, generally across geographical distances with slower
connections, such as with a WAN. This topology provides better performance than the tight
coupling of a single system, and greater independence between locations, so that each site can
function on its own if the connection or remote site become unavailable. In a multi-site installation,
each individual site is a peer-to-peer or Client/Server system.

Planning Topology and Communication
Create a topology plan and a detailed list of machines and communication ports that your members
will use. Configure your VMware GemFire systems and the communication between systems.

VMware GemFire 9.10 Documentation

VMware by Broadcom 204

Determine Protocols and Addresses

Your configuration governs how your applications find each other and distribute events and data
among themselves.

Work with your system administrator to determine the protocols and addresses you will use for
membership and communication.

1. For each host machine with more than one network adapter card, decide whether to use
the default address or one or more non-default bind addresses. You can use different cards
for peer and server.

2. Identify any members you want to run as standalone, isolated members with no member
discovery. This can be a good option for clients, because it has faster startup but no peer-
to-peer distribution of any kind.

3. For all non-standalone members:

Decide how many locators you will use and where they will run. To ensure the most
stable startup and availability, use multiple locators on multiple machines.

Create a list of your locators’ address and port pairs. You will use the list to
configure your system members, any clients, and the locators themselves.

If you will use multicasting for communication, note the addresses and ports. Select
both unique multicast ports and unique addresses for your clusters. Note: Use
different port numbers for different systems, even if you use different multicast
addresses. Some operating systems do not keep communication separate between
systems that have unique addresses but the same port number.

Set Up Membership and Communication
Using the protocols and addresses you determined above, do the following:

Set up membership in your systems.

Set up communication between system members. See Configuring Peer Communication.

As needed, set up communication between your systems. See Configuring a Client/Server
System.

How Member Discovery Works
VMware GemFire provides various options for member discovery within a cluster and between
clients and servers.

Peer Member Discovery

Standalone Member

Client Discovery of Servers

Peer Member Discovery
Peer member discovery is what defines a cluster. All applications and cache servers that use the
same settings for peer discovery are members of the same cluster. Each system member has a

VMware GemFire 9.10 Documentation

VMware by Broadcom 205

unique identity and knows the identities of the other members. A member can belong to only one
cluster at a time. Once they have found each other, members communicate directly, independent
of the discovery mechanism. In peer discovery, VMware GemFire uses a membership coordinator
to manage member joins and departures.

Members discover each other using one or more locators. A locator provides both discovery and
load balancing services. Peer locators manage a dynamic list of cluster members. New members
connect to one of the locators to retrieve the member list, which it uses to join the system.

Peer Peer

Peer Discovery Using Locators

Locator

Peer

Locator

Cache

Data

Cache

Data

Cache

Data

Note: Multiple locators ensure the most stable start up and availability for your cluster.

Standalone Member
The standalone member has no peers, does no peer discovery, and so does not use locators. It
creates a cluster connection only to access the VMware GemFire caching features. Running
standalone has a faster startup and is appropriate for any member that is isolated from other
applications. The primary use case is for client applications. Standalone members can be accessed
and monitored if you enable the member to become a JMX Manager.

Client Discovery of Servers
Locators provide clients with dynamic server discovery and server load balancing. Clients are
configured with locator information for the server system, and turn to the locators for directions to
the servers to use. The servers can come and go and their capacity to service new client
connections can vary. The locators continuously monitor server availability and server load
information, providing clients with connection information for the server with the least load at any
time.

Note: For performance and cache coherency, clients must run as standalone members or in
different clusters than their servers.

You do not need to run any special processes to use locators for server discovery. The locators that
provide peer discovery in the server system also provide server discovery for clients to the server
system. This is the standard configuration.

VMware GemFire 9.10 Documentation

VMware by Broadcom 206

Client/Server Discovery Using Locators

Client

Local

Cache

Client

Local

Cache

Peer Peer

Locator

Peer

Locator

Cache

Data

Cache

Data

Cache

Data

Multi-site Discovery

In a multi-site (WAN) configuration, a VMware GemFire cluster uses locators to discover remote
VMware GemFire clusters as well as to discover local VMware GemFire members. Each locator in a
WAN configuration uniquely identifies the local cluster to which it belongs, and it can also identify
locators in remote VMware GemFire clusters to which it will connect for WAN distribution.

When a locator starts up, it contacts each remote locator to exchange information about the
available locators and gateway receiver configurations in the remote cluster. In addition to sharing
information about its own cluster, a locator shares information that it has obtained from all other
connected clusters. Each time a new locator starts up or an existing locator shuts down, the
changed information is broadcast to other connected VMware GemFire clusters across the WAN.

See Discovery for Multi-Site Systems for more information.

How Communication Works

VMware GemFire uses a combination of TCP and UDP unicast and multicast for communication
between members. You can change the default behavior to optimize communication for your
system.

Client/server communication and gateway sender to gateway receiver communication uses TCP/IP
sockets. The server listens for client communication at a published address and the client
establishes the connection, sending its location. Similarly, the gateway receiver listens for gateway
sender communication and the connection is established between sites.

In peer systems, for general messaging and region operations distribution, VMware GemFire uses
either TCP or UDP unicast. The default is TCP. You can use TCP or UDP unicast for all
communications or you can use it as the default but then can target specific regions to use UDP
multicast for operations distribution. The best combination for your installation depends in large part
on your data use and event messaging.

VMware GemFire 9.10 Documentation

VMware by Broadcom 207

TCP

TCP (Transmission Control Protocol) provides reliable in-order delivery of the system messages.
TCP is more appropriate than UDP if the data is partitioned, if the cluster is small, or if network
loads are unpredictable. TCP is preferable to UDP unicast in smaller clusters because it implements
more reliable communications at the operating system level than UDP and its performance can be
substantially faster than UDP. As the size of the cluster increases, however, the relatively small
overhead of UDP makes it the better choice. TCP adds new threads and sockets to every member,
causing more overhead as the system grows.

Note: Even when VMware GemFire is configured to use UDP for messaging, VMware GemFire
uses a TCP connection when attempting to detect failed members. See Failure Detection and
Membership Views for more details. In addition, the TCP connection’s ping is not used for keep
alive purposes; it is only used to detect failed members. See TCP/IP KeepAlive Configuration for
TCP keep alive configuration.

UDP Unicast and Multicast

UDP (User Datagram Protocol) is a connectionless protocol which uses far fewer resources than
TCP. Adding another process to the cluster incurs little overhead for UDP messaging. UDP on its
own is not reliable however, and messages are restricted in size to 64k bytes or less, including
overhead for message headers. Large messages must be fragmented and transmitted as multiple
datagram messages. Consequently, UDP is slower than TCP in many cases and unusable in other
cases if network traffic is unpredictable or heavily congested.

UDP is used in VMware GemFire for both unicast and multicast messaging. VMware GemFire
implements retransmission protocols to ensure proper delivery of messages over UDP.

UDP Unicast

UDP unicast is the alternative to TCP for general messaging. UDP is more appropriate than TCP for
unicast messaging when there are a large number of processes in the cluster, the network is not
congested, cached objects are small, and applications can give the cache enough processing time
to read from the network. If you disable TCP, VMware GemFire uses UDP for unicast messaging.

For each member, VMware GemFire selects a unique port for UDP unicast communication. You
can restrict the range used for the selection by setting membership-port-range in the
gemfire.properties file. Example:

membership-port-range=1024-60000

Note: In addition to UDP port configuration, the membership-port-range property defines the TCP
port used for failure detection. See the Reference for a description of the VMware GemFire
property.

UDP Multicast
Your options for general messaging and for default region operations messaging is between TCP
and UDP unicast. You can choose to replace the default with UDP multicast for operations

VMware GemFire 9.10 Documentation

VMware by Broadcom 208

distribution of some or all of your regions. For every region where you want to use multicast, you
set an additional attribute on the region itself.

When multicast is enabled for a region, all processes in the cluster receive all events for the region.
Every member receives each message for the region and has to unpack it, schedule it for
processing, and then process it, all before discovering whether it is interested in the message.
Multicasting is suitable, therefore, for regions that are of general interest in the cluster, where most
or all members have the region defined and are interested in receiving most or all messages for the
region. Multicasting should not be used for regions that are of little general interest in the cluster.

Multicast is most appropriate when the majority of processes in a cluster are using the same cache
regions and need to get updates for them, such as when the processes define replicated regions or
have their regions configured to receive all events.

Even if you use multicast for a region, VMware GemFire will send unicast messages when
appropriate. If data is partitioned, multicast is not a useful option. Even with multicast enabled,
partitioned regions still use unicast for almost all purposes.

Using Bind Addresses

You use a bind address configuration to send network traffic through non-default network cards
and to distribute the load of network traffic for VMware GemFire across multiple cards. If no bind
address setting is found, VMware GemFire uses the host machine’s default address.

Host machines transmit data to the network and receive data from the network through one or
more network cards, also referred to as network interface cards (NIC) or LAN cards. A host with
more than one card is referred to as a multi-homed host. On multi-homed hosts, one network card
is used by default. You can use bind addresses to configure your VMware GemFire members to use
non-default network cards on a multi-homed host.

Note: When you specify a non-default card address for a process, all processes that connect to it
need to use the same address in their connection settings. For example, if you use bind addresses
for your server locators, you must use the same addresses to configure the server pools in your
clients.

Use IPv4 or IPv6 numeric address specifications for your bind address settings. For information on
these specifications, see Choosing Between IPv4 and IPv6. Do not use host names for your address
specifications. Host names resolve to default machine addresses.

Peer and Server Communication

You can configure peer, and server communication so that each communication type uses its own
address or types use the same address. If no setting is found for a specific communication type,
VMware GemFire uses the host machine’s default address.

Note: Bind addresses set through the APIs, like CacheServer and DistributedSystem, take
precedence over the settings discussed here. If your settings are not working, check to make sure
there are no bind address settings being done through API calls.

This table lists the settings used for peer and server communication, ordered by precedence. For
example, for server communication, VMware GemFire searches first for the cache-server bind

VMware GemFire 9.10 Documentation

VMware by Broadcom 209

address, then the gfsh start server server-bind-address setting, and so on until a setting is
found or all possibilities are exhausted.

Property Setting Ordered by Precedence Peer Server
Gateway
Receiver

Syntax

cache.xml <cache-server> bind-address X <cache-server>bind-address=address

gfsh start server command-line ‑‑server-
bind-address

X X gfsh start server ‑‑server-bind-
address=address

gemfire.properties server-bind-address X X server-bind-address=address

gemfire.properties bind-address X X X bind-address=address

For example, a member started with these configurations in its gemfire.properties and cache.xml
files will use two separate addresses for peer and server communication:

// gemfire.properties setting for peer communication

bind-address=192.0.2.0

//cache.xml settings

<cache>

// Server communication

 <cache-server bind-address="192.0.2.1" ...

 <region ...

Gateway Receiver Communication
If you are using multi-site (WAN) topology, you can also configure gateway receiver communication
(in addition to peer and server communication) so that each communication type uses its own
address.

This table lists the settings used for peer, server, and gateway receiver communication, ordered by
precedence. For example, for gateway receiver communication, VMware GemFire searches first
for a cache.xml <gateway-receiver> bind-address setting. If that is not set, VMware GemFire
searches for the gfsh start server server-bind-address setting, and so on until a setting is found
or all possibilities are exhausted.

Property Setting Ordered by Precedence Peer Server
Gateway
Receiver

Syntax

cache.xml <gateway-receiver> bind-
address

X <gateway-receiver>bind-
address=address

cache.xml <cache-server> bind-address X <cache-server>bind-address=address

gfsh start server command-line ‑‑server-
bind-address

X X gfsh start server ‑‑server-bind-
address=address

gemfire.properties server-bind-address X X server-bind-address=address

gemfire.properties bind-address X X X bind-address=address

VMware GemFire 9.10 Documentation

VMware by Broadcom 210

For example, a member started with these configurations in its gemfire.properties and cache.xml
files will use three separate addresses for peer, server, and gateway receiver communication:

// gemfire.properties setting for peer communication

bind-address=192.0.2.0

//cache.xml settings

<cache>

// Gateway receiver configuration

 <gateway-receiver start-port="1530" end-port="1551" bind-address="192.0.2.2"/>

// Server communication

 <cache-server bind-address="192.0.2.1" ...

 <region ...

Locator Communication
Set the locator bind address using one of these methods:

On the gfsh command line, specify the bind address when you start the locator, the same
as you specify any other address:

gfsh>start locator --name=my_locator --bind-address=ip-address-to-bind --port=p

ortNumber

Inside a VMware GemFire application, take one of the following actions:

Automatically start a co-located locator using the gemfire property start-locator,
and specifying the bind address for it in that property setting.

Use org.apache.geode.distributed.LocatorLauncher API to start the locator inside
your code. Use the LocatorLauncher.Builder class to construct an instance of the
LocatorLauncher, use the setBindAddress method to specify the IP address to use
and then use the start() method to start a Locator service embedded in your Java
application process.

If your locator uses a bind address, make sure every process that accesses the locator has the
address as well. For peer-to-peer access to the locator, use the locator’s bind address and the
locator’s port in your gemfire.properties locators list. For server discovery in a client/server
installation, use the locator’s bind address and the locator’s port in the locator list you provide to in
the client’s server pool configuration.

Choosing Between IPv4 and IPv6

By default, VMware GemFire uses Internet Protocol version 4 for VMware GemFire address
specifications. You can switch to Internet Protocol version 6 if all your machines support it. You
may lose performance, so you need to understand the costs of making the switch.

IPv4 uses a 32-bit address. IPv4 was the first protocol and is still the main one in use, but its
address space is expected to be exhausted within a few years.

VMware GemFire 9.10 Documentation

VMware by Broadcom 211

IPv6 uses a 128-bit address. IPv6 succeeds IPv4, and will provide a much greater number of
addresses.

Based on current testing with VMware GemFire , IPv4 is generally recommended. IPv6
connections tend to take longer to form and the communication tends to be slower. Not all
machines support IPv6 addressing. To use IPv6, all machines in your distributed system must
support it or you will have connectivity problems.

Note: Do not mix IPv4 and IPv6 addresses. Use one or the other, across the board.

IPv4 is the default version.

To use IPv6, set the Java property, java.net.preferIPv6Addresses, to true.

These examples show the formats to use to specify addresses in VMware GemFire .

IPv4:

192.0.2.0

IPv6:

2001:db8:85a3:0:0:8a2e:370:7334

Peer-to-Peer Configuration
Use peer-to-peer configuration to set member discovery and communication within a single
cluster.

Configuring Peer-to-Peer Discovery

Peer members discover each other using one or more locators.

Configuring Peer Communication

By default VMware GemFire uses TCP for communication between members of a single
cluster. You can modify this at the member and region levels.

Organizing Peers into Logical Member Groups

In a peer-to-peer configuration, you can organize members into logical member groups and
use those groups to associate specific data or assign tasks to a pre-defined set of members.

Configuring Peer-to-Peer Discovery
Peer members discover each other using one or more locators.

The gemfire.properties file can list the locators:

locators=<locator1-address>[<port1>],<locator2-address>[<port2>]

To run a standalone member, the gemfire.properties file disables using locators:

locators=

mcast-address=

mcast-port=0

VMware GemFire 9.10 Documentation

VMware by Broadcom 212

Note: Locator settings must be consistent throughout the cluster.

Configuring Peer Communication

By default VMware GemFire uses TCP for communication between members of a single distributed
system. You can modify this at the member and region levels.

Before you begin, you should have already determined the address and port settings for multicast,
including any bind addresses. See Topology and Communication General Concepts.

See the Reference.

1. Configure general messaging to use TCP or UDP unicast.

TCP is the default protocol for communication. To use it, just make sure you do not have it
disabled in gemfire.properties. Either have no entry for disable-tcp, or have this entry:

disable-tcp=false

To use UDP unicast for general messaging, add this entry to gemfire.properties:

disable-tcp=true

The disable-tcp setting has no effect on the use of TCP locators or the TCP connections
used to detect failed members.

2. Configure any regions you want to distribute using UDP multicast.

1. Configure UDP multicast for region messaging, set non-default multicast address
and port selections in gemfire.properties:

mcast-address=<address>

mcast-port=<port>

2. In cache.xml, enable multicast for each region that needs multicast messaging:

<region-attributes multicast-enabled="true"/>

Note: Improperly configured multicast can affect production systems. If you intend
to use multicast on a shared network, work with your network administrator and
system administrator from the planning stage of the project. In addition, you may
need to address interrelated setup and tuning issues at the VMware GemFire,
operating system, and network level.

Once your members establish their connections to each other, they will send distributed data and
messages according to your configuration.

Organizing Peers into Logical Member Groups

In a peer-to-peer configuration, you can organize members into logical member groups and use
those groups to associate specific data or assign tasks to a pre-defined set of members.

You can use logical member groups to deploy JAR applications across multiple members or to
execute functions across a member group.

VMware GemFire 9.10 Documentation

VMware by Broadcom 213

To add a peer to a member group, you can configure the following:

1. Add the member group names to the gemfire.properties file for the member. For
example:

#gemfire.properties

groups=Portfolios,ManagementGroup1

A member can belong to more than one member group. If specifying multiple member
groups for a member, use a comma-separated list. Alternatively, if you are using the gfsh
command interface to start up the member, provide the group name or group names as a
parameter.

For example, to start up a server and associate it with member groups, you could type:

gfsh>start server --name=server1 \

--group=Portfolios,ManagementGroup1

For example, to start up a locator and associate it with member groups, you could type:

gfsh>start locator --name=locator1 \

--group=ManagementGroup1

2. Then you can use the member group names to perform tasks such as deploy applications or
execute functions.

For example, to deploy an application across a member group, you could type the following
in gfsh:

gfsh>deploy --jar=group1_functions.jar --group=ManagementGroup1

Client/Server Configuration

In the client/server architecture, a relatively small server farm manages the cached data of and
access to the same data for many client applications. Clients can update and access data efficiently,
leaving the servers to manage data distribution to other clients and any synchronization with
outside data stores.

Standard Client/Server Deployment

In the most common client/server topology, a farm of cache servers provides caching
services to many clients. Cache servers have a homogeneous data store in data regions that
are replicated or partitioned across the server farm.

How Server Discovery Works

VMware GemFire locators provide reliable and flexible server discovery services for your
clients. You can use all servers for all client requests, or group servers according to function,
with the locators directing each client request to the right group of servers.

How Client/Server Connections Work

The server pools in your VMware GemFire client processes manage all client connection
requests to the server tier. To make the best use of the pool functionality, you should

VMware GemFire 9.10 Documentation

VMware by Broadcom 214

understand how the pool manages the server connections.

Configuring a Client/Server System

Configure your server and client processes and data regions to run your client/server
system.

Organizing Servers Into Logical Member Groups

In a client/server configuration, by putting servers into logical member groups, you can
control which servers your clients use and target specific servers for specific data or tasks.
You can configure servers to manage different data sets or to direct specific client traffic to
a subset of servers, such as those directly connected to a back-end database.

Client/Server Example Configurations

For easy configuration, you can start with these example client/server configurations and
modify for your systems.

Fine-Tuning Your Client/Server Configuration

You can fine-tune your client/server system with server load-balancing. For example, you
can configure how often the servers check their load with the cache server load-poll-
interval property, or configure your own server load metrics by implementing the
org.apache.geode.cache.server package.

Standard Client/Server Deployment

In the most common client/server topology, a farm of cache servers provides caching services to
many clients. Cache servers have a homogeneous data store in data regions that are replicated or
partitioned across the server farm.

The client/server data flow proceeds as follows:

Cache servers send their address and load information to the server locator, if locators are
used.

If locators are used, clients request server connection information from the locator. The
locator responds with the address of the least-loaded server.

The client pool checks its connections periodically for proper server load balancing. The
pool rebalances as needed.

Clients can subscribe to events at startup. Events are streamed automatically from the
servers to client listeners and into the client cache.

Client data updates and data requests that the client cache does not fulfill are forwarded
automatically to the servers.

VMware GemFire 9.10 Documentation

VMware by Broadcom 215

Server

Client

Local

Cache

connection pool

Server Farm

Locator

send address and load information to locator

Cache

Clients

request server information from locator,

locator responds with least loaded server

send,

receive

cache data

receive server

events

Cache

Data

How Server Discovery Works

VMware GemFire locators provide reliable and flexible server discovery services for your clients.
You can use all servers for all client requests, or group servers according to function, with the
locators directing each client request to the right group of servers.

By default, VMware GemFire clients and servers discover each other on a predefined port (40404)
on the localhost. This works, but is not typically the way you would deploy a client/server
configuration. The recommended solution is to use one or more dedicated locators. A locator
provides both discovery and load balancing services. With server locators, clients are configured
with a locator list and locators maintain a dynamic server list. The locator listens at an address and
port for connecting clients and gives the clients server information. The clients are configured with
locator information and have no configuration specific to the servers.

Basic Configuration

In this figure, only one locator is shown, but the recommended configuration uses multiple locators
for high availability.

VMware GemFire 9.10 Documentation

VMware by Broadcom 216

Server #1

Client

Local

Cache

connection pool

Locator

send address and load info

request server

connection

Server #2

Cache DataCache Data

listening on

10.80.100.1 :

40404

listening on

10.80.100.2 :

40404

listening on lucy : 41111

locator at

lucy : 41111

1

use 10.80.100.2 :

40404

2

client/server

communication

3

The locator and servers have the same peer discovery configured in their gemfire.properties:

locators=lucy[41111]

The servers, run on their respective hosts, have this cache-server configuration in their cache.xml:

<cache-server port="40404" ...

The client’s cache.xml pool configuration and region-attributes:

<pool name="PoolA" ...

 <locator host="lucy" port="41111">

<region ...

<region-attributes pool-name="PoolA" ...

Using Member Groups

You can control which servers are used with named member groups. Do this if you want your
servers to manage different data sets or to direct specific client traffic to a subset of servers, such
as those directly connected to a back-end database.

To split data management between servers, configure some servers to host one set of data regions
and some to host another set. Assign the servers to two separate member groups. Then, define
two separate server pools on the client side and assign the pools to the proper corresponding client
regions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 217

In this figure, the client use of the regions is also split, but you could have both pools and both
regions defined in all of your clients.

Server #1

Client #1

Region:

Portfolios

connection pool

Server #2

Region:

Products

Region:

Portfolios

listening on

10.80.100.1 :

40404

group: Portfolios

listening on

10.80.100.2 :

40404

group: Products

locator at lucy : 41111

server-group: Portfolios

Client #2

Region:

Products

connection pool

locator at lucy : 41111

server-group: Products

Locator

listening on lucy : 41111

Portfolios: 10.80.100.1 : 40404

Products: 10.80.100.2 : 40404

This is the gemfire.properties definition for Server 1:

#gemfire.properties

groups=Portfolios

And the pool declaration for Client 1:

<pool name="PortfolioPool" server-group="Portfolios"...

 <locator host="lucy" port="41111">

How Client/Server Connections Work

The server pools in your VMware GemFire client processes manage all client connection requests
to the server tier. To make the best use of the pool functionality, you should understand how the
pool manages the server connections.

Client/server communication is done in two distinct ways. Each kind of communication uses a
different type of connection for maximum performance and availability.

Pool connections. The pool connection is used to send individual operations to the server
to update cached data, to satisfy a local cache miss, or to run an ad hoc query. Each pool
connection goes to a host/port location where a server is listening. The server responds to
the request on the same connection. Generally, client threads use a pool connection for an
individual operation and then return the connection to the pool for reuse, but you can
configure to have connections owned by threads. This figure shows pool connections for

VMware GemFire 9.10 Documentation

VMware by Broadcom 218

one client and one server. At any time, a pool may have from zero to many pool
connections to any of the servers.

Server

Client

connection pool

client threads use pool

connection for cache

operations

requests from

other clients

Cache

Data

listener for clients

client requests,

server

responses

requests to

other servers

Subscription connections. The subscription connection is used to stream cache events
from the server to the client. To use this, set the client attribute subscription-enabled to
true. The server establishes a queue to asynchronously send subscription events and the
pool establishes a subscription connection to handle the incoming messages. The events
sent depend on how the client subscribes.

Server

Client

connection pool

used for updates to cache and

for sending events to listeners

events to

other clients

Cache events

subscription

queues

connections to

clients

subscription

connection

How the Pool Chooses a Server Connection

VMware GemFire 9.10 Documentation

VMware by Broadcom 219

The pool gets server connection information from the server locators or, alternately, from the static
server list.

Server Locators. Server locators maintain information about which servers are available
and which has the least load. New connections are sent to the least loaded servers. The
pool requests server information from a locator when it needs a new connection. The pool
randomly chooses the locator to use and the pool sticks with a locator until the connection
fails.

Static Server List. If you use a static server list, the pool shuffles it once at startup, to
provide randomness between clients with the same list configuration, and then runs
through the list round robin connecting as needed to the next server in the list. There is no
load balancing or dynamic server discovery with the static server list.

How the Pool Connects to a Server

When a pool needs a new connection, it goes through these steps until either it successfully
establishes a connection, it has exhausted all available servers, or the free-connection-timeout is
reached.

1. Requests server connection information from the locator or retrieves the next server from
the static server list.

2. Sends a connection request to the server.

If the pool fails to connect while creating a subscription connection or provisioning the pool to
reach the min-connections setting, it logs a fine level message and retries after the time indicated
by ping-interval.

If an application thread calls an operation that needs a connection and the pool can’t create it, the
operation returns a NoAvailableServersException.

How the Pool Manages Pool Connections

Each Pool instance in your client maintains its own connection pool. The pool responds as
efficiently as possible to connection loss and requests for new connections, opening new
connections as needed. When you use a pool with the server locator, the pool can quickly respond
to changes in server availability, adding new servers and disconnecting from unhealthy or dead
servers with little or no impact on your client threads. Static server lists require more close
attention as the client pool is only able to connect to servers at the locations specified in the list.

The pool adds a new pool connection when one of the following happens:

The number of open connections is less than the Pool’s min-connections setting.

A thread needs a connection, all open connections are in use, and adding another
connection would not take the open connection count over the pool’s max-connections
setting. If the max-connections setting has been reached, the thread blocks until a
connection becomes available.

The pool closes a pool connection when one of the following occurs:

The client receives a connectivity exception from the server.

VMware GemFire 9.10 Documentation

VMware by Broadcom 220

The server doesn’t respond to a direct request or ping within the client’s configured read-
timeout period. In this case, the pool removes all connections to that server.

The number of pool connections exceeds the pool’s min-connections setting and the client
doesn’t send any requests over the connection for the idle-timeout period.

When it closes a connection that a thread is using, the pool switches the thread to another server
connection, opening a new one if needed.

How the Pool Manages Subscription Connections

The pool’s subscription connection is established in the same way as the pool connections, by
requesting server information from the locator and then sending a request to the server, or, if you
are using a static server list, by connecting to the next server in the list.

The server sends ping messages once per second by a task scheduled in a timer. You can adjust
the interval with the system property gemfire.serverToClientPingPeriod, specified in milliseconds.
The server sends its ping-interval setting to the client. The client then uses this and a multiplier to
establish a read-timeout in the cache.

You can set the client property subscription-timeout-multiplier to enable timeout of the
subscription feed with failover to another server.

Value options include:

A value of zero (the default) deactivates timeouts.

A value of one or more times out the server connection after the specified number of ping
intervals have elapsed. A value of one is not recommended.

How the Pool Conditions Server Load

When locators are used, the pool periodically conditions its pool connections. Each connection has
an internal lifetime counter. When the counter reaches the configured load-conditioning-
interval, the pool checks with the locator to see if the connection is using the least loaded server.
If not, the pool establishes a new connection to the least loaded server, silently puts it in place of
the old connection, and closes the old connection. In either case, when the operation completes,
the counter starts at zero. Conditioning happens behind the scenes and does not affect your
application’s connection use. This automatic conditioning allows very efficient upscaling of your
server pool. It is also useful following planned and unplanned server outages, during which time the
entire client load will have been placed on a subset of the normal set of servers.

Configuring a Client/Server System

Configure your server and client processes and data regions to run your client/server system.

Prerequisites

Configure your server system using locators for member discovery. See Configuring Peer-
to-Peer Discovery and Managing a Peer or Server Cache.

Configure your clients as standalone applications. See Managing a Client Cache.

Be familiar with cache region configuration. See Data Regions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 221

Be familiar with server and client configuration properties. See cache.xml.

Procedure

1. Configure servers to listen for clients by completing one or both of the following tasks.

Configure each application server as a server by specifying the <cache-server>
element in the application’s cache.xml and optionally specifying a non-default port
to listen on for client connections.

For example:

<cache-server port="40404" ... />

Optional. Configure each cacheserver process with a non-default port to listen on
for client connections.

For example:

prompt> cacheserver start -port="44454"

2. Configure clients to connect to servers. In the client cache.xml, use the server system’s
locator list to configure your client server pools and configure your client regions to use the
pools. For example:

<client-cache>

 <pool name="publisher" subscription-enabled="true">

 <locator host="lucy" port="41111"/>

 <locator host="lucy" port="41111"/>

 </pool>

 ...

 <region name="clientRegion" ...

 <region-attributes pool-name="publisher" ...

You do not need to provide the complete list of locators to the clients at startup, but you
should provide as complete a list as possible. The locators maintain a dynamic list of locators
and servers and provide the information to the clients as needed.

3. Configure the server data regions for client/server work, following these guidelines. These
do not need to be performed in this order. 1.

Configure your server regions as partitioned or replicated, to provide a cohere

nt cache view of server data to all clients.

Note:

If you do not configure your server regions as partitioned or replicated, you c

an get unexpected results with calls that check server region contents, such as

`keySetOnServer` and `containsKeyOnServer`. You might get only partial results,

and you might also get inconsistent responses from two consecutive calls. These

results occur because the servers report only on their local cache content and,

without partitioned or replicated regions, they might not have a complete view

of the data in their local caches.

1. When you define your replicated server regions, use any of the REPLICATE
RegionShortcut settings except for REPLICATE_PROXY. Replicated server regions
must have distributed-ack or global scope, and every server that defines the

VMware GemFire 9.10 Documentation

VMware by Broadcom 222

region must store data. The region shortcuts use distributed-ack scope and all
non-proxy settings store data. 3.

When you define your partitioned server regions, use the PARTITION RegionShortcut
options. You can have local data storage in some servers and no local storage in
others.

When you start the server and client systems, the client regions will use the server regions for
cache misses, event subscriptions, querying, and other caching activities.

What to do next

Configure your clients to use the cache and to subscribe to events from the servers as needed by
your application. See Configuring Client/Server Event Messaging.

Organizing Servers Into Logical Member Groups

In a client/server configuration, by putting servers into logical member groups, you can control
which servers your clients use and target specific servers for specific data or tasks. You can
configure servers to manage different data sets or to direct specific client traffic to a subset of
servers, such as those directly connected to a back-end database.

You can also define member groups to deploy JARs in parallel or to perform administrative
commands across a member group.

To add servers to a member group, you can configure the following:

1. Add the member group names to the gemfire.properties file for the server. For example:

groups=Portfolios,ManagementGroup1

A server can belong to more than one member group. If specifying multiple group
membership for the server, use a comma-separated list. Alternatively, if you are using the
gfsh command interface to start up the server, provide a group name as a parameter:

gfsh>start server --name=server1 \

--group=Portfolios,ManagementGroup1

2. To configure a client to connect to a specific member group, modify the client’s cache.xml
file to define a distinct pool for each server-group and assign the pools to the
corresponding client regions:

<pool name="PortfolioPool" server-group="Portfolios" ...

 <locator host="lucy" port="41111">

 ...

</pool>

 ...

<region name="clientRegion" ...

 <region-attributes pool-name="PortfolioPool" ...

Client/Server Example Configurations

For easy configuration, you can start with these example client/server configurations and modify for
your systems.

VMware GemFire 9.10 Documentation

VMware by Broadcom 223

Examples of Standard Client/Server Configuration

Generally, locators and servers use the same properties file, which lists locators as the discovery
mechanism for peer members and for connecting clients. For example:

mcast-port=0

locators=localhost[41111]

On the machine where you wish to run the locator (in this example, ‘localhost’), you can start the
locator from a gfsh prompt:

gfsh>start locator --name=locator_name --port=41111

Or directly from a command line:

prompt# gfsh start locator --name=locator_name --port=41111

Specify a name for the locator that you wish to start on the localhost. If you do not specify the
member name, gfsh will automatically pick a random name. This is useful for automation.

The server’s cache.xml declares a cache-server element, which identifies the JVM as a server in
the cluster.

<cache>

 <cache-server port="40404" ... />

 <region . . .

Once the locator and server are started, the locator tracks the server as a peer in its cluster and as
a server listening for client connections at port 40404.

You can also configure a cache server using the gfsh command-line utility. For example:

gfsh>start server --name=server1 --server-port=40404

See start server.

The client’s cache.xml <client-cache> declaration automatically configures it as a standalone
VMware GemFire application.

The client’s cache.xml:

Declares a single connection pool with the locator as the reference for obtaining server
connection information.

Creates cs_region with the client region shortcut configuration, CACHING_PROXY. This
configures it as a client region that stores data in the client cache.

There is only one pool defined for the client, so the pool is automatically assigned to all client
regions.

<client-cache>

 <pool name="publisher" subscription-enabled="true">

 <locator host="localhost" port="41111"/>

 </pool>

 <region name="cs_region" refid="CACHING_PROXY">

VMware GemFire 9.10 Documentation

VMware by Broadcom 224

 </region>

</client-cache>

With this, the client is configured to go to the locator for the server connection location. Then any
cache miss or put in the client region is automatically forwarded to the server.

Example—Standalone Publisher Client, Client Pool, and
Region
The following API example walks through the creation of a standalone publisher client and the
client pool and region.

public static ClientCacheFactory connectStandalone(String name) {

 return new ClientCacheFactory()

 .set("log-file", name + ".log")

 .set("statistic-archive-file", name + ".gfs")

 .set("statistic-sampling-enabled", "true")

 .set("cache-xml-file", "")

 .addPoolLocator("localhost", LOCATOR_PORT);

}

private static void runPublisher() {

 ClientCacheFactory ccf = connectStandalone("publisher");

 ClientCache cache = ccf.create();

 ClientRegionFactory<String,String> regionFactory =

 cache.createClientRegionFactory(PROXY);

 Region<String, String> region = regionFactory.create("DATA");

 //... do work ...

 cache.close();

}

Example—Standalone Subscriber Client

This API example creates a standalone subscriber client using the same connectStandalone method
as the previous example.

private static void runSubscriber() throws InterruptedException {

 ClientCacheFactory ccf = connectStandalone("subscriber");

 ccf.setPoolSubscriptionEnabled(true);

 ClientCache cache = ccf.create();

 ClientRegionFactory<String,String> regionFactory =

 cache.createClientRegionFactory(PROXY);

 Region<String, String> region = regionFactory

 .addCacheListener(new SubscriberListener())

 .create("DATA");

 region.registerInterestRegex(".*", // everything

 InterestResultPolicy.NONE,

 false/*isDurable*/);

 SubscriberListener myListener =

 (SubscriberListener)region.getAttributes().getCacheListeners()[0];

 System.out.println("waiting for publisher to do " + NUM_PUTS + " puts...");

 myListener.waitForPuts(NUM_PUTS);

 System.out.println("done waiting for publisher.");

VMware GemFire 9.10 Documentation

VMware by Broadcom 225

 cache.close();

}

Example of a Static Server List in Client/Server
Configuration
You can specify a static server list instead of a locator list in the client configuration. With this
configuration, the client’s server information does not change for the life of the client member. You
do not get dynamic server discovery, server load conditioning, or the option of logical server
grouping. This model is useful for very small deployments, such as test systems, where your server
pool is stable. It avoids the administrative overhead of running locators.

This model is also suitable if you must use hardware load balancers. You can put the addresses of
the load balancers in your server list and allow the balancers to redirect your client connections.

The client’s server specification must match the addresses where the servers are listening. In the
server cache configuration file, here are the pertinent settings.

<cache>

 <cache-server port="40404" ... />

 <region . . .

The client’s cache.xml file declares a connection pool with the server explicitly listed and names the
pool in the attributes for the client region. This XML file uses a region attributes template to
initialize the region attributes configuration.

<client-cache>

 <pool name="publisher" subscription-enabled="true">

 <server host="localhost" port="40404"/>

 </pool>

 <region name="cs_region" refid="CACHING_PROXY">

 </region>

</client-cache>

Fine-Tuning Your Client/Server Configuration

You can fine-tune your client/server system with server load-balancing. For example, you can
configure how often the servers check their load with the cache server load-poll-interval
property, or configure your own server load metrics by implementing the
org.apache.geode.cache.server package.

How Server Load Conditioning Works

When the client pool requests connection information from the server locator, the locator returns
the least-loaded server for the connection type. The pool uses this “best server” response to open
new connections and to condition (rebalance) its existing pool connections.

The locator tracks server availability and load according to information that the servers
provide. Each server probes its load metrics periodically and, when it detects a change,
sends new information to the locator. This information consists of current load levels and

VMware GemFire 9.10 Documentation

VMware by Broadcom 226

estimates of how much load would be added for each additional connection. The locator
compares the load information from its servers to determine which servers can best handle
more connections.

You can configure how often the servers check their load with the cache server’s load-
poll-interval. You might want to set it lower if you find your server loads fluctuating too
much during normal operation. The lower you set it, however, the more overhead your load
balancing will use.

Between updates from the servers, the locators estimate which server is the least loaded
by using the server estimates for the cost of additional connections. For example, if the
current pool connection load for a server’s connections is 0.4 and each additional
connection would add 0.1 to its load, the locator can estimate that adding two new pool
connections will take the server’s pool connection load to 0.6.

Locators do not share connection information among themselves. These estimates provide
rough guidance to the individual locators for the periods between updates from the servers.

VMware GemFire provides a default utility that probes the server and its resource usage to give
load information to the locators. The default probe returns the following load metrics: - The pool
connection load is the number of connections to the server divided by the server’s max-
connections setting. This means that servers with a lower max-connections setting receives fewer
connections than servers with a higher setting. The load is a number between 0 and 1, where 0
means there are no connections, and 1 means the server is at max-connections. The load estimate
for each additional pool connection is 1/max-connections. - The subscription connection load is the
number of subscription queues hosted by this server. The load estimate for each additional
subscription connection is 1.

To use your own server load metrics instead of the default, implement the ServerLoadProbe or
ServerLoadProbeAdapter and related interfaces and classes in the org.apache.geode.cache.server
package. The load for each server is weighed relative to the loads reported by other servers in the
system.

Multi-site (WAN) Configuration

Use the multi-site configuration to scale horizontally between disparate, loosely-coupled clusters. A
wide-area network (WAN) is the main use case for the multi-site topology.

How Multi-site (WAN) Systems Work

The VMware GemFire multi-site implementation connects disparate clusters. The systems
act as one when they are coupled, and they act as independent systems when
communication between sites fails. The coupling is tolerant of weak or slow links between
cluster sites. A wide-area network (WAN) is the main use case for the multi-site topology.

Multi-site (WAN) Topologies

To configure your multi-site topology, you should understand the recommended topologies
and the topologies to avoid.

Configuring a Multi-site (WAN) System

Plan and configure your multi-site topology, and configure the regions that will be shared
between systems.

VMware GemFire 9.10 Documentation

VMware by Broadcom 227

Filtering Events for Multi-Site (WAN) Distribution

You can optionally create gateway sender and/or gateway receiver filters to control which
events are queued and distributed to a remote site, or to modify the data stream that is
transmitted between VMware GemFire sites.

Resolving Conflicting Events

You can optionally create a GatewayConflictResolver cache plug-in to decide whether a
potentially conflicting event that was delivered from another site should be applied to the
local cache.

How Multi-site (WAN) Systems Work

The VMware GemFire multi-site implementation connects distinct clusters. The clusters act as one
distributed system when they are coupled, and they act as independent systems when
communication between sites fails. The coupling is tolerant of weak or slow links between cluster
sites. A wide-area network (WAN) is the main use case for the multi-site topology.

Overview of Multi-site Caching

A multi-site installation consists of two or more clusters that are loosely coupled. Each site
manages its own cluster, but region data is distributed to remote sites using one or more
logical connections.

Consistency for WAN Updates

VMware GemFire ensures that all copies of a region eventually reach a consistent state on
all members and clients that host the region, including VMware GemFire members that
distribute region events across a WAN.

Discovery for Multi-Site Systems

Each VMware GemFire cluster in a WAN configuration uses locators to discover remote
clusters as well as local members.

Gateway Senders

A VMware GemFire cluster uses a gateway sender to distribute region events to another,
remote VMware GemFire cluster. You can create multiple gateway sender configurations
to distribute region events to multiple remote clusters, and/or to distribute region events
concurrently to another remote cluster.

Gateway Receivers

A gateway receiver configures a physical connection for receiving region events from
gateway senders in one or more remote VMware GemFire clusters.

Multi-site (WAN) Topologies

To configure your multi-site topology, you should understand the recommended topologies and
the topologies to avoid.

This section describes VMware GemFire’s support for various topologies. Depending on your
application needs, there may be several topologies that work. These are considerations to keep in
mind:

VMware GemFire 9.10 Documentation

VMware by Broadcom 228

When a VMware GemFire site receives a message from a gateway sender, it forwards it to
the other sites it knows about, excluding those sites that it knows have already seen the
message. Each message contains the initial sender’s ID and the ID of each of the sites the
initial sender sent to, so no site forwards to those sites. However, messages do not pick up
the ID of the sites they pass through, so it is possible in certain topologies for more than
one copy of a message to be sent to one site.

In some configurations, the loss of one site affects how other sites communicate with one
another.

Fully Connected Mesh Topology

A fully connected mesh network topology is one in which all sites know about each other. This is a
robust configuration, as any one of the sites can go down without disrupting communication
between the other sites. A fully connected mesh topology also guarantees that no site receives
multiple copies of the same message.

A fully connected mesh with three sites is shown in this figure. In this scenario, if site 1 sends an
update to site 2, site 2 forwards to site 3. If site 1 sends an update to sites 2 and 3, neither forwards
to the other. This is likewise true for any other initiating site. If any site is removed, the remaining
two are still fully connected.

Ring Topology

A ring topology is one in which each site forwards information to one other site, and the sites are
connected in a circular manner. This figure shows a ring with three sites. In this topology, if site 1
sends updates to site 2, site 2 forwards the updates to site 3. No updates are forwarded to the
original sender, so site 3 does not send the updates back to site 1.

A ring topology guarantees that every site receives one copy of each message sent by any site. In a
ring, every site must stay up to maintain the connection. The failure of any site breaks the ability for
updates to reach all sites. If site 2 went down, for example, site 3 could send to site 1, but site 1
could not send to site 3.

Hybrid Multi-site Topology

There are numerous hybrid network topologies. Some of the sites are fully connected, while others
form a ring.

VMware GemFire 9.10 Documentation

VMware by Broadcom 229

The following figure shows a hybrid topology that forms a ring, with an extra connection that fully
connects sites 1 and 3.

With this hybrid topology, if site 2 went down, it would not affect communication between sites 1
and 3. If site 3 went down, however, site 2 would not be able to send to site 1.

A second example hybrid topology is shown in the figure below. In this tree topology with site 1 as
the root of the tree, sites 2 and 3 do not communicate with each another. This topology works for
an application in which site 1 is a producer and the consumers (sites 2 and 3) have nothing to gain
from being connected to each other. This topology also guarantees that no site receives the same
update twice.

Unsupported Topologies

Topologies in which the same update may be delivered twice to a particular site do not work and
are unsupported.

The DAG topology shown in this figure is an example of an unsupported technology. Site 4 will
receive more than one copy of the same message when site 1 sends a message to sites 2 and 3,
and sites 2 and 3 each forward the message to site 4.

Configuring a Multi-site (WAN) System

Plan and configure your multi-site topology, and configure the regions that will be shared between
systems.

Prerequisites

Before you start, you should understand how to configure membership and communication in
peer-to-peer systems using locators. See Configuring Peer-to-Peer Discovery and Configuring
Peer Communication.

VMware GemFire 9.10 Documentation

VMware by Broadcom 230

WAN deployments increase the messaging demands on a VMware GemFire system. To avoid
hangs related to WAN messaging, always use the default setting of conserve-sockets=false for
VMware GemFire members that participate in a WAN deployment. See Configuring Sockets in
Multi-Site (WAN) Deployments and Making Sure You Have Enough Sockets.

Main Steps

Use the following steps to configure a multi-site system:

1. Plan the topology of your multi-site system. See Multi-site (WAN) Topologies for a
description of different multi-site topologies.

2. Configure membership and communication for each cluster in your multi-site system. You
must use locators for peer discovery in a WAN configuration. See Configuring Peer-to-Peer
Discovery. Start each cluster using a unique distributed-system-id and identify remote
clusters using remote-locators. For example:

mcast-port=0

locators=<locator1-address>[<port1>],<locator2-address>[<port2>]

distributed-system-id=1

remote-locators=<remote-locator-addr1>[<port1>],<remote-locator-addr2>[<port2>]

3. Configure the gateway senders that you will use to distribute region events to remote
systems. See Configure Gateway Senders.

4. Create the data regions that you want to participate in the multi-site system, specifying the
gateway sender(s) that each region should use for WAN distribution. Configure the same
regions in the target clusters to apply the distributed events. See Create Data Regions for
Multi-site Communication.

5. Configure gateway receivers in each VMware GemFire cluster that will receive region
events from another cluster. See Configure Gateway Receivers.

6. Start cluster member processes in the correct order (locators first, followed by data nodes)
to ensure efficient discovery of WAN resources. See Starting Up and Shutting Down Your
System.

7. (Optional.) Deploy custom conflict resolvers to handle resolve potential conflicts that are
detected when applying events from over a WAN. See Resolving Conflicting Events.

8. (Optional.) Deploy WAN filters to determine which events are distributed over the WAN, or
to modify events as they are distributed over the WAN. See Filtering Events for Multi-Site
(WAN) Distribution.

9. (Optional.) Configure persistence, conflation, and/or dispatcher threads for gateway sender
queues using the instructions in Configuring Multi-Site (WAN) Event Queues.

Configure Gateway Senders

Each gateway sender configuration includes:

A unique ID for the gateway sender configuration.

The distributed system ID of the remote site to which the sender propagates region events.

VMware GemFire 9.10 Documentation

VMware by Broadcom 231

A property that specifies whether the gateway sender is a serial gateway sender or a
parallel gateway sender.

Optional properties that configure the gateway sender queue. These queue properties
determine features such the amount of memory used by the queue, whether the queue is
persisted to disk, and how one or more gateway sender threads dispatch events from the
queue.

Note: To configure a gateway sender that uses gfsh to create the cache.xml configurations
described below, as well as other options, see create gateway-sender.

See WAN Configuration for more information about individual configuration properties.

1. For each VMware GemFire system, choose the members that will host a gateway sender
configuration and distribute region events to remote sites:

You must deploy a parallel gateway sender configuration on each VMware GemFire
member that hosts a region that uses the sender. Regions using the same parallel
gateway sender ID must be colocated.

You may choose to deploy a serial gateway sender configuration on one or more
VMware GemFire members in order to provide high availability. However, only one
instance of a given serial gateway sender configuration distributes region events at
any given time.

2. Configure each gateway sender on a VMware GemFire member using gfsh, cache.xml or
Java API:

gfsh configuration command

gfsh>create gateway-sender --id="sender2" --parallel=true --remote-distri

buted-system-id="2"

gfsh>create gateway-sender --id="sender3" --parallel=true --remote-distri

buted-system-id="3"

cache.xml configuration

These example cache.xml entries configure two parallel gateway senders to
distribute region events to two remote VMware GemFire clusters (clusters “2” and
“3”):

<cache>

 <gateway-sender id="sender2" parallel="true"

 remote-distributed-system-id="2"/>

 <gateway-sender id="sender3" parallel="true"

 remote-distributed-system-id="3"/>

 ...

</cache>

Java configuration

This example code shows how to configure a parallel gateway sender using the API:

// Create or obtain the cache

Cache cache = new CacheFactory().create();

VMware GemFire 9.10 Documentation

VMware by Broadcom 232

// Configure and create the gateway sender

GatewaySenderFactory gateway = cache.createGatewaySenderFactory();

gateway.setParallel(true);

GatewaySender sender = gateway.create("sender2", "2");

sender.start();

3. Depending on your applications, you may need to configure additional features in each
gateway sender. Things you need to consider are:

The maximum amount of memory each gateway sender queue can use. When the
queue exceeds the configured amount of memory, the contents of the queue
overflow to disk. For example:

gfsh>create gateway-sender --id=sender2 --parallel=true --remote-distribu

ted-system-id=2 --maximum-queue-memory=150

In cache.xml:

<gateway-sender id="sender2" parallel="true"

 remote-distributed-system-id="2"

 maximum-queue-memory="150"/>

Whether to enable disk persistence, and whether to use a named disk store for
persistence or for overflowing queue events. See Persisting an Event Queue. For
example:

gfsh>create gateway-sender --id=sender2 --parallel=true --remote-distribu

ted-system-id=2 \

--maximum-queue-memory=150 --enable-persistence=true --disk-store-name=cl

uster2Store

In cache.xml:

<gateway-sender id="sender2" parallel="true"

 remote-distributed-system-id="2"

 enable-persistence="true" disk-store-name="cluster2Store"

 maximum-queue-memory="150"/>

The number of dispatcher threads to use for processing events from each each
gateway queue. The dispatcher-threads attribute of the gateway sender specifies
the number of threads that process the queue (default of 5). For example:

gfsh>create gateway-sender --id=sender2 --parallel=true --remote-distribu

ted-system-id=2 \

--dispatcher-threads=2 --order-policy=partition

In cache.xml:

<gateway-sender id="sender2" parallel="false"

 remote-distributed-system-id="2"

 dispatcher-threads="2" order-policy="partition"/>

Note: When multiple dispatcher threads are configured for a serial queue, each
thread operates on its own copy of the gateway sender queue. Queue configuration

VMware GemFire 9.10 Documentation

VMware by Broadcom 233

attributes such as maximum-queue-memory are repeated for each dispatcher thread
that you configure.

See Configuring Dispatcher Threads and Order Policy for Event Distribution.

For serial gateway senders (parallel=false) that use multiple dispatcher-threads,
also configure the ordering policy to use for dispatching the events. See Configuring
Dispatcher Threads and Order Policy for Event Distribution.

Determine whether you should conflate events in the queue. See Conflating Events
in a Queue.

Note: The gateway sender configuration for a specific sender id must be identical on each VMware
GemFire member that hosts the gateway sender.

Create Data Regions for Multi-site Communication

When using a multi-site configuration, you choose which data regions to share between sites.
Because of the high cost of distributing data between disparate geographical locations, not all
changes are passed between sites.

Note these important restrictions on the regions:

Replicated regions cannot use a parallel gateway sender. Use a serial gateway sender
instead.

In addition to configuring regions with gateway senders to distribute events, you must
configure the same regions in the target clusters to apply the distributed events. The region
name in the receiving cluster must exactly match the region name in the sending cluster.

Regions using the same parallel gateway sender ID must be colocated.

If any gateway sender configured for the region has the group-transaction-events flag set
to true, then the regions involved in transactions must all have the same gateway senders
configured with this flag set to true. This requires careful configuration of regions with
gateway senders according to the transactions expected in the system.

Example: Assuming the following scenario:

Gateway-senders:

sender1: group-transaction-events=true

sender2: group-transaction-events=true

sender3: group-transaction-events=true

sender4: group-transaction-events=false

Regions:

region1: gateway-sender-ids=sender1,sender2,sender4
type: partition
colocated-with: region2,region3

region2: gateway-sender-ids=sender1,sender2
type: partition
colocated with: region1,region3

VMware GemFire 9.10 Documentation

VMware by Broadcom 234

region3: gateway-sender-ids=sender3
type: partition
colocated with: region1,region2

region4: gateway-sender-ids=sender4
type: replicated

Events for the same transaction will be guaranteed to be sent in the same batch
depending on the events involved in the transaction:

For transactions containing events for region1 and region2, it will be
guaranteed that events for those transactions will be delivered in the same
batch by sender1 and sender2.

For transactions containing events for region1, region2 and region3, it will
NOT be guaranteed that events for those transactions will be delivered in
the same batch .

For transactions containing events for region3, it will be guaranteed that
events for those transactions will be delivered in the same batch.

For transactions containing events for region4, it will NOT be guaranteed
that events for those transactions will be delivered in the same batch.

After you define gateway senders, configure regions to use the gateway senders to distribute
region events.

gfsh Configuration

gfsh>create region --name=customer --gateway-sender-id=sender2,sender3

or to modify an existing region:

gfsh>alter region --name=customer --gateway-sender-id=sender2,sender3

cache.xml Configuration

Use the gateway-sender-ids region attribute to add gateway senders to a region. To assign
multiple gateway senders, use a comma-separated list. For example:

<region-attributes gateway-sender-ids="sender2,sender3">

</region-attributes>

Java API Configuration

This example shows adding two gateway senders (configured in the earlier example) to a
partitioned region:

RegionFactory rf =

 cache.createRegionFactory(RegionShortcut.PARTITION);

rf.addCacheListener(new LoggingCacheListener());

rf.addGatewaySenderId("sender2");

rf.addGatewaySenderId("sender3");

custRegion = rf.create("customer");

VMware GemFire 9.10 Documentation

VMware by Broadcom 235

Note: When using the Java API, you must configure a parallel gateway sender before you
add its id to a region. This ensures that the sender distributes region events that were
persisted before new cache operations take place. If the gateway sender id does not exist
when you add it to a region, you receive an IllegalStateException.

Configure Gateway Receivers

Always configure a gateway receiver in each VMware GemFire cluster that will receive and apply
region events from another cluster.

A gateway receiver configuration can be applied to multiple VMware GemFire servers for load
balancing and high availability. However, each VMware GemFire member that hosts a gateway
receiver must also define all of the regions for which the receiver may receive an event. If a
gateway receiver receives an event for a region that the local member does not define, VMware
GemFire throws an exception. See Create Data Regions for Multi-site Communication.

Note: You can only host one gateway receiver per member.

A gateway receiver configuration specifies a range of possible port numbers on which to listen. The
VMware GemFire server picks an unused port number from the specified range to use for the
receiver process. You can use this functionality to easily deploy the same gateway receiver
configuration to multiple members.

You can optionally configure gateway receivers to provide a specific IP address or host name for
gateway sender connections. If you configure hostname-for-senders, locators will use the provided
host name or IP address when instructing gateway senders on how to connect to gateway
receivers. If you provide "" or null as the value, by default the gateway receiver’s bind-address will
be sent to clients.

In addition, you can configure gateway receivers to start automatically or, by setting manual-start
to true, to require a manual start. By default, gateway receivers start automatically.

Note: To configure a gateway receiver, you can use gfsh, cache.xml or Java API configurations as
described below. For more information on configuring gateway receivers in gfsh, see create
gateway-receiver.

gfsh configuration command

gfsh>create gateway-receiver --start-port=1530 --end-port=1551 \

 --hostname-for-senders=gateway1.mycompany.com

cache.xml Configuration

The following configuration defines a gateway receiver that listens on an unused port in the
range from 1530 to 1550:

<cache>

 <gateway-receiver start-port="1530" end-port="1551"

 hostname-for-senders="gateway1.mycompany.com" />

 ...

</cache>

Java API Configuration

VMware GemFire 9.10 Documentation

VMware by Broadcom 236

// Create or obtain the cache

Cache cache = new CacheFactory().create();

// Configure and create the gateway receiver

GatewayReceiverFactory gateway = cache.createGatewayReceiverFactory();

gateway.setStartPort(1530);

gateway.setEndPort(1551);

gateway.setHostnameForSenders("gateway1.mycompany.com");

GatewayReceiver receiver = gateway.create();

Note: When using the Java API, you must create any region that might receive events from
a remote site before you create the gateway receiver. Otherwise, batches of events could
arrive from remote sites before the regions for those events have been created. If this
occurs, the local site will throw exceptions because the receiving region does not yet exist.
If you define regions in cache.xml, the correct startup order is handled automatically.

After starting new gateway receivers, you can execute the load-balance gateway-sender command
in gfsh so that a specific gateway sender will be able to rebalance its connections and connect new
remote gateway receivers. Invoking this command redistributes gateway sender connections more
evenly among all the gateway receivers.

Another option is to use the GatewaySender.rebalance Java API.

As an example, assume the following scenario:

1. Create 1 receiver in site NY.

2. Create 4 senders in site LN.

3. Create 3 additional receivers in NY.

You can then execute the following in gfsh to see the effects of rebalancing:

gfsh -e "connect --locator=localhost[10331]" -e "list gateways"

...

(2) Executing - list gateways

GatewaySender Section

GatewaySender Id | Member | Remote Cluster Id | Type |

Status | Queued Events | Receiver Location

---------------- | --------------------------------- | ----------------- | -------- |

------- | ------------- | -----------------

ln | mymac(ny-1:88641)<v2>:33491 | 2 | Parallel |

Running | 0 | mymac:5037

ln | mymac(ny-2:88705)<v3>:29329 | 2 | Parallel |

Running | 0 | mymac:5064

ln | mymac(ny-3:88715)<v4>:36808 | 2 | Parallel |

Running | 0 | mymac:5132

ln | mymac(ny-4:88724)<v5>:52993 | 2 | Parallel |

Running | 0 | mymac:5324

GatewayReceiver Section

 Member | Port | Sender Count | Senders Connected

--------------------------------- | ---- | ------------ | ----------------------------

--

mymac(ny-1:88641)<v2>:33491 | 5057 | 24 | ["mymac(ln-1:88651)<v2>:4827

VMware GemFire 9.10 Documentation

VMware by Broadcom 237

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-2:88662)<v3>:12796","mymac(ln-3:88672)<v4>:

43675"]

mymac(ny-2:88705)<v3>:29329 | 5082 | 0 | []

mymac(ny-3:88715)<v4>:36808 | 5371 | 0 | []

mymac(ny-4:88724)<v5>:52993 | 5247 | 0 | []

Execute the load-balance command:

gfsh -e "connect --locator=localhost[10441]" -e "load-balance gateway-sender --id=n

y"...

(2) Executing - load-balance gateway-sender --id=ny

 Member | Result | Message

--------------------------------- | ------ |--

mymac(ln-1:88651)<v2>:48277 | OK | GatewaySender ny is rebalanced on member

mymac(ln-1:88651)<v2>:48277

mymac(ln-4:88681)<v5>:42784 | OK | GatewaySender ny is rebalanced on member

mymac(ln-4:88681)<v5>:42784

mymac(ln-3:88672)<v4>:43675 | OK | GatewaySender ny is rebalanced on member

mymac(ln-3:88672)<v4>:43675

mymac(ln-2:88662)<v3>:12796 | OK | GatewaySender ny is rebalanced on member

mymac(ln-2:88662)<v3>:12796

Listing gateways in ny again shows the connections are spread much better among the receivers.

gfsh -e "connect --locator=localhost[10331]" -e "list gateways"...

(2) Executing - list gateways

GatewaySender Section

GatewaySender Id | Member | Remote Cluster Id | Type |

Status | Queued Events | Receiver Location

---------------- | --------------------------------- | ---------------- | -------- |

------- | ------------- | -----------------

ln | mymac(ny-1:88641)<v2>:33491 | 2 | Parallel |

Running | 0 | mymac:5037

ln | mymac(ny-2:88705)<v3>:29329 | 2 | Parallel |

Running | 0 | mymac:5064

ln | mymac(ny-3:88715)<v4>:36808 | 2 | Parallel |

Running | 0 | mymac:5132

ln | mymac(ny-4:88724)<v5>:52993 | 2 | Parallel |

Running | 0 | mymac:5324

GatewayReceiver Section

 Member | Port | Sender Count | Senders Connected

--------------------------------- | ---- | ------------ | ----------------------------

--

mymac(ny-1:88641)<v2>:33491 | 5057 | 9 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675","mymac(ln-2:88662)<v3>:

12796"]

mymac(ny-2:88705)<v3>:29329 | 5082 | 4 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675"]

mymac(ny-3:88715)<v4>:36808 | 5371 | 4 |["mymac(ln-1:88651)<v2>:4827

VMware GemFire 9.10 Documentation

VMware by Broadcom 238

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675"]

mymac(ny-4:88724)<v5>:52993 | 5247 | 3 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675"]

Running the load balance command in site ln again produces even better balance.

 Member | Port | Sender Count | Senders Connected

--------------------------------- | ---- | ------------ |-----------------------------

--

mymac(ny-1:88641)<v2>:33491 | 5057 | 7 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-2:88662)<v3>:12796","mymac(ln-3:88672)<v4>:

43675"]

mymac(ny-2:88705)<v3>:29329 | 5082 | 3 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-3:88672)<v4>:43675","mymac(ln-2:88662)<v3>:12796"]

mymac(ny-3:88715)<v4>:36808 | 5371 | 5 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-2:88662)<v3>:12796","mymac(ln-3:88672)<v4>:

43675"]

mymac(ny-4:88724)<v5>:52993 | 5247 | 6 |["mymac(ln-1:88651)<v2>:4827

7","mymac(ln-4:88681)<v5>:42784","mymac(ln-2:88662)<v3>:12796","mymac(ln-3:88672)<v4>:

43675"]

Configuring One IP Address and Port to Access All Gateway
Receivers in a Site

You may have a WAN deployment in which you do not want to expose the IP address and port of
every gateway receiver to other sites, but instead expose just one IP address and port for all
gateway receivers. This way, the internal topology of the site is hidden to other sites. This case is
quite common in cloud deployments, in which a reverse proxy/load balancer distributes incoming
requests to the site (in this case, replication requests) among the available servers (in this case,
gateway receivers).

VMware GemFire supports this configuration by means of a particular use of the hostname-for-
senders, start-port and end-port parameters of the gateway receiver.

In order to configure a WAN deployment that hides the gateway receivers behind the same IP
address and port,

All the gateway receivers must have the same value for the hostname-for-senders
parameter (the hostname or IP address to be used by clients to access them)

All gateway receivers must have the same value in the start-port and end-port
parameters (the ports to be used by clients to access them).

The following example shows a deployment in which all gateway receivers of a site are accessed via
the “gateway1.mycompany.com” hostname and port “1971”; every gateway receiver in the site
must be configured as follows:

gfsh> create gateway-receiver --hostname-for-senders="gateway1.mycompany.com" --start-

port=1971 --end-port=1971

The following output shows how the receiver side would look like after this configuration if four
gateway receivers were configured:

VMware GemFire 9.10 Documentation

VMware by Broadcom 239

Cluster-ny gfsh>list gateways

GatewayReceiver Section

 Member | Port | Sender Count | Senders Connected

----------------------------------| ---- | ------------ | ----------------------------

--

192.168.1.20(ny1:21901)<v1>:41000 | 1971 | 1 | 192.168.0.13(ln4:22520)<v4>:

41005

192.168.2.20(ny2:22150)<v2>:41000 | 1971 | 2 | 192.168.0.13(ln2:22004)<v2>:

41003, 192.168.0.13(ln3:22252)<v3>:41004

192.168.3.20(ny3:22371)<v3>:41000 | 1971 | 2 | 192.168.0.13(ln3:22252)<v3>:

41004, 192.168.0.13(ln2:22004)<v2>:41003

192.168.4.20(ny4:22615)<v4>:41000 | 1971 | 3 | 192.168.0.13(ln4:22520)<v4>:

41005, 192.168.0.13(ln1:21755)<v1>:41002, 192.168.0.13(ln1:21755)<v1>:41002

When the gateway senders on one site are started, they get the information about the gateway
receivers of the remote site from the locator(s) running on the remote site. The remote locator
provides a list of gateway receivers to send replication events to (one element per gateway
receiver running in the site), with all of them listening on the same hostname and port. From the
gateway sender’s standpoint, it is as if only one gateway receiver is on the other side.

The following output shows the gateways information at the sender side, in which it can be seen
that there is only one IP address/hostname and port for the receiver location
(gateway1.mycompany.com:1971), while the reality is that there are four gateway receivers on the
other side.

Cluster-ln gfsh>list gateways

GatewaySender Section

GatewaySender Id | Member | Remote Cluster Id | Type |

Status | Queued Events | Receiver Location

---------------- | ----------------------------------| ----------------- | -------- |

--------------------- | ------------- | ---------------------------

ny | 192.168.0.13(ln2:22004)<v2>:41003 | 2 | Parallel |

Running and Connected | 0 | gateway1.mycompany.com:1971

ny | 192.168.0.13(ln3:22252)<v3>:41004 | 2 | Parallel |

Running and Connected | 0 | gateway1.mycompany.com:1971

ny | 192.168.0.13(ln4:22520)<v4>:41005 | 2 | Parallel |

Running and Connected | 0 | gateway1.mycompany.com:1971

ny | 192.168.0.13(ln1:21755)<v1>:41002 | 2 | Parallel |

Running and Connected | 0 | gateway1.mycompany.com:1971

In order for the gateway senders to communicate with the remote gateway receivers, a reverse
proxy/load balancer service must be in place in the deployment in order to receive the requests
directed to the gateway receivers on the IP address and port configured, and to forward the
requests to one of the gateway receivers on the remote site.

Filtering Events for Multi-Site (WAN) Distribution

You can optionally create gateway sender and/or gateway receiver filters to control which events
are queued and distributed to a remote site, or to modify the data stream that is transmitted
between VMware GemFire sites.

VMware GemFire 9.10 Documentation

VMware by Broadcom 240

You can implement and deploy two different types of filter for multi-site events:

GatewayEventFilter. A GatewayEventFilter implementation determines whether a region
event is placed in a gateway sender queue and/or whether an event in a gateway queue is
distributed to a remote site. You can optionally add one or more GatewayEventFilter
implementations to a gateway sender, etiher in the cache.xml configuration file or using the
Java API.

VMware GemFire makes a synchronous call to the filter’s beforeEnqueue method before it
places a region event in the gateway sender queue. The filter returns a boolean value that
specifies whether the event should be added to the queue.

VMware GemFire asynchronously calls the filter’s beforeTransmit method to determine
whether the gateway sender dispatcher thread should distribute the event to a remote
gateway receiver.

For events that are distributed to another site, VMware GemFire calls the listener’s
afterAcknowledgement method to indicate that is has received an ack from the remote site
after the event was received.

GatewayTransportFilter. Use a GatewayTransportFilter implementation to process the TCP
stream that sends a batch of events that is distributed from one VMware GemFire cluster to
another over a WAN. A GatewayTransportFilter is typically used to perform encryption or
compression on the data that distributed. You install the same GatewayTransportFilter
implementation on both a gateway sender and gateway receiver.

When a gateway sender processes a batch of events for distribution, VMware GemFire
delivers the stream to the getInputStream method of a configured GatewayTransportFilter
implementation. The filter processes and returns the stream, which is then transmitted to
the gateway receiver. When the gateway receiver receives the batch, VMware GemFire
calls the getOutputStream method of a configured filter, which again processes and returns
the stream so that the events can be applied in the local cluster.

Configuring Multi-Site Event Filters

You install a GatewayEventFilter implementation to a configured gateway sender in order to
decide which events are queued and distributed. You install a GatewayTransportFilter
implementation to both a gateway sender and a gateway receiver to process the stream of batched
events that are distributed between two sites:

XML example

<cache>

 <gateway-sender id="remoteA" parallel="true" remote-distributed-system-id

="1">

 <gateway-event-filter>

 <class-name>org.apache.geode.util.SampleEventFilter</class-name>

 <parameter name="param1">

 <string>"value1"</string>

 </parameter>

 </gateway-event-filter>

 <gateway-transport-filter>

 <class-name>org.apache.geode.util.SampleTransportFilter</class-name>

 <parameter name="param1">

VMware GemFire 9.10 Documentation

VMware by Broadcom 241

 <string>"value1"</string>

 </parameter>

 </gateway-transport-filter>

 </gateway-sender>

</cache>

<cache>

 ...

 <gateway-receiver start-port="1530" end-port="1551">

 <gateway-transport-filter>

 <class-name>org.apache.geode.util.SampleTransportFilter</class-name>

 <parameter name="param1">

 <string>"value1"</string>

 </parameter>

 </gateway-transport-filter>

 </gateway-receiver>

</cache>

gfsh example

gfsh>create gateway-sender --id=remoteA --parallel=true --remote-distributed-id

="1"

--gateway-event-filter=org.apache.geode.util.SampleEventFilter

--gateway-transport-filter=org.apache.geode.util.SampleTransportFilter

See create gateway-sender.

gfsh>create gateway-receiver --start-port=1530 --end-port=1551 \

--gateway-transport-filter=org.apache.geode.util.SampleTransportFilter

Note: You cannot specify parameters and values for the Java class you specify with the --
gateway-transport-filter option.

See create gateway-receiver.

API example

Cache cache = new CacheFactory().create();

GatewayEventFilter efilter = new SampleEventFilter();

GatewayTransportFilter tfilter = new SampleTransportFilter();

GatewaySenderFactory gateway = cache.createGatewaySenderFactory();

gateway.setParallel(true);

gateway.addGatewayEventFilter(efilter);

gateway.addTransportFilter(tfilter);

GatewaySender sender = gateway.create("remoteA", "1");

sender.start();

Cache cache = new CacheFactory().create();

GatewayTransportFilter tfilter = new SampleTransportFilter();

GatewayReceiverFactory gateway = cache.createGatewayReceiverFactory();

gateway.setStartPort(1530);

gateway.setEndPort(1551);

VMware GemFire 9.10 Documentation

VMware by Broadcom 242

gateway.addTransportFilter(tfilter);

GatewayReceiver receiver = gateway.create();

receiver.start();

Resolving Conflicting Events

You can optionally create a GatewayConflictResolver cache plug-in to decide whether a potentially
conflicting event that was delivered from another site should be applied to the local cache.

By default, all regions perform consistency checks when a member applies an update received
either from another cluster member or from a remote cluster over the WAN. The default
consistency checking for WAN events is described in How Consistency Is Achieved in WAN
Deployments.

You can override the default consistency checking behavior by writing and configuring a custom
GatewayConflictResolver. The GatewayConflictResolver implementation can use the timestamp
and distributed system ID included in a WAN update event to determine whether or not to apply
the update. For example, you may decide that updates from a particular cluster should always
“win” a conflict when the timestamp difference between updates is less than some fixed period of
time.

Implementing a GatewayConflictResolver

Note: A GatewayConflictResolver implementation is called only for update events that could cause
a conflict in the region. This corresponds to update events that have a different distributed system
ID than the distributed system that last updated the region entry. If the same distributed system ID
makes consecutive updates to a region entry, no conflict is possible, and the
GatewayConflictResolver is not called.

Procedure

1. Program the event handler:

1. Create a class that implements the GatewayConflictResolver interface.

2. If you want to declare the handler in cache.xml, implement the
org.apache.geode.cache.Declarable interface as well.

3. Implement the handler’s onEvent() method to determine whether the WAN event
should be allowed. onEvent() receives both a TimestampedEntryEvent and a
GatewayConflictHelper instance. TimestampedEntryEvent has methods for obtaining
the timestamp and distributed system ID of both the update event and the current
region entry. Use methods in the GatewayConflictHelper to either disallow the
update event (retaining the existing region entry value) or provide an alternate
value.

Example:

 public void onEvent(TimestampedEntryEvent event, GatewayConflictHelper h

elper) {

 if (event.getOperation().isUpdate()) {

 ShoppingCart oldCart = (ShoppingCart)event.getOldValue();

 ShoppingCart newCart = (ShoppingCart)event.getNewValue();

 oldCart.updateFromConflictingState(newCart);

VMware GemFire 9.10 Documentation

VMware by Broadcom 243

 helper.changeEventValue(oldCart);

 }

 }

Note: In order to maintain consistency in the region, your conflict resolver must
always resolve two events in the same way regardless of which event it receives
first.

2. Install the conflict resolver for the cache, using either the cache.xml file or the Java API.

cache.xml

<cache>

 ...

 <gateway-conflict-resolver>

 <class-name>myPackage.MyConflictResolver</class-name>

 </gateway-conflict-resolver>

 ...

</cache>

Java API

// Create or obtain the cache

Cache cache = new CacheFactory().create();

// Create and add a conflict resolver

cache.setGatewayConflictResolver(new MyConflictResolver);

VMware GemFire 9.10 Documentation

VMware by Broadcom 244

Managing VMware GemFire

Managing VMware GemFire describes how to plan and implement tasks associated with managing,
monitoring, and troubleshooting VMware GemFire.

VMware GemFire Management and Monitoring

VMware GemFire provides APIs and tools for managing your distributed system and
monitoring the health of your distributed system members.

Managing Heap and Off-heap Memory

By default, VMware GemFire uses the JVM heap. VMware GemFire also offers an option to
store data off heap. This section describes how to manage heap and off-heap memory to
best support your application.

Disk Storage

With VMware GemFire disk stores, you can persist data to disk as a backup to your in-
memory copy and overflow data to disk when memory use gets too high.

Cache and Region Snapshots

Snapshots allow you to save region data and reload it later. A typical use case is loading
data from one environment into another, such as capturing data from a production system
and moving it into a smaller QA or development system.

Region Compression

This section describes region compression, its benefits and usage.

Network Partitioning

VMware GemFire architecture and management features help detect and resolve network
partition problems.

Security

The security framework establishes trust by authenticating components and members upon
connection. It facilitates the authorization of operations.

Performance Tuning and Configuration

A collection of tools and controls allow you to monitor and adjust VMware GemFire
performance.

Logging

Comprehensive logging messages help you confirm system configuration and debug
problems in configuration and code.

Statistics

VMware GemFire 9.10 Documentation

VMware by Broadcom 245

Every application and server in a distributed system can access statistical data about
VMware GemFire operations. You can configure the gathering of statistics by using the
alter runtime command of gfsh or in the gemfire.properties file to facilitate system
analysis and troubleshooting.

Troubleshooting and System Recovery

This section provides strategies for handling common errors and failure situations.

VMware GemFire Management and Monitoring

VMware GemFire provides APIs and tools for managing your cluster and monitoring the health of
your members.

Management and Monitoring Features

VMware GemFire uses a federated Open MBean strategy to manage and monitor all
members of the cluster. This strategy gives you a consolidated, single-agent view of the
cluster.

Overview of VMware GemFire Management and Monitoring Tools

VMware GemFire provides a variety of management tools you can use to manage a
VMware GemFire cluster.

Architecture and Components

VMware GemFire’s management and monitoring system consists of one JMX Manager
node (there should only be one) and one or more managed nodes within a cluster. All
members in the cluster are manageable through MBeans and VMware GemFire
Management Service APIs.

JMX Manager Operations

Any member can host an embedded JMX Manager, which provides a federated view of all
MBeans for the cluster. The member can be configured to be a manager at startup or
anytime during its life by invoking the appropriate API calls on the ManagementService.

Federated MBean Architecture

VMware GemFire uses MBeans to manage and monitor different parts of VMware GemFire.
VMware GemFire’s federated MBean architecture is scalable and allows you to have a
single-agent view of a VMware GemFire cluster.

Configuring RMI Registry Ports and RMI Connectors

VMware GemFire programmatically emulates out-of-the-box JMX provided by Java and
creates a JMXServiceURL with RMI Registry and RMI Connector ports on all manageable
members.

Executing gfsh Commands through the Management API

You can also use management APIs to execute gfsh commands programmatically.

Management and Monitoring Features

VMware GemFire 9.10 Documentation

VMware by Broadcom 246

VMware GemFire uses a federated Open MBean strategy to manage and monitor all members of
the cluster. This strategy gives you a consolidated, single-agent view of the cluster.

Application and manager development is much easier because you do not have to find the right
MBeanServer to make a request on an MBean. Instead, you interact with a single MBeanServer
that aggregates MBeans from all other local and remote MBeanServers.

Some other key advantages and features of VMware GemFire administration architecture:

VMware GemFire monitoring is tightly integrated into VMware GemFire’s processes
instead of running in a separately installed and configured monitoring agent. You can use
the same framework to actually manage VMware GemFire and perform administrative
operations, not just monitor it.

All VMware GemFire MBeans are MXBeans. They represent useful and relevant information
on the state of the cluster and all its members. Because MXBeans use the Open MBean
model with a predefined set of types, clients and remote management programs no longer
require access to model-specific classes representing your MBean types. Using MXBeans
adds flexibility to your selection of clients and makes the VMware GemFire management
and monitoring much easier to use.

Each member in the cluster is manageable through MXBeans, and each member hosts its
own MXBeans in a Platform MBeanServer.

Any VMware GemFire member can be configured to provide a federated view of all the
MXBeans for all members in a VMware GemFire cluster.

VMware GemFire has also modified its use of JMX to be industry-standard and friendly to
generic JMX clients. You can now easily monitor or manage the cluster by using any third-
party tool that is compliant with JMX. For example, JConsole.

References

For more information on MXBeans and Open MBeans, see:

http://docs.oracle.com/javase/8/docs/api/javax/management/MXBean.html

http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/package-
summary.html

Overview of VMware GemFire Management and Monitoring
Tools
VMware GemFire provides a variety of management tools you can use to manage a VMware
GemFire cluster.

The VMware GemFire management and monitoring tools allow you to configure all members and
processes of a cluster, monitor operations in the system, and start and stop the members.
Internally, VMware GemFire uses Java MBeans, specifically MXBeans, to expose management
controls and monitoring features. You can monitor and control VMware GemFire by writing Java
programs that use these MXBeans, or you can use one of several tools provided with VMware
GemFire to monitor and manage your cluster. The primary tool for these tasks is the gfsh
command-line tool, as described in this section.

VMware GemFire 9.10 Documentation

VMware by Broadcom 247

http://docs.oracle.com/javase/8/docs/api/javax/management/MXBean.html
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/package-summary.html

VMware GemFire provides the following tools to manage a VMware GemFire installation:

gfsh Command-line tool

The gfsh command line tool provides a set of commands you use to configure, manage, and
monitor a cluster. gfsh is the recommended tool for managing your cluster.

Use gfsh to:

Start and stop VMware GemFire processes, such as locators and cache servers

Deploy applications

Create and destroy regions

Execute functions

Manage disk stores

Import and export data

Monitor VMware GemFire processes

Launch VMware GemFire monitoring tools

Shut down a cluster

Script various operations involving VMware GemFire members

Save the configuration for all members of a cluster

gfsh runs in its own shell, or you can execute gfsh commands directly from the OS command line.
gfsh can interact with remote systems using the http protocol. You can also write scripts that run in
a gfsh shell to automate system startup.

You can use gfsh to create shared cluster configurations for your cluster. You can define
configurations that apply to the entire cluster, or that apply only to groups of similar members that
all share a common configuration. VMware GemFire locators maintain these configurations as a
hidden region and distribute the configuration to all locators in the cluster. The locator also persists
the shared configurations on disk as cluster.xml and cluster.properties files. You can use those
shared cluster configuration files to re-start your system, migrate the system to a new
environment, add new members to a cluster, or to restore existing members after a failure.

A basic cluster configuration consists of:

cluster.xml file shared by the cluster

cluster.properties file shared by the cluster

Deployed jar files containing application Java classes.

See Overview of the Cluster Configuration Service and Cluster Configuration Files and
Troubleshooting for additional details on gfsh cluster configuration files.

Using the gfsh tool, you can easily migrate a VMware GemFire-based application from a
development environment into a testing or production environment.

Executing gfsh commands with the management API

VMware GemFire 9.10 Documentation

VMware by Broadcom 248

You can also use VMware GemFire’s management APIs to execute gfsh commands in a Java class.
See Executing gfsh Commands through the Management API.

Member Configuration Management

When you issue gfsh commands and have the cluster configuration service enabled (on a locator),
VMware GemFire saves the configurations created within gfsh by building a cluster.xml and
cluster.properties files for the entire cluster, or group of members.

You can also directly create configurations using cache.xml and gemfire.properties files and
manage the members individually.

Java Management Extension (JMX) MBeans

VMware GemFire uses a federated Open MBean strategy to manage and monitor all members of
the cluster. Your Java classes interact with a single MBeanServer that aggregates MBeans from
other local and remote members. Using this strategy gives you a consolidated, single-agent view of
the cluster.

VMware GemFire’s implementation of JMX is industry-standard and friendly to generic JMX clients.
You can monitor or manage the cluster by using any third-party tool that is compliant with JMX.
For example, JConsole.

See VMware GemFire Management and Monitoring

VMware GemFire Java API

The VMware GemFire API provides a set of Java classes you can use to manage and monitor a
cluster. See the org.apache.geode.management package in the javadocs.

VMware GemFire Pulse

VMware GemFire Pulse is a Web Application that provides a graphical dashboard for monitoring
vital, real-time health and performance of VMware GemFire clusters, members, and regions.

Use Pulse to examine total memory, CPU, and disk space used by members, uptime statistics,
client connections, and critical notifications. Pulse communicates with a VMware GemFire JMX
manager to provide a complete view of your VMware GemFire deployment.

See VMware GemFire Pulse.

JConsole

JConsole is a JMX monitoring utility provided with a Java Development Kit (JDK). You use gfsh to
connect to VMware GemFire, and then launch JConsole with a gfsh command. The JConsole
application allows you to browse MBeans, attributes, operations, and notifications. See Browsing
VMware GemFire MBeans through JConsole.

Architecture and Components

VMware GemFire 9.10 Documentation

VMware by Broadcom 249

VMware GemFire’s management and monitoring system consists of one JMX Manager node (there
should only be one) and one or more managed nodes within a cluster. All members in the cluster
are manageable through MBeans and VMware GemFire Management Service APIs.

Architecture

The following diagram depicts the architecture of the management and monitoring system
components.

In this architecture every VMware GemFire member is manageable. All VMware GemFire MBeans
for the local VMware GemFire processes are automatically registered in the Platform MBeanServer
(the default MBeanServer of each JVM that hosts platform MXBeans.)

Managed Node

Each member of a cluster is a managed node. Any node that is not currently also acting as a JMX
Manager node is referred to simply as a managed node. A managed node has the following
resources so that it can answer JMX queries both locally and remotely:

Local MXBeans that represent the locally monitored components on the node. See List of
VMware GemFire JMX MBeans for a list of possible MXBeans existing for the managed
node.

Built-in platform MBeans.

JMX Manager Node

A JMX Manager node is a member that can manage other VMware GemFire members—that is,
other managed nodes—as well as itself. A JMX Manager node can manage all other members in
the cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 250

To convert a managed node to a JMX Manager node, you configure the VMware GemFire property
jmx-manager=true, in the gemfire.properties file, and start the member as a JMX Manager node.

You start the member as a JMX Manager node when you provide --J=-Dgemfire.jmx-manager=true
as an argument to either the start server or start locator command. See Starting a JMX
Manager for more information.

The JMX Manager node has the following extra resources allocated so that it can answer JMX
queries:

RMI connector that allows JMX clients to connect to and access all MXBeans in the cluster.

Local MXBeans that represent the locally monitored components on this node, same as any
other managed node.

Aggregate MXBeans:

DistributedSystemMXBean

DistributedRegionMXBean

DistributedLockServiceMXBean

ManagerMXBean with Scope=ALL, which allows various cluster-wide operations.

Proxy to MXBeans on managed nodes.

Built-in platform MXBeans.

JMX Integration

Management and monitoring tools such as gfsh command-line interface and Pulse use JMX/RMI as
the communication layer to connect to VMware GemFire nodes. All VMware GemFire processes
by default allow JMX connections to the Platform MBeanServer from localhost. By default, both
managed nodes and JMX manager nodes have RMI connectors enabled to allow JMX client
connections.

JConsole (and other similar JMX clients that support Sun’s Attach API) can connect to any local
JVM without requiring an RMI connector by using the Attach API. This allows connections from the
same machine.

JConsole (and other JMX clients) can connect to any JVM if that JVM is configured to start an RMI
connector. This allows remote connections from other machines.

JConsole can connect to any VMware GemFire member, but if it connects to a non-JMX-Manager
member, JConsole only detects the local MBeans for the node, and not MBeans for the cluster.

When a VMware GemFire locator or server becomes a JMX Manager for the cluster, it enables the
RMI connector. JConsole can then connect only to that one JVM to view the MBeans for the entire
cluster. It does not need to connect to all the other JVMs. VMware GemFire manages the inter-
JVM communication required to provide a federated view of all MBeans in the cluster.

gfsh can only connect to a JMX Manager or to a locator. If connected to a locator, the locator
provides the necessary connection information for the existing JMX Manager. If the locator detects
a JMX Manager is not already running in the cluster, the locator makes itself a JMX Manager. gfsh
cannot connect to other non-Manager or non-locator members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 251

For information on how to configure the RMI registry and RMI connector, see Configuring RMI
Registry Ports and RMI Connectors.

Management APIs

VMware GemFire management APIs represent the VMware GemFire cluster to a JMX user.
However, they do not provide functionality that is otherwise present in JMX. They only provide a
gateway into various services exclusively offered by VMware GemFire monitoring and
management.

The entry point to VMware GemFire management is through the ManagementService interface.
For example, to create an instance of the Management Service:

ManagementService service = ManagementService.getManagementService(cache);

The resulting ManagementService instance is specific to the provided cache and its cluster. The
implementation of getManagementService is a singleton for now but may eventually support
multiple cache instances.

You can use the VMware GemFire management APIs to accomplish the following tasks:

Monitor the health status of clients.

Obtain the status and results of individual disk backups.

View metrics related to disk usage and performance for a particular member.

Browse VMware GemFire properties set for a particular member.

View JVM metrics such as memory, heap, and thread usage.

View network metrics, such as bytes received and sent.

View partition region attributes such as total number of buckets, redundant copy, and
maximum memory information.

View persistent member information such as disk store ID.

Browse region attributes.

See the JavaDocs for the org.apache.geode.management package for more details.

You can also execute gfsh commands using the ManagementService API. See Executing gfsh
Commands through the Management API and the JavaDocs for the
org.apache.geode.management.cli package.

VMware GemFire Management and Monitoring Tools

This section lists the currently available tools for managing and monitoring VMware GemFire:

gfsh. VMware GemFire command-line interface that provides a simple & powerful
command shell that supports the administration, debugging and deployment of VMware
GemFire applications. It features context sensitive help, scripting and the ability to invoke
any commands from within the application using a simple API. See gfsh.

VMware GemFire Pulse. Easy-to-use, browser-based dashboard for monitoring VMware
GemFire deployments. VMware GemFire Pulse provides an integrated view of all VMware

VMware GemFire 9.10 Documentation

VMware by Broadcom 252

GemFire members within a cluster. See VMware GemFire Pulse.

Pulse Data Browser. This VMware GemFire Pulse utility provides a graphical interface for
performing OQL ad-hoc queries in a VMware GemFire cluster. See Data Browser.

Other Java Monitoring Tools such as JConsole and jvisualvm. JConsole is a JMX-based
management and monitoring tool provided in the Java 2 Platform that provides information
on the performance and consumption of resources by Java applications. See
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html. Java
VisualVM (jvisualvm) is a profiling tool for analyzing your Java Virtual Machine. Java
VisualVM is useful to Java application developers to troubleshoot applications and to
monitor and improve the applications’ performance. Java VisualVM can allow developers to
generate and analyse heap dumps, track down memory leaks, perform and monitor garbage
collection, and perform lightweight memory and CPU profiling. For more details on using
jvisualvm, see http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html.

Starting a JMX Manager

JMX Manager nodes are members that manage other VMware GemFire members (as well as
themselves). A JMX Manager node can manage all other members in the cluster. Typically a locator
will function as the JMX Manager, but you can also turn any other member such as a server into a
JMX Manager node as well.

To allow a server to become a JMX Manager you configure VMware GemFire property jmx-
manager=true, in the server’sgemfire.properties file. This property configures the node to become
a JMX Manager node passively; if gfsh cannot locate a JMX Manager when connecting to the
cluster, the server node will be started as a JMX Manager node.

Note: The default property setting for all locators is gemfire.jmx-manager=true. For other
members, the default property setting is gemfire.jmx-manager=false.

To force a server to become a JMX Manager node whenever it is started, set the VMware GemFire
properties jmx-manager-start=true and jmx-manager=true in the server’s gemfire.properties file.
Note that both of these properties must be set to true for the node.

To start the member as a JMX Manager node on the command line, provide--J=-Dgemfire.jmx-
manager-start=true and --J=-Dgemfire.jmx-manager=true as arguments to either the start
server or start locator command.

For example, to start a server as a JMX Manager on the gfsh command line:

gfsh>start server --name=<server-name> --J=-Dgemfire.jmx-manager=true \

--J=-Dgemfire.jmx-manager-start=true

By default, any locator can become a JMX Manager when started. When you start up a locator, if
no other JMX Manager is detected in the cluster, the locator starts one automatically. If you start a
second locator, it will detect the current JMX Manager and will not start up another JMX Manager
unless the second locator’s gemfire.jmx-manager-start property is set to true.

For most deployments, you only need to have one JMX Manager per cluster. However, you can
run more than one JMX Manager if necessary. If you want to provide high-availability and
redundancy for the Pulse monitoring tool, or if you are running additional JMX clients other than
gfsh, then use the jmx-manager-start=true property to force individual nodes (either locators or

VMware GemFire 9.10 Documentation

VMware by Broadcom 253

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html

servers) to become JMX Managers at startup. Since there is some performance overhead to being
a JMX Manager, we recommend using locators as JMX Managers. If you do not want a locator to
become a JMX manager, then you must use the jmx-manager=false property when you start the
locator.

After the node becomes a JMX Manager, all other jmx-manager-* configuration properties listed in
Configuring a JMX Manager are applied.

The following is an example of starting a new locator that also starts an embedded JMX Manager
(after detecting that another JMX Manager does not exist). In addition, gfsh also automatically
connects you to the new JMX Manager. For example:

gfsh>start locator --name=locator1

Starting a VMware GemFire Locator in /Users/username/apache-geode/locator1...

....

Locator in /Users/username/apache-geode/locator1 on 192.0.2.0[10334] as locator1

is currently online.

Process ID: 27144

Uptime: 5 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/apache-geode/locator1/locator1.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true

-Dgemfire.load-cluster-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true

-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/apache-geode/lib/geode-core-1.2.0.jar

:/Users/username/apache-geode/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

Cluster configuration service is up and running.

Locators also keep track of all nodes that can become a JMX Manager.

Immediately after creating its cache, the JMX Manager node begins federating the MBeans from
other members. After the JMX Manager node is ready, the JMX Manager node sends a notification
to all other members informing them that it is a new JMX Manager. The other members then put
complete MBean states for themselves into each of their hidden management regions.

At any point, you can determine whether a node is a JMX Manager by using the MemberMXBean
isManager() method.

Using the Java API, any managed node that has been configured with jmx-manager=true can also
be turned into a JMX Manager Node by invoking the ManagementService startManager() method.

Note: If you start the JMX Manager programmatically and wish to enable command processing, you
must also add the absolute path of gfsh-dependencies.jar (located in the lib directory of your
installation) to the CLASSPATH of your application. Do not copy this library to your CLASSPATH,
because this library refers to other dependencies in lib by a relative path.

Configuring a JMX Manager

In the gemfire.properties file, you configure a JMX manager as follows.

VMware GemFire 9.10 Documentation

VMware by Broadcom 254

Property Description Default

http-service-port If non-zero, then VMware GemFire
starts an embedded HTTP service that
listens on this port. The HTTP service
is used to host the VMware GemFire
Pulse Web application. If you are
hosting the Pulse web app on your
own Web server, then disable this
embedded HTTP service by setting
this property to zero. Ignored if jmx-
manager is false.

7070

http-service-bind-address If set, then the VMware GemFire
member binds the embedded HTTP
service to the specified address. If this
property is not set but the HTTP
service is enabled using http-
service-port, then VMware GemFire
binds the HTTP service to the
member's local address.

not set

jmx-manager
If true then this member can become
a JMX Manager. All other jmx-
manager-* properties are used when
it does become a JMX Manager. If this
property is false then all other jmx-
manager-* properties are ignored.

The default value is true on locators.

false (with Locator exception)

jmx-manager-access-file
By default the JMX Manager allows
full access to all MBeans by any client.
If this property is set to the name of a
file, then it can restrict clients to only
reading MBeans; they cannot modify
MBeans. The access level can be
configured differently in this file for
each user name defined in the
password file. For more information
about the format of this file see
Oracle's documentation of the
com.sun.management.jmxremote.acc

ess.file system property. Ignored if
jmx-manager is false or if jmx-
manager-port is zero.

not set

jmx-manager-bind-address By default, the JMX Manager when
configured with a port listens on all
the local host's addresses. You can
use this property to configure which
particular IP address or host name the
JMX Manager will listen on. This
property is ignored if jmx-manager is
false or jmx-manager-port is zero.
This address also applies to the
VMware GemFire Pulse server if you
are hosting a Pulse web application.

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 255

Property Description Default

jmx-manager-hostname-for-clients Hostname given to clients that ask the
locator for the location of a JMX
Manager. By default the IP address of
the JMX Manager is used. However,
for clients on a different network, you
can configure a different hostname to
be given to clients. Ignored if jmx-
manager is false or if jmx-manager-
port is zero.

not set

jmx-manager-password-file By default the JMX Manager allows
clients without credentials to connect.
If this property is set to the name of a
file, only clients that connect with
credentials that match an entry in this
file will be allowed. Most JVMs
require that the file is only readable
by the owner. For more information
about the format of this file see
Oracle's documentation of the
com.sun.management.jmxremote.pas
sword.file system property. Ignored if
jmx-manager is false or if jmx-
manager-port is zero.

not set

jmx-manager-port Port on which this JMX Manager
listens for client connections. If this
property is set to zero, VMware
GemFire does not allow remote client
connections. Alternatively, use the
standard system properties
supported by the JVM for configuring
access from remote JMX clients.
Ignored if jmx-manager is false. The
Default RMI port is 1099.

1099

jmx-manager-ssl-enabled If true and jmx-manager-port is not
zero, the JMX Manager accepts only
SSL connections. The ssl-enabled
property does not apply to the JMX
Manager, but the other SSL properties
do. This allows SSL to be configured
for just the JMX Manager without
needing to configure it for the other
VMware GemFire connections.
Ignored if jmx-manager is false.

false

jmx-manager-start If true, this member starts a JMX
Manager when it creates a cache. In
most cases you should not set this
property to true because a JMX
Manager is automatically started
when needed on a member that sets
jmx-manager to true. Ignored if jmx-
manager is false.

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 256

Property Description Default

jmx-manager-update-rate The rate, in milliseconds, at which this
member pushes updates to any JMX
Managers. Currently this value should
be greater than or equal to the
statistic-sample-rate. Setting this
value too high causes gfsh and
VMware GemFire Pulse to see stale
values.

2000

Stopping a JMX Manager

To stop a JMX Manager using gfsh, simply shut down the locator or server hosting the JMX
Manager.

For a locator:

gfsh>stop locator --dir=locator1

Stopping Locator running in /home/user/test2/locator1 on ubuntu.local[10334] as locato

r1...

Process ID: 2081

Log File: /home/user/test2/locator1/locator1.log

....

No longer connected to ubuntu.local[1099].

For a server:

gfsh>stop server --dir=server1

Stopping Cache Server running in /home/user/test2/server1 ubuntu.local[40404] as serve

r1...

Process ID: 1156

Log File: /home/user/test2/server1/server1.log

....

No longer connected to ubuntu.local[1099].

Notice that gfsh has automatically disconnected you from the stopped JMX Manager.

To stop a JMX manager using the management API, use the ManagementService stopManager()
method to stop a member from being a JMX Manager.

When a Manager stops, it removes all federated MBeans from other members from its Platform
MBeanServer. It also emits a notification to inform other members that it is no longer considered a
JMX Manager.

Federated MBean Architecture
VMware GemFire uses MBeans to manage and monitor different parts of VMware GemFire.
VMware GemFire’s federated MBean architecture is scalable and allows you to have a single-agent
view of a VMware GemFire cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 257

Federation of VMware GemFire MBeans and
MBeanServers

Federation of the MBeanServers means that one member, the JMX Manager Node, can provide a
proxied view of all the MBeans that the MBeanServer hosts. Federation also means that operations
and notifications are spread across the cluster.

VMware GemFire federation takes care of the following functionality:

MBean proxy creation

MBean state propagation

Notifications propagation

Operation invocation

MBean Proxy Naming Conventions

Each VMware GemFire MBean follows a particular naming convention for easier grouping. For
example:

GemFire:type=Member,service=LockService,name=<dlsName>,memberName=<memberName>

At the JMX Manager node, this MBean will be registered with GemFire/<memberId> as domain.

The following are some sample MBean names:

MemberMBean:

GemFire:type=Member,member=<Node1>

Use of MXBeans
In its Management API, VMware GemFire provides MXBeans to ensure that any MBeans that are
created are usable by any client, including remote clients, without requiring the client to access
specific classes in order to access contents of the MBean.

MBean Proxy Creation
VMware GemFire proxies are inherently local MBeans. Every VMware GemFire JMX manager
member hosts proxies pointing to the local MBeans of every managed node. Proxy MBeans will also
emit any notification emitted by local MBeans in managed nodes when an event occurs in that
managed node.

Note: Aggregate MBeans on the JMX Manager node are not proxied.

List of VMware GemFire JMX MBeans
This topic provides descriptions for the various management and monitoring MBeans that are
available in VMware GemFire.

VMware GemFire 9.10 Documentation

VMware by Broadcom 258

The following diagram illustrates the relationship between the different JMX MBeans that have
been developed to manage and monitor VMware GemFire.

DistributedLockServiceMXBean

LocatorMXBean

MemberMXBean

ManagerMXBean

DistributedRegionMXBean

DistributedSystemMXBean

JMX Manager Node

RegionMXBean

LockServiceMXBean

Managed Node

DiskStoreMXBean
1

1

0..N

0..1

0..N

1

0..N

0..N

0..N

AsyncEventQueueMXBean

CacheServerMXBean
1

0..N

JMX Manager MBeans

This section describes the MBeans that are available on the JMX Manager node.

Managed Node MBeans

This section describes the MBeans that are available on all managed nodes.

JMX Manager MBeans

This section describes the MBeans that are available on the JMX Manager node.

The JMX Manager node includes all local beans listed under Managed Node MBeans and the
following beans that are available only on the JMX Manager node:

ManagerMXBean

DistributedSystemMXBean

DistributedRegionMXBean

DistributedLockServiceMXBean

VMware GemFire 9.10 Documentation

VMware by Broadcom 259

ManagerMXBean

Represents the VMware GemFire Management layer for the hosting member. Controls the scope
of management. This MBean provides start and stop methods to turn a managed node into a JMX
Manager node or to stop a node from being a JMX Manager. For potential managers (jmx-
manager=true and jmx-manager-start=false), this MBean is created when a Locator requests it.

Note: You must configure the node to allow it to become a JMX Manager. See Configuring a JMX
Manager for configuration information.

MBean Details

Scope ALL

Proxied No

Object Name GemFire:type=Member, service=Manager,member=<name-or-dist-member-id>

Instances Per Node 1

See the org.apache.geode.management.ManagerMXBean JavaDocs for information on available MBean
methods and attributes.

DistributedSystemMXBean

System-wide aggregate MBean that provides a high-level view of the entire cluster including all
members (cache servers, peers, locators) and their caches. At any given point of time, it can
provide a snapshot of the complete cluster and its operations.

The DistributedSystemMXBean provides APIs for performing cluster-wide operations such as
backing up all members, shutting down all members or showing various cluster metrics.

You can attach a standard JMX NotificationListener to this MBean to listen for notifications
throughout the cluster. See VMware GemFire JMX MBean Notifications for more information.

This MBean also provides some MBean model navigation APIS. These APIs should be used to
navigate through all the MBeans exposed by a VMware GemFire System.

MBean Details

Scope Aggregate

Proxied No

Object Name GemFire:type=Distributed,service=System

Instances Per Node 1

See the org.apache.geode.management.DistributedSystemMXBean JavaDocs for information on
available MBean methods and attributes.

DistributedRegionMXBean

System-wide aggregate MBean of a named region. It provides a high-level view of a region for all
members hosting and/or using that region. For example, you can obtain a list of all members that

VMware GemFire 9.10 Documentation

VMware by Broadcom 260

are hosting the region. Some methods are only available for partitioned regions.

MBean Details

Scope Aggregate

Proxied No

Object Name GemFire:type=Distributed,service=Region,name=<regionName>

Instances Per Node 0..N

See the org.apache.geode.management.DistributedRegionMXBean JavaDocs for information on
available MBean methods and attributes.

DistributedLockServiceMXBean

Represents a named instance of DistributedLockService . Any number of DistributedLockService
can be created in a member.

A named instance of DistributedLockService defines a space for locking arbitrary names across the
cluster defined by a specified distribution manager. Any number of DistributedLockService
instances can be created with different service names. For all processes in the cluster that have
created an instance of DistributedLockService with the same name, no more than one thread is
permitted to own the lock on a given name in that instance at any point in time. Additionally, a
thread can lock the entire service, preventing any other threads in the system from locking the
service or any names in the service.

MBean Details

Scope Aggregate

Proxied No

Object Name GemFire:type=Distributed,service=LockService,name=<dlsName>

Instances Per Node 0..N

See the org.apache.geode.management.DistributedLockServiceMXBean JavaDocs for information on
available MBean methods and attributes.

Managed Node MBeans

This section describes the MBeans that are available on all managed nodes.

MBeans that are available on all managed nodes include:

MemberMXBean

CacheServerMXBean

RegionMXBean

LockServiceMXBean

DiskStoreMXBean

VMware GemFire 9.10 Documentation

VMware by Broadcom 261

AsyncEventQueueMXBean

LocatorMXBean

LuceneServiceMXBean

JMX Manager nodes will have managed node MBeans for themselves since they are also
manageable entities in the cluster.

MemberMXBean

Member’s local view of its connection and cache. It is the primary gateway to manage a particular
member. It exposes member level attributes and statistics. Some operations like
createCacheServer() and createManager() will help to create some VMware GemFire resources.
Any JMX client can connect to the MBean server and start managing a VMware GemFire Member
by using this MBean.

See MemberMXBean Notifications for a list of notifications emitted by this MBean.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,member=<name-or-dist-member-id>

Instances Per Node 1

See the org.apache.geode.management.MemberMXBean JavaDocs for information on available MBean
methods and attributes.

CacheServerMXBean

Represents the VMware GemFire CacheServer. Provides data and notifications about server,
subscriptions, durable queues and indices.

See CacheServerMXBean Notifications for a list of notifications emitted by this MBean.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=CacheServer,member=<name-or-dist-member-id>

Instances Per Node 1

See the org.apache.geode.management.CacheServerMXBean JavaDocs for information on available
MBean methods and attributes.

RegionMXBean

Member’s local view of region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 262

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=Region,name=<regionName>,member=<name-or-dist-member-
id>

Instances Per
Node

0..N

See the org.apache.geode.management.RegionMXBean JavaDocs for information on available MBean
methods and attributes.

LockServiceMXBean

Represents a named instance of a LockService . Any number of LockServices can be created in a
member.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=LockService,name=<dlsName>,member=<name-or-dist-
member-id>

Instances Per
Node

0..N

See the org.apache.geode.management.LockServiceMXBean JavaDocs for information on available
MBean methods and attributes.

DiskStoreMXBean

Represents a DiskStore object which provides disk storage for one or more regions

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=DiskStore,name=<name>,member=<name-or-dist-member-id>

Instances Per Node 0..N

See the org.apache.geode.management.DiskStoreMXBean JavaDocs for information on available
MBean methods and attributes.

AsyncEventQueueMXBean

VMware GemFire 9.10 Documentation

VMware by Broadcom 263

An AsyncEventQueueMXBean provides access to an AsyncEventQueue, which represent the
channel over which events are delivered to the AsyncEventListener.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=AsyncEventQueue,queue=<queue-id>,member=<name-or-dist-
member-id>

Instances Per
Node

0..N

See the org.apache.geode.management.AsyncEventQueueMXBean JavaDocs for information on
available MBean methods and attributes.

LocatorMXBean

A LocatorMXBean represents a locator.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=Locator,port=<port>,member=<name-or-dist-member-id>

Instances Per Node 0..1

See the org.apache.geode.management.LocatorMXBean JavaDocs for information on available MBean
methods and attributes.

LuceneServiceMXBean

The member’s local view of existing Lucene indexes.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:service=CacheService,name=LuceneService,type=Member,member=<name-or-dist-
member-id>

Instances Per
Node

0..1

See the org.apache.geode.cache.lucene.management.LuceneServiceMXBean JavaDocs for
information on available MBean methods and attributes.

GatewaySenderMXBean

VMware GemFire 9.10 Documentation

VMware by Broadcom 264

A GatewaySenderMXBean represents a gateway sender.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=GatewaySender,gatewaySender=<sender-id>,member=<name-or-
dist-member-id>

Instances Per
Node

0..1

See the org.apache.geode.management.GatewaySenderMXBean JavaDocs for information on available
MBean methods and attributes.

GatewayReceiverMXBean

A GatewayReceiverMXBean represents a gateway receiver.

MBean Details

Scope Local

Proxied Yes

Object Name GemFire:type=Member,service=GatewayReceiver,member=<name-or-dist-member-id>

Instances Per Node 0..1

See the org.apache.geode.management.GatewayReceiverMXBean JavaDocs for information on
available MBean methods and attributes.

Browsing VMware GemFire MBeans through JConsole

You can browse all the VMware GemFire MBeans in your cluster by using JConsole.

To view VMware GemFire MBeans through JConsole, perform the following steps:

1. Start a gfsh prompt.

2. Connect to a running cluster by either connecting to a locator with an embedded JMX
Manager or connect directly to a JMX Manager. For example:

gfsh>connect --locator=locator1[10334]

or

gfsh>connect --jmx-manager=locator1[1099]

3. Start JConsole:

gfsh>start jconsole

VMware GemFire 9.10 Documentation

VMware by Broadcom 265

If successful, the message Running JDK JConsole appears. The JConsole application
launches and connects directly to the JMX Manager using RMI.

4. On the JConsole screen, click on the MBeans tab. Expand GemFire. Then expand each
MBean to browse individual MBean attributes, operations and notifications.

The following is an example screenshot of the MBean hierarchy in a VMware GemFire
cluster:

VMware GemFire JMX MBean Notifications
VMware GemFire MBeans emit notifications when specific events occur or if an alert is raised in the
VMware GemFire system. Using standard JMX APIs, users can add notification handlers to listen for
these events.

Notification Federation

All notifications emitted from managed nodes are federated to all JMX Managers in the
system.

List of JMX MBean Notifications

This topic lists all available JMX notifications emitted by VMware GemFire MBeans.

Notification Federation
All notifications emitted from managed nodes are federated to all JMX Managers in the system.

VMware GemFire 9.10 Documentation

VMware by Broadcom 266

These notifications are federated and then emitted by the DistributedSystemMXBean. If you attach
a javax.management.NotificationListener to your DistributedSystemMXBean, the
NotificationListener can listen to notifications from all MemberMXBeans and all
CacheServerMXBeans.

Attaching Listeners to MXBeans

When you attach a notification listener to the DistributedSystemMXBean, the
DistributedSystemMXBean then acts as the notification hub for the entire cluster. You do not have
to attach a listener to each individual member or cache server MBean in order to listen to all the
notifications in the cluster.

The following is an example of attaching a NotificationListener to an MBean using the JMX
MBeanServer API:

NotificationListener myListener = ...

ObjectName mbeanName = ...

MBeanServer.addNotificationListener(mbeanName, myListener, null, null);

JMX Managers will emit notifications for all cluster members with two exceptions:

If you use cache.xml to define resources such as regions and disks, then notifications for
these resources are not federated to the JMX Manager. In those cases, the
DistributedSystemMXBean cannot emit those notifications.

If a JMX Manager is started after a resource has been created, the JMX Manager cannot
emit notifications for that resource.

System Alert Notifications

System alerts are VMware GemFire alerts wrapped within a JMX notification. The JMX Manager
registers itself as an alert listener with each member of the system, and by default, it receives all
messages logged with the SEVERE alert level by any node in the cluster. Consequently, the
DistributedSystemMXBean will then emit notifications for these alerts on behalf of the
DistributedSystem.

By default, the JMX Manager registers itself to send notifications only for SEVERE level alerts. To
change the alert level that the JMX Manager will send notifications for, use the
DistributedMXBean.changeAlertLevel method. Possible alert levels to set are WARNING, ERROR,
SEVERE, and NONE. After changing the level, the JMX Manager will only emit that level of log
message as notifications.

Notification objects include type, source and message attributes. System alerts also include the
userData attribute. For system alerts, the notification object attributes correspond to the following:

type: system.alert

source: Distributed System ID

message: alert message

userData: name or ID of the member that raised the alert

VMware GemFire 9.10 Documentation

VMware by Broadcom 267

List of JMX MBean Notifications

This topic lists all available JMX notifications emitted by VMware GemFire MBeans.

Notifications are emitted by the following MBeans:

MemberMXBean Notifications

MemberMXBean Gateway Notifications

CacheServerMXBean Notifications

DistributedSystemMXBean Notifications

MemberMXBean Notifications

Notification Type
Notification
Source

Message

gemfire.distributedsystem.cache.region.creat
ed

Member name or
ID

Region Created with Name <Region Name>

gemfire.distributedsystem.cache.region.close
d

Member name or
ID

Region Destroyed/Closed with Name <Region
Name>

gemfire.distributedsystem.cache.disk.created Member name or
ID

DiskStore Created with Name <DiskStore Name>

gemfire.distributedsystem.cache.disk.closed Member name or
ID

DiskStore Destroyed/Closed with Name
<DiskStore Name>

gemfire.distributedsystem.cache.lockservice.
created

Member name or
ID

LockService Created with Name <LockService
Name>

gemfire.distributedsystem.cache.lockservice.
closed

Member name or
ID

Lockservice Closed with Name <LockService
Name>

gemfire.distributedsystem.async.event.queue.
created

Member name or
ID

Async Event Queue is Created in the VM

gemfire.distributedsystem.cache.server.starte
d

Member name or
ID

Cache Server is Started in the VM

gemfire.distributedsystem.cache.server.stopp
ed

Member name or
ID

Cache Server is stopped in the VM

gemfire.distributedsystem.locator.started Member name or
ID

Locator is Started in the VM

MemberMXBean Gateway Notifications

Notification Type
Notification
Source

Message

gemfire.distributedsystem.gateway.sender.create
d

Member name or
ID

GatewaySender Created in the VM

gemfire.distributedsystem.gateway.sender.starte
d

Member name or
ID

GatewaySender Started in the VM <Sender
Id>

VMware GemFire 9.10 Documentation

VMware by Broadcom 268

Notification Type
Notification
Source

Message

gemfire.distributedsystem.gateway.sender.stopp
ed

Member name or
ID

GatewaySender Stopped in the VM <Sender
Id>

gemfire.distributedsystem.gateway.sender.pause
d

Member name or
ID

GatewaySender Paused in the VM <Sender
Id>

gemfire.distributedsystem.gateway.sender.resum
ed

Member name or
ID

GatewaySender Resumed in the VM <Sender
Id>

gemfire.distributedsystem.gateway.receiver.creat
ed

Member name or
ID

GatewayReceiver Created in the VM

gemfire.distributedsystem.gateway.receiver.start
ed

Member name or
ID

GatewayReceiver Started in the VM

gemfire.distributedsystem.gateway.receiver.stop
ped

Member name or
ID

GatewayReceiver Stopped in the VM

gemfire.distributedsystem.cache.server.started Member name or
ID

Cache Server is Started in the VM

CacheServerMXBean Notifications

Notification Type Notification Source Message

gemfire.distributedsystem.cacheserver.client.joined CacheServer MBean Name Client joined with Id <Client ID>

gemfire.distributedsystem.cacheserver.client.left CacheServer MBean Name Client crashed with Id <Client ID>

gemfire.distributedsystem.cacheserver.client.crashed CacheServer MBean name Client left with Id <Client ID>

DistributedSystemMXBean Notifications

Notification Type Notification Source Message

gemfire.distributedsystem.cache.m
ember.joined

Name or ID of member who
joined

Member Joined <Member Name or ID>

gemfire.distributedsystem.cache.m
ember.departed

Name or ID of member who
departed

Member Departed <Member Name or ID>
has crashed = <true/false>

gemfire.distributedsystem.cache.m
ember.suspect

Name or ID of member who is
suspected

Member Suspected <Member Name or ID>
By <Who Suspected>

system.alert.* DistributedSystem(“<Distributed
System ID”>)

Alert Message

Configuring RMI Registry Ports and RMI Connectors

VMware GemFire programmatically emulates out-of-the-box JMX provided by Java and creates a
JMXServiceURL with RMI Registry and RMI Connector ports on all manageable members.

Configuring JMX Manager Port and Bind Addresses

VMware GemFire 9.10 Documentation

VMware by Broadcom 269

You can configure a specific connection port and address when launching a process that will host
the VMware GemFire JMX Manager. To do this, specify values for the jmx-manager-bind-address,
which specifies the JMX manager’s IP address and jmx-manager-port, which defines the RMI
connection port.

The default VMware GemFire JMX Manager RMI port is 1099. You may need to modify this default
if 1099 is reserved for other uses.

Using Out-of-the-Box RMI Connectors

If for some reason you need to use standard JMX RMI in your deployment for other monitoring
purposes, set the VMware GemFire property jmx-manager-port to 0 on any members where you
want to use standard JMX RMI.

If you use out-of-the-box JMX RMI instead of starting an embedded VMware GemFire JMX
Manager, you should consider setting -Dsun.rmi.dgc.server.gcInterval=Long.MAX_VALUE-1 when
starting the JVM for customer applications and client processes. Every VMware GemFire process
internally sets this setting before creating and starting the JMX RMI connector in order to prevent
full garbage collection from pausing processes.

Executing gfsh Commands through the Management API

You can also use management APIs to execute gfsh commands programmatically.

Note: If you start the JMX Manager programmatically and wish to enable command processing, you
must also add the absolute path of gfsh-dependencies.jar (located in $GEMFIRE/lib of your
VMware GemFire installation) to the CLASSPATH of your application. Do not copy this library to
your CLASSPATH because this library refers to other dependencies in $GEMFIRE/lib by a relative
path. The following code samples demonstrate how to process and execute gfsh commands using
the Java API.

First, retrieve a CommandService instance.

Note: The CommandService API is currently only available on JMX Manager nodes.

// Get existing CommandService instance or create new if it doesn't exist

commandService = CommandService.createLocalCommandService(cache);

// OR simply get CommandService instance if it exists, don't create new one

CommandService commandService = CommandService.getUsableLocalCommandService();

Next, process the command and its output:

// Process the user specified command String

Result regionListResult = commandService.processCommand("list regions");

// Iterate through Command Result in String form line by line

while (regionListResult.hasNextLine()) {

 System.out.println(regionListResult.nextLine());

}

VMware GemFire 9.10 Documentation

VMware by Broadcom 270

Alternatively, instead of processing the command, you can create a CommandStatement Object
from the command string which can be re-used.

// Create a command statement that can be reused multiple times

CommandStatement showDeadLocksCmdStmt = commandService.createCommandStatement

 ("show dead-locks --file=deadlock-info.txt");

Result showDeadlocksResult = showDeadLocksCmdStmt.process();

// If there is a file as a part of Command Result, it can be saved

// to a specified directory

if (showDeadlocksResult.hasIncomingFiles()) {

 showDeadlocksResult.saveIncomingFiles(System.getProperty("user.dir") +

 "/commandresults");

}

Managing Heap and Off-heap Memory

By default, VMware GemFire uses the JVM heap. VMware GemFire also offers an option to store
data off heap. This section describes how to manage heap and off-heap memory to best support
your application.

Tuning the JVM’s Garbage Collection Parameters

Because VMware GemFire is specifically designed to manipulate data held in memory, you can
optimize your application’s performance by tuning the way VMware GemFire uses the JVM heap.

See your JVM documentation for all JVM-specific settings that can be used to improve garbage
collection (GC) response. At a minimum, do the following:

1. Set the initial and maximum heap switches, -Xms and -Xmx, to the same values. The gfsh
start server options --initial-heap and --max-heap accomplish the same purpose, with
the added value of providing resource manager defaults such as eviction threshold and
critical threshold.

2. Configure your JVM for concurrent mark-sweep (CMS) garbage collection.

3. If your JVM allows, configure it to initiate CMS collection when heap use is at least 10%
lower than your setting for the resource manager eviction-heap-percentage. You want the
collector to be working when VMware GemFire is evicting or the evictions will not result in
more free memory. For example, if the eviction-heap-percentage is set to 65, set your
garbage collection to start when the heap use is no higher than 55%.

JVM CMS switch flag CMS initiation (begin at heap % N)

Sun HotSpot ‑XX:+UseConcMarkSweepGC ‑XX:CMSInitiatingOccupancyFraction=N

JRockit -Xgc:gencon -XXgcTrigger:N

IBM -Xgcpolicy:gencon N/A

For the gfsh start server command, pass these settings with the --J switch, for example:
‑‑J=‑XX:+UseConcMarkSweepGC.

The following is an example of setting JVM for an application:

VMware GemFire 9.10 Documentation

VMware by Broadcom 271

$ java app.MyApplication -Xms=30m -Xmx=30m -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOc

cupancyFraction=60

Note: Do not use the -XX:+UseCompressedStrings and -XX:+UseStringCache JVM configuration
properties when starting up servers. These JVM options can cause issues with data corruption and
compatibility.

Or, using gfsh:

$ gfsh start server --name=app.MyApplication --initial-heap=30m --max-heap=30m \

--J=-XX:+UseConcMarkSweepGC --J=-XX:CMSInitiatingOccupancyFraction=60

Using the VMware GemFire Resource Manager

The VMware GemFire resource manager works with your JVM’s tenured garbage collector to
control heap use and protect your member from hangs and crashes due to memory overload.

The VMware GemFire resource manager prevents the cache from consuming too much memory
by evicting old data. If the garbage collector is unable to keep up, the resource manager refuses
additions to the cache until the collector has freed an adequate amount of memory.

The resource manager has two threshold settings, each expressed as a percentage of the total
tenured heap. Both are deactivated by default.

1. Eviction Threshold. Above this, the manager orders evictions for all regions with eviction-
attributes set to lru-heap-percentage. This prompts dedicated background evictions,
independent of any application threads and it also tells all application threads adding data to
the regions to evict at least as much data as they add. The JVM garbage collector removes
the evicted data, reducing heap use. The evictions continue until the manager determines
that heap use is again below the eviction threshold.

The resource manager enforces eviction thresholds only on regions whose LRU eviction
policies are based on heap percentage. Regions whose eviction policies based on entry
count or memory size use other mechanisms to manage evictions. See Eviction for more
detail regarding eviction policies.

2. Critical Threshold. Above this, all activity that might add data to the cache is refused. This
threshold is set above the eviction threshold and is intended to allow the eviction and GC
work to catch up. This JVM, all other JVMs in the distributed system, and all clients to the
system receive LowMemoryException for operations that would add to this critical member’s
heap consumption. Activities that fetch or reduce data are allowed. For a list of refused
operations, see the Javadocs for the ResourceManager method setCriticalHeapPercentage.

Critical threshold is enforced on all regions, regardless of LRU eviction policy, though it can
be set to zero to deactivate its effect.

VMware GemFire 9.10 Documentation

VMware by Broadcom 272

When heap use passes the eviction threshold in either direction, the manager logs an info-level
message.

When heap use exceeds the critical threshold, the manager logs an error-level message. Avoid
exceeding the critical threshold. Once identified as critical, the VMware GemFire member becomes
a read-only member that refuses cache updates for all of its regions, including incoming distributed
updates.

For more information, see org.apache.geode.cache.control.ResourceManager in the online API
documentation.

How Background Eviction Is Performed

When the manager kicks off evictions:

1. From all regions in the local cache that are configured for heap LRU eviction, the
background eviction manager creates a randomized list containing one entry for each
partitioned region bucket (primary or secondary) and one entry for each non-partitioned
region. So each partitioned region bucket is treated the same as a single, non-partitioned
region.

2. The background eviction manager starts four evictor threads for each processor on the local
machine. The manager passes each thread its share of the bucket/region list. The manager
divides the bucket/region list as evenly as possible by count, and not by memory
consumption.

3. Each thread iterates round-robin over its bucket/region list, evicting one LRU entry per
bucket/region until the resource manager sends a signal to stop evicting.

See also Memory Requirements for Cached Data.

Controlling Heap Use with the Resource Manager

VMware GemFire 9.10 Documentation

VMware by Broadcom 273

Resource manager behavior is closely tied to the triggering of Garbage Collection (GC) activities,
the use of concurrent garbage collectors in the JVM, and the number of parallel GC threads used
for concurrency.

The recommendations provided here for using the manager assume you have a solid understanding
of your Java VM’s heap management and garbage collection service.

The resource manager is available for use in any VMware GemFire member, but you may not want
to activate it everywhere. For some members it might be better to occasionally restart after a hang
or OME crash than to evict data and/or refuse distributed caching activities. Also, members that do
not risk running past their memory limits would not benefit from the overhead the resource
manager consumes. Cache servers are often configured to use the manager because they
generally host more data and have more data activity than other members, requiring greater
responsiveness in data cleanup and collection.

For the members where you want to activate the resource manager:

1. Configure VMware GemFire for heap LRU management.

2. Set the JVM GC tuning parameters to handle heap and garbage collection in conjunction
with the VMware GemFire manager.

3. Monitor and tune heap LRU configurations and your GC configurations.

4. Before going into production, run your system tests with application behavior and data
loads that approximate your target systems so you can tune as well as possible for
production needs.

5. In production, keep monitoring and tuning to meet changing needs.

Configure VMware GemFire for Heap LRU Management

The configuration terms used here are cache.xml elements and attributes, but you can also
configure through gfsh and the org.apache.geode.cache.control.ResourceManager and Region
APIs.

1. When starting up your server, set initial-heap and max-heap to the same value.

2. Set the resource-manager critical-heap-percentage threshold. This should be as as close
to 100 as possible while still low enough so the manager’s response can prevent the
member from hanging or getting OutOfMemoryError. The threshold is zero (no threshold) by
default. Note: When you set this threshold, it also enables a query monitoring feature that
prevents most out-of-memory exceptions when executing queries or creating indexes. See
Monitoring Queries for Low Memory.

3. Set the resource-manager eviction-heap-percentage threshold to a value lower than the
critical threshold. This should be as high as possible while still low enough to prevent your
member from reaching the critical threshold. The threshold is zero (no threshold) by default.

4. Decide which regions will participate in heap eviction and set their eviction-attributes to
lru-heap-percentage. See Eviction. The regions you configure for eviction should have
enough data activity for the evictions to be useful and should contain data your application
can afford to delete or offload to disk.

gfsh example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 274

gfsh>start server --name=server1 --initial-heap=30m --max-heap=30m \

--critical-heap-percentage=80 --eviction-heap-percentage=60

cache.xml example:

<cache>

<region refid="REPLICATE_HEAP_LRU" />

...

<resource-manager critical-heap-percentage="80" eviction-heap-percentage="60"/>

</cache>

Note: The resource-manager specification must appear after the region declarations in your
cache.xml file.

Set the JVM GC Tuning Parameters

If your JVM allows, configure it to initiate concurrent mark-sweep (CMS) garbage collection when
heap use is at least 10% lower than your setting for the resource manager eviction-heap-
percentage. You want the collector to be working when VMware GemFire is evicting or the
evictions will not result in more free memory. For example, if the eviction-heap-percentage is set
to 65, set your garbage collection to start when the heap use is no higher than 55%.

Monitor and Tune Heap LRU Configurations

In tuning the resource manager, your central focus should be keeping the member below the
critical threshold. The critical threshold is provided to avoid member hangs and crashes, but
because of its exception-throwing behavior for distributed updates, the time spent in critical
negatively impacts the entire distributed system. To stay below critical, tune so that the VMware
GemFire eviction and the JVM’s GC respond adequately when the eviction threshold is reached.

Use the statistics provided by your JVM to make sure your memory and GC settings are sufficient
for your needs.

The VMware GemFire ResourceManagerStats provide information about memory use and the
manager thresholds and eviction activities.

If your application spikes above the critical threshold on a regular basis, try lowering the eviction
threshold. If the application never goes near critical, you might raise the eviction threshold to gain
more usable memory without the overhead of unneeded evictions or GC cycles.

The settings that will work well for your system depend on a number of factors, including these:

The size of the data objects you store in the cache: Very large data objects can be
evicted and garbage collected relatively quickly. The same amount of space in use by many
small objects takes more processing effort to clear and might require lower thresholds to
allow eviction and GC activities to keep up.

Application behavior: Applications that quickly put a lot of data into the cache can more
easily overrun the eviction and GC capabilities. Applications that operate more slowly may
be more easily offset by eviction and GC efforts, possibly allowing you to set your thresholds
higher than in the more volatile system.

VMware GemFire 9.10 Documentation

VMware by Broadcom 275

Your choice of JVM: Each JVM has its own GC behavior, which affects how efficiently the
collector can operate, how quickly it kicks in when needed, and other factors.

In this sample statistics chart in VSD, the manager’s evictions and the JVM’s GC efforts are good
enough to keep heap use very close to the eviction threshold. The eviction threshold could be
increased to a setting closer to the critical threshold, allowing the member to keep more data in
tenured memory without the risk of overwhelming the JVM. This chart also shows the blocks of
times when the manager was running cache evictions.

In this next chart, it looks like the manager’s evictions are kicking in at the right time, but the CMS
garbage collector is not starting soon enough to keep memory use in check. It might be that it is
not configured to start as soon as it should. It should be started just before the eviction threshold is
reached. Or there might be some other issue with the garbage collection service.

VMware GemFire 9.10 Documentation

VMware by Broadcom 276

Resource Manager Example Configurations

These examples set the critical threshold to 85 percent of the tenured heap and the eviction
threshold to 75 percent. The region bigDataStore is configured to participate in the resource
manager’s eviction activities.

gfsh Example:

gfsh>start server --name=server1 --initial-heap=30m --max-heap=30m \

--critical-heap-percentage=85 --eviction-heap-percentage=75

gfsh>create region --name=bigDataStore --type=PARTITION_HEAP_LRU

XML:

<cache>

<region name="bigDataStore" refid="PARTITION_HEAP_LRU"/>

...

<resource-manager critical-heap-percentage="85" eviction-heap-percentage="75"/>

</cache>

Note: The resource-manager specification must appear after the region declarations in your
cache.xml file.

Java:

Cache cache = CacheFactory.create();

ResourceManager rm = cache.getResourceManager();

rm.setCriticalHeapPercentage(85);

rm.setEvictionHeapPercentage(75);

RegionFactory rf =

 cache.createRegionFactory(RegionShortcut.PARTITION_HEAP_LRU);

 Region region = rf.create("bigDataStore");

VMware GemFire 9.10 Documentation

VMware by Broadcom 277

Use Case for the Example Code

This is one possible scenario for the configuration used in the examples:

A 64-bit Java VM with 8 Gb of heap space on a 4 CPU system running Linux.

The data region bigDataStore has approximately 2-3 million small values with average entry
size of 512 bytes. So approximately 4-6 Gb of the heap is for region storage.

The member hosting the region also runs an application that may take up to 1 Gb of the
heap.

The application must never run out of heap space and has been crafted such that data loss
in the region is acceptable if the heap space becomes limited due to application issues, so
the default lru-heap-percentage action destroy is suitable.

The application’s service guarantee makes it very intolerant of OutOfMemoryException errors.
Testing has shown that leaving 15% head room above the critical threshold when adding
data to the region gives 99.5% uptime with no OutOfMemoryException errors, when
configured with the CMS garbage collector using -XX:CMSInitiatingOccupancyFraction=70.

Managing Off-Heap Memory

VMware GemFire can be configured to store region values in off-heap memory, which is memory
within the JVM that is not subject to Java garbage collection.

Garbage collection (GC) within a JVM can prove to be a performance impediment. A server cannot
exert control over when garbage collection within the JVM heap memory takes place, and the
server has little control over the triggers for invocation. Off-heap memory offloads values to a
storage area that is not subject to Java GC. By taking advantage of off-heap storage, an application
can reduce the amount of heap storage that is subject to GC overhead.

Off-heap memory works in conjunction with the heap, it does not replace it. The keys are stored in
heap memory space. VMware GemFire’s own memory manager handles the off-heap memory with
better performance than the Java garbage collector would for certain sets of region data.

The resource manager monitors the contents of off-heap memory and invokes memory
management operations in accordance with two thresholds similar to those used for monitoring the
JVM heap: eviction-off-heap-percentage and critical-off-heap-percentage.

On-heap and Off-heap Objects

The following objects are always stored in the JVM heap:

Region metadata

Entry metadata

Keys

Indexes

Subscription queue elements

The following objects can be stored in off-heap memory:

Values - maximum value size is 2GB

VMware GemFire 9.10 Documentation

VMware by Broadcom 278

Reference counts

List of free memory blocks

WAN queue elements

Note: Do not use functional range indexes with off-heap data, as they are not supported. An
attempt to do so generates an exception.

Off-heap Recommendations

Off-heap storage is best suited to data patterns where:

Stored values are relatively uniform in size

Stored values are mostly less than 128K in size

The usage patterns involve cycles of many creates followed by destroys or clear

The values do not need to be frequently deserialized

Many of the values are long-lived reference data

Be aware that VMware GemFire has to perform extra work to access the data stored in off-heap
memory since it is stored in serialized form. This extra work may cause some use cases to run
slower in an off-heap configuration, even though they use less memory and avoid garbage
collection overhead. However, even with the extra deserialization, off-heap storage may give you
the best performance. Features that may increase overhead include

frequent updates

stored values of widely varying sizes

deltas

queries

Implementation Details

The off-heap memory manager is efficient at handling region data values that are all the same size
or are of fixed sizes. With fixed and same-sized data values allocated within the off-heap memory,
freed chunks can often be re-used, and there is little or no need to devote cycles to
defragmentation.

Region values that are less than or equal to eight bytes in size will not reside in off-heap memory,
even if the region is configured to use off-heap memory. These very small size region values reside
in the JVM heap in place of a reference to an off-heap location. This performance enhancement
saves space and load time.

Controlling Off-heap Use with the Resource Manager

The VMware GemFire resource manager controls off-heap memory by means of two thresholds, in
much the same way as it does JVM heap memory. See Using the VMware GemFire Resource
Manager. The resource manager prevents the cache from consuming too much off-heap memory
by evicting old data. If the off-heap memory manager is unable to keep up, the resource manager

VMware GemFire 9.10 Documentation

VMware by Broadcom 279

refuses additions to the cache until the off-heap memory manager has freed an adequate amount
of memory.

The resource manager has two threshold settings, each expressed as a percentage of the total off-
heap memory. Both are disabled by default.

1. Eviction Threshold. The percentage of off-heap memory at which eviction should begin.
Evictions continue until the resource manager determines that off-heap memory use is
again below the eviction threshold. Set the eviction threshold with the eviction-off-heap-
percentage region attribute. The resource manager enforces an eviction threshold only on
regions with the HEAP_LRU characteristic. If critical threshold is non-zero, the default
eviction threshold is 5% below the critical threshold. If critical threshold is zero, the default
eviction threshold is 80% of total off-heap memory.

The resource manager enforces eviction thresholds only on regions whose LRU eviction
policies are based on heap percentage. Regions whose eviction policies based on entry
count or memory size use other mechanisms to manage evictions. See Eviction for more
detail regarding eviction policies.

2. Critical Threshold. The percentage of off-heap memory at which the cache is at risk of
becoming inoperable. When cache use exceeds the critical threshold, all activity that might
add data to the cache is refused. Any operation that would increase consumption of off-
heap memory throws a LowMemoryException instead of completing its operation. Set the
critical threshold with the critical-off-heap-percentage region attribute.

Critical threshold is enforced on all regions, regardless of LRU eviction policy, though it can
be set to zero to disable its effect.

Specifying Off-heap Memory

To use off-heap memory, specify the following options when setting up servers and regions:

Start the JVM as described in Tuning the JVM’s Garbage Collection Parameters. In
particular, set the initial and maximum heap sizes to the same value. Sizes less than 32GB
are optimal when you plan to use off-heap memory.

From gfsh, start each server that will support off-heap memory with a non-zero off-heap-
memory-size value, specified in megabytes (m) or gigabytes (g). If you plan to use the
resource manager, specify critical threshold, eviction threshold, or (in most cases) both.

Example:

gfsh> start server --name=server1 -–initial-heap=10G -–max-heap=10G -–off-heap-

memory-size=200G \

-–lock-memory=true -–critical-off-heap-percentage=90 -–eviction-off-heap-percen

tage=80

Mark regions whose entry values should be stored off-heap by setting the off-heap region
attribute to true Configure other region attributes uniformly for all members that host data
for the same region. .

Example:

gfsh>create region --name=region1 --type=PARTITION_HEAP_LRU --off-heap=true

VMware GemFire 9.10 Documentation

VMware by Broadcom 280

gfsh Off-heap Support

gfsh supports off-heap memory in server and region creation operations and in reporting functions:

alter disk-store
--off-heap=(true | false) resets the off-heap attribute for the specified region. See alter disk-
store for details.

create region
--off-heap=(true | false)sets the off-heap attribute for the specified region. See create region
for details.

describe member
displays off-heap size

describe offline-disk-store
shows if an off-line region is off-heap

describe region
displays the value of a region’s off-heap attribute

show metrics
includes off-heap metrics maxMemory, freeMemory, usedMemory, objects, fragmentation and
defragmentationTime

start server
supports off-heap options --lock-memory, ‑‑off-heap-memory-size, ‑‑critical-off-heap-
percentage, and ‑‑eviction-off-heap-percentage See start server for details.

ResourceManager API

The org.apache.geode.cache.control.ResourceManager interface defines methods that support off-
heap use:

public void setCriticalOffHeapPercentage(float Percentage)

public float getCriticalOffHeapPercentage()

public void setEvictionOffHeapPercentage(float Percentage)

public float getEvictionOffHeapPercentage()

The gemfire.properties file supports one off-heap property:

off-heap-memory-size

Specifies the size of off-heap memory in megabytes (m) or gigabytes (g). For example:

off-heap-memory-size=4096m

off-heap-memory-size=120g

See gemfire.properties and gfsecurity.properties (VMware GemFire Properties) for details.

The cache.xml file supports one region attribute:

off-heap(=true | false)

Specifies that the region uses off-heap memory; defaults to false. For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 281

<region-attributes

 off-heap="true">

</region-attributes>

See <region-attributes> for details.

The cache.xml file supports two resource manager attributes:

critical-off-heap-percentage=value

Specifies the percentage of off-heap memory at or above which the cache is considered in danger
of becoming inoperable due to out of memory exceptions. See <resource-manager> for details.

eviction-off-heap-percentage=value

Specifies the percentage of off-heap memory at or above which eviction should begin. Can be set
for any region, but actively operates only in regions configured for HEAP_LRU eviction. See
<resource-manager> for details.

For example:

<cache>

...

 <resource-manager

 critical-off-heap-percentage="99.9"

 eviction-off-heap=-percentage="85"/>

...

</cache>

Tuning Off-heap Memory Usage

VMware GemFire collects statistics on off-heap memory usage which you can view with the gfsh
show metrics command. See Off-Heap (OffHeapMemoryStats) for a description of available off-
heap statistics.

Off-heap memory is optimized, by default, for storing values of 128 KB in size. This figure is known
as the “maximum optimized stored value size,” which we will denote here by
maxOptStoredValSize. If your data typically runs larger, you can enhance performance by
increasing the OFF_HEAP_FREE_LIST_COUNT system parameter to a number larger than
maxOptStoredValSize/8, where maxOptStoredValSize is expressed in KB (1024 bytes). So, the
default values correspond to:

128 KB / 8 = (128 * 1024) / 8 = 131,072 / 8 = 16,384

-Dgemfire.OFF_HEAP_FREE_LIST_COUNT=16384

To optimize for a maximum optimized stored value size that is twice the default, or 256 KB, the free
list count should be doubled:

-Dgemfire.OFF_HEAP_FREE_LIST_COUNT=32768

During the tuning process, you can toggle the off-heap region attribute on and off, leaving other
off-heap settings and parameters in place, in order to compare your application’s on-heap and off-
heap performance.

VMware GemFire 9.10 Documentation

VMware by Broadcom 282

Locking Memory (Linux Systems Only)

On Linux systems, you can lock memory to prevent the operating system from paging out heap or
off-heap memory.

To use this feature:

1. Configure the operating system limits for locked memory. Increase the operating system’s
ulimit -l value (the maximum size that may be locked in memory) from the default
(typically 32 KB or 64 KB) to at least the total amount of memory used by VMware GemFire
for on-heap or off-heap storage. To view the current setting, enter ulimit -a at a shell
prompt and find the value for max locked memory:

ulimit -a

...

max locked memory (kbytes, -l) 64

...

Use ulimit -l max-size-in-kbytes to raise the limit. For example, to set the locked
memory limit to 64 GB:

ulimit -l 64000000

2. Using locked memory in this manner increases the time required to start VMware GemFire.
The additional time required to start VMware GemFire depends on the total amount of
memory used, and can range from several seconds to 10 minutes or more. To improve
startup time and reduce the potential of member timeouts, instruct the kernel to free
operating system page caches just before starting a VMware GemFire member by issuing
the following command:

$ echo 1 > /proc/sys/vm/drop_caches

3. Start each VMware GemFire data store with the gfsh -lock-memory=true option. If you
deploy more than one server per host, begin by starting each server sequentially. Starting
servers sequentially avoids a race condition in the operating system that can cause failures
(even machine crashes) if you accidentally over-allocate the available RAM. After you verify
that the system configuration is stable, you can then start servers concurrently.

Disk Storage

With VMware GemFire disk stores, you can persist data to disk as a backup to your in-memory
copy and overflow data to disk when memory use gets too high.

How Disk Stores Work

Overflow and persistence use disk stores individually or together to store data.

Disk Store File Names and Extensions

Disk store files include store management files, access control files, and the operation log,
or oplog, files, consisting of one file for deletions and another for all other operations.

Disk Store Operation Logs

VMware GemFire 9.10 Documentation

VMware by Broadcom 283

At creation, each operation log is initialized at the disk store’s max-oplog-size, with the size
divided between the crf and drf files. When the oplog is closed, VMware GemFire shrinks
the files to the space used in each file.

Configuring Disk Stores

In addition to the disk stores you specify, VMware GemFire has a default disk store that it
uses when disk use is configured with no disk store name specified. You can modify default
disk store behavior.

Optimizing a System with Disk Stores

Optimize availability and performance by following the guidelines in this section.

Start Up and Shut Down with Disk Stores

This section describes what happens during startup and shutdown and provides procedures
for those operations.

Disk Store Management

The gfsh command-line tool has a number of options for examining and managing your disk
stores. The gfsh tool, the cache.xml file and the DiskStore APIs are your management tools
for online and offline disk stores.

Creating Backups for System Recovery and Operational Management

A backup is a copy of persisted data from a disk store. A backup is used to restore the disk
store to the state it was in when the backup was made. The appropriate back up and
restore procedures differ based upon whether the cluster is online or offline. An online
system has currently running members. An offline system does not have any running
members.

How Disk Stores Work

Overflow and persistence use disk stores individually or together to store data.

Disk storage is available for these items:

Regions. Persist and/or overflow data from regions.

Server’s client subscription queues. Overflow the messaging queues to control memory
use.

Gateway sender queues. Persist these for high availability. These queues always overflow.

PDX serialization metadata. Persist metadata about objects you serialize using VMware
GemFire PDX serialization.

Each member has its own set of disk stores, and they are completely separate from the disk stores
of any other member. For each disk store, define where and how the data is stored to disk. You
can store data from multiple regions and queues in a single disk store.

This figure shows a member with disk stores D through R defined. The member has two persistent
regions using disk store D and an overflow region and an overflow queue using disk store R.

VMware GemFire 9.10 Documentation

VMware by Broadcom 284

What VMware GemFire Writes to the Disk Store

VMware GemFire writes the following to the disk store:

Persisted and overflowed data as specified when the disk store was created and configured

The members that host the store and information on their status, such as which members
are online and which members are offline and time stamps

A disk store identifier

Which regions are in the disk store, specified by region name and including selected
attributes

Names of colocated regions on which the regions in the disk store depend

A record of all operations on the regions

VMware GemFire does not write indexes to disk.

Disk Store State

The files for a disk store are used by VMware GemFire as a group. Treat them as a single entity. If
you copy them, copy them all together. Do not change the file names.

Disk store access and management differs according to whether the member is online or offline.
While a member is running, its disk stores are online. When the member exits and is not running,
its disk stores are offline.

Online, a disk store is owned and managed by its member process. To run operations on an
online disk store, use API calls in the member process, or use the gfsh command-line
interface.

Offline, the disk store is just a collection of files in the host file system. The files are
accessible based on file system permissions. You can copy the files for backup or to move
the member’s disk store location. You can also run some maintenance operations, such as
file compaction and validation, by using the gfsh command-line interface. When offline, the
disk store’s information is unavailable to the cluster. For partitioned regions, region data is
split between multiple members, and therefore the start up of a member is dependent on

VMware GemFire 9.10 Documentation

VMware by Broadcom 285

all members, and must wait for all members to be online. An attempt to access an entry
that is stored on disk by an offline member results in a PartitionOfflineException.

Disk Store File Names and Extensions

Disk store files include store management files, access control files, and the operation log, or oplog,
files, consisting of one file for deletions and another for all other operations.

The next tables describe file names and extensions; they are followed by example disk store files.

File Names

File names have three parts: usage identifier, disk store name, and oplog sequence number.

First Part of File Name: Usage Identifier

Values Used for Examples

OVERFLO
W

Oplog data from overflow regions and queues only. OVERFLOWoverflowDS1_1.crf

BACKUP Oplog data from persistent and persistent+overflow regions
and queues.

BACKUPoverflowDS1.if,
BACKUPDEFAULT.if

DRLK_IF Access control - locking the disk store. DRLK_IFoverflowDS1.lk,
DRLK_IFDEFAULT.lk

Second Part of File Name: Disk Store Name

Values Used for Examples

<disk store
name>

Non-default disk stores. name=“overflowDS1”
DRLK_IFoverflowDS1.lk, name=“persistDS1”
BACKUPpersistDS1_1.crf

DEFAULT Default disk store name, used when persistence or
overflow are specified on a region or queue but no disk
store is named.

DRLK_IFDEFAULT.lk,
BACKUPDEFAULT_1.crf

Third Part of File Name: oplog Sequence Number

Values Used for Examples

Sequence number in the
format _n

Oplog data files only.
Numbering starts with 1.

OVERFLOWoverflowDS1_1.crf, BACKUPpersistDS1_2.crf,
BACKUPpersistDS1_3.crf

File Extensions

File
extension

Used for Notes

if Disk store metadata Stored in the first disk-dir listed for the store. Negligible size - not
considered in size control.

lk Disk store access control Stored in the first disk-dir listed for the store. Negligible size - not
considered in size control.

VMware GemFire 9.10 Documentation

VMware by Broadcom 286

File
extension

Used for Notes

crf Oplog: create, update, and
invalidate operations

Pre-allocated 90% of the total max-oplog-size at creation.

drf Oplog: delete operations Pre-allocated 10% of the total max-oplog-size at creation.

krf Oplog: key and crf offset
information

Created after the oplog has reached the max-oplog-size. Used to
improve performance at startup.

Example files for disk stores persistDS1 and overflowDS1:

bash-2.05$ ls -tlr persistData1/

total 8

-rw-rw-r-- 1 person users 188 Mar 4 06:17 BACKUPpersistDS1.if

-rw-rw-r-- 1 person users 0 Mar 4 06:18 BACKUPpersistDS1_1.drf

-rw-rw-r-- 1 person users 38 Mar 4 06:18 BACKUPpersistDS1_1.crf

bash-2.05$ ls -tlr overflowData1/

total 1028

-rw-rw-r-- 1 person users 0 Mar 4 06:21 DRLK_IFoverflowDS1.lk

-rw-rw-r-- 1 person users 0 Mar 4 06:21 BACKUPoverflowDS1.if

-rw-rw-r-- 1 person users 1073741824 Mar 4 06:21 OVERFLOWoverflowDS1_1.crf

Example default disk store files for a persistent region:

bash-2.05$ ls -tlr

total 106

-rw-rw-r-- 1 person users 1010 Mar 8 15:01 defTest.xml

drwxrwxr-x 2 person users 512 Mar 8 15:01 backupDirectory

-rw-rw-r-- 1 person users 0 Mar 8 15:01 DRLK_IFDEFAULT.lk

-rw-rw-r-- 1 person users 107374183 Mar 8 15:01 BACKUPDEFAULT_1.drf

-rw-rw-r-- 1 person users 966367641 Mar 8 15:01 BACKUPDEFAULT_1.crf

-rw-rw-r-- 1 person users 172 Mar 8 15:01 BACKUPDEFAULT.if

Disk Store Operation Logs
At creation, each operation log is initialized at the disk store’s max-oplog-size, with the size divided
between the crf and drf files. When the oplog is closed, VMware GemFire shrinks the files to the
space used in each file.

After the oplog is closed, VMware GemFire also attempts to create a krf file, which contains the
key names as well as the offset for the value within the crf file. Although this file is not required for
startup, if it is available, it will improve startup performance by allowing VMware GemFire to load
the entry values in the background after the entry keys are loaded.

When an operation log is full, VMware GemFire automatically closes it and creates a new log with
the next sequence number. This is called oplog rolling. You can also request an oplog rolling
through the API call DiskStore.forceRoll. You may want to do this immediately before
compacting your disk stores, so the latest oplog is available for compaction.

Note: Log compaction can change the names of the disk store files. File number sequencing is
usually altered, with some existing logs removed or replaced by newer logs with higher numbering.
VMware GemFire always starts a new log at a number higher than any existing number.

VMware GemFire 9.10 Documentation

VMware by Broadcom 287

This example listing shows the logs in a system with only one disk directory specified for the store.
The first log (BACKUPCacheOverflow_1.crf and BACKUPCacheOverflow_1.drf) has been closed and the
system is writing to the second log.

bash-2.05$ ls -tlra

total 55180

drwxrwxr-x 7 person users 512 Mar 22 13:56 ..

-rw-rw-r-- 1 person users 0 Mar 22 13:57 BACKUPCacheOverflow_2.drf

-rw-rw-r-- 1 person users 426549 Mar 22 13:57 BACKUPCacheOverflow_2.crf

-rw-rw-r-- 1 person users 0 Mar 22 13:57 BACKUPCacheOverflow_1.drf

-rw-rw-r-- 1 person users 936558 Mar 22 13:57 BACKUPCacheOverflow_1.crf

-rw-rw-r-- 1 person users 1924 Mar 22 13:57 BACKUPCacheOverflow.if

drwxrwxr-x 2 person users 2560 Mar 22 13:57 .

The system rotates through all available disk directories to write its logs. The next log is always
started in a directory that has not reached its configured capacity, if one exists.

When Disk Store Oplogs Reach the Configured Disk
Capacity

If no directory exists that is within its capacity limits, how VMware GemFire handles this depends
on whether automatic compaction is enabled.

If auto-compaction is enabled, VMware GemFire creates a new oplog in one of the
directories, going over the limit, and logs a warning that reports:

Even though the configured directory size limit has been exceeded a

new oplog will be created. The current limit is of XXX. The current

space used in the directory is YYY.

Note: When auto-compaction is enabled, dir-size does not limit how much disk space is
used. VMware GemFire will perform auto-compaction, which should free space, but the
system may go over the configured disk limits.

If auto-compaction is disabled, VMware GemFire does not create a new oplog, operations
in the regions attached to the disk store block, and VMware GemFire logs this error:

Disk is full and rolling is disabled. No space can be created

Configuring Disk Stores
In addition to the disk stores you specify, VMware GemFire has a default disk store that it uses
when disk use is configured with no disk store name specified. You can modify default disk store
behavior.

Designing and Configuring Disk Stores

You define disk stores in your cache, then you assign them to your regions and queues by
setting the disk-store-name attribute in your region and queue configurations.

Disk Store Configuration Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 288

You define your disk stores by using the gfsh create disk-store command or in <disk-
store> subelements of your cache declaration in cache.xml. All disk stores are available for
use by all of your regions and queues.

Modifying the Default Disk Store

You can modify the behavior of the default disk store by specifying the attributes you want
for the disk store named “DEFAULT”.

Designing and Configuring Disk Stores

You define disk stores in your cache, then you assign them to your regions and queues by setting
the disk-store-name attribute in your region and queue configurations.

Note: Besides the disk stores you specify, VMware GemFire has a default disk store that it uses
when disk use is configured with no disk store name specified. By default, this disk store is saved to
the application’s working directory. You can change its behavior, as indicated in Create and
Configure Your Disk Stores and Modifying the Default Disk Store.

Design Your Disk Stores

Create and Configure Your Disk Stores

Configuring Regions, Queues, and PDX Serialization to Use the Disk Stores

Configuring Disk Stores on Gateway Senders

Design Your Disk Stores

Before you begin, you should understand VMware GemFire Basic Configuration and Programming.

1. Work with your system designers and developers to plan for anticipated disk storage
requirements in your testing and production caching systems. Take into account space and
functional requirements.

For efficiency, separate data that is only overflowed in separate disk stores from
data that is persisted or persisted and overflowed. Regions can be overflowed,
persisted, or both. Server subscription queues are only overflowed.

When calculating your disk requirements, figure in your data modification patterns
and your compaction strategy. VMware GemFire creates each oplog file at the max-
oplog-size, which defaults to 1 GB. Obsolete operations are removed from the
oplogs only during compaction, so you need enough space to store all operations
that are done between compactions. For regions where you are doing a mix of
updates and deletes, if you use automatic compaction, a good upper bound for the
required disk space is

(1 / (compaction_threshold/100)) * data size

where data size is the total size of all the data you store in the disk store. So, for the
default compaction-threshold of 50, the disk space is roughly twice your data size.
Note that the compaction thread could lag behind other operations, causing disk
use to rise temporarily above the upper bound. If you disable automatic compaction,

VMware GemFire 9.10 Documentation

VMware by Broadcom 289

the amount of disk required depends on how many obsolete operations accumulate
between manual compactions.

2. Work with your host system administrators to determine where to place your disk store
directories, based on your anticipated disk storage requirements and the available disks on
your host systems.

Make sure the new storage does not interfere with other processes that use disk on
your systems. If possible, store your files to disks that are not used by other
processes, including virtual memory or swap space. If you have multiple disks
available, for the best performance, place one directory on each disk.

Use different directories for different members. You can use any number of
directories for a single disk store.

Create and Configure Your Disk Stores

1. In the locations you have chosen, create all directories you will specify for your disk stores
to use. VMware GemFire throws an exception if the specified directories are not available
when a disk store is created. You do not need to populate these directories with anything.

2. Open a gfsh prompt and connect to the cluster.

3. At the gfsh prompt, create and configure a disk store:

Specify the name (--name) of the disk-store.

Choose disk store names that reflect how the stores should be used and
that work for your operating systems. Disk store names are used in the disk
file names:

Use disk store names that satisfy the file naming requirements for
your operating system. For example, if you store your data to disk in
a Windows system, your disk store names could not contain any of
these reserved characters, < > : " / \ | ? *.

Do not use very long disk store names. The full file names must fit
within your operating system limits. On Linux, for example, the
standard limitation is 255 characters.

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

Configure the directory locations (--dir) and the maximum space to use for the
store (specified after the disk directory name by # and the maximum number in
megabytes).

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

Optionally, you can configure the store’s file compaction behavior. In conjunction
with this, plan and program for any manual compaction. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

\

VMware GemFire 9.10 Documentation

VMware by Broadcom 290

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t

rue

If needed, configure the maximum size (in MB) of a single oplog. When the current
files reach this size, the system rolls forward to a new file. You get better
performance with relatively small maximum file sizes. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t

rue \

--max-oplog-size=512

If needed, modify queue management parameters for asynchronous queueing to
the disk store. You can configure any region for synchronous or asynchronous
queueing (region attribute disk-synchronous). Server queues and gateway sender
queues always operate synchronously. When either the queue-size (number of
operations) or time-interval (milliseconds) is reached, enqueued data is flushed to
disk. You can also synchronously flush unwritten data to disk through the DiskStore
flushToDisk method. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t

rue \

--max-oplog-size=512 --queue-size=10000 --time-interval=15

If needed, modify the size (specified in bytes) of the buffer used for writing to disk.
Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t

rue \

--max-oplog-size=512 --queue-size=10000 --time-interval=15 --write-buffer

-size=65536

If needed, modify the disk-usage-warning-percentage and disk-usage-critical-
percentage thresholds that determine the percentage (default: 90%) of disk usage
that will trigger a warning and the percentage (default: 99%) of disk usage that will
generate an error and shut down the member cache. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480

\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t

rue \

--max-oplog-size=512 --queue-size=10000 --time-interval=15 --write-buffer

-size=65536 \

--disk-usage-warning-percentage=80 --disk-usage-critical-percentage=98

The following is the complete disk store cache.xml configuration example:

<disk-store name="serverOverflow" compaction-threshold="40"

 auto-compact="false" allow-force-compaction="true"

VMware GemFire 9.10 Documentation

VMware by Broadcom 291

 max-oplog-size="512" queue-size="10000"

 time-interval="15" write-buffer-size="65536"

 disk-usage-warning-percentage="80"

 disk-usage-critical-percentage="98">

 <disk-dirs>

 <disk-dir>c:\overflow_data</disk-dir>

 <disk-dir dir-size="20480">d:\overflow_data</disk-dir>

 </disk-dirs>

</disk-store>

Note: As an alternative to defining cache.xml on every server in the cluster– if you have the cluster
configuration service enabled, when you create a disk store in gfsh, you can share the disk store’s
configuration with the rest of cluster. See Overview of the Cluster Configuration Service.

Modifying Disk Stores

You can modify an offline disk store by using the alter disk-store command. If you are modifying the
default disk store configuration, use “DEFAULT” as the disk-store name.

Configuring Regions, Queues, and PDX Serialization to Use
the Disk Stores
The following are examples of using already created and named disk stores for Regions, Queues,
and PDX Serialization.

Example of using a disk store for region persistence and overflow:

gfsh:

gfsh>create region --name=regionName --type=PARTITION_PERSISTENT_OVERFLOW \

--disk-store=serverPersistOverflow

cache.xml

<region refid="PARTITION_PERSISTENT_OVERFLOW" disk-store-name="persistOverflow

1"/>

Example of using a named disk store for server subscription queue overflow (cache.xml):

<cache-server port="40404">

 <client-subscription

 eviction-policy="entry"

 capacity="10000"

 disk-store-name="queueOverflow2"/>

</cache-server>

Example of using a named disk store for PDX serialization metadata (cache.xml):

<pdx read-serialized="true"

 persistent="true"

 disk-store-name="SerializationDiskStore">

</pdx>

VMware GemFire 9.10 Documentation

VMware by Broadcom 292

Configuring Disk Stores on Gateway Senders

Gateway sender queues are always overflowed and may be persisted. Assign them to overflow disk
stores if you do not persist, and to persistence disk stores if you do.

Persisted data from a parallel gateway sender must go to the same disk store as used by the
region, because parallel gateway sender queues must be colocated with their regions to operate
correctly.

Example of using a named disk store for a serial gateway sender queue persistence:

gfsh:

gfsh>create gateway-sender --id=persistedSender1 --remote-distributed-system-id

=1 \

--enable-persistence=true --disk-store-name=diskStoreA --maximum-queue-memory=1

00

cache.xml:

<cache>

 <gateway-sender id="persistedsender1" parallel="true"

 remote-distributed-system-id="1"

 enable-persistence="true"

 disk-store-name="diskStoreA"

 maximum-queue-memory="100"/>

 ...

</cache>

Examples of using the default disk store for a serial gateway sender queue persistence and
overflow:

gfsh:

gfsh>create gateway-sender --id=persistedSender1 --remote-distributed-system-id

=1 \

--enable-persistence=true --maximum-queue-memory=100

cache.xml:

<cache>

 <gateway-sender id="persistedsender1" parallel="true"

 remote-distributed-system-id="1"

 enable-persistence="true"

 maximum-queue-memory="100"/>

 ...

</cache>

Disk Store Configuration Parameters
You define your disk stores by using the gfsh create disk-store command or in <disk-store>
subelements of your cache declaration in cache.xml. All disk stores are available for use by all of
your regions and queues.

VMware GemFire 9.10 Documentation

VMware by Broadcom 293

These <disk-store> attributes and subelements have corresponding gfsh create disk-store
command-line parameters as well as getter and setter methods in the
org.apache.geode.cache.DiskStoreFactory and org.apache.geode.cache.DiskStore APIs.

Disk Store Configuration Attributes and Elements

disk-store attribute Description Default

name String used to identify this disk store.
All regions and queues select their
disk store by specifying this name.

DEFAULT

allow-force-compaction Boolean indicating whether to allow
manual compaction through the API
or command-line tools.

false

auto-compact Boolean indicating whether to
automatically compact a file when its
live data content percentage drops
below the compaction-threshold.

true

compaction-threshold Percentage (0..100) of live data (non-
garbage content) remaining in the
operation log, below which it is
eligible for compaction. As garbage
is created (by entry destroys, entry
updates, and region destroys and
creates) the percentage of remaining
live data declines. Falling below this
percentage initiates compaction if
auto-compaction is turned on. If not,
the file will be eligible for manual
compaction at a later time.

50

disk-usage-critical-percentage Disk usage above this threshold
generates an error message and shuts
down the member's cache. For
example, if the threshold is set to
99%, then falling under 10 GB of free
disk space on a 1 TB drive generates
the error and shuts down the cache.

Set to "0" (zero) to disable.

99

disk-usage-warning-percentage Disk usage above this threshold
generates a warning message. For
example, if the threshold is set to
90%, then on a 1 TB drive falling
under 100 GB of free disk space
generates the warning.

Set to "0" (zero) to disable.

90

max-oplog-size The largest size, in megabytes, to
allow an operation log to become
before automatically rolling to a new
file. This size is the combined sizes of
the oplog files.

1024

VMware GemFire 9.10 Documentation

VMware by Broadcom 294

disk-store attribute Description Default

queue-size For asynchronous queueing. The
maximum number of operations to
allow into the write queue before
automatically flushing the queue.
Operations that would add entries to
the queue block until the queue is
flushed. A value of zero implies no
size limit. Reaching this limit or the
time-interval limit will cause the
queue to flush.

0

time-interval For asynchronous queueing. The
number of milliseconds that can
elapse before data is flushed to disk.
Reaching this limit or the queue-size
limit causes the queue to flush.

1000

write-buffer-size Size of the buffer, in bytes, used to
write to disk.

32768

disk-store

subelement
Description Default

<disk-dirs> Defines the system directories where the disk store is written and their
maximum sizes.

. with no size
limit

disk-dirs Element

The <disk-dirs> element defines the host system directories to use for the disk store. It contains
one or more single <disk-dir> elements with the following contents:

The directory specification, provided as the text of the disk-dir element.

An optional dir-size attribute specifying the maximum amount of space, in megabytes, to
use for the disk store in the directory. By default, there is no limit. The space used is
calculated as the combined sizes of all oplog files.

You can specify any number of disk-dir subelements to the disk-dirs element. The data is spread
evenly among the active disk files in the directories, keeping within any limits you set.

Example:

<disk-dirs>

 <disk-dir>/host1/users/gf/memberA_DStore</disk-dir>

 <disk-dir>/host2/users/gf/memberA_DStore</disk-dir>

 <disk-dir dir-size="20480">/host3/users/gf/memberA_DStore</disk-dir>

</disk-dirs>

Note: The directories must exist when the disk store is created or the system throws an exception.
VMware GemFire does not create directories.

Use different disk-dir specifications for different disk stores. You cannot use the same directory for
the same named disk store in two different members.

Modifying the Default Disk Store

VMware GemFire 9.10 Documentation

VMware by Broadcom 295

You can modify the behavior of the default disk store by specifying the attributes you want for the
disk store named “DEFAULT”.

Whenever you use disk stores without specifying the disk store to use, VMware GemFire uses the
disk store named “DEFAULT”.

For example, these region and queue configurations specify persistence and/or overflow, but do
not specify the disk-store-name. Because no disk store is specified, these use the disk store named
“DEFAULT”.

Examples of using the default disk store for region persistence and overflow:

gfsh:

gfsh>create region --name=regionName --type=PARTITION_PERSISTENT_OVERFLOW

cache.xml

<region refid="PARTITION_PERSISTENT_OVERFLOW"/>

Example of using the default disk store for server subscription queue overflow (cache.xml):

<cache-server port="40404">

 <client-subscription eviction-policy="entry" capacity="10000"/>

</cache-server>

Change the Behavior of the Default Disk Store

VMware GemFire initializes the default disk store with the default disk store configuration settings.
You can modify the behavior of the default disk store by specifying the attributes you want for the
disk store named “DEFAULT”. The only thing you can’t change about the default disk store is the
name.

The following example changes the default disk store to allow manual compaction and to use
multiple, non-default directories:

cache.xml:

<disk-store name="DEFAULT" allow-force-compaction="true">

 <disk-dirs>

 <disk-dir>/export/thor/customerData</disk-dir>

 <disk-dir>/export/odin/customerData</disk-dir>

 <disk-dir>/export/embla/customerData</disk-dir>

 </disk-dirs>

</disk-store>

Optimizing a System with Disk Stores

Optimize availability and performance by following the guidelines in this section.

1. VMware GemFire recommends the use of ext4 filesystems when operating on Linux or
Solaris platforms. The ext4 filesystem supports preallocation, which benefits disk startup
performance. If you are using ext3 filesystems in latency-sensitive environments with high
write throughput, you can improve disk startup performance by setting the maxOplogSize

VMware GemFire 9.10 Documentation

VMware by Broadcom 296

(see the DiskStoreFactory.setMaxOplogSize) to a value lower than the default 1 GB and by
disabling preallocation by specifying the system property gemfire.preAllocateDisk=false
upon VMware GemFire process startup.

2. When you start your system, start all the members that have persistent regions at roughly
the same time. Create and use startup scripts for consistency and completeness.

3. Shut down your system using the gfsh shutdown command. This is an ordered shutdown
that positions your disk stores for a faster startup.

4. Configure critical usage thresholds (disk-usage-warning-percentage and disk-usage-
critical-percentage) for the disk. By default, these are set to 80% for warning and 99% for
errors that will shut down the cache.

5. Decide on a file compaction policy and, if needed, develop procedures to monitor your files
and execute regular compaction.

6. Decide on a backup strategy for your disk stores and follow it. You can back up a running
sytem by using the backup disk-store command.

7. If you remove any persistent region or change its configuration while your disk store is
offline, consider synchronizing the regions in your disk stores.

Start Up and Shut Down with Disk Stores

This section describes what happens during startup and shutdown and provides procedures for
those operations.

Start Up

When you start a member with a persistent region, the data is retrieved from disk stores to
recreate the member’s persistent region. If the member does not hold all of the most recent data
for the region, then other members have the data, and region creation blocks, waiting for the those
other members. A partitioned region with colocated entries also blocks on start up, waiting for the
entries of the colocated region to be available. A persistent gateway sender is treated the same as
a colocated region, so it can also block region creation.

With a log level of info or below, the system provides messaging about the wait. Here, the disk
store for server2 has the most recent data for the region, and server1 is waiting for server2.

Region /people has potentially stale data.

It is waiting for another member to recover the latest data.

My persistent id:

 DiskStore ID: 6893751ee74d4fbd-b4780d844e6d5ce7

 Name: server1

 Location: /192.0.2.0:/home/dsmith/server1/.

Members with potentially new data:

[

 DiskStore ID: 160d415538c44ab0-9f7d97bae0a2f8de

 Name: server2

 Location: /192.0.2.0:/home/dsmith/server2/.

]

VMware GemFire 9.10 Documentation

VMware by Broadcom 297

Use the "gfsh show missing-disk-stores" command to see all disk stores

that are being waited on by other members.

When the most recent data is available, the system updates the region, logs a message, and
continues the startup.

[info 2010/04/09 10:52:13.010 PDT CacheRunner <main> tid=0x1]

 Done waiting for the remote data to be available.

If the member’s disk store has data for a region that is never created, the data remains in the disk
store.

Each member’s persistent regions load and go online as quickly as possible, not waiting
unnecessarily for other members to complete. For performance reasons, these actions occur
asynchronously:

Once at least one copy of each and every bucket is recovered from disk, the region is
available. Secondary buckets will load asynchronously.

Entry keys are loaded from the key file in the disk store before considering entry values.
Once all keys are loaded, VMware GemFire loads the entry values asynchronously. If a
value is requested before it has loaded, the value will immediately be fetched from the disk
store.

Start Up Procedure

To start a system with disk stores:

1. Start all members with persisted data first and at the same time. Exactly how you do
this depends on your members. Make sure to start members that host colocated regions, as
well as persistent gateway senders.

While they are initializing their regions, the members determine which have the most
recent region data, and initialize their regions with the most recent data.

For replicated regions, where you define persistence only in some of the region’s host
members, start the persistent replicate members prior to the non-persistent replicate
members to make sure the data is recovered from disk.

This is an example bash script for starting members in parallel. The script waits for the
startup to finish. It exits with an error status if one of the jobs fails.

#!/bin/bash

ssh servera "cd /my/directory; gfsh start server --name=servera &

ssh serverb "cd /my/directory; gfsh start server --name=serverb &

STATUS=0;

for job in `jobs -p`

do

echo $job

wait $job;

JOB_STATUS=$?;

test $STATUS -eq 0 && STATUS=$JOB_STATUS;

done

exit $STATUS;

VMware GemFire 9.10 Documentation

VMware by Broadcom 298

2. Respond to blocked members. When a member blocks waiting for more recent data from
another member, the member waits indefinitely rather than coming online with stale data.
Check for missing disk stores with the gfsh show missing-disk-stores command. See
Handling Missing Disk Stores.

If no disk stores are missing, the cache initialization must be slow for some other
reason. Check the information on member hangs in Diagnosing System Problems.

If disk stores are missing that you think should be there:

Make sure you have started the member. Check the logs for any failure
messages. See Logging.

Make sure your disk store files are accessible. If you have moved your
member or disk store files, you must update your disk store configuration to
match.

If disk stores are missing that you know are lost, because you have deleted them or
their files are otherwise unavailable, revoke them so the startup can continue.

Example Startup to Illustrate Ordering

The following lists the two possibilities for starting up a replicated persistent region after a
shutdown. Assume that Member A (MA) exits first, leaving persisted data on disk for RegionP.
Member B (MB) continues to run operations on RegionP, which update its disk store and leave the
disk store for MA in a stale condition. MB exits, leaving the most up-to-date data on disk for
RegionP.

Restart order 1

1. MB is started first. MB identifies that it has the most recent disk data for RegionP
and initializes the region from disk. MB does not block.

2. MA is started, recovers its data from disk, and updates region data as needed from
the data in MB.

Restart order 2

1. MA is started first. MA identifies that it does not have the most recent disk data and
blocks, waiting for MB to start before recreating RegionP in MA.

2. MB is started. MB identifies that it has the most recent disk data for RegionP and
initializes the region from disk.

3. MA recovers its RegionP data from disk and updates region data as needed from
the data in MB.

Shutdown

If more than one member hosts a persistent region or queue, the order in which the various
members shut down may be significant upon restart of the system. The last member to exit the
system or shut down has the most up-to-date data on disk. Each member knows which other
system members were online at the time of exit or shutdown. This permits a member to acquire
the most recent data upon subsequent start up.

For a replicated region with persistence, the last member to exit has the most recent data.

VMware GemFire 9.10 Documentation

VMware by Broadcom 299

For a partitioned region every member persists its own buckets. A shutdown using gfsh shutdown
will synchronize the disk stores before exiting, so all disk stores hold the most recent data. Without
an orderly shutdown, some disk stores may have more recent bucket data than others.

The best way to shut down a system is to invoke the gfsh shutdown command with all members
running. All online data stores will be synchronized before shutting down, so all hold the most
recent data copy. To shut down all members other than locators:

gfsh>shutdown

To shut down all members, including locators:

gfsh>shutdown --include-locators=true

Disk Store Management
The gfsh command-line tool has a number of options for examining and managing your disk stores.
The gfsh tool, the cache.xml file and the DiskStore APIs are your management tools for online and
offline disk stores.

See Disk Store Commands for a list of available commands.

Disk Store Management Commands and Operations

Validating a Disk Store

Running Compaction on Disk Store Log Files

Keeping a Disk Store Synchronized with the Cache

Configuring Disk Free Space Monitoring

Handling Missing Disk Stores

Altering When Buffers Are Flushed to Disk

You can configure VMware GemFire to write immediately to disk and you may be able to
modify your operating system behavior to perform buffer flushes more frequently.

Disk Store Management Commands and Operations
You can manage your disk stores using the gfsh command-line tool. For more information on gfsh
commands, see gfsh and Disk Store Commands.

Note: Each of these commands operates either on the online disk stores or offline disk stores, but
not both.

gfsh Command
Online or Offline
Command

See …

alter disk-store Off Keeping a Disk Store Synchronized with the Cache

compact disk-store On Running Compaction on Disk Store Log Files

backup disk-store On Creating Backups for System Recovery and Operational
Management

VMware GemFire 9.10 Documentation

VMware by Broadcom 300

gfsh Command
Online or Offline
Command

See …

compact offline-disk-

store

Off Running Compaction on Disk Store Log Files

export offline-disk-

store

Off Creating Backups for System Recovery and Operational
Management

revoke missing-disk-

store

On Handling Missing Disk Stores

show missing-disk-stores On Handling Missing Disk Stores

shutdown On Start Up and Shut Down with Disk Stores

validate offline disk-

store

Off Validating a Disk Store

For complete command syntax of any gfsh command, run help <command> at the gfsh command
line.

Online Disk Store Operations

For online operations, gfsh must be connected to a cluster via a JMX manager and sends the
operation requests to the members that have disk stores. These commands will not run on offline
disk stores.

Offline Disk Store Operations

For offline operations, gfsh runs the command against the specified disk store and its specified
directories. You must specify all directories for the disk store. For example:

gfsh>compact offline-disk-store --name=mydiskstore --disk-dirs=MyDirs

Offline operations will not run on online disk stores. The tool locks the disk store while it is running,
so the member cannot start in the middle of an operation.

If you try to run an offline command for an online disk store, you get a message like this:

gfsh>compact offline-disk-store --name=DEFAULT --disk-dirs=s1

This disk store is in use by another process. "compact disk-store" can

be used to compact a disk store that is currently in use.

Validating a Disk Store
The validate offline-disk-store command verifies the health of your offline disk store and gives
you information about the regions in it, the total entries, and the number of records that would be
removed if you compacted the store.

Use this command at these times:

Before compacting an offline disk store to help decide whether it’s worth doing.

Before restoring or modifying a disk store.

VMware GemFire 9.10 Documentation

VMware by Broadcom 301

Any time you want to be sure the disk store is in good shape.

Example:

gfsh>validate offline-disk-store --name=ds1 --disk-dirs=hostB/bupDirectory

Running Compaction on Disk Store Log Files

When a cache operation is added to a disk store, any preexisting operation record for the same
entry becomes obsolete, and VMware GemFire marks it as garbage. For example, when you create
an entry, the create operation is added to the store. If you update the entry later, the update
operation is added and the create operation becomes garbage. VMware GemFire does not remove
garbage records as it goes, but it tracks the percentage of non-garbage (live data) remaining in
each operation log, and provides mechanisms for removing garbage to compact your log files.

VMware GemFire compacts an old operation log by copying all non-garbage records into the
current log and discarding the old files. As with logging, oplogs are rolled as needed during
compaction to stay within the max oplog setting.

The system is configured by default to automatically compact any closed operation log when its
non-garbage content drops below a certain percentage. This automatic compaction is well suited
to most VMware GemFire implementations. In some circumstances, you may choose to manually
initiate compaction for online and offline disk stores.

Log File Compaction for the Online Disk Store

For the online disk store, the current operation log is not available for compaction, no matter how
much garbage it contains. You can use DiskStore.forceRoll to close the current oplog, making it
eligible for compaction. See Disk Store Operation Logs for details.

Offline compaction runs essentially in the same way, but without the incoming cache operations.
Also, because there is no currently open log, the compaction creates a new one to get started.

VMware GemFire 9.10 Documentation

VMware by Broadcom 302

Run Online Compaction

Old log files become eligible for online compaction when their live data (non-garbage) content
drops below a configured percentage of the total file. A record is garbage when its operation is
superseded by a more recent operation for the same object. During compaction, the non-garbage
records are added to the current log along with new cache operations. Online compaction does not
block current system operations.

Automatic compaction. When auto-compact is true, VMware GemFire automatically
compacts each oplog when its non-garbage (live data) content drops below the
compaction-threshold. This takes cycles from your other operations, so you may want to
deactivate this and only do manual compaction, to control the timing.

Manual compaction. To run manual compaction:

Set the disk store attribute allow-force-compaction to true. This causes VMware
GemFire to maintain extra data about the files so it can compact on demand. This is
deactivated by default to save space. You can run manual online compaction at any
time while the system is running. Oplogs eligible for compaction based on the
compaction-threshold are compacted into the current oplog.

Run manual compaction as needed. VMware GemFire has two types of manual
compaction:

Compact the logs for a single online disk store through the API, with the
forceCompaction method. This method first rolls the oplogs and then
compacts them. Example:

myCache.findDiskStore("myDiskStore").forceCompaction();

Using gfsh, compact a disk store with the compact disk-store command.
Examples:

gfsh>compact disk-store --name=Disk1

gfsh>compact disk-store --name=Disk1 --group=MemberGroup1,MemberGr

oup2

Note: You need to be connected to a JMX Manager in gfsh to run this
command.

Run Offline Compaction

Offline compaction is a manual process. All log files are compacted as much as possible, regardless
of how much garbage they hold. Offline compaction creates new log files for the compacted log
records.

Using gfsh, compact individual offline disk stores with the compact offline-disk-store command:

gfsh>compact offline-disk-store --name=Disk2 --disk-dirs=/Disks/Disk2

gfsh>compact offline-disk-store --name=Disk2 --disk-dirs=/Disks/Disk2

--max-oplog-size=512 -J=-Xmx1024m

VMware GemFire 9.10 Documentation

VMware by Broadcom 303

Note: Do not perform offline compaction on the baseline directory of an incremental backup.

You must provide all of the directories in the disk store. If no oplog max size is specified, VMware
GemFire uses the system default.

Offline compaction can take a lot of memory. If you get a java.lang.OutOfMemory error while
running this, you may need to increase your heap size with the -J=-Xmx parameter.

Performance Benefits of Manual Compaction

You can improve performance during busy times if you deactivate automatic compaction and run
your own manual compaction during lighter system load or during downtimes. You could run the
API call after your application performs a large set of data operations. You could run compact disk-
store command every night when system use is very low.

To follow a strategy like this, you need to set aside enough disk space to accommodate all non-
compacted disk data. You might need to increase system monitoring to make sure you do not
overrun your disk space. You may be able to run only offline compaction. If so, you can set allow-
force-compaction to false and avoid storing the information required for manual online compaction.

Directory Size Limits

Reaching directory size limits during compaction has different results depending on whether you
are running an automatic or manual compaction:

For automatic compaction, the system logs a warning, but does not stop.

For manual compaction, the operation stops and returns a DiskAccessException to the
calling process, reporting that the system has run out of disk space.

Example Compaction Run

In this example offline compaction run listing, the disk store compaction had nothing to do in the
_3. files, so they were left alone. The *_4.* files had garbage records, so the oplog from them
was compacted into the new *_5.* files.

bash-2.05$ ls -ltra backupDirectory

total 28

-rw-rw-r-- 1 user users 3 Apr 7 14:56 BACKUPds1_3.drf

-rw-rw-r-- 1 user users 25 Apr 7 14:56 BACKUPds1_3.crf

drwxrwxr-x 3 user users 1024 Apr 7 15:02 ..

-rw-rw-r-- 1 user users 7085 Apr 7 15:06 BACKUPds1.if

-rw-rw-r-- 1 user users 18 Apr 7 15:07 BACKUPds1_4.drf

-rw-rw-r-- 1 user users 1070 Apr 7 15:07 BACKUPds1_4.crf

drwxrwxr-x 2 user users 512 Apr 7 15:07 .

bash-2.05$ gfsh

gfsh>validate offline-disk-store --name=ds1 --disk-dirs=backupDirectory

/root: entryCount=6

/partitioned_region entryCount=1 bucketCount=10

Disk store contains 12 compactable records.

Total number of region entries in this disk store is: 7

VMware GemFire 9.10 Documentation

VMware by Broadcom 304

gfsh>compact offline-disk-store --name=ds1 --disk-dirs=backupDirectory

Offline compaction removed 12 records.

Total number of region entries in this disk store is: 7

gfsh>exit

bash-2.05$ ls -ltra backupDirectory

total 16

-rw-rw-r-- 1 user users 3 Apr 7 14:56 BACKUPds1_3.drf

-rw-rw-r-- 1 user users 25 Apr 7 14:56 BACKUPds1_3.crf

drwxrwxr-x 3 user users 1024 Apr 7 15:02 ..

-rw-rw-r-- 1 user users 0 Apr 7 15:08 BACKUPds1_5.drf

-rw-rw-r-- 1 user users 638 Apr 7 15:08 BACKUPds1_5.crf

-rw-rw-r-- 1 user users 2788 Apr 7 15:08 BACKUPds1.if

drwxrwxr-x 2 user users 512 Apr 7 15:09 .

bash-2.05$

Keeping a Disk Store Synchronized with the Cache

Recovering data from an offline disk store proceeds most quickly when the configuration of the
offline data matches that of the online data.

Whenever you change or remove persistent regions (by modifying your cache.xml or the code that
configures the regions), then you should alter the corresponding offline disk-store to match. If you
don’t, then the next time this disk-store is recovered it will recover all of that region’s data into a
temporary region using the old configuration. The old configuration will still consume the old
configured resources (heap memory, off-heap memory). If those resources are no longer available
(for example the old configuration of the region was off-heap but you decide to no longer configure
off-heap memory on the JVM), the disk-store recovery will fail.

It is common practice to have more than one off-line disk store, because each member of the
cluster usually has its own copy. Be sure to apply the same alter disk-store command to each
offline copy of the disk store.

Change Region Configuration

When your disk store is offline, you can keep the configuration for its regions up-to-date with your
cache.xml and API settings. The disk store retains a subset of the region configuration attributes.
(For a list of the retained attributes, see alter disk-store). If the configurations do not match at
startup, the cache.xml and API override any disk store settings and the disk store is automatically
updated to match. So you do not need to modify your disk store to keep your cache configuration
and disk store synchronized, but you will save startup time and memory if you do.

For example, to change the initial capacity of the region named “partitioned_region” in the disk
store:

gfsh>alter disk-store --name=myDiskStoreName --region=partitioned_region

--disk-dirs=/firstDiskStoreDir,/secondDiskStoreDir,/thirdDiskStoreDir

--initialCapacity=20

To list all modifiable settings and their current values for a region, run the command with no actions
specified:

VMware GemFire 9.10 Documentation

VMware by Broadcom 305

gfsh>alter disk-store --name=myDiskStoreName --region=partitioned_region

--disk-dirs=/firstDiskStoreDir,/secondDiskStoreDir,/thirdDiskStoreDir

Take a Region Out of Your Cache Configuration and Disk
Store
You might remove a region from your application if you decide to rename it or to split its data into
two entirely different regions. Any significant data restructuring can cause you to retire some data
regions.

This applies to the removal of regions while the disk store is offline. Regions you destroy through
API calls or by gfsh are automatically removed from the disk store of online members.

In your application development, when you discontinue use of a persistent region, remove the
region from the member’s disk store as well.

Note: Perform the following operations with caution. You are permanently removing data.

You can remove the region from the disk store in one of two ways:

Delete the entire set of disk store files. Your member will initialize with an empty set of files
the next time you start it. Exercise caution when removing the files from the file system, as
more than one region can be specified to use the same disk store directories.

Selectively remove the discontinued region from the disk store with a command such as:

gfsh>alter disk-store --name=myDiskStoreName --region=partitioned_region

--disk-dirs=/firstDiskStoreDir,/secondDiskStoreDir,/thirdDiskStoreDir --remove

To guard against unintended data loss, VMware GemFire maintains the region in the disk store until
you manually remove it. Regions in the disk stores that are not associated with any region in your
application are still loaded into temporary regions in memory and kept there for the life of the
member. The system has no way of detecting whether the cache region will be created by your
API at some point, so it keeps the temporary region loaded and available.

Configuring Disk Free Space Monitoring

To modify disk-usage-warning-percentage and disk-usage-critical-percentage thresholds,
specify the parameters when executing the gfsh create disk-store command.

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480 \

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=true \

--max-oplog-size=512 --queue-size=10000 --time-interval=15 --write-buffer-size=65536 \

--disk-usage-warning-percentage=80 --disk-usage-critical-percentage=98

By default, disk usage above 80% triggers a warning message. Disk usage above 99% generates an
error and shuts down the member cache that accesses that disk store. To disable disk store
monitoring, set the parameters to 0.

To view the current threshold values set for an existing disk store, use the gfsh describe disk-store
command:

VMware GemFire 9.10 Documentation

VMware by Broadcom 306

gfsh>describe disk-store --member=server1 --name=DiskStore1

You can also use the following DiskStoreMXBean method APIs to configure and obtain these
thresholds programmatically.

getDiskUsageCriticalPercentage

getDiskUsageWarningPercentage

setDiskUsageCriticalPercentage

setDiskUsageWarningPercentage

You can obtain statistics on disk space usage and the performance of disk space monitoring by
accessing the following statistics:

diskSpace

maximumSpace

volumeSize

volumeFreeSpace

volumeFreeSpaceChecks

volumeFreeSpaceTime

See Disk Space Usage (DiskDirStatistics).

Handling Missing Disk Stores

This section applies to disk stores that hold the latest copy of your data for at least one region.

Show Missing Disk Stores

Using gfsh, the show missing-disk-stores command lists all disk stores with most recent data that
are being waited on by other members.

For replicated regions, this command only lists missing members that are preventing other
members from starting up. For partitioned regions, this command also lists any offline data stores,
even when other data stores for the region are online, because their offline status may be causing
PartitionOfflineExceptions in cache operations or preventing the system from satisfying
redundancy.

Example:

gfsh>show missing-disk-stores

 Disk Store ID | Host | Directory

------------------------------------ | --------- | -----------------------------------

--

60399215-532b-406f-b81f-9b5bd8d1b55a | excalibur | /usr/local/gemfire/deploy/disk_stor

e1

Note: You need to be connected to JMX Manager in gfsh to run this command.

Note: The disk store directories listed for missing disk stores may not be the directories you have
currently configured for the member. The list is retrieved from the other running members—the

VMware GemFire 9.10 Documentation

VMware by Broadcom 307

ones who are reporting the missing member. They have information from the last time the missing
disk store was online. If you move your files and change the member’s configuration, these
directory locations will be stale.

Disk stores usually go missing because their member fails to start. The member can fail to start for a
number of reasons, including:

Disk store file corruption. You can check on this by validating the disk store.

Incorrect cluster configuration for the member

Network partitioning

Drive failure

Revoke Missing Disk Stores

This section applies to disk stores for which both of the following are true:

Disk stores that have the most recent copy of data for one or more regions or region
buckets.

Disk stores that are unrecoverable, such as when you have deleted them, or their files are
corrupted or on a disk that has had a catastrophic failure.

When you cannot bring the latest persisted copy online, use the revoke command to tell the other
members to stop waiting for it. Once the store is revoked, the system finds the remaining most
recent copy of data and uses that.

Note: Once revoked, a disk store cannot be reintroduced into the system.

Use gfsh show missing-disk-stores to properly identify the disk store you need to revoke. The
revoke command takes the disk store ID as input, as listed by that command.

Example:

gfsh>revoke missing-disk-store --id=60399215-532b-406f-b81f-9b5bd8d1b55a

Missing disk store successfully revoked

Altering When Buffers Are Flushed to Disk

You can configure VMware GemFire to write immediately to disk and you may be able to modify
your operating system behavior to perform buffer flushes more frequently.

Typically, VMware GemFire writes disk data into the operating system’s disk buffers and the
operating system periodically flushes the buffers to disk. Increasing the frequency of writes to disk
decreases the likelihood of data loss from application or machine crashes, but it impacts
performance. Your other option, which may give you better performance, is to use VMware
GemFire’s in-memory data backups. Do this by storing your data in multiple replicated regions or in
partitioned regions that are configured with redundant copies. See Region Types.

Modifying Disk Flushes for the Operating System

You may be able to change the operating system settings for periodic flushes. You may also be able
to perform explicit disk flushes from your application code. For information on these options, see

VMware GemFire 9.10 Documentation

VMware by Broadcom 308

your operating system’s documentation. For example, in Linux you can change the disk flush
interval by modifying the setting /proc/sys/vm/dirty_expire_centiseconds. It defaults to 30
seconds. To alter this setting, see the Linux documentation for dirty_expire_centiseconds.

Modifying VMware GemFire to Flush Buffers on Disk Writes

You can have VMware GemFire flush the disk buffers on every disk write. Do this by setting the
system property gemfire.syncWrites to true at the command line when you start your VMware
GemFire member. You can only modify this setting when you start a member. When this is set,
VMware GemFire uses a Java RandomAccessFile with the flags “rwd”, which causes every file
update to be written synchronously to the storage device. This only guarantees your data if your
disk stores are on a local device. See the Java documentation for java.IO.RandomAccessFile.

To modify the setting for a VMware GemFire application, add this to the java command line when
you start the member:

-Dgemfire.syncWrites=true

To modify the setting for a cache server, use this syntax:

gfsh>start server --name=... --J=-Dgemfire.syncWrites=true

Creating Backups for System Recovery and Operational
Management

A backup is a copy of persisted data from a disk store. A backup is used to restore the disk store to
the state it was in when the backup was made. The appropriate back up and restore procedures
differ based upon whether the cluster is online or offline. An online system has currently running
members. An offline system does not have any running members.

Making a Backup While the System Is Online

What a Full Online Backup Saves

What an Incremental Online Backup Saves

Disk Store Backup Directory Structure and Contents

Offline Members—Manual Catch-Up to an Online Backup

Restore Using a Backup Made While the System Was Online

Making a Backup While the System Is Online

The gfsh command backup disk-store creates a backup of the disk stores for all members running
in the cluster. The backup works by passing commands to the running system members; therefore,
the members need to be online for this operation to succeed. Each member with persistent data
creates a backup of its own configuration and disk stores. The backup does not block any activities
within the cluster, but it does use resources.

Note: Do not try to create backup files from a running system by using your operating system’s file
copy commands. This would create incomplete and unusable copies.

VMware GemFire 9.10 Documentation

VMware by Broadcom 309

Preparing to Make a Backup

Consider compacting your disk store before making a backup. If auto-compaction is turned
off, you may want to do a manual compaction to save on the quantity of data copied over
the network by the backup. For more information on configuring a manual compaction, see
Manual Compaction.

Take the backup when region operations are quiescent, to avoid the possibility of an
inconsistency between region data and an asynchronous event queue (AEQ) or a WAN
Gateway sender (which uses a persistent queue). A region operation that causes a persisted
write to a region involves a disk operation. The associated queue operation also causes a
disk operation. These two disk operations are not made atomically, so if a backup is made
between the two disk operations, then the backup represents inconsistent data in the
region and the queue.

Run the backup during a period of low activity in your system. The backup does not block
system activities, but it uses file system resources on all hosts in your cluster, and it can
affect performance.

Configure each member with any additional files or directories to be backed up by
modifying the member’s cache.xml file. Additional items that ought to be included in the
backup:

application jar files

other files that the application needs when starting, such as a file that sets the
classpath

For example, to include file myExtraBackupStuff in the backup, the cache.xml file
specification of the data store would include:

<backup>./myExtraBackupStuff</backup>

Directories are recursively copied, with any disk stores that are found excluded from this
user-specified backup.

Back up to a SAN (recommended) or to a directory that all members can access. Make sure
the directory exists and has the proper permissions for all members to write to the directory
and create subdirectories.

The directory specified for the backup can be used multiple times. Each time a backup is
made, a new subdirectory is created within the specified directory, and that new
subdirectory’s name represents the date and time.

You can use one of two locations for the backup:

a single physical location, such as a network file server, for example:

/export/fileServerDirectory/gemfireBackupLocation

a directory that is local to all host machines in the system, for example:

./gemfireBackupLocation

VMware GemFire 9.10 Documentation

VMware by Broadcom 310

Make sure all members with persistent data are running in the system, because offline
members cannot back up their disk stores. Output from the backup command will not
identify members hosting replicated regions that are offline.

How to Do a Full Online Backup

1. If auto-compaction is disabled, and manual compaction is needed:

gfsh>compact disk-store --name=Disk1

2. Run the gfsh backup disk-store command, specifying the backup directory location. For
example:

gfsh>backup disk-store --dir=/export/fileServerDirectory/gemfireBackupLocation

The output will list information for each member that has successfully backed up disk stores.
The tabular information will contain the member’s name, its UUID, the directory backed up,
and the host name of the member.

Any online member that fails to complete its backup will leave a file named
INCOMPLETE_BACKUP in its highest level backup directory. The existence of this file identifies
that the backup file contains only a partial backup, and it cannot be used in a restore
operation.

3. Validate the backup for later recovery use. On the command line, each backup can be
checked with commands such as

cd 2010-04-10-11-35/straw_14871_53406_34322/diskstores/ds1

gfsh validate offline-disk-store --name=ds1 --disk-dirs=/home/dsmith/dir1

How to Do an Incremental Backup

An incremental backup contains items that have changed since a previous backup was made.

To do an incremental backup, specify the backup directory that the incremental backup will be
based upon with the --baseline-dir argument. For example:

gfsh>backup disk-store --dir=/export/fileServerDirectory/gemfireBackupLocation

--baseline-dir=/export/fileServerDirectory/gemfireBackupLocation/2012-10-01-12-30

The output will appear the same as the output for a full online backup.

Any online member that fails to complete its incremental backup will leave a file named
INCOMPLETE_BACKUP in its highest level backup directory. The existence of this file identifies that the
backup file contains only a partial backup, and it cannot be used in a restore operation. The next
time a backup is made, a full backup will be made.

What a Full Online Backup Saves

For each member with persistent data, a full backup includes the following:

Disk store files for all members containing persistent region data.

Files and directories specified in the cache.xml configuration file as <backup> elements. For
example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 311

<backup>./systemConfig/gf.jar</backup>

<backup>/users/user/gfSystemInfo/myCustomerConfig.doc</backup>

Deployed JAR files that were deployed using the gfsh deploy command.

Configuration files from the member startup.

gemfire.properties, including the properties with which the member was started.

cache.xml, if used.

These configuration files are not automatically restored, to avoid interfering with more
recent configurations. In particular, if these are extracted from a primary jar file, copying
the separate files into your working area can override the files in the jar. If you want to
back up and restore these files, add them as custom <backup> elements.

A restore script, called restore.bat on Windows, and called restore.sh on Linux. This
script may later be used to do a restore. The script copies files back to their original
locations.

What an Incremental Online Backup Saves

An incremental backup saves the difference between the last backup and the current data. An
incremental backup copies only operations logs that are not already present in the baseline
directories for each member. For incremental backups, the restore script contains explicit
references to operation logs in one or more previously chained incremental backups. When the
restore script is run from an incremental backup, it also restores the operation logs from previous
incremental backups that are part of the backup chain.

If members are missing from the baseline directory because they were offline or did not exist at the
time of the baseline backup, those members place full backups of all their files into the incremental
backup directory.

Disk Store Backup Directory Structure and Contents

$ cd thebackupdir

$ ls -R

./2012-10-18-13-44-53:

dasmith_e6410_server1_8623_v1_33892 dasmith_e6410_server2_8940_v2_45565

./2012-10-18-13-44-53/dasmith_e6410_server1_8623_v1_33892:

config diskstores README.txt restore.sh user

./2012-10-18-13-44-53/dasmith_e6410_server1_8623_v1_33892/config:

cache.xml

./2012-10-18-13-44-53/dasmith_e6410_server1_8623_v1_33892/diskstores:

DEFAULT

./2012-10-18-13-44-53/dasmith_e6410_server1_8623_v1_33892/diskstores/DEFAULT:

dir0

./2012-10-18-13-44-53/dasmith_e6410_server1_8623_v1_33892/diskstores/DEFAULT/dir0:

BACKUPDEFAULT_1.crf BACKUPDEFAULT_1.drf BACKUPDEFAULT.if

VMware GemFire 9.10 Documentation

VMware by Broadcom 312

./2012-10-18-13-44-53/dasmith_e6410_server1_8623_v1_33892/user:

Offline Members—Manual Catch-Up to an Online Backup

If you must have a member offline during an online backup, you can manually back up its disk
stores. Bring this member’s files into the online backup framework manually, and create a restore
script by hand starting with a copy of another member’s script:

1. Duplicate the directory structure of a backed up member for this member.

2. Rename directories as needed to reflect this member’s particular backup, including disk
store names.

3. Clear out all files other than the restore script.

4. Copy in this member’s files.

5. Modify the restore script to work for this member.

Restore Using a Backup Made While the System Was
Online
The restore.sh or restore.bat script copies files back to their original locations.

1. Restore your disk stores while cache members are offline and the system is down.

2. Look at each of the restore scripts to see where they will place the files and make sure the
destination locations are ready. A restore script will refuse to copy over files with the same
names.

3. Run each restore script on the host where the backup originated.

The restore copies these files back to their original location:

Disk store files for all stores containing persistent region data.

Any files or directories you have configured to be backed up in the cache.xml <backup>
elements.

Cache and Region Snapshots
Snapshots allow you to save region data and reload it later. A typical use case is loading data from
one environment into another, such as capturing data from a production system and moving it into
a smaller QA or development system.

In effect, you can load data from one cluster into another cluster. Administrators export a snapshot
of a region or an entire cache (multiple regions) and later import the snapshot into another region
or cluster by using the RegionSnapshotService or CacheSnapshotService interface and the
Region.getSnapshotService or Cache.getSnapshotService method.

The snapshot file is a binary file that contains all data from a particular region. The binary format
contains serialized key/value pairs and supports PDX type registry to allow the deserialization of
PDX data. The snapshot can be directly imported into a region or read entry-by-entry for further
processing or transformation into other formats.

VMware GemFire 9.10 Documentation

VMware by Broadcom 313

Note: The previous Region.loadSnapshot and Region.saveSnapshot APIs have been deprecated.
Data written in this format is not compatible with the new APIs.

Usage and Performance Notes

Optimize the cache and region snapshot feature by understanding how it performs.

Exporting Cache and Region Snapshots

To save VMware GemFire cache or region data to a snapshot that you can later load into
another cluster or region, use the cache.getSnapshotService.save API,
region.getSnapshotService.save API, or the gfsh command-line interface (export data).

Importing Cache and Region Snapshots

To import a VMware GemFire cache or region data snapshot that you previously exported
into another cluster or region, use the cache.getSnapshotService.load API,
region.getSnapshotService.load API, or the gfsh command-line interface (import data).

Filtering Entries During Import or Export

You can customize your snapshot by filtering entries during the import or export of a region
or a cache.

Reading Snapshots Programmatically

You can read a snapshot entry-by-entry for further processing or transformation into other
formats.

Usage and Performance Notes

Optimize the cache and region snapshot feature by understanding how it performs.

Cache Consistency and Concurrent Operations

Importing and exporting region data is an administrative operation, and certain simultaneous
runtime conditions can cause the import or export operation to fail such as when you are
rebalancing partitioned region buckets or experience a network partition event. This behavior is
expected, and you should retry the operation. Redoing an export overwrites an incomplete
snapshot file, and redoing an import updates partially imported data.

The snapshot feature does not guarantee consistency. Concurrent cache operations during a
snapshot import or export can cause data consistency issues. If snapshot consistency is important,
we recommend that you take your application offline before export and import, to provide a quiet
period ensures data consistency in your snapshot.

For example, modifications to region entries during an export can result in a snapshot that contains
some but not all updates. If entries { A, B } are updated to { A’, B’} during the export, the snapshot
can contain { A, B’ } depending on the write order. Also, modifications to region entries during an
import can cause lost updates in the cache. If the region contains entries { A, B } and the snapshot
contains { A’, B’ }, concurrent updates { A*, B* } can result in the region containing { A*, B’ } after
the import completes.

The default behavior is to perform all I/O operations on the node where the snapshot operations
are invoked. This will involve either collecting or dispersing data over the network if the region is a

VMware GemFire 9.10 Documentation

VMware by Broadcom 314

partitioned region.

Performance Considerations

When using the data snapshot feature, be aware of the following performance considerations:

Importing and exporting cache or region snapshots causes additional CPU and network
load. You may need to increase CPU capacity or network bandwidth depending on your
applications and infrastructure. In addition, if you export regions that have been configured
to overflow to disk, you may require additional disk I/O to perform the export.

When exporting partitioned region data, allocate additional heap memory so the member
performing the export can buffer data gathered from other cache members. Allocate at
least 10MB per member to your heap in addition to whatever configuration is necessary to
support your application or cache.

Exporting Cache and Region Snapshots

To save VMware GemFire cache or region data to a snapshot that you can later load into another
cluster or region, use the cache.getSnapshotService.save API, region.getSnapshotService.save
API, or the gfsh command-line interface (export data).

If an error occurs during export, the export halts and the snapshot operation is canceled. Typical
errors that halt an export include scenarios such as full disk, problems with file permissions, and
network partitioning.

Exporting Cache Snapshots

When you export an entire cache, it exports all regions in the cache as individual snapshot files into
a directory. If no directory is specified, the default is the current directory. A snapshot file is created
for each region, and the export operation automatically names each snapshot filename using the
following convention:

snapshot-<region>[-<subregion>]*

When the export operation writes the snapshot filename, it replaces each forward slash (‘/’) in the
region path with a dash (‘-’).

Using Java API:

File mySnapshotDir = ...

Cache cache = ...

cache.getSnapshotService().save(mySnapshotDir, SnapshotFormat.GEMFIRE);

Optionally, you can set a filter on the snapshot entries during the export. See Filtering Entries
During Import or Export for an example.

Exporting a Region Snapshot

You can also export a specific region using the API or gfsh commands below.

VMware GemFire 9.10 Documentation

VMware by Broadcom 315

Note: In the case of non-persistent regions, the snapshot that you export contains both in-cache
entries and entries that overflow to disk.

Java API:

File mySnapshot = ...

Region<String, MyObject> region = ...

region.getSnapshotService().save(mySnapshot, SnapshotFormat.GEMFIRE);

gfsh:

Open a gfsh prompt. After connecting to a VMware GemFire cluster, at the prompt type:

gfsh>export data --region=Region --file=FileName.gfd --member=MemberName

where Region corresponds to the name of the region that you want to export, FileName (must end
in .gfd) corresponds to the name of the export file and MemberName corresponds to a member
that hosts the region. For example:

gfsh>export data --region=region1 --file=region1_2012_10_10.gfd --member=server1

The snapshot file will be written on the remote member at the location specified by the --file
argument. For example, in the example command above, the region1_2012_10_10.gfd file will be
written in the working directory of server1. For more information on this command, see export
data.

Export Example with Options

These examples show how to include the parallel option for exporting partitioned regions. Note
that the parallel option takes a directory rather than a file; see export data for details.

Java API:

File mySnapshotDir = ...

Region<String, MyObject> region = ...

SnapshotOptions<Integer, MyObject> options =

 region.getSnapshotServive.createOptions().setParallelMode(true);

region.getSnapshotService().save(mySnapshotDir, SnapshotFormat.GEMFIRE, options);

gfsh:

The Java API example, above, accomplishes the same purpose as the following gfsh command:

gfsh>export data --parallel --region=region1 --dir=region1_2012_10_10 --member=server1

Importing Cache and Region Snapshots

To import a VMware GemFire cache or region data snapshot that you previously exported into
another cluster or region, use the cache.getSnapshotService.load API,
region.getSnapshotService.load API, or the gfsh command-line interface (import data).

VMware GemFire 9.10 Documentation

VMware by Broadcom 316

Import Requirements

Before you import a region snapshot:

Make sure the cache is configured correctly. Configure all registered PdxSerializers,
DataSerializers, and Instantiators; create regions; and ensure the classpath contains any
required classes.

When you import a snapshot containing PDX types, you must wait until the exported type
definitions are imported into the cache before inserting data that causes type conflicts. It is
recommended that you wait for the import to complete before inserting data.

Import Limitations

During an import, the CacheWriter and CacheListener callbacks are not invoked.

If an error occurs during import, the import is halted and the region will contain some but not all
snapshot data.

The state of a cache client is indeterminate after an import. It is likely that the data in the client’s
cache is inconsistent with the imported data. Take the client offline during the import and restart it
after the import completes.

Importing Cache Snapshots

When you import a cache snapshot, the snapshot file is imported into the same region (match
determined by name) that was used during snapshot export. When you import a cache, you import
all snapshot files located within a directory into the cache. The API attempts to load all files in the
specified directory.

Java API:

File mySnapshotDir = ...

Cache cache = ...

cache.getSnapshotService().load(mySnapshotDir, SnapshotFormat.GEMFIRE);

Importing a Region Snapshot
Java API:

File mySnapshot = ...

Region<String, MyObject> region = ...

region.getSnapshotService().load(mySnapshot, SnapshotFormat.GEMFIRE);

gfsh:

Open a gfsh prompt. After connecting to a VMware GemFire cluster, at the prompt type:

gfsh>import data --region=Region --file=FileName.gfd --member=MemberName

VMware GemFire 9.10 Documentation

VMware by Broadcom 317

where Region corresponds to the name of the region that you want to import data into; FileName
(must end in .gfd) corresponds to the name of the file to be imported; and MemberName
corresponds to a member that hosts the region. For example:

gfsh>import data --region=region1 --file=region1_2012_10_10.gfd --member=server2

The snapshot file must already reside on the specified member at the location specified in the --
file argument before import.

For more information on this command, see import data. For an example of how to invoke this
command with additional options, see Export Example with Options.

Filtering Entries During Import or Export

You can customize your snapshot by filtering entries during the import or export of a region or a
cache.

For example, use filters to limit the export of data to a certain date range. If you set up a filter on
the import or export of a cache, the filter is applied to every single region in the cache.

The following example filters snapshot data by even numbered keys.

File mySnapshot = ...

Region<Integer, MyObject> region = ...

SnapshotFilter<Integer, MyObject> even = new SnapshotFilter<Integer, MyObject>() {

 @Override

 public boolean accept(Entry<Integer, MyObject> entry) {

 return entry.getKey() % 2 == 0;

 }

};

RegionSnapshotService<Integer, MyObject> snapsrv = region.getSnapshotService();

SnapshotOptions<Integer, MyObject> options = snapsrv.createOptions().setFilter(even);

// only save cache entries with an even key

snapsrv.save(mySnapshot, SnapshotFormat.GEMFIRE, options);

Reading Snapshots Programmatically
You can read a snapshot entry-by-entry for further processing or transformation into other formats.

The following is an example of a snapshot reader that processes entries from a previously
generated snapshot file.

File mySnapshot = ...

SnapshotIterator<String, MyObject> iter = SnapshotReader.read(mySnapshot);

try {

 while (iter.hasNext()) {

 Entry<String, MyObject> entry = iter.next();

 String key = entry.getKey();

 MyObject value = entry.getValue();

 System.out.println(key + " = " + value);

VMware GemFire 9.10 Documentation

VMware by Broadcom 318

 }

} finally {

 iter.close();

}

Region Compression

This section describes region compression, its benefits and usage.

One way to reduce memory consumption by VMware GemFire is to enable compression in your
regions. VMware GemFire allows you to compress in-memory region values using pluggable
compressors (compression codecs). VMware GemFire includes the Snappy compressor as the built-
in compression codec; however, you can implement and specify a different compressor for each
compressed region.

What Gets Compressed

When you enable compression in a region, all values stored in the region are compressed while in
memory. Keys and indexes are not compressed. New values are compressed when put into the in-
memory cache and all values are decompressed when being read from the cache. Values are not
compressed when persisted to disk. Values are decompressed before being sent over the wire to
other peer members or clients.

When compression is enabled, each value in the region is compressed, and each region entry is
compressed as a single unit. It is not possible to compress individual fields of an entry.

You can have a mix of compressed and non-compressed regions in the same cache.

Guidelines on Using Compression

This topic describes factors to consider when deciding on whether to use compression.

How to Enable Compression in a Region

This topic describes how to enable compression on your region.

Working with Compressors

When using region compression, you can use the default Snappy compressor included with
VMware GemFire or you can specify your own compressor.

Comparing Performance of Compressed and Non-Compressed Regions

The comparative performance of compressed regions versus non-compressed regions can
vary depending on how the region is being used and whether the region is hosted in a
memory-bound JVM.

Guidelines on Using Compression

This topic describes factors to consider when deciding on whether to use compression.

Review the following guidelines when deciding on whether or not to enable compression in your
region:

Use compression when JVM memory usage is too high. Compression allows you to store
more region data in-memory and to reduce the number of expensive garbage collection

VMware GemFire 9.10 Documentation

VMware by Broadcom 319

http://google.github.io/snappy/

cycles that prevent JVMs from running out of memory when memory usage is high.

To determine if JVM memory usage is high, examine the the following statistics:

vmStats>freeMemory

vmStats->maxMemory

ConcurrentMarkSweep->collectionTime

If the amount of free memory regularly drops below 20% - 25% or the duration of the
garbage collection cycles is generally on the high side, then the regions hosted on that JVM
are good candidates for having compression enabled.

Consider the types and lengths of the fields in the region’s entries. Since compression is
performed on each entry separately (and not on the region as a whole), consider the
potential for duplicate data across a single entry. Duplicate bytes are compressed more
easily. Also, since region entries are first serialized into a byte area before being
compressed, how well the data might compress is determined by the number and length of
duplicate bytes across the entire entry and not just a single field. Finally, the larger the
entry the more likely compression will achieve good results as the potential for duplicate
bytes, and a series of duplicate bytes, increases.

Consider the type of data you wish to compress. The type of data stored has a significant
impact on how well the data may compress. String data will generally compress better than
numeric data simply because string bytes are far more likely to repeat; however, that may
not always be the case. For example, a region entry that holds a couple of short, unique
strings may not provide as much memory savings when compressed as another region
entry that holds a large number of integer values. In short, when evaluating the potential
gains of compressing a region, consider the likelihood of having duplicate bytes, and more
importantly the length of a series of duplicate bytes, for a single, serialized region entry. In
addition, data that has already been compressed, such as JPEG format files, can actually
cause more memory to be used.

Compress if you are storing large text values. Compression is beneficial if you are storing
large text values (such as JSON or XML) or blobs in VMware GemFire that would benefit
from compression.

Consider whether fields being queried against are indexed. You can query against
compressed regions; however, if the fields you are querying against have not been indexed,
then the fields must be decompressed before they can be used for comparison. In short,
you may incur some query performance costs when querying against non-indexed fields.

Objects stored in the compression region must be serializable. Compression only
operates on byte arrays, therefore objects being stored in a compressed region must be
serializable and deserializable. The objects can either implement the Serializable interface or
use one of the other VMware GemFire serialization mechanisms (such as PdxSerializable).
Implementers should always be aware that when compression is enabled the instance of an
object put into a region will not be the same instance when taken out. Therefore, transient
attributes will lose their value when the containing object is put into and then taken out of a
region.

Compressed regions will enable cloning by default. Setting a compressor and then
disabling cloning results in an exception. The options are incompatible because the process

VMware GemFire 9.10 Documentation

VMware by Broadcom 320

of compressing/serializing and then decompressing/deserializing will result in a different
instance of the object being created and that may be interpreted as cloning the object.

How to Enable Compression in a Region

This topic describes how to enable compression on your region.

To enable compression on your region, set the following region attribute in your cache.xml:

<?xml version="1.0" encoding= "UTF-8"?>

<cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0” lock-lease="120" lock-timeout= "60" search-timeout= "300" is-serve

r= "true" copy-on-read= "false" >

 <region name="compressedRegion" >

 <region-attributes data-policy="replicate" ... />

 <compressor>

 <class-name>org.apache.geode.compression.SnappyCompressor</class-name>

 </compressor>

 ...

 </region-attributes>

 </region>

</cache>

In the Compressor element, specify the class-name for your compressor implementation. This
example specifies the Snappy compressor, which is bundled with VMware GemFire . You can also
specify a custom compressor. See Working with Compressors for an example.

Compression can be enabled during region creation using gfsh or programmatically as well.

Using gfsh:

gfsh>create-region --name=”CompressedRegion” --compressor=”org.apache.geode.compressio

n.SnappyCompressor”;

API:

regionFactory.setCompressor(new SnappyCompressor());

or

regionFactory.setCompressor(SnappyCompressor.getDefaultInstance());

How to Check Whether Compression is Enabled

You can also check whether a region has compression enabled by querying which codec is being
used. A null codec indicates that no compression is enabled for the region.

Region myRegion = cache.getRegion("myRegion");

Compressor compressor = myRegion.getAttributes().getCompressor();

VMware GemFire 9.10 Documentation

VMware by Broadcom 321

Working with Compressors

When using region compression, you can use the default Snappy compressor included with
VMware GemFire or you can specify your own compressor.

The compression API consists of a single interface that compression providers must implement. The
default compressor (SnappyCompressor) is the single compression implementation that comes
bundled with the product. Note that since the Compressor is stateless, there only needs to be a
single instance in any JVM; however, multiple instances may be used without issue. The single,
default instance of the SnappyCompressor may be retrieved with the
SnappyCompressor.getDefaultInstance() static method.

Note: The Snappy codec included with VMware GemFire cannot be used with Solaris deployments.
Snappy is only supported on Linux, Windows, and macOS deployments of VMware GemFire.

This example provides a custom Compressor implementation:

package com.mybiz.myproduct.compression;

import org.apache.geode.compression.Compressor;

public class LZWCompressor implements Compressor {

 private final LZWCodec lzwCodec = new LZWCodec();

 @Override

 public byte[] compress(byte[] input) {

 return lzwCodec.compress(input);

 }

 @Override

 public byte[] decompress(byte[] input) {

 return lzwCodec.decompress(input);

 }

}

To use the new custom compressor on a region:

1. Make sure that the new compressor package is available in the classpath of all JVMs that
will host the region.

2. Configure the custom compressor for the region using any of the following mechanisms:

Using gfsh:

gfsh>create-region --name=”CompressedRegion” \

--compressor=”com.mybiz.myproduct.compression.LZWCompressor”

Using API:

For example:

regionFactory.setCompressor(new LZWCompressor());

cache.xml:

<region-attributes>

 <Compressor>

VMware GemFire 9.10 Documentation

VMware by Broadcom 322

 <class-name>com.mybiz.myproduct.compression.LZWCompressor</class-name>

 </Compressor>

</region-attributes>

Changing the Compressor for an Already Compressed
Region
You typically enable compression on a region at the time of region creation. You cannot modify the
Compressor or disable compression for the region while the region is online.

However, if you need to change the compressor or disable compression, you can do so by
performing the following steps:

1. Shut down the members hosting the region you wish to modify.

2. Modify the cache.xml file for the member either specifying a new compressor or removing
the compressor attribute from the region.

3. Restart the member.

Comparing Performance of Compressed and Non-
Compressed Regions

The comparative performance of compressed regions versus non-compressed regions can vary
depending on how the region is being used and whether the region is hosted in a memory-bound
JVM.

When considering the cost of enabling compression, you should consider the relative cost of
reading and writing compressed data as well as the cost of compression as a percentage of the
total time spent managing entries in a region. As a general rule, enabling compression on a region
will add 30% - 60% more overhead for region create and update operations than for region get
operations. Because of this, enabling compression will create more overhead on regions that are
write heavy than on regions that are read heavy.

However, when attempting to evaluate the performance cost of enabling compression you should
also consider the cost of compression relative to the overall cost of managing entries in a region. A
region may be tuned in such a way that it is highly optimized for read and/or write performance.
For example, a replicated region that does not save to disk will have much better read and write
performance than a partitioned region that does save to disk. Enabling compression on a region
that has been optimized for read and write performance will provide more noticeable results than
using compression on regions that have not been optimized this way. More concretely,
performance may degrade by several hundred percent on a read/write optimized region whereas it
may only degrade by 5 to 10 percent on a non-optimized region.

A final note on performance relates to the cost when enabling compression on regions in a memory
bound JVM. Enabling compression generally assumes that the enclosing JVM is memory bound
and therefore spends a lot of time for garbage collection. In that case performance may improve by
as much as several hundred percent as the JVM will be running far fewer garbage collection cycles
and spending less time when running a cycle.

Monitoring Compression Performance

VMware GemFire 9.10 Documentation

VMware by Broadcom 323

The following statistics provide monitoring for cache compression:

compressTime

decompressTime

compressions

decompressions

preCompressedBytes

postCompressedBytes

See Cache Performance (CachePerfStats) for statistic descriptions.

Network Partitioning

VMware GemFire architecture and management features help detect and resolve network partition
problems.

How Network Partitioning Management Works

VMware GemFire handles network outages by using a weighting system to determine
whether the remaining available members have a sufficient quorum to continue as a cluster.

Failure Detection and Membership Views

VMware GemFire uses failure detection to remove unresponsive members from
membership views.

Membership Coordinators, Lead Members and Member Weighting

Network partition detection uses a designated membership coordinator and a weighting
system that accounts for a lead member to determine whether a network partition has
occurred.

Network Partitioning Scenarios

This topic describes network partitioning scenarios and what happens to the partitioned
sides of the cluster.

Configure VMware GemFire to Handle Network Partitioning

This section lists the configuration steps for network partition detection.

Preventing Network Partitions

This section provides a short list of things you can do to prevent network partition from
occurring.

How Network Partitioning Management Works

VMware GemFire handles network outages by using a weighting system to determine whether the
remaining available members have a sufficient quorum to continue as a cluster.

Individual members are each assigned a weight, and the quorum is determined by comparing the
total weight of currently responsive members to the previous total weight of responsive members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 324

Your cluster can split into separate running systems when members lose the ability to see each
other. The typical cause of this problem is a failure in the network. When a partitioned system is
detected, only one side of the system keeps running and the other side automatically shuts down.

The network partitioning detection feature is enabled by default with a true value for the enable-
network-partition-detection property. See Configure VMware GemFire to Handle Network
Partitioning for details. Quorum weight calculations are always performed and logged regardless of
this configuration setting.

The overall process for detecting a network partition is as follows:

1. The cluster starts up. When you start up a cluster, start the locators first, start the cache
servers second, and then start other members such as applications or processes that access
cluster data.

2. After the members start up, the oldest member, typically a locator, assumes the role of the
membership coordinator. Peer discovery occurs as members come up and members
generate a membership discovery list for the cluster. Locators hand out the membership
discovery list as each member process starts up. This list typically contains a hint on who the
current membership coordinator is.

3. Members join and if necessary, depart the cluster:

Member processes make a request to the coordinator to join the cluster. If
authenticated, the coordinator creates a new membership view, hands the new
membership view to the new member, and begins the process of sending the new
membership view (to add the new member or members) by sending out a view
preparation message to existing members in the view.

While members are joining the system, it is possible that members are also leaving
or being removed through the normal failure detection process. Failure detection
removes unresponsive or slow members. See Managing Slow Receivers and Failure
Detection and Membership Views for descriptions of the failure detection process. If
a new membership view is sent out that includes one or more failed processes, the
coordinator will log the new weight calculations. At any point, if quorum loss is
detected due to unresponsive processes, the coordinator will also log a severe level
message to identify the failed processes:

Possible loss of quorum detected due to loss of {0} cache processes: {1}

where {0} is the number of processes that failed and {1} lists the processes.

4. Whenever the coordinator is alerted of a membership change (a member either joins or
leaves the cluster), the coordinator generates a new membership view. The membership
view is generated by a two-phase protocol:

1. In the first phase, the membership coordinator sends out a view preparation
message to all members and waits 12 seconds for a view preparation ack return
message from each member. If the coordinator does not receive an ack message
from a member within 12 seconds, the coordinator attempts to connect to the
member’s failure-detection socket. If the coordinator cannot connect to the
member’s failure-detection socket, the coordinator declares the member dead and
starts the membership view protocol again from the beginning.

VMware GemFire 9.10 Documentation

VMware by Broadcom 325

2. In the second phase, the coordinator sends out the new membership view to all
members that acknowledged the view preparation message or passed the
connection test.

5. Each time the membership coordinator sends a view, each member calculates the total
weight of members in the current membership view and compares it to the total weight of
the previous membership view. Some conditions to note:

When the first membership view is sent out, there are no accumulated losses. The
first view only has additions.

A new coordinator may have a stale view of membership if it did not see the last
membership view sent by the previous (failed) coordinator. If new members were
added during that failure, then the new members may be ignored when the first
new view is sent out.

If members were removed during the fail over to the new coordinator, then the
new coordinator will have to determine these losses during the view preparation
step.

6. With a default value of enable-network-partition-detection, any member that detects
that the total membership weight has dropped below 51% within a single membership view
change (loss of quorum) declares a network partition event. The coordinator sends a
network-partitioned-detected UDP message to all members (even to the non-responsive
ones) and then closes the cluster with a ForcedDisconnectException. If a member fails to
receive the message before the coordinator closes the system, the member is responsible
for detecting the event on its own.

The presumption is that when a network partition is declared, the members that comprise a
quorum will continue operations. The surviving members elect a new coordinator, designate a lead
member, and so on.

Failure Detection and Membership Views

VMware GemFire uses failure detection to remove unresponsive members from membership
views.

Failure Detection

Network partitioning has a failure detection protocol that is not subject to hanging when NICs or
machines fail. Failure detection has each member observe messages from the peer to its right
within the membership view (see “Membership Views” below for the view layout). A member that
suspects the failure of its peer to the right sends a datagram heartbeat request to the suspect
member. With no response from the suspect member, the suspicious member broadcasts a
SuspectMembersMessage datagram message to all other members. The coordinator attempts to
connect to the suspect member. If the connection attempt is unsuccessful, the suspect member is
removed from the membership view. The suspect member is sent a message to disconnect from
the cluster and close the cache. In parallel to the receipt of the SuspectMembersMessage, a
distributed algorithm promotes the leftmost member within the view to act as the coordinator, if
the coordinator is the suspect member.

VMware GemFire 9.10 Documentation

VMware by Broadcom 326

Failure detection processing is also initiated on a member if the gemfire.properties ack-wait-
threshold elapses before receiving a response to a message, if a TCP/IP connection cannot be
made to the member for peer-to-peer (P2P) messaging, and if no other traffic is detected from the
member.

Note: The TCP connection ping is not used for connection keep alive purposes; it is only used to
detect failed members. See TCP/IP KeepAlive Configuration for TCP keep alive configuration.

If a new membership view is sent out that includes one or more failed members, the coordinator
will log new quorum weight calculations. At any point, if quorum loss is detected due to
unresponsive processes, the coordinator will also log a severe level message to identify the failed
members:

Possible loss of quorum detected due to loss of {0} cache processes: {1}

in which {0} is the number of processes that failed and {1} lists the members (cache processes).

Membership Views

The following is a sample membership view:

[info 2012/01/06 11:44:08.164 PST bridgegemfire1 <UDP Incoming Message Handler> tid=0x

1f]

Membership: received new view [ent(5767)<v0>:8700|16] [ent(5767)<v0>:8700/44876,

ent(5829)<v1>:48034/55334, ent(5875)<v2>:4738/54595, ent(5822)<v5>:49380/39564,

ent(8788)<v7>:24136/53525]

The components of the membership view are as follows:

The first part of the view ([ent(5767)<v0>:8700|16] in the example above) corresponds to
the view ID. It identifies:

the address and processId of the membership coordinator: ent(5767) in example
above.

the view-number (<vXX>) of the membership view that the member first appeared
in: <v0> in example above.

membership-port of the membership coordinator: 8700 in the example above.

view-number: 16 in the example above

The second part of the view lists all of the member processes in the current view.
[ent(5767)<v0>:8700/44876, ent(5829)<v1>:48034/55334, ent(5875)<v2>:4738/54595,

ent(5822)<v5>:49380/39564, ent(8788)<v7>:24136/53525] in the example above.

The overall format of each listed member is:Address(processId)<vXX>:membership-
port/distribution port. The membership coordinator is almost always the first member in
the view and the rest are ordered by age.

The membership-port is the JGroups TCP UDP port that it uses to send datagrams. The
distribution-port is the TCP/IP port that is used for cache messaging.

Each member watches the member to its right for failure detection purposes.

VMware GemFire 9.10 Documentation

VMware by Broadcom 327

Membership Coordinators, Lead Members and Member
Weighting

Network partition detection uses a designated membership coordinator and a weighting system
that accounts for a lead member to determine whether a network partition has occurred.

Membership Coordinators and Lead Members

The membership coordinator is a member that manages entry and exit of other members of the
cluster. With network partition detection enabled, the coordinator can be any VMware GemFire
member but locators are preferred. In a locator-based system, if all locators are in the reconnecting
state, the system continues to function, but new members are not able to join until a locator has
successfully reconnected. After a locator has reconnected, the reconnected locator will take over
the role of coordinator.

When a coordinator is shutting down, it sends out a view that removes itself from the list and the
other members must determine who the new coordinator is.

The lead member is determined by the coordinator. Any member that has enabled network
partition detection, is not hosting a locator, and is not an administrator interface-only member is
eligible to be designated as the lead member by the coordinator. The coordinator chooses the
longest-lived member that fits the criteria.

The purpose of the lead member role is to provide extra weight. It does not perform any specific
functionality.

Member Weighting System

By default, individual members are assigned the following weights:

Each member has a weight of 10 except the lead member.

The lead member is assigned a weight of 15.

Locators have a weight of 3.

You can modify the default weights for specific members by defining the gemfire.member-weight
system property upon startup.

The weights of members prior to the view change are added together and compared to the weight
of lost members. Lost members are considered members that were removed between the last
view and the completed send of the view preparation message. If membership is reduced by a
certain percentage within a single membership view change, a network partition is declared.

The loss percentage threshold is 51 (meaning 51%). Note that the percentage calculation uses
standard rounding. Therefore, a value of 50.51 is rounded to 51. If the rounded loss percentage is
equal to or greater than 51%, the membership coordinator initiates shut down.

Sample Member Weight Calculations

This section provides some example calculations.

VMware GemFire 9.10 Documentation

VMware by Broadcom 328

Example 1: Cluster with 12 members. 2 locators, 10 cache servers (one cache server is designated
as lead member.) View total weight equals 111.

4 cache servers become unreachable. Total membership weight loss is 40 (36%). Since 36%
is under the 51% threshold for loss, the cluster stays up.

1 locator and 4 cache servers (including the lead member) become unreachable.
Membership weight loss equals 48 (43%). Since 43% is under the 51% threshold for loss, the
cluster stays up.

5 cache servers (not including the lead member) and both locators become unreachable.
Membership weight loss equals 56 (49%). Since 49% is under the 51% threshold for loss, the
cluster stays up.

5 cache servers (including the lead member) and 1 locator become unreachable.
Membership weight loss equals 58 (52%). Since 52% is greater than the 51% threshold, the
coordinator initiates shutdown.

6 cache servers (not including the lead member) and both locators become unreachable.
Membership weight loss equals 66 (59%). Since 59% is greater than the 51% threshold, the
newly elected coordinator (a cache server since no locators remain) will initiate shutdown.

Example 2: Cluster with 4 members. 2 cache servers (1 cache server is designated lead member), 2
locators. View total weight is 31.

Cache server designated as lead member becomes unreachable. Membership weight loss
equals 15 or 48%. Cluster stays up.

Cache server designated as lead member and 1 locator become unreachable. Member
weight loss equals 18 or 58%. Membership coordinator initiates shutdown. If the locator that
became unreachable was the membership coordinator, the other locator is elected
coordinator and then initiates shutdown.

Even if network partitioning is not enabled, if quorum loss is detected due to unresponsive
processes, the locator will also log a severe level message to identify the failed processes:

Possible loss of quorum detected due to loss of {0} cache processes: {1}

where {0} is the number of processes that failed and {1} lists the processes.

Enabling network partition detection allows only one subgroup to survive a split. The rest of the
system is disconnected and the caches are closed.

When a shutdown occurs, the members that are shut down will log the following alert message:

Exiting due to possible network partition event due to loss of {0} cache processes:

{1}

where {0} is the count of lost members and {1} is the list of lost member IDs.

Network Partitioning Scenarios
This topic describes network partitioning scenarios and what happens to the partitioned sides of the
cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 329

Network Partition Scenario – Total weight of 111

X

Surviving Side

M1

 (weight=3)

Locator & Membership

Coordinator

M2

(weight=15)

Cache Server &

Lead Member

M3

 (weight=10)

M4

 (weight=10)

M6

 (weight=10)

Cache Server Cache Server

Cache Server

M5

 (weight=10)

Cache Server

- Detects membership weight loss of

47%

- This distributed system stays up

M7

(weight=3)

Locator

Losing Side

M9

 (weight=10)

Cache Server

M11

 (weight=10)

Cache Server

M10

 (weight=10)

Cache Server

M12

 (weight=10)

Cache Server

M8

 (weight=10)

Cache Server

- Detects membership weight loss of 52%

- Locator assumes coordinator role and shuts

system down

What the Losing Side Does

In a network partitioning scenario, the “losing side” constitutes the cluster partition where the
membership coordinator has detected that there is an insufficient quorum of members to continue.

The membership coordinator calculates membership weight change after sending out its view
preparation message. If a quorum of members does not remain after the view preparation phase,
the coordinator on the “losing side” declares a network partition event and sends a network-
partition-detected UDP message to the members. The coordinator then closes its cluster with a
ForcedDisconnectException. If a member fails to receive the message before the coordinator closes
the connection, it is responsible for detecting the event on its own.

When the losing side discovers that a network partition event has occurred, all peer members
receive a RegionDestroyedException with Operation: FORCED_DISCONNECT.

If a CacheListener is installed, the afterRegionDestroy callback is invoked with a
RegionDestroyedEvent, as shown in this example logged by the losing side’s callback. The peer
member process IDs are 14291 (lead member) and 14296, and the locator is 14289.

[info 2008/05/01 11:14:51.853 PDT <CloserThread> tid=0x4a]

Invoked splitBrain.SBListener: afterRegionDestroy in client1 whereIWasRegistered: 1429

1

event.isReinitializing(): false

event.getDistributedMember(): thor(14291):40440/34132

event.getCallbackArgument(): null

event.getRegion(): /TestRegion

event.isOriginRemote(): false

Operation: FORCED_DISCONNECT

VMware GemFire 9.10 Documentation

VMware by Broadcom 330

Operation.isDistributed(): false

Operation.isExpiration(): false

Peers still actively performing operations on the cache may see ShutdownExceptions or
CacheClosedExceptions with Caused by: ForcedDisconnectException.

What Isolated Members Do

When a member is isolated from all locators, it is unable to receive membership view changes. It
can’t know if the current coordinator is present or, if it has left, whether there are other members
available to take over that role. In this condition, a member will eventually detect the loss of all
other members and will use the loss threshold to determine whether it should shut itself down. In
the case of a cluster with 2 locators and 2 cache servers, the loss of communication with the non-
lead cache server plus both locators would result in this situation and the remaining cache server
would eventually shut itself down.

Configure VMware GemFire to Handle Network
Partitioning
This section lists configuration considerations relating to network partition detection.

The system uses a combination of member coordinators and system members, designated as lead
members, to detect and resolve network partitioning problems.

Network partition detection works in all environments. Using multiple locators mitigates the
effect of network partitioning. See Configuring Peer-to-Peer Discovery.

Network partition detection is enabled by default. The default setting in the
gemfire.properties file is

enable-network-partition-detection=true

Processes that do not have network partition detection enabled are not eligible to be the
lead member, so their failure will not trigger declaration of a network partition.

All system members should have the same setting for enable-network-partition-
detection. If they do not, the system throws a GemFireConfigException upon startup.

The property enable-network-partition-detection must be true if you are using either
partitioned or persistent regions. If you create a persistent region and enable-network-
partition-detection to set to false, you will receive the following warning message:

Creating persistent region {0}, but enable-network-partition-detection is set t

o false.

 Running with network partition detection disabled can lead to an unrecove

rable system in the

 event of a network split."

Configure regions you want to protect from network partitioning with a scope setting of
DISTRIBUTED_ACK or GLOBAL. Do not use DISTRIBUTED_NO_ACK scope. This prevents
operations from being performed throughout the cluster before a network partition is

VMware GemFire 9.10 Documentation

VMware by Broadcom 331

detected. Note: VMware GemFire issues an alert if it detects DISTRIBUTED_NO_ACK regions
when network partition detection is enabled:

Region {0} is being created with scope {1} but enable-network-partition-detecti

on is enabled in the distributed system.

This can lead to cache inconsistencies if there is a network failure.

These other configuration parameters affect or interact with network partitioning detection.
Check whether they are appropriate for your installation and modify as needed.

If you have network partition detection enabled, the threshold percentage value for
allowed membership weight loss is automatically configured to 51. You cannot
modify this value. Note: The weight loss calculation uses round to nearest.
Therefore, a value of 50.51 is rounded to 51 and will cause a network partition.

Failure detection is initiated if a member’s ack-wait-threshold (default is 15
seconds) and ack-severe-alert-threshold (15 seconds) properties elapse before
receiving a response to a message. If you modify the ack-wait-threshold
configuration value, you should modify ack-severe-alert-threshold to match the
other configuration value.

If the system has clients connecting to it, the clients’ cache.xml pool read-timeout
should be set to at least three times the member-timeout setting in the server’s
gemfire.properties file. The default pool read-timeout setting is 10000
milliseconds.

You can adjust the default weights of members by specifying the system property
gemfire.member-weight upon startup. For example, if you have some VMs that host
a needed service, you could assign them a higher weight upon startup.

By default, members that are forced out of the cluster by a network partition event will
automatically restart and attempt to reconnect. Data members will attempt to reinitialize
the cache. See Handling Forced Cache Disconnection Using Autoreconnect.

Preventing Network Partitions

This section provides a short list of things you can do to prevent a network partition from occurring.

To avoid a network partition:

Use NIC teaming for redundant connectivity. See
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/vmware/VMware.html#wp696452
for more information.

It is best if all servers share a common network switch. Having multiple network switches
increases the possibility of a network partition occurring. If multiple switches must be used,
redundant routing paths should be available, if possible. The weight of members sharing a
switch in a multi-switch configuration will determine which partition survives if there is an
inter-switch failure.

In terms of VMware GemFire configuration, consider the weighting of members. For
example, you could assign important processes a higher weight.

VMware GemFire 9.10 Documentation

VMware by Broadcom 332

http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/vmware/VMware.html#wp696452

Security

The security framework permits authentication of connecting components and authorization of
operations for all communicating components of the cluster.

Security Implementation Introduction and Overview

Encryption, SSL secure communication, authentication, and authorization help to secure
the cluster.

Security Detail Considerations

This section gathers discrete details in one convenient location to better help you assess
and configure the security of your environment.

Enable Security with Property Definitions

Authentication

A cluster using authentication bars malicious peers or clients, and deters inadvertent access
to its cache.

Authorization

Client operations on a cache server can be restricted or completely blocked based on the
roles and permissions assigned to the credentials submitted by the client.

Post Processing of Region Data

SSL

SSL protects your data in transit between applications.

Security Implementation Introduction and Overview

Security Features
Encryption, SSL secure communication, authentication, and authorization features help to secure
the cluster.

Security features include:

A single security interface for all components. The single authentication and
authorization mechanism simplifies the security implementation. It views and interacts with
all components in a consistent manner.

System-wide role-based access control. Roles regiment authorized operations requested
by the various components.

SSL communication. Allows configuration of connections to be SSL-based, rather than
plain socket connections. You can enable SSL separately for peer-to-peer, client, JMX,
gateway senders and receivers, and HTTP connections.

Post processing of region data. Return values for operations that return region values
may be formatted.

Overview

VMware GemFire 9.10 Documentation

VMware by Broadcom 333

An authentication and authorization mechanism forms the core of the internal security of the
cluster. Communications may be further protected by enabling SSL for data in transit.

Authentication verifies the identity of communicating components, leading to control over
participation. The variety of participants include peer members, servers, clients, originators of JMX
operations, Pulse, gateway senders and receivers representing WAN members of the system, and
commands arriving from gfsh on behalf of system users or administrators.

Connection requests trigger the invocation of an authentication callback. This special-purpose
callback is written as part of the application, and it attempts to authenticate the requester by
whatever algorithm it chooses. The result is either a returned principal representing the requester’s
authenticated identity or an exception indicating that the requester has not been authenticated.
The principal becomes part of any request for operations, which go through the authorization
process.

Given authentication, isolation and access to cache data and system state can be further protected
by implementing the authorization mechanism, also implemented as a special-purpose callback as
part of the application. For example, the protection may be to permit only certain system
administrators to start and stop servers. The authority to do this needs to be limited to specific
verified accounts, preventing those without the authorization. An implementation of the
authorization callback will require that an authenticate identity accompanies all requests to the
system, and that the system maintains a representation of which identities are permitted to
complete which actions or cache commands.

Security Detail Considerations

This section gathers discrete details in one convenient location to better help you assess and
configure the security of your environment.

External Interfaces, Ports, and Services

VMware GemFire processes use either UDP or TCP/IP ports to communicate with other
processes or clients.

Resources That Must Be Protected

Certain VMware GemFire configuration files should be readable and writeable only by the
dedicated user who runs servers.

Log File Locations

By default, the log files are located in the working directory used when you started the
corresponding processes.

Where to Place Security Configuration Settings

External Interfaces, Ports, and Services

VMware GemFire processes use either UDP or TCP/IP ports to communicate with other processes
or clients.

For example:

Members can use multicast to communicate with peer members. You specify multicast
addresses and multicast ports in your gemfire.properties file or as parameters on the

VMware GemFire 9.10 Documentation

VMware by Broadcom 334

command-line when starting the members using gfsh.

Clients connect to a locator to discover cache servers.

JMX clients (such as gfsh and JConsole) can connect to JMX Managers and other
manageable members on the pre-defined RMI port 1099. You can configure a different port
if necessary.

Each gateway receiver usually has a port range where it listens for incoming
communication.

See Firewalls and Ports for the complete list of ports used by VMware GemFire, their default
values, and how to configure them if you do not want to use the default value.

VMware GemFire does not have any external interfaces or services that need to be enabled or
opened.

Resources That Must Be Protected

These configuration files should be readable and writeable only by the dedicated user who runs
servers:

gemfire.properties

cache.xml

gfsecurity.properties A default gfsecurity.properties is not provided in the
defaultConfigs directory. If you choose to use this properties file, you must create it
manually. A clear text user name and associated clear text password may be in this file for
authentication purposes. The file system’s access rights are relied upon to protect this
sensitive information.

The default location of the gemfire.properties and cache.xml configuration files is the
defaultConfigs child directory of the main installation directory.

Log File Locations

By default, the log files are located in the working directory used when you started the
corresponding processes.

For VMware GemFire members (locators and cache servers), you can also specify a custom
working directory location when you start each process. See Logging for more details.

The log files are as follows:

locator-name.log: Contains logging information for the locator process.

server-name.log: Contains logging information for a cache server process.

gfsh-%u_%g.log: Contains logging information of an individual gfsh environment and
session.

Note: By default, gfsh session logging is disabled. To enable gfsh logging, you must set the
Java system property -Dgfsh. log-level=desired_log_level. See Configuring the gfsh
Environment for more information.

These log files should be readable and writable only by the dedicated user who runs the servers.

VMware GemFire 9.10 Documentation

VMware by Broadcom 335

Where to Place Security Configuration Settings

Any security-related (properties that begin with security-*) configuration properties that are
normally configured in gemfire.properties can be moved to a separate gfsecurity.properties file.
Placing these configuration settings in a separate file allows you to restrict access to security
configuration data. This way, you can still allow read or write access for your gemfire.properties
file.

Upon startup, VMware GemFire processes will look for the gfsecurity.properties file in the
following locations in order:

current working directory

user’s home directory

classpath

If any password-related security properties are listed in the file but have a blank value, the process
will prompt the user to enter a password upon startup.

Enable Security with Property Definitions

security-manager Property
The authentication callback and the authorization callback that implement the SecurityManager
interface are specified with the security-manager property. When this property is defined,
authentication and authorization are enabled. The definition of the security-manager property is
the fully qualified name of the class that implements the SecurityManager interface. For example:

security-manager = com.example.security.MySecurityManager

Apply security-manager to All Members

To ensure that the security-manager property is applied consistently across a cluster, follow these
guidelines:

Specify the security-manager property in a properties file, such as gemfire.properties, not
in a cluster configuration file (such as cluster.properties).

Specify the properties file when you start the first locator for the cluster.

Is Cluster Management Enabled?

The next steps in applying the security-manager property across the cluster depend on whether
cluster management is enabled. Cluster management is enabled when two conditions are met:

Every locator in the cluster sets --enable-cluster-configuration=true.

Every server in the cluster sets --use-cluster-configuration=true.

These are the default settings, so unless you have changed them, cluster management is probably
enabled for your system, but be sure and confirm before proceeding. Some systems that
implement cluster management for most members might include a few servers that do not

VMware GemFire 9.10 Documentation

VMware by Broadcom 336

participate (for which --use-cluster-configuration=false). See Using the Cluster Configuration
Service for details.

Apply security-manager to Non-participating Servers

If cluster management is enabled (the default), the locator will propagate the security-
manager setting to all members (locators and servers) that are subsequently started.

If cluster management is enabled but some servers do not participate in cluster
management (that is, servers for which --use-cluster-configuration=false), you must
specify the security-manager property for those non-participating servers. Make sure its
value is exactly identical to that specified for the first locator.

If cluster management is not enabled, you must specify the security-manager property
for all servers. Make sure its value is exactly identical to that specified for the first locator.

Callbacks

All components of the system invoke the same callbacks. Here are descriptions of the components
and the connections that they make with the system.

A client connects with a server and makes operation requests of that server. The callbacks
invoked are those defined by the SecurityManager interface for that server.

A server connects with a locator, invoking the authenticate callback defined for that
locator.

Components communicating with a locator’s JMX manager connect and make operation
requests of the locator. The callbacks invoked are those defined by the SecurityManager
interface for that locator. Both gfsh and Pulse use this form of communication.

Applications communicating via the REST API make of a server invoke security callbacks
upon connection and operation requests.

Requests that a gateway sender makes of a locator invoke security callbacks defined for
that locator.

security-post-processor Property
The PostProcessor interface allows the definition of a set of callbacks that are invoked after
operations that get data, but before the data is returned. This permits the callback to intervene and
format the data that is to be returned. The callbacks do not modify the region data, only the data to
be returned.

Enable the post processing of data by defining the security-post-processor property with the
path to the definition of the interface. For example,

security-post-processor = com.example.security.MySecurityPostProcessing

Authentication

Authentication verifies the identities of components within the cluster such as peers, clients, and
those connecting to a JMX manager.

VMware GemFire 9.10 Documentation

VMware by Broadcom 337

Implementing Authentication

All components of the cluster authenticate the same way, through a custom-written
method.

Authentication Example

The example demonstrates the basics of an implementation of the
SecurityManager.authenticate method.

Implementing Authentication

Authentication lends a measure of security to a cluster by verifying the identity of components as
they connect to the system. All components use the same authentication mechanism.

How Authentication Works

When a component initiates a connection to the cluster, the SecurityManager.authenticate
method is invoked. The component provides its credentials in the form of properties as a parameter
to the authenticate method. The credential is presumed to be the two properties security-
username and security-password. The authenticate method is expected to either return an object
representing a principal or throw an AuthenticationFailedException.

A well-designed authenticate method will have a set of known user and password pairs that can
be compared to the credential presented or will have a way of obtaining those pairs.

How a Server Sets Its Credential

In order to connect with a locator that does authentication, a server will need to set its credential,
composed of the two properties security-username and security-password. Choose one of these
two ways to accomplish this:

Set security-username and security-password in the server’s gfsecurity.properties file
that will be read upon server start up, as in the example

security-username=admin

security-password=xyz1234

The user name and password are stored in cleartext, so the gfsecurity.properties file
must be protected by restricting access with file system permissions.

Implement AuthInitialize interface for the server.

Set the property security-peer-auth-init, so that an object of the class that
implements the AuthInitialize interface will be instantiated. Set the property to
one of these two values:

Set property security-peer-auth-init to the fully-qualified class name that
implements the AuthInitialize interface as in the example

security-peer-auth-init=com.example.security.ServerAuthenticate

VMware GemFire 9.10 Documentation

VMware by Broadcom 338

Set property security-peer-auth-init to the fully-qualified method name of
a method that instantiates an object of the class that implements the
AuthInitialize interface as in the example

security-peer-auth-init=com.example.security.ServerAuthenticate.create

Implement the getCredentials method within the AuthInitialize interface to
acquire values for the security-username and security-password properties in
whatever way it wishes. It might look up values in a database or another external
resource.

Gateway senders and receivers communicate as a component of their server member. Therefore,
the credential of the server become those of the gateway sender or receiver.

How a Client Cache Sets Its Credential

In order to connect with a locator or a server that does authentication, a client will need to set its
credential, composed of the two properties security-username and security-password. Choose
one of these two ways to accomplish this:

Set the security-username and security-password properties for the client using the API:

Properties properties = new Properties();

properties.setProperty("security-username", "exampleuser23");

properties.setProperty("security-password", "xyz1234");

ClientCache cache = new ClientCacheFactory(properties).create();

Take care that credentials set in this manner are not accessible to observers of the code.

Implement AuthInitialize interface for the client.

Set the property security-client-auth-init, so that an object of the class that
implements the AuthInitialize interface will be instantiated. Set the property to
one of these two values:

Set property security-client-auth-init to the fully-qualified class name
that implements the AuthInitialize interface:

security-client-auth-init=com.example.security.ClientAuthInitialize

Set property security-client-auth-init to the fully-qualified name of a
static method that instantiates an object of the class that implements the
AuthInitialize interface:

security-client-auth-init=com.example.security.ClientAuthInitialize.creat

e

Implement the getCredentials method of the AuthInitialize interface for the
client. The implementation of getCredentials acquires values for the security-
username and security-password properties in whatever way it wishes. It might look
up values in a database or another external resource, or it might prompt for values.

VMware GemFire 9.10 Documentation

VMware by Broadcom 339

How Other Components Set Their Credentials

gfsh prompts for the user name and password upon invocation of agfsh connect command.

Pulse prompts for the user name and password upon start up.

Due to the stateless nature of the REST API, a web application or other component that speaks to
a server or locator via the REST API goes through authentication on each request. The header of
the request needs to include attributes that define values for security-username and security-
password.

Implement SecurityManager Interface

Complete these items to implement authentication done by either a locator or a server.

Decide upon an authentication algorithm. The Authentication Example stores a set of user
name and password pairs that represent the identities of components that will connect to
the system. This simplistic algorithm returns the user name as a principal if the user name
and password passed to the authenticate method are a match for one of the stored pairs.

Define the security-manager property. See Enable Security with Property Definitions for
details about this property.

Implement the authenticate method of the SecurityManager interface.

Define any extra resources that the implemented authentication algorithm needs in order
to make a decision.

Authentication Example

This example demonstrates the basics of an implementation of the SecurityManager.authenticate
method. The remainder of the example may be found in the VMware GemFire source code in the
geode-core/src/main/java/org/apache/geode/examples/security directory.

Of course, the security implementation of every installation is unique, so this example cannot be
used in a production environment. Its use of the user name as a returned principal upon successful
authentication is a particularly poor design choice, as any attacker that discovers the
implementation can potentially spoof the system.

This example assumes that a set of user name and password pairs representing users that may be
successfully authenticated has been read into a data structure upon initialization. Any component
that presents the correct password for a user name successfully authenticates, and its identity is
verified as that user. Therefore, the implementation of the authenticate method checks that the
user name provided within the credentials parameter is in its data structure. If the user name is
present, then the password provided within the credentials parameter is compared to the data
structure’s known password for that user name. Upon a match, the authentication is successful.

public Object authenticate(final Properties credentials)

 throws AuthenticationFailedException {

 String user = credentials.getProperty(ResourceConstants.USER_NAME);

 String password = credentials.getProperty(ResourceConstants.PASSWORD);

 User userObj = this.userNameToUser.get(user);

 if (userObj == null) {

VMware GemFire 9.10 Documentation

VMware by Broadcom 340

 throw new AuthenticationFailedException(

 "SampleSecurityManager: wrong username/password");

 }

 if (user != null

 && !userObj.password.equals(password)

 && !"".equals(user)) {

 throw new AuthenticationFailedException(

 "SampleSecurityManager: wrong username/password");

 }

 return user;

}

Authorization

Cluster and cache operations can be restricted, intercepted and modifed, or completely blocked
based on configured access rights set for the various cluster components.

Implementing Authorization

To use authorization for client/server systems, your client connections must be
authenticated by their servers.

Method Invocation Authorizers

Authorizers used during query execution, how to configure them and how to implement
your own.

Authorization Examples

This topic discusses the authorization examples provided in the product under geode-
core/src/main/java/org/apache/geode/examples/security.

Implementing Authorization

How Authorization Works

When a component requests an operation, the SecurityManager.authorize method is invoked. It is
passed the principal of the operation’s requester and a ResourcePermission, which describes the
operation requested.

The implementation of the SecurityManager.authorize method makes a decision as to whether or
not the principal will be granted permission to carry out the operation. It returns a boolean in which
a return value of true permits the operation, and a return value of false prevents the operation.

A well-designed authorize method will have or will have a way of obtaining a mapping of principals
to the operations (in the form of resource permissions) that they are permitted to do.

Resource Permissions

All operations are described by an instance of the ResourcePermission class. A permission contains
the Resource data member, which classifies whether the operation as working on

cache data; value is DATA

VMware GemFire 9.10 Documentation

VMware by Broadcom 341

the cluster; value is CLUSTER

A permission also contains the Operation data member, which classifies whether the operation as

reading; value is READ

changing information; value is WRITE

making administrative changes; value is MANAGE

The operations are not hierarchical; MANAGE does not imply WRITE, and WRITE does not imply READ.

Some DATA operations further specify a region name in the permission. This permits restricting
operations on that region to only those authorized principals. And within a region, some operations
may specify a key. This permits restricting operations on that key within that region to only those
authorized principals.

Some CLUSTER operations further specify a finer-grained target for the operation. Specify the target
with a string value of:

DISK to target operations that write to a disk store

GATEWAY to target operations that manage gateway senders and receivers

QUERY to target operations that manage both indexes and continuous queries

DEPLOY to target operations that deploy code to servers

LUCENE to target Lucene index operations

This table classifies the permissions assigned for operations common to a Client-Server interaction.

Client Operation Assigned ResourcePermission

get function attribute CLUSTER:READ

create region DATA:MANAGE

destroy region DATA:MANAGE

Region.Keyset DATA:READ:RegionName

Region.query DATA:READ:RegionName

Region.getAll DATA:READ:RegionName

Region.getAll with a list of
keys

DATA:READ:RegionName:Key

Region.getEntry DATA:READ:RegionName

Region.containsKeyOnServer(
key)

DATA:READ:RegionName:Key

Region.get(key) DATA:READ:RegionName:Key

Region.registerInterest(key) DATA:READ:RegionName:Key

Region.registerInterest(regex) DATA:READ:RegionName

Region.unregisterInterest(key) DATA:READ:RegionName:Key

Region.unregisterInterest(rege
x)

DATA:READ:RegionName

VMware GemFire 9.10 Documentation

VMware by Broadcom 342

Client Operation Assigned ResourcePermission

execute function Defaults to DATA:WRITE. Override Function.getRequiredPermissions to change the
permission.

clear region DATA:WRITE:RegionName

Region.putAll DATA:WRITE:RegionName

Region.clear DATA:WRITE:RegionName

Region.removeAll DATA:WRITE:RegionName

Region.destroy(key) DATA:WRITE:RegionName:Key

Region.invalidate(key) DATA:WRITE:RegionName:Key

Region.destroy(key) DATA:WRITE:RegionName:Key

Region.put(key) DATA:WRITE:RegionName:Key

Region.replace DATA:WRITE:RegionName:Key

queryService.newCq DATA:READ:RegionName

CqQuery.stop CLUSTER:MANAGE:QUERY

This table classifies the permissions assigned for gfsh operations.

gfsh Command Assigned ResourcePermission

alter async-event-queue CLUSTER:MANAGE:DEPLOY

alter disk-store CLUSTER:MANAGE:DISK

alter query-service CLUSTER:MANAGE

alter region DATA:MANAGE:RegionName

alter runtime CLUSTER:MANAGE

backup disk-store DATA:READ and CLUSTER:WRITE:DISK

change loglevel CLUSTER:WRITE

clear defined indexes CLUSTER:MANAGE:QUERY

close durable-client CLUSTER:MANAGE:QUERY

close durable-cq CLUSTER:MANAGE:QUERY

compact disk-store CLUSTER:MANAGE:DISK

configure pdx CLUSTER:MANAGE

create async-event-queue CLUSTER:MANAGE:DEPLOY, plus CLUSTER:WRITE:DISK if the associated region is
persistent

create defined indexes CLUSTER:MANAGE:QUERY

create disk-store CLUSTER:MANAGE:DISK

create gateway-receiver CLUSTER:MANAGE:GATEWAY

VMware GemFire 9.10 Documentation

VMware by Broadcom 343

gfsh Command Assigned ResourcePermission

create gateway-sender CLUSTER:MANAGE:GATEWAY

create index CLUSTER:MANAGE:QUERY

create jndi-binding CLUSTER:MANAGE

create lucene index CLUSTER:MANAGE:LUCENE

create region DATA:MANAGE, plus CLUSTER:WRITE:DISK if the associated region is persistent

define index CLUSTER:MANAGE:QUERY

deploy CLUSTER:MANAGE:DEPLOY

describe client CLUSTER:READ

describe config CLUSTER:READ

describe disk-store CLUSTER:READ

describe jndi-binding CLUSTER:READ

describe lucene index CLUSTER:READ:LUCENE

describe member CLUSTER:READ

describe offline-disk-store CLUSTER:READ

describe query-service CLUSTER:READ

describe region CLUSTER:READ

destroy async-event-queue CLUSTER:MANAGE

destroy disk-store CLUSTER:MANAGE:DISK

destroy function CLUSTER:MANAGE:DEPLOY

destroy index CLUSTER:MANAGE:QUERY

destroy jndi-binding CLUSTER:MANAGE

destroy lucene index CLUSTER:MANAGE:LUCENE

destroy region DATA:MANAGE

execute function Defaults to DATA:WRITE. Override Function.getRequiredPermissions to change
the permission.

export cluster-configuration CLUSTER:READ

export config CLUSTER:READ

export data CLUSTER:READ

export logs CLUSTER:READ

export offline-disk-store CLUSTER:READ

export stack-traces CLUSTER:READ

gc CLUSTER:MANAGE

VMware GemFire 9.10 Documentation

VMware by Broadcom 344

gfsh Command Assigned ResourcePermission

get ‑key=key1 ‑region=region1 DATA:READ:RegionName:Key

import data DATA:WRITE:RegionName

import cluster-configuration CLUSTER:MANAGE

list async-event-queues CLUSTER:READ

list clients CLUSTER:READ

list deployed CLUSTER:READ

list disk-stores CLUSTER:READ

list durable-cqs CLUSTER:READ

list functions CLUSTER:READ

list gateways CLUSTER:READ

list indexes CLUSTER:READ:QUERY

list jndi-binding CLUSTER:READ

list lucene indexes CLUSTER:READ:LUCENE

list members CLUSTER:READ

list regions CLUSTER:READ

load-balance gateway-sender CLUSTER:MANAGE:GATEWAY

locate entry DATA:READ:RegionName:Key

netstat CLUSTER:READ

pause gateway-sender CLUSTER:MANAGE:GATEWAY

put ‑‑key=key1 ‑‑region=region1 DATA:WRITE:RegionName:Key

query DATA:READ:RegionName

rebalance DATA:MANAGE

remove DATA:WRITE:RegionName or DATA:WRITE:RegionName:Key

resume async-event-queue-
dispatcher

CLUSTER:MANAGE

resume gateway-sender CLUSTER:MANAGE:GATEWAY

revoke mising-disk-store CLUSTER:MANAGE:DISK

search lucene DATA:READ:RegionName

show dead-locks CLUSTER:READ

show log CLUSTER:READ

show metrics CLUSTER:READ

show missing-disk-stores CLUSTER:READ

VMware GemFire 9.10 Documentation

VMware by Broadcom 345

gfsh Command Assigned ResourcePermission

show subscription-queue-size CLUSTER:READ

shutdown CLUSTER:MANAGE

start gateway-receiver CLUSTER:MANAGE:GATEWAY

start gateway-sender CLUSTER:MANAGE:GATEWAY

start server CLUSTER:MANAGE

status cluster-config-service CLUSTER:READ

status gateway-receiver CLUSTER:READ

status gateway-sender CLUSTER:READ

status locator CLUSTER:READ

status server CLUSTER:READ

stop gateway-receiver CLUSTER:MANAGE:GATEWAY

stop gateway-receiver CLUSTER:MANAGE:GATEWAY

stop locator CLUSTER:MANAGE

stop server CLUSTER:MANAGE

undeploy CLUSTER:MANAGE:DEPLOY

The gfsh connect does not have a permission, as it is the operation that invokes authentication.
These gfsh commands do not have permission defined, as they do not interact with the cluster:

gfsh describe connection, which describes the gfsh end of the connection

gfsh debug, which toggles the mode within gfsh

gfsh exit

gfsh help

gfsh hint

gfsh history

gfsh run, although individual commands within the script will go through authorization

gfsh set variable

gfsh sh

gfsh sleep

validate offline-disk-store

gfsh version

This table classifies the permissions assigned for JMX operations.

JMX Operation Assigned ResourcePermission

DistributedSystemMXBean.shutdownAllMembers CLUSTER:MANAGE

VMware GemFire 9.10 Documentation

VMware by Broadcom 346

JMX Operation Assigned ResourcePermission

ManagerMXBean.start CLUSTER:MANAGE

ManagerMXBean.stop CLUSTER:MANAGE

ManagerMXBean.createManager CLUSTER:MANAGE

ManagerMXBean.shutDownMember CLUSTER:MANAGE

Mbeans get attributes CLUSTER:READ

MemberMXBean.showLog CLUSTER:READ

DistributedSystemMXBean.changerAlertLevel CLUSTER:WRITE

ManagerMXBean.setPulseURL CLUSTER:WRITE

ManagerMXBean.setStatusMessage CLUSTER:WRITE

CacheServerMXBean.closeAllContinuousQuery CLUSTER:MANAGE:QUERY

CacheServerMXBean.closeContinuousQuery CLUSTER:MANAGE:QUERY

CacheServerMXBean.executeContinuousQuery DATA:READ

CqQuery.execute DATA:READ:RegionName and
CLUSTER:MANAGE:QUERY

CqQuery.executeWithInitialResults DATA:READ:RegionName and
CLUSTER:MANAGE:QUERY

DiskStoreMXBean.flush CLUSTER:MANAGE:DISK

DiskStoreMXBean.forceCompaction CLUSTER:MANAGE:DISK

DiskStoreMXBean.forceRoll CLUSTER:MANAGE:DISK

DiskStoreMXBean.setDiskUsageCriticalPercentage CLUSTER:MANAGE:DISK

DiskStoreMXBean.setDiskUsageWarningPercentage CLUSTER:MANAGE:DISK

DistributedSystemMXBean.revokeMissingDiskStores CLUSTER:MANAGE:DISK

DistributedSystemMXBean.setQueryCollectionsDepth CLUSTER:MANAGE:QUERY

DistributedSystemMXBean.setQueryResultSetLimit CLUSTER:MANAGE:QUERY

DistributedSystemMXBean.backupAllMembers DATA:READ and CLUSTER:WRITE:DISK

DistributedSystemMXBean.queryData DATA:READ

DistributedSystemMXBean.queryDataForCompressedResul
t

DATA:READ

GatewayReceiverMXBean.pause CLUSTER:MANAGE:GATEWAY

GatewayReceiverMXBean.rebalance CLUSTER:MANAGE:GATEWAY

GatewayReceiverMXBean.resume CLUSTER:MANAGE:GATEWAY

GatewayReceiverMXBean.start CLUSTER:MANAGE:GATEWAY

GatewayReceiverMXBean.stop CLUSTER:MANAGE:GATEWAY

VMware GemFire 9.10 Documentation

VMware by Broadcom 347

JMX Operation Assigned ResourcePermission

GatewaySenderMXBean.pause CLUSTER:MANAGE:GATEWAY

GatewaySenderMXBean.rebalance CLUSTER:MANAGE:GATEWAY

GatewaySenderMXBean.resume CLUSTER:MANAGE:GATEWAY

GatewaySenderMXBean.start CLUSTER:MANAGE:GATEWAY

GatewaySenderMXBean.stop CLUSTER:MANAGE:GATEWAY

LockServiceMXBean.becomeLockGrantor CLUSTER:MANAGE

MemberMXBean.compactAllDiskStores CLUSTER:MANAGE:DISK

Implement Authorization

Complete these items to implement authorization.

Decide upon an authorization algorithm. The Authorization Example stores a mapping of
which principals (users) are permitted to do which operations. The algorithm bases its
decision on a look up of the permissions granted to the principal attempting the operation.

Define the security-manager property. See Enable Security with Property Definitions for
details about this property.

Implement the authorize method of the SecurityManager interface.

Define any extra resources that the implemented authorization algorithm needs in order to
make a decision.

Authorization of Function Execution

By default, a function executed on servers requires that the entity invoking the function have
DATA:WRITE permission on the region(s) involved. Since the default permission may not be
appropriate for all functions, the permissions required may be altered.

To implement a different set of permissions, override the Function.getRequiredPermissions()
method in the function’s class. The method should return a Collection of the permissions required
of the entity that invokes an execution of the function.

Authorization of Methods Invoked from Queries

Enabling the SecurityManager affects queries by restricting the methods that a running query may
invoke. See Method Invocations and Method Invocation Authorizers for details.

Method Invocation Authorizers

Overview

When the SecurityManager is enabled, by default VMware GemFire throws a
NotAuthorizedException when a method within a query is invoked and does not belong to the list of
default allowed methods, given in RestrictedMethodAuthorizer.

VMware GemFire 9.10 Documentation

VMware by Broadcom 348

The MethodInvocationAuthorizer is used to determine whether a specific method invocation on a
given object should be allowed or denied during the execution of a particular OQL query.

Allowing users to execute arbitrary methods on any object present within the VMware GemFire
member’s classpath could impact the integrity of the data and the system on which VMware
GemFire is running. In order to avoid this problem, it is always recommended to enable a
SecurityManager at the cluster level, give users only the permissions they require, and configure a
MethodInvocationAuthorizer that meets your needs.

The main threats to which a VMware GemFire cluster might be exposed without a
MethodInvocationAuthorizer are highlighted below.

Java Reflection

Allows the user to do anything within the JVM.

SELECT * FROM /region r WHERE r.getClass().forName('java.lang.Runtime').getDeclaredMet

hods()[0].invoke()

Cache Modification

Allows the user to do anything with the Cache: close it, access other regions, etc.

SELECT * FROM /region.getCache().close()

Region Modification

Allows the user to destroy, add or invalidate the entire Region, or specific entries.

SELECT * FROM /region.destroyRegion()

SELECT * FROM /region.put('xyz','abc')

SELECT * FROM /region.invalidate('xyz')

Region Modification

Allows the user to mutate the state of specific entries.

`SELECT r.setName('newName') FROM /region r`

|

VMware GemFire Authorizers

VMware GemFire provides four authorizers out of the box, each one designed and implemented
for a specific use case in mind. It is recommended to always use one of these authorizers, and only
implement your own if your use case needs are not already met by one of them.

All of the implementations provided by VMware GemFire are designed to prevent security
problems and have been thoroughly tested. Extra care should be taken, however, when
configuring the internals of some of the authorizers as an incorrect configuration might introduce
security holes into the system.

The table below shows a summary of which security threats are fully addressed by each authorizer
and which ones might be exploitable, depending on how they are configured (details are shown
later for each implementation).

VMware GemFire 9.10 Documentation

VMware by Broadcom 349

RestrictedMethodAuthorizer

The default MethodInvocationAuthorizer used by VMware GemFire to determine whether a
method is allowed to be executed on a specific object instance or not.

The implementation forbids the invocation of all methods during a query execution, except for the
ones shown below:

Class Allowed Methods

java.lang.Object equals, toString, compareTo

java.lang.Boolean booleanValue

java.lang.Number byteValue, intValue, doubleValue, floatValue, longValue, shortValue

java.util.Date after, before, getTime

java.sql.Timestamp getNanos

java.lang.String chartAt, codePointAt, codePointBefore, codePointCount, compareToIgnoreCase, concat,
contains, contentEquals, endsWith, equalsIgnoreCase, getBytes, hashCode, indexOf,
intern, isEmpty, lastIndexOf, length, matches, offsetByCodePoints, replace, replaceAll,
replaceFirst, split, startsWith, substring, toCharArray, toLowerCase, toUpperCase, trim

java.util.Map.Entr

y,
org.apache.geode.c

ache.Region.Entry

getKey, getValue

java.util.Collecti

on, java.util.Map,
org.apache.geode.c

ache.Region

get, entrySet, keySet, values, getEntries, getValues, containsKey

The authorizer also provides utilities that can be used by custom implementations to determine
whether a method is permanently forbidden or, if the method belongs to VMware GemFire,
whether it is considered safe to be used within a query execution.

The methods getClass, readObject, readResolve, readObjectNoData, writeObject and
writeReplace are permanently forbidden.

The below table shows those methods that belong to VMware GemFire and are considered safe
(for methods on org.apache.geode.cache.Region, the authorizer also verifies that the user has the
DATA:READ:RegionName permission).

Class Allowed Methods

org.apache.geode.cache.Region.Entry getKey, getValue

VMware GemFire 9.10 Documentation

VMware by Broadcom 350

Class Allowed Methods

org.apache.geode.cache.Region get, entrySet, keySet, values, getEntries, getValues, containsKey

UnrestrictedMethodAuthorizer

A less restrictive MethodInvocationAuthorizer that allows any method invocation during the query
execution as long as the following conditions are met:

The method is not considered permanently forbidden by the RestrictedMethodAuthorizer.

The method does not belong to VMware GemFire, or does belong but is considered safe by
the RestrictedMethodAuthorizer.

This authorizer implementation addresses only three of the four main security risks: Java
Reflection, Cache Modification and Region Modification. The Region Entry Modification
security risk still exists: users with the DATA:READ:RegionName permission will be able to execute
ANY method (even those that mutate the object) on the entries stored within the region and on
instances used as bind parameters of the query, so this authorizer implementation must be used
with extreme care.

Note: Usage of this authorizer is recommended for secured clusters on which only trusted users
and applications have access to the query engine. It might also be used on clusters on which all
entries stored are immutable.

JavaBeanAccessorMethodAuthorizer

A more flexible MethodInvocationAuthorizer that allows methods to be invoked during a query
execution if and only if all of the following conditions are met:

The method is not considered permanently forbidden by the RestrictedMethodAuthorizer.

The method does not belong to VMware GemFire, or does belong but is considered safe by
the RestrictedMethodAuthorizer.

The method follows the design patterns for accessor methods described in the JavaBean
Specification 1.01; that is, the method name begins with is or get.

The target object on which the method will be executed belongs to a set of pre-configured
packages.

When used as intended, and assuming that all region entries and bind parameters follow the
JavaBean Specification 1.01, this authorizer implementation addresses all four security risks: Java
Reflection, Cache Modification, Region Modification and Region Entry Modification. It should
be noted, however, that the Region Entry Modification security threat might be re-introduced:
users with the DATA:READ:RegionName privilege will be able to execute any method whose name
starts with is or get on the objects stored within the region and on instances used as bind
parameters, providing they are in the pre-configured packages. If those methods do not fully follow
the JavaBean Specification 1.01 in that accessors do not mutate the object state, then instances
could be potentially modified in place.

Note: Usage of this authorizer is only recommended for secured clusters on which the user has full
confidence in that all objects stored within the regions and used as bind parameters follow the

VMware GemFire 9.10 Documentation

VMware by Broadcom 351

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

JavaBean Specification 1.01. It might also be used on clusters on which all entries stored are
immutable.

RegExMethodAuthorizer

A fully flexible MethodInvocationAuthorizer that allows methods to be invoked during the query
execution only if the the following conditions are met:

The method is not considered permanently forbidden by the RestrictedMethodAuthorizer.

The method does not belong to VMware GemFire, or does belong but is considered safe by
the RestrictedMethodAuthorizer.

The fully qualified method name matches at least one of the pre-configured regular
expressions.

When correctly configured, this authorizer implementation addresses the four main security risks:
Java Reflection, Cache Modification, Region Modification and Region Entry Modification.
For the statement to remain true, however, the regular expressions used must be correctly
configured so no mutator methods ever match. If the regular expressions are not restrictive
enough, the Region Entry Modification security risk might be potentially re-introduced: users
with the DATA:READ:RegionName privilege will be able to execute methods (even those modifying
the entry) on the objects stored within the region and on instances used as bind parameters of the
query.

Note: This authorizer must be used with extreme care, it is the most powerful in terms of flexibility
and versatility (full control through regular expressions regarding what to allow and what to forbid);
but it is also the most dangerous as one small mistake in the configured regular expressions can
unexpectedly allow a wide variety of non safe methods to be executed.

Note: Usage of this authorizer implementation is only recommended for scenarios in which the user
knows exactly what code is deployed to the cluster, allowing a correct configuration of the regular
expressions used. It might also be used on clusters on which all entries stored are immutable.

Custom Authorizers

How Authorization Works

It is important to note that the query engine does not have any information about the actual type
of the objects while pre-processing or parsing the query itself, neither can it obtain these details
before actually executing the query. The actual check to determine whether a method is allowed
or not must be executed while the objects are being traversed by the query engine in runtime.

The query engine, however, remembers whether a specific method has been already authorized or
not for the current query execution context, meaning that the authorization will be executed
only once in the lifetime of a particular query for every new method seen while traversing the
objects. Nevertheless, the authorizer implementation must be highly performant as it will be
invoked by VMware GemFire in runtime during the actual query execution.

Implementing a Method Authorizer

Complete these items to implement a custom method authorizer.

VMware GemFire 9.10 Documentation

VMware by Broadcom 352

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

Decide which methods from your domain model should be allowed to be invoked during a
query execution.

Decide which resources, if any, you will need in order to determine whether a method can
be invoked or not.

Implement the initialize method of the MethodInvocationAuthorizer interface to fully
configure your implementation, based on the resources needed to execute the
authorization.

Implement the authorize method of the MethodInvocationAuthorizer interface. It must
determine whether a method is allowed to be executed on a particular object instance
during a query execution. The implementation should be lightning fast and thread safe.

Changing the Method Authorizer

You can set the MethodInvocationAuthorizer to be used by the query engine through the gfsh
command-line utility. In addition, you can modify the configured MethodInvocationAuthorizer while
members are already running by using the alter query-service command. It is always advisable to
make these changes during periods of low activity, though.

The following constraints apply when the MethodInvocationAuthorizer used by the cluster is
changed in runtime:

Queries started after the MethodInvocationAuthorizer is changed will use the newly
configured authorizer.

Queries in flight are not affected. Before the query starts, it picks up the already configured
MethodInvocationAuthorizer and will use it until the execution finishes.

Indexes configured with an expression using methods forbidden by the newly configured
MethodInvocationAuthorizer will be marked as invalid the next time a mapping is added or
removed from the index.

Continuous queries already running will pick up the newly configured
MethodInvocationAuthorizer the next time the CQ is processed upon the arrival of a cache
event. If the CQ has methods forbidden by the newly configured
MethodInvocationAuthorizer, any subsequent execution will result in an error during the
CQ processing, and the onError method will be invoked for the associated CqListener.

Note: In order to improve performance, the continuous query engine uses an internal cache to
avoid executing the query in scenarios for which the answer can be automatically inferred. These
results might become invalid after applying the new security rules, so VMware GemFire deactivates
the usage of this optimization until the member is restarted or the query is registered again.

Authorization Example

Disclaimer

The security implementation of every installation is unique. These examples are provided for
illustrative purposes only and must not be used in a production environment.

VMware GemFire 9.10 Documentation

VMware by Broadcom 353

The examples demonstrate the basics for implementing both user authorization
(SecurityManager.authorize) and method invocation authorization
(MethodInvocationAuthorizer.authorize) during query executions. The remainder of the examples
may be found within the VMware GemFire source code under the geode-
core/src/main/java/org/apache/geode/examples/security directory.

User Authorization Example

This example assumes that a set of users, a set of roles that a user might take on within the system,
and a mapping of users to their roles are described in a JSON format file. The roles define a set of
authorized resource permissions granted for users in those roles. Code not shown here parses the
file to compose a data structure with the information on roles and users. The authorize callback
denies permission for any operation that does not have a principal representing the identity of the
operation’s requester. Given the principal, the method iterates through the data structure
searching for the necessary permissions for the principal. When the necessary permission is found,
authorization is granted by returning the value true. If the permission is not found in the data
structure, then the method returns false, denying authorization of the operation.

public boolean authorize(final Object principal, final ResourcePermission context) {

 if (principal == null) return false;

 User user = this.userNameToUser.get(principal.toString());

 if (user == null) return false; // this user is not authorized to do anything

 // check if the user has this permission defined in the context

 for (Role role : this.userNameToUser.get(user.name).roles) {

 for (Permission permitted : role.permissions) {

 if (permitted.implies(context)) {

 return true;

 }

 }

 }

 return false;

}

Method Invocation Authorization Example

This example assumes that the entire domain model is deployed to the cluster and that the user is
allowed to modify these classes. The authorize callback denies access to methods that have been
permanently forbidden by the RestrictedMethodAuthorizer and returns false right away. When the
method is not permanently forbidden, the implementation checks whether the method has been
annotated with a custom annotation. When the necessary annotation is found, authorization is
granted by returning the value true. If the annotation is not found, then the method returns false,
denying the invocation of the method during the query execution.

public boolean authorize(Method method, Object target) {

 // Check if forbidden by default.

 if (defaultAuthorizer.isPermanentlyForbiddenMethod(method, target)) {

 return false;

 }

VMware GemFire 9.10 Documentation

VMware by Broadcom 354

 // Check if annotation is present

 return method.isAnnotationPresent(Authorized.class);

 }

Post Processing of Region Data

The PostProcessor interface allows the definition of a callback that is invoked after any and all client
and gfsh operations that get data, but before the data is returned. It permits the callback to
intervene and format the data that is to be returned. The callbacks must not modify the region
data, only the data to be returned.

The processRegionValue method is given the principal of the operation requester. The operation
will already have been completed, implying that the principal will have been authorized to complete
the requested operation. The post processing can therefore format the returned data based on the
identity of the requester (principal).

By default, the key and value parameters to the processRegionValue method are references to the
region entry. Modify copies of these parameters to avoid changing the region entries. Copy on
Read Behavior discusses the issue.

The processRegionValue method is invoked for these API calls:

Region.get

Region.getAll

Query.execute

CqQuery.execute

CqQuery.executeWithInitialResults

CqListener.onEvent

for a relevant region event from CacheListener.afterUpdate for which there is interest
registered with Region.registerInterest

Care should be taken when designing a system that implements the post processing callback. It
incurs the performance penalty of an extra method invocation on every get operation.

Implement Post Processing

Complete these items to implement post processing.

Define the security-post-processor property. See Enable Security with Property
Definitions for details about this property.

Implement the processRegionValue method of the PostProcessor interface.

SSL

SSL protects your data in transit between applications by ensuring that only the applications
identified by you can share cluster data.

To be secure, the data that is cached in a VMware GemFire system must be protected during
storage, distribution, and processing. At any time, data in a cluster may be in one or more of these

VMware GemFire 9.10 Documentation

VMware by Broadcom 355

locations:

In memory

On disk

In transit between processes (for example, in an internet or intranet)

For the protection of data in memory or on disk, VMware GemFire relies on your standard system
security features such as firewalls, operating system settings, and JDK security settings.

The SSL implementation ensures that only the applications identified by you can share cluster data
in transit. In this figure, the data in the visible portion of the cluster is secured by the firewall and by
security settings in the operating system and in the JDK. The data in the disk files, for example, is
protected by the firewall and by file permissions. Using SSL for data distribution provides secure
communication between VMware GemFire system members inside and outside the firewalls.

Configuring SSL

You configure SSL for mutual authentication between members and to protect your data
during distribution. You can use SSL alone or in conjunction with the other VMware
GemFire security options.

SSL Sample Implementation

A simple example demonstrates the configuration and startup of VMware GemFire system
components with SSL.

Configuring SSL

You can configure SSL for authentication between members and to protect your data during
distribution. You can use SSL alone or in conjunction with the other VMware GemFire security
options.

VMware GemFire SSL connections use the Java Secure Sockets Extension (JSSE) package, so the
properties described here apply to VMware GemFire servers and to Java-based clients. SSL
configuration in non-Java clients may differ — see the client’s documentation for details.

SSL-Configurable Components

VMware GemFire 9.10 Documentation

VMware by Broadcom 356

You can specify that SSL be used system-wide, or you can independently configure SSL for specific
system components. The following list shows the system components that can be separately
configured to communicate using SSL, and the kind of communications to which each component
name refers:

cluster
Peer-to-peer communications among members of a cluster

gateway
Communication across WAN gateways from one site to another

web
All web-based services hosted on the configured server, which can include the Developer
REST API service, the Management REST API service (used for remote cluster management)
and the Pulse monitoring tool's web-based user interface.

jmx
Java management extension communications, including communications with the `gfsh`
utility. The Pulse monitoring tool uses JMX for server-side communication with a locator, but
SSL applies to this connection only if Pulse is located on an app server separate from the
locator. When Pulse and the locator are colocated, JMX communication between the two
does not involve a TCP connection, so SSL does not apply.

locator
Communication with and between locators

server
Communication between clients and servers

all
All of the above (use SSL system-wide)

Specifying that a component is enabled for SSL applies to the component’s server-socket side and
its client-socket side. For example, if you enable SSL for locators, then any process that
communicates with a locator must also have SSL enabled. If you provide "" as the value, SSL is
turned off for all components.

SSL Configuration Properties

You can use VMware GemFire configuration properties to enable or disable SSL, to identify SSL
ciphers and protocols, and to provide the location and credentials for key and trust stores.

ssl-enabled-components
List of components for which to enable SSL. Component list can be "" (disable SSL), "all", or
a comma-separated list of components.

ssl-endpoint-identification-enabled
A boolean value that, when set to true, causes clients to validate the server's hostname
using the server's certificate. The default value is false. Enabling endpoint identification
guards against DNS man-in-the-middle attacks when trusting certificates that are not self-
signed.

ssl-use-default-context
A boolean value that, when set to true, allows VMware GemFire to use the default SSL
context as returned by SSLContext.getInstance('Default') or set by using
SSLContext.setDefault(). When enabled, also causes ssl-endpoint-identification-enabled to
be set to true.

VMware GemFire 9.10 Documentation

VMware by Broadcom 357

ssl-require-authentication
Requires two-way authentication, applies to all components except web. Boolean - if true
(the default), two-way authentication is required.

ssl-web-require-authentication
Requires two-way authentication for web component. Boolean - if true, two-way
authentication is required. Default is false (one-way authentication only).

ssl-default-alias
A server uses one key store to hold its SSL certificates. All components on that server can
share a single certificate, designated by the ssl-default-alias property. If ssl-default-alias is not
specified, the first certificate in the key store acts as the default certificate.

ssl-_component_-alias=string
You can configure a separate certificate for any component. All certificates reside in the
same key store, but can be designated by separate aliases that incorporate the component
name, using this syntax, where _component_ is the name of a component. When a
component-specific alias is specified, it overrides the ssl-default-alias for the _component_
specified. For example, ssl-locator-alias would specify a name for the locator component's
certificate in the system key store.

ssl-ciphers
A comma-separated list of the valid ciphers for TCP/IP connections with TLS encryption
enabled. A setting of 'any' allows the JSSE provider to select an appropriate cipher that it
supports.

ssl-protocols
A comma-separated list of the valid protocol versions for TCP/IP connections with TLS
encryption enabled. A setting of 'any' attempts to use your JSSE provider's TLSv1.3, or
TLSv1.2 if v1.3 is not available.

ssl-keystore, ssl-keystore-password
The path to the key store and the key store password, specified as strings

ssl-truststore, ssl-truststore-password
The path to the trust store and the trust store password, specified as strings

ssl-keystore-type, ssl-truststore-type
The types of the key store and trust store, specified as strings. The default for both is "JKS",
indicating a Java key store or trust store.

Example: secure communications throughout

To implement secure SSL communications throughout an entire cluster, each process should
enable SSL for all components.

ssl-enabled-components=all

ssl-endpoint-identification-enabled=true

ssl-keystore=secure/keystore.dat

ssl-keystore-password=changeit

ssl-truststore=secure/truststore.dat

ssl-truststore-password=changeit

If the key store has multiple certificates you may want to specify the alias of the one you wish to
use for each process. For instance, ssl-default-alias=Hiroki.

Example: non-secure cluster communications, secure client/server

VMware GemFire 9.10 Documentation

VMware by Broadcom 358

In this example, SSL is used to secure communications between the client and the server:

Server properties

Cluster SSL is not enabled.

ssl-enabled-components=server,locator

ssl-server-alias=server

ssl-keystore=secure/keystore.dat

ssl-keystore-password=changeit

ssl-truststore=secure/truststore.dat

ssl-truststore-password=changeit

ssl-default-alias=Server-Cert

Locator properties

Cluster SSL is not enabled.

ssl-enabled-components=locator

ssl-locator-alias=locator

ssl-keystore=secure/keystore.dat

ssl-keystore-password=changeit

ssl-truststore=secure/truststore.dat

ssl-truststore-password=changeit

ssl-default-alias=Locator-Cert

Client properties

On Java clients, the list of enabled components reflects the server’s configuration so the client
knows how it is expected to communicate with (for example) servers and locators. Paths to
keystore and truststore are local to the client.

In this example, the client’s trust store must trust both locator and server certificates. Since the
client does not specify a certificate alias, SSL will use the default certificate in its key store.

ssl-enabled-components=server,locator

ssl-endpoint-identification-enabled=true

ssl-keystore=secret/keystore.dat

ssl-keystore-password=changeit

ssl-truststore=secret/truststore.dat

ssl-truststore-password=changeit

SSL Property Reference Tables

The following table lists the components you can configure to use SSL.

Table 1. SSL-Configurable Components

Component Communication Types

cluster Peer-to-peer communications among members of a cluster

gateway Communication across WAN gateways from one site to another

web Web-based communication, including REST interfaces

jmx Java management extension communications, including gfsh

VMware GemFire 9.10 Documentation

VMware by Broadcom 359

Component Communication Types

locator Communication with and between locators

server Communication between clients and servers

all All of the above

The following table lists the properties you can use to configure SSL on your VMware GemFire
system.

Table 2. SSL Configuration Properties

Property Description Value

ssl‑enabled‑compon
ents

list of components for which to enable
SSL

“all”, "", or comma-separated list of components:
cluster, gateway, web, jmx, locator, server

ssl‑endpoint‑identifi
cation‑enabled

causes clients to validate server
hostname using server certificate

boolean - if true, does validation; defaults to false

ssl‑use‑default‑cont
ext

allows VMware GemFire to use the
default SSL context

boolean - if true, uses the default SSL context. Also
sets ssl-endpoint-identification-enabled to true;
defaults to false

ssl-require-
authentication

requires two-way authentication,
applies to all components except web

boolean - if true (the default), two-way authentication
is required

ssl‑web‑require‑auth
entication

requires two-way authentication for
web component

boolean - if true, two-way authentication is required.
Default is false (one-way authentication only)

ssl-default-alias default certificate name string - if empty, use first certificate in key store

ssl-component-alias component-specific certificate name string - applies to specified component

ssl-ciphers list of SSL ciphers comma-separated list (default “any”)

ssl-protocols list of SSL protocols comma-separated list (default “any”)

ssl-keystore path to key store string

ssl-keystore-
password

key store password string

ssl-keystore-type trust store type string

ssl-truststore path to trust store string

ssl-truststore-
password

trust store password string

ssl-truststore-type trust store type string

Procedure

1. Make sure your Java installation includes the JSSE API and familiarize yourself with its use.
For information, see the Oracle JSSE website.

2. Configure SSL as needed for each connection type:

VMware GemFire 9.10 Documentation

VMware by Broadcom 360

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

1. Use locators for member discovery within the clusters and for client discovery of
servers. See Configuring Peer-to-Peer Discovery and Configuring a Client/Server
System.

2. Configure SSL properties as necessary for different component types, using the
properties described above. For example, to enable SSL for communication
between clients and servers you would configure properties in the
gemfire.properties file similar to:

ssl-enabled-components=server

ssl-protocols=any

ssl-ciphers=SSL_RSA_WITH_NULL_MD5, SSL_RSA_WITH_NULL_SHA

ssl-keystore=/path/to/trusted.keystore

ssl-keystore-password=password

ssl-truststore=/path/to/trusted.keystore

ssl-truststore-password=password

SSL Sample Implementation

A simple example demonstrates the configuration and startup of VMware GemFire system
components with SSL.

Provider-Specific Configuration File

This example uses a keystore created by the Java keytool application to provide the proper
credentials to the provider. To create the keystore, run the keytool utility:

keytool -genkey \

-alias self \

-dname "CN=trusted" \

-validity 3650 \

-keypass password \

-keystore ./trusted.keystore \

-storepass password \

-storetype JKS

This creates a ./trusted.keystore file to be used later.

gemfire.properties File
You can enable SSL in the gemfire.properties file. In this example, SSL is enabled for all
components.

ssl-enabled-components=all

mcast-port=0

locators=<hostaddress>[<port>]

gfsecurity.properties File

You can specify the provider-specific settings in a gfsecurity.properties file, which can then be
secured by restricting access to this file. The following example configures the default JSSE

VMware GemFire 9.10 Documentation

VMware by Broadcom 361

provider settings included with the JDK.

ssl-keystore=/path/to/trusted.keystore

ssl-keystore-password=password

ssl-truststore=/path/to/trusted.keystore

ssl-truststore-password=password

security-username=xxxx

security-userPassword=yyyy

Locator Startup

Before starting other system members, we started the locator with the SSL and provider-specific
configuration settings. After properly configuring gemfire.properties and gfsecurity.properties,
start the locator and provide the location of the properties files. If any of the password fields are left
empty, you will be prompted to enter a password.

gfsh>start locator --name=my_locator --port=12345 \

--properties-file=/path/to/your/gemfire.properties \

--security-properties-file=/path/to/your/gfsecurity.properties

Other Member Startup
Applications and cache servers can be started similarly to the locator startup, with the appropriate
gemfire.properties file and gfsecurity.properties files placed in the current working directory.
You can also pass in the location of both files as system properties on the command line. For
example:

gfsh>start server --name=my_server \

--properties-file=/path/to/your/gemfire.properties \

--security-properties-file=/path/to/your/gfsecurity.properties

Connecting to a Running Cluster

You can use gfsh to connect to an SSL-enabled cluster that is already running by specifying the
use-ssl command-line option and providing a path to the security configuration file:

gfsh>connect --locator=localhost[10334] --use-ssl \

--security-properties-file=/path/to/your/gfsecurity.properties

Once connected, you can then issue gfsh commands to perform a variety of operations, including
listing members and displaying region characteristics.

Performance Tuning and Configuration

A collection of tools and controls allow you to monitor and adjust VMware GemFire performance.

Improving Performance on vSphere

This topic provides guidelines for tuning vSphere virtualized environments that host
VMware GemFire deployments.

VMware GemFire 9.10 Documentation

VMware by Broadcom 362

Performance Controls

This topic provides tuning suggestions of particular interest to developers, primarily
programming techniques and cache configuration.

System Member Performance

You can modify some configuration parameters to improve system member performance.

Slow Receivers with TCP/IP

You have several options for preventing situations that can cause slow receivers of data
distributions. The slow receiver options control only peer-to-peer communication using
TCP/IP. This discussion does not apply to client/server or multi-site communication, or to
communication using the UDP unicast or multicast protocols.

Slow distributed-ack Messages

In systems with distributed-ack regions, a sudden large number of distributed-no-ack
operations can cause distributed-ack operations to take a long time to complete.

Socket Communication

VMware GemFire processes communicate using TCP/IP and UDP unicast and multicast
protocols. In all cases, communication uses sockets that you can tune to optimize
performance.

UDP Communication

You can make configuration adjustments to improve multicast and unicast UDP
performance of peer-to-peer communication.

Multicast Communication

You can make configuration adjustments to improve the UDP multicast performance of
peer-to-peer communication in your VMware GemFire system.

Maintaining Cache Consistency

Maintaining data consistency between caches in a distributed VMware GemFire system is
vital for ensuring its functional integrity and preventing data loss.

Improving Performance on vSphere

Operating System Guidelines

Use the latest supported version of the guest OS, and use Java large paging.

Use the latest supported version of the guest operating system. This guideline is
probably the most important. Upgrade the guest OS to a recent version supported by
VMware GemFire. For example, for RHEL, use at least version 7.0 or for SLES, use at least
11.0. For Windows, use Windows Server 2012. For RedHat Linux users, it is particularly
beneficial to use RHEL 7 since there are specific enhancements in the RHEL 7 release that
improve virtualized latency sensitive workloads.

Use Java large paging in guest OS. Configure Java on the guest OS to use large pages.
Add the following command line option when launching Java:

VMware GemFire 9.10 Documentation

VMware by Broadcom 363

-XX:+UseLargePages

NUMA, CPU, and BIOS Settings

This section provides VMware-recommended NUMA, CPU, and BIOS settings for your hardware
and virtual machines.

Always enable hyper-threading, and do not overcommit CPU.

For most production VMware GemFire servers, always use virtual machines with at least
two vCPUs .

Apply non-uniform memory access (NUMA) locality by sizing virtual machines to fit within
the NUMA node.

VMware recommends the following BIOS settings:

BIOS Power Management Mode: Maximum Performance.

CPU Power and Performance Management Mode: Maximum Performance.

Processor Settings:Turbo Mode enabled.

Processor Settings:C States disabled.

Note: Settings may vary slightly depending on your hardware make and model. Use the settings
above or equivalents as needed.

Physical and Virtual NIC Settings

These guidelines help you reduce latency.

Physical NIC: VMware recommends that you disable interrupt coalescing on the physical
NIC of your ESXi host by using the following command:

ethtool -C vmnicX rx-usecs 0 rx-frames 1 rx-usecs-irq 0 rx-frames-irq 0

where vmnicX is the physical NIC as reported by the ESXi command:

esxcli network nic list

You can verify that your settings have taken effect by issuing the command:

ethtool -C vmnicX

If you restart the ESXi host, the above configuration must be reapplied.

Note: Disabling interrupt coalescing can reduce latency in virtual machines; however, it can
impact performance and cause higher CPU utilization. It can also defeat the benefits of large
receive offloads (LRO) because some physical NICs (such as Intel 10GbE NICs) automatically
disable LRO when interrupt coalescing is disabled. This type of tuning benefits VMware
GemFire workloads, but it can hurt other non-VMware GemFire workloads that are
memory throughput-bound, as opposed to latency sensitive as in the case of VMware
GemFire workloads. See http://kb.vmware.com/kb/1027511 for more details.

VMware GemFire 9.10 Documentation

VMware by Broadcom 364

http://kb.vmware.com/kb/1027511

Virtual NIC: Use the following guidelines when configuring your virtual NICs:

Use VMXNET3 virtual NICs for your latency-sensitive or otherwise performance-
critical virtual machines. See http://kb.vmware.com/kb/1001805 for details on
selecting the appropriate type of virtual NIC for your virtual machine.

VMXNET3 supports adaptive interrupt coalescing that can help drive high
throughput to virtual machines that have multiple vCPUs with parallelized workloads
(multiple threads), while minimizing latency of virtual interrupt delivery. However, if
your workload is extremely sensitive to latency, VMware recommends that you
disable virtual interrupt coalescing for your virtual NICs. You can do this
programmatically via API or by editing your virtual machine’s .vmx configuration file.
Refer to your vSphere API Reference or VMware ESXi documentation for specific
instructions.

VMware vSphere vMotion and DRS Cluster Usage

This topic discusses use limitations of vSphere vMotion, including its use with DRS.

When vMotion migrations occur, there is an expected temporary drop in the performance of both
read-operation and write-operation workloads. These workloads resume their normal rate of
operation once the vMotion migration of the servers is completed.

VMware recommends that all vMotion migration activity of VMware GemFire members occurs over
10GbE, during periods of low activity and scheduled maintenance windows. Test vMotion
migrations in your own environment to assess differences in workload, networking, and scale.

If you wish to prevent automatic VMware vSphere vMotion® operations that can affect response
times, place VMware vSphere Distributed Resource Scheduler™ (DRS) in manual mode when you
first commission the data management system.

Placement and Organization of Virtual Machines

This section provides guidelines on JVM instances and placement of redundant copies of cached
data.

Have one JVM instance per virtual machine.

Increasing the heap space to service the demand for more data is better than installing a
second instance of a JVM on a single virtual machine. If increasing the JVM heap size is not
an option, consider placing the second JVM on a separate newly created virtual machine,
thus promoting more effective horizontal scalability. As you increase the number of VMware
GemFire servers, also increase the number of virtual machines to maintain a 1:1:1 ratio
among the VMware GemFire server, the JVM, and the virtual machines.

Size for a minimum of four vCPU virtual machines with one VMware GemFire server
running in one JVM instance. This allows ample CPU cycles for the garbage collector, and
the rest for user transactions.

Because VMware GemFire can place redundant copies of cached data on any virtual
machine, it is possible to inadvertently place two redundant data copies on the same
ESX/ESXi host. This is not optimal if a host fails. To create a more robust configuration, use

VMware GemFire 9.10 Documentation

VMware by Broadcom 365

http://kb.vmware.com/kb/1001805

VM1-to-VM2 anti-affinity rules, to indicate to vSphere that VM1 and VM2 can never be
placed on the same host because they hold redundant data copies.

Virtual Machine Memory Reservation

This section provides guidelines for sizing and setting memory.

Set memory reservation at the virtual machine level so that ESXi provides and locks down
the needed physical memory upon virtual machine startup. Once allocated, ESXi does not
allow the memory to be taken away.

Do not overcommit memory for VMware GemFire hosts.

When sizing memory for a VMware GemFire server within one JVM on one virtual machine,
the total reserved memory for the virtual machine should not exceed what is available
within one NUMA node for optimal performance.

vSphere High Availability and VMware GemFire

On VMware GemFire virtual machines, disable vSphere High Availability (HA).

If you are using a dedicated VMware GemFire DRS cluster, then you can disable HA across the
cluster. However, if you are using a shared cluster, exclude VMware GemFire virtual machines from
vSphere HA.

Additionally, to support high availability, you can also set up anti-affinity rules between the VMware
GemFire virtual machines to prevent two VMware GemFire servers from running on the same ESXi
host within the same DRS cluster.

Storage Guidelines

This section provides storage guidelines for persistence files, binaries, logs, and more.

Use the PVSCSI driver for I/O intensive VMware GemFire workloads.

Align disk partitions at the VMFS and guest operating system levels.

Provision VMDK files as eagerzeroedthick to avoid lazy zeroing for VMware GemFire
members.

Use separate VMDKs for VMware GemFire persistence files, binaries, and logs.

Map a dedicated LUN to each VMDK.

For Linux virtual machines, use NOOP scheduling as the I/O scheduler instead of
Completely Fair Queuing (CFQ). Starting with the Linux kernel 2.6, CFQ is the default I/O
scheduler in many Linux distributions. See http://kb.vmware.com/kb/2011861 for more
information.

Additional Resources

These older VMware publications provide additional resources on optimizing for vSphere.

“Performance Best Practices for VMware vSphere 5.0” -
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.0.pdf

VMware GemFire 9.10 Documentation

VMware by Broadcom 366

http://kb.vmware.com/kb/2011861
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.0.pdf

“Best Practices for Performance Tuning of Latency-Sensitive Workloads in vSphere Virtual
Machines” - http://www.vmware.com/files/pdf/techpaper/VMW-Tuning-Latency-
Sensitive-Workloads.pdf

“Enterprise Java Applications on VMware - Best Practices Guide” -
http://www.vmware.com/resources/techresources/1087

Performance Controls

This topic provides tuning suggestions of particular interest to developers, primarily programming
techniques and cache configuration.

Before you begin, you should understand VMware GemFire Basic Configuration and Programming.

Data Serialization

In addition to standard Java serialization, VMware GemFire offers serialization options that
give you higher performance and greater flexibility for data storage, transfers, and language
types.

Setting Cache Timeouts

Cache timeout properties can modified through the gfsh alter runtime command (or
declared in the cache.xml file) and can also be set through methods of the interface,
org.apache.geode.cache.Cache.

Controlling Socket Use

For peer-to-peer communication, you can manage socket use at the system member level
and at the thread level.

Management of Slow Receivers

You have several options for handling slow members that receive data distribution. The
slow receiver options control only to peer-to-peer communication between distributed
regions using TCP/IP. This topic does not apply to client/server or multi-site
communication, or to communication using the UDP unicast or IP multicast protocols.

Increasing the Ratio of Cache Hits

The more frequently a get fails to find a valid value in the first cache and has to try a second
cache, the more the overall performance is affected.

Data Serialization

In addition to standard Java serialization, VMware GemFire offers serialization options that give you
higher performance and greater flexibility for data storage, transfers, and language types.

Under Developing with VMware GemFire, see Data Serialization.

Setting Cache Timeouts

Cache timeout properties can modified through the gfsh alter runtime command (or declared in
the cache.xml file) and can also be set through methods of the interface,
org.apache.geode.cache.Cache.

VMware GemFire 9.10 Documentation

VMware by Broadcom 367

http://www.vmware.com/files/pdf/techpaper/VMW-Tuning-Latency-Sensitive-Workloads.pdf
http://www.vmware.com/resources/techresources/1087

To modify cache timeout properties, you can issue the following gfsh alter runtime command.
For example:

gfsh>alter runtime --search-timeout=150

The --search-timeout parameter specifies how long a netSearch operation can wait for data before
timing out. The default is 5 minutes. You may want to change this based on your knowledge of the
network load or other factors.

The next two configurations describe timeout settings for locking in regions with global scope.
Locking operations can time out in two places: when waiting to obtain a lock (lock time out); and
when holding a lock (lock lease time). Operations that modify objects in a global region use
automatic locking. In addition, you can manually lock a global region and its entries through
org.apache.geode.cache.Region. The explicit lock methods provided by the APIs allow you to
specify a lock timeout parameter. The lock time out for implicit operations and the lock lease time
for implicit and explicit operations are governed by these cache-wide settings:

gfsh>alter runtime --lock-timeout=30 --lock-lease=60

--lock-timeout. Timeout for object lock requests, specified in seconds. The setting affects
automatic locking only, and does not apply to manual locking. The default is 1 minute. If a
lock request does not return before the specified timeout period, it is cancelled and returns
with a failure.

--lock-lease. Timeout for object lock leases, specified in seconds. The setting affects both
automatic locking and manual locking. The default is 2 minutes. Once a lock is obtained, it
may remain in force for the lock lease time period before being automatically cleared by the
system.

Controlling Socket Use
For peer-to-peer communication, you can manage socket use at the system member level and at
the thread level.

The conserve-sockets setting indicates whether application threads share sockets with other
threads or use their own sockets for member communication. This setting has no effect on
communication between a server and its clients, but it does control the server’s communication
with its peers or a gateway sender’s communication with a gateway receiver. In client/server
settings in particular, where there can be a large number of clients for each server, controlling
peer-to-peer socket use is an important part of tuning server performance.

You configure conserve-sockets for the member as a whole in gemfire.properties. Additionally,
you can change the sockets conservation policy for the individual thread through the API.

When conserve-sockets is set to false, each application thread uses a dedicated thread to send to
each of its peers and a dedicated thread to receive from each peer. Disabling socket conservation
requires more system resources, but can potentially improve performance by removing socket
contention between threads and optimizing distributed ACK operations. For distributed regions,
the put operation, and destroy and invalidate for regions and entries, can all be optimized with
conserve-sockets set to false. For partitioned regions, setting conserve-sockets to false can
improve general throughput.

VMware GemFire 9.10 Documentation

VMware by Broadcom 368

Note: When you have transactions operating on EMPTY, NORMAL or PARTITION regions, make
sure that conserve-sockets is set to false to avoid distributed deadlocks.

You can override the conserve-sockets setting for individual threads. These methods are in
org.apache.geode.distributed.DistributedSystem:

setThreadsSocketPolicy. Sets the calling thread’s individual socket policy, overriding the
policy set for the application as a whole. If set to true, the calling thread shares socket
connections with other threads. If false, the calling thread has its own sockets.

releaseThreadsSockets. Frees any sockets held by the calling thread. Threads hold their
own sockets only when conserve-sockets is false. Threads holding their own sockets can
call this method to avoid holding the sockets until the socket-lease-time has expired.

A typical implementation might set conserve-sockets to true at the application level and then
override the setting for the specific application threads that perform the bulk of the distributed
operations. The example below shows an implementation of the two API calls in a thread that
performs benchmark tests. The example assumes the class implements Runnable. Note that the
invocation, setThreadsSocketPolicy(false), is only meaningful if conserve-sockets is set to true at
the application level.

public void run() {

 DistributedSystem.setThreadsSocketPolicy(false);

 try {

 // do your benchmark work

 } finally {

 DistributedSystem.releaseThreadsSockets();

 }

}

Management of Slow Receivers

You have several options for handling slow members that receive data distribution. The slow
receiver options control only to peer-to-peer communication between distributed regions using
TCP/IP. This topic does not apply to client/server or multi-site communication, or to
communication using the UDP unicast or IP multicast protocols.

Most of the options for handling slow members are related to on-site configuration during system
integration and tuning. For this information, see Slow Receivers with TCP/IP.

Slowing is more likely to occur when applications run many threads, send large messages (due to
large entry values), or have a mix of region configurations.

Note: If you are experiencing slow performance and are sending large objects (multiple
megabytes), before implementing these slow receiver options make sure your socket buffer sizes
are large enough for the objects you distribute. The socket buffer size is set using gemfire.socket-
buffer-size.

By default, distribution between system members is performed synchronously. With synchronous
communication, when one member is slow to receive, it can cause its producer members to slow
down as well. This can lead to general performance problems in the cluster.

The specifications for handling slow receipt primarily affect how your members manage distribution
for regions with distributed-no-ack scope, but it can affect other distributed scopes as well. If no

VMware GemFire 9.10 Documentation

VMware by Broadcom 369

regions have distributed-no-ack scope, this mechanism is unlikely to kick in at all. When slow
receipt handling does kick in, however, it affects all distribution between the producer and
consumer, regardless of scope. Partitioned regions ignore the scope attribute, but for the purposes
of this discussion you should think of them as having an implicit distributed-ack scope.

Configuration Options

The slow receiver options are set in the producer member’s region attribute, enable-async-
conflation, and in the consumer member’s async* gemfire.properties settings.

Delivery Retries

If the receiver fails to receive a message, the sender continues to attempt to deliver the message
as long as the receiving member is still in the cluster. During the retry cycle, throws warnings that
include this string:

will reattempt

The warnings are followed by an info message when the delivery finally succeeds.

Asynchronous Queueing For Slow Receivers

Your consumer members can be configured so that their producers switch to asynchronous
messaging if the consumers are slow to respond to cache message distribution.

When a producer switches, it creates a queue to hold and manage that consumer’s cache
messages. When the queue empties, the producer switches back to synchronous messaging for
the consumer. The settings that cause the producers to switch are specified on the consumer side
in gemfire.properties file settings.

If you configure your consumers for slow receipt queuing, and your region scope is distributed-no-
ack, you can also configure the producer to conflate entry update messages in its queues. This
configuration option is set as the region attribute enable-async-conflation. By default distributed-
no-ack entry update messages are not conflated.

Depending on the application, conflation can greatly reduce the number of messages the producer
needs to send to the consumer. With conflation, when an entry update is added to the queue, if
the last operation queued for that key is also an update operation, the previously enqueued update
is removed, leaving only the latest update to be sent to the consumer. Only entry update messages
originating in a region with distributed-no-ack scope are conflated. Region operations and entry
operations other than updates are not conflated.

VMware GemFire 9.10 Documentation

VMware by Broadcom 370

Initial producer queue with conflation

entry create

Key B

entry

update

Key A

Value QV1

to

consumer

entry

update

Key A

Value V2

Add entry update to queue...

entry create

Key B

entry

update

Key A

Value V1

to

consumer

Queue after conflation

entry

update

Key A

Value V2

entry create

Key B

to

consumer

Some conflation may not occur because entry updates are sent to the consumer before they can
be conflated. For this example, assume no messages are sent while the update for Key A is added.

Note: This method of conflation behaves the same as server-to-client conflation.

You can enable queue conflation on a region-by-region basis. You should always enable it unless it
is incompatible with your application needs. Conflation reduces the amount of data queued and
distributed.

These are reasons why conflation might not work for your application:

With conflation, earlier entry updates are removed from the queue and replaced by updates
sent later in the queue. This is problematic for applications that depend on a specific
ordering of entry modifications. For example, if your receiver has a CacheListener that
needs to know about every state change, you should deactivate conflation.

If your queue remains in use for a significant period and you have entries that are updated
frequently, you could have a series of update message replacements resulting in a notable
delay in the arrival of any update for some entries. Imagine that update 1, before it is sent, is
removed in favor of a later update 2. Then, before update 2 can be sent, it is removed in
favor of update 3, and so on. This could result in unacceptably stale data on the receiver.

Increasing the Ratio of Cache Hits
The more frequently a get fails to find a valid value in the first cache and has to try a second cache,
the more the overall performance is affected.

VMware GemFire 9.10 Documentation

VMware by Broadcom 371

A common cause of misses is expiration or eviction of the entry. If you have a region’s entry
expiration or eviction enabled, monitor the region and entry statistics.

If you see a high ratio of misses to hits on the entries, consider increasing the expiration times or
the maximum values for eviction, if possible. See Eviction for more information.

System Member Performance

You can modify some configuration parameters to improve system member performance.

Before doing so, you should understand Basic Configuration and Programming.

Member Properties

Several performance-related properties apply to a cache server or application that connects
to the cluster.

JVM Memory Settings and System Performance

You configure JVM memory settings for the Java application by adding parameters to the
java invocation. For the cache server, you add them to the command-line parameters for
the gfsh start server command.

Garbage Collection and System Performance

If your application exhibits unacceptably high latencies, you might improve performance by
modifying your JVM’s garbage collection behavior.

Member Properties

Several performance-related properties apply to a cache server or application that connects to the
cluster.

statistic-sampling-enabled.Turning off statistics sampling saves resources, but it also takes
away potentially valuable information for ongoing system tuning and unexpected system
problems. If LRU eviction is configured, then statistics sampling must be on.

statistic-sample-rate. Increasing the sample rate for statistics reduces system resource
use while still providing some statistics for system tuning and failure analysis.

log-level. As with the statistic sample rate, lowering this setting reduces system resource
consumption. See Logging.

JVM Memory Settings and System Performance

You configure JVM memory settings for the Java application by adding parameters to the java
invocation. For the cache server, you add them to the command-line parameters for the gfsh start
server command.

JVM heap size—Your JVM may require more memory than is allocated by default. For
example, you may need to increase heap size for an application that stores a lot of data.
You can set a maximum size and an initial size, so if you know you will be using the
maximum (or close to it) for the life of the member, you can speed memory allocation time
by setting the initial size to the maximum. This sets both the maximum and initial memory
sizes to 1024 megabytes for a Java application:

VMware GemFire 9.10 Documentation

VMware by Broadcom 372

-Xmx1024m -Xms1024m

Properties can be passed to the cache server on the gfsh command line:

gfsh>start server --name=server-name --J=-Xmx1024m --J=-Xms1024m

MaxDirectMemorySize—The JVM has a kind of memory called direct memory, which is
distinct from normal JVM heap memory, that can run out. You can increase the direct
buffer memory either by increasing the maximum heap size (see previous JVM Heap Size),
which increases both the maximum heap and the maximum direct memory, or by only
increasing the maximum direct memory using -XX:MaxDirectMemorySize. The following
parameter added to the Java application startup increases the maximum direct memory size
to 256 megabytes:

-XX:MaxDirectMemorySize=256M

The same effect for the cache server:

gfsh>start server --name=server-name --J=-XX:MaxDirectMemorySize=256M

JVM stack size—Each thread in a Java application has its own stack. The stack is used to
hold return addresses, arguments to functions and method calls, and so on. Since VMware
GemFire is a highly multi-threaded system, at any given point in time there are multiple
thread pools and threads that are in use. The default stack size setting for a thread in Java is
1MB. Stack size has to be allocated in contiguous blocks and if the machine is being used
actively and there are many threads running in the system (Task Manager shows the
number of active threads), you may encounter an OutOfMemory error: unable to create
new native thread, even though your process has enough available heap. If this happens,
consider reducing the stack size requirement for threads on the cache server. The following
parameter added to the Java application startup limits the maximum size of the stack.

-Xss384k

In particular, we recommend starting the cache servers with a stack size of 384k or 512k in
such cases. For example:

gfsh>start server --name=server-name --J=-Xss384k

gfsh>start server --name=server-name --J=-Xss512k

Off-heap memory size—For applications that use off-heap memory, specifies how much off-
heap memory to allocate. Setting off-heap-memory-size is prerequisite to enabling the off-
heap capability for individual regions. For example:

gfsh>start server --name=server-name --off-heap-memory-size=200G

See Using Off-heap Memory for additional considerations regarding this parameter.

Lock memory—On Linux systems, you can prevent heap and off-heap memory from being
paged out by setting the lock-memory parameter to true. For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 373

gfsh>start server --name=server-name --off-heap-memory-size=200G --lock-memory=

true

See Locking Memory for additional considerations regarding this parameter.

Garbage Collection and System Performance

If your application exhibits unacceptably high latencies, you might improve performance by
modifying your JVM’s garbage collection behavior.

Garbage collection, while necessary, introduces latency into your system by consuming resources
that would otherwise be available to your application. You can reduce the impact of garbage
collection in two ways:

Optimize garbage collection in the JVM heap.

Reduce the amount of data exposed to garbage collection by storing values in off-heap
memory.

Note: Garbage collection tuning options depend on the JVM you are using. Suggestions given here
apply to the Sun HotSpot JVM. If you use a different JVM, check with your vendor to see if these
or comparable options are available to you.

Note: Modifications to garbage collection sometimes produce unexpected results. Always test your
system before and after making changes to verify that the system’s performance has improved.

Optimizing Garbage Collection

The two options suggested here are likely to expedite garbage collecting activities by introducing
parallelism and by focusing on the data that is most likely to be ready for cleanup. The first
parameter causes the garbage collector to run concurrent to your application processes. The
second parameter causes it to run multiple, parallel threads for the “young generation” garbage
collection (that is, garbage collection performed on the most recent objects in memory—where the
greatest benefits are expected):

-XX:+UseConcMarkSweepGC -XX:+UseParNewGC

For applications, if you are using remote method invocation (RMI) Java APIs, you might also be able
to reduce latency by disabling explicit calls to the garbage collector. The RMI internals automatically
invoke garbage collection every sixty seconds to ensure that objects introduced by RMI activities
are cleaned up. Your JVM may be able to handle these additional garbage collection needs. If so,
your application may run faster with explicit garbage collection disabled. You can try adding the
following command-line parameter to your application invocation and test to see if your garbage
collector is able to keep up with demand:

-XX:+DisableExplicitGC

Using Off-heap Memory

You can improve the performance of some applications by storing data values in off-heap memory.
Certain objects, such as keys, must remain in the JVM heap. See Managing Off-Heap Memory for
more information.

VMware GemFire 9.10 Documentation

VMware by Broadcom 374

Slow Receivers with TCP/IP

You have several options for preventing situations that can cause slow receivers of data
distributions. The slow receiver options control only peer-to-peer communication using TCP/IP.
This discussion does not apply to client/server or multi-site communication, or to communication
using the UDP unicast or multicast protocols.

Before you begin, you should understand VMware GemFire Basic Configuration and Programming.

Preventing Slow Receivers

During system integration, you can identify and eliminate potential causes of slow receivers
in peer-to-peer communication.

Managing Slow Receivers

If the receiver fails to receive a message, the sender continues to attempt to deliver the
message as long as the receiving member is still in the cluster.

Preventing Slow Receivers

During system integration, you can identify and eliminate potential causes of slow receivers in peer-
to-peer communication.

Work with your network administrator to eliminate any problems you identify.

Slowing is more likely to occur when applications run many threads, send large messages (due to
large entry values), or have a mix of region configurations. The problem can also arise from
message delivery retries caused by intermittent connection problems.

Host Resources

Make sure that the machines that run VMware GemFire members have enough CPU available to
them. Do not run any other heavyweight processes on the same machine.

The machines that host VMware GemFire application and cache server processes should have
comparable computing power and memory capacity. Otherwise, members on the less powerful
machines tend to have trouble keeping up with the rest of the group.

Network Capacity

Eliminate congested areas on the network by rebalancing the traffic load. Work with your network
administrator to identify and eliminate traffic bottlenecks, whether caused by the architecture of
the distributed VMware GemFire system or by contention between the VMware GemFire traffic
and other traffic on your network. Consider whether more subnets are needed to separate the
VMware GemFire administrative traffic from VMware GemFire data transport and to separate all
the VMware GemFire traffic from the rest of your network load.

The network connections between hosts need to have equal bandwidth. If not, you can end up
with a configuration like the multicast example in the following figure, which creates conflicts
among the members. For example, if app1 sends out data at 7Mbps, app3 and app4 would be fine,

VMware GemFire 9.10 Documentation

VMware by Broadcom 375

but app2 would miss some data. In that case, app2 contacts app1 on the TCP channel and sends a

log message that it’s dropping data.

app1

(producer)

app2 app3 app4

network

switch

10 Mbps

10

Mbps

10

Mbps
5 Mbps

Plan for Growth

Upgrade the infrastructure to the level required for acceptable performance. Analyze the expected
VMware GemFire traffic in comparison to the network’s capacity. Build in extra capacity for growth
and high-traffic spikes. Similarly, evaluate whether the machines that host VMware GemFire
application and cache server processes can handle the expected load.

Managing Slow Receivers
If the receiver fails to receive a message, the sender continues to attempt to deliver the message
as long as the receiving member is still in the cluster.

During the retry cycle, VMware GemFire throws warnings that include this string:

will reattempt

The warnings are followed by an informational message when the delivery finally succeeds.

For distributed regions, the scope of a region determines whether distribution acknowledgments
and distributed synchronization are required. Partitioned regions ignore the scope attribute, but for
the purposes of this discussion you should think of them as having an implicit distributed-ack scope.

By default, distribution between system members is performed synchronously. With synchronous
communication, when one member is slow to receive, it can cause its producers to slow down as
well. This, of course, can lead to general performance problems in the cluster.

If you are experiencing slow performance and are sending large objects (multiple megabytes),
before implementing these slow receiver options make sure your socket buffer sizes are
appropriate for the size of the objects you distribute. The socket buffer size is set using socket-
buffer-size in the gemfire.properties file.

Managing Slow distributed-no-ack Receivers

VMware GemFire 9.10 Documentation

VMware by Broadcom 376

You can configure your consumer members so their messages are queued separately when they
are slow to respond. The queueing happens in the producer members when the producers detect
slow receipt and allows the producers to keep sending to other consumers at a normal rate. Any
member that receives data distribution can be configured as described in this section.

The specifications for handling slow receipt primarily affect how your members manage distribution
for regions with distributed-no-ack scope, where distribution is asynchronous, but the specifications
can affect other distributed scopes as well. If no regions have distributed-no-ack scope, the
mechanism is unlikely to kick in at all. When slow receipt handling does kick in, however, it affects
all distribution between the producer and that consumer, regardless of scope.

Note: These slow receiver options are deactivated in systems using SSL. See SSL.

Each consumer member determines how its own slow behavior is to be handled by its producers.
The settings are specified as distributed system connection properties. This section describes the
settings and lists the associated properties.

async-distribution-timeout—The distribution timeout specifies how long producers are to
wait for the consumer to respond to synchronous messaging before switching to
asynchronous messaging with that consumer. When a producer switches to asynchronous
messaging, it creates a queue for that consumer’s messages and a separate thread to
handle the communication. When the queue empties, the producer automatically switches
back to synchronous communication with the consumer. These settings affect how long
your producer’s cache operations might block. The sum of the timeouts for all consumers is
the longest time your producer might block on a cache operation.

async-queue-timeout—The queue timeout sets a limit on the length of time the
asynchronous messaging queue can exist without a successful distribution to the slow
receiver. When the timeout is reached, the producer asks the consumer to leave the
cluster.

async-max-queue-size—The maximum queue size limits the amount of memory the
asynchronous messaging queue can consume. When the maximum is reached, the
producer asks the consumer to leave the cluster.

Configuring Async Queue Conflation

When the scope is distributed-no-ack scope, you can configure the producer to conflate entry
update messages in its queues, which may further speed communication. By default, distributed-
no-ack entry update messages are not conflated. The configuration is set in the producer at the
region level.

Forcing the Slow Receiver to Disconnect

If either of the queue timeout or maximum queue size limits is reached, the producer sends the
consumer a high-priority message (on a different TCP connection than the connection used for
cache messaging) telling it to disconnect from the cluster. This prevents growing memory
consumption by the other processes that are queuing changes for the slow receiver while they wait
for that receiver to catch up. It also allows the slow member to start fresh, possibly clearing up the
issues that were causing it to run slowly.

When a producer gives up on a slow receiver, it logs one of these types of warnings:

Blocked for time ms which is longer than the max of asyncQueueTimeout ms so asking slow
receiver slow_receiver_ID to disconnect.

VMware GemFire 9.10 Documentation

VMware by Broadcom 377

Queued bytes exceed max of asyncMaxQueueSize so asking slow receiver
slow_receiver_ID to disconnect.

When a process disconnects after receiving a request to do so by a producer, it logs a warning
message of this type:

Disconnect forced by producer because we were too slow.

These messages only appear in your logs if logging is enabled and the log level is set to a level that
includes warning (which it does by default). See Logging.

If your consumer is unable to receive even high priority messages, only the producer’s warnings will
appear in the logs. If you see only producer warnings, you can restart the consumer process.
Otherwise, the VMware GemFire failure detection code will eventually cause the member to leave
the cluster on its own.

Use Cases

These are the main use cases for the slow receiver specifications:

Message bursts—With message bursts, the socket buffer can overflow and cause the
producer to block. To keep from blocking, first make sure your socket buffer is large enough
to handle a normal number of messages (using the socket-buffer-size property), then set
the async distribution timeout to 1. With this very low distribution timeout, when your
socket buffer does fill up, the producer quickly switches to async queueing. Use the
distribution statistics, asyncQueueTimeoutExceeded and asyncQueueSizeExceeded, to
make sure your queue settings are high enough to avoid forcing unwanted disconnects
during message bursts.

Unhealthy or dead members—When members are dead or very unhealthy, they may not be
able to communicate with other members. The slow receiver specifications allow you to
force crippled members to disconnect, freeing up resources and possibly allowing the
members to restart fresh. To configure for this, set the distribution timeout high (one
minute), and set the queue timeout low. This is the best way to avoid queueing for
momentary slowness, while still quickly telling very unhealthy members to leave the cluster.

Combination message bursts and unhealthy members—To configure for both of the above
situations, set the distribution timeout low and the queue timeout high, as for the message
bursts scenario.

Managing Slow distributed-ack Receivers

When using a distribution scope other than distributed-no-ack, alerts are issued for slow receivers.
A member that isn’t responding to messages may be sick, slow, or missing. Sick or slow members
are detected in message transmission and reply-wait processing code, triggering a warning alert
first. If a member still isn’t responding, a severe warning alert is issued, indicating that the member
may be disconnected from the cluster. This alert sequence is enabled by setting the ack-wait-
threshold and the ack-severe-alert-threshold to some number of seconds.

When ack-severe-alert-threshold is set, regions are configured to use ether distributed-ack or
global scope, or use the partition data policy. VMware GemFire will wait for a total of ack-wait-
threshold seconds for a response to a cache operation, then it logs a warning alert (“Membership:
requesting removal of entry(#). Disconnected as a slow-receiver”). After waiting an additional ack-
severe-alert-threshold seconds after the first threshold is reached, the system also informs the

VMware GemFire 9.10 Documentation

VMware by Broadcom 378

failure detection mechanism that the receiver is suspect and may be disconnected, as shown in the
following figure.

1. CACHE_

OPERATION

Cache Server

Replicated Region

Cache Server

Replicated Region

Locator

Client Client Client Client

2. SUSPECT

4.

SEVERE

ALERT
3. I AM ALIVE

The events occur in this order:

1. CACHE_OPERATION: Transmission of cache operation is initiated.

2. SUSPECT: Identified as a suspect by ack-wait-threshold, which is the maximum time to wait
for an acknowledge before initiating failure detection.

3. I AM ALIVE: Notification to the system in response to failure detection queries, if the
process is still alive. A new membership view is sent to all members if the suspect process
fails to answer with I AM ALIVE.

4. SEVERE ALERT: The result of ack-severe-wait-threshold elapsing without receiving a reply.

When a member fails suspect processing, its cache is closed and its CacheListeners are notified
with the afterRegionDestroyed notification. The RegionEvent passed with this notification has a
CACHE_CLOSED operation and a FORCED_DISCONNECT operation, as shown in the
FORCED_DISCONNECT example.

public static final Operation FORCED_DISCONNECT

= new Operation("FORCED_DISCONNECT",

 true, // isLocal

 true, // isRegion

 OP_TYPE_DESTROY,

 OP_DETAILS_NONE

);

A cache closes due to being expelled from the cluster by other members. Typically, this happens
when a member becomes unresponsive and does not respond to heartbeat requests within the
member-timeout period, or when ack-severe-alert-threshold has expired without a response from
the member.

VMware GemFire 9.10 Documentation

VMware by Broadcom 379

Note: This is marked as a region operation.

Other members see the normal membership notifications for the departing member. For instance,
RegionMembershipListeners receive the afterRemoteRegionCrashed notification, and
SystemMembershipListeners receive the memberCrashed notification.

Slow distributed-ack Messages

In systems with distributed-ack regions, a sudden large number of distributed-no-ack operations
can cause distributed-ack operations to take a long time to complete.

The distributed-no-ack operations can come from anywhere. They may be updates to
distributed-no-ack regions or they may be other distributed-no-ack operations, like destroys,
performed on any region in the cache, including the distributed-ack regions.

The main reasons why a large number of distributed-no-ack messages may delay distributed-
ack operations are:

For any single socket connection, all operations are executed serially. If there are any other
operations buffered for transmission when a distributed-ack is sent, the distributed-ack
operation must wait to get to the front of the line before being transmitted. Of course, the
operation’s calling process is also left waiting.

The distributed-no-ack messages are buffered by their threads before transmission. If
many messages are buffered and then sent to the socket at once, the line for transmission
might be very long.

You can take these steps to reduce the impact of this problem:

1. If you’re using TCP, check whether you have socket conservation enabled for your
members. It is configured by setting the VMware GemFire property conserve-sockets to
true. If enabled, each application’s threads will share sockets unless you override the setting
at the thread level. Work with your application programmers to see whether you might
disable sharing entirely or at least for the threads that perform distributed-ack operations.
These include operations on distributed-ack regions and also netSearches performed on
regions of any distributed scope. (Note: netSearch is only performed on regions with a data-
policy of empty, normal and preloaded.) If you give each thread that performs distributed-
ack operations its own socket, you effectively let it scoot to the front of the line ahead of
the distributed-no-ack operations that are being performed by other threads. The thread-
level override is done by calling the DistributedSystem.setThreadsSocketPolicy(false)
method.

2. Reduce your buffer sizes to slow down the distributed-no-ack operations. These changes
slow down the threads performing distributed-no-ack operations and allow the thread
doing the distributed-ack operations to be sent in a more timely manner.

If you’re using UDP (you either have multicast enabled regions or have set disable-
tcp to true in gemfire.properties), consider reducing the byteAllowance of mcast-
flow-control to something smaller than the default of 3.5 megabytes.

If you’re using TCP/IP, reduce the socket-buffer-size in gemfire.properties.

Socket Communication

VMware GemFire 9.10 Documentation

VMware by Broadcom 380

VMware GemFire processes communicate using TCP/IP and UDP unicast and multicast protocols.
In all cases, communication uses sockets that you can tune to optimize performance.

The adjustments you make to tune your VMware GemFire communication may run up against
operating system limits. If this happens, check with your system administrator about adjusting the
operating system settings.

All of the settings discussed here are listed as gemfire.properties and cache.xml settings. They
can also be configured through the API and some can be configured at the command line. Before
you begin, you should understand VMware GemFire Basic Configuration and Programming.

Setting Socket Buffer Sizes

When you determine buffer size settings, you try to strike a balance between
communication needs and other processing.

Ephemeral TCP Port Limits

By default, Windows’ ephemeral ports are within the range 1024-4999, inclusive.You can
increase the range.

Making Sure You Have Enough Sockets

The number of sockets available to your applications is governed by operating system limits.

TCP/IP KeepAlive Configuration

VMware GemFire supports TCP KeepAlive to prevent socket connections from being timed
out.

TCP/IP Peer-to-Peer Handshake Timeouts

You can alleviate connection handshake timeouts for TCP/IP connections by increasing the
connection handshake timeout interval with the system property
p2p.handshakeTimeoutMs.

Setting Socket Buffer Sizes

When you determine buffer size settings, you must strike a balance between communication needs
and other processing.

Larger socket buffers allow your members to distribute data and events more quickly, but they also
take memory away from other things. If you store very large data objects in your cache, finding the
right sizing for your buffers while leaving enough memory for the cached data can become critical
to system performance.

Ideally, you should have buffers large enough for the distribution of any single data object so you
don’t get message fragmentation, which lowers performance. Your buffers should be at least as
large as your largest stored objects and their keys plus some overhead for message headers. The
overhead varies depending on who is sending and receiving, but 100 bytes should be sufficient.
You can also look at the statistics for the communication between your processes to see how many
bytes are being sent and received.

If you see performance problems and logging messages indicating blocked writers, increasing your
buffer sizes may help.

VMware GemFire 9.10 Documentation

VMware by Broadcom 381

This table lists the settings for the various member relationships and protocols, and tells where to
set them.

Protocol / Area Affected Configuration Location Property Name

TCP / IP --- ---

Peer-to-peer send/receive
gemfire.properties

socket-buffer-size

Client send/receive
cache.xml <pool>

socket-buffer-size

Server send/receive gfsh start server or

cache.xml <CacheServer>

socket-buffer-size

UDP Multicast --- ---

Peer-to-peer send gemfire.properties mcast-send-buffer-size

Peer-to-peer receive gemfire.properties mcast-recv-buffer-size

UDP Unicast --- ---

Peer-to-peer send gemfire.properties udp-send-buffer-size

Peer-to-peer receive gemfire.properties udp-recv-buffer-size

TCP/IP Buffer Sizes

If possible, your TCP/IP buffer size settings should match across your VMware GemFire installation.
At a minimum, follow the guidelines listed here.

Peer-to-peer. The socket-buffer-size setting in gemfire.properties should be the same
throughout your cluster.

Client/server. The client’s pool socket-buffer size-should match the setting for the servers
the pool uses, as in these example cache.xml snippets:

Client Socket Buffer Size cache.xml Configuration:

<pool>name="PoolA" server-group="dataSetA" socket-buffer-size="42000"...

Server Socket Buffer Size cache.xml Configuration:

<cache-server port="40404" socket-buffer-size="42000">

 <group>dataSetA</group>

</cache-server>

UDP Multicast and Unicast Buffer Sizes

With UDP communication, one receiver can have many senders sending to it at once. To
accommodate all of the transmissions, the receiving buffer should be larger than the sum of the
sending buffers. If you have a system with at most five members running at any time, in which all
members update their data regions, you would set the receiving buffer to at least five times the
size of the sending buffer. If you have a system with producer and consumer members, where only
two producer members ever run at once, the receiving buffer sizes should be set at over two times
the sending buffer sizes, as shown in this example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 382

mcast-send-buffer-size=42000

mcast-recv-buffer-size=90000

udp-send-buffer-size=42000

udp-recv-buffer-size=90000

Operating System Limits

Your operating system sets limits on the buffer sizes it allows. If you request a size larger than the
allowed, you may get warnings or exceptions about the setting during startup. These are two
examples of the type of message you may see:

[warning 2008/06/24 16:32:20.286 PDT CacheRunner <main> tid=0x1]

requested multicast send buffer size of 9999999 but got 262144: see

system administration guide for how to adjust your OS

Exception in thread "main" java.lang.IllegalArgumentException: Could not

set "socket-buffer-size" to "99262144" because its value can not be

greater than "20000000".

If you think you are requesting more space for your buffer sizes than your system allows, check
with your system administrator about adjusting the operating system limits.

Ephemeral TCP Port Limits

By default, Windows’ ephemeral ports are within the range 1024-4999, inclusive. You can increase
the range.

If you are repeatedly receiving the following exception:

java.net.BindException: Address already in use: connect

and if your system is experiencing a high degree of network activity, such as numerous short-lived
client connections, this could be related to a limit on the number of ephemeral TCP ports. While
this issue could occur with other operating systems, typically, it is seen only with Windows due to a
low default limit.

Perform this procedure to increase the limit:

1. Open the Windows Registry Editor.

2. Navigate to the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameter

3. From the Edit menu, click New, and then add the following registry entry:

Value Name: MaxUserPort

Value Type: DWORD

Value data: 36863

4. Exit the Registry Editor, and then restart the computer.

This affects all versions of the Windows operating system.

Note for UDP on Unix Systems

VMware GemFire 9.10 Documentation

VMware by Broadcom 383

Unix systems have a default maximum socket buffer size for receiving UDP multicast and unicast
transmissions that is lower than the default settings for mcast-recv-buffer-size and udp-recv-
buffer-size. To achieve high-volume multicast messaging, you should increase the maximum Unix
buffer size to at least one megabyte.

Making Sure You Have Enough Sockets

The number of sockets available to your applications is governed by operating system limits.

Sockets use file descriptors and the operating system’s view of your application’s socket use is
expressed in terms of file descriptors. There are two limits, one on the maximum descriptors
available to a single application and the other on the total number of descriptors available in the
system. If you get error messages telling you that you have too many files open, you might be
hitting the operating system limits with your use of sockets. Your system administrator might be
able to increase the system limits so that you have more available. You can also tune your members
to use fewer sockets for their outgoing connections. This section discusses socket use in VMware
GemFire and ways to limit socket consumption in your VMware GemFire members.

Socket Sharing

You can configure socket sharing for peer-to-peer:

Peer-to-peer. You can configure whether your members share sockets both at the
application level and at the thread level. To enable sharing at the application level, set the
gemfire.properties property conserve-sockets to true. To achieve maximum throughput,
however, we recommend that you use the default value of false.

At the thread level, developers can override this setting by using the DistributedSystem API
method setThreadsSocketPolicy. You might want to enable socket sharing at the
application level and then have threads that do a lot of cache work take sole ownership of
their sockets. Make sure to program these threads to release their sockets as soon as
possible using the releaseThreadsSockets method, rather than waiting for a timeout or
thread death.

Socket Lease Time

You can force the release of an idle socket connection for peer-to-peer and client-to-server
connections:

Peer-to-peer. For peer-to-peer threads that do not share sockets, you can use the
socket-lease-time to make sure that no socket sits idle for too long. When a socket that
belongs to an individual thread remains unused for this time period, the system
automatically closes that socket. The next time the thread needs a socket, it creates a new
socket.

Client. For client connections, you can affect the same lease-time behavior by setting the
pool idle-timeout.

Calculating Connection Requirements

VMware GemFire 9.10 Documentation

VMware by Broadcom 384

Each type of member has its own connection requirements. Clients need connections to their
servers, peers need connections to peers, and so on. Many members have compound roles. Use
these guidelines to figure each member’s socket needs and to calculate the combined needs of
members that run on a single host system.

A member’s socket use is governed by a number of factors, including:

How many peer members it connects to

How many threads it has that update the cache and whether the threads share sockets

Whether it is a server or a client,

How many connections come in from other processes

The socket requirements described here are worst-case. Generally, it is not practical to calculate
exact socket use for your applications. Socket use varies depending on a number of factors
including how many members are running, what their threads are doing, and whether threads
share sockets.

To calculate any member’s socket requirements, add up the requirements for every category that
applies to the member. For example, a cache server running in a cluster with clients connected to
it has both peer-to-peer and server socket requirements.

Peer-to-Peer Socket Requirements Per Member

Every member of a cluster maintains two outgoing and two incoming connections to every peer. If
threads share sockets, these fixed sockets are the sockets they share.

For every thread that does not share sockets, additional sockets, one in and one out, are added for
each peer. This affects not only the member’s socket count, but the socket count for every
member the member thread connects to.

In this table:

M is the total number of members in the cluster.

T is the number of threads in a member that own their own sockets and do not share.

Peer Member Socket Description Number Used

Membership failure detection
2

Listener for incoming peer connections (server P2P) 1

Shared sockets (2 in and 2 out)

Threads that share sockets use these.

4 * (M-1)

This member’s thread-owned sockets (1 in and 1 out for
each thread, for each peer member).

(T * 2) * (M-1)

VMware GemFire 9.10 Documentation

VMware by Broadcom 385

Peer Member Socket Description Number Used

Other member’s thread-owned sockets that connect to
this member (1 in and 1 out for each). Note that this might
include server threads if any of the other members are
servers (see Server).

Summation over (M-1) other members of (T*2)

Note: The threads servicing client requests add to the total count of thread-owned sockets both
for this member connecting to its peers and for peers that connect to this member.

Server Socket Requirements Per Server

Servers use one connection for each incoming client connection. By default, each connection is
serviced by a server thread. These threads that service client requests communicate with the rest
of the servers to satisfy the requests and distributed update operations. Each of these threads uses
its own thread-owned sockets for peer-to-peer communication. So this adds to the server’s group
of thread-owned sockets.

The thread and connection count in the server may be limited by server configuration settings.
These are max-connections and max-threads settings in the <cache-server> element of the
cache.xml. These settings limit the number of connections the server accepts and the maximum
number of threads that can service client requests. Both of these limit the server’s overall
connection requirements:

When the connection limit is reached, the server refuses additional connections. This limits
the number of connections the server uses for clients.

When the thread limit is reached, threads start servicing multiple connections. This does
not limit the number of client connections, but does limit the number of peer connections
required to service client requests. Each server thread used for clients uses its own sockets,
so it requires 2 connections to each of the server’s peers. The max-threads setting puts a
cap on the number of this type of peer connection that your server needs.

The server uses one socket for each incoming client pool connection. If client subscriptions are
used, the server creates an additional connection to each client that enables subscriptions.

In this table, M is the total number of members in the cluster.

Server Socket Description Number Used

Listener for incoming client connections
1

Client pool connections to server Number of pool connections to this server

Threads servicing client requests (the lesser of the client
pool connection count and the server’s max-threads
setting). These connections are to the server’s peers.

(2 * number of threads in a server that service client pool
connections)

* (M-1)

These threads do not share sockets.

Subscription connections
2 * number of client subscription connections to this
server

VMware GemFire 9.10 Documentation

VMware by Broadcom 386

With client/server installations, the number of client connections to any single server is
undetermined, but VMware GemFire’s server load balancing and conditioning keeps the
connections fairly evenly distributed among servers.

Servers are peers in their own cluster and have the additional socket requirements as noted in the
Peer-to-Peer section above.

Client Socket Requirements per Client

Client connection requirements are compounded by how many pools they use. The use varies
according to runtime client connection needs, but will usually have maximum and minimum
settings. Look for the <pool> element in the cache.xml for the configuration properties.

Client Socket Description Number Used

Pool connection summation over the client pools of max-connections

Subscription connections 2 * summation over the client pools of subscription-
enabled

If your client acts as a peer in its own cluster, it has the additional socket requirements as noted in
the Peer-to-Peer section of this topic.

TCP/IP KeepAlive Configuration

VMware GemFire supports TCP KeepAlive to prevent socket connections from being timed out.

The gemfire.setTcpKeepAlive system property prevents connections that appear idle from being
timed out (for example, by a firewall.) When configured to true, VMware GemFire enables the
SO_KEEPALIVE option for individual sockets. This operating system-level setting allows the socket
to send verification checks (ACK requests) to remote systems in order to determine whether or not
to keep the socket connection alive.

Note: The time intervals for sending the first ACK KeepAlive request, the subsequent ACK
requests and the number of requests to send before closing the socket is configured on the
operating system level.

By default, this system property is set to true.

TCP/IP Peer-to-Peer Handshake Timeouts

You can alleviate connection handshake timeouts for TCP/IP connections by increasing the
connection handshake timeout interval with the system property p2p.handshakeTimeoutMs.

The default setting is 59000 milliseconds.

This sets the handshake timeout to 75000 milliseconds for a Java application:

-Dp2p.handshakeTimeoutMs=75000

The properties are passed to the cache server on the gfsh command line:

VMware GemFire 9.10 Documentation

VMware by Broadcom 387

gfsh>start server --name=server_name --J=-Dp2p.handshakeTimeoutMs=75000

Configuring Sockets in Multi-Site (WAN) Deployments

When you determine buffer size settings, you try to strike a balance between communication
needs and other processing.

This table lists the settings for gateway relationships and protocols, and tells where to set them.

Protocol / Area Affected Configuration Location Property Name

TCP / IP --- ---

Gateway sender gfsh create gateway-sender or

cache.xml <gateway-sender>

socket‑buffer‑size

Gateway receiver gfsh create gateway-receiver or cache.xml <gateway-receiver> socket-buffer-size

TCP/IP Buffer Sizes

If possible, your TCP/IP buffer size settings should match across your installation. At a minimum,
follow the guidelines listed here.

Multisite (WAN). In a multi-site installation using gateways, if the link between sites is not
tuned for optimum throughput, it could cause messages to back up in the cache queues. If
a receiving queue overflows because of inadequate buffer sizes, it will become out of sync
with the sender and the receiver will be unaware of the condition.

The gateway sender’s socket-buffer-size attribute should match the gateway receiver’s
socket-buffer-size attribute for all gateway receivers that the sender connects to, as in
these example cache.xml snippets:

Gateway Sender Socket Buffer Size cache.xml Configuration:

<gateway-sender id="sender2" parallel="true"

 remote-distributed-system-id="2"

 socket-buffer-size="42000"

 maximum-queue-memory="150"/>

Gateway Receiver Socket Buffer Size cache.xml Configuration:

<gateway-receiver start-port="1530" end-port="1551"

 socket-buffer-size="42000"/>

Note: WAN deployments increase the messaging demands on a VMware GemFire system. To
avoid hangs related to WAN messaging, always use the default setting of conserve-sockets=false
for VMware GemFire members that participate in a WAN deployment.

Multi-site (WAN) Socket Requirements

Each gateway sender and gateway receiver uses a socket to distribute events or to listen for
incoming connections from remote sites.

VMware GemFire 9.10 Documentation

VMware by Broadcom 388

Multi-site Socket Description Number Used

Listener for incoming connections summation of the number of gateway-receivers defined
for the member

Incoming connection summation of the total number of remote gateway
senders configured to connect to the gateway receiver

Outgoing connection summation of the number of gateway senders defined for
the member

Servers are peers in their own clusters and have the additional socket requirements as noted in the
Peer-to-Peer section above.

Member produces SocketTimeoutException

A client, server, gateway sender, or gateway receiver produces a SocketTimeoutException when it
stops waiting for a response from the other side of the connection and closes the socket. This
exception typically happens on the handshake or when establishing a callback connection.

Response:

Increase the default socket timeout setting for the member. This timeout is set separately for the
client Pool and for the gateway sender and gateway receiver, either in the cache.xml file or
through the API. For a client/server configuration, adjust the “read-timeout” value as described in
<pool> or use the org.apache.geode.cache.client.PoolFactory.setReadTimeout method. For a
gateway sender or gateway receiver, see WAN Configuration.

UDP Communication

You can make configuration adjustments to improve multicast and unicast UDP performance of
peer-to-peer communication.

You can tune your VMware GemFire UDP messaging to maximize throughput. There are two main
tuning goals: to use the largest reasonable datagram packet sizes and to reduce retransmission
rates. These actions reduce messaging overhead and overall traffic on your network while still
getting your data where it needs to go. VMware GemFire also provides statistics to help you
decide when to change your UDP messaging settings.

Before you begin, you should understand VMware GemFire Basic Configuration and Programming.
See also the general communication tuning and multicast-specific tuning covered in Socket
Communication and Multicast Communication.

UDP Datagram Size

You can change the UDP datagram size with the VMware GemFire property udp-fragment-size.
This is the maximum packet size for transmission over UDP unicast or multicast sockets. When
possible, smaller messages are combined into batches up to the size of this setting.

VMware GemFire 9.10 Documentation

VMware by Broadcom 389

Most operating systems set a maximum transmission size of 64k for UDP datagrams, so this setting
should be kept under 60k to allow for communication headers. Setting the fragment size too high
can result in extra network traffic if your network is subject to packet loss, as more data must be
resent for each retransmission. If many UDP retransmissions appear in DistributionStats, you maybe
achieve better throughput by lowering the fragment size.

UDP Flow Control

UDP protocols typically have a flow-control protocol built into them to keep processes from being
overrun by incoming no-ack messages. The VMware GemFire UDP flow-control protocol is a credit
based system in which the sender has a maximum number of bytes it can send before getting its
byte credit count replenished, or recharged, by its receivers. While its byte credits are too low, the
sender waits. The receivers do their best to anticipate the sender’s recharge requirements and
provide recharges before they are needed. If the sender’s credits run too low, it explicitly requests
a recharge from its receivers.

This flow-control protocol, which is used for all multicast and unicast no-ack messaging, is
configured using a three-part VMware GemFire property mcast-flow-control. This property is
composed of:

byteAllowance—Determines how many bytes (also referred to as credits) can be sent before
receiving a recharge from the receiving processes.

rechargeThreshold—Sets a lower limit on the ratio of the sender’s remaining credit to its
byteAllowance. When the ratio goes below this limit, the receiver automatically sends a
recharge. This reduces recharge request messaging from the sender and helps keep the
sender from blocking while waiting for recharges.

rechargeBlockMs—Tells the sender how long to wait while needing a recharge before
explicitly requesting one.

In a well-tuned system, where consumers of cache events are keeping up with producers, the
byteAllowance can be set high to limit flow-of-control messaging and pauses. JVM bloat or
frequent message retransmissions are an indication that cache events from producers are
overrunning consumers.

UDP Retransmission Statistics

VMware GemFire stores retransmission statistics for its senders and receivers. You can use these
statistics to help determine whether your flow control and fragment size settings are appropriate
for your system.

The retransmission rates are stored in the DistributionStats ucastRetransmits and
mcastRetransmits. For multicast, there is also a receiver-side statistic mcastRetransmitRequests
that can be used to see which processes aren’t keeping up and are requesting retransmissions.
There is no comparable way to tell which receivers are having trouble receiving unicast UDP
messages.

Multicast Communication

VMware GemFire 9.10 Documentation

VMware by Broadcom 390

You can make configuration adjustments to improve the UDP multicast performance of peer-to-
peer communication in your VMware GemFire system.

Before you begin, you should understand VMware GemFire Basic Configuration and Programming.
See also the general communication tuning and UDP tuning covered in Socket Communication and
UDP Communication.

Provisioning Bandwidth for Multicast

Multicast installations require more planning and configuration than TCP installations. With
IP multicast, you gain scalability but lose the administrative convenience of TCP.

Testing Multicast Speed Limits

TCP automatically adjusts its speed to the capability of the processes using it and enforces
bandwidth sharing so that every process gets a turn. With multicast, you must determine
and explicitly set those limits.

Configuring Multicast Speed Limits

After you determine the maximum transmission rate, configure and tune your production
system.

Run-time Considerations for Multicast

When you use multicast for messaging and data distribution, you need to understand how
the health monitoring setting works and how to control memory use.

Troubleshooting the Multicast Tuning Process

Several problems may arise during the initial testing and tuning process for multicasting.

Provisioning Bandwidth for Multicast

Multicast installations require more planning and configuration than TCP installations. With IP
multicast, you gain scalability but lose the administrative convenience of TCP.

When you install an application that runs over TCP, the network is almost always set up for TCP and
other applications are already using it. When you install an application to run over IP multicast it
may be the first multicast application on the network.

Multicast is very dependent on the environment in which it runs. Its operation is affected by the
network hardware, the network software, the machines, which Geode processes run on which
machines, and whether there are any competing applications. You could find that your site has
connectivity in TCP but not in multicast because some switches and network cards do not support
multicast. Your network could have latent problems that you would never see otherwise. To
successfully implement a distributed Geode system using multicast requires the cooperation of both
system and network administrators.

Bounded Operation Over Multicast

Group rate control is required for Geode systems to maintain cache coherence. If your application
delivers the same data to a group of members, your system tuning effort needs to focus on the
slow receivers.

If some of your members have trouble keeping up with the incoming data, the other members in
the group may be impacted. At best, slow receivers cause the producer to use buffering, adding

VMware GemFire 9.10 Documentation

VMware by Broadcom 391

latency for the slow receiver and perhaps for all of them. In the worst case, throughput for the
group can stop entirely while the producer’s CPU, memory and network bandwidth are dedicated
to serving the slow receivers.

To address this issue, you can implement a bounded operation policy, which sets boundaries for the
producer’s operation. The appropriate rate limits are determined through tuning and testing to
allow the fastest operation possible while minimizing data loss and latency in the group of
consumers. This policy is suited to applications such as financial market data, where high
throughput, reliable delivery and network stability are required. With the boundaries set correctly,
your producer’s traffic cannot cause a network outage.

Multicast protocols typically have a flow control protocol built into them to keep processes from
being overrun. The Geode flow control protocol uses the mcast-flow-control property to set
producer and consumer boundaries for multicast flow operations. The property provides these
three configuration settings:

byteAllowance Number of bytes that can be sent without a recharge.

rechargeThreshold Tells consumers how low the producer’s initial to
remaining allowance ratio should be before sending a
recharge.

rechargeBlockMs
Tells the producer how long to wait for a recharge before
requesting one.

Testing Multicast Speed Limits

TCP automatically adjusts its speed to the capability of the processes using it and enforces
bandwidth sharing so that every process gets a turn. With multicast, you must determine and
explicitly set those limits.

Without the proper configuration, multicast delivers its traffic as fast as possible, overrunning the
ability of consumers to process the data and locking out other processes that are waiting for the
bandwidth. You can tune your multicast and unicast behavior using mcast-flow-control in
gemfire.properties.

Using Iperf

Iperf is an open-source TCP/UDP performance tool that you can use to find your site’s maximum
rate for data distribution over multicast. Iperf can be downloaded from web sites such as the
National Laboratory for Applied Network Research (NLANR).

Iperf measures maximum bandwidth, allowing you to tune parameters and UDP characteristics.
Iperf reports statistics on bandwidth, delay jitter, and datagram loss. On Linux, you can redirect this
output to a file; on Windows, use the -o filename parameter.

Run each test for ten minutes to make sure any potential problems have a chance to develop. Use
the following command lines to start the sender and receivers.

Sender:

VMware GemFire 9.10 Documentation

VMware by Broadcom 392

iperf -c 192.0.2.0 -u -T 1 -t 100 -i 1 -b 1000000000

where:

-c address
Run in client mode and connect to a multicast address

-u
Use UDP

-T #
Multicast time-to-live: number of subnets across which a
multicast packet can travel before the routers drop the
packet

Note: Do not set the -T parameter above 1 without consulting your network administrator. If this
number is too high then the iperf traffic could interfere with production applications or continue out
onto the internet.

-t
Length of time to transmit, in seconds

-i
Time between periodic bandwidth reports, in seconds

-b Sending bandwidth, in bits per second

Receiver:

iperf -s -u -B 192.0.2.0 -i 1

where:

-s Run in server mode

-u Use UDP

-B address Bind to a multicast address

-i # Time between periodic bandwidth reports, in seconds

Note: If your VMware GemFire cluster runs across several subnets, start a receiver on each subnet.

In the receiver’s output, look at the Lost/Total Datagrams columns for the number and percentage
of lost packets out of the total sent.

Output From Iperf Testing:

[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams

[3] 0.0- 1.0 sec 129 KBytes 1.0 Mbits/sec 0.778 ms 61/ 151 (40%)

[3] 1.0- 2.0 sec 128 KBytes 1.0 Mbits/sec 0.236 ms 0/ 89 (0%)

[3] 2.0- 3.0 sec 128 KBytes 1.0 Mbits/sec 0.264 ms 0/ 89 (0%)

[3] 3.0- 4.0 sec 128 KBytes 1.0 Mbits/sec 0.248 ms 0/ 89 (0%)

[3] 0.0- 4.3 sec 554 KBytes 1.0 Mbits/sec 0.298 ms 61/ 447 (14%)

VMware GemFire 9.10 Documentation

VMware by Broadcom 393

Rerun the test at different bandwidths until you find the maximum useful multicast rate. Start high,
then gradually decrease the send rate until the test runs consistently with no packet loss. For
example, you might need to run five tests in a row, changing the -b (bits per second) parameter
each time until there is no loss:

1. -b 1000000000 (loss)

2. -b 900000000 (no loss)

3. -b 950000000 (no loss)

4. -b 980000000 (a bit of loss)

5. -b 960000000 (no loss)

Enter iperf -h to see all of the command-line options. For more information, see the Iperf user
manual.

Configuring Multicast Speed Limits

After you determine the maximum transmission rate, configure and tune your production system.

For best performance, the producer and the consumers should run on different machines and each
process should have at least one CPU dedicated to it. The following is a list of configuration
changes that can improve multicast performance. Check with your system administrator about
changing any of the limits discussed here.

Increase the default datagram size for systems running Microsoft Windows from 1024 bytes
to a value that matches your network’s maximum transmission unit (MTU), which is typically
1500 bytes. The higher setting should improve the system’s network performance.

Distribution statistics for stack time probes are deactivated by default to increase multicast
performance. To reduce multicast speed, you can enable time statistics by setting the
gemfire.enable-time-statistics property to true.

This enables time statistics for a Java application:

-Dgemfire.enable-time-statistics=true

The time statistics properties are passed to the cache server on the gfsh the command line:

gfsh>start server --name=server_name --enable-time-statistics=true

Monitor the members that receive data for signs of data loss. A few data loss messages can
happen normally during region creation. Data loss monitoring can be done by reviewing the
GemFire DistributionStats in the statistics archive using the optional Visual Statistics Display
(VSD) tool. If the cache regions are configured to require acknowledgment, you could see
messages timing out as they wait for a response. After a put into a region, the next
operations might report that the entry could not be found. Multicast retransmit requests
and unicast retransmits can also be monitored to detect data loss. Even when you see data
loss, the cause of the problem may have nothing to do with the network. However, if it
happens constantly then you should try testing the flow control rate again

If necessary, reconfigure all the gemfire.properties files and repeat with lower flow control
maximum credits until you find the maximum useful rate for your installation.

VMware GemFire 9.10 Documentation

VMware by Broadcom 394

Slow system performance might be helped by reducing how far your multicast messaging
goes in your network.

Reduce multicast latency by deactivating batching. By default, GemFire uses batching for
operations when the region’s scope is distributed-no-ack. Set the disableBatching
property to true on the application or when starting a cache server process through the
gfsh command line:

gfsh>start server --name=server_name --J=-Dp2p.disableBatching=true

Run-time Considerations for Multicast

When you use multicast for messaging and data distribution, you need to understand how the
health monitoring setting works and how to control memory use.

Multicast Health Monitor

The VMware GemFire management and monitoring system is supplemented by a
maxRetransmissionRatio health monitoring setting for cluster members. This ratio is the number of
retransmission requests received divided by the number of multicast datagrams written. If the ratio
is at 1.0, the member is retransmitting as many packets as it originally sent. Retransmissions are
point-to-point, and many processes may request retransmission, so this number can get quite high
if problems occur. The default value for maxRetransmissionRatio is 0.2.

For example, consider a cluster with one producer and two consumers of cache events using
multicast to transmit cache updates. The new member is added, which is running on a machine
without multicast enabled. As a result, there is a retransmission request for every cache update,
and the maxRetransmissionRatio changes to 1.0.

Controlling Memory Use on VMware GemFire Hosts with Multicast

Running out of memory can impede a member’s performance and eventually lead to severe errors.

When data is distributed over multicast, VMware GemFire incurs a fixed overhead of memory
reserved for transmission buffers. A specified amount of memory is reserved for each distributed
region. These producer-side buffers are used only when a receiver is not getting enough CPU to
read from its own receiving buffer as quickly as the producer is sending. In this case, the receiver
complains of lost data. The producer then retrieves the data, if it still exists in its buffer, and resends
to the receiver.

Tuning the transmission buffers requires a careful balance. Larger buffers mean that more data
remains available for retransmission, providing more protection in case of a problem. On the other
hand, a larger amount of reserved memory means that less memory is available for caching.

You can adjust the transmission buffer size by resetting the mcast-send-buffer-size parameter in
the gemfire.properties file:

mcast-send-buffer-size=45000

Note: The maximum buffer size is constrained only by the limits of your system. If you are not
seeing problems that could be related to lack of memory then do not change the default, since it
provides greater protection in case of network problems.

VMware GemFire 9.10 Documentation

VMware by Broadcom 395

Troubleshooting the Multicast Tuning Process

Several problems may arise during the initial testing and tuning process for multicasting.

Some or All Members Cannot Communicate

If your applications and cache servers cannot talk to each other, even though they are configured
correctly, you may not have multicast connectivity on your network. It’s common to have unicast
connectivity, but not multicast connectivity. See your network administrator.

Multicast Is Slower Than Expected

Look for an Ethernet flow control limit. If you have mixed-speed networks that result in a multicast
flooding problem, the Ethernet hardware may be trying to slow down the fast traffic.

Make sure your network hardware can deal with multicast traffic and route it efficiently. Some
network hardware designed to handle multicast does not perform well enough to support a full-
scale production system.

Multicast Fails Unexpectedly

If you find through testing that multicast fails above a round number, for example, it works up to
100 Mbps and fails at all rates over that, suspect that it is failing because it exceeds the network
rate. This problem often arises at sites where one of the secondary LANs is slower than the main
network

Maintaining Cache Consistency

Maintaining data consistency between caches in a distributed VMware GemFire system is vital for
ensuring its functional integrity and preventing data loss.

General Guidelines

Before Restarting a Region with a Disk Store, Consider the State of the Entire Region

Note: If you revoke a member’s disk store, do not restart that member with its disk stores—in
isolation—at a later time.

VMware GemFire stores information about your persisted data and prevents you from starting a
member with a revoked disk store in the running system. But VMware GemFire cannot stop you
from starting a revoked member in isolation, and running with its revoked data. This is an unlikely
situation, but it is possible to do:

1. Members A and B are running, both storing Region data to disk.

2. Member A goes down.

3. Member B goes down.

4. At this point, Member B has the most recent disk data.

5. Member B is not usable. Perhaps its host machine is down or cut off temporarily.

6. To get the system up and running, you start Member A, and use the command line tool to
revoke Member B’s status as member with the most recent data. The system loads
Member A’s data and you run forward with that.

VMware GemFire 9.10 Documentation

VMware by Broadcom 396

7. Member A is stopped.

8. At this point, both Member A and Member B have information in their disk files indicating
they are the gold copy members.

9. If you start Member B, it will load its data from disk.

10. When you start Member A, the system will recognize the incompatible state and report an
exception, but by this point, you have good data in both files, with no way to combine
them.

Understand Cache Transactions

Understanding the operation of VMware GemFire transactions can help you minimize situations
where the cache could get out of sync.

Transactions do not work in distributed regions with global scope.

Transactions provide consistency within one cache, but the distribution of results to other members
is not as consistent.

Multiple transactions in a cache can create inconsistencies because of read committed isolation.
Since multiple threads cannot participate in a transaction, most applications will be running multiple
transactions.

An in-place change to directly alter a key’s value without doing a put can result in cache
inconsistencies. With transactions, it creates additional difficulties because it breaks read committed
isolation. If at all possible, use copy-on-read instead.

In distributed-no-ack scope, two conflicting transactions in different members can commit
simultaneously, overwriting each other as the changes are distributed.

If a cache writer exists during a transaction, then each transaction write operation triggers a cache
writer’s related call. Regardless of the region’s scope, a transaction commit can invoke a cache
writer only in the local cache and not in the remote caches.

A region in a cache with transactions may not stay in sync with a region of the same name in
another cache without transactions.

Two applications running the same sequence of operations in their transactions may get different
results. This could occur because operations happening outside a transaction in one of the
members can overwrite the transaction, even in the process of committing. This could also occur if
the results of a large transaction exceed the machine’s memory or the capacity of VMware
GemFire. Those limits can vary by machine, so the two members may not be in sync.

Guidelines for Multi-Site Deployments

Optimize socket-buffer-size

In a multi-site installation using gateways, if the link between sites is not tuned for optimum
throughput, it could cause messages to back up in the cache queues. If a queue overflows because
of inadequate buffer sizes, it will become out of sync with the sender and the receiver will be
unaware of the condition. You can configure the send-receive buffer sizes of the TCP/IP
connections used for data transmissions by changing the socket-buffer-size attribute of the
gateway-sender and gateway-receiver elements in the cache.xml file. Set the buffer size by
determining the link bandwidth and then using ping to measure the round-trip time.

VMware GemFire 9.10 Documentation

VMware by Broadcom 397

When optimizing socket-buffer sizes, use the same value for both gateway senders and gateway
receivers.

Prevent Primary and Secondary Gateway Senders from Going Offline

In a multi-site installation, if the primary gateway server goes offline, a secondary gateway sender
must take over primary responsibilities as the failover system. The existing secondary gateway
sender detects that the primary gateway sender has gone offline, and a secondary one becomes
the new primary. Because the queue is distributed, its contents are available to all gateway
senders. So, when a secondary gateway sender becomes primary, it is able to start processing the
queue where the previous primary left off with no loss of data.

If both the primary gateway sender and all its secondary senders go offline and messages are in
their queues, data loss could occur, because there is no failover system.

Verify That isOriginRemote Is Set to False

The isOriginRemote flag for a server or a multi-site gateway is set to false by default, which ensures
that updates are distributed to other members. Setting its value to true in the server or the
receiving gateway member applies updates to that member only, so updates are not distributed to
peer members.

Logging

Comprehensive logging messages help you confirm system configuration and debug problems in
configuration and code.

How VMware GemFire Logging Works

VMware GemFire uses Apache Log4j 2 as the basis for its logging system.

Understanding Log Messages and Their Categories

System logging messages typically pertain to startup; logging management; connection and
system membership; distribution; or cache, region, and entry management.

Naming, Searching, and Creating Log Files

The best way to manage and understand the logs is to have each member log to its own
files.

Set Up Logging

You configure logging in a member’s gemfire.properties or at startup with gfsh.

Advanced Users—Configuring Log4j 2 for VMware GemFire

Basic VMware GemFire logging configuration is configured via the gemfire.properties file.
This topic is intended for advanced users who need increased control over logging due to
integration with third-party libraries.

How VMware GemFire Logging Works

VMware GemFire uses Apache Log4j 2 as the basis for its logging system.

VMware GemFire uses Apache Log4j 2 API and Core libraries as the basis for its logging system.
Log4j 2 API is a popular and powerful front-end logging API used by all the VMware GemFire

VMware GemFire 9.10 Documentation

VMware by Broadcom 398

http://logging.apache.org/log4j/2.x/

classes to generate log statements. Log4j 2 Core is a backend implementation for logging; you can
route any of the front-end logging API libraries to log to this backend. VMware GemFire uses the
Core backend to run two custom Log4j 2 Appenders: AlertAppender and LogWriterAppender.

VMware GemFire has been tested with Log4j 2.17.1. VMware GemFire requires the log4j-api-
2.17.1.jar and log4j-core-2.17.1.jar JAR files to be in the classpath. Both of these JARs are
distributed in the <path-to-product>/lib directory and included in the appropriate *-
dependencies.jar convenience libraries.

AlertAppender is the component that generates VMware GemFire alerts that are then managed
by the JMX Management and Monitoring system. See Notification Federation for more details.

LogWriterAppender is the component that is configured by all the log-* VMware GemFire
properties such as log-file, log-file-size-limit and log-disk-space-limit.

Both of these appenders are created and controlled programmatically. You configure their behavior
with the log-* VMware GemFire properties and the alert level that is configured within the JMX
Management & Monitoring system. These appenders do not currently support configuration within
a log4j2.xml config file.

Advanced users may wish to define their own log4j2.xml. See Advanced Users—Configuring Log4j
2 for VMware GemFire for more details.

Understanding Log Messages and Their Categories

System logging messages typically pertain to startup; logging management; connection and system
membership; distribution; or cache, region, and entry management.

Startup information. Describe the Java version, the VMware GemFire native version, the
host system, current working directory, and environment settings. These messages contain
all information about the system and configuration the process is running with.

Logging management. Pertain to the maintenance of the log files themselves. This
information is always in the main log file (see the discussion at Log File Name).

Connections and system membership. Report on the arrival and departure of cluster
members (including the current member) and any information related to connection
activities or failures. This includes information on communication between tiers in a
hierarchical cache.

Distribution. Report on the distribution of data between system members. These messages
include information about region configuration, entry creation and modification, and region
and entry invalidation and destruction.

Cache, region, and entry management. Cache initialization, listener activity, locking and
unlocking, region initialization, and entry updates.

Structure of a Log Message

Every logged message contains:

The message header within square brackets:

1. The message level

2. The time the message was logged

VMware GemFire 9.10 Documentation

VMware by Broadcom 399

http://logging.apache.org/log4j/2.x/

3. The ID of the connection and thread that logged the message, which might be the
main program or a system management process

The message itself, which can be a string and/or an exception with the exception stack
trace

[config 2005/11/08 15:46:08.710 PST PushConsumer main nid=0x1]

Cache initialized using "file:/Samples/quickstart/xml/PushConsumer.xml".

Log File Name

Specify your VMware GemFire system member’s main log in the gemfire property log-file
setting.

VMware GemFire uses this name for the most recent log file, actively in use if the member is
running, or used for the last run. VMware GemFire creates the main log file when the application
starts.

By default, the main log contains the entire log for the member session. If you specify a log-file-
size-limit, VMware GemFire splits the logging into these files:

The main, current log. Holding current logging entries. Named with the string you
specified in log-file.

Child logs. Holding older logging entries. These are created by renaming the main, current
log when it reaches the size limit.

A metadata log file, with meta- prefixed to the name. Used to track of startup, shutdown,
child log management, and other logging management operations

The current log is renamed, or rolled, to the next available child log when the specified size limit is
reached.

When your application connects with logging enabled, it creates the main log file and, if required,
the meta- log file. If the main log file is present when the member starts up, it is renamed to the
next available child log to make way for new logging.

Your current, main log file always has the name you specified in log-file. The old log files and child
log files have names derived from the main log file name. These are the pieces of a renamed log or
child log file name where filename.extension is the log-file specification

If child logs are not used, the child file sequence number is a constant 00 (two zeros).

For locators, the log file name is fixed. For the standalone locator started in gfsh, it is always named
<locator_name>.log where the locator_name corresponds to the name specified at locator startup.
For the locator that runs colocated inside another member, the log file is the member’s log file.

For applications and the servers, your log file specification can be relative or absolute. If no file is
specified, the defaults are standard output for applications and <server_name>.log for servers
started with gfsh and cacheserver.log for servers started with the older cacheserver script.

VMware GemFire 9.10 Documentation

VMware by Broadcom 400

To figure out the member’s most recent activities, look at the meta- log file or, if no meta file exists,
the main log file.

How the System Renames Logs

The log file that you specify is the base name used for all logging and logging archives. If a log file
with the specified name already exists at startup, the cluster automatically renames it before
creating the current log file. This is a typical directory listing after a few runs with log-
file=system.log:

bash-2.05$ ls -tlra system*

-rw-rw-r-- 1 jpearson users 11106 Nov 3 11:07 system-01-00.log

-rw-rw-r-- 1 jpearson users 11308 Nov 3 11:08 system-02-00.log

-rw-rw-r-- 1 jpearson users 11308 Nov 3 11:09 system.log

bash-2.05$

The first run created system.log with a timestamp of Nov 3 11:07. The second run renamed that file
to system-01-00.log and created a new system.log with a timestamp of Nov 3 11:08. The third run
renamed that file to system-02-00.log and created the file named system.log in this listing.

When the cluster renames the log file, it assigns the next available number to the new file, as XX of
filename-XX-YY.extension. This next available number depends on existing old log files and also on
any old statistics archives. The system assigns the next number that is higher than any in use for
statistics or logging. This keeps current log files and statistics archives paired up regardless of the
state of the older files in the directory. Thus, if an application is archiving statistics and logging to
system.log and statArchive.gfs, and it runs in a Unix directory with these files:

bash-2.05$ ls -tlr stat* system*

-rw-rw-r-- 1 jpearson users 56143 Nov 3 11:07 statArchive-01-00.gfs

-rw-rw-r-- 1 jpearson users 56556 Nov 3 11:08 statArchive-02-00.gfs

-rw-rw-r-- 1 jpearson users 56965 Nov 3 11:09 statArchive-03-00.gfs

-rw-rw-r-- 1 jpearson users 11308 Nov 3 11:27 system-01-00.log

-rw-rw-r-- 1 jpearson users 59650 Nov 3 11:34 statArchive.gfs

-rw-rw-r-- 1 jpearson users 18178 Nov 3 11:34 system.log

the directory contents after the run look like this (changed files in bold):

bash-2.05$ ls -ltr stat* system*

-rw-rw-r-- 1 jpearson users 56143 Nov 3 11:07 statArchive-01-00.gfs

-rw-rw-r-- 1 jpearson users 56556 Nov 3 11:08 statArchive-02-00.gfs

-rw-rw-r-- 1 jpearson users 56965 Nov 3 11:09 statArchive-03-00.gfs

-rw-rw-r-- 1 jpearson users 11308 Nov 3 11:27 system-01-00.log

-rw-rw-r-- 1 jpearson users 59650 Nov 3 11:34 statArchive-04-00.gfs

-rw-rw-r-- 1 jpearson users 18178 Nov 3 11:34 system-04-00.log

-rw-rw-r-- 1 jpearson users 55774 Nov 4 10:08 statArchive.gfs

-rw-rw-r-- 1 jpearson users 17681 Nov 4 10:08 system.log

The statistics and the log file are renamed using the next integer that is available to both, so the log
file sequence jumps past the gap in this case.

Log Level

VMware GemFire 9.10 Documentation

VMware by Broadcom 401

The higher the log level, the more important and urgent the message. If you are having problems
with your system, a first-level approach is to lower the log-level (thus sending more of the detailed
messages to the log file) and recreate the problem. The additional log messages often help uncover
the source.

These are the levels, in descending order, with sample output:

severe (highest level). This level indicates a serious failure. In general, severe messages
describe events that are of considerable importance that will prevent normal program
execution. You will likely need to shut down or restart at least part of your system to
correct the situation.

This severe error was produced by configuring a system member to connect to a non-
existent locator:

[severe 2005/10/24 11:21:02.908 PDT nameFromGemfireProperties

DownHandler (FD_SOCK) nid=0xf] GossipClient.getInfo():

exception connecting to host localhost:30303:

java.net.ConnectException: Connection refused

error. This level indicates that something is wrong in your system. You should be able to
continue running, but the operation noted in the error message failed.

This error was produced by throwing a Throwable from a CacheListener. While dispatching
events to a customer-implemented cache listener, VMware GemFire catches any
Throwable thrown by the listener and logs it as an error. The text shown here is followed by
the output from the Throwable itself.

[error 2007/09/05 11:45:30.542 PDT gemfire1_newton_18222

<vm_2_thr_5_client1_newton_18222-0x472e> nid=0x6d443bb0]

Exception occurred in CacheListener

warning. This level indicates a potential problem. In general, warning messages describe
events that are of interest to end users or system managers, or that indicate potential
problems in the program or system.

This message was obtained by starting a client with a Pool configured with queueing
enabled when there was no server running to create the client’s queue:

[warning 2008/06/09 13:09:28.163 PDT <queueTimer-client> tid=0xe]

QueueManager - Could not create a queue. No queue servers available

This message was obtained by trying to get an entry in a client region while there was no
server running to respond to the client request:

[warning 2008/06/09 13:12:31.833 PDT <main> tid=0x1] Unable to create a

connection in the allowed time

org.apache.geode.cache.client.NoAvailableServersException

 at org.apache.geode.cache.client.internal.pooling.ConnectionManagerImpl.

borrowConnection(ConnectionManagerImpl.java:166)

. . .

org.apache.geode.internal.cache.LocalRegion.get(LocalRegion.java:1122

)

VMware GemFire 9.10 Documentation

VMware by Broadcom 402

info. This is for informational messages, typically geared to end users and system
administrators.

This is a typical info message created at system member startup. This indicates that no
other DistributionManagers are running in the cluster, which means no other system
members are running:

[info 2005/10/24 11:51:35.963 PDT CacheRunner main nid=0x1]

DistributionManager straw(7368):41714 started on 192.0.2.0[10333]

with id straw(7368):41714 (along with 0 other DMs)

When another system member joins the cluster, these info messages are output by the
members that are already running:

[info 2005/10/24 11:52:03.934 PDT CacheRunner P2P message reader for

straw(7369):41718 nid=0x21] Member straw(7369):41718 has joined the

distributed cache.

When another member leaves because of an interrupt or through normal program
termination:

[info 2005/10/24 11:52:05.128 PDT CacheRunner P2P message reader for

straw(7369):41718 nid=0x21] Member straw(7369):41718 has left the

distributed cache.

And when another member is unexpectedly terminated:

[info 2005/10/24 13:08:41.389 PDT CacheRunner DM-Puller nid=0x1b] Member

straw(7685):41993 has unexpectedly left the distributed cache.

config. This is the default setting for logging. This level provides static configuration
messages that are often used to debug problems associated with particular configurations.

You can use this config message to verify your startup configuration:

[config 2008/08/08 14:28:19.862 PDT CacheRunner <main> tid=0x1] Startup Configu

ration:

ack-severe-alert-threshold="0"

ack-wait-threshold="15"

archive-disk-space-limit="0"

archive-file-size-limit="0"

async-distribution-timeout="0"

async-max-queue-size="8"

async-queue-timeout="60000"

bind-address=""

cache-xml-file="cache.xml"

conflate-events="server"

conserve-sockets="false"

 ...

socket-buffer-size="32768"

socket-lease-time="60000"

ssl-ciphers="any"

ssl-enabled="false"

ssl-protocols="any"

ssl-require-authentication="true"

start-locator=""

VMware GemFire 9.10 Documentation

VMware by Broadcom 403

statistic-archive-file=""

statistic-sample-rate="1000"

statistic-sampling-enabled="false"

tcp-port="0"

udp-fragment-size="60000"

udp-recv-buffer-size="1048576"

udp-send-buffer-size="65535"

fine. This level provides tracing information that is generally of interest to developers. It is
used for the lowest volume, most important, tracing messages.

Note: Generally, you should only use this level if instructed to do so by technical support. At
this logging level, you will see a lot of noise that might not indicate a problem in your
application. This level creates very verbose logs that may require significantly more disk
space than the higher levels.

[fine 2011/06/21 11:27:24.689 PDT <locatoragent_ds_w1-gst-dev04_2104> tid=0xe]

SSL Configuration:

 ssl-enabled = false

finer, finest, and all. These levels exist for internal use only. They produce a large amount
of data and so consume large amounts of disk space and system resources. Note: Do not
use these settings unless asked to do so by technical support.

Note: VMware GemFire no longer supports setting system properties for VERBOSE logging. To
enable VERBOSE logging, see Advanced Users—Configuring Log4j 2 for VMware GemFire

Naming, Searching, and Creating Log Files

The best way to manage and understand the logs is to have each member log to its own files.

Log File Naming Recommendation

For members running on the same machine, you can have them log to their own files by starting
them in different working directories and using the same, relative log-file specification. For
example, you could set this in <commonDirectoryPath>/gemfire.properties:

log-file=./log/member.log

then start each member in a different directory with this command, which points to the common
properties file:

java -DgemfirePropertyFile=<commonDirectoryPath>/gemfire.properties

This way, each member has its own log files under its own working directory.

Searching the Log Files

For the clearest picture, merge the log files, with the gfsh export logs command:

gfsh> export logs --dir=myDir --dir=myDir --merge-log=true

VMware GemFire 9.10 Documentation

VMware by Broadcom 404

Search for lines that begin with these strings:

[warning

[error

[severe

Creating Your Own Log Messages

In addition to the system logs, you can add your own application logs from your Java code. For
information on adding custom logging to your applications, see the online Java documentation for
the org.apache.geode.LogWriter interface. Both system and application logging is output and
stored according to your logging configuration settings.

Set Up Logging

You configure logging in a member’s gemfire.properties or at startup with gfsh.

Before you begin, make sure you understand Basic Configuration and Programming.

1. Run a time synchronization service such as NTP on all VMware GemFire host machines.
This is the only way to produce logs that are useful for troubleshooting. Synchronized time
stamps ensure that log messages from different hosts can be merged to accurately
reproduce a chronological history of a distributed run.

2. Use a sniffer to monitor your logs Look for new or unexpected warnings, errors, or severe
messages. The logs output by your system have their own characteristics, indicative of your
system configuration and of the particular behavior of your applications, so you must
become familiar with your applications’ logs to use them effectively.

3. Configure member logging in each member’s gemfire.properties as needed:

Default gemfire.properties log file settings

log-level=config

log-file=

log-file-size-limit=0

log-disk-space-limit=0

Note: You can also specify logging parameters when you start up members (either locators
or servers) using the gfsh command-line utility. In addition, you can modify log file
properties and log-level settings while a member is already running by using the alter
runtime command.

1. Set log-level. Log levels are not case-sensitive. Options are:

none or off

severe or fatal (log messages with the highest level of importance)

error

warning or warn

info or config

fine or debug

VMware GemFire 9.10 Documentation

VMware by Broadcom 405

finer or trace

finest or trace

all

The more detailed levels (lower in this list) also include messages from all levels
above them. For example, a warning log level shows warning, error, and severe
messages. For general troubleshooting, we recommend setting the log level at
config or higher on this list. The most detailed, lower levels in this list (all, finest,
finer, fine) can quickly consume disk space and negatively impact system
performance. Use these more detailed levels only when necessary.

2. Specify the log file name in log-file. This can be relative or absolute. If this
property is not specified, the defaults are:

Standard output for applications

For servers, the default log file location is:

working-directory/server-name.log

By default, when starting a server through gfsh, the working -directory
corresponds to the directory (named after itself) that the cache server
creates upon startup. Alternatively, you can specify a different working
directory path when you start the cache server. The server-name
corresponds to the name of the cache server provided upon startup.

For a standalone locator, the default log file location is:

working-directory/locator-name.log

By default, when starting a locator through gfsh, the working -directory
corresponds to the directory (named after itself) created when the locator
starts up. Alternatively, you can specify a different working directory path
when you start a locator. The locator-name corresponds to the name of the
locator provided upon startup. If you are using a colocated or embedded
locator, the locator logs will be part of the member’s log file.

For the easiest logs examination and troubleshooting, send your logs to files instead
of standard out. Note: Make sure each member logs to its own files. This makes the
logs easier to decipher.

3. Set the maximum size of a single log file in log-file-size-limit. If not set, the
single, main log file is used. If set, the metadata file, the main log, and rolled child
logs are used.

4. Set the maximum size of all log files in log-disk-space-limit. If non-zero, this limits
the combined size of all inactive log files, deleting oldest files first to stay under the
limit. A zero setting indicates no limit.

4. If you are using the gfsh command-line interface, gfsh can create its own log file in the
directory where you run the gfsh or gfsh.bat script. By default, gfsh does not generate log
files for itself. To enable gfsh logs, set the following system property to the desired log level
before starting gfsh:

VMware GemFire 9.10 Documentation

VMware by Broadcom 406

export JAVA_ARGS=-Dgfsh.log-level=[severe|warning|info|config|fine|finer|fines

t]

gfsh log files are named gfsh-0_0.log.

Advanced Users—Configuring Log4j 2 for VMware GemFire

Basic VMware GemFire logging configuration is configured via the gemfire.properties file. This
topic is intended for advanced users who need increased control over logging due to integration
with third-party libraries.

An example log4j2.xml can be located within the product distribution at
$GEODE/config/log4j2.xml.

To specify your own log4j2.xml configuration file (or anything else supported by Log4j 2 such as
.json or .yaml), use the following flag when starting up your JVM or VMware GemFire member:

-Dlog4j.configurationFile=<location-of-your-file>

If the Java system property log4j.configurationFile is specified, then Log4j will not use the
log4j2.xml included in geode-log4j-<version>.jar.

Using Different Front-End Logging APIs to Log to Log4j2

You can also configure Log4j 2 to work with various popular and commonly used logging APIs. To
obtain and configure the most popular front-end logging APIs to log to Log4j 2, see the
instructions on the Apache Log4j 2 web site at http://logging.apache.org/log4j/2.x/.

For example, if you are using:

Commons Logging, download “Commons Logging Bridge” (log4j-jcl-2.17.1.jar)

SLF4J, download “SLFJ4 Binding” (log4j-slf4j-impl-2.17.1.jar)

java.util.logging, download the “JUL adapter” (log4j-jul-2.17.1.jar)

See http://logging.apache.org/log4j/2.x/faq.html for more examples.

All three of the above JAR files are in the full distribution of Log4J 2.17.1 which can be downloaded
at http://logging.apache.org/log4j/2.x/download.html. Download the appropriate bridge, adapter,
or binding JARs to ensure that VMware GemFire logging is integrated with every logging API used
in various third-party libraries or in your own applications.

Note: VMware GemFire has been tested with Log4j 2.17.1. As newer versions of Log4j 2 come out,
you can find 2.17.1 under Previous Releases on that page.

Customizing Your Own log4j2.xml File

Advanced users may want to move away entirely from setting log-* gemfire properties and instead
specify their own log4j2.xml using -Dlog4j.configurationFile.

Custom Log4j 2 configuration in VMware GemFire comes with some caveats and notes:

Do not use "monitorInterval=" in your log4j2.xml file, because doing so can have
significant performance impact. This setting instructs Log4j 2 to monitor the log4j2.xml

VMware GemFire 9.10 Documentation

VMware by Broadcom 407

http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/faq.html
http://logging.apache.org/log4j/2.x/download.html

config file at runtime and automatically reload and reconfigure if the file changes.

VMware GemFire’s default log4j2.xml specifies status=“FATAL” because Log4j 2’s
StatusLogger generates warnings to standard out at ERROR level anytime VMware
GemFire stops its AlertAppender or LogWriterAppender. VMware GemFire uses a lot of
concurrent threads that are executing code with log statements; these threads may be
logging while the VMware GemFire appenders are being stopped.

VMware GemFire’s default log4j2.xml specifies shutdownHook="disable" because VMware
GemFire has a shutdown hook which disconnects the DistributedSystem and closes the
Cache, which is executing the code that performs logging. If the Log4J2 shutdown hook
stops logging before VMware GemFire completes its shutdown, Log4j 2 will attempt to
start back up. This restart in turn attempts to register another Log4j 2 shutdown hook
which fails resulting in a FATAL level message logged by Log4j 2.

The GEODE_VERBOSE marker (Log4J2 Marker are discussed on
http://logging.apache.org/log4j/2.x/manual/markers.html) can be used to enable additional
verbose log statements at TRACE level. Many log statements are enabled simply by
enabling DEBUG or TRACE. However, even more log statements can be further enabled by
using MarkerFilter to accept GEODE_VERBOSE. The default VMware GemFire log4j2.xml
disables GEODE_VERBOSE with this line:

<MarkerFilter marker="GEODE_VERBOSE" onMatch="DENY" onMismatch="NEUTRAL"/>

You can enable the GEODE_VERBOSE log statements by changing onMatch="DENY" to
onMatch="ACCEPT". Typically, it’s more useful to simply enable DEBUG or TRACE on certain
classes or packages instead of for the entire VMware GemFire product. However, this
setting can be used for internal debugging purposes if all other debugging methods fail.

Statistics

Every application and server in a distributed system can access statistical data about VMware
GemFire operations. You can configure the gathering of statistics by using the alter runtime
command of gfsh or in the gemfire.properties file to facilitate system analysis and troubleshooting.

How Statistics Work

Each application or cache server that joins the distributed system can collect and archive
statistical data for analyzing system performance.

Transient Region and Entry Statistics

For replicated, distributed, and local regions, VMware GemFire provides a standard set of
statistics for the region and its entries.

Application-Defined and Custom Statistics

VMware GemFire includes interfaces for defining and maintaining your own statistics.

Configuring and Using Statistics

You configure statistics and statistics archiving in several different ways.

Viewing Archived Statistics

VMware GemFire 9.10 Documentation

VMware by Broadcom 408

http://logging.apache.org/log4j/2.x/manual/markers.html

How Statistics Work

Each application or cache server that joins the cluster can collect and archive statistical data for
analyzing system performance.

VMware GemFire statistics can be enabled for a cluster, for an application, for a server, or for a
region. Statistics gathered for a cluster, an application, or a cache server are saved to a file and can
be archived, whereas region statistics are transient and accessible only through the API.

Set the configuration attributes that control cluster, application, or cache statistics collection in gfsh
or in the gemfire.properties configuration file. You can also collect your own application defined
statistics.

When Java applications and servers join a cluster, they can be configured via the cluster
configuration service to enable statistics sampling and whether to archive the statistics that are
gathered.

Note: VMware GemFire statistics use the Java System.nanoTimer for nanosecond timing. This
method provides nanosecond precision, but not necessarily nanosecond accuracy. For more
information, see the online Java documentation for System.nanoTimer for the JRE you are using
with VMware GemFire.

Statistics sampling provides valuable information for ongoing system tuning and troubleshooting.
Sampling statistics at the default sample rate does not impact overall cluster performance. We
recommend enabling statistics sampling in production environments.

Transient Region and Entry Statistics

For replicated, distributed, and local regions, VMware GemFire provides a standard set of statistics
for the region and its entries.

VMware GemFire gathers these statistics when the --enable-statistics parameter of the create
region command of gfsh is set to true or in cache.xml the region attribute statistics-enabled is
set to true.

Note: Unlike other VMware GemFire statistics, these region and entry statistics are not archived
and cannot be charted.

Note: Enabling these statistics requires extra memory per entry. See Memory Requirements for
Cached Data.

These are the transient statistics gathered for all but partitioned regions:

Hit and miss counts. For the entry, the hit count is the number of times the cached entry
was accessed through the Region.get method and the miss count is the number of times
these hits did not find a valid value. For the region these counts are the totals for all entries
in the region. The API provides get methods for the hit and miss counts, a convenience
method that returns the hit-to-miss ratio, and a method for zeroing the counts.

Last accessed time. For the entry, this is the last time a valid value was retrieved from the
locally cached entry. For the region, this is the most recent “last accessed time” for all
entries contained in the region. This statistic is used for idle timeout expiration activities.

Last modified time. For the entry, this is the last time the entry value was updated
(directly or through distribution) due to a load, create, or put operation. For the region, this

VMware GemFire 9.10 Documentation

VMware by Broadcom 409

is the most recent “last modified time” for all entries contained in the region. This statistic is
used for time to live and idle timeout expiration activities.

The hit and miss counts collected in these statistics can be useful for fine-tuning your system’s
caches. If you have a region’s entry expiration enabled, for example, and see a high ratio of misses
to hits on the entries, you might choose to increase the expiration times.

Retrieve region and entry statistics through the getStatistics methods of the Region and
Region.Entry objects.

Application-Defined and Custom Statistics

VMware GemFire includes interfaces for defining and maintaining your own statistics.

The VMware GemFire package, org.apache.geode, includes the following interfaces for defining
and maintaining your own statistics:

StatisticDescriptor. Describes an individual statistic. Each statistic has a name and
information on the statistic it holds, such as its class type (long, int, etc.) and whether it is a
counter that always increments, or a gauge that can vary in any manner.

StatisticsType. Logical type that holds a list of StatisticDescriptors and provides access
methods to them. The StatisticDescriptors contained by a StatisticsType are each
assigned a unique ID within the list. StatisticsType is used to create a Statistics instance.

Statistics. Instantiation of an existing StatisticsType object with methods for setting,
incrementing, getting individual StatisticDescriptor values, and setting a callback which
will recompute the statistic’s value at configured sampling intervals.

StatisticsFactory. Creates instances of Statistics. You can also use it to create instances
of StatisticDescriptor and StatisticsType, because it implements
StatisticsTypeFactory. DistributedSystem is an instance of StatisticsFactory.

StatisticsTypeFactory. Creates instances of StatisticDescriptor and StatisticsType.

The statistics interfaces are instantiated using statistics factory methods that are included in the
package. For coding examples, see the online Java API documentation for StatisticsFactory and
StatisticsTypeFactory.

As an example, an application server might collect statistics on each client session in order to gauge
whether client requests are being processed in a satisfactory manner. Long request queues or long
server response times could prompt some capacity-management action such as starting additional
application servers. To set this up, each session-state data point is identified and defined in a
StatisticDescriptor instance. One instance might be a RequestsInQueue gauge, a non-negative
integer that increments and decrements. Another could be a RequestCount counter, an integer that
always increments. A list of these descriptors is used to instantiate a SessionStateStats
StatisticsType. When a client connects, the application server uses the StatisticsType object to
create a session-specific Statistics object. The server then uses the Statistics methods to
modify and retrieve the client’s statistics. The figures below illustrate the relationships between the
statistics interfaces and show the implementation of this use case.

VMware GemFire 9.10 Documentation

VMware by Broadcom 410

The Statistics Interfaces

Each StatisticDescriptor contains one piece of statistical information. StatisticalDesriptor
objects are collected into a StatisticsType. The StatisticsType is instantiated to create a
Statistics object.

VMware GemFire 9.10 Documentation

VMware by Broadcom 411

Statistics Implementation

The StatisticDescriptor objects shown here hold three pieces of statistical information about
client session state. These are collected into a SessionStateStats StatisticsType. With this type,
the server creates a Statistics object for each client that connects.

Configuring and Using Statistics

You can configure statistics and statistics archiving in several ways.

Configure Cluster or Server Statistics

In this procedure it is assumed that you understand Basic Configuration and Programming.

Execute the following commands to modify the cluster’s configuration and enable cluster or server
statistics.

gfsh>start locator --name=l1 --enable-cluster-configuration=true

gfsh>alter runtime --enable-statistics=true -–statistic-archive-file=myStatisticsArchi

veFile.gfs

Note that an empty value of statistic-archive-file still calculates statistics, but they are not
archived to a file.

You can also configure sample rate and the filename of your statistic archive files. See alter runtime
for more command options.

Alternately, if you are not using the cluster configuration service, configure gemfire.properties for
the statistics monitoring and archiving that you need:

VMware GemFire 9.10 Documentation

VMware by Broadcom 412

1. Enable statistics gathering for the cluster. This is required for all other statistics activities:

statistic-sampling-enabled=true

statistic-archive-file=myStatisticsArchiveFile.gfs

Note: Statistics sampling at the default sample rate (1000 milliseconds) does not impact
system performance and is recommended in production environments for troubleshooting.

2. Change the statistics sample rate as needed. Example:

statistic-sampling-enabled=true

statistic-archive-file=myStatisticsArchiveFile.gfs

statistic-sample-rate=2000

3. To archive the statistics to disk, enable that and set any file or disk space limits that you
need. Example:

statistic-sampling-enabled=true

statistic-archive-file=myStatisticsArchiveFile.gfs

archive-file-size-limit=100

archive-disk-space-limit=1000

4. If you need time-based statistics, enable that. Time-based statistics require statistics
sampling and archiving. This setting also enables Micrometer meters of type timer.
Example:

statistic-sampling-enabled=true

statistic-archive-file=myStatisticsArchiveFile.gfs

enable-time-statistics=true

If these statistics are on, you are able to access archived statistics through the gfsh show metrics
command.

Configure Transient Region and Entry Statistics

Enable transient region and entry statistics gathering on the regions where you need them. This
configuration is distinct from the enabling of cluster or server statistics.

gfsh example:

gfsh>create region --name=myRegion --type=REPLICATE --enable-statistics=true

cache.xml example:

<region name="myRegion" refid="REPLICATE">

<region-attributes statistics-enabled="true">

</region-attributes>

</region>

API example:

Note: Region and entry statistics are not archived and can be accessed only through the API. As
needed, retrieve region and entry statistics through the getStatistics methods of the Region and
Region.Entry objects. Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 413

out.println("Current Region:\n\t" + this.currRegion.getName());

RegionAttributes attrs = this.currRegion.getAttributes();

 if (attrs.getStatisticsEnabled()) {

 CacheStatistics stats = this.currRegion.getStatistics();

 out.println("Stats:\n\tHitCount is " + stats.getHitCount() +

 "\n\tMissCount is " + stats.getMissCount() +

 "\n\tLastAccessedTime is " + stats.getLastAccessedTime() +

 "\n\tLastModifiedTime is " + stats.getLastModifiedTime());

 }

Configure Custom Statistics

Create and manage any custom statistics that you need through cache.xml and the API.

cache/cluster.xml example:

// Create custom statistics

<?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE statistics PUBLIC

 "-//Example Systems, Inc.//Example Statistics Type//EN"

 "http://www.example.com/dtd/statisticsType.dtd">

 <statistics>

 <type name="StatSampler">

 <description>Stats on the statistic sampler.</description>

 <stat name="sampleCount" storage="int" counter="true">

<description>Total number of samples taken by this sampler.</description>

<unit>samples</unit>

 </stat>

 <stat name="sampleTime" storage="long" counter="true">

<description>Total amount of time spent taking samples.</description>

<unit>milliseconds</unit>

 </stat>

 </type>

</statistics>

API example:

// Update custom stats through the API

this.samplerStats.incInt(this.sampleCountId, 1);

this.samplerStats.incLong(this.sampleTimeId, nanosSpentWorking / 1000000);

Controlling the Size of Archive Files
You can specify limits on the archive files for statistics using the gfsh alter runtime command.
These are the areas of control:

Archive File Growth Rate.

The --statistic-sample-rate parameter controls how often samples are taken,
which affects the speed at which the archive file grows.

The --statistic-archive-file parameter controls whether the statistics files are
compressed. If you give the file name a .gz suffix, it is compressed, thereby taking
up less disk space.

VMware GemFire 9.10 Documentation

VMware by Broadcom 414

Maximum Size of a Single Archive File. If the value of the --archive-file-size-limit is
greater than zero, a new archive is started when the size of the current archive exceeds the
limit. Only one archive can be active at a time. Note: If you modify the value of --archive-
file-size-limit while the cluster is running, the new value does not take effect until the
current archive becomes inactive (that is, when a new archive is started).

Maximum Size of All Archive Files. The --archive-disk-space-limit parameter controls
the maximum size of all inactive archive files combined. By default, the limit is set to 0,
meaning that archive space is unlimited. Whenever an archive becomes inactive or when
the archive file is renamed, the combined size of the inactive files is calculated. If the size
exceeds the --archive-disk-space-limit, the inactive archive with the oldest modification
time is deleted. This continues until the combined size is less than the limit. If --archive-
disk-space-limit is less than or equal to --archive-file-size-limit, when the active
archive is made inactive due to its size, it is immediately deleted.

Note: If you modify the value of --archive-disk-space-limit while the cluster is running, the new
value does not take effect until the current archive becomes inactive.

Viewing Archived Statistics

When sampling and archiving are enabled, you can examine archived historical data to help
diagnose performance problems. Study statistics in archive files by using the gfsh show metrics
command or through the Visual Statistics Display tool (VSD) provided with GemFire. The VSD tool
reads the sampled statistics and produces graphical displays for analysis.

Troubleshooting and System Recovery

This section provides strategies for handling common errors and failure situations.

Producing Artifacts for Troubleshooting

There are several types of files that are critical for troubleshooting.

Diagnosing System Problems

This section provides possible causes and suggested responses for system problems.

System Failure and Recovery

This section describes alerts for and appropriate responses to various kinds of system
failures. It also helps you plan a strategy for data recovery.

Handling Forced Cache Disconnection Using Autoreconnect

A VMware GemFire member may be forcibly disconnected from a cluster if the member is
unresponsive for a period of time, or if a network partition separates one or more members
into a group that is too small to act as the cluster.

Recovering from Application and Cache Server Crashes

When the application or cache server crashes, its local cache is lost, and any resources it
owned (for example, distributed locks) are released. The member must recreate its local
cache upon recovery.

Recovering from Machine Crashes

VMware GemFire 9.10 Documentation

VMware by Broadcom 415

When a machine crashes because of a shutdown, power loss, hardware failure, or operating
system failure, all of its applications and cache servers and their local caches are lost.

Recovering from ConflictingPersistentDataExceptions

A ConflictingPersistentDataException while starting up persistent members indicates that
you have multiple copies of some persistent data, and VMware GemFire cannot determine
which copy to use.

Preventing and Recovering from Disk Full Errors

It is important to monitor the disk usage of VMware GemFire members. If a member lacks
sufficient disk space for a disk store, the member attempts to shut down the disk store and
its associated cache, and logs an error message. A shutdown due to a member running out
of disk space can cause loss of data, data file corruption, log file corruption and other error
conditions that can negatively impact your applications.

Understanding and Recovering from Network Outages

The safest response to a network outage is to restart all the processes and bring up a fresh
data set.

Log Messages and Solutions

This section provides strategies for responding to a variety of system log messages.

Producing Artifacts for Troubleshooting

There are several types of files that are critical for troubleshooting.

Geode logs and statistics are the two most important artifacts used in troubleshooting. In addition,
they are required for Geode system health verification and performance analysis. For these
reasons, logging and statistics should always be enabled, especially in production. Save the
following files for troubleshooting purposes:

Log files. Even at the default logging level, the log contains data that may be important.
Save the whole log, not just the stack. For comparison, save log files from before, during,
and after the problem occurred.

Statistics archive files.

Core files or stack traces.

For Linux, you can use gdb to extract a stack from a core file.

Crash dumps.

For Windows, save the user mode dump files. Some locations to check for these files:

C:\ProgramData\Microsoft\Windows\WER\ReportArchive

C:\ProgramData\Microsoft\Windows\WER\ReportQueue

C:\Users*UserProfileName*\AppData\Local\Microsoft\Windows\WER\ReportArchive

C:\Users*UserProfileName*\AppData\Local\Microsoft\Windows\WER\ReportQueue

When a problem arises that involves more than one process, a network problem is the most likely
cause. When you diagnose a problem, create a log file for each member of all the clusters involved.
If you are running a client/server architecture, create log files for the clients.

VMware GemFire 9.10 Documentation

VMware by Broadcom 416

Note: You must run a time synchronization service on all hosts for troubleshooting. Synchronized
time stamps ensure that log messages on different hosts can be merged to accurately reproduce a
chronological history of a distributed run.

For each process, complete these steps:

1. Make sure the host’s clock is synchronized with the other hosts. Use a time synchronization
tool such as Network Time Protocol (NTP).

2. Enable logging to a file instead of standard output by editing gemfire.properties to include
this line:

log-file=filename

3. Keep the log level at config to avoid filling up the disk while including configuration
information. Add this line to gemfire.properties:

log-level=config

Note: Running with the log level at fine can impact system performance and fill up your
disk.

4. Enable statistics gathering for the cluster either by modifying gemfire.properties:

statistic-sampling-enabled=true

statistic-archive-file=StatisticsArchiveFile.gfs

or by using the gfsh alter rutime command:

alter runtime --group=myMemberGroup --enable-statistics=true --statistic-archiv

e-file=StatisticsArchiveFile.gfs

Note: Collecting statistics at the default sample rate frequency of 1000 milliseconds does
not incur performance overhead.

5. Run the application again.

6. Examine the log files. To get the clearest picture, merge the files. To find all the errors in
the log file, search for lines that begin with these strings:

[error

[severe

For details on merging log files, see the --merge-log argument for the export
logscommand.

7. Export and analyze the stack traces on the member or member group where the
application is running. Use the gfsh export stack-traces command. For example:

gfsh> export stack-traces --file=ApplicationStackTrace.txt --member=member1

Diagnosing System Problems

This section provides possible causes and suggested responses for system problems.

VMware GemFire 9.10 Documentation

VMware by Broadcom 417

Locator does not start

Application or cache server process does not start

Application or cache server does not join the cluster

Member process seems to hang

Member process does not read settings from the gemfire.properties file

Cache creation fails - must match schema definition root

Cache is not configured properly

Unexpected results for keySetOnServer and containsKeyOnServer

Data operation returns PartitionOfflineException

Entries are not being evicted or expired as expected

Cannot find the log file

OutOfMemoryError

PartitionedRegionDistributionException

PartitionedRegionStorageException

Application crashes without producing an exception

Timeout alert

Member produces SocketTimeoutException

Member logs ForcedDisconnectException, Cache and DistributedSystem forcibly closed

Members cannot see each other

One part of the cluster cannot see another part

Data distribution has stopped, although member processes are running

Distributed-ack operations take a very long time to complete

Slow system performance

Can’t get Windows performance data

Java applications on 64-bit platforms hang or use 100% CPU

Locator does not start

Invocation of a locator with gfsh fails with an error like this:

Starting a GemFire Locator in C:\devel\gfcache\locator\locator

The Locator process terminated unexpectedly with exit status 1. Please refer to the lo

g

 file in C:\devel\gfcache\locator\locator for full details.

Exception in thread "main" java.lang.RuntimeException: An IO error occurred while

 starting a Locator in C:\devel\gfcache\locator\locator on 192.0.2.0[10999]: Ne

twork is

 unreachable; port (10999) is not available on 192.0.2.0.

at

org.apache.geode.distributed.LocatorLauncher.start(LocatorLauncher.java:622)

VMware GemFire 9.10 Documentation

VMware by Broadcom 418

at

org.apache.geode.distributed.LocatorLauncher.run(LocatorLauncher.java:513)

at

org.apache.geode.distributed.LocatorLauncher.main(LocatorLauncher.java:188)

Caused by: java.net.BindException: Network is unreachable; port (10999) is not availab

le on

 192.0.2.0.

at

org.apache.geode.distributed.AbstractLauncher.assertPortAvailable(AbstractLauncher.jav

a:136)

at

org.apache.geode.distributed.LocatorLauncher.start(LocatorLauncher.java:596)

...

This indicates a mismatch somewhere in the address, port pairs used for locator startup and
configuration. The address you use for locator startup must match the address you list for the
locator in the gemfire.properties locators specification. Every member of this cluster, including the
locator itself, must have the complete locators specification in the gemfire.properties.

Response:

Check that your locators specification includes the address you are using to start your
locator.

If you use a bind address, you must use numeric addresses for the locator specification. The
bind address will not resolve to the machine’s default address.

If you are using a 64-bit Linux system, check whether your system is experiencing the leap
second bug. See Java applications on 64-bit platforms hang or use 100% CPU for more
information.

Application or cache server process does not start

If the process tries to start and then silently disappears, on Windows this indicates a memory
problem.

Response:

On a Windows host, decrease the maximum JVM heap size. This property is specified on
the gfsh command line:

gfsh>start server --name=server_name --max-heap=1024m

For details, see JVM Memory Settings and System Performance.

If this doesn’t work, try rebooting.

Application or cache server does not join the cluster

Response: Check these possible causes.

Network problem—the most common cause. First, try to ping the other hosts.

Firewall problems. If members of your distributed VMware GemFire system are located
outside the LAN, check whether the firewall is blocking communication. VMware GemFire
is a network-centric distributed system, so if you have a firewall running on your machine, it

VMware GemFire 9.10 Documentation

VMware by Broadcom 419

could cause connection problems. For example, your connections may fail if your firewall
places restrictions on inbound or outbound permissions for Java-based sockets. You may
need to modify your firewall configuration to permit traffic to Java applications running on
your machine. The specific configuration depends on the firewall you are using.

Wrong multicast port when using multicast for membership. Check the gemfire.properties
file of this application or cache server to see that the mcast-port is configured correctly. If
you are running multiple clusters at your site, each cluster must use a unique multicast port.

Can not connect to locator (when using TCP for discovery).

Check that the locators attribute in this process’s gemfire.properties has the
correct IP address for the locator.

Check that the locator process is running. If not, see instructions for related
problem, Data distribution has stopped, although member processes are running.

Bind address set incorrectly on a multi-homed host. When you specify the bind
address, use the IP address rather than the host name. Sometimes multiple network
adapters are configured with the same hostname. See Topology and
Communication General Concepts for more information about using bind addresses.

Wrong version of VMware GemFire . A version mismatch can cause the process to hang or
crash. Check the software version with the gemfire version command.

Member process seems to hang

Response:

During initialization—For persistent regions, the member may be waiting for another
member with more recent data to start and load from its disk stores. See Disk Storage. Wait
for the initialization to finish or time out. The process could be busy—some caches have
millions of entries, and they can take a long time to load. Look for this especially with cache
servers, because their regions are typically replicas and therefore store all the entries in the
region. Applications, on the other hand, typically store just a subset of the entries. For
partitioned regions, if the initialization eventually times out and produces an exception, the
system architect needs to repartition the data.

For a running process—Investigate whether another member is initializing. Under some
optional cluster configurations, a process can be required to wait for a response from other
processes before it proceeds.

Member process does not read settings from the
gemfire.properties file

Either the process can’t find the configuration file or, if it is an application, it may be doing
programmatic configuration.

Response:

Check that the gemfire.properties file is in the right directory.

Make sure the process is not picking up settings from another gemfire.properties file
earlier in the search path. VMware GemFire looks for a gemfire.properties file in the

VMware GemFire 9.10 Documentation

VMware by Broadcom 420

current working directory, the home directory, and the CLASSPATH, in that order.

For an application, check the documentation to see whether it does programmatic
configuration. If so, the properties that are set programmatically cannot be reset in a
gemfire.properties file. See your application’s customer support group for configuration
changes.

Cache creation fails - must match schema definition root

System member startup fails with an error like one of these:

Exception in thread "main" org.apache.geode.cache.CacheXmlException:

While reading Cache XML file:/C:/gemfire/client_cache.xml.

Error while parsing XML, caused by org.xml.sax.SAXParseException:

Document root element "client-cache", must match DOCTYPE root "cache".

Exception in thread "main" org.apache.geode.cache.CacheXmlException:

While reading Cache XML file:/C:/gemfire/cache.xml.

Error while parsing XML, caused by org.xml.sax.SAXParseException:

Document root element "cache", must match DOCTYPE root "client-cache".

VMware GemFire declarative cache creation uses one of two root element pairs: cache or client-
cache. The name must be the same in both places.

Response:

Modify your cache.xml file so it has the proper XML namespace and schema definition.

For peers and servers:

<?xml version="1.0" encoding="UTF-8"?>

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0”>

...

</cache>

For clients:

<?xml version="1.0" encoding="UTF-8"?>

<client-cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0">

...

</client-cache>

Cache is not configured properly

VMware GemFire 9.10 Documentation

VMware by Broadcom 421

An empty cache can be a normal condition. Some applications start with an empty cache and
populate it programmatically, but others are designed to bulk load data during initialization.

Response:

If your application should start with a full cache but it comes up empty, check these possible
causes:

No regions—If the cache has no regions, the process isn’t reading the cache configuration
file. Check that the name and location of the cache configuration file match those
configured in the cache-xml-file attribute in gemfire.properties. If they match, the process
may not be reading gemfire.properties. See Member process does not read settings from
the gemfire.properties file.

Regions without data—If the cache starts with regions, but no data, this process may not
have joined the correct cluster. Check the log file for messages that indicate other
members. If you don’t see any, the process may be running alone in its own cluster. In a
process that is clearly part of the correct cluster, regions without data may indicate an
implementation design error.

Unexpected results for keySetOnServer and
containsKeyOnServer
Client calls to keySetOnServer and containsKeyOnServer can return incomplete or inconsistent
results if your server regions are not configured as partitioned or replicated regions.

A non-partitioned, non-replicate server region may not hold all data for the distributed region, so
these methods would operate on a partial view of the data set.

In addition, the client methods use the least loaded server for each method call, so may use
different servers for two calls. If the servers do not have a consistent view in their local data set,
responses to client requests will vary.

The consistent view is only guaranteed by configuring the server regions with partitioned or
replicate data-policy settings. Non-server members of the server system can use any allowable
configuration as they are not available to take client requests.

The following server region configurations give inconsistent results. These configurations allow
different data on different servers. There is no additional messaging on the servers, so no union of
keys across servers or checking other servers for the key in question.

Normal

Mix (replicated, normal, empty) for a single distributed region. Inconsistent results
depending on which server the client sends the request to

These configurations provide consistent results:

Partitioned server region

Replicated server region

Empty server region: keySetOnServer returns the empty set and containsKeyOnServer
returns false

VMware GemFire 9.10 Documentation

VMware by Broadcom 422

Response: Use a partitioned or replicate data-policy for your server regions. This is the only way to
provide a consistent view to clients of your server data set. See Region Data Storage and
Distribution Options.

Data operation returns PartitionOfflineException

In partitioned regions that are persisted to disk, if you have any members offline, the partitioned
region will still be available but may have some buckets represented only in offline disk stores. In
this case, methods that access the bucket entries return a PartitionOfflineException, similar to this:

org.apache.geode.cache.persistence.PartitionOfflineException:

Region /__PR/_B__root_partitioned__region_7 has persistent data that is no

longer online stored at these locations:

[/192.0.2.1:/export/straw3/users/jpearson/bugfix_Apr10/testCL/hostB/backupDirectory

created at timestamp 1270834766733 version 0]

Response: Bring the missing member online, if possible. This restores the buckets to memory and
you can work with them again. If the missing member cannot be brought back online, or the disk
stores for the member are corrupt, you may need to revoke the member, which will allow the
system to create the buckets in new members and resume operations with the entries. See
Handling Missing Disk Stores.

Entries are not being evicted or expired as expected

Check these possible causes.

Transactions—Entries that are due to be expired may remain in the cache if they are
involved in a transaction. Further, transactions never time out, so if a transaction hangs, the
entries involved in the transaction will remain stuck in the cache. If you have a process with
a hung transaction, you may need to end the process to remove the transaction. In your
application programming, do not leave transactions open ended. Program all transactions to
end with a commit or a rollback.

Partitioned regions—For performance reasons, eviction and expiration behave differently in
partitioned regions and can cause entries to be removed before you expect. See Eviction
and Expiration.

Cannot find the log file

Operating without a log file can be a normal condition, so the process does not log a warning.

Response:

Check whether the log-file attribute is configured in gemfire.properties. If not, logging
defaults to standard output, and on Windows it may not be visible at all.

If log-file is configured correctly, the process may not be reading gemfire.properties. See
Member process does not read settings from the gemfire.properties file.

OutOfMemoryError

VMware GemFire 9.10 Documentation

VMware by Broadcom 423

An application gets an OutOfMemoryError if it needs more object memory than the process is able
to give. The messages include java.lang.OutOfMemoryError.

Response:

The process may be hitting its virtual address space limits. The virtual address space has to be large
enough to accommodate the heap, code, data, and dynamic link libraries (DLLs).

If your application is out of memory frequently, you may want to profile it to determine the
cause.

If you suspect your heap size is set too low, you can increase direct memory by resetting
the maximum heap size, using -Xmx. For details, see JVM Memory Settings and System
Performance.

You may need to lower the thread stack size. The default thread stack size is quite large:
512kb on Sparc and 256kb on Intel for 1.3 and 1.4 32-bit JVMs, 1mb with the 64-bit Sparc
1.4 JVM; and 128k for 1.2 JVMs. If you have thousands of threads then you might be
wasting a significant amount of stack space. If this is your problem, the error may be this:

OutOfMemoryError: unable to create new native thread

The minimum setting in 1.3 and 1.4 is 64kb, and in 1.2 is 32kb. You can change the stack size
using the -Xss flag, like this: -Xss64k

You can also control memory use by setting entry limits for the regions.

PartitionedRegionDistributionException

The org.apache.geode.cache.PartitionedRegionDistributionException appears when VMware
GemFire fails after many attempts to complete a distributed operation. This exception indicates
that no data store member can be found to perform a destroy, invalidate, or get operation.

Response:

Check the network for traffic congestion or a broken connection to a member.

Look at the overall installation for problems, such as operations at the application level set
to a higher priority than the VMware GemFire processes.

If you keep seeing PartitionedRegionDistributionException, you should evaluate whether
you need to start more members.

PartitionedRegionStorageException

The org.apache.geode.cache.PartitionedRegionStorageException appears when VMware GemFire
can’t create a new entry. This exception arises from a lack of storage space for put and create
operations or for get operations with a loader. PartitionedRegionStorageException often indicates
data loss or impending data loss.

The text string indicates the cause of the exception, as in these examples:

Unable to allocate sufficient stores for a bucket in the partitioned region....

VMware GemFire 9.10 Documentation

VMware by Broadcom 424

Ran out of retries attempting to allocate a bucket in the partitioned region....

Response:

Check the network for traffic congestion or a broken connection to a member.

Look at the overall installation for problems, such as operations at the application level set
to a higher priority than the VMware GemFire processes.

If you keep seeing PartitionedRegionStorageException, you should evaluate whether you
need to start more members.

Application crashes without producing an exception

If an application crashes without any exception, this may be caused by an object memory problem.
The process is probably hitting its virtual address space limits. For details, see OutOfMemoryError.

Response: Control memory use by setting entry limits for the regions.

Timeout alert

If a distributed message does not get a response within a specified time, it sends an alert to signal
that something might be wrong with the system member that hasn’t responded. The alert is
logged in the sender’s log as a warning.

A timeout alert can be considered normal.

Response:

If you’re seeing a lot of timeouts and you haven’t seen them before, check whether your
network is flooded.

If you see these alerts constantly during normal operation, consider raising the ack-wait-
threshold above the default 15 seconds.

Member produces SocketTimeoutException

A client and server produces a SocketTimeoutException when it stops waiting for a response from
the other side of the connection and closes the socket. This exception typically happens on the
handshake or when establishing a callback connection.

Response:

Increase the default socket timeout setting for the member. This timeout is set separately for the
client Pool. For a client/server configuration, adjust the “read-timeout” value as described in
<pool> or use the org.apache.geode.cache.client.PoolFactory.setReadTimeout method.

Member logs ForcedDisconnectException, Cache and
DistributedSystem forcibly closed
A cluster member’s Cache and DistributedSystem are forcibly closed by the system membership
coordinator if it becomes sick or too slow to respond to heartbeat requests. When this happens,

VMware GemFire 9.10 Documentation

VMware by Broadcom 425

listeners receive RegionDestroyed notification with an opcode of FORCED_DISCONNECT. The
VMware GemFire log file for the member shows a ForcedDisconnectException with the message

This member has been forced out of the cluster because it did not respond

within member-timeout milliseconds

Response:

To minimize the chances of this happening, you can increase the DistributedSystem property
member-timeout. Take care, however, as this setting also controls the length of time required to
notice a network failure. It should not be set too high.

Members cannot see each other

Suspect a network problem or a problem in the configuration of transport for memory and
discovery.

Response:

Check your network monitoring tools to see whether the network is down or flooded.

If you are using multi-homed hosts, make sure a bind address is set and consistent for all
system members. For details about using bind addresses, see Topology and Communication
General Concepts.

Check that all the applications and cache servers are using the same locator address.

One part of the cluster cannot see another part

This situation can leave your caches in an inconsistent state. In networking circles, this kind of
network outage is called the “split brain problem.”

Response:

Restart all the processes to ensure data consistency.

Going forward, set up network monitoring tools to detect these kinds of outages quickly.

Enable network partition detection.

Also see Understanding and Recovering from Network Outages.

Data distribution has stopped, although member processes
are running

Suspect a problem with the network, the locator, or the multicast configuration, depending on the
transport your cluster is using.

Response:

Check the health of your system members. Search the logs for this string:

Uncaught exception

VMware GemFire 9.10 Documentation

VMware by Broadcom 426

An uncaught exception means a severe error, often an OutOfMemoryError. See
OutOfMemoryError.

Check your network monitoring tools to see whether the network is down or flooded.

If you are using multicast, check whether the existing configuration is no long appropriate
for the current network traffic.

Check whether the locators have stopped. For a list of the locators in use, check the
locators property in one of the application gemfire.properties files.

Restart the locator processes on the same hosts, if possible. The cluster begins
normal operation, and data distribution restarts automatically.

If a locator must be moved to another host or a different IP address, complete these
steps:

1. Shut down all the members of the cluster in the usual order.

2. Restart the locator process in its new location.

3. Edit all the gemfire.properties files to change this locator’s IP address in the
locators attribute.

4. Restart the applications and cache servers in the usual order.

Create a watchdog daemon or service on each locator host to restart the locator process
when it stops

Distributed-ack operations take a very long time to
complete

This problem can occur in systems with a great number of distributed-no-ack operations. That is,
the presence of many no-ack operations can cause ack operation to take a long time to complete.

Response:

For information on alleviating this problem, see Slow distributed-ack Messages.

Slow system performance

Slow system performance is sometimes caused by a buffer size that is too small for the objects
being distributed.

Response:

If you are experiencing slow performance and are sending large objects (multiple megabytes), try
increasing the socket buffer size settings in your system. For more information, see Socket
Communication.

Can’t get Windows performance data

Attempting to run performance measurements for VMware GemFire on Windows can produce this
error message:

Can't get Windows performance data. RegQueryValueEx returned 5

VMware GemFire 9.10 Documentation

VMware by Broadcom 427

This error can occur because incorrect information is returned when a Win32 application calls the
ANSI version of RegQueryValueEx Win32 API with HKEY_PERFORMANCE_DATA. This error is
described in Microsoft KB article ID 226371 at http://support.microsoft.com/kb/226371/en-us.

Response:

To successfully acquire Windows performance data, you need to verify that you have the proper
registry key access permissions in the system registry. In particular, make sure that Perflib in the
following registry path is readable (KEY_READ access) by the VMware GemFire process:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

An example of reasonable security on the performance data would be to grant administrators
KEY_ALL_ACCESS access and interactive users KEY_READ access. This particular configuration
would prevent non-administrator remote users from querying performance data.

See http://support.microsoft.com/kb/310426 and http://support.microsoft.com/kb/146906 for
instructions about how to ensure that VMware GemFire processes have access to the registry keys
associated with performance.

Java applications on 64-bit platforms hang or use 100%
CPU

If your Java applications suddenly start to use 100% CPU, you may be experiencing the leap second
bug. This bug is found in the Linux kernel and can severely affect Java programs. In particular, you
may notice that method invocations using Thread.sleep(n) where n is a small number will actually
sleep for much longer period of time than defined by the method. To verify that you are
experiencing this bug, check the host’s dmesg output for the following message:

[10703552.860274] Clock: inserting leap second 23:59:60 UTC

To fix this problem, issue the following commands on your affected Linux machines:

prompt> /etc/init.d/ntp stop

prompt> date -s "$(date)"

See the following web site for more information:

http://blog.wpkg.org/2012/07/01/java-leap-second-bug-30-june-1-july-2012-fix/

System Failure and Recovery
This section describes alerts for and appropriate responses to various kinds of system failures. It also
helps you plan a strategy for data recovery.

If a system member withdraws from the cluster involuntarily because the member, host, or network
fails, the other members automatically adapt to the loss and continue to operate. The cluster does
not experience any disturbance such as timeouts.

Planning for Data Recovery

VMware GemFire 9.10 Documentation

VMware by Broadcom 428

http://support.microsoft.com/kb/226371/en-us
http://support.microsoft.com/kb/310426
http://support.microsoft.com/kb/146906
http://blog.wpkg.org/2012/07/01/java-leap-second-bug-30-june-1-july-2012-fix/

In planning a strategy for data recovery, consider these factors:

Whether the region is configured for data redundancy—partitioned regions only.

The region’s role-loss policy configuration, which controls how the region behaves after a
crash or system failure—distributed regions only.

Whether the region is configured for persistence to disk.

Whether the region is configured for LRU-based eviction.

The extent of the failure, whether multiple members or a network outage is involved.

Your application’s specific needs, such as the difficulty of replacing the data and the risk of
running with inconsistent data for your application.

When an alert is generated due to network partition or slow response, indicating that
certain processes may, or will, fail.

The rest of this section provides recovery instructions for various kinds system failures.

Network Partitioning, Slow Response, and Member
Removal Alerts
When a network partition detection or slow responses occur, these alerts are generated:

Network Partitioning is Detected

Member is Taking Too Long to Respond

No Locators Can Be Found

Warning Notifications Before Removal

Member is Forced Out

For information on configuring system members to help avoid a network partition configuration
condition in the presence of a network failure or when members lose the ability to communicate to
each other, refer to Understanding and Recovering from Network Outages.

Network Partitioning Detected

Alert:

Membership coordinator id has declared that a network partition has occurred.

Description:

This alert is issued when network partitioning occurs, followed by this alert on the individual
member:

Alert:

Exiting due to possible network partition event due to loss of {0} cache processes:

{1}

Response:

Check the network connectivity and health of the listed cache processes.

VMware GemFire 9.10 Documentation

VMware by Broadcom 429

Member Taking Too Long to Respond

Alert:

15 sec have elapsed while waiting for replies: <ReplyProcessor21 6 waiting for 1 repli

es

from [ent(27130):60333/36743]> on ent(27134):60330/45855 whose current membership

list is: [[ent(27134):60330/45855, ent(27130):60333/36743]]

Description:

Member ent(27130):60333/36743 is in danger of being forced out of the cluster because of a
suspect-verification failure. This alert is issued at the warning level, after the ack-wait-threshold is
reached.

Response:

The operator should examine the process to see if it is healthy. The process ID of the slow
responder is 27130 on the machine named ent. The ports of the slow responder are 60333/36743.
Look for the string, Starting distribution manager ent:60333/36743, and examine the process
owning the log file containing this string.

Alert:

30 sec have elapsed while waiting for replies: <ReplyProcessor21 6 waiting for 1 repli

es

from [ent(27130):60333/36743]> on ent(27134):60330/45855 whose current membership

list is: [[ent(27134):60330/45855, ent(27130):60333/36743]]

Description:

Member ent(27134) is in danger of being forced out of the cluster because of a suspect-verification
failure. This alert is issued at the severe level, after the ack-wait-threshold is reached and after ack-
severe-alert-threshold seconds have elapsed.

Response:

The operator should examine the process to see if it is healthy. The process ID of the slow
responder is 27134 on the machine named ent. The ports of the slow responder are 60333/36743.
Look for the string, Starting distribution manager ent:60333/36743, and examine the process
owning the log file containing this string.

Alert:

15 sec have elapsed while waiting for replies: <DLockRequestProcessor 33636 waiting

for 1 replies from [ent(4592):33593/35174]> on ent(4592):33593/35174 whose current

membership list is: [[ent(4598):33610/37013, ent(4611):33599/60008,

ent(4592):33593/35174, ent(4600):33612/33183, ent(4593):33601/53393, ent(4605):33605/4

1831]]

Description:

This alert is issued by partitioned regions and regions with global scope at the warning level, when
the lock grantor has not responded to a lock request within the ack-wait-threshold and the ack-
severe-alert-threshold.

Response:

VMware GemFire 9.10 Documentation

VMware by Broadcom 430

None.

Alert:

30 sec have elapsed while waiting for replies: <DLockRequestProcessor 23604 waiting

for 1 replies from [ent(4592):33593/35174]> on ent(4598):33610/37013 whose current

membership list is: [[ent(4598):33610/37013, ent(4611):33599/60008,

ent(4592):33593/35174, ent(4600):33612/33183, ent(4593):33601/53393, ent(4605):33605/4

1831]]

Description:

This alert is issued by partitioned regions and regions with global scope at the severe level, when
the lock grantor has not responded to a lock request within the ack-wait-threshold and the ack-
severe-alert-threshold.

Response:

None.

Alert:

30 sec have elapsed waiting for global region entry lock held by ent(4600):33612/33183

Description

This alert is issued by regions with global scope at the severe level, when the lock holder has held
the desired lock for ack-wait-threshold + ack-severe-alert-threshold seconds and may be
unresponsive.

Response:

None.

Alert:

30 sec have elapsed waiting for partitioned region lock held by ent(4600):33612/33183

Description:

This alert is issued by partitioned regions at the severe level, when the lock holder has held the
desired lock for ack-wait-threshold + ack-severe-alert-threshold seconds and may be unresponsive.

Response:

None.

No Locators Can Be Found

Note: It is likely that all processes using the locators will exit with the same message.

Alert:

Membership service failure: Channel closed: org.apache.geode.ForcedDisconnectExceptio

n:

There are no processes eligible to be group membership coordinator

(last coordinator left view)

Description:

VMware GemFire 9.10 Documentation

VMware by Broadcom 431

Network partition detection is enabled, and there are locator problems.

Response:

The operator should examine the locator processes and logs, and restart the locators.

Alert:

Membership service failure: Channel closed: org.apache.geode.ForcedDisconnectExceptio

n:

There are no processes eligible to be group membership coordinator

(all eligible coordinators are suspect)

Description:

Network partition detection is enabled, and there are locator problems.

Response:

The operator should examine the locator processes and logs, and restart the locators.

Alert:

Membership service failure: Channel closed: org.apache.geode.ForcedDisconnectExceptio

n:

Unable to contact any locators and network partition detection is enabled

Description:

Network partition detection is enabled, and there are locator problems.

Response:

The operator should examine the locator processes and logs, and restart the locators.

Alert:

Membership service failure: Channel closed: org.apache.geode.ForcedDisconnectExceptio

n:

Disconnected as a slow-receiver

Description:

The member was not able to process messages fast enough and was forcibly disconnected by
another process.

Response:

The operator should examine and restart the disconnected process.

Warning Notifications Before Removal

Alert:

Membership: requesting removal of ent(10344):21344/24922 Disconnected as a slow-receiv

er

Description:

This alert is generated only if the slow-receiver functionality is being used.

VMware GemFire 9.10 Documentation

VMware by Broadcom 432

Response:

The operator should examine the locator processes and logs.

Alert:

Network partition detection is enabled and both membership coordinator and lead member

are on the same machine

Description:

This alert is issued if both the membership coordinator and the lead member are on the same
machine.

Response:

The operator can turn this off by setting the system property gemfire.disable-same-machine-
warnings to true. However, it is best to run locator processes, which act as membership
coordinators when network partition detection is enabled, on separate machines from cache
processes.

Member Is Forced Out

Alert:

Membership service failure: Channel closed: org.apache.geode.ForcedDisconnectExceptio

n:

This member has been forced out of the Distributed System. Please consult GemFire logs

to

find the reason.

Description:

The process discovered that it was not in the cluster and cannot determine why it was removed.
The membership coordinator removed the member after it failed to respond to an internal are-you-
alive message.

Response:

The operator should examine the locator processes and logs.

How Data is Recovered From Persistent Regions

A persistent region is one whose contents (keys and values) can be restored from disk. Upon
restart, data recovery of a persistent region always recovers keys. Under the default behavior, the
region is regarded as ready for use when the keys have been recovered.

The default behavior for restoring values depends on whether the region was configured with an
LRU-based eviction algorithm:

If the region was not configured for LRU-based eviction, the values are loaded
asynchronously on a separate thread. The assumption here is that all of the stored values
will fit into the space allocated for the region.

If the region was configured for LRU-based eviction, the values are not loaded. Each value
will be retrieved only when requested. The assumption here is that the values resident in

VMware GemFire 9.10 Documentation

VMware by Broadcom 433

the region plus any evicted values might exceed the space allocated for the region, possibly
resulting in an OutOfMemoryException during recovery. Note: Recovered values do not
contain usage history—LRU history is reset at recovery time.

This default behavior works well under most circumstances. For special cases, three Java system
properties allow the developer to modify the recovery behavior for persistent regions:

gemfire.disk.recoverValues

Default = true, recover values for non-LRU regions. Enables the possibility of recovering
values for LRU regions (with the setting of an additional property). If false, recover only
keys, do not recover values. The false setting disallows value recovery for LRU regions as
well as non-LRU regions.

How used: When true, recovery of the values “warms up” the cache so data retrievals will
find their values in the cache, without causing time consuming disk accesses. When false,
shortens recovery time so the system becomes available for use sooner, but the first
retrieval on each key will require a disk read.

gemfire.disk.recoverLruValues

Default = false, do not recover values for a region configured with LRU-based eviction. If
true, recover all of the LRU region’s values. Note: gemfire.disk.recoverValues must also
be true for this property to take effect.

How used: When false, shortens recovery time for an LRU-configured region by not
loading values. When true, restores data values to the cache. As stated above, LRU history
is not recoverable, and recovering values for a region configured with LRU-based eviction
incurs some risk of exceeding allocated memory.

gemfire.disk.recoverValuesSync

Default = false, recover values by an asynchronous background process. If true, values are
recovered synchronously, and recovery is not complete until all values have been retrieved.
Note: gemfire.disk.recoverValues must also be true for this property to take effect.

How used: When false, allows the system to become available sooner, but some time must
elapse before all values have been read from disk into cache memory. Some key retrievals
will require disk access, and some will not. When true, prolongs restart time, but ensures
that when available for use, the cache is fully populated and data retrieval times will be
optimal.

Handling Forced Cache Disconnection Using
Autoreconnect
A VMware GemFire member may be forcibly disconnected from a VMware GemFire cluster if the
member is unresponsive for a period of time, or if a network partition separates one or more
members into a group that is too small to act as the cluster.

How the Autoreconnection Process Works
After being disconnected from a cluster, a VMware GemFire member shuts down and, by default,
automatically restarts into a “reconnecting” state, while periodically attempting to rejoin the cluster

VMware GemFire 9.10 Documentation

VMware by Broadcom 434

by contacting a list of known locators. If the member succeeds in reconnecting to a known locator,
the member rebuilds its view of the cluster from existing members and receives a new distributed
member ID.

If the member cannot connect to a known locator, the member will then check to see if it itself is a
locator (or hosting an embedded locator process). If the member is a locator, then the member
does a quorum-based reconnect; it will attempt to contact a quorum of the members that were in
the membership view just before it became disconnected. If a quorum of members can be
contacted, then startup of the cluster is allowed to begin. Since the reconnecting member does
not know which members survived the network partition event, all members that are in a
reconnecting state will keep their UDP unicast ports open and respond to ping requests.

Membership quorum is determined using the same member weighting system used in network
partition detection. See Membership Coordinators, Lead Members and Member Weighting.

Note that when a locator is in the reconnecting state, it provides no discovery services for the
cluster.

The default settings for reconfiguration of the cache once reconnected assume that the cluster
configuration service has a valid (XML) configuration. This will not be the case if the cluster was
configured using API calls. To handle this case, either disable autoreconnect by setting the
property to

disable-auto-reconnect = true

or, disable the cluster configuration service by setting the property to

enable-cluster-configuration = false

After the cache has reconnected, applications must fetch a reference to the new Cache, Regions,
DistributedSystem and other artifacts. Old references will continue to throw cancellation exceptions
like CacheClosedException(cause=ForcedDisconnectException).

See the VMware GemFire DistributedSystem and Cache Java API documentation for more
information.

Managing the Autoreconnection Process
By default a VMware GemFire member will try to reconnect until it is told to stop by using the
DistributedSystem.stopReconnecting() or Cache.stopReconnecting() method. You can disable
automatic reconnection entirely by setting disable-auto-reconnect VMware GemFire property to
“true.”

You can use DistributedSystem and Cache callback methods to perform actions during the
reconnect process, or to cancel the reconnect process if necessary.

The DistributedSystem and Cache API provide several methods you can use to take actions while a
member is reconnecting to the cluster:

DistributedSystem.isReconnecting() returns true if the member is in the process of
reconnecting and recreating the cache after having been removed from the system by
other members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 435

DistributedSystem.waitUntilReconnected(long, TimeUnit) waits for a period of time, and
then returns a boolean value to indicate whether the member has reconnected to the
DistributedSystem. Use a value of -1 seconds to wait indefinitely until the reconnect
completes or the member shuts down. Use a value of 0 seconds as a quick probe to
determine if the member has reconnected.

DistributedSystem.getReconnectedSystem() returns the reconnected DistributedSystem.

DistributedSystem.stopReconnecting() stops the reconnection process and ensures that
the DistributedSystem stays in a disconnected state.

Cache.isReconnecting() returns true if the cache is attempting to reconnect to a cluster.

Cache.waitUntilReconnected(long, TimeUnit) waits for a period of time, and then returns
a boolean value to indicate whether the DistributedSystem has reconnected. Use a value of
-1 seconds to wait indefinitely until the reconnect completes or the cache shuts down. Use
a value of 0 seconds as a quick probe to determine if the member has reconnected.

Cache.getReconnectedCache() returns the reconnected Cache.

Cache.stopReconnecting() stops the reconnection process and ensures that the
DistributedSystem stays in a disconnected state.

Operator Intervention

You may need to intervene in the autoreconnection process if processes or hardware have crashed
or are otherwise shut down before the network connection is healed. In this case the members in a
“reconnecting” state will not be able to find the lost processes through UDP probes and will not
rejoin the system until they are able to contact a locator.

Recovering from Application and Cache Server Crashes

When the application or cache server crashes, its local cache is lost, and any resources it owned
(for example, distributed locks) are released. The member must recreate its local cache upon
recovery.

Recovering from Crashes with a Peer-to-Peer Configuration

When a member crashes, the remaining members continue operation as though the
missing application or cache server had never existed. The recovery process differs
according to region type and scope, as well as data redundancy configuration.

Recovering from Crashes with a Client/Server Configuration

In a client/server configuration, you first make the server available as a member of a cluster
again, and then restart clients as quickly as possible. The client recovers its data from its
servers through normal operation.

Recovering from Crashes with a Peer-to-Peer
Configuration
When a member crashes, the remaining members continue operation as though the missing
application or cache server had never existed. The recovery process differs according to region

VMware GemFire 9.10 Documentation

VMware by Broadcom 436

type and scope, as well as data redundancy configuration.

The other system members are told that it has left unexpectedly. If any remaining system member
is waiting for a response (ACK), the ACK still succeeds and returns, because every member that is
still alive has responded. If the lost member had ownership of a GLOBAL entry, then the next
attempt to obtain that ownership acts as if no owner exists.

Recovery depends on how the member has its cache configured. This section covers the following:

Recovery for Partitioned Regions

Recovery for Distributed Regions

Recovery for Regions of Local Scope

Recovering Data From Disk

To tell whether the regions are partitioned, distributed, or local, check the cache.xml file. If the file
contains a local scope setting, the region has no connection to any other member:

<region-attributes scope="local">

If the file contains any other scope setting, it is configuring a distributed region. For example:

<region-attributes scope="distributed-no-ack">

If the file includes either of the following lines, it is configuring a partitioned region.

<partition-attributes...

<region-attributes data-policy="partition"/>

<region-attributes data-policy="persistent-partition"/>

The reassigned clients continue operating smoothly, as in the failover case. A successful
rebalancing operation does not create any data loss.

If rebalancing fails, the client fails over to an active server with the normal failover behavior.

Recovery for Partitioned Regions

When an application or cache server crashes, any data in local memory is lost, including any entries
in a local partitioned region data store.

Recovery for Partitioned Regions With Data Redundancy

If the partitioned region is configured for redundancy and a member crashes, the system continues
to operate with the remaining copies of the data. You may need to perform recovery actions
depending on how many members you have lost and how you have configured redundancy in your
system.

By default, VMware GemFire does not make new copies of the data until a new member is brought
online to replace the member that crashed. You can control this behavior using the recovery delay
attributes. For more information, see Configure High Availability for a Partitioned Region.

To recover, start a replacement member. The new member regenerates the lost copies and
returns them to the configured redundancy level.

VMware GemFire 9.10 Documentation

VMware by Broadcom 437

Note: Make sure the replacement member has at least as much local memory as the old one— the
local-max-memory configuration setting must be the same or larger. Otherwise, you can get into a
situation where some entries have all their redundant copies but others don’t. In addition, until you
have restarted a replacement member, any code that attempts to create or update data mapped to
partition region bucket copies (primary and secondary) that have been lost can result in an
exception. (New transactions unrelated to the lost data can fail as well simply because they happen
to map to– or “resolve” to– a common bucketId).

Even with high availability, you can lose data if too many applications and cache servers fail at the
same time. Any lost data is replaced with new data created by the application as it returns to active
work.

The number of members that can fail at the same time without losing data is equal to the number
of redundant copies configured for the region. So if redundant-copies=1, then at any given time
only one member can be down without data loss. If a second goes down at the same time, any
data stored by those two members will be lost.

You can also lose access to all copies of your data through network failure. See Understanding and
Recovering from Network Outages.

Recovery Without Data Redundancy

If a member crashes and there are no redundant copies, any logic that tries to interact with the
bucket data is blocked until the primary buckets are restored from disk. (If you do not have
persistence enabled, VMware GemFire will reallocate the buckets on any available remaining
nodes, however you will need to recover any lost data using external mechanisms.)

To recover, restart the member. The application returns to active work and automatically begins to
create new data.

If the members with the relevant disk stores cannot be restarted, then you will have to revoke the
missing disk stores manually using gfsh. See revoke missing-disk-store.

Maintaining and Recovering Partitioned Region Redundancy

The following alert [ALERT-1] (warning) is generated when redundancy for a partitioned region
drops:

Alert:

[warning 2008/08/26 17:57:01.679 PDT dataStoregemfire5_jade1d_6424

<PartitionedRegion Message Processor2> tid=0x5c] Redundancy has dropped below 3

configured copies to 2 actual copies for /partitionedRegion

[warning 2008/08/26 18:13:09.059 PDT dataStoregemfire5_jade1d_6424

<DM-MemberEventInvoker> tid=0x1d5] Redundancy has dropped below 3

configured copies to 1 actual copy for /partitionedRegion

The following alert [ALERT-2] (warning) is generated when, after creation of a partitioned region
bucket, the program is unable to find enough members to host the configured redundant copies:

Alert:

[warning 2008/08/27 17:39:28.876 PDT gemfire_2_4 <RMI TCP Connection(67)-192.0.2.0>

tid=0x1786] Unable to find sufficient members to host a bucket in the partitioned regi

on.

VMware GemFire 9.10 Documentation

VMware by Broadcom 438

Region name = /partitionedregion Current number of available data stores: 1 number

successfully allocated = 1 number needed = 2 Data stores available:

[pippin(21944):41927/42712] Data stores successfully allocated:

[pippin(21944):41927/42712] Consider starting another member

The following alert [EXCEPTION-1] (warning) and exception is generated when, after the creation
of a partitioned region bucket, the program is unable to find any members to host the primary
copy:

Alert:

[warning 2008/08/27 17:39:23.628 PDT gemfire_2_4 <RMI TCP Connection(66)-192.0.2.0>

tid=0x1888] Unable to find any members to host a bucket in the partitioned region.

Region name = /partitionedregion Current number of available data stores: 0 number

successfully allocated = 0 number needed = 2 Data stores available:

[] Data stores successfully allocated: [] Consider starting another member

Exception:

org.apache.geode.cache.PartitionedRegionStorageException: Unable to find any members t

o

 host a bucket in the partitioned region.

Region name = /partitionedregion

Current number of available data stores: 0

Number successfully allocated = 0; Number needed = 2

Data stores available: []

Data stores successfully allocated: []

Response:

Add additional members configured as data stores for the partitioned region.

Consider starting another member.

Recovery for Distributed Regions
Restart the process. The system member recreates its cache automatically. If replication is used,
data is automatically loaded from the replicated regions, creating an up-to-date cache in sync with
the rest of the system. If you have persisted data but no replicated regions, data is automatically
loaded from the disk store files. Otherwise, the lost data is replaced with new data created by the
application as it returns to active work.

Recovery for Regions of Local Scope
Regions of local scope have no memory backup, but may have data persisted to disk. If the region
is configured for persistence, the data remains in the region’s disk directories after a crash. The
data on disk will be used to initialize the region when you restart.

Recovering Data from Disk

VMware GemFire 9.10 Documentation

VMware by Broadcom 439

When you persist a region, the entry data on disk outlives the region in memory. If the member
exits or crashes, the data remains in the region’s disk directories. See Disk Storage. If the same
region is created again, this saved disk data can be used to initialize the region.

Some general considerations for disk data recovery:

Region persistence causes only entry keys and values to be stored to disk. Statistics and
user attributes are not stored.

If the application was writing to the disk asynchronously, the chances of data loss are
greater. The choice is made at the region level, with the disk-synchronous attribute.

When a region is initialized from disk, last modified time is persisted from before the
member exit or crash. For information on how this might affect the region data, see
Expiration.

Disk Recovery for Disk Writing—Synchronous Mode and Asynchronous Mode

Synchronous Mode of Disk Writing

Alert 1:

DiskAccessException has occurred while writing to the disk for region <Region_Name>.

Attempt will be made to destroy the region locally.

Alert 2:

Encountered Exception in destroying the region locally

Description:

These are error log-level alerts. Alert 2 is generated only if there was an error in destroying the
region. If Alert 2 is not generated, then the region was destroyed successfully. The message
indicating the successful destruction of a region is logged at the information level.

Alert 3:

Problem in stopping Cache Servers. Failover of clients is suspect

Description:

This is an error log-level alert that is generated only if servers were supposed to stop but
encountered an exception that prevented them from stopping.

Response:

The region may no longer exist on the member. The cache servers may also have been stopped.
Recreate the region and restart the cache servers.

Asynchronous Mode of Disk Writing

Alert 1:

Problem in Asynch writer thread for region <Region_name>. It will terminate.

Alert 2:

VMware GemFire 9.10 Documentation

VMware by Broadcom 440

Encountered Exception in destroying the region locally

Description:

These are error log-level alerts. Alert 2 is generated only if there was an error in destroying the
region. If Alert 2 is not generated, then the region was destroyed successfully. The message
indicating the successful destruction of a region is logged at the information level.

Alert 3:

Problem in stopping Cache Servers. Failover of clients is suspect

Description:

This is an error log-level alert that is generated only if servers were supposed to stop but
encountered an exception that prevented them from stopping.

Response:

The region may no longer exist on the member. The cache servers may also have been stopped.
Recreate the region and restart the cache servers.

Recovering from Crashes with a Client/Server
Configuration

In a client/server configuration, you first make the server available as a member of a cluster again,
and then restart clients as quickly as possible. The client recovers its data from its servers through
normal operation.

How well a client/server configuration recovers from application or cache server crashes depends
on server availability and on client configuration. Typically, the servers are made highly available by
running enough servers spread out on enough machines to ensure a minimum of coverage in case
of network, machine, or server crashes. The clients are usually configured to connect to a primary
and some number of secondary, or redundant, servers. The secondaries act as hot backups to the
primary. For high availability of messaging in the case of client crashes, the clients may have
durable connections to their servers. If this is the case, some or all of their data and data events
remain in server memory and are automatically recovered, providing that you restart the clients
within a configured timeout. See Configuring Client/Server Event Messaging for information about
durable messaging.

Recovering from Server Failure

Recovery from server failure has two parts: the server recovers as a member of a cluster, then its
clients recover its services.

When servers fail, their own recovery is carried out as for any member of a cluster as described in
Recovering from Crashes with a Peer-to-Peer Configuration.

From the client’s perspective, if the system is configured for high availability, server failure goes
undetected unless enough servers fail that the server-to-client ratio drops below a workable level.
In any case, your first course of action is to get the servers back up as quickly as possible.

To recover from server failure:

VMware GemFire 9.10 Documentation

VMware by Broadcom 441

1. Recover the server and its data as described in Recovering from Crashes with a Peer-to-
Peer Configuration.

2. Once the server is available again, the locators (or client pools if you are using a static server
list) automatically detect its presence and add it to the list of viable servers. It might take
awhile for the clients to start using the recovered server. The time depends in part on how
the clients are configured and how they are programmed. See Client/Server Configuration.

If you need to start a server at a new host/port location

This section is only for systems where the clients’ server pool configurations use static server lists.
This is unusual, but might be the case for your system. If the server pools are configured without
static server lists, meaning clients use locators to find their servers, starting a server at a new
address requires no special action because the new server is automatically detected by the
locators. You can determine whether your clients use locator lists or server lists by looking at the
client cache.xml files. Systems configured with static server lists have <server> elements listed
inside the <pool> elements. Those using locator lists have <locator> elements instead. If there are
no pools declared in the XML files, the servers or locators will be defined in the application code.
Look for the API PoolFactory methods addServer or addLocator.

If the pools are configured with static server lists, the clients only connect to servers at the specific
addresses provided in the lists. To move a server or add a server at a new location, you must
modify the <server> specifications in the clients’ cache.xml file. This change will only affect newly-
started clients. To start using the new server information, either restart clients or wait for new
clients to start, depending on your system characteristics and how quickly you need the changes to
take effect.

Recovering from Client Failure

When a client crashes, restart it as quickly as possible in the usual way. The client recovers its data
from its servers through normal operation. Some of the data may be recovered immediately, and
some may be recovered lazily as the client requests it. Additionally, the server may be configured
to replay events for some data and for some client queries. These are the different configurations
that affect client recovery:

Entries immediately sent to the client—Entries are immediately sent to the client for
entries the client registers interest in, if those entries are present in the server cache.

Entries sent lazily to the client—Entries are sent lazily to the client for entries that the
client registers interest in that are not initially available in the server cache.

Events sent immediately to the client—If the server has been saving events for the client,
these are immediately replayed when the client reconnects. Cache modification events for
entries in which the client has registered durable interest are saved.

If you have a durable client configured to connect to multiple servers, keep in mind that VMware
GemFire does not maintain server redundancy while the client is disconnected. If you lose all of its
primary and secondary servers, you lose the client’s queued messages. Even if the servers fail one
at a time, so that running clients have time to fail over and pick new secondary servers, an off-line
durable client cannot do that and thus loses its queued messages.

Recovering from Machine Crashes

VMware GemFire 9.10 Documentation

VMware by Broadcom 442

When a machine crashes because of a shutdown, power loss, hardware failure, or operating system
failure, all of its applications and cache servers and their local caches are lost.

System members on other machines are notified that this machine’s members have left the cluster
unexpectedly.

Recovery Procedure

To recover from a machine crash:

1. Determine which processes run on this machine.

2. Reboot the machine.

3. If a VMware GemFire locator runs here, start it first. Note: At least one locator must be
running before you start any applications or cache servers.

4. Start the applications and cache servers in the usual order.

If you have to move a locator process to a different machine, the locator isn’t useful until you
update the locators list in the gemfire.properties file and restart all the applications and cache
servers in the cluster. If other locators are running, however, you don’t have to restart the system
immediately. For a list of the locators in use, check the locators property in one of the application
gemfire.properties files.

Data Recovery for Partitioned Regions

The partitioned region initializes itself correctly regardless of the order in which the data stores
rejoin. The applications and cache servers recreate their data automatically as they return to active
work.

If the partitioned region is configured for data redundancy, VMware GemFire may be able to
handle a machine crash automatically with no data loss, depending on how many redundant copies
there are and how many members have to be restarted. See also Recovery for Partitioned Regions.

If the partitioned region does not have redundant copies, the system members recreate the data
through normal operation. If the member that crashed was an application, check whether it was
designed to write its data to an external data source. If so, decide whether data recovery is possible
and preferable to starting with new data generated through the VMware GemFire cluster.

Data Recovery for Distributed Regions

The applications and cache servers recreate their data automatically. Recovery happens through
replicas, disk store files, or newly generated data, as explained in Recovery for Distributed Regions.

If the recovery is from disk stores, you may not get all of the latest data. Persistence depends on
the operating system to write data to the disk, so when the machine or operating system fails
unexpectedly, the last changes can be lost.

For maximum data protection, you can set up duplicate replicate regions on the network, with
each one configured to back up its data to disk. Assuming the proper restart sequence, this
architecture significantly increases your chances of recovering every update.

VMware GemFire 9.10 Documentation

VMware by Broadcom 443

Data Recovery in a Client/Server Configuration

If the machine that crashed hosted a server, how the server recovers its data depends on whether
the regions are partitioned or distributed. See Data Recovery for Partitioned Regions and Data
Recovery for Distributed Regions as appropriate.

The impact of a server crash on its clients depends on whether the installation is configured for
highly available servers. For information, see Recovering from Crashes with a Client/Server
Configuration.

If the machine that crashed hosted a client, restart the client as quickly as possible and let it
recover its data automatically from the server. For details, see Recovering from Client Failure.

Recovering from ConfictingPersistentDataExceptions

A ConflictingPersistentDataException while starting up persistent members indicates that you
have multiple copies of some persistent data, and VMware GemFire cannot determine which copy
to use.

Normally VMware GemFire uses metadata to determine automatically which copy of persistent
data to use. Along with the region data, each member persists a list of other members that are
hosting the region and whether their data is up to date. A ConflictingPersistentDataException
happens when two members compare their metadata and find that it is inconsistent. The members
either don’t know about each other, or they both think the other member has stale data.

The following sections describe scenarios that can cause ConflictingPersistentDataExceptions in
VMware GemFire and how to resolve the conflict.

Independently Created Copies

Trying to merge two independently created clusters into a single cluster will cause a
ConflictingPersistentDataException.

There are a few ways to end up with independently created systems.

Create two different clusters by having members connect to different locators that are not
aware of each other.

Shut down all persistent members and then start up a different set of brand new persistent
members.

VMware GemFire will not automatically merge independently created data for the same region.
Instead, you need to export the data from one of the systems and import it into the other system.
See the section Cache and Region Snapshots for instructions on how to export data from one
system and import it into another.

Starting New Members First

Starting a brand new member that has no persistent data before starting older members with
persistent data can cause a ConflictingPersistentDataException.

One accidental way this can happen is to shut the system down, add a new member to the startup
scripts, and start all members in parallel. By chance, the new member may start first. The issue is

VMware GemFire 9.10 Documentation

VMware by Broadcom 444

that the new member will create an empty, independent copy of the data before the older
members start up. VMware GemFire will be treat this situation like the Independently Created
Copies case.

In this case the fix is simply to move aside or delete the persistent files for the new member, shut
down the new member and then restart the older members. When the older members have fully
recovered, then restart the new member.

A Network Failure Occurs and Network Partitioning
Detection is Disabled
When enable-network-partition-detection is set to the default value of true, VMware GemFire
will detect a network partition and shut down unreachable members to prevent a network partition
(“split brain”) from occurring. No conflicts should occur when the system is healed.

However if enable-network-partition-detection is false, VMware GemFire will not detect the
network partition. Instead, each side of the network partition will end up recording that the other
side of the partition has stale data. When the partition is healed and persistent members are
restarted, the members will report a conflict because both sides of the partition think the other
members are stale.

In some cases it may be possible to choose between sides of the network partition and just keep
the data from one side of the partition. Otherwise you may need to salvage data and import it into
a fresh system.

Salvaging Data
If you receive a ConflictingPersistentDataException, you will not be able to start all of your
members and have them join the same cluster. You have some members with conflicting data.

First, see if there is part of the system that you can recover. For example if you just added some
new members to the system, try to start up without including those members.

For the remaining members you can extract data from the persistent files on those members and
import the data.

To extract data from the persistent files, use the gfsh export offline-disk-store command.

gfsh> export offline-disk-store --name=MyDiskStore --disk-dirs=./mydir --dir=./outputd

ir

This will produce a set of snapshot files. Those snapshot files can be imported into a running system
using:

gfsh> import data --region=/myregion --file=./outputdir/snapshot-snapshotTest-test0.gf

d --member=server1

Preventing and Recovering from Disk Full Errors

It is important to monitor the disk usage of VMware GemFire members. If a member lacks sufficient
disk space for a disk store, the member attempts to shut down the disk store and its associated

VMware GemFire 9.10 Documentation

VMware by Broadcom 445

cache, and logs an error message. A shutdown due to a member running out of disk space can
cause loss of data, data file corruption, log file corruption and other error conditions that can
negatively impact your applications.

After you make sufficient disk space available to the member, you can restart the member.

You can prevent disk file errors using the following techniques:

If you are using ext4 file system, we recommend that you pre-allocate disk store files and
disk store metadata files. Pre-allocation reserves disk space for these files and leaves the
member in a healthy state when the disk store and regions are shut down, allowing you to
restart the member once sufficient disk space has been made available. Pre-allocation is
enabled by default.

Configure critical usage thresholds (disk-usage-warning-percentage and disk-usage-critical-
percentage) for the disk. By default, these are set to 90% for warning and 99% for errors
that will shut down the cache.

Follow the recommendations in Optimizing a System with Disk Stores for general disk
management best practices.

When a disk write fails due to disk full conditions, the member is shutdown and removed from the
cluster.

Recovering from Disk Full Errors

If a member of your cluster fails due to a disk full error condition, add or make additional disk
capacity available and attempt to restart the member normally. If the member does not restart and
there is a redundant copy of its regions in a disk store on another member, you can restore the
member using the following steps:

1. Delete or move the disk store files from the failed member.

2. Use the gfsh show missing-disk-stores command to identify any missing data. You may
need to manually restore this data.

3. Revoke the missing disk stores using the revoke missing-disk-store gfsh command.

4. Restart the member.

See Handling Missing Disk Stores for more information.

Understanding and Recovering from Network Outages

The safest response to a network outage is to restart all the processes and bring up a fresh data
set.

However, if you know the architecture of your system well, and you are sure you won’t be
resurrecting old data, you can do a selective restart. At the very least, you must restart all the
members on one side of the network failure, because a network outage causes separate clusters
that can’t rejoin automatically.

What Happens During a Network Outage

VMware GemFire 9.10 Documentation

VMware by Broadcom 446

When the network connecting members of a cluster goes down, system members treat this like a
machine crash. Members on each side of the network failure respond by removing the members on
the other side from the membership list. If network partitioning detection is enabled (the default),
the partition that contains sufficient quorum (> 51% based on member weight) will continue to
operate, while the other partition with insufficient quorum will shut down. See Network Partitioning
for a detailed explanation on how this detection system operates.

In addition, members that have been disconnected either via network partition or due to
unresponsiveness will automatically try to reconnect to the cluster unless configured otherwise.
See Handling Forced Cache Disconnection Using Autoreconnect.

Recovery Procedure

For deployments that have network partition detection and/or auto-reconnect disabled, to recover
from a network outage:

1. Decide which applications and cache servers to restart, based on the architecture of the
cluster. Assume that any process other than a data source is bad and needs restarting. For
example, if an outside data feed is coming in to one member, which then redistributes to all
the others, you can leave that process running and restart the other members.

2. Shut down all the processes that need restarting.

3. Restart them in the usual order.

The members recreate the data as they return to active work. For details, see Recovering from
Application and Cache Server Crashes.

Effect of Network Failure on Partitioned Regions

Both sides of the cluster continue to run as though the members on the other side were not
running. If the members that participate in a partitioned region are on both sides of the network
failure, both sides of the partitioned region also continue to run as though the data stores on the
other side did not exist. In effect, you now have two partitioned regions.

When the network recovers, the members may be able to see each other again, but they are not
able to merge back together into a single cluster and combine their buckets back into a single
partitioned region. You can be sure that the data is in an inconsistent state. Whether you are
configured for data redundancy or not, you don’t really know what data was lost and what wasn’t.
Even if you have redundant copies and they survived, different copies of an entry may have
different values reflecting the interrupted workflow and inaccessible data.

Effect of Network Failure on Distributed Regions

By default, both sides of the cluster continue to run as though the members on the other side were
not running. For distributed regions, however, the regions’s reliability policy configuration can
change this default behavior.

When the network recovers, the members may be able to see each other again, but they are not
able to merge back together into a single cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 447

Effect of Network Failure on Persistent Regions

A network failure when using persistent regions can cause conflicts in your persisted data. When
you recover your system, you will likely encounter ConflictingPersistentDataExceptions when
members start up.

For this reason, enable-network-partition-detection must be set to true if you are using
persistent regions.

For information on how to recover from ConflictingPersistentDataException errors should they
occur, see Recovering from ConfictingPersistentDataExceptions.

Effect of Network Failure on Client/Server Installations

If a client loses contact with all of its servers, the effect is the same as if it had crashed. You need to
restart the client. See Recovering from Client Failure. If a client loses contact with some servers,
but not all of them, the effect on the client is the same as if the unreachable servers had crashed.
See Recovering from Server Failure.

Servers, like applications, are members of a cluster, so the effect of network failure on a server is
the same as for an application. Exactly what happens depends on the configuration of your site.

Log Messages and Solutions

This section provides explanations of VMware GemFire Log messages with potential resolutions.

Depending on how your system is configured, log files can be found in a number of locations. See
Log File Locations and Naming, Searching, and Creating Log Files for more information.

above heap eviction threshold

Log Message:

[info 2021/03/23 16:00:13.721 EDT xxx-server01 <Notification Handler> tid=0x5d] Membe

r:

xxx(xxx-server01:29847)<v9>:11096 above heap eviction threshold

Log Level: info

Category: Heap GC

Meaning:

This message requires action to remain healthy. The live objects are driving heap consumption
above your threshold for collecting heap. This is not a good state, as you will either be prematurely
destroying data or overflowing it to disk, which can overwhelm the disk.

Potential Resolutions:

NOTE: VMware GemFire eviction is not truly compatible with G1GC given how G1GC behaves and
how eviction assumes that garbage will be collected.

You should consider increasing the total heap. This will increase tenured space, and potentially
eliminate these messages. You can also increase your eviction-threshold percentage, but this can

VMware GemFire 9.10 Documentation

VMware by Broadcom 448

risk growing heap to the point where you encounter heap fragmentation issues.

below heap eviction threshold

Log Message:

[info 2021/03/23 16:00:43.438 EDT xxx-server01 <Notification Handler> tid=0x5d] Membe

r:

xxx(xxx-server01:29847)<v9>:11096 below heap eviction threshold

Log Level: info

Category: Heap GC

Meaning:

You are now below the eviction threshold, after having been above the threshold.

Potential Resolutions:

Follow the guidance provided in the “above heap eviction threshold” message.

above heap critical threshold

Log Message:

[error 2020/06/23 03:43:48.796 EDT <Notification Handler1> tid=0xa4] Member:

xxx(xxx-server-2:119506)<v2>:10102 above heap critical threshold. Event generated via

polling. Used bytes: 26508001280. Memory thresholds: MemoryThresholds@[2041517395

maxMemoryBytes:26843545600, criticalThreshold:95.0,

criticalThresholdBytes:25501368320, criticalThresholdClearBytes:24964497408,

evictionThreshold:85.0, evictionThresholdBytes:22817013760,

evictionThresholdClearBytes:22280142848]

Log Level: error

Category: Heap GC

Meaning:

This message requires URGENT action. You are in danger of VMware GemFire distributed system
issues where a member, or members, may be kicked out with potential major business impact. The
live objects are driving heap consumption above your critical threshold, so either garbage collection
is proving ineffective or your usage has increased unexpectedly, taking you to much higher levels of
heap consumption. Take action immediately if you ever see this, even if you were not negatively
impacted at the time.

Potential Resolutions:

If you do not already have VMware GemFire eviction in place, acting as a level of protection to
keep heap consumption lower, consider incorporating some flavor of eviction. G1GC and other
newer collectors are not really compatible with HEAP_LRU eviction, so you would need to
incorporate entry count or memory-based eviction.

Generally, being above the critical threshold means that you likely need to increase your total heap.
If you have the critical-threshold set relatively low given your heap size, you could consider

VMware GemFire 9.10 Documentation

VMware by Broadcom 449

increasing this value. Having a critical-threshold of 90%, for example, with a 30g heap is too low.
This is essentially wasting 3g of heap acting purely as overhead protection.

The recommendation is to set the critical-threshold to see the percentage high enough such that
you have a maximum of 1g of overhead. This means that setting the critical-threshold to 98 would
be completely fine for a 100g heap. If you are seeing tenured heap growth with no entry count
growth over time, this is likely indicative of a leak. You will need to take heap dumps and analyze
them to determine why the heap is growing. It could be only temporary, if queries are running and
driving heap consumption, but this should resolve itself, since VMware GemFire will terminate
queries and eliminate that garbage.

If you are using G1GC, it is possible that you are not setting your InitiatingHeapOccupancyPercent
low enough. The default of 45 is too high, so consider trying 30% to see if the tenured heap
behavior becomes more stable.

Query execution canceled after exceeding max execution
time
Log Message:

[info 2021/02/05 03:56:08.087 EST xxx<QueryMonitor Thread> tid=0x3d9] Query execution

canceled after exceeding max execution time 600000ms. Query String = SELECT * FROM

/xxx);isCancelled = true; Total Executions = 3045391; Total Execution Time = 0

Log Level: info

Category: Operations

Meaning:

The query is taking longer than the configured execution time (600,000ms, in this example).
Perhaps it was a rogue query. Perhaps you are short of the system resources needed to
accommodate the current level of activity, including this query.

Potential Resolutions:

If this persists over time, then the query is likely taking too long independent of the current system
state, so you may need to increase the configured time by setting the VMware GemFire system
property, “gemfire.MAX_QUERY_EXECUTION_TIME”, to something higher in order to allow the
query to complete. If this property is not set, the query will never timeout unless you are using the
resource manager, in which case it will timeout in 5 hours. This property does provide some
protection against a really problematic query or set of queries, but requires you to understand what
is driving the query times to know how high to set it.

Perhaps the query did not incorporate the use of a configured index, or indexes, for some reason.
In order to obtain this deeper understanding, you can incorporate verbose logging for your queries
by setting the VMware GemFire system property, “gemfire.Query.VERBOSE”.

Query execution canceled due to memory threshold
crossed in system
Log Message:

VMware GemFire 9.10 Documentation

VMware by Broadcom 450

[warning 2018/03/02 09:33:44.516 EST xxx <ServerConnection on port 40401 Thread 24>

tid=0x1a9] Server connection from [identity(xxx(14:loner):x:x,connection=2;

port=33218]: Unexpected Exception

org.apache.geode.cache.query.QueryExecutionLowMemoryException: Query execution

canceled due to memory threshold crossed in system, memory used: 23,540,738,136

bytes.

Log Level: warning

Category: Operations

Meaning:

Very self explanatory here. A query was canceled because some member or members have
crossed the critical-threshold configured in the system. To protect the member(s) from running out
of memory, the query is terminated. The message indicates the number of bytes used at the time,
which is certainly more than the number of bytes equating to the critical-threshold percentage, in
bytes. You should also see the “above heap critical threshold” message in some logs as well if
seeing this message, to understand the problem members.

Potential Resolutions:

The root cause for the heap issues needs to be investigated. Perhaps it is simply the need for more
total heap. Perhaps GC activity is not collecting garbage effectively, which happens especially with
some G1GC configurations. Perhaps it is a rogue query driving much more new object activity than
expected, or running too long such that the tenured heap becomes much more full than normal
behavior.

You could increase the critical-threshold to some higher percentage, but that may just delay the
inevitable. You could configure your regions to use the eviction-threshold, which will protect the
system in many cases of hitting such high levels of heap surpassing the critical-threshold
configured.

There are <n> stuck threads in this node

Thread <n> is stuck

Thread <n> that was executed at <time> has been stuck for
<nn> seconds

Log Message:

[warning 2021/04/06 00:16:51.743 EDT rtp <ThreadsMonitor> tid=0x11] There are <13>

stuck threads in this node

[warning 2021/04/06 00:17:51.737 EDT rtp <ThreadsMonitor> tid=0x11] Thread <51392> is

stuck

[warning 2021/04/06 00:17:51.738 EDT rtp <ThreadsMonitor> tid=0x11] Thread <51392>

that was executed at <06 Apr 2021 00:16:12 EDT> has been stuck for <99.119 seconds>

and number of thread monitor iteration <2>

Thread Name <poolTimer-gemfire-pool-35493>

 Thread state <WAITING>

 Waiting on <java.util.concurrent.locks.ReentrantLock$NonfairSync@cae7911>

 Owned By <Function Execution Thread-2410> and ID <50995>

VMware GemFire 9.10 Documentation

VMware by Broadcom 451

 Executor Group <ScheduledThreadPoolExecutorWithKeepAlive>

 Monitored metric <ResourceManagerStats.numThreadsStuck>

 Thread Stack: UNIQUE TO EACH CASE

Log Level: warning

Category: Operations

Meaning:

These messages requires URGENT action, to determine whether any issues exist. It is very possible
that there are no real issues, but it is also possible this is the beginning of a major issue that could
snowball to impact the entire cluster. These messages require deeper investigation.

Potential Resolutions:

First, if you only see this issue rarely, or only for a single iteration, it is almost certainly not an issue.
The word “stuck” here may be misleading. The messages are saying that it appears that this thread
has been doing the same thing for a while, so it may be stuck. Some tasks, such as taking backups,
doing exports, or running a rebalance, may appear to be “stuck” when in reality they are simply
doing the same thing over and over as it progresses, like moving a bucket. While it may appear that
we are still moving buckets, it’s probably a different bucket each time.

A key indicator that a thread is truly stuck is the number of iterations, as indicated in the “has been
stuck” message above. If you know that the operation is not one that should take so long, and you
see an iteration of <10> or higher, you should certainly open a ticket and we can dig deeper. Such
tickets will always require thread dumps, multiples, across all cache servers. If you see that <13>
stuck threads in this node message, the issue is likely snowballing and starting to impact this node,
and the cluster could be next.

Gather artifacts, and take action. Perhaps a bounce of members, one at a time, for members
showing stuck threads, would be prudent. Identifying which member to bounce can be difficult.
That said, it is often possible, by analyzing the “15 seconds have elapsed” messages in your logs.
This is described more in the Seconds have elapsed message in this document.

Disconnecting old DistributedSystem to prepare for a
reconnect attempt

Attempting to reconnect to the DistributedSystem. This is
attempt #n
Log Message:

[info 2021/09/21 22:45:37.863 EDT <ReconnectThread> tid=0x7f0d] Disconnecting old

DistributedSystem to prepare for a reconnect attempt

Log Level: info

Category: Membership

Meaning:

These messages are related, and may require action if you are not aware of why the member has
been disconnected. This is often due to some instability in the distributed system caused by either

VMware GemFire 9.10 Documentation

VMware by Broadcom 452

network issues or GC related pauses.

Potential Resolutions:

Examine the logs of the member that is being forced out of the system. Perhaps the member
became unresponsive. Look for other logging with keywords such as “elapsed”, “wakeup”, or
“heartbeat”, all relatively unique words which can be searched for to proactively find potential
issues. If any of these are discovered, GC tuning is likely needed.

Unable to form a TCP/IP connection in a reasonable amount
of time
Log Message:

[info 2021/09/03 10:31:16.311 CDT <Timer-3> tid=0x79] Performing availability check

for suspect member aaa.bbb.ccc.ddd(member:5301)<v256>:41000 reason=Unable to form a

TCP/IP connection in a reasonable amount of time

Log Level: info, warning, fatal : Depending on the particular situation

Category: Membership

Meaning:

This message usually coincides with the availability check logging associated with suspect members.
It should be investigated further by searching for other messages that may give more indication.

This specific message, if not accompanied by other “wakeup” or “heartbeat” messages, generally
indicates that a member may have crashed unexpectedly, without warning. If, however, no
member has crashed, the suspect member was able to respond during suspect processing and may
no longer be at risk. Still, this definitely requires action to determine if you remain vulnerable to
repeated occurrences.

Potential Resolutions:

This message alone doesn’t generally reveal how to proceed to eliminate issues. That said, a deep
analysis of the logs for other significant related messages may be helpful, and following the
potential resolutions for those could help to reduce or eliminate these messages.

Received Suspect Message

Log Message:

debug 2021/02/08 05:53:04.634 IST <member-43596> tid=0x2a] Suspecting member XXX(serv

er1:40875)<v13>:41004

[info 2021/02/08 05:53:04.634 IST <member-43596> tid=0x2a] No longer suspecting

192.168.240.7(ch07node5:40875)<v13>:41004

[info 2021/03/29 06:46:56.304 EDT <Geode Failure Detection thread 162> tid=0x474f0c]

received suspect message from myself for XXX(YYY-server1:15972)<v16>:40000: SOME

REASON GENERALLY PROVIDED HERE

Log Level: info

Category: Membership

Meaning:

VMware GemFire 9.10 Documentation

VMware by Broadcom 453

This message requires action. You are in danger of having a member kicked out of the distributed
system, as it was already being “suspected” of being a problem for some unknown reasons that
require investigation. Continuing to see these indicates that you are definitely not seeing optimal
behavior or performance, and the system is thrashing with many messages thinking some member
or members are unhealthy.

Potential Resolutions:

The “no longer suspecting” message is really an indication that the member is now considered
healthy. However, it also means that the member was considered unhealthy and some member
initiated “suspect” processing to determine if we should kick out the member to preserve the
integrity and stability of the cluster. You will generally see suspect messages, shown above, for all
members, as we send these out across the cluster to gather opinions. Ultimately, if the coordinator
finds the member to be unresponsive within member-timeout seconds, the coordinator will kick
out the member.

To take action, check the “Reason” seen in some of the logs, and take action accordingly. If this is
rare, it is likely not an issue. If frequent, however, you definitely want to research and tune the
system to eliminate these messages. If you are seeing the “no longer suspecting” message, that
means that you should also see the “Suspecting member” message shown above. However,
depending on your version of VMware GemFire, It may require debug level logging to see that
message.

<n> Seconds Have Elapsed

Log Message:

[warn 2021/04/11 02:03:53.220 EDT <ServerConnection on port 10230 Thread 120>

tid=0xac97] 20 seconds have elapsed while waiting for replies:

<PRFunctionStreamingResultCollector 29058 waiting for 1 replies from [XXX]> on

YYY<v18>:10104 whose current membership list is: [LIST OF ALL MEMBERS]

[warn 2021/03/16 02:35:18.588 EDT <Timer-0> tid=0x2e] 15 seconds have elapsed waiting

for a response from XXX:14412)<v6>:40001 for thread ServerConnection on port 20102

Thread 592638

[warn 2021/04/15 03:30:59.107 EDT <main> tid=0x1] 15 seconds have elapsed while

waiting for replies: <DLockRequestProcessor 115 waiting for 1 replies from

[XXX(8582)-server2:68148)<v2>:41000]> on YYY<v2>:41001 whose current membership list

is: [LIST OF ALL MEMBERS]

Log Level: warning

Category: Membership

Meaning:

This message requires action. It is not necessarily urgent, but it is an indication that the messaging
is taking much longer than expected between peers in your environment. The number of seconds
displayed likely maps to the ack-wait-threshold in your environment, which defaults to 15 seconds.
Some customers increase this setting, but it is recommended that you understand your
environment first and only increase it if deemed necessary after attempting to correct any
underlying causes of delays in communications.

Potential Resolutions:

VMware GemFire 9.10 Documentation

VMware by Broadcom 454

This could be driven by GC related delays, JVM Pauses, burst of activity causing high peer to peer
activity, threading issues, overwhelming CPU, etc. You could check for high replyWaitsInProgress
across all nodes using JMX or stats analysis. If this is rare, it is not a likely cause for concern. If you
are seeing this while experiencing high latency, it is likely an area to focus on. To analyze such
issues, we will need all logs, stats, and gc logs across all members to identify which member or
members is driving the slowdown.

NOTE: If many members have these messages, while another member does not appear to be
waiting for replies from anybody, it is very likely that member is the source of the issue. After
analysis to gather some information, you could try bouncing that member to see if this restores the
other members to a healthier state.

Member isn’t responding to heartbeat requests

Log Message:

[info 2021/03/29 06:46:56.304 EDT <Geode Failure Detection thread 162> tid=0x474f0c]

received suspect message from myself for XXX(YYY-server1:15972)<v16>:40000: Member

isn't responding to heartbeat requests

[info 2021/02/21 00:38:33.436 GMT <unicast receiver,XXX-19638> tid=0x31] received

suspect message from YYY(cacheServer33010:16994)<v73>:33100 for

ZZZ(gcacheServer33010:27406)<v74>:33100: Member isn't responding to heartbeat

requests

[info 2021/02/21 00:38:33.440 GMT <Geode Failure Detection thread 10> tid=0x32f]

Performing availability check for suspect member

XXX(cacheServer33010:27406)<v74>:33100 reason=Member isn't responding to heartbeat

requests

Log Level: info

Category: Membership

Meaning:

This message requires immediate action. You are in danger of having a member kicked out of the
distributed system due to being unresponsive. If the member continues to be unresponsive, the
distributed system will kick out the member, to restore stability for the remaining members.

Potential Resolutions:

This is often related to a suboptimal heap and/or GC configuration. You could be experiencing JVM
Pauses that require tuning. If you frequently see these messages without having the member
kicked out, you have opportunities to tune and eliminate these messages. Alternatively, you could
also increase the member-timeout property, however this is only suggested when you have full
understanding of what is driving the member to be unresponsive to the heartbeat requests from
the member monitoring it.

This message often corresponds with “suspect” messages, and members getting kicked out of the
cluster. Logs, stats, and GC logs will be required in order to understand what is going on in this
situation.

Enabled-network-partition-detection is set to false

Log Message:

VMware GemFire 9.10 Documentation

VMware by Broadcom 455

[warning 2021/09/11 08:01:41.089 EDT locatorIS2 <Pooled Message Processor 1>

tid=0x48] Creating persistent region _ConfigurationRegion, but

enable-network-partition-detection is set to false. Running with network partition

detection disabled can lead to an unrecoverable system in the event of a network

split.

Log Level: warning

Category: Membership

Meaning:

This is a warning that you have chosen a configuration that makes you more susceptible to data
consistency issues if you experience a network partition, or “split brain”. If you do choose this
configuration and experience network issues that create a “split brain” scenario, where your
distributed system splits into two separate distributed systems (DS), then it is possible that your
data will diverge. Specifically, you could do puts into a region in DS A that do not make it into DS B,
while also doing puts into DS B that do not make it into DS A. VMware GemFire will be unable to
resolve this situation for you as you try to recover the system back into a single, healthy DS.

Potential Resolutions:

The best option is to choose to keep enable-network-partition-detection set to true. Beyond that,
any split brain driven data divergence will require your manual intervention to avoid possible data
loss.

Statistics sampling thread detected a wakeup delay

Log Message:

[warning 2021/02/09 21:37:44.728 EST member-49001 <StatSampler> tid=0x36] Statistics

sampling thread detected a wakeup delay of 40203 ms, indicating a possible resource

issue. Check the GC, memory, and CPU statistics.

Log Level: warning

Category: Membership

Meaning:

URGENT action is needed. You are experiencing JVM Pauses, where the JVM is preventing
VMware GemFire from running at all for the given amount of time. This is only logged when the
delay is at least 3 seconds more than your configured statistic-sample-rate. You are vulnerable to
having members kicked out of the distributed system.

Potential Resolutions:

This is almost always caused by GC related behavior. To diagnose such issues, make sure to enable
GC logging in your environment. If you have GC logs, search for “Full GC”, “concurrent mode
failure”, “exhausted”, and other similar issues that drive long pauses. If you do open a ticket for
assistance, please have VMware GemFire logs, stats, and GC logs ready to provide them prior to
opening the ticket.

If this is urgent and you need immediate resolution without having time to fine tune GC, one
possible temporary patch is to increase the member-timeout in the gemfire.properties file. This

VMware GemFire 9.10 Documentation

VMware by Broadcom 456

would make VMware GemFire more tolerant of processes being somewhat unresponsive for longer
durations.

Redundancy has dropped below <n> configured copies

Log Message:

[warning 2021/03/23 09:26:51.641 EDT XXX-server01 <PartitionedRegion Message

Processor20> tid=0x1d66] Redundancy has dropped below 2 configured copies to 1 actual

copies for /RegionXYZ

[info 2021/03/23 09:26:51.798 EDT XXX-server01 <PartitionedRegion Message

Processor20> tid=0x1d66] Configured redundancy of 2 copies has been restored to

/RegionXYZ

Log Level: warning

Category: Membership

Meaning:

This message requires immediate action to determine if you are now vulnerable to data loss. This
message indicates that you have lost access to 1 of the 2 configured copies of your data for that
RegionXYZ on member XXX-server01. It is not necessarily urgent if you have redundancy
configured and capacity for the remaining members to handle the increased load. The
corresponding “has been restored” message, an info level message also shown above, indicates
that you now are back to your healthy environment with redundancy in place for that RegionXYZ
from the perspective of this member.

Potential Resolutions:

Investigate the cause of the loss in redundancy if it’s not already known. It could simply have been
a planned maintenance that drove the cluster below configured redundancy levels. The settings
that generally apply here are the number of copies configured, and then, the recovery-delay and
startup-recovery-delay settings, which control whether and when we restore redundancy with the
loss of a member of the distributed system and when it is added back in. Our documentation
discusses these settings in detail.

Rejected connection

Log Message:

[warning 2021/05/10 12:28:31.063 BST gfcache.ivapp1237223.croydon.ms.com.7291

<Handshaker /0:0:0:0:0:0:0:0:7291 Thread 10> tid=0xa29] Rejected connection from XXX

because current connection count of 1,600 is greater than or equal to the configured

max of 1,600

[warn 2021/03/28 02:22:01.667 CDT <Handshaker 0.0.0.0/0.0.0.0:40404 Thread 23>

tid=0x85cf] Rejected connection from Server connection from [client host address=YYY;

client port=43198] because incoming request was rejected by pool possibly due to

thread exhaustion

Log Level: warning

Category: Communications

Meaning:

VMware GemFire 9.10 Documentation

VMware by Broadcom 457

This message requires URGENT action. These messages indicate that you have exhausted
resources, likely either due to using an insufficient max-connections setting for the cache server
configuration or insufficient resources for the level of connection load on the system. Both of these
messages are from the same area of code, trying to handle a new client connection request.

Potential Resolutions:

If you have increased load recently, or are using an old, legacy default value of 800 for max-
connections, you may want to consider increasing this setting, regardless. Many customers use
2000, or even 5000 for those that do not want VMware GemFire to be throttling their
performance/activity trying to conserve resources.

That said, if this number of connections is unexpected, you are potentially experiencing issues with
connection timeouts, driving retry activity and a thrashing of resources that can cause the number
of outstanding client connections and threads to be exhausted. You can observe this by examining
VMware GemFire statistics using a tool like VSD, or, if using JMX, you can monitor usage with the
CacheServeMXBean getClientConnectionCount() method. If you ever see unexpected spikes in this
value, but are not seeing other symptoms, such as timeouts, perhaps you simply need to increase
the max-connections appropriately.

However, if seeing these messages coincides with symptoms like client side timeouts, it could be
due to an insufficient read-timeout in the client side pool configuration, or an insufficient accept
queue on the server side. Another setting that warrants investigation is the
BridgeServer.HANDSHAKE_POOL_SIZE. If you have not altered this setting in your system
properties, you are likely using the default value of 4, which has been seen to be insufficient for
many environments. Recommend increasing this VMware GemFire system property to at least 20.

PCC service metrics component failing to connect to
locator/server
Log Message:

{"timestamp":"1620032802.654847383","source":"service-metrics","message":"service-metr

ics.executing-metrics-cmd","log_level":2,"data":{"error":"exit

status 1","event":"failed","output":"IOException error! MBeanServerConnection failed

to create.\njava.io.IOException: Failed to retrieve RMIServer stub:

javax.naming.ServiceUnavailableException [Root exception is

java.rmi.ConnectException: Connection refused to host:

461737ba-07ca-4897-9e41-a70ae7f26274.server.services.service-instance-94fbf6cc-4073-4a

45-8965-7ea855bcd0ca.bosh;

nested exception is: \n\tjava.net.ConnectException: Connection refused (Connection

refused)]\nException in thread \"main\" java.lang.NullPointerException\n\tat

io.pivotal.cloudcache.metrics.cli.MetricsExtractor.lambda$static$0(MetricsExtractor.ja

va:10)\n\tat

io.pivotal.cloudcache.metrics.cli.JMXPropertiesEmitter.lambda$getMemberMetrics$0(JMXPr

opertiesEmitter.java:55)\n\tat

java.util.stream.ReferencePipeline$3$1.accept(ReferencePipeline.java:193)\n\tat

java.util.Spliterators$ArraySpliterator.forEachRemaining(Spliterators.java:948)\n\tat

java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:482)\n\tat

java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:472)\n\tat

java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708)\n\tat

java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234)\n\tat

java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:566)\n\tat

io.pivotal.cloudcache.metrics.cli.JMXPropertiesEmitter.getMemberMetrics(JMXPropertiesE

VMware GemFire 9.10 Documentation

VMware by Broadcom 458

mitter.java:56)\n\tat

io.pivotal.cloudcache.metrics.cli.JMXPropertiesEmitter.main(JMXPropertiesEmitter.java:

30)\n"}}

{"timestamp":"1620032842.481263161","source":"service-metrics","message":"service-metr

ics.executing-metrics-cmd","log_level":1,"data":{"event":"starting"}}

Category: Communications

Meaning:

Every VM in PCC for locators or servers has its own service-metrics component. The job of this
component is to periodically check the health of the VMware GemFire server/locator processes
running. The way it does that job is by making an RMI call to the JMX manager. When it cannot
connect to the locator/server process, it starts logging these errors in its own log.

SSLHandshakeException: <version> is disabled

Log Message:

[warn 2021/04/26 15:44:52.418 EDT kbc000100.rw.example.com <P2P message reader@388969b

8> tid=0x3a] SSL handshake exception

javax.net.ssl.SSLHandshakeException: <<ssl_version>> is disabled

 at sun.security.ssl.InputRecord.handleUnknownRecord(InputRecord.java:637)

 at sun.security.ssl.InputRecord.read(InputRecord.java:527)

 at sun.security.ssl.EngineInputRecord.read(EngineInputRecord.java:382)

 at sun.security.ssl.SSLEngineImpl.readRecord(SSLEngineImpl.java:951)

 at sun.security.ssl.SSLEngineImpl.readNetRecord(SSLEngineImpl.java:896)

 at sun.security.ssl.SSLEngineImpl.unwrap(SSLEngineImpl.java:766)

 at javax.net.ssl.SSLEngine.unwrap(SSLEngine.java:624)

 at org.apache.geode.internal.net.NioSslEngine.handshake(NioSslEngine.java:148)

 at org.apache.geode.internal.net.SocketCreator.handshakeSSLSocketChannel(Socke

tCreator.java:840)

 at org.apache.geode.internal.tcp.Connection.createIoFilter(Connection.java:174

7)

 at org.apache.geode.internal.tcp.Connection.readMessages(Connection.java:1548)

 at org.apache.geode.internal.tcp.Connection.run(Connection.java:1472)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1

149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:

624)

 at java.lang.Thread.run(Thread.java:748)

Category: Communications

Meaning:

This means the specified SSL/TLS protocol is not compatible with, or configured correctly, on one
or more members. The simplest workaround is to use “any'' as the protocol, however, some
customers have strict security requirements that mandate specific versions and ciphers, which will
require that all members are configured with compatible (matching) protocols and ciphers and that
those protocols/ciphers are supported by the underlying JRE.

Unable To Create New Native Thread

Log Message:

VMware GemFire 9.10 Documentation

VMware by Broadcom 459

java.lang.OutOfMemoryError: unable to create new native thread

Log Level: warning

Category: Heap / JVM / GC

Meaning:

The JVM needs various resources to create a new ‘native’ thread, which may not map one-to-one
with application threads. These resources are external to the JVM heap and include “native”
memory for the stack and, potentially, user processes.

Potential Resolution:

Depending on the resource limit encountered, you may need to increase the maximum number of
user processes as configured with ulimit and/or “/etc/security/limits.conf”, or you may not have
sufficient system memory. In the latter case, you will need to make more system memory available
and/or decrease the amount of stack memory used per thread. If you have excess, unused heap
under even heavy load, you may be able to reduce the heap size and leave more memory for
“native” usage.

Alternatively, you might be able to decrease the stack size of each thread, by setting the JVM
parameter “-xss” to something smaller (the defaults are 320 KB for 32-bit JVMs and 1024 KB for
64-bit JVMs), but this must be done with care as it can cause threads to not have enough stack to
properly operate. The last and safest option is to add free memory to the system by either adding
memory or reducing other consumers of system memory (e.g. other applications).

Too Many Open Files

Log Message:

java.net.SocketException: Too many open files (Socket creation failed/Accept failed)

Log Level: warning

Category: Communications

Meaning:

The number of sockets available to your applications is governed by operating system limits.
Sockets use file descriptors and the operating system’s view of your application’s socket use is
expressed in terms of file descriptors.

Potential Resolution:

There are two limits on the maximum descriptors available to a single application, a soft limit, which
can be increased using the ulimit command as a user, and a “hard” limit which will require editing
“/etc/security/limits.conf” and relogging in. (There is also an OS level limit that will require a system
administrator to tune kernel parameters, however, this limit is typically large and is rarely hit.) It is
also possible that the FD’s being consumed are being driven by a major increase of
connections/threads due to some burst of activity or connections timing out. This can lead to retry
activity driving the number of open files to increase. If you increase the soft and hard limits, and
continue to observe these messages, you may need to analyze whether you have connections

VMware GemFire 9.10 Documentation

VMware by Broadcom 460

timing out, sufficient TCP accept queue, etc. This can require an increase of the p2p.backlog and
net.core.somaxconn settings.

CommitConflictException

Log Message:

org.apache.geode.cache.CommitConflictException: Concurrent transaction commit

detected The key xxx in region /xxx was being modified by another transaction locally

Log Level: warning

Category: Operations

Meaning:

You design transactions such that any get operations are within the transaction. This causes those
entries to be part of the transactional state, which is desired such that intersecting transactions can
be detected and signal commit conflicts. You have to catch the commit conflicts in your code like
this:

 try {

 txmgr.begin();

 // add your codes here

 txmgr.commit();

 }

 catch (CommitConflictException conflict) {

 // entry value changed causing a conflict, so try again

 } finally {

 //add your codes here

 }

 }

Initialization of Region
<_B__RegionName_BucketNumber> Completed

Log Message:

[info 2021/03/28 00:41:20.047 EDT <Recovery thread for bucket _B__RegionName_32>

tid=0x164] Region _B__RegionName_32 requesting initial image from

IP(gemfire-server-1:88590)<v19>:10100

[info 2021/03/28 00:41:20.048 EDT <Recovery thread for bucket _B__RegionName_32>

tid=0x164] _B__RegionName_32 is done getting image from

IP(gemfire-server-1:88590)<v19>:10100. isDeltaGII is true

[info 2021/03/28 00:41:20.048 EDT <Recovery thread for bucket

 _B__firm_0_RegionName_32> tid=0x164] Region _B__RegionName_32 initialized persistent

 id: /IP:/pathTo-server-1/cldist created at timestamp 1616906479201 version 0

 diskStoreId DiskStoreid name null with data from

 IP(gemfire-server-1:88590)<v19>:10100.

[info 2021/03/28 00:41:20.048 EDT <Recovery thread for bucket _B__RegionName_32>

tid=0x164] Could not initiate event tracker from GII provider

IP(gemfire-server-1:88590)<v19>:10100

VMware GemFire 9.10 Documentation

VMware by Broadcom 461

[info 2021/03/28 00:41:20.048 EDT <Recovery thread for bucket _B__RegionName_32>

tid=0x164] Initialization of region _B__RegionName_32 completed

Log Level: info

Category: Membership

Meaning:

This set of messages are related to the initialization of Partitioned regions. They indicate where the
VMware GemFire system is retrieving each bucket from to perform this initialization. In the above
example, bucket 32 for region “RegionName” is being retrieved from member gemfire-server-1 as
VMware GemFire believes this to be the most recent data for that bucket. This is the “requesting
initial image” message above. The “Initialization of region <> completed message can be useful to
determine where each specific bucket, for each specific region, is located across the membership.

Potential Resolution:

There is no “resolution” here, but customers have asked how to determine where each bucket
exists across the cluster. Using the above message can be very useful to filter the logs to see
exactly where each bucket exists in the cluster, for each region. One could use a command such as
one like this: egrep -R --include=*.log 'Initialization of region _B__RegionName_’
~/PathToLogFiles//gflogs/*. The above command could tell you exactly where each bucket exists
for region RegionName. If you use only Initialization of region _B__ instead, this would then
output the buckets across all partitioned regions. This output could then be used to know where
each specific bucket exists across the cluster, to serve whatever purpose you deem helpful in
monitoring your cluster. There does exist some great documentation and project for how to
identify where buckets are located in this article: https://community.pivotal.io/s/article/GemFire-
Monitoring-PR-Entry-and-Bucket-Details.

Unknown pdx Type error

Log Message:

Caused by: java.lang.IllegalStateException: Unknown pdx type=X

at com.gemstone.gemfire.internal.InternalDataSerializer.readPdxSerializable(InternalDa

taSerializer.java:2977)

at com.gemstone.gemfire.internal.InternalDataSerializer.basicReadObject(InternalDataSe

rializer.java:2794)

at com.gemstone.gemfire.DataSerializer.readObject(DataSerializer.java:3212)

at com.gemstone.gemfire.internal.util.BlobHelper.deserializeBlob(BlobHelper.java:81)

at com.gemstone.gemfire.internal.cache.EntryEventImpl.deserialize(EntryEventImpl.java:

1407)

at com.gemstone.gemfire.internal.cache.PreferBytesCachedDeserializable.getDeserialized

Value(PreferBytesCachedDeserializable.java:65)

at com.gemstone.gemfire.cache.query.internal.index.DummyQRegion.getValues(DummyQRegio

n.java:153)

at com.gemstone.gemfire.cache.query.internal.index.DummyQRegion.values(DummyQRegion.ja

va:109)

at com.gemstone.gemfire.cache.query.internal.index.DummyQRegion.iterator(DummyQRegion.

java:198)

at com.gemstone.gemfire.cache.query.internal.index.CompactRangeIndex$IMQEvaluator.doNe

stedIterations(CompactRangeIndex.java:1763)

at com.gemstone.gemfire.cache.query.internal.index.CompactRangeIndex$IMQEvaluator.eval

VMware GemFire 9.10 Documentation

VMware by Broadcom 462

https://community.pivotal.io/s/article/GemFire-Monitoring-PR-Entry-and-Bucket-Details

uate(CompactRangeIndex.java:1622)

... 27 more

Log Level: Error

Category: Operations

Meaning:

A Portable Data eXchange (PDX) related exception that may occur when restarting a distributed
system without also restarting any clients. When using PDX serialization without persistence, the
above exception may be seen on a client after bouncing all of the servers of the distributed system
without restarting the client. Generally, this message indicates that the PDX metadata on some
client is out-of-sync with the servers.

Potential Resolution:

To avoid this issue without persisting PDX types on server members, you must restart your client
application when restarting the servers. Alternately, to avoid this issue without restarting your
client application, you must enable PDX persistence on servers. By doing this, you are guaranteed
that any already defined PDX types will remain available between server restarts. This doesn’t
require storing the data from your regions, you can store only PDX metadata, regions data, or both.
Below mentioned is an example of how to configure PDX persistence on the server side:

<disk-store name="pdxDiskStore">

<disk-dirs>

<disk-dir>pdxDiskStore</disk-dir>

</disk-dirs>

</disk-store>

<pdx read-serialized="true" persistent="true" disk-store-name="pdxDiskStore"/>

Error calculating expiration

Log Message:

2021-06-02 12:35:26,071 FATAL o.a.g.i.c.LocalRegion [Recovery thread for bucket _B__gd

c__eventsLow_50] Error calculating expiration An IOException was thrown while deserial

izing

org.apache.geode.SerializationException: An IOException was thrown while deserializing

 at org.apache.geode.internal.cache.EntryEventImpl.deserialize(EntryEventImpl.j

ava:2041) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.EntryEventImpl.deserialize(EntryEventImpl.j

ava:2032) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.VMCachedDeserializable.getDeserializedValue

(VMCachedDeserializable.java:113) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.getDeserialized(LocalRegion.jav

a:1280) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.ExpiryRegionEntry.getValue(ExpiryRegionEntr

y.java:101) ~[geode-core-9.10.5.jar:?]

 at com.ihg.enterprise.gdc.model.CustomExpiryHandler.getExpiry(CustomExpiryHand

ler.java:19) ~[gdc-gemfire-side-2.26-jar-with-dependencies.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.createExpiryTask(LocalRegion.ja

va:7774) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.addExpiryTask(LocalRegion.java:

7901) ~[geode-core-9.10.5.jar:?]

VMware GemFire 9.10 Documentation

VMware by Broadcom 463

 at org.apache.geode.internal.cache.LocalRegion.addExpiryTask(LocalRegion.java:

7753) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.lambda$rescheduleEntryExpiryTas

ks$3(LocalRegion.java:7741) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.ExpiryTask.doWithNowSet(ExpiryTask.java:48

0) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.rescheduleEntryExpiryTasks(Loca

lRegion.java:7739) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.initialize(LocalRegion.java:239

4) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.DistributedRegion.initialize(DistributedReg

ion.java:1099) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.BucketRegion.initialize(BucketRegion.java:2

59) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.LocalRegion.createSubregion(LocalRegion.jav

a:983) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.PartitionedRegionDataStore.createBucketRegi

on(PartitionedRegionDataStore.java:784) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.PartitionedRegionDataStore.grabFreeBucket(P

artitionedRegionDataStore.java:459) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.PartitionedRegionDataStore.grabBucket(Parti

tionedRegionDataStore.java:2875) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.ProxyBucketRegion.recoverFromDisk(ProxyBuck

etRegion.java:463) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.ProxyBucketRegion.recoverFromDiskRecursivel

y(ProxyBucketRegion.java:406) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.PRHARedundancyProvider$2.run2(PRHARedundanc

yProvider.java:1640) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.partitioned.RecoveryRunnable.run(RecoveryRu

nnable.java:60) [geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.PRHARedundancyProvider$2.run(PRHARedundancy

Provider.java:1630) [geode-core-9.10.5.jar:?]

 at java.lang.Thread.run(Thread.java:748) [?:1.8.0_212]

Caused by: java.io.IOException: Unknown header byte 83

 at org.apache.geode.internal.serialization.DscodeHelper.toDSCODE(DscodeHelper.

java:40) ~[geode-serialization-9.10.5.jar:?]

 at org.apache.geode.internal.InternalDataSerializer.basicReadObject(InternalDa

taSerializer.java:2494) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.DataSerializer.readObject(DataSerializer.java:2864) ~[geod

e-core-9.10.5.jar:?]

 at org.apache.geode.internal.util.BlobHelper.deserializeBlob(BlobHelper.java:9

9) ~[geode-core-9.10.5.jar:?]

 at org.apache.geode.internal.cache.EntryEventImpl.deserialize(EntryEventImpl.j

ava:2039) ~[geode-core-9.10.5.jar:?]

 ... 24 more

Log Level: Warning

Category: Storage

Potential Resolution:

This is due to inconsistencies in the data stored on region/disk vs. the PdxType and may throw
during deserialization. Cleaning the data or syncing it according to PdxType is a possible solution.

PdxType limitations for GFSH queries

Log Message:

VMware GemFire 9.10 Documentation

VMware by Broadcom 464

[info 2021/06/15 13:01:24.238 EDT 170834GFCluster.sd-1d7e-bd1c.cacheServer40404 <Funct

ion Execution Processor3> tid=0x7b] Exception occurred:

org.apache.geode.pdx.JSONFormatterException: Could not create JSON document from PdxIn

stance

 at org.apache.geode.pdx.JSONFormatter.toJSON(JSONFormatter.java:173)

 at org.apache.geode.management.internal.cli.domain.DataCommandResult$SelectRes

ultRow.valueToJson(DataCommandResult.java:726)

 at org.apache.geode.management.internal.cli.domain.DataCommandResult$SelectRes

ultRow.resolveStructToColumns(DataCommandResult.java:712)

 at org.apache.geode.management.internal.cli.domain.DataCommandResult$SelectRes

ultRow.resolveObjectToColumns(DataCommandResult.java:689)

 at org.apache.geode.management.internal.cli.domain.DataCommandResult$SelectRes

ultRow.createColumnValues(DataCommandResult.java:679)

 at org.apache.geode.management.internal.cli.domain.DataCommandResult$SelectRes

ultRow.<init>(DataCommandResult.java:662)

 at org.apache.geode.management.internal.cli.functions.DataCommandFunction.crea

teSelectResultRow(DataCommandFunction.java:266)

 at org.apache.geode.management.internal.cli.functions.DataCommandFunction.sele

ct_SelectResults(DataCommandFunction.java:252)

 at org.apache.geode.management.internal.cli.functions.DataCommandFunction.sele

ct(DataCommandFunction.java:220)

 at org.apache.geode.management.internal.cli.functions.DataCommandFunction.sele

ct(DataCommandFunction.java:173)

 at org.apache.geode.management.internal.cli.functions.DataCommandFunction.exec

ute(DataCommandFunction.java:122)

 at org.apache.geode.internal.cache.MemberFunctionStreamingMessage.process(Memb

erFunctionStreamingMessage.java:193)

 at org.apache.geode.distributed.internal.DistributionMessage.scheduleAction(Di

stributionMessage.java:367)

 at org.apache.geode.distributed.internal.DistributionMessage$1.run(Distributio

nMessage.java:430)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1

149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java)

 at org.apache.geode.distributed.internal.ClusterDistributionManager.runUntilSh

utdown(ClusterDistributionManager.java:952)

 at org.apache.geode.distributed.internal.ClusterDistributionManager.doFunction

ExecutionThread(ClusterDistributionManager.java:806)

 at org.apache.geode.internal.logging.LoggingThreadFactory.lambda$newThread$0(L

oggingThreadFactory.java:121)

 at java.lang.Thread.run(Thread.java:748)

Caused by: java.lang.IllegalStateException: PdxInstance returns unknwon pdxfield value

for type Wed Apr 07 00:00:00 EDT 2021

 at org.apache.geode.pdx.internal.json.PdxToJSON.writeValue(PdxToJSON.java:144)

 at org.apache.geode.pdx.internal.json.PdxToJSON.getJSONString(PdxToJSON.java:1

75)

 at org.apache.geode.pdx.internal.json.PdxToJSON.writeValue(PdxToJSON.java:138)

 at org.apache.geode.pdx.internal.json.PdxToJSON.getJSONString(PdxToJSON.java:1

75)

 at org.apache.geode.pdx.internal.json.PdxToJSON.writeValue(PdxToJSON.java:138)

 at org.apache.geode.pdx.internal.json.PdxToJSON.getJSONString(PdxToJSON.java:1

75)

 at org.apache.geode.pdx.internal.json.PdxToJSON.writeValue(PdxToJSON.java:138)

 at org.apache.geode.pdx.internal.json.PdxToJSON.getJSONString(PdxToJSON.java:1

75)

 at org.apache.geode.pdx.internal.json.PdxToJSON.writeValue(PdxToJSON.java:138)

 at org.apache.geode.pdx.internal.json.PdxToJSON.getJSONString(PdxToJSON.java:1

75)

 at org.apache.geode.pdx.internal.json.PdxToJSON.getJSON(PdxToJSON.java:57)

VMware GemFire 9.10 Documentation

VMware by Broadcom 465

 at org.apache.geode.pdx.JSONFormatter.toJSON(JSONFormatter.java:171)

 ... 19 more

Log Level: INFO

Category: Operations

Potential Resolution:

Other than primitive types like object types (String, Character, Date etc.) will not be deserialized on
GFSH queries.

Apache.Geode.Client.AllConnectionsInUseException

Log Message:

In StdOut/StdError on Client Side:

Apache.Geode.Client.AllConnectionsInUseException

Region::getAll: All connections are in use

Apache.Geode.Client.Region`2[[System.__Canon, mscorlib],[System.__Canon, mscorlib]].Ge

tAll(System.Collections.Generic.ICollection`1<System.__Canon>, System.Collections.Gene

ric.IDictionary`2<System.__Canon,System.__Canon>, System.Collections.Generic.IDictiona

ry`2<System.__Canon,System.Exception>, Boolean)

 Apache.Geode.Client.Region`2[[System.__Canon, mscorlib],[System.__Canon, mscorli

b]].GetAll(System.Collections.Generic.ICollection`1<System.__Canon>, System.Collection

s.Generic.IDictionary`2<System.__Canon,System.__Canon>, System.Collections.Generic.IDi

ctionary`2<System.__Canon,System.Exception>)

Category: Operations

Meaning:

This is evidence of the connection pool getting overwhelmed on the client side and not a problem
on the VMware GemFire server side. Resolution: Increase the max-connections property to higher
value as appropriate on pool settings on native client.

org.apache.geode.pdx.PdxInitializationException

Log Message: / Stack-trace / StdError:

The Cache Server process terminated unexpectedly with exit status 1. Please refer to t

he log file in /appdata/gemfire/edl/data/server for full details.

Exception in thread "main" org.apache.geode.pdx.PdxInitializationException: Could not

create pdx registry

 at org.apache.geode.pdx.internal.PeerTypeRegistration.initialize(PeerTypeRegistrat

ion.java:204)

 at org.apache.geode.pdx.internal.TypeRegistry.creatingDiskStore(TypeRegistry.java:

267)

 at org.apache.geode.internal.cache.DiskStoreFactoryImpl.create(DiskStoreFactoryImp

l.java:160)

 at org.apache.geode.internal.cache.xmlcache.CacheCreation.createDiskStore(CacheCre

ation.java:792)

 at org.apache.geode.internal.cache.xmlcache.CacheCreation.initializePdxDiskStore(C

acheCreation.java:783)

 at org.apache.geode.internal.cache.xmlcache.CacheCreation.create(CacheCreation.jav

a:507)

VMware GemFire 9.10 Documentation

VMware by Broadcom 466

 at org.apache.geode.internal.cache.xmlcache.CacheXmlParser.create(CacheXmlParser.j

ava:338)

 at org.apache.geode.internal.cache.GemFireCacheImpl.loadCacheXml(GemFireCacheImpl.

java:4294)

Category: Operations

Meaning:

This explains that the PdxRegion is not getting initialized due to the corrupted cluster configs.

Potential Resolution:

Stop locator(s), then clear the cluster configs/pdx disk stores and, finally, start the locator(s). KB
exists: https://community.pivotal.io/s/article/Fails-to-Start-a-Cache-Member-with-
orgapachegeodepdxPdxInitializationException-Could-not-create-pdx-registry?language=en_US.

Format of the string <<cache xml file’s content>> used for
parameterization is unresolvable
Note: the spelling “perameterization” is wrong in the codebase
https://github.com/apache/geode/blob/a5bd36f9fa787d3a71c6e6efafed5a7b0fe52d2b/geode-
core/src/main/java/org/apache/geode/internal/cache/xmlcache/CacheXmlPropertyResolver.java#
L125. Working to report & fix this.

Log Message:

[error 2021/09/08 11:42:16.830 EDT <main> tid=0x1] Format of the string <?xml version

="1.0"?>

<cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0">

<gateway-sender id="GW_SENDER_${REMOTE_DS_ID_1}" remote-distributed-system-id="${REMOT

E_DS_ID_1}" manual-start="${GW_START_ID_1}" parallel="false" enable-persistence="true"

disk-store-name="gw1" disk-synchronous="true" dispatcher-threads="5" socket-read-timeo

ut="300000"/>

<gateway-sender id="GW_SENDER_${REMOTE_DS_ID_2}" remote-distributed-system-id="${REMOT

E_DS_ID_2}" manual-start="${GW_START_ID_2}" parallel="false" enable-persistence="true"

disk-store-name="gw2" disk-synchronous="true" dispatcher-threads="5" socket-read-timeo

ut="300000"/>

 <gateway-receiver hostname-for-senders="${HOSTNAME_FOR_SENDERS}" bind-address="${HOS

TNAME}" start-port="1531" end-port="1532"/>

-

-

-

</cache>

 used for parameterization is unresolvable

[error 2021/09/08 11:42:17.260 EDT <main> tid=0x1] Cache initialization for GemFireCac

he[id = -29791992; isClosing = false; isShutDownAll = false; created = Wed Sep 08 11:3

9:37 EDT 2021; server = false; copyOnRead = false; lockLease = 120; lockTimeout = 60]

failed because: java.lang.NullPointerException

Category: Configuration

VMware GemFire 9.10 Documentation

VMware by Broadcom 467

https://community.pivotal.io/s/article/Fails-to-Start-a-Cache-Member-with-orgapachegeodepdxPdxInitializationException-Could-not-create-pdx-registry?language=en_US
https://github.com/apache/geode/blob/a5bd36f9fa787d3a71c6e6efafed5a7b0fe52d2b/geode-core/src/main/java/org/apache/geode/internal/cache/xmlcache/CacheXmlPropertyResolver.java#L125

Meaning:

This error occurs when the parameterized values are provided for the properties/attributes. For
example, manual-start="${GW_START_ID_1}". This property expects boolean, but seems to be
getting some non-boolean value.

Potential Resolution:

Fix the errors for incorrect values or their types when provided dynamically.

RegionExistException

Log Message:

[error 2021/09/29 11:25:48.885 CDT <main> tid=0x1] Cache initialization for

GemFireCache[id = 755944228; isClosing = false; isShutDownAll = false; created = Wed

Sep 29 11:25:46 CDT 2021; server = false; copyOnRead = false; lockLease = 120;

lockTimeout = 60] failed because: org.apache.geode.cache.CacheXmlException: While

parsing XML, caused by org.xml.sax.SAX

Exception: A CacheException was thrown while parsing XML.

org.apache.geode.cache.RegionExistsException: /RegionX

Log Level: Error

Category: Configuration

Meaning:

This message indicates that the locator already has region (RegionX) in the cluster configuration
and while starting up, a duplicate region is being created via API or cache.xml.

Potential Resolutions:

Remove duplicate region definition from the configurations.

If “enable-cluster-configuration=true” in locator properties, then do the following:

Export the cluster configuration (export cluster-configuration --xml-file=value)

Remove the duplicate Region definition

Re-import the cluster configuration (import cluster-configuration --
action=STAGE) and restart.

If “enable-cluster-configuration=false” in locator properties, then remove the duplicate
region definition from cache.xml.

Missing Diskstore Exception

Log Message:

Region /RegionX has potentially stale data.

It is waiting for another member to recover the latest data.

My persistent id:

 DiskStore ID: 6893751ee74d4fbd-b4780d844e6d5ce7

 Name: server1

VMware GemFire 9.10 Documentation

VMware by Broadcom 468

 Location: /192.0.2.0:/home/grawat/server1/.

Members with potentially new data:

[

 DiskStore ID: 160d415538c44ab0-9f7d97bae0a2f8de

 Name: server2

 Location: /192.0.2.0:/home/grawat/server2/.

]

Use the "gfsh show missing-disk-stores" command to see all disk stores

that are being waited on by other members.

Log Level: Info

Category: Storage

Meaning:

When you start a member with a persistent region, the data is retrieved from disk stores to
recreate the member’s persistent region. If the member does not hold all of the most recent data
for the region, then other members have the data, and region creation blocks, waiting for those
other members. A partitioned region with colocated entries also blocks on start up, waiting for the
entries of the colocated region to be available. So, this message shows that the disk store for
server2 has the most recent data for the region, and server1 is waiting for server2.

Potential Resolutions:

Start all members with persisted data first and at the same time.

Respond to the waiting members by starting the server on which the waiting member is
waiting on.

Could not create an instance of a class

Log Message:

Could not create an instance of a class com.xxx.yyy.zzz

Log Level: Error

Category: Configuration

Meaning:

This message indicates that either the class is not available in the classpath or the jar, which
contains this class, is not deployed on Cache servers.

Potential Resolutions:

Make the class available to classpath.

Deploy the class on cache servers.

PartitionedRegion#cleanupFailedInitialization: Failed to
clean the PartitionRegion allPartitionedRegions

Log Message:

VMware GemFire 9.10 Documentation

VMware by Broadcom 469

[warning 2021/05/15 08:51:46.460 EDT 170834GFCluster.lmwcpbacap01p.cacheServer50506

<main> tid=0x1] PartitionedRegion#cleanupFailedInitialization: Failed to clean the

PartionRegion allPartitionedRegions

org.apache.geode.distributed.DistributedSystemDisconnectedException: Distribution

manager on 10.102.8.41(cacheServer50506:278621)<v1>:50001 started at Sat May 15

08:44:31 EDT 2021: Failed to acknowledge a new membership view and then failed tcp/ip

connection attempt, caused by org.apache.geode.ForcedDisconnectException: Failed to

acknowledge a new membership view and then failed tcp/ip connection attempt

Log Level: Error

Category: Membership

Meaning:

This message indicates that the buckets for partitioned regions have not recovered fully but a
destroy region is issued for the regions whose buckets are still recovering.

Potential Resolutions:

Make sure that regions are recovered before issuing any destroy command.

Could not find any server to create primary client queue
on.
Log Message:

[error 2016/09/13 10:45:29.351 PDT client tid=0x34] Could not find any server to

create primary client queue on. Number of excluded servers is 0 and the exception is

null.

Log Level: Error

Category: Communications

Meaning:

When a client with subscription-enabled=“true” is started, messages like below will be logged in
the VMware GemFire client log. If subscription-redundancy is not set, there will be one of these; if
it is set to 1, there will be two, etc. The Cache Client Updater Thread is the thread waiting for
events from the server. If no other server is available to which the Cache Client Updater Thread is
connected, then above error message will be logged:

Potential Resolutions:

Make sure that the server, to which the Cache Client Updater Thread is connected, is up and
running.

Cluster configuration service not available

Log Message:

Exception in thread "main" org.apache.geode.GemFireConfigException: cluster configurat

ion service not available

 at org.apache.geode.internal.cache.GemFireCacheImpl.requestSharedConfiguration(GemFi

reCacheImpl.java:1265)

VMware GemFire 9.10 Documentation

VMware by Broadcom 470

Log Level: Error

Category: Configuration

Meaning:

This message indicates that the cache server is configured with, “use-cluster-configuration = true”,
but is unable to get the cluster configuration from the locator.

Potential Resolutions:

Ensure that the locator has “enable-cluster-configuration=true” and the cache servers are able to
get the cluster configurations from locators.

The secondary map already contained an event from hub
null so ignoring new event
Log Message:

[warn 2021/09/10 15:49:31.692 CEST <P2P message reader for

00.01.02.03(some-node:17718)<v2>:41001 unshared ordered uid=1086 dom #1 port=39166>

tid=0x247bb] AsyncEventQueue_SubstitutionEventQ: The secondary map already contained

an event from hub null so ignoring new event GatewaySenderEventImpl[id=EventID[id=25

bytes...

Log Level: Warn

Category: Operations

Meaning:

This message indicates that the secondary gateway sender, hosted by a server, received an event
that was already processed by the primary gateway sender of other server B; so the event itself
shouldn’t be added to the internal map of unprocessed events.

Potential Resolutions:

This message, if seen occasionally, is harmless in most situations.

Create is present in more than one Oplog. This should not
be possible. The Oplog Key ID for this entry is
Log Message:

java.lang.AssertionError: Oplog::readNewEntry: Create is present in more than one Oplo

g. This should not be possible

Log Level: Error

Category: Storage

Meaning:

This error indicates that the oplog is corrupted which makes it harder to write/delete any new
entry in the oplogs (Diskstores) because of which cache servers will have trouble starting.

Potential Resolutions:

VMware GemFire 9.10 Documentation

VMware by Broadcom 471

Clean up the disk stores.

Detected conflicting PDX types during import

Log Message:

Could not process command due to error. Detected conflicting PDX types during import

Log Level: Error

Category: Operations

Meaning:

When data is imported into a cluster with pdx serialization with existing data using gfsh
import/export command and if the receiving cluster already has some data with different pdx
metadata, the import will fail with the error.

Potential Resolutions:

Import data in the empty cluster or programmatically read the .gfd file and then perform the put
operation.

A tenured heap garbage collection has occurred

Log Message:

[info 2021/10/13 17:14:56.177 EDT memberXXX <Notification Handler1> tid=0x69] A

tenured heap garbage collection has occurred. New tenured heap consumption:

492250720

Log Level: Info

Category: Heap/GC/JVM/OS

Meaning:

This message occurs when a tenured space garbage collection has occurred. The goal is to provide
the customer with a very accurate read for how much heap is actually consumed. External monitors
do not know when a collection has occurred. The value specified is how much live data exists in
tenured heap.

If you see this value constantly increasing over time, without a similar rate of increase of VMware
GemFire entries, then this warrants some investigation into potential leaks. Short term increases
due to queries, for example, are not worthy of concern, other than providing an indication that finer
tuning may be warranted. The short term data resulting from a query would hopefully be fulfilled
using the young generation heap, most of the time.

Potential Resolutions:

No resolution necessary. This is informative only. If you see this message frequently, however, it is
a sign that you may need more heap, or finer tuning. You may be imbalanced unknowingly, etc. If
seeing this message more frequently than every 1 hour, consistently, it is a sign that you may need
tuning. Note: G1GC “mixed” collections may not drive this message, unless you are using more
current versions of the JDK.

VMware GemFire 9.10 Documentation

VMware by Broadcom 472

Allocating larger network read buffer

Log Message:

[info 2021/10/13 17:14:56.177 EDT locator <P2P message reader for

192.168.1.5(server1:8438)<v1>:41001 shared unordered sender uid=1 local port=42181

remote port=57345> tid=0x4c] Allocating larger network read buffer, new size is

134074 old size was 32768.

Log Level: Info

Category: Communications

Meaning:

This may require configuration change, to give more optimal behavior. If you have different socket-
buffer-sizes across the various members of your distributed system, including locators, this message
may be a sign that messages are potentially being lost. This can lead to distributed deadlocks. This
message essentially means that the system is needing to grow and shrink to handle the messaging
between the members.

Potential Resolutions:

Set all members, including locators, to the same socket-buffer-size. If you have seen this message,
and appear to be impacted in the system, it may warrant some deeper analysis of the health of the
system. Check for stuck threads, potentially gather thread dumps, to assess whether you are
impacted.

Socket send buffer size is <m> instead of the requested
<n>

Log Message:

[info 2021/11/19 13:51:47.569 PST server1 <P2P message reader@75099de0> tid=0x30]

Socket send buffer size is 6710884 instead of the requested 16777215.

Log Level: Info

Category: Communications

Meaning:

This may require configuration change, to give more optimal behavior. This message tells you that
your VMware GemFire configuration is specifying a larger socket-buffer-size that the lower OS is
going to permit. Hence, you see this message, and perhaps less than optimal behavior.

Potential Resolutions:

Make sure to set all members OS configurations to be the same, similar enough to avoid having this
less than optimal potential chunking of messages when sending messages between members of
the VMware GemFire distributed system.

quorum has been lost
Log Message:

VMware GemFire 9.10 Documentation

VMware by Broadcom 473

[warn 2021/12/03 23:02:41.026 EST <Geode Membership View Creator> tid=0x347] total

weight lost in this view change is 65 of 111. Quorum has been lost!

Log Level: warn

Category: Membership

Meaning: This message requires URGENT attention. It is closely associated with other messages,
but indicates that the membership is very unhealthy, and you have potentially lost your entire
cluster, or are having some “split brain” behavior, etc.

The above example message shows that a total weight of 65 has been lost, out of 111. This is
greater than 50% of the weight, in one view change, hence driving the loss of quorum. When this
much weight has been lost, it is generally something affecting the network connectivity, versus a
GC event. Please read our extensive documentation on member weight, network partitions, etc.

Potential Resolutions:

It depends mostly on how many members have been removed, and it is possible that the entire
cluster has gone down as a result of this loss of quorum. If you have enable-network-partition-
detection=true, as we recommend, it is possible to lose the entire cluster if you see the above
message. If most of the membership weight has crashed, for example, the losing side doesn’t know
that, but the losing side (i.e. the side with less weight) will shut itself down, even though it includes
the only still running members. Restart members to restore your cluster to full health, and
determine the root cause for why so many members crashed simultaneously.

possible loss of quorum due to the loss of <n> cache
processes
Log Message:

[fatal 2021/12/03 23:02:41.027 EST <Geode Membership View Creator> tid=0x347]

Possible loss of quorum due to the loss of 6 cache processes: [<list of the ip’s and

processes>]

Log Level: fatal

Category: Membership

Meaning: This is very closely tied to the “quorum has been lost” message. They will often go hand
in hand, and potentially even out of order, where you will see the “possible loss” after the “has
been lost” message.

Potential Resolutions:

Follow the guidance provided in the, “quorum has been lost,” message. We definitely recommend
having enable-network-partition-detection=true set to protect you from split brain driving the data
in your split (now 2) distributed systems from diverging and becoming unrecoverable without
manual intervention.

Membership service failure: Exiting due to possible network
partition event due to loss of cache processes

VMware GemFire 9.10 Documentation

VMware by Broadcom 474

Log Message:

[fatal 2021/12/03 23:02:42.028 EST <Geode Membership View Creator> tid=0x347]

Membership service failure: Exiting due to possible network partition event due to

loss of 6 cache processes: [<list of the 6 cache processes lost, in this example>]

Note: This message generally comes with a full stack trace showing the forceDisconnect.

Log Level: fatal

Category: Membership

Meaning: This message requires URGENT attention. It is closely associated with other loss of
quorum messages, but indicates that the membership is very unhealthy, and you have potentially
lost your entire cluster, or are having some “split brain” behavior, etc.

Potential Resolutions:

Follow the guidance provided in the, “quorum has been lost,” message. We definitely recommend
having enable-network-partition-detection=true set to protect you from split brain driving the data
in your split (now 2) distributed systems diverging and becoming unrecoverable without manual
intervention. Do some research to determine whether some network event drove the VMware
GemFire cluster into this state due to an inability to communicate across the distributed system.

<member> had a weight of <n>

Log Message:

[info 2021/12/09 23:19:55.100 EST memberXXX <Geode Membership View Creator> tid=0x57]

memberXXX)<v36>:50001 had a weight of 10

Log Level: info

Category: Membership

Meaning: This message indicates that a member has either crashed, or has been kicked out of the
distributed system. By default, locators have a weight of 3, LEAD cache server has a weight of 15,
and other cache servers have a weight of 10. In the example message, given the weight of 10, you
would know that the member that has been kicked out is a non-lead cache server. Depending on
your topology, and the number of members in your distributed system, the loss of one such cache
server may not impact you much at all.

Potential Resolutions:

You certainly want to understand the cause of the member leaving the distributed system. If you
have auto reconnect enabled, as you would by default, the member may rejoin automatically,
unless it is a crash. If the member was kicked out due to being unresponsive, it may have auto-
reconnected, restoring you to a fully running cluster. That said, you likely need to run a rebalance
to evenly distribute data, or primary buckets if using partitioned regions. You may require GC
tuning, etc. If you do not understand the cause of the membership change, you should reach out
for assistance.

An additional Function Execution Processor thread is being
launched

VMware GemFire 9.10 Documentation

VMware by Broadcom 475

Log Message:

[warn 2021/12/01 21:29:56.689 EST memberXXX2 <Function Execution Processor1>

tid=0x27] An additional Function Execution Processor thread is being launched because

all <n> thread pool threads are in use for greater than <t> ms

Log Level: warn

Category: Operations

Meaning: This requires some action to achieve optimal behavior. If you see this message, it means
that your normal behavior requires more than the configured number of function execution
threads, set using DistributionManager.MAX_FE_THREADS. The default has increased recently,
but if you see this message, regardless of the current setting shown in the example message, it
indicates that your function executions will potentially take longer, due to VMware GemFire
behavior.

Potential Resolutions:

If you see this message, then you should increase your DistributionManager.MAX_FE_THREADS
configured setting, ,until you have eliminated such messages. You may want to consider the same
for your DistributionManager.MAX_THREADS and DistributionManager.MAX_PR_THREADS
settings, if not recently updated based on your current operations and load in the system.

Sending new view

Received new view

Admitting member

Log Message:

[info 2021/11/20 00:05:31.381 EST gbe-louweblps175(8551)-locator1 <Geode Membership

View Creator> tid=0xd34] sending new view View[<coordinator member

info>:48414:locator)<ec><v314>:41000|342] members: [<current member list>] shutdown:

[<member that shut down>:42306)<v315>:41003]

[info 2021/09/29 01:41:30.472 EDT <memberXXX> tid=0x1d] received new view:

View[<coordinator member>)<ec><v0>:50000|5] members: [list of members, indicating

shutdown, crashed members] old view is: <previous view information, including list of

members and state>

[info 2021/12/01 21:36:21.966 EST DCS-DCS-CLUSTER-10.104.39.130-dmnode-002 <View

Message Processor1> tid=0x3c] Admitting member <<memberXXX:26842)<v6>:10131>. Now

there are 6 non-admin member(s).

Log Level: info

Category: Membership

Meaning: These messages can be very helpful to understand who the coordinator of the
Distributed System is, the lead cache server member, and the change in state of the membership,
whether members are leaving or joining the distributed system. This will include the cause of
leaving, whether a “graceful” shutdown, or a “crash”. You will only ever see the “Sending new
view” message in the current coordinator of the system at that time. All members receive this

VMware GemFire 9.10 Documentation

VMware by Broadcom 476

view, and admit the member to the membership list. You only have a full membership when you
see the expected number of non-admin members, six in the above, “Now there are 6 non-admin
member(s),” example.

Potential Resolutions:

These are informational only, but if you do see unexpected membership changes, which drive
these “new view” messages, you can search the logs for these messages to see whether it was
considered graceful, a crash, etc., and look for other logging messages which likely provide
additional insight.

Member at <memberIP> unexpectedly left the distributed
cache
Log Message:

[info 2022/01/11 04:35:34.242 EST <View Message Processor1> tid=0x89] Member at

<memberXXX>:3853)<v11>:10104 unexpectedly left the distributed cache: departed

membership view

Log Level: info

Category: Membership

Meaning: This message is an indication that a member has experienced a non-graceful removal
from the distributed system. This will then correspond with “new view” messages being sent to all
members of the DS, showing the member in the list of “crashed” members.

Potential Resolutions:

This specific message doesn’t tell you much other than the change in ownership. Search for other
messages across the cluster which may indicate the reason, such as being unresponsive. Perhaps
it’s due to not responding to “heartbeat” messages. WIth auto reconnect, it is possible that the
membership has been restored to a full membership, but it’s also important to check on the
balance of data and load. A rebalance may be prudent to restore the balance in the system. This
includes redistributing primary buckets for partitioned regions, which is generally a good idea after
any changes in ownership, when time permits.

Cache server: failed accepting client connection

Remote host closed connection during handshake

SSL peer shut down incorrectly
Log Message:

[warn 2021/12/01 21:26:11.216 memberXXX <Handshaker /10.104.39.130:10102 Thread 8831>

tid=0x2d19e] Cache server: failed accepting client connection javax.net.ssl.SSLHandsha

keException: Remote host closed connection during handshake

javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake

at sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:994)

at sun.security.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.java:1

VMware GemFire 9.10 Documentation

VMware by Broadcom 477

367)

at sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:1395)

at sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:1379)

at org.apache.geode.internal.net.SocketCreator.handshakeIfSocketIsSSL(SocketCr

eator.java:1094)

at org.apache.geode.internal.cache.tier.sockets.AcceptorImpl.getCommunicationM

odeForNonSelector(AcceptorImpl.java:1559)

at org.apache.geode.internal.cache.tier.sockets.AcceptorImpl.handleNewClientCo

nnection(AcceptorImpl.java:1431)

at org.apache.geode.internal.cache.tier.sockets.AcceptorImpl.lambda$handOffNew

ClientConnection$4(AcceptorImpl.java:1342)

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1

149)

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:

624)

at java.lang.Thread.run(Thread.java:748)

Caused by: java.io.EOFException: SSL peer shut down incorrectly

at sun.security.ssl.InputRecord.read(InputRecord.java:505)

at sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:975)

Log Level: warn

Category: Membership

Meaning: While this looks to be very SSL/TLS specific, this message is often driven by the many of
the same client connectivity issues as in the non-SSL/TLS case. This is a client-server connection
that is failing because the connection terminated. Besides the general client-server connectivity
issues, however, this could also be caused when the client can’t validate the server’s Certificate,
and so hangs up. This message does not indicate any reasons for why that connectivity was lost,
but does indicate client-server connectivity issues and the cause needs to be investigated and
understood.

Potential Resolutions:

Review client logs to see if there’s anything informative there, such as SSL/TLS validation issues,
and then investigate logs and stats for possible connectivity or performance issues on the server.

Function: <functionName> cannot be executed because the
members [list of members] are running low on memory
Log Message:

[error 2022/01/11 03:49:41.307 EST <ServerConnection on port 10230 Thread 5>

tid=0x28d] <function info> Function: <functionName> cannot be executed because the

members [<list of members>)<v3>:10104] are running low on memory

Log Level: error

Category: Operations, Storage

Meaning: This is very similar to the “canceled” query message, but applies to function executions.
Essentially, before execution the system recognizes the heap has surpassed the critical-threshold in
some subset of members, and therefore the system chooses not to begin the function execution.
You should also see the “above heap critical threshold” message in some logs if seeing this
message.

VMware GemFire 9.10 Documentation

VMware by Broadcom 478

Potential Resolutions:

Please follow the same guidelines as the “Query execution canceled due to memory threshold”
message.

Region <regionName> bucket <n> has persistent data that
is no longer online stored at these locations
Log Message:

[error 2022/01/11 03:51:41.809 EST <ServerConnection on port 10230 Thread 2>

tid=0x21f] <filtered>:Region <regionName> bucket 51 has persistent data that is no

longer online stored at these locations: [<list of members hosting the bucket

including timestamp information>l]

Log Level: error

Category: Membership

Meaning: This message tells us that we have lost access to some persistent copy of the given
bucket (“51” in the above example). So we know we have a partitioned persistent region where
some of the hosting members are not available.

Potential Resolutions:

Determine the cause of the loss of the given member or members hosting that bucket, provided in
the message. We do not recommend executing any gfsh “revoke” command without expert
interaction and assistance. It is possible you could cause a loss of data.

Region has potentially stale data. Buckets [list] are waiting
for another offline member
Log Message:

[info 2021/12/03 06:52:17.226 EST <PersistentBucketRecoverer for region <r>>

tid=0x147] Region <r> (and any colocated sub-regions) has potentially stale data.

Buckets [27, 85, 92] are waiting for another offline member to recover the latest

data.My persistent id is:

 DiskStore ID: <disk store id>

 Name: <member name>

 Location: <member location>

Offline members with potentially new data:[

 DiskStore ID: <disk store id of member with potentially newer data>

 Location: <member location>

 Buckets: [27, 85, 92]

] Use the gfsh show missing-disk-stores command to see all disk stores that are being

waited on by other members.

Log Level: info

Category: Membership

Meaning: This message normally shows when a member is starting, during bucket recovery of
partitioned regions, and indicates that it is waiting for other members, where the data is considered
to be more current, to start. Once those members start, the latest copy of the data will be

VMware GemFire 9.10 Documentation

VMware by Broadcom 479

accessible and the member will perform a GII (get initial image) to recover the buckets allowing the
member to proceed with initialization.

Potential Resolutions:

If this message appears, perhaps you have members not yet started, and you need to start those
members. We recommend starting all cache server processes simultaneously, especially after a
clean shutdown, so that the subsequent startup has access to all buckets, and no member is stuck
waiting for other members to start.

If you did not have a clean shutdown, or some member has been down for a long time, do NOT
start up that member as the first member of a cluster. Otherwise, you will get into a
ConflictingDatePersistenceException state that will then require revoking disk stores.

This is a completely avoidable scenario. It is better to start all of the members that have been up
and part of the healthy cluster first, and then add back that member later, to be able to get that
member up to date, with the latest copies of the buckets loaded from other members. If you see
this message, you may want to check current status with the gfsh “show metrics” command to
determine whether your number of buckets without redundancy is changing for the specified
region over time. If not, you should definitely take a thread dump across all members to determine
whether you are having some form of distributed deadlock issue during startup. It is possible that
you are simply having major contention/congestion due to some insufficient configuration, such as
DistributionManager.MAX_PR_THREAD or DistributionManager.MAX_THREADS. This can be
evaluated by analyzing the statistics of the system using a tool like VSD.

VMware GemFire 9.10 Documentation

VMware by Broadcom 480

Developing with VMware GemFire

Developing with VMware GemFire explains main concepts of application programming with
VMware GemFire. It describes how to plan and implement regions, data serialization, event
handling, delta propagation, transactions, and more.

For information about VMware GemFire REST application development, see Developing REST
Applications for VMware GemFire.

Region Data Storage and Distribution

The VMware GemFire data storage and distribution models put your data in the right place
at the right time. You should understand all the options for data storage in VMware
GemFire before you start configuring your data regions.

Partitioned Regions

In addition to basic region management, partitioned regions include options for high
availability, data location control, and data balancing across the cluster.

Distributed and Replicated Regions

In addition to basic region management, distributed and replicated regions include options
for things like push and pull distribution models, global locking, and region entry versions to
ensure consistency across VMware GemFire members.

Consistency for Region Updates

VMware GemFire ensures that all copies of a region eventually reach a consistent state on
all members and clients that host the region, including VMware GemFire members that
distribute region events.

General Region Data Management

For all regions, you have options to control memory use, back up your data to disk, and
keep stale data out of your cache.

Data Serialization

Data that you manage in VMware GemFire must be serialized and deserialized for storage
and transmittal between processes. You can choose among several options for data
serialization.

Events and Event Handling

VMware GemFire provides versatile and reliable event distribution and handling for your
cached data and system member events.

Delta Propagation

VMware GemFire 9.10 Documentation

VMware by Broadcom 481

Delta propagation allows you to reduce the amount of data you send over the network by
including only changes to objects rather than the entire object.

Querying

VMware GemFire provides a SQL-like querying language called OQL that allows you to
access data stored in VMware GemFire regions.

Continuous Querying

Continuous querying continuously returns events that match the queries you set up.

Transactions

VMware GemFire provides a transactions API, with begin, commit, and rollback methods.
These methods are much the same as the familiar relational database transactions methods.

Function Execution

A function is a body of code that resides on a server and that an application can invoke from
a client or from another server without the need to send the function code itself. The caller
can direct a data-dependent function to operate on a particular dataset, or can direct a
data-independent function to operate on a particular server, member, or member group.

Region Data Storage and Distribution

The VMware GemFire data storage and distribution models put your data in the right place at the
right time. You should understand all the options for data storage in VMware GemFire before you
configure your data regions.

Storage and Distribution Options

VMware GemFire provides several models for data storage and distribution, including
partitioned or replicated regions as well as distributed or non-distributed regions (local
cache storage).

Region Types

Region types define region behavior within a single cluster. You have various options for
region data storage and distribution.

Region Data Stores and Data Accessors

Understand the difference between members that store data for a region and members
that act only as data accessors to the region.

Creating Regions Dynamically

You can dynamically create regions in your application code and automatically instantiate
them on members of a cluster.

Storage and Distribution Options

VMware GemFire provides several models for data storage and distribution, including partitioned or
replicated regions as well as distributed or non-distributed regions (local cache storage).

Peer-to-Peer Region Storage and Distribution

VMware GemFire 9.10 Documentation

VMware by Broadcom 482

At its most general, data management means having current data available when and where your
applications need it. In a properly configured VMware GemFire installation, you store your data in
your local members and VMware GemFire automatically distributes it to the other members that
need it according to your cache configuration settings. You may be storing very large data objects
that require special consideration, or you may have a high volume of data requiring careful
configuration to safeguard your application’s performance or memory use. You may need to be
able to explicitly lock some data during particular operations. Most data management features are
available as configuration options, which you can specify either using the gfsh cluster configuration
service, cache.xml file or the API. Once configured, VMware GemFire manages the data
automatically. For example, this is how you manage data distribution, disk storage, data expiration
activities, and data partitioning. A few features are managed at run-time through the API.

At the architectural level, data distribution runs between peers in a single cluster and between
clients and servers.

Peer-to-peer provides the core distribution and storage models, which are specified as
attributes on the data regions.

For client/server, you choose which data regions to share between the client and server
tiers. Then, within each region, you can fine-tune the data that the server automatically
sends to the client by subscribing to subsets.

Data storage in any type of installation is based on the peer-to-peer configuration for each
individual cluster. Data and event distribution is based on a combination of the peer-to-peer and
system-to-system configurations.

Storage and distribution models are configured through cache and region attributes. The main
choices are partitioned, replicated, or just distributed. All server regions must be partitioned or
replicated. Each region’s data-policy and subscription-attributes, and its scope if it is not a
partitioned region, interact for finer control of data distribution.

Storing Data in the Local Cache

To store data in your local cache, use a region refid with a RegionShortcut or
ClientRegionShortcut that has local state. These automatically set the region data-policy to a
non-empty policy. Regions without storage can send and receive event distributions without
storing anything in your application heap. With the other settings, all entry operations received are
stored locally.

Region Types

Region types define region behavior within a single cluster. You have various options for region
data storage and distribution.

Within a VMware GemFire cluster, you can define distributed regions and non-distributed regions,
and you can define regions whose data is spread across the cluster, and regions whose data is
entirely contained in a single member.

Your choice of region type is governed in part by the type of application you are running. In
particular, you need to use specific region types for your servers and clients for effective
communication between the two tiers:

VMware GemFire 9.10 Documentation

VMware by Broadcom 483

Server regions are created inside a Cache by servers and are accessed by clients that
connect to the servers from outside the server’s cluster. Server regions must have region
type partitioned or replicated. Server region configuration uses the RegionShortcut enum
settings.

Client regions are created inside a ClientCache by clients and are configured to distribute
data and events between the client and the server tier. Client regions must have region
type local. Client region configuration uses the ClientRegionShortcut enum settings.

Peer regions are created inside a Cache. Peer regions may be server regions, or they may
be regions that are not accessed by clients. Peer regions can have any region type. Peer
region configuration uses the RegionShortcut enum settings.

When you configure a server or peer region using gfsh or with the cache.xml file, you can use
region shortcuts to define the basic configuration of your region. A region shortcut provides a set of
default configuration attributes that are designed for various types of caching architectures. You
can then add additional configuration attributes as needed to customize your application. For more
information and a complete reference of these region shortcuts, see Region Shortcuts Reference.

These are the primary configuration choices for each data region.

Region Type Description Best suited for...

Partitioned System-wide setting for the data set.
Data is divided into buckets across the
members that define the region. For
high availability, configure redundant
copies so each bucket is stored in
multiple members with one member
holding the primary.

Server regions and peer regions

Very large data sets

High availability

Write performance

Partitioned event listeners
and data loaders

Replicated (distributed) Holds all data from the distributed
region. The data from the distributed
region is copied into the member
replica region. Can be mixed with non-
replication, with some members
holding replicas and some holding
non-replicas.

Server regions and peer regions

Read heavy, small datasets

Asynchronous distribution

Query performance

Distributed non-replicated Data is spread across the members
that define the region. Each member
holds only the data it has expressed
interest in. Can be mixed with
replication, with some members
holding replicas and some holding
non-replicas.

Peer regions, but not server regions
and not client regions

Asynchronous distribution

Query performance

Non-distributed (local) The region is visible only to the
defining member.

Client regions and peer regions

Data that is not shared
between applications

Partitioned Regions
Partitioning is a good choice for very large server regions. Partitioned regions are ideal for data sets
in the hundreds of gigabytes and beyond.

VMware GemFire 9.10 Documentation

VMware by Broadcom 484

Note: Partitioned regions generally require more JDBC connections than other region types
because each member that hosts data must have a connection.

Partitioned regions group your data into buckets, each of which is stored on a subset of all of the
system members. Data location in the buckets does not affect the logical view - all members see
the same logical data set.

Use partitioning for:

Large data sets. Store data sets that are too large to fit into a single member, and all
members will see the same logical data set. Partitioned regions divide the data into units of
storage called buckets that are split across the members hosting the partitioned region
data, so no member needs to host all of the region’s data. VMware GemFire provides
dynamic redundancy recovery and rebalancing of partitioned regions, making them the
choice for large-scale data containers. More members in the system can accommodate
more uniform balancing of the data across all host members, allowing system throughput
(both gets and puts) to scale as new members are added.

High availability. Partitioned regions allow you configure the number of redundant copies
of your data that VMware GemFire should make. If a member fails, your data will be
available without interruption from the remaining members that host a redundant copy of
the data. No data loss occurs as long as the number of server failures does not exceed the
number of redundant copies. Partitioned regions can also be persisted to disk for additional
high availability.

Scalability. Partitioned regions can scale to large amounts of data because the data is
divided between the members available to host the region. Increase your data capacity
dynamically by simply adding new members. Partitioned regions also allow you to scale your
processing capacity. Because your entries are spread out across the members hosting the
region, reads and writes to those entries are also spread out across those members.

Good write performance. You can configure the number of copies of your data. The
amount of data transmitted per write does not increase with the number of members. By
contrast, with replicated regions, each write must be sent to every member that has the
region replicated, so the amount of data transmitted per write increases with the number of
members.

In partitioned regions, you can colocate keys within buckets and across multiple partitioned regions.
You can also control which members store which data buckets.

Replicated Regions

Replicated regions provide the highest performance in terms of throughput and latency. Replication
is a good choice for small to medium size server regions.

Use replicated regions for:

Small amounts of data required by all members of the cluster. For example, currency
rate information and mortgage rates.

Data sets that can be contained entirely in a single member. Each replicated region
holds the complete data set for the region

VMware GemFire 9.10 Documentation

VMware by Broadcom 485

High performance data access. Replication guarantees local access from the heap for
application threads, providing the lowest possible latency for data access.

Asynchronous distribution. All distributed regions, replicated and non-replicated, provide
the fastest distribution speeds.

Distributed, Non-Replicated Regions

Distributed regions provide the same performance as replicated regions, but each member stores
only data in which it has expressed an interest, either by subscribing to events from other members
or by defining the data entries in its cache.

Use distributed, non-replicated regions for:

Peer regions, but not server regions or client regions. Server regions must be either
replicated or partitioned. Client regions must be local.

Data sets where individual members need only notification and updates for changes to
a subset of the data. In non-replicated regions, each member receives only update events
for the data entries it has defined in the local cache.

Asynchronous distribution. All distributed regions, replicated and non-replicated, provide
the fastest distribution speeds.

Local Regions

Note: When created using the ClientRegionShortcut settings, client regions are automatically
defined as local, since all client distribution activities go to and come from the server tier.

The local region has no peer-to-peer distribution activity.

Use local regions for:

Client regions. Distribution is only between the client and server tier.

Private data sets for the defining member. The local region is not visible to peer
members.

Region Data Stores and Data Accessors

Understand the difference between members that store data for a region and members that act
only as data accessors to the region.

In most cases, when you define a data region in a member’s cache, you also specify whether the
member is a data store. Members that store data for a region are referred to as data stores or data
hosts. Members that do not store data are referred to as accessor members, or empty members.
Any member, store or accessor, that defines a region can access it, put data into it, and receive
events from other members. To configure a region so the member is a data accessor, you use
configurations that specify no local data storage for the region. Otherwise, the member is a data
store for the region.

For server regions, suppress local data storage at region creation by specifying a region shortcut
that contains the term “PROXY” in its name, such as PARTITION_PROXY or REPLICATE_PROXY.

VMware GemFire 9.10 Documentation

VMware by Broadcom 486

For client regions, suppress local data storage at region creation by specifying the PROXY region
shortcut. Do not use the CACHING_PROXY shortcut for this purpose, as it allows local data storage.

Creating Regions Dynamically

You can dynamically create regions in your application code and automatically instantiate them on
members of a cluster.

Due to the number of options involved, most developers use functions to create regions
dynamically in their applications, as described in this topic. Dynamic regions can also be created
from the gfsh command line.

For a complete discussion of using VMware GemFire functions, see Function Execution. Functions
use the org.apache.geode.cache.execute.FunctionService class.

If your application does not require partitioned regions, you can use the
org.apache.geode.cache.DynamicRegionFactory class to dynamically create regions, or you can
create them using the <dynamic-region-factory> element in the cache.xml file that defines the
region. (You can create partitioned regions dynamically, but you cannot use the
DynamicRegionFactory class or the <dynamic-region-factory> element to do it.)

Note: Use of the DynamicRegionFactory class (and the <dynamic-region-factory> element) are
deprecated in favor of the FunctionService approach described here.

In the following example, the CreateRegionFunction class defines a function invoked on a server by
a client using the onServer() method of the FunctionService class. This function call initiates region
creation by putting an entry into the region attributes metadata region. The entry key is the region
name and the value is the set of region attributes used to create the region.

#CreateRegionFunction.java

import org.apache.geode.cache.Cache;

import org.apache.geode.cache.DataPolicy;

import org.apache.geode.cache.Declarable;

import org.apache.geode.cache.Region;

import org.apache.geode.cache.RegionFactory;

import org.apache.geode.cache.Scope;

import org.apache.geode.cache.configuration.RegionConfig;

import org.apache.geode.cache.execute.Function;

import org.apache.geode.cache.execute.FunctionContext;

import java.util.Properties;

public class CreateRegionFunction implements Function<RegionConfig>, Declarable {

 private Region<String,RegionConfig> regionAttributesMetadataRegion;

 private static final String REGION_ATTRIBUTES_METADATA_REGION =

 "_regionAttributesMetadata";

 public enum Status {SUCCESSFUL, UNSUCCESSFUL, ALREADY_EXISTS}

 public void execute(FunctionContext<RegionConfig> context) {

 RegionConfig regionConfig = context.getArguments();

VMware GemFire 9.10 Documentation

VMware by Broadcom 487

 // Create or retrieve region

 Status status = createOrRetrieveRegion(context.getCache(), regionConfig);

 // Return status

 context.getResultSender().lastResult(status);

 }

 private Status createOrRetrieveRegion(Cache cache, RegionConfig regionConfig) {

 Status status = Status.SUCCESSFUL;

 String regionName = regionConfig.getName();

 Region<Object, Object> region = cache.getRegion(regionName);

 if (region == null) {

 // Put the attributes into the metadata region. The afterCreate call

 // creates the region.

 this.regionAttributesMetadataRegion.put(regionName, regionConfig);

 // Retrieve the region after creating it

 region = cache.getRegion(regionName);

 if (region == null) {

 status = Status.UNSUCCESSFUL;

 }

 } else {

 status = Status.ALREADY_EXISTS;

 }

 return status;

 }

 private void initializeRegionAttributesMetadataRegion(Cache cache) {

 this.regionAttributesMetadataRegion =

 cache.getRegion(REGION_ATTRIBUTES_METADATA_REGION);

 if (this.regionAttributesMetadataRegion == null) {

 RegionFactory<String, RegionConfig> factory = cache.createRegionFactory();

 factory.setDataPolicy(DataPolicy.REPLICATE);

 factory.setScope(Scope.DISTRIBUTED_ACK);

 factory.addCacheListener(new CreateRegionCacheListener());

 this.regionAttributesMetadataRegion =

 factory.create(REGION_ATTRIBUTES_METADATA_REGION);

 }

 }

 public String getId() {

 return getClass().getSimpleName();

 }

 public void initialize(Cache cache, Properties properties) {

 initializeRegionAttributesMetadataRegion(cache);

 }

}

The CreateRegionCacheListener class is a cache listener that implements two methods,
afterCreate() and afterRegionCreate(). The afterCreate() method creates the region. The
afterRegionCreate() method causes each new server to create all the regions defined in the
metadata region.

#CreateRegionCacheListener.java

import org.apache.geode.cache.Cache;

VMware GemFire 9.10 Documentation

VMware by Broadcom 488

import org.apache.geode.cache.Declarable;

import org.apache.geode.cache.EntryEvent;

import org.apache.geode.cache.Region;

import org.apache.geode.cache.RegionEvent;

import org.apache.geode.cache.RegionExistsException;

import org.apache.geode.cache.configuration.RegionConfig;

import org.apache.geode.cache.util.CacheListenerAdapter;

import java.util.Map;

public class CreateRegionCacheListener extends CacheListenerAdapter<String,RegionConfi

g> implements Declarable {

 public void afterCreate(EntryEvent<String,RegionConfig> event) {

 createRegion(event.getRegion().getCache(), event.getKey(), event.getNewValue());

 }

 public void afterRegionCreate(RegionEvent<String,RegionConfig> event) {

 Cache cache = event.getRegion().getCache();

 Region<String,RegionConfig> region = event.getRegion();

 for (Map.Entry<String,RegionConfig> entry : region.entrySet()) {

 createRegion(cache, entry.getKey(), entry.getValue());

 }

 }

 private void createRegion(Cache cache, String regionName, RegionConfig regionConfig)

{

 if (cache.getLogger().fineEnabled()) {

 cache.getLogger().fine("CreateRegionCacheListener creating region named=" + regi

onName + "; config: " + regionConfig);

 }

 Region<Object, Object> region = cache.getRegion(regionConfig.getName());

 if (region == null) {

 try {

 region = cache.createRegionFactory(regionConfig.getType()).create(regionConfi

g.getName());

 cache.getLogger().info("CreateRegionCacheListener created region=" + region);

 } catch (RegionExistsException e) {

 cache.getLogger().info("CreateRegionCacheListener region already exists region

=" + region);

 }

 } else {

 cache.getLogger().info("CreateRegionCacheListener region already exists region="

+ region);

 }

 }

}

Partitioned Regions

In addition to basic region management, partitioned regions include options for high availability,
data location control, and data balancing across the cluster.

Understanding Partitioning

VMware GemFire 9.10 Documentation

VMware by Broadcom 489

To use partitioned regions, you should understand how they work and your options for
managing them.

Configuring Partitioned Regions

Plan the configuration and ongoing management of your partitioned region for host and
accessor members and configure the regions for startup.

Configuring the Number of Buckets for a Partitioned Region

Decide how many buckets to assign to your partitioned region and set the configuration
accordingly.

Custom-Partitioning and Colocating Data

You can customize how VMware GemFire groups your partitioned region data with custom
partitioning and data colocation.

Configuring High Availability for Partitioned Regions

By default, VMware GemFire stores only a single copy of your partitioned region data
among the region’s data stores. You can configure VMware GemFire to maintain redundant
copies of your partitioned region data for high availability.

Configuring Single-Hop Client Access to Server-Partitioned Regions

Single-hop data access enables the client pool to track where a partitioned region’s data is
hosted in the servers. To access a single entry, the client directly contacts the server that
hosts the key, in a single hop.

Rebalancing Partitioned Region Data

In a cluster with minimal contention to the concurrent threads reading or updating from the
members, you can use rebalancing to dynamically increase or decrease your data and
processing capacity.

Checking Redundancy in Partitioned Regions

Under some circumstances, it can be important to verify that your partitioned region data is
redundant and that upon member restart, redundancy has been recovered properly across
partitioned region members.

Moving Partitioned Region Data to Another Member

You can use the PartitionRegionHelper moveBucketByKey and moveData methods to
explicitly move partitioned region data from one member to another.

Understanding Partitioning

To use partitioned regions, you should understand how they work and your options for managing
them.

During operation, a partitioned region looks like one large virtual region, with the same logical view
held by all of the members where the region is defined.

VMware GemFire 9.10 Documentation

VMware by Broadcom 490

Partitioned Region

A

Logical View

X Y Z

Partitioned Region

A

Physical View

X

Machine 1

Partitioned Region

A

Y

Machine 2

Partitioned Region

A

Z

Machine 3

For each member where you define the region, you can choose how much space to allow for
region data storage, including no local storage at all. The member can access all region data

VMware GemFire 9.10 Documentation

VMware by Broadcom 491

regardless of how much is stored locally.

Partitioned Region

A

Logical View

X Y Z

Partitioned Region

A

Physical View

No local data

Machine 1

Partitioned Region

A

X

Machine 2

Partitioned Region

A

Y

Machine 3

Z

A cluster can have multiple partitioned regions, and it can mix partitioned regions with distributed
regions and local regions. The usual requirement for unique region names, except for regions with
local scope, still applies. A single member can host multiple partitioned regions.

Data Partitioning
VMware GemFire automatically determines the physical location of data in the members that host a
partitioned region’s data. VMware GemFire breaks partitioned region data into units of storage
known as buckets and stores each bucket in a region host member. Buckets are distributed in
accordance to the member’s region attribute settings.

When an entry is created, it is assigned to a bucket. Keys are grouped together in a bucket and
always remain there. If the configuration allows, the buckets may be moved between members to
balance the load.

You must run the data stores needed to accommodate storage for the partitioned region’s buckets.
You can start new data stores on the fly. When a new data store creates the region, it takes
responsibility for as many buckets as allowed by the partitioned region and member configuration.

VMware GemFire 9.10 Documentation

VMware by Broadcom 492

You can customize how VMware GemFire groups your partitioned region data with custom
partitioning and data colocation.

Partitioned Region Operation

A partitioned region operates much like a non-partitioned region with distributed scope. Most of
the standard Region methods are available, although some methods that are normally local
operations become distributed operations, because they work on the partitioned region as a whole
instead of the local cache. For example, a put or create into a partitioned region may not actually
be stored into the cache of the member that called the operation. The retrieval of any entry
requires no more than one hop between members.

Partitioned regions support the client/server model, just like other regions. If you need to connect
dozens of clients to a single partitioned region, using servers greatly improves performance.

Additional Information About Partitioned Regions

Keep the following in mind about partitioned regions:

Partitioned regions never run asynchronously. Operations in partitioned regions always wait
for acknowledgement from the caches containing the original data entry and any redundant
copies.

A partitioned region needs a cache loader in every region data store (local-max-memory >
0).

VMware GemFire distributes the data buckets as evenly as possible across all members
storing the partitioned region data, within the limits of any custom partitioning or data
colocation that you use. The number of buckets allotted for the partitioned region
determines the granularity of data storage and thus how evenly the data can be distributed.
The number of buckets is a total for the entire region across the cluster.

In rebalancing data for the region, VMware GemFire moves buckets, but does not move
data around inside the buckets.

You can query partitioned regions, but there are certain limitations. See Querying
Partitioned Regions for more information.

Configuring Partitioned Regions

Plan the configuration and ongoing management of your partitioned region for host and accessor
members and configure the regions for startup.

Before you begin, understand Basic Configuration and Programming.

1. Start your region configuration using one of the PARTITION region shortcut settings. See
Region Shortcuts and Custom Named Region Attributes.

2. If you need high availability for your partitioned region, configure for that. See Configure
High Availability for a Partitioned Region.

3. Estimate the amount of space needed for the region. If you use redundancy, this is the max
for all primary and secondary copies stored in the member. For example, with redundancy

VMware GemFire 9.10 Documentation

VMware by Broadcom 493

of one, each region data entry requires twice the space than with no redundancy, because
the entry is stored twice. See Memory Requirements for Cached Data.

4. Configure the total number of buckets for the region. This number must be the same for
colocated regions. See Configuring the Number of Buckets for a Partitioned Region.

5. Configure your members’ data storage and data loading for the region:

1. You can have members with no local data storage and members with varying
amounts of storage. Determine the max memory available in your different member
types for this region. These will be set in the partition-attributes local-max-
memory. This is the only setting in partition-attributes that can vary between
members. Use these max values and your estimates for region memory
requirements to help you figure how many members to start out with for the
region.

2. For members that store data for the region (local-max-memory greater than 0),
define a data loader. See Implement a Data Loader.

3. If you have members with no local data storage (local-max-memory set to 0), review
your system startup/shutdown procedures. Make sure there is always at least one
member with local data storage running when any members with no storage are
running.

6. If you want to custom partition the data in your region or colocate data between multiple
regions, code and configure accordingly. See Understanding Custom Partitioning and Data
Colocation.

7. Plan your partition rebalancing strategy and configure and program for that. See
Rebalancing Partitioned Region Data.

Note: To configure a partitioned region using gfsh, see gfsh Command Help.

Configuring the Number of Buckets for a Partitioned
Region
Decide how many buckets to assign to your partitioned region and set the configuration
accordingly.

The total number of buckets for the partitioned region determines the granularity of data storage
and thus how evenly the data can be distributed. VMware GemFire distributes the buckets as
evenly as possible across the data stores. The number of buckets is fixed after region creation.

The partition attribute total-num-buckets sets the number for the entire partitioned region across
all participating members. Set it using one of the following:

XML:

<region name="PR1">

 <region-attributes refid="PARTITION">

 <partition-attributes total-num-buckets="7"/>

 </region-attributes>

</region>

Java:

VMware GemFire 9.10 Documentation

VMware by Broadcom 494

RegionFactory rf =

 cache.createRegionFactory(RegionShortcut.PARTITION);

rf.setPartitionAttributes(new PartitionAttributesFactory().setTotalNumBuckets

(7).create());

custRegion = rf.create("customer");

gfsh:

Use the ‑‑total-num-buckets parameter of the create region command. For example:

gfsh>create region --name="PR1" --type=PARTITION --total-num-buckets=7

Calculate the Total Number of Buckets for a Partitioned
Region

Follow these guidelines to calculate the total number of buckets for the partitioned region:

Use a prime number. This provides the most even distribution.

Make it at least four times as large as the number of data stores you expect to have for the
region. The larger the ratio of buckets to data stores, the more evenly the load can be
spread across the members. Note that there is a trade-off between load balancing and
overhead, however. Managing a bucket introduces significant overhead, especially with
higher levels of redundancy.

You are trying to avoid the situation where some members have significantly more data entries
than others. For example, compare the next two figures. This figure shows a region with three data
stores and seven buckets. If all the entries are accessed at about the same rate, this configuration
creates a hot spot in member M3, which has about fifty percent more data than the other data
stores. M3 is likely to be a slow receiver and potential point of failure.

VMware GemFire 9.10 Documentation

VMware by Broadcom 495

Member (M1)

Partition Region A

Member (M2)

Partition Region A

Member (M3)

Partition Region A

Configuring more buckets gives you fewer entries in a bucket and a more balanced data
distribution. This figure uses the same data as before but increases the number of buckets to 13.
Now the data entries are distributed more evenly.

VMware GemFire 9.10 Documentation

VMware by Broadcom 496

Member (M1)

Partition Region A

Member (M2)

Partition Region A

Member (M3)

Partition Region A

Custom-Partitioning and Colocating Data
You can customize how VMware GemFire groups your partitioned region data with custom
partitioning and data colocation.

Understanding Custom Partitioning and Data Colocation

Custom partitioning and data colocation can be used separately or in conjunction with one
another.

Standard Custom Partitioning

By default, VMware GemFire partitions each data entry into a bucket using a hashing policy
on the key. Additionally, the physical location of the key-value pair is abstracted away from
the application. You can change these policies for a partitioned region by providing a
standard partition resolver that maps entries to a set of buckets called a partition.

Fixed Custom Partitioning

By default, VMware GemFire partitions each data entry into a bucket using a hashing policy
on the key. Additionally, the physical location of the key-value pair is abstracted away from
the application. You can change these policies for a partitioned region by providing a fixed
partition resolver that not only maps entries to a set of buckets called a partition, but also
specifies which members host which data buckets.

Colocate Data from Different Partitioned Regions

By default, VMware GemFire allocates the data locations for a partitioned region
independent of the data locations for any other partitioned region. You can change this

VMware GemFire 9.10 Documentation

VMware by Broadcom 497

policy for any group of partitioned regions, so that cross-region, related data is all hosted by
the same member. Colocation is required for some operations, and it increases performance
for others by reducing the number of data accesses to entries that are hosted on other
cluster members.

Understanding Custom Partitioning and Data Colocation

Custom partitioning and data colocation can be used separately or in conjunction with one another.

Custom Partitioning

Use custom partitioning to group like entries into region buckets within a region. By default,
VMware GemFire assigns new entries to buckets based on the entry key’s hash code. With custom
partitioning, you can assign your entries to buckets in whatever way you want.

You can generally get better performance if you use custom partitioning to group similar data
within a region. For example, a query run on all accounts created in January runs faster if all
January account data is hosted by a single member. Grouping all data for a single customer can
improve performance of data operations that work on customer data. Data aware function
execution also takes advantage of custom partitioning.

With custom partitioning, you have two choices:

Standard custom partitioning. With standard custom partitioning, you group entries into
buckets, but you do not specify where the buckets reside. VMware GemFire always keeps
the entries in the buckets you have specified, but may move the buckets around for load
balancing. See Standard Custom Partitioning for implementation and configuration details.

Fixed custom partitioning. With fixed custom partitioning, you specify the exact member
where each region entry resides. You assign an entry to a partition and then to a bucket
within that partition. You name specific members as primary and secondary hosts of each
partition.

This gives you complete control over the locations of your primary and any secondary
buckets for the region. This can be useful when you want to store specific data on specific
physical machines or when you need to keep data close to certain hardware elements.

Fixed partitioning has these requirements and caveats:

VMware GemFire cannot rebalance fixed partition region data, because it cannot
move the buckets around among the host members. You must carefully consider
your expected data loads for the partitions you create.

With fixed partitioning, the region configuration is different between host members.
Each member identifies the named partitions it hosts, and whether it is hosting the
primary copy or a secondary copy. You then program a fixed-partition resolver to
return the partition id, so the entry is placed on the right members. Only one
member can be primary for a particular partition name, and that member cannot be
the partition’s secondary.

See Fixed Custom Partitioning for implementation and configuration details.

Data Colocation Between Regions

VMware GemFire 9.10 Documentation

VMware by Broadcom 498

With data colocation, VMware GemFire stores entries that are related across multiple data regions
in a single member. VMware GemFire does this by storing all of the regions’ buckets with the same
ID together in the same member. During rebalancing operations, VMware GemFire moves these
bucket groups together or not at all.

So, for example, if you have one region with customer contact information and another region with
customer orders, you can use colocation to keep all contact information and all orders for a single
customer in a single member. This way, any operation done for a single customer uses the cache of
only a single member.

This figure shows two regions with data colocation where the data is partitioned by customer type.

Member (M1)

Partition Region A

Member (M2)

Partition Region A

customer X data customer P data

Partition Region B Partition Region B

customer X data customer P data

Data colocation requires the same data partitioning mechanism for all of the colocated regions. You
can use the default partitioning provided by VMware GemFire or any of the custom partitioning
strategies.

You must use the same high availability settings across your colocated regions.

See Colocate Data from Different Partitioned Regions for implementation and configuration details.

Standard Custom Partitioning

By default, VMware GemFire partitions each data entry into a bucket using a hashing policy on the
key. Additionally, the physical location of the key-value pair is abstracted away from the application.
You can change these policies for a partitioned region by providing a standard custom partition
resolver that maps entries in a custom manner.

Note: If you are both colocating region data and custom partitioning, all colocated regions must use
the same custom partitioning mechanism. See Colocate Data from Different Partitioned Regions.

To custom-partition your region data, follow two steps:

implement the interface

configure the regions

Implementing Standard Custom Partitioning

VMware GemFire 9.10 Documentation

VMware by Broadcom 499

Implement the org.apache.geode.cache.PartitionResolver interface in one of the
following ways, listed here in the search order used by VMware GemFire:

Using a custom class. Implement the PartitionResolver within your class, and
then specify your class as the partition resolver during region creation.

Using the key’s class. Have the entry key’s class implement the PartitionResolver
interface.

Using the callback argument’s class. Have the class that implements your callback
argument implement the PartitionResolver interface. When using this
implementation, any and all Region operations must be those that specify the
callback argument.

Implement the resolver’s getName, init, and close methods.

A simple implementation of getName is

return getClass().getName();

The init method does any initialization steps upon cache start that relate to the partition
resolver’s task. This method is only invoked when using a custom class that is configured by
gfsh or by XML (in a cache.xml file).

The close method accomplishes any clean up that must be accomplished before a cache
close completes. For example, close might close files or connections that the partition
resolver opened.

Implement the resolver’s getRoutingObject method to return the routing object for each
entry. A hash of that returned routing object determines the bucket. Therefore,
getRoutingObject should return an object that, when run through its hashCode, directs
grouped objects to the desired bucket.

Note: Only the key, as returned by getKey, should be used by getRoutingObject. Do not
use the value associated with the key or any additional metadata in the implementation of
getRoutingObject. Do not use getOperation or getValue.

Implementing the String Prefix Partition Resolver

VMware GemFire provides an implementation of a string-based partition resolver in
org.apache.geode.cache.util.StringPrefixPartitionResolver. This resolver does not require any
further implementation. It groups entries into buckets based on a portion of the key. All keys must
be strings, and each key must include a ‘|’ character, which delimits the string. The substring that
precedes the ‘|’ delimiter within the key will be returned by getRoutingObject.

Configuring the Partition Resolver Region Attribute

Configure the region so VMware GemFire finds your resolver for all region operations.

Custom class. Use one of these methods to specify the partition resolver region attribute:

gfsh:

Add the option --partition-resolver to the gfsh create region command, specifying the
package and class name of the standard custom partition resolver.

gfsh for the String Prefix Partition Resolver:

VMware GemFire 9.10 Documentation

VMware by Broadcom 500

Add the option --partition-
resolver=org.apache.geode.cache.util.StringPrefixPartitionResolver to the gfsh
create region command.

Java API:

PartitionResolver resolver = new TradesPartitionResolver();

PartitionAttributes attrs =

 new PartitionAttributesFactory()

 .setPartitionResolver(resolver).create();

Cache c = new CacheFactory().create();

Region r = c.createRegionFactory()

 .setPartitionAttributes(attrs)

 .create("trades");

Java API for the String Prefix Partition Resolver:

PartitionAttributes attrs =

 new PartitionAttributesFactory()

 .setPartitionResolver(new StringPrefixPartitionResolver()).create();

Cache c = new CacheFactory().create();

Region r = c.createRegionFactory()

 .setPartitionAttributes(attrs)

 .create("customers");

XML:

<region name="trades">

 <region-attributes>

 <partition-attributes>

 <partition-resolver>

 <class-name>myPackage.TradesPartitionResolver

 </class-name>

 </partition-resolver>

 <partition-attributes>

 </region-attributes>

</region>

XML for the String Prefix Partition Resolver:

<region name="customers">

 <region-attributes>

 <partition-attributes>

 <partition-resolver>

 <class-name>org.apache.geode.cache.util.StringPrefixPartitionRe

solver

 </class-name>

 </partition-resolver>

 <partition-attributes>

 </region-attributes>

</region>

VMware GemFire 9.10 Documentation

VMware by Broadcom 501

If your colocated data is in a server system, add the PartitionResolver implementation
class to the CLASSPATH of your Java clients. For Java single-hop access to work, the resolver
class needs to have a zero-argument constructor, and the resolver class must not have any
state; the init method is included in this restriction.

Fixed Custom Partitioning

By default, VMware GemFire partitions each data entry into a bucket using a hashing policy on the
key. Additionally, the physical location of the key-value pair is abstracted away from the application.
You can change these policies for a partitioned region by providing a fixed custom partition resolver
that not only maps entries to a set of buckets called a partition, but also specifies which members
host which data buckets.

Note: If you are both colocating region data and custom partitioning, all colocated regions must use
the same custom partitioning mechanism. See Colocate Data from Different Partitioned Regions.

To custom-partition your region data, follow two steps:

implement the interface

configure the regions

These steps differ based on which partition resolver is used.

Implementing Fixed Custom Partitioning

Implement the org.apache.geode.cache.FixedPartitionResolver interface within one of
the following locations, listed here in the search order used by VMware GemFire:

Custom class. Specify this class as the partition resolver during region creation.

Entry key. For keys implemented as objects, define the interface for the key’s class.

Within the cache callback class. Implement the interface within a cache callback’s
class. When using this implementation, any and all Region operations must be those
that specify the callback as a parameter.

Implement the resolver’s getName, init, and close methods.

A simple implementation of getName is

return getClass().getName();

The init method does any initialization steps upon cache start that relate to the partition
resolver’s task.

The close method accomplishes any clean up that must be accomplished before a cache
close completes. For example, close might close files or connections that the partition
resolver opened.

Implement the resolver’s getRoutingObject method to return the routing object for each
entry. A hash of that returned routing object determines the bucket within a partition.

This method can be empty for fixed partitioning where there is only one bucket per
partition. That implementation assigns partitions to servers such that the application has full
control of grouping entries on servers.

VMware GemFire 9.10 Documentation

VMware by Broadcom 502

Note: Only fields on the key should be used when creating the routing object. Do not use
the value or additional metadata for this purpose.

Implement the getPartitionName method to return the name of the partition for each
entry, based on where you want the entries to reside. All entries within a partition will be
on a single server.

This example places the data based on date, with a different partition name for each
quarter-year and a different routing object for each month.

/**

 * Returns one of four different partition names

 * (Q1, Q2, Q3, Q4) depending on the entry's date

 */

class QuarterFixedPartitionResolver implements

 FixedPartitionResolver<String, String> {

 @Override

 public String getPartitionName(EntryOperation<String, String> opDetails,

 Set<String> targetPartitions) {

 Date date = (Date)opDetails.getKey();

 Calendar cal = Calendar.getInstance();

 cal.setTime(date);

 int month = cal.get(Calendar.MONTH);

 if (month >= 0 && month < 3) {

 if (targetPartitions.contains("Q1")) return "Q1";

 }

 else if (month >= 3 && month < 6) {

 if (targetPartitions.contains("Q2")) return "Q2";

 }

 else if (month >= 6 && month < 9) {

 if (targetPartitions.contains("Q3")) return "Q3";

 }

 else if (month >= 9 && month < 12) {

 if (targetPartitions.contains("Q4")) return "Q4";

 }

 return "Invalid Quarter";

 }

 @Override

 public String getName() {

 return "QuarterFixedPartitionResolver";

 }

 @Override

 public Serializable getRoutingObject(EntryOperation<String, String> opDetail

s) {

 Date date = (Date)opDetails.getKey();

 Calendar cal = Calendar.getInstance();

 cal.setTime(date);

 int month = cal.get(Calendar.MONTH);

 return month;

 }

 @Override

 public void close() {

VMware GemFire 9.10 Documentation

VMware by Broadcom 503

 }

}

Configuring Fixed Custom Partitioning

Set the fixed-partition attributes for each member.

These attributes define the data stored for the region by the member and must be different
for different members. See org.apache.geode.cache.FixedPartitionAttributes for
definitions of the attributes. Define each partition-name in your data-host members for the
region. For each partition name, in the member you want to host the primary copy, define
it with is-primary set to true. In every member you want to host the secondary copy,
define it with is-primary set to false (the default). The number of secondaries must match
the number of redundant copies you have defined for the region. See Configure High
Availability for a Partitioned Region.

Note: Buckets for a partition are hosted only by the members that have defined the
partition name in their FixedPartitionAttributes.

These examples set the partition attributes for a member to be the primary host for the
“Q1” partition data and a secondary host for “Q3” partition data. - XML:

``` pre

<cache>

   <region name="Trades">

      <region-attributes>

         <partition-attributes redundant-copies="1">

           <partition-resolver>

              <class-name>myPackage.QuarterFixedPartitionResolver</class-name>

           </partition-resolver>

           <fixed-partition-attributes partition-name="Q1" is-primary="true"/>

           <fixed-partition-attributes partition-name="Q3" is-primary="false"

                num-buckets="6"/>

         </partition-attributes> 

      </region-attributes>

   </region>

</cache>

```

Java:

FixedPartitionAttribute fpa1 = FixedPartitionAttributes

 .createFixedPartition("Q1", true);

FixedPartitionAttribute fpa3 = FixedPartitionAttributes

 .createFixedPartition("Q3", false, 6);

PartitionAttributesFactory paf = new PartitionAttributesFactory()

 .setPartitionResolver(new QuarterFixedPartitionResolver())

 .setTotalNumBuckets(12)

 .setRedundantCopies(2)

 .addFixedPartitionAttribute(fpa1)

 .addFixedPartitionAttribute(fpa3);

Cache c = new CacheFactory().create();

Region r = c.createRegionFactory()

VMware GemFire 9.10 Documentation

VMware by Broadcom 504

 .setPartitionAttributes(paf.create())

 .create("Trades");

gfsh:

You cannot specify a fixed partition resolver using gfsh.

If your colocated data is in a server system, add the class that implements the
FixedPartitionResolver interface to the CLASSPATH of your Java clients. For Java single-
hop access to work, the resolver class needs to have a zero-argument constructor, and the
resolver class must not have any state; the init method is included in this restriction.

Colocate Data from Different Partitioned Regions

By default, VMware GemFire allocates the data locations for a partitioned region independent of
the data locations for any other partitioned region. You can change this policy for any group of
partitioned regions, so that cross-region, related data is all hosted by the same member. Colocation
is required for some operations, and it increases performance for others by reducing the number of
data accesses to entries that are hosted on other cluster members.

Data colocation between partitioned regions generally improves the performance of data-intensive
operations. You can reduce network hops for iterative operations on related data sets. Compute-
heavy applications that are data-intensive can significantly increase overall throughput. For
example, a query run on a patient’s health records, insurance, and billing information is more
efficient if all data is grouped in a single member. Similarly, a financial risk analytical application runs
faster if all trades, risk sensitivities, and reference data associated with a single instrument are
together.

Procedure

1. Identify one region as the central region, with which data in the other regions is explicitly
colocated. If you use persistence for any of the regions, you must persist the central region.

1. Create the central region before you create the others, either in the cache.xml or
your code. Regions in the XML are created before regions in the code, so if you
create any of your colocated regions in the XML, you must create the central region
in the XML before the others. VMware GemFire will verify its existence when the
others are created and return IllegalStateException if the central region is not
there. Do not add any colocation specifications to this central region.

2. For all other regions, in the region partition attributes, provide the central region’s
name in the colocated-with attribute. Use one of these methods:

XML:

<cache>

 <region name="trades">

 <region-attributes>

 <partition-attributes>

 ...

 <partition-attributes>

 </region-attributes>

 </region>

 <region name="trade_history">

 <region-attributes>

VMware GemFire 9.10 Documentation

VMware by Broadcom 505

 <partition-attributes colocated-with="trades">

 ...

 <partition-attributes>

 </region-attributes>

 </region>

</cache>

Java:

PartitionAttributes attrs = ...

Region trades = new RegionFactory().setPartitionAttributes(attrs)

 .create("trades");

...

attrs = new PartitionAttributesFactory().setColocatedWith(trades.g

etFullPath())

 .create();

Region trade_history = new RegionFactory().setPartitionAttributes

(attrs)

 .create("trade_history");

gfsh:

gfsh>create region --name="trades" type=PARTITION

gfsh> create region --name="trade_history" --colocated-with="trade

s"

2. For each of the colocated regions, use the same values for these partition attributes related
to bucket management:

recovery-delay

redundant-copies

startup-recovery-delay

total-num-buckets

3. If you custom partition your region data, specify the custom resolver for all colocated
regions. This example uses the same partition resolver for both regions:

XML:

<cache>

 <region name="trades">

 <region-attributes>

 <partition-attributes>

 <partition-resolver name="TradesPartitionResolver">

 <class-name>myPackage.TradesPartitionResolver

 </class-name>

 <partition-attributes>

 </region-attributes>

 </region>

 <region name="trade_history">

 <region-attributes>

 <partition-attributes colocated-with="trades">

 <partition-resolver name="TradesPartitionResolver">

 <class-name>myPackage.TradesPartitionResolver

 </class-name>

 <partition-attributes>

VMware GemFire 9.10 Documentation

VMware by Broadcom 506

 </region-attributes>

 </region>

</cache>

Java:

PartitionResolver resolver = new TradesPartitionResolver();

PartitionAttributes attrs =

 new PartitionAttributesFactory()

 .setPartitionResolver(resolver).create();

Region trades = new RegionFactory().setPartitionAttributes(attrs)

 .create("trades");

attrs = new PartitionAttributesFactory()

 .setColocatedWith(trades.getFullPath()).setPartitionResolver(resolve

r)

 .create();

Region trade_history = new RegionFactory().setPartitionAttributes(attrs)

 .create("trade_history");

gfsh:

Specify a partition resolver as described in the configuration section of Custom-
Partition Your Region Data.

4. If you want to persist data in the colocated regions, persist the central region and then
persist the other regions as needed. Use the same disk store for all of the colocated regions
that you persist.

Configuring High Availability for Partitioned Regions

By default, VMware GemFire stores only a single copy of your partitioned region data among the
region’s data stores. You can configure VMware GemFire to maintain redundant copies of your
partitioned region data for high availability.

Understanding High Availability for Partitioned Regions

With high availability, each member that hosts data for the partitioned region gets some
primary copies and some redundant (secondary) copies.

Configure High Availability for a Partitioned Region

Configure in-memory high availability for your partitioned region. Set other high-availability
options, like redundancy zones and redundancy recovery strategies.

Understanding High Availability for Partitioned Regions

With high availability, each member that hosts data for the partitioned region gets some primary
copies and some redundant (secondary) copies.

With redundancy, if one member fails, operations continue on the partitioned region with no
interruption of service:

If the member hosting the primary copy is lost, VMware GemFire makes a secondary copy
the primary. This might cause a temporary loss of redundancy, but not a loss of data.

VMware GemFire 9.10 Documentation

VMware by Broadcom 507

Whenever there are not enough secondary copies to satisfy redundancy, the system works
to recover redundancy by assigning another member as secondary and copying the data to
it.

Note: You can still lose cached data when you are using redundancy if enough members go down
in a short enough time span.

You can configure how the system works to recover redundancy when it is not satisfied. You can
configure recovery to take place immediately or, if you want to give replacement members a
chance to start up, you can configure a wait period. Redundancy recovery is also automatically
attempted during any partitioned data rebalancing operation. Use the
gemfire.MAX_PARALLEL_BUCKET_RECOVERIES system property to configure the maximum number of
buckets that are recovered in parallel. By default, up to 8 buckets are recovered in parallel any time
the system attempts to recover redundancy.

Without redundancy, the loss of any of the region’s data stores causes the loss of some of the
region’s cached data. Generally, you should not use redundancy when your applications can
directly read from another data source, or when write performance is more important than read
performance.

Controlling Where Your Primaries and Secondaries Reside

By default, VMware GemFire places your primary and secondary data copies for you, avoiding
placement of two copies on the same physical machine. If there are not enough machines to keep
different copies separate, VMware GemFire places copies on the same physical machine. You can
change this behavior, so VMware GemFire only places copies on separate machines.

You can also control which members store your primary and secondary data copies. VMware
GemFire provides two options:

Fixed custom partitioning. This option is set for the region. Fixed partitioning gives you
absolute control over where your region data is hosted. With fixed partitioning, you provide
VMware GemFire with the code that specifies the bucket and data store for each data
entry in the region. When you use this option with redundancy, you specify the primary and
secondary data stores. Fixed partitioning does not participate in rebalancing because all
bucket locations are fixed by you.

Redundancy zones. This option is set at the member level. Redundancy zones let you
separate primary and secondary copies by member groups, or zones. You assign each data
host to a zone. Then VMware GemFire places redundant copies in different redundancy
zones, the same as it places redundant copies on different physical machines. You can use
this to split data copies across different machine racks or networks, This option allows you
to add members on the fly and use rebalancing to redistribute the data load, with
redundant data maintained in separate zones. When you use redundancy zones, VMware
GemFire will not place two copies of the data in the same zone, so make sure you have
enough zones.

Running Processes in Virtual Machines

By default, VMware GemFire stores redundant copies on different machines. When you run your
processes in virtual machines, the normal view of the machine becomes the VM and not the

VMware GemFire 9.10 Documentation

VMware by Broadcom 508

physical machine. If you run multiple VMs on the same physical machine, you could end up storing
partitioned region primary buckets in separate VMs, but on the same physical machine as your
secondaries. If the physical machine fails, you can lose data. When you run in VMs, you can
configure VMware GemFire to identify the physical machine and store redundant copies on
different physical machines.

Reads and Writes in Highly-Available Partitioned Regions

VMware GemFire treats reads and writes differently in highly-available partitioned regions than in
other regions because the data is available in multiple members:

Write operations (like put and create) go to the primary for the data keys and then are
distributed synchronously to the redundant copies. Events are sent to the members
configured with subscription-attributes interest-policy set to all.

Read operations go to any member holding a copy of the data, with the local cache favored,
so a read intensive system can scale much better and handle higher loads.

In this figure, M1 is reading W, Y, and Z. It gets W directly from its local copy. Since it doesn’t have
a local copy of Y or Z, it goes to a cache that does, picking the source cache at random.

Member (M1)

Partition Region A

secondary data

W X

Logical View

W X ZY

Member (M2)

Partition Region A

primary data

W X

secondary data

ZY

Logical View

W X ZY

Member (M3)

Partition Region A

primary data

ZY

Logical View

W X ZY

Application

read

read

read

VMware GemFire 9.10 Documentation

VMware by Broadcom 509

Configure High Availability for a Partitioned Region

Configure in-memory high availability for your partitioned region. Set other high-availability options,
like redundancy zones and redundancy recovery strategies.

Here are the main steps for configuring high availability for a partitioned region. See later sections
for details.

1. Set the number of redundant copies the system should maintain of the region data. See Set
the Number of Redundant Copies.

2. (Optional) If you want to group your data store members into redundancy zones, configure
them accordingly. See Configure Redundancy Zones for Members.

3. (Optional) If you want VMware GemFire to only place redundant copies on different
physical machines, configure for that. See Set Enforce Unique Host.

4. Decide how to manage redundancy recovery and change VMware GemFire’s default
behavior as needed.

After a member crashes. If you want automatic redundancy recovery, change the
configuration for that. See Configure Member Crash Redundancy Recovery for a
Partitioned Region.

After a member joins. If you do not want immediate, automatic redundancy
recovery, change the configuration for that. See Configure Member Join
Redundancy Recovery for a Partitioned Region.

5. Decide how many buckets VMware GemFire should attempt to recover in parallel when
performing redundancy recovery. By default, the system recovers up to 8 buckets in
parallel. Use the gemfire.MAX_PARALLEL_BUCKET_RECOVERIES system property to increase or
decrease the maximum number of buckets to recover in parallel any time redundancy
recovery is performed.

6. For all but fixed partitioned regions, review the points at which you kick off rebalancing.
Redundancy recovery is done automatically at the start of any rebalancing. This is most
important if you run with no automated recovery after member crashes or joins. See
Rebalancing Partitioned Region Data.

During runtime, you can add capacity by adding new members for the region. For regions that do
not use fixed partitioning, you can also kick off a rebalancing operation to spread the region buckets
among all members.

Set the Number of Redundant Copies

Configure in-memory high availability for your partitioned region by specifying the number
of secondary copies you want to maintain in the region’s data stores.

Configure Redundancy Zones for Members

Group members into redundancy zones so VMware GemFire will separate redundant data
copies into different zones.

Set Enforce Unique Host

Configure VMware GemFire to use only unique physical machines for redundant copies of
partitioned region data.

VMware GemFire 9.10 Documentation

VMware by Broadcom 510

Configure Member Crash Redundancy Recovery for a Partitioned Region

Configure whether and how redundancy is recovered in a partition region after a member
crashes.

Configure Member Join Redundancy Recovery for a Partitioned Region

Configure whether and how redundancy is recovered in a partition region after a member
joins.

Set the Number of Redundant Copies

Configure in-memory high availability for your partitioned region by specifying the number of
secondary copies you want to maintain in the region’s data stores.

Specify the number of redundant copies you want for your partitioned region data in the partition
attribute redundant-copies setting. The default setting is 0.

For example:

XML:

<region name="PR1">

 <region-attributes refid="PARTITION">

 <partition-attributes redundant-copies="1"/>

 </region-attributes>

</region>

Java:

PartitionAttributes pa =

 new PartitionAttributesFactory().setRedundantCopies(1).create();

gfsh:

gfsh>create region --name="PR1" --type=PARTITION --redundant-copies=1

Configure Redundancy Zones for Members

Group members into redundancy zones so VMware GemFire will separate redundant data copies
into different zones.

Understand how to set a member’s gemfire.properties settings. See Reference.

Group your partition region hosts into redundancy zones with the gemfire.properties setting
redundancy-zone.

For example, if you had redundancy set to 1, so you have one primary and one secondary copy of
each data entry, you could split primary and secondary data copies between two machine racks by
defining one redundancy zone for each rack. To do this, you set this zone in the
gemfire.properties for all members that run on one rack:

redundancy-zone=rack1

You would set this zone gemfire.properties for all members on the other rack:

VMware GemFire 9.10 Documentation

VMware by Broadcom 511

redundancy-zone=rack2

Each secondary copy would be hosted on the rack opposite the rack where its primary copy is
hosted.

Set Enforce Unique Host

Configure VMware GemFire to use only unique physical machines for redundant copies of
partitioned region data.

Understand how to set a member’s gemfire.properties settings. See Reference.

Configure your members so VMware GemFire always uses different physical machines for
redundant copies of partitioned region data using the gemfire.properties setting enforce-unique-
host. The default for this setting is false.

Example:

enforce-unique-host=true

Configure Member Crash Redundancy Recovery for a
Partitioned Region

Configure whether and how redundancy is recovered in a partition region after a member crashes.

Use the partition attribute recovery-delay to specify member crash redundancy recovery.

recovery-delay partition
attribute

Effect following a member failure

-1 No automatic recovery of redundancy following a member failure. This is the
default.

long greater than or equal to 0 Number of milliseconds to wait after a member failure before recovering
redundancy.

By default, redundancy is not recovered after a member crashes. If you expect to quickly restart
most crashed members, combining this default setting with member join redundancy recovery can
help you avoid unnecessary data shuffling while members are down. By waiting for lost members to
rejoin, redundancy recovery is done using the newly started members and partitioning is better
balanced with less processing.

Set crash redundancy recovery using one of the following:

XML:

// Give a crashed member 10 seconds to restart

// before recovering redundancy

<region name="PR1">

 <region-attributes refid="PARTITION">

 <partition-attributes recovery-delay="10000"/>

 </region-attributes>

</region>

VMware GemFire 9.10 Documentation

VMware by Broadcom 512

Java:

PartitionAttributes pa = new PartitionAttributesFactory().setRecoveryDelay(1000

0).create();

gfsh:

gfsh>create region --name="PR1" type=PARTITION --recovery-delay=10000

Configure Member Join Redundancy Recovery for a
Partitioned Region

This section covers configuring whether and how redundancy is recovered in a partitioned region,
after a member joins.

Use the partition attribute startup-recovery-delay to specify member join redundancy recovery.

value of startup-
recovery-delay

Effect following a member join

-1 No automatic recovery of redundancy after a new member comes online. With this value and
the default recovery-delay setting, redundancy recovery is only achieved by a rebalance
operation.

long >= 0 Number of milliseconds to wait after a member joins before recovering redundancy. The default
is 0 (zero), which causes immediate redundancy recovery whenever a member that hosts the
partitioned region joins.

Setting startup-recovery-delay to a value higher than the default of 0 allows multiple new
members to join before redundancy recovery begins. With the multiple members present during
recovery, the system will spread redundancy recovery among them. With no delay, if multiple
members are started in close succession, the system may choose only the first member started for
most or all of the redundancy recovery.

Note: Satisfying redundancy is not the same as adding capacity. If redundancy is satisfied, new
members do not take buckets until the invocation of a rebalance operation.

The parallel recovery implementation recovers quickly. For this reason, it is even more important to
configure startup-recovery-delay to an appropriate value when restarting multiple members at
the same time. Set startup-recovery-delay to a value that ensures all members are up and
available before redundancy recovery kicks in.

Set join redundancy recovery using one of the following:

XML:

// Wait 5 seconds after a new member joins before

// recovering redundancy

<region name="PR1">

 <region-attributes refid="PARTITION">

 <partition-attributes startup-recovery-delay="5000"/>

 </region-attributes>

</region>

Java:

VMware GemFire 9.10 Documentation

VMware by Broadcom 513

PartitionAttributes pa = new PartitionAttributesFactory().setStartupRecoveryDel

ay(5000).create();

gfsh:

gfsh>create region --name="PR1" --type=PARTITION --startup-recovery-delay=5000

Configuring Single-Hop Client Access to Server-Partitioned
Regions

Single-hop data access enables the client pool to track where a partitioned region’s data is hosted
in the servers. To access a single entry, the client directly contacts the server that hosts the key, in
a single hop.

Understanding Client Single-Hop Access to Server-Partitioned Regions

With single-hop access the client connects to every server, so more connections are
generally used. This works fine for smaller installations, but is a barrier to scaling.

Configure Client Single-Hop Access to Server-Partitioned Regions

Configure your client/server system for direct, single-hop access to partitioned region data
in the servers.

Understanding Client Single-Hop Access to Server-
Partitioned Regions
With single-hop access the client connects to every server, so more connections are generally
used. This works fine for smaller installations, but is a barrier to scaling.

If you have a large installation with many clients, you may want to disable single hop by setting the
pool attribute, pr-single-hop-enabled to false in your pool declarations.

Without single hop, the client uses whatever server connection is available, the same as with all
other operations. The server that receives the request determines the data location and contacts
the host, which might be a different server. So more multiple-hop requests are made to the server
system.

Note: Single hop is used for the following operations: put, get, destroy, invalidate, putAll,
getAll, removeAll and onRegion function execution.

Even with single hop access enabled, you will occasionally see some multiple-hop behavior. To
perform single-hop data access, clients automatically get metadata from the servers about where
the entry buckets are hosted. The metadata is maintained lazily. It is only updated after a single-
hop operation ends up needing multiple hops, an indicator of stale metadata in the client.

Single Hop and the Pool max-connections Setting
Do not set the pool’s max-connections setting with single hop enabled. Limiting the pool’s
connections with single hop can cause connection thrashing, throughput loss, and server log bloat.

VMware GemFire 9.10 Documentation

VMware by Broadcom 514

If you need to limit the pool’s connections, either disable single hop or keep a close watch on your
system for these negative effects.

Setting no limit on connections, however, can result in too many connections to your servers,
possibly causing you to run up against your system’s file handle limits. Review your anticipated
connection use and make sure your servers are able to accommodate it.

Balancing Single-Hop Server Connection Use

Single-hop gives the biggest benefits when data access is well balanced across your servers. In
particular, the loads for client/server connections can get out of balance if you have these in
combination:

Servers that are empty data accessors or that do not host the data the clients access
through single-key operations

Many single-key operations from the clients

If data access is greatly out of balance, clients can thrash trying to get to the data servers. In this
case, it might be faster to disable single hop and go through servers that do not host the data.

Configure Client Single-Hop Access to Server-Partitioned
Regions
Configure your client/server system for direct, single-hop access to partitioned region data in the
servers.

This requires a client/server installation that uses one or more partitioned regions on the server.

1. Verify the client’s pool attribute, pr-single-hop-enabled is not set or is set to true. It is true
by default. 2.

If possible, leave the pool’s max-connections at the default unlimited setting (-1).

2. If possible, use a custom data resolver to partition your server region data according to your
clients’ data use patterns. See Custom-Partition Your Region Data. Include the server’s
partition resolver implementation in the client’s CLASSPATH. The server passes the name of
the resolver for each custom partitioned region, so the client uses the proper one. If the
server does not use a partition resolver, the default partitioning between server and client
matches, so single hop works. 4.

Add single-hop considerations to your overall server load balancing plan. Single-hop uses
data location rather than least loaded server to pick the servers for single-key operations.
Poorly balanced single-hop data access can affect overall client/server load balancing. Some
counterbalancing is done automatically because the servers with more single-key
operations become more loaded and are less likely to be picked for other operations.

Rebalancing Partitioned Region Data
In a cluster with minimal contention to the concurrent threads reading or updating from the
members, you can use rebalancing to dynamically increase or decrease your data and processing
capacity.

VMware GemFire 9.10 Documentation

VMware by Broadcom 515

Rebalancing is a member operation. It affects all partitioned regions defined by the member,
regardless of whether the member hosts data for the regions. The rebalancing operation performs
two tasks:

1. If the configured partition region redundancy is not satisfied, rebalancing does what it can
to recover redundancy. See Configure High Availability for a Partitioned Region.

2. Rebalancing moves the partitioned region data buckets between host members as needed
to establish the most fair balance of data and behavior across the cluster.

For efficiency, when starting multiple members, trigger the rebalance a single time, after you have
added all members.

Note: If you have transactions running in your system, be careful in planning your rebalancing
operations. Rebalancing may move data between members, which could cause a running
transaction to fail with a TransactionDataRebalancedException. Fixed custom partitioning prevents
rebalancing altogether. All other data partitioning strategies allow rebalancing and can result in this
exception unless you run your transactions and your rebalancing operations at different times.

Kick off a rebalance using one of the following:

gfsh command. First, starting a gfsh prompt and connect to the cluster. Then type the
following command:

gfsh>rebalance

Optionally, you can specify regions to include or exclude from rebalancing, specify a time-
out for the rebalance operation or just simulate a rebalance operation. Type help rebalance
or see rebalance for more information.

API call:

ResourceManager manager = cache.getResourceManager();

RebalanceOperation op = manager.createRebalanceFactory().start();

//Wait until the rebalance is complete and then get the results

RebalanceResults results = op.getResults();

//These are some of the details we can get about the run from the API

System.out.println("Took " + results.getTotalTime() + " milliseconds\n");

System.out.println("Transfered " + results.getTotalBucketTransferBytes()+ "byte

s\n");

You can also just simulate a rebalance through the API, to see if it’s worth it to run:

ResourceManager manager = cache.getResourceManager();

RebalanceOperation op = manager.createRebalanceFactory().simulate();

RebalanceResults results = op.getResults();

System.out.println("Rebalance would transfer " + results.getTotalBucketTransferBytes()

+" bytes ");

System.out.println(" and create " + results.getTotalBucketCreatesCompleted() + " bucke

ts.\n");

How Partitioned Region Rebalancing Works

The rebalancing operation runs asynchronously.

VMware GemFire 9.10 Documentation

VMware by Broadcom 516

By default, rebalancing is performed on one partitioned region at a time. For regions that have
colocated data, the rebalancing works on the regions as a group, maintaining the data colocation
between the regions.

You can optionally rebalance multiple regions in parallel by setting the
gemfire.resource.manager.threads system property. Setting this property to a value greater than 1
enables VMware GemFire to rebalance multiple regions in parallel, any time a rebalance operation
is initiated using the API.

You can continue to use your partitioned regions normally while rebalancing is in progress. Read
operations, write operations, and function executions continue while data is moving. If a function is
executing on a local data set, you may see a performance degradation if that data moves to
another host during function execution. Future function invocations are routed to the correct
member.

VMware GemFire tries to ensure that each member has the same percentage of its available space
used for each partitioned region. The percentage is configured in the partition-attributes local-
max-memory setting.

Partitioned region rebalancing:

Does not allow the local-max-memory setting to be exceeded unless LRU eviction is
enabled with overflow to disk.

Places multiple copies of the same bucket on different host IP addresses whenever
possible.

Resets entry time to live and idle time statistics during bucket migration.

Replaces offline members.

When to Rebalance a Partitioned Region

You typically want to trigger rebalancing when capacity is increased or reduced through member
startup, shut down or failure.

You may also need to rebalance when:

You use redundancy for high availability and have configured your region to not
automatically recover redundancy after a loss. In this case, VMware GemFire only restores
redundancy when you invoke a rebalance. See Configure High Availability for a Partitioned
Region.

You have uneven hashing of data. Uneven hashing can occur if your keys do not have a
hash code method, which ensures uniform distribution, or if you use a PartitionResolver to
colocate your partitioned region data (see Colocate Data from Different Partitioned
Regions). In either case, some buckets may receive more data than others. Rebalancing can
be used to even out the load between data stores by putting fewer buckets on members
that are hosting large buckets.

How to Simulate Region Rebalancing

You can simulate the rebalance operation before moving any actual data around by executing the
rebalance command with the following option:

VMware GemFire 9.10 Documentation

VMware by Broadcom 517

gfsh>rebalance --simulate

Note: If you are using heap_lru for data eviction, you may notice a difference between your
simulated results and your actual rebalancing results. This discrepancy can be due to the VM
starting to evict entries after you execute the simulation. Then when you perform an actual
rebalance operation, the operation will make different decisions based on the newer heap size.

Automated Rebalancing

The experimental automated rebalance feature triggers a rebalance operation based on a time
schedule.

Checking Redundancy in Partitioned Regions

Under some circumstances, it can be important to verify that your partitioned region data is
redundant and that upon member restart, redundancy has been recovered properly across
partitioned region members.

You can verify partitioned region redundancy by making sure that the
numBucketsWithoutRedundancy statistic is zero for all your partitioned regions. To check this statistic,
use the following gfsh command:

gfsh>show metrics --categories=partition --region=region_name

For example:

gfsh>show metrics --categories=partition --region=posts

Cluster-wide Region Metrics

--------- | --------------------------- | -----

partition | putLocalRate | 0

 | putRemoteRate | 0

 | putRemoteLatency | 0

 | putRemoteAvgLatency | 0

 | bucketCount | 1

 | primaryBucketCount | 1

 | numBucketsWithoutRedundancy | 1

 | minBucketSize | 1

 | maxBucketSize | 0

 | totalBucketSize | 1

 | averageBucketSize | 1

If you have start-recovery-delay=-1 configured for your partitioned region, you will need to
perform a rebalance on your region after you restart any members in your cluster in order to
recover redundancy.

If you have start-recovery-delay set to a low number, you may need to wait extra time until the
region has recovered redundancy.

Moving Partitioned Region Data to Another Member

VMware GemFire 9.10 Documentation

VMware by Broadcom 518

You can use the PartitionRegionHelper moveBucketByKey and moveData methods to explicitly move
partitioned region data from one member to another.

The moveBucketByKey method moves the bucket that contains the specified key from a source
member to a destination member. For example, you could use the method to move a popular
product item to a new, empty member to reduce load on the source member.

For example:

Object product = ...

Region r = ...

DistributedSystem ds = ...

String memberName = ...

//Find the member that is currently hosting the product.

Set<DistributedMember> sourceMembers =

PartitionRegionHelper.getAllMembersForKey(r, product);

//Find the member to move the product to.

DistributedMember destination = ds.findDistributedMember(memberName);

//In this example we assume there is always at least one source.

//In practice, you should check that at least one source

//for the data is available.

source = sourceMembers.iterator().next();

//Move the bucket to the new node. The bucket will

//be moved when this method completes. It throws an exception

//if there is a problem or invalid arguments.

PartitionRegionHelper.moveBucketByKey(r, source, destination, product);

See the Java API documentation for
org.apache.geode.cache.partition.PartitionRegionHelper.moveBucketByKey for more details.

The moveData method moves data up to a given percentage (measured in bytes) from a source
member to a destination member. For example, you could use this method to move a specified
percentage of data from an overloaded member to another member to improve distribution.

For example:

Region r = ...

DistributedSystem ds = ...

String sourceName = ...

String destName = ...

//Find the source member.

DistributedMember source = ds.findDistributedMember(sourceName);

DistributedMember destination = ds.findDistributedMember(destName);

//Move up to 20% of the data from the source to the destination node.

PartitionRegionHelper.moveData(r, source, destination, 20);

See the Java API documentation for
org.apache.geode.cache.partition.PartitionRegionHelper.moveData for more details.

For more information on partitioned regions and rebalancing, see Partitioned Regions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 519

Distributed and Replicated Regions

In addition to basic region management, distributed and replicated regions include options for
things like push and pull distribution models, global locking, and region entry versions to ensure
consistency across VMware GemFire members.

How Distribution Works

To use distributed and replicated regions, you should understand how they work and your
options for managing them.

Options for Region Distribution

You can use distribution with and without acknowledgment, or global locking for your
region distribution. Regions that are configured for distribution with acknowledgment can
also be configured to resolve concurrent updates consistently across all VMware GemFire
members that host the region.

How Replication and Preloading Work

To work with replicated and preloaded regions, you should understand how their data is
initialized and maintained in the cache.

Configure Distributed, Replicated, and Preloaded Regions

Plan the configuration and ongoing management of your distributed, replicated, and
preloaded regions, and configure the regions.

Locking in Global Regions

In global regions, the system locks entries and the region during updates. You can also
explicitly lock the region and its entries as needed by your application. Locking includes
system settings that help you optimize performance and locking behavior between your
members.

How Distribution Works

To use distributed and replicated regions, you should understand how they work and your options
for managing them.

Note: The management of replicated and distributed regions supplements the general information
for managing data regions provided in Basic Configuration and Programming. See also
org.apache.geode.cache.PartitionAttributes.

A distributed region automatically sends entry value updates to remote caches and receives
updates from them.

Distributed entry updates come from the Region put and create operations (the creation of
an entry with a non-null value is seen as an update by remote caches that already have the
entry key). Entry updates are distributed selectively - only to caches where the entry key is
already defined. This provides a pull model of distribution, compared to the push model that
you get with replication.

Distribution alone does not cause new entries to be copied from remote caches.

A distributed region shares cache loader and cache writer application event handler plug-
ins across the cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 520

In a distributed region, new and updated entry values are automatically distributed to remote
caches that already have the entries defined.

Step 1: The application updates or creates the entry. At this point, the entry in the M1 cache may
not yet exist.

Member (M1) Member (M2)

X1

Application

Distributed Region A

X

Distributed Region A

X

Step 2: The new value is automatically distributed to caches holding the entry.

Member (M1) Member (M2)

Application

Distributed Region A

X1

Distributed Region A

X
X1

Step 3: The entry’s value is the same throughout the cluster.

Member (M1) Member (M2)

Application

Distributed Region A

X1

Distributed Region A

X1

VMware GemFire 9.10 Documentation

VMware by Broadcom 521

Options for Region Distribution

You can use distribution with and without acknowledgment, or global locking for your region
distribution. Regions that are configured for distribution with acknowledgment can also be
configured to resolve concurrent updates consistently across all VMware GemFire members that
host the region.

Each distributed region must have the same scope and concurrency checking setting throughout
the cluster.

Distributed scope is provided at three levels:

distributed-no-ack. Distribution operations return without waiting for a response from
other caches. This scope provides the best performance and uses the least amount of
overhead, but it is also most prone to having inconsistencies caused by network problems.
For example, a temporary disruption of the network transport layer could cause a failure in
distributing updates to a cache on a remote machine, while the local cache continues being
updated.

distributed-ack. Distribution waits for acknowledgment from other caches before
continuing. This is slower than distributed-no-ack, but covers simple communication
problems such as temporary network disruptions.

In systems where there are many distributed-no-ack operations, it is possible for
distributed-ack operations to take a long time to complete. The cluster has a configurable
time to wait for acknowledgment to any distributed-ack message before sending alerts to
the logs about a possible problem with the unresponsive member. No matter how long the
wait, the sender keeps waiting in order to honor the distributed-ack region setting. The
gemfire.properties attribute governing this is ack-wait-threshold.

global. Entries and regions are automatically locked across the cluster during distribution
operations. All load, create, put, invalidate, and destroy operations on the region and its
entries are performed with a distributed lock. The global scope enforces strict consistency
across the cluster, but it is the slowest mechanism for achieving consistency. In addition to
the implicit locking performed by distribution operations, regions with global scope and their
contents can be explicitly locked through the application APIs. This allows applications to
perform atomic, multi-step operations on regions and region entries.

How Replication and Preloading Work

To work with replicated and preloaded regions, you should understand how their data is initialized
and maintained in the cache.

Replicated and preloaded regions are configured by using one of the REPLICATE region shortcut
settings, or by setting the region attribute data-policy to replicate, persistent-replicate, or
preloaded.

Initialization of Replicated and Preloaded Regions

At region creation, the system initializes the preloaded or replicated region with the most complete
and up-to-date data set it can find. The system uses these data sources to initialize the new region,
following this order of preference:

VMware GemFire 9.10 Documentation

VMware by Broadcom 522

1. Another replicated region that is already defined in the cluster.

2. For persistent replicate only. Disk files, followed by a union of all copies of the region in the
distributed cache.

3. For preloaded region only. Another preloaded region that is already defined in the cluster.

4. The union of all copies of the region in the distributed cache.

Member (M1) Member (M2)

Distributed Region A

X

Distributed Region A

XY Z

Member (M3)

Distributed Region A

(replica or preloaded)

X Y Z

Distributed

System

While a region is being initialized from a replicated or preloaded region, if the source region
crashes, the initialization starts over.

If a union of regions is used for initialization, as in the figure, and one of the individual source
regions goes away during the initialization (due to cache closure, member crash, or region
destruction), the new region may contain a partial data set from the crashed source region. When
this happens, there is no warning logged or exception thrown. The new region still has a complete
set of the remaining members’ regions.

Behavior of Replicated and Preloaded Regions After
Initialization

Once initialized, the preloaded region operates like the region with a normal data-policy, receiving
distributions only for entries it has defined in the local cache.

Distributed

System

Distributed Region

(Preloaded or Normal)

X Y

Operations for existing

entry keys

If the region is configured as a replicated region, it receives all new creations in the distributed
region from the other members. This is the push distribution model. Unlike the preloaded region,

VMware GemFire 9.10 Documentation

VMware by Broadcom 523

the replicated region has a contract that states it will hold all entries that are present anywhere in
the distributed region.

Distributed

System

Distributed Region

(Replica)

X Y

All creations

Other entry operations

(due to distribution)

Configure Distributed, Replicated, and Preloaded Regions
Plan the configuration and ongoing management of your distributed, replicated, and preloaded
regions, and configure the regions.

Before you begin, understand Basic Configuration and Programming.

1. Choose the region shortcut setting that most closely matches your region configuration.
See org.apache.geode.cache.RegionShortcut or Region Shortcuts. To create a replicated
region, use one of the REPLICATE shortcut settings. To create a preloaded region, set your
region data-policy to preloaded. This cache.xml declaration creates a replicated region:

<region-attributes refid="REPLICATE">

</region-attributes>

You can also use gfsh to configure a region. For example:

gfsh>create region --name=regionA --type=REPLICATE

See Region Types.

2. Choose the level of distribution for your region. The region shortcuts in RegionShortcut for
distributed regions use distributed-ack scope. If you need a different scope, set the
region-attributes scope to distributed-no-ack or global.

Example:

<region-attributes refid="REPLICATE" scope="distributed-no-ack">

</region-attributes>

3. If you are using the distributed-ack scope, optionally enable concurrency checks for the
region.

Example:

<region-attributes refid="REPLICATE" scope="distributed-ack" concurrency-checks

-enabled="true">

</region-attributes>

4. If you are using global scope, program any explicit locking you need in addition to the
automated locking provided by VMware GemFire.

Local Destroy and Invalidate in the Replicated Region

VMware GemFire 9.10 Documentation

VMware by Broadcom 524

Of all the operations that affect the local cache only, only local region destroy is allowed in a
replicated region. Other operations are not configurable or throw exceptions. For example, you
cannot use local destroy as the expiration action on a replicated region. This is because local
operations like entry invalidation and destruction remove data from the local cache only. A
replicated region would no longer be complete if data were removed locally but left intact.

Locking in Global Regions

In global regions, the system locks entries and the region during updates. You can also explicitly
lock the region and its entries as needed by your application. Locking includes system settings that
help you optimize performance and locking behavior between your members.

In regions with global scope, locking helps ensure cache consistency.

Locking of regions and entries is done in two ways:

1. Implicit. VMware GemFire automatically locks global regions and their data entries during
most operations. Region invalidation and destruction do not acquire locks.

2. Explicit. You can use the API to explicitly lock the region and its entries. Do this to
guarantee atomicity in tasks with multi-step distributed operations. The Region methods
org.apache.geode.cache.Region.getDistributedLock and
org.apache.geode.cache.Region.getRegionDistributedLock return instances of
java.util.concurrent.locks.Lock for a region and a specified key.

Note: You must use the Region API to lock regions and region entries. Do not use the
DistributedLockService in the org.apache.geode.distributed package. That service is
available only for locking in arbitrary distributed applications. It is not compatible with the
Region locking methods.

Lock Timeouts

Getting a lock on a region or entry is a two-step process of getting a lock instance for the entity
and then using the instance to set the lock. Once you have the lock, you hold it for your
operations, then release it for someone else to use. You can set limits on the time spent waiting to
get a lock and the time spent holding it. Both implicit and explicit locking operations are affected by
the timeouts:

The lock timeout limits the wait to get a lock. The cache attribute lock-timeout governs
implicit lock requests. For explicit locking, specify the wait time through your calls to the
instance of java.util.concurrent.locks.Lock returned from the Region API. You can wait
a specific amount of time, return immediately either with or without the lock, or wait
indefinitely.

<cache lock-timeout="60">

</cache>

gfsh:

gfsh>alter runtime --lock-timeout=60

VMware GemFire 9.10 Documentation

VMware by Broadcom 525

The lock lease limits how long a lock can be held before it is automatically released. A timed
lock allows the application to recover when a member fails to release an obtained lock
within the lease time. For all locking, this timeout is set with the cache attribute lock-
lease.

<cache lock-lease="120"> </cache>

gfsh:

gfsh>alter runtime --lock-lease=120

Optimize Locking Performance
For each global region, one of the members with the region defined will be assigned the job of lock
grantor. The lock grantor runs the lock service that receives lock requests from system members,
queues them as needed, and grants them in the order received.

The lock grantor is at a slight advantage over other members as it is the only one that does not
have to send a message to request a lock. The grantor’s requests cost the least for the same
reason. Thus, you can optimize locking in a region by assigning lock grantor status to the member
that acquires the most locks. This may be the member that performs the most puts and thus
requires the most implicit locks or this may be the member that performs many explicit locks.

The lock grantor is assigned as follows:

Any member with the region defined that requests lock grantor status is assigned it. Thus at
any time, the most recent member to make the request is the lock grantor.

If no member requests lock grantor status for a region, or if the current lock grantor goes
away, the system assigns a lock grantor from the members that have the region defined in
their caches.

You can request lock grantor status:

1. At region creation through the is-lock-grantor attribute. You can retrieve this attribute
through the region method, getAttributes, to see whether you requested to be lock
grantor for the region. Note: The is-lock-grantor attribute does not change after region
creation.

2. After region creation through the region becomeLockGrantor method. Changing lock
grantors should be done with care, however, as doing so takes cycles from other
operations. In particular, be careful to avoid creating a situation where you have members
vying for lock grantor status.

Examples
These two examples show entry locking and unlocking. Note how the entry’s Lock object is
obtained and then its lock method invoked to actually set the lock. The example program stores
the entry lock information in a hash table for future reference.

/* Lock a data entry */

HashMap lockedItemsMap = new HashMap();

VMware GemFire 9.10 Documentation

VMware by Broadcom 526

...

 String entryKey = ...

 if (!lockedItemsMap.containsKey(entryKey))

 {

 Lock lock = this.currRegion.getDistributedLock(entryKey);

 lock.lock();

 lockedItemsMap.put(name, lock);

 }

 ...

/* Unlock a data entry */

 String entryKey = ...

 if (lockedItemsMap.containsKey(entryKey))

 {

 Lock lock = (Lock) lockedItemsMap.remove(name);

 lock.unlock();

 }

Consistency for Region Updates

VMware GemFire ensures that all copies of a region eventually reach a consistent state on all
members and clients that host the region, including VMware GemFire members that distribute
region events.

Consistency Checking by Region Type

VMware GemFire performs different consistency checks depending on the type of region
you have configured.

Configuring Consistency Checking

VMware GemFire enables consistency checking by default. You cannot disable consistency
checking for persistent regions. For all other regions, you can explicitly enable or disable
consistency checking by setting the concurrency-checks-enabled region attribute in
cache.xml to “true” or “false.”

Overhead for Consistency Checks

Consistency checking requires additional overhead for storing and distributing version and
timestamp information, as well as for maintaining destroyed entries for a period of time to
meet consistency requirements.

How Consistency Checking Works for Replicated Regions

Each region stores version and timestamp information for use in conflict detection. VMware
GemFire members use the recorded information to detect and resolve conflicts consistently
before applying a distributed update.

How Destroy and Clear Operations Are Resolved

When consistency checking is enabled for a region, a VMware GemFire member does not
immediately remove an entry from the region when an application destroys the entry.
Instead, the member retains the entry with its current version stamp for a period of time in
order to detect possible conflicts with operations that have occurred. The retained entry is
referred to as a tombstone. VMware GemFire retains tombstones for partitioned regions
and non-replicated regions as well as for replicated regions, in order to provide consistency.

VMware GemFire 9.10 Documentation

VMware by Broadcom 527

Transactions with Consistent Regions

A transaction that modifies a region having consistency checking enabled generates all
necessary version information for region updates when the transaction commits.

Consistency Checking by Region Type

VMware GemFire performs different consistency checks depending on the type of region you have
configured.

Partitioned Region Consistency

For a partitioned region, VMware GemFire maintains consistency by routing all updates on a given
key to the VMware GemFire member that holds the primary copy of that key. That member holds a
lock on the key while distributing updates to other members that host a copy of the key. Because
all updates to a partitioned region are serialized on the primary VMware GemFire member, all
members apply the updates in the same order and consistency is maintained at all times. See
Understanding Partitioning.

Replicated Region Consistency

For a replicated region, any member that hosts the region can update a key and distribute that
update to other members without locking the key. It is possible that two members can update the
same key at the same time (a concurrent update). It is also possible that, due to network latency,
an update in one member is distributed to other members at a later time, after those members
have already applied more recent updates to the key (an out-of-order update). By default, VMware
GemFire members perform conflict checking before applying region updates in order to detect and
consistently resolve concurrent and out-of-order updates. Conflict checking ensures that region
data eventually becomes consistent on all members that host the region. The conflict checking
behavior for replicated regions is summarized as follows:

If two members update the same key at the same time, conflict checking ensures that all
members eventually apply the same value, which is the value of one of the two concurrent
updates.

If a member receives an out-of-order update (an update that is received after one or more
recent updates were applied), conflict checking ensures that the out-of-order update is
discarded and not applied to the cache.

How Consistency Checking Works for Replicated Regions and How Destroy and Clear Operations
Are Resolved provide more details about how VMware GemFire performs conflict checking when
applying an update.

Non-Replicated Regions and Client Cache Consistency

When a member receives an update for an entry in a non-replicated region and applies an update,
it performs conflict checking in the same way as for a replicated region. However, if the member
initiates an operation on an entry that is not present in the region, it first passes that operation to a
member that hosts a replicate. The member that hosts the replica generates and provides the

VMware GemFire 9.10 Documentation

VMware by Broadcom 528

version information necessary for subsequent conflict checking. See How Consistency Checking
Works for Replicated Regions.

Client caches also perform consistency checking in the same way when they receive an update for
a region entry. However, all region operations that originate in the client cache are first passed
onto an available VMware GemFire server, which generates the version information necessary for
subsequent conflict checking.

Configuring Consistency Checking

VMware GemFire enables consistency checking by default. You cannot deactivate consistency
checking for persistent regions. For all other regions, you can explicitly activate or deactivate
consistency checking by setting the concurrency-checks-enabled region attribute in cache.xml to
“true” or “false.”

All VMware GemFire members that host a region must use the same concurrency-checks-enabled
setting for that region.

A client cache can deactivate consistency checking for a region even if server caches activate
consistency checking for the same region. This configuration ensures that the client sees all events
for the region, but it does not prevent the client cache region from becoming out-of-sync with the
server cache.

See <region-attributes>.

Note: Regions that do not enable consistency checking remain subject to race conditions.
Concurrent updates may result in one or more members having different values for the same key.
Network latency can result in older updates being applied to a key after more recent updates have
occurred.

Overhead for Consistency Checks

Consistency checking requires additional overhead for storing and distributing version and
timestamp information, as well as for maintaining destroyed entries for a period of time to meet
consistency requirements.

To provide consistency checking, each region entry uses an additional 16 bytes. When an entry is
deleted, a tombstone entry of approximately 13 bytes is created and maintained until the
tombstone expires or is garbage-collected in the member. (When an entry is destroyed, the
member temporarily retains the entry with its current version stamp to detect possible conflicts
with operations that have occurred. The retained entry is referred to as a tombstone.) See How
Destroy and Clear Operations Are Resolved.

If you cannot support the additional overhead in your deployment, you can deactivate consistency
checks by setting concurrency-checks-enabled to “false” for each region. See Consistency for
Region Updates.

How Consistency Checking Works for Replicated Regions

Each region stores version and timestamp information for use in conflict detection. VMware
GemFire members use the recorded information to detect and resolve conflicts consistently before
applying a distributed update.

VMware GemFire 9.10 Documentation

VMware by Broadcom 529

By default, each entry in a region stores the ID of the VMware GemFire member that last updated
the entry, as well as a version stamp for the entry that is incremented each time an update occurs.
The version information is stored in each local entry, and the version stamp is distributed to other
VMware GemFire members when the local entry is updated.

A VMware GemFire member or client that receives an update message first compares the update
version stamp with the version stamp recorded in its local cache. If the update version stamp is
larger, it represents a newer version of the entry, so the receiving member applies the update
locally and updates the version information. A smaller update version stamp indicates an out-of-
order update, which is discarded.

An identical version stamp indicates that multiple VMware GemFire members updated the same
entry at the same time. To resolve a concurrent update, a VMware GemFire member always
applies (or keeps) the region entry that has the highest membership ID; the region entry having the
lower membership ID is discarded.

Note: When a VMware GemFire member discards an update message (either for an out-of-order
update or when resolving a concurrent update), it does not pass the discarded event to an event
listener for the region. You can track the number of discarded updates for each member using the
conflatedEvents statistic. See VMware GemFire Statistics List. Some members may discard an
update while other members apply the update, depending on the order in which each member
receives the update. For this reason, the conflatedEvents statistic differs for each VMware
GemFire member. The example below describes this behavior in more detail.

The following example shows how a concurrent update is handled in a cluster of three VMware
GemFire members. Assume that Members A, B, and C have membership IDs of 1, 2, and 3,
respectively. Each member currently stores an entry, X, in their caches at version C2 (the entry was
last updated by member C):

Step 1: An application updates entry X on VMware GemFire member A at the same time another
application updates entry X on member C. Each member increments the version stamp for the
entry and records the version stamp with their member ID in their local caches. In this case the
entry was originally at version C2, so each member updates the version to 3 (A3 and C3,
respectively) in their local caches.

GemFire Member C

Replicated Region

GemFire Member A GemFire Member B

Application

Replicated Region

X

(A3)

Replicated Region

Application Application

X

(C2)

X

(C3)

X X

Step 2: Member A distributes its update message to members B and C.

Member B compares the update version stamp (3) to its recorded version stamp (2) and applies the
update to its local cache as version A3. In this member, the update is applied for the time being,
and passed on to configured event listeners.

VMware GemFire 9.10 Documentation

VMware by Broadcom 530

Member C compares the update version stamp (3) to its recorded version stamp (3) and identifies a
concurrent update. To resolve the conflict, member C next compares the membership ID of the
update to the membership ID stored in its local cache. Because the distributed system ID the
update (A3) is lower than the ID stored in the cache (C3), member C discards the update (and
increments the conflatedEvents statistic).

Member C

Replicated Region

Member A Member B

Application

Replicated Region

X

(A3)

Replicated Region

Application Application

X

(A3)

X

(C3)

X

(A3)

X

(A3)

(ignored)

Step 3: Member C distributes the update message to members A and B.

Members A and B compare the update version stamp (3) to their recorded version stamps (3) and
identify the concurrent update. To resolve the conflict, both members compare the membership ID
of the update with the membership ID stored in their local caches. Because the distributed system
ID of A in the cache value is less than the ID of C in the update, both members record the update
C3 in their local caches, overwriting the previous value.

At this point, all members that host the region have achieved a consistent state for the concurrent
updates on members A and C.

Member C

Replicated Region

Member A Member B

Application

Replicated Region

X

(C3)

Replicated Region

Application Application

X

(C3)

X

(C3)

X

(C3)

X

(C3)

How Destroy and Clear Operations Are Resolved
When consistency checking is enabled for a region, a VMware GemFire member does not
immediately remove an entry from the region when an application destroys the entry. Instead, the
member retains the entry with its current version stamp for a period of time in order to detect
possible conflicts with operations that have occurred. The retained entry is referred to as a
tombstone. VMware GemFire retains tombstones for partitioned regions and non-replicated
regions as well as for replicated regions, in order to provide consistency.

VMware GemFire 9.10 Documentation

VMware by Broadcom 531

A tombstone in a client cache or a non-replicated region expires after 8 minutes, at which point the
tombstone is immediately removed from the cache.

A tombstone for a replicated or partitioned region expires after 10 minutes. Expired tombstones are
eligible for garbage collection by the VMware GemFire member. Garbage collection is automatically
triggered after 100,000 tombstones of any type have timed out in the local VMware GemFire
member. You can optionally set the gemfire.tombstone-gc-threshold property to a value smaller
than 100000 to perform garbage collection more frequently.

Note: To avoid out-of-memory errors, a VMware GemFire member also initiates garbage collection
for tombstones when the amount of free memory drops below 30 percent of total memory.

You can monitor the total number of tombstones in a cache using the tombstoneCount statistic in
CachePerfStats. The tombstoneGCCount statistic records the total number of tombstone garbage
collection cycles that a member has performed. replicatedTombstonesSize and
nonReplicatedTombstonesSize show the approximate number of bytes that are currently consumed
by tombstones in replicated or partitioned regions, and in non-replicated regions, respectively. See
VMware GemFire Statistics List.

About Region.clear() Operations

Region entry version stamps and tombstones ensure consistency only when individual entries are
destroyed. A Region.clear() operation, however, operates on all entries in a region at once. To
provide consistency for Region.clear() operations, VMware GemFire obtains a distributed
read/write lock for the region, which blocks all concurrent updates to the region. Any updates that
were initiated before the clear operation are allowed to complete before the region is cleared.

Transactions with Consistent Regions

A transaction that modifies a region having consistency checking enabled generates all necessary
version information for region updates when the transaction commits.

If a transaction modifies a normal, preloaded or empty region, the transaction is first delegated to a
VMware GemFire member that holds a replicate for the region. This behavior is similar to the
transactional behavior for partitioned regions, where the partitioned region transaction is forwarded
to a member that hosts the primary for the partitioned region update.

The limitation for transactions on normal, preloaded or or empty regions is that, when consistency
checking is enabled, a transaction cannot perform a localDestroy or localInvalidate operation
against the region. VMware GemFire throws an UnsupportedOperationInTransactionException
exception in such cases. An application should use a Destroy or Invalidate operation in place of a
localDestroy or localInvalidate when consistency checks are enabled.

How Consistency Is Achieved in WAN Deployments

When two or more VMware GemFire systems are configured to distribute events over a WAN,
each system performs local consistency checking before it distributes an event to a configured
gateway sender. Discarded events are not distributed across the WAN.

Regions can also be configured to distribute updates to other VMware GemFire clusters over a
WAN. With a distributed WAN configuration, multiple gateway senders asynchronously queue and

VMware GemFire 9.10 Documentation

VMware by Broadcom 532

send region updates to another VMware GemFire cluster. It is possible for multiple sites to send
updates to the same region entry at the same time. It is also possible that, due to a slow WAN
connection, a cluster might receive region updates after a considerable delay, and after it has
applied more recent updates to a region. To ensure that WAN-replicated regions eventually reach
a consistent state, VMware GemFire first ensures that each cluster performs consistency checking
to regions before queuing updates to a gateway sender for WAN distribution. In order words,
region conflicts are first detected and resolved in the local cluster, using the techniques described
in the previous sections.

When a VMware GemFire cluster in a WAN configuration receives a distributed update, conflict
checking is performed to ensure that all sites apply updates in the same way. This ensures that
regions eventually reach a consistent state across all VMware GemFire clusters. The default conflict
checking behavior for WAN-replicated regions is summarized as follows:

If an update is received from the same VMware GemFire cluster that last updated the
region entry, then there is no conflict and the update is applied.

If an update is received from a different VMware GemFire cluster than the one that last
updated the region entry, then a potential conflict exists. A cluster applies the update only
when the update has a timestamp that is later than the timestamp currently recorded in the
cache.

Note: If you use the default conflict checking feature for WAN deployments, you must ensure that
all VMware GemFire members in all clusters synchronize their system clocks. For example, use a
common NTP server for all VMware GemFire members that participate in a WAN deployment.

As an alternative to the default conflict checking behavior for WAN deployments, you can develop
and deploy a custom conflict resolver for handling region events that are distributed over a WAN.
Using a custom resolver enables you to handle conflicts using criteria other than, or in addition to,
timestamp information. For example, you might always prioritize updates that originate from a
particular site, given that the timestamp value is within a certain range.

When a gateway sender distributes an event to another VMware GemFire site, it adds the
distributed system ID of the local cluster, as well as a timestamp for the event. In a default
configuration, the cluster that receives the event examines the timestamp to determine whether or
not the event should be applied. If the timestamp of the update is earlier than the local timestamp,
the cluster discards the event. If the timestamp is the same as the local timestamp, then the entry
having the highest distributed system ID is applied (or kept).

You can override the default consistency checking for WAN events by installing a conflict resolver
plug-in for the region. If a conflict resolver is installed, then any event that can potentially cause a
conflict (any event that originated from a different distributed system ID than the ID that last
modified the entry) is delivered to the conflict resolver. The resolver plug-in then makes the sole
determination for which update to apply or keep.

See “Implementing a GatewayConflictResolver” under Resolving Conflicting Events to configure a
custom resolver.

General Region Data Management

For all regions, you have options to control memory use, back up your data to disk, and discard
stale data from your cache.

VMware GemFire 9.10 Documentation

VMware by Broadcom 533

Persistence and Overflow

You can persist data on disk for backup purposes and overflow it to disk to free up memory
without completely removing the data from your cache.

Eviction

Use eviction to control data region size. Eviction actions are triggered by space-based
thresholds.

Expiration

Use expiration to keep data current and to reduce region size by removing stale entries.
Expiration actions are triggered by time-based thresholds.

Keeping the Cache in Sync with Outside Data Sources

Keep your distributed cache in sync with an outside data source by programming and
installing application plug-ins for your region.

Persistence and Overflow

You can persist data on disk for backup purposes and overflow it to disk to free up memory without
completely removing the data from your cache.

Note: This supplements the general steps for managing data regions provided in Basic
Configuration and Programming.

All disk storage uses VMware GemFire Disk Storage.

How Persistence and Overflow Work

To use VMware GemFire persistence and overflow, you should understand how they work
with your data.

Configure Region Persistence and Overflow

Plan persistence and overflow for your data regions and configure them accordingly.

Overflow Configuration Examples

The cache.xml examples show configuration of region and server subscription queue
overflows.

How Persistence and Overflow Work

To use VMware GemFire persistence and overflow, you should understand how they work with
your data.

VMware GemFire persists and overflows several types of data. You can persist or overflow the
application data in your regions. In addition, VMware GemFire persists and overflows messaging
queues, to manage memory consumption and provide high availability.

Persistent data outlives the member where the region resides and can be used to initialize the
region at creation. Overflow acts only as an extension of the region in memory.

The data is written to disk according to the configuration of VMware GemFire disk stores. For any
disk option, you can specify the name of the disk store to use or use the VMware GemFire default

VMware GemFire 9.10 Documentation

VMware by Broadcom 534

disk store. See Disk Storage.

How Data Is Persisted and Overflowed

For persistence, the entry keys and values are copied to disk. For overflow, only the entry values
are copied. Other data, such as statistics and user attributes, are retained in memory only.

Data regions are overflowed to disk by least recently used (LRU) entries because those
entries are deemed of least interest to the application and therefore less likely to be
accessed.

Server subscription queues overflow most recently used (MRU) entries. These are the
messages that are at the end of the queue and so are last in line to be sent to the client.

Persistence

Persistence provides a disk backup of region entry data. The keys and values of all entries are saved
to disk, like having a replica of the region on disk. Region entry operations such as put and destroy
are carried out in memory and on disk.

Member

X Y Z X Y Z

Region A persist values from create

Disk Files

keys and values for all entries

update/invalidate/destroy

When the member stops for any reason, the region data on disk remains. In partitioned regions,
where data buckets are divided among members, this can result in some data only on disk and
some on disk and in memory. The disk data can be used at member startup to populate the same
region.

Overflow
Overflow limits region size in memory by moving the values of least recently used (LRU) entries to
disk. Overflow basically uses disk as a swap space for entry values. If an entry is requested whose
value is only on disk, the value is copied back up into memory, possibly causing the value of a
different LRU entry to be moved to disk. As with persisted entries, overflowed entries are
maintained on disk just as they are in memory.

In this figure, the value of entry X has been moved to disk to make space in memory. The key for X
remains in memory. From the distributed system perspective, the value on disk is as much a part of
the region as the data in memory.

VMware GemFire 9.10 Documentation

VMware by Broadcom 535

Member

X Y Z
X

Region B

Disk Files

values for overflow entries

offload overflow

update/invalidate/destroy

satisfy get

Persistence and Overflow Together

Used together, persistence and overflow keep all entry keys and values on disk and only the most
active entry values in memory. The removal of an entry value from memory due to overflow has no
effect on the disk copy as all entries are already on disk.

Member

X Y Z
X Y Z

Region C

Disk Files

keys and values for all entries

persist values from create

update/invalidate/destroy

satisfy get

Persistence and Multi-Site Configurations
Multi-site gateway sender queues overflow most recently used (MRU) entries. These are the
messages that are at the end of the queue and so are last in line to be sent to the remote site. You
can also configure gateway sender queues to persist for high availability.

Configure Region Persistence and Overflow
Plan persistence and overflow for your data regions and configure them accordingly.

Use the following steps to configure your data regions for persistence and overflow:

1. Configure your disk stores as needed. See Designing and Configuring Disk Stores. The
cache disk store defines where and how the data is written to disk.

<disk-store name="myPersistentStore" . . . >

<disk-store name="myOverflowStore" . . . >

2. Specify the persistence and overflow criteria for the region. If you are not using the default
disk store, provide the disk store name in your region attributes configuration. To write
asynchronously to disk, specify disk-synchronous="false".

For overflow, specify the overflow criteria in the region’s eviction-attributes and
name the disk store to use.

VMware GemFire 9.10 Documentation

VMware by Broadcom 536

Example:

<region name="overflowRegion" . . . >

 <region-attributes disk-store-name="myOverflowStore" disk-synchronous

="true">

 <eviction-attributes>

 <!-- Overflow to disk when 100 megabytes of data reside in the

 region -->

 <lru-memory-size maximum="100" action="overflow-to-disk"/>

 </eviction-attributes>

 </region-attributes>

</region>

gfsh:

You cannot configure lru-memory-size using gfsh.

For persistence, set the data-policy to persistent-replicate and name the disk
store to use.

Example:

<region name="partitioned_region" refid="PARTITION_PERSISTENT">

 <region-attributes disk-store-name="myPersistentStore">

 . . .

 </region-attributes>

</region>

When you start your members, overflow and persistence will be done automatically, with the disk
stores and disk write behaviors.

Note: You can also configure Regions and Disk Stores using the gfsh command-line interface. See
Region Commands and Disk Store Commands.

Related Topics

org.apache.geode.cache.RegionAttributes for data region persistence information

org.apache.geode.cache.EvictionAttributes for data region overflow information

org.apache.geode.cache.server.ClientSubscriptionConfig

Overflow Configuration Examples
The cache.xml examples show configuration of region and server subscription queue overflows.

Configure overflow criteria based on one of these factors:

Entry count

Absolute memory consumption

Memory consumption as a percentage of the application heap (not available for server
subscription queues)

Configuration of region overflow:

VMware GemFire 9.10 Documentation

VMware by Broadcom 537

<!-- Overflow when the region goes over 10000 entries -->

<region-attributes>

 <eviction-attributes>

 <lru-entry-count maximum="10000" action="overflow-to-disk"/>

 </eviction-attributes>

</region-attributes>

Configuration of server’s client subscription queue overflow:

<!-- Overflow the server's subscription queues when the queues reach 1 Mb of memory --

>

<cache>

 <cache-server>

 <client-subscription eviction-policy="mem" capacity="1"/>

 </cache-server>

</cache>

Eviction

Use eviction to control data region size. Eviction actions are triggered by space-based thresholds.

How Eviction Works

Eviction settings cause VMware GemFire to work to keep a region’s resource use under a
specified level by removing least recently used (LRU) entries to make way for new entries.

Configure Data Eviction

Configure a region’s eviction-attributes settings to keep your region within a specified
limit.

How Eviction Works

Eviction keeps a region’s resource use under a specified level by removing least recently used
(LRU) entries to make way for new entries. You can choose whether expired entries are
overflowed to disk or destroyed. See Persistence and Overflow.

Eviction is triggered when a size-based threshold is exceeded. A region’s eviction threshold can be
based on:

entry count

absolute memory usage

percentage of available heap

These eviction algorithms are mutually exclusive; only one can be in effect for a given region.

When VMware GemFire determines that adding or updating an entry would take the region over
the specified level, it overflows or removes enough older entries to make room. For entry count
eviction, this means a one-to-one trade of an older entry for the newer one. For the memory
settings, the number of older entries that need to be removed to make space depends on the sizes
of the older and newer entries.

For efficiency, the selection of items for removal is not strictly LRU, but does choose eviction
candidates from among the region’s oldest entries. As a result, eviction may leave older entries for

VMware GemFire 9.10 Documentation

VMware by Broadcom 538

the region in the local data store.

Eviction Actions

VMware GemFire provides the following eviction actions:

local destroy - Removes the entry from the local cache, but does not distribute the
removal operation to remote members. This action can be applied to an entry in a
partitioned region, but is not recommended if redundancy is enabled (redundant-copies >
0), as it introduces inconsistencies between the redundant buckets. When applied to an
entry in a replicated region, VMware GemFire silently changes the region type to
“preloaded” to accommodate the local modification.

overflow to disk - The entry’s value is overflowed to disk and set to null in memory. The
entry’s key is retained in the cache. This is the only eviction action fully supported for
partitioned regions.

Eviction in Partitioned Regions

In partitioned regions, VMware GemFire removes the oldest entry it can find in the bucket where
the new entry operation is being performed. VMware GemFire maintains LRU entry information on
a bucket-by-bucket basis, as the cost of maintaining information across the partitioned region
would slow the system’s performance.

For memory and entry count eviction, LRU eviction is done in the bucket where the new
entry operation is being performed until the overall size of the combined buckets in the
member has dropped enough to perform the operation without going over the limit.

For heap eviction, each partitioned region bucket is treated as if it were a separate region,
with each eviction action only considering the LRU for the bucket, and not the partitioned
region as a whole.

Configure Data Eviction

Configure a region’s eviction-attributes settings to keep your region within a specified limit.

Configure data eviction as follows. You do not need to perform these steps in the sequence shown.

1. Decide whether to evict based on:

Entry count (useful if your entry sizes are relatively uniform).

Total bytes used. In partitioned regions, this is set using local-max-memory. In non-
partitioned regions, it is set in eviction-attributes.

Percentage of application heap used. This uses the VMware GemFire resource
manager. When the manager determines that eviction is required, the manager
orders the eviction controller to start evicting from all regions where the eviction
algorithm is set to lru-heap-percentage. Eviction continues until the manager calls a
halt. VMware GemFire evicts the least recently used entry hosted by the member
for the region. See Managing Heap and Off-heap Memory.

2. Decide what action to take when the limit is reached:

VMware GemFire 9.10 Documentation

VMware by Broadcom 539

Locally destroy the entry.

Overflow the entry data to disk. See Persistence and Overflow.

3. Decide the maximum amount of data to allow in the member for the eviction measurement
indicated. This is the maximum for all storage for the region in the member. For partitioned
regions, this is the total for all buckets stored in the member for the region, including any
secondary buckets used for redundancy.

4. Decide whether to program a custom sizer for your region. If you are able to provide such a
class, it might be faster than the standard sizing done by VMware GemFire. Your custom
class must follow the guidelines for defining custom classes and, additionally, must
implement org.apache.geode.cache.util.ObjectSizer. See Requirements for Using
Custom Classes in Data Caching.

Examples:

Set an LRU memory eviction threshold of 1000 MB. Use a custom class for measuring the size of
each object in the region:

gfsh>create region --name=myRegion --type=REPLICATE --eviction-max-memory=1000 \

--eviction-action=overflow-to-disk --eviction-object-sizer=com.myLib.MySizer

Create an eviction threshold on a partitioned region with a maximum entry count of 512:

gfsh>create region --name=myRegion --type=PARTITION --eviction-entry-count=512 \

--eviction-action=overflow-to-disk

To configure a partitioned region for heap LRU eviction, first configure the resource manager on
server startup, then create a region with eviction enabled:

gfsh>start server --name=Server1 --eviction-heap-percentage=80

...

gfsh>create region --name=myRegion --type=PARTITION --eviction-action=overflow-to-disk

Expiration

Use expiration to keep data current and to reduce region size by removing stale entries. Expiration
actions are triggered by time-based thresholds.

How Expiration Works

Expiration removes old entries and entries that you are not using. You can choose whether
expired entries are invalidated or destroyed.

Configure Data Expiration

Configure the type of expiration and the expiration action to use.

How Expiration Works

Expiration keeps a region’s data fresh by removing old entries and entries that you are not using.
You can choose whether expired entries are invalidated or destroyed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 540

Expiration activities in distributed regions can be distributed or local. Thus, one cache could control
expiration for a number of caches in the system.

This figure shows two basic expiration settings for a client/server system. The server (on the right)
populates the region from a database and the data is automatically distributed throughout the
system. The data is valid for only one hour, so the server performs a distributed destroy on entries
that are an hour old. The client applications are consumers. The clients free up space in their
caches by removing their local copies of the entries for which there is no local interest (idle-time
expiration). Requests for entries that have expired on the clients will be forwarded to the server.

Expiration Types

VMware GemFire provides two types of expiration, each triggered by a time-based threshold.
These can co-exist; they are not mutually exclusive.

Time to live (TTL). The amount of time, in seconds, the object may remain in the cache
after the last creation or update. For entries, the counter is set to zero for create and put
operations. Region counters are reset when the region is created and when an entry has its
counter reset. The TTL expiration attributes are region-time-to-live and entry-time-to-
live.

Idle timeout. The amount of time, in seconds, the object may remain in the cache after the
last access. The idle timeout counter for an object is reset any time its TTL counter is reset.
In addition, an entry’s idle timeout counter is reset any time the entry is accessed through a
get operation or a netSearch . The idle timeout counter for a region is reset whenever the
idle timeout is reset for one of its entries. Idle timeout expiration attributes are: region-
idle-time and entry-idle-time.

Expiration Actions

VMware GemFire provides the following expiration actions:

invalidate (default) - The data item’s value is deleted, but the key remains in the cache.
Applies to all distributed members in which the data item is replicated.

VMware GemFire 9.10 Documentation

VMware by Broadcom 541

destroy - The data item’s key and value are both deleted. Applies to all distributed
members in which the data item is replicated.

local invalidate - Deletes the data item’s value. Applies only to the local member.

local destroy - Deletes the data item’s key and value. Applies only to the local member.

You cannot use local-destroy or local-invalidate expiration actions in replicated or partitioned
regions. You can use the local options only on distributed regions with a data-policy of empty,
normal or preloaded.

Entry Expiration in Replicated Regions and Partitioned
Regions
In replicated regions, entry updates are performed in the most convenient available copy of the
data, then replicated to the other members, resetting their last-updated statistics to the same time.
In partitioned regions, entry updates are always done in the primary copy, resetting the primary
copy’s last-updated and last-accessed statistics, then the secondary copies are updated to match.

In both replicated and partitioned regions, entry retrieval uses the most convenient available copy
of the data, which may be any of the distributed copies. Retrievals are not propagated to other
members. Differences in last-access times are reconciled when the data item is considered for
expiration.

Expiration can be triggered in any copy of a replicated region, if the time elapsed since the last
update or read access exceeds the established threshold. Expiration in partitioned regions is
executed in the primary copy, based on the primary’s last-accessed and last-updated statistics. In
both cases, the expiration mechanism checks the last-accessed dates of all copies of the data item
and updates the last-access date of all copies to the most recent last-accessed date. Then, if the
elapsed time still puts the data item over the expiration threshold, the item is deleted in
accordance with the expiration action specified for the region.

Interaction Between Expiration Settings and netSearch
Before netSearch retrieves an entry value from a remote cache, it validates the remote entry’s
statistics against the local region’s expiration settings. Entries that would have already expired in
the local cache are passed over. Once validated, the entry is brought into the local cache and the
local access and update statistics are updated for the local copy. The last-accessed time is reset and
the last-modified time is updated to the time in the remote cache, with corrections made for
system clock differences. Thus the local entry is assigned the true last time the entry was modified
in the cluster. The netSearch operation has no effect on the expiration counters in remote caches.

The netSearch method operates only on distributed regions with a data-policy of empty, normal
and preloaded.

Configure Data Expiration
Configure the type of expiration and the expiration action to use.

Expiration actions require setting the region attribute of statistics-enabled to true. This
can be done in the region element of a cache.xml file, the gfsh command line, or through

VMware GemFire 9.10 Documentation

VMware by Broadcom 542

the API.

Set the expiration attributes by expiration type, with the max times and expiration actions.
See the region attributes listings for entry-time-to-live, entry-idle-time, region-time-
to-live, and region-idle-time in <region-attributes>.

The statistics used for expiration are available directly to the application through the
CacheStatistics object returned by the Region and Region.Entry getStatistics methods. The
CacheStatistics object also provides a method for resetting the statistics counters.

For partitioned regions:

On a partitioned region, expiration is supported only for the region’s entries, not for the
region itself. Region-wide expiration attributes, such as region-time-to-live and region-
idle-time do not apply to the data items in partitioned regions.

To ensure reliable read behavior when working with partitioned regions, use the entry-
time-to-live attribute, not the entry-idle-time attribute.

You cannot use local-destroy or local-invalidate expiration actions in partitioned
regions.

Replicated regions example:

// Setting standard expiration on an entry

<region-attributes statistics-enabled="true">

 <entry-idle-time>

 <expiration-attributes timeout="60" action="local-invalidate"/>

 </entry-idle-time>

</region-attributes>

Override the region-wide settings for specific entries, if required by your application. To do
this:

1. Program a custom expiration class that implements
org.apache.geode.cache.CustomExpiry. Example:

// Custom expiration class

// Use the key for a region entry to set entry-specific expiration timeou

ts of

// 10 seconds for even-numbered keys with a DESTROY action on the expir

ed entries

// Leave the default region setting for all odd-numbered keys.

public class MyClass implements CustomExpiry, Declarable

{

 private static final ExpirationAttributes CUSTOM_EXPIRY =

 new ExpirationAttributes(10, ExpirationAction.DESTROY);

 public ExpirationAttributes getExpiry(Entry entry)

 {

 int key = (Integer)entry.getKey();

 return key % 2 == 0 ? CUSTOM_EXPIRY : null;

 }

}

2. Define the class inside the expiration attributes settings for the region. Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 543

<!-- Set default entry idle timeout expiration for the region -->

<!-- Pass entries to custom expiry class for expiration overrides -->

<region-attributes statistics-enabled="true">

 <entry-idle-time>

 <expiration-attributes timeout="60">

 <custom-expiry>

 <class-name>com.company.mypackage.MyClass</class-name>

 </custom-expiry>

 </expiration-attributes>

 </entry-idle-time>

</region-attributes>

The gfsh equivalent of the above XML is:

gfsh> create region --name=region1 --type=REPLICATE --enable-statistics \

--entry-idle-time-expiration=60 --entry-idle-time-custom-expiry=com.company.myp

ackage.MyClass

When the primary expires entries, it requests last-accessed statistics from the secondaries.
The primary adopts the most recent access time and reschedules the expiration, if
warranted. This is done only for distributed expiration actions, and applies to both
partitioned and replicated regions.

You can also configure regions using the gfsh command-line interface. See Region Commands.

Configuring the Number of Threads for Expiration

You can use the gemfire.EXPIRY_THREADS system property to increase the number of threads that
handle expiration. By default, one thread handles expiration, and it is possible for the thread to
become overloaded when entries expire faster than the thread can expire them. If a single thread
is handling too many expirations, it can result in an OOME. Set the gemfire.EXPIRY_THREADS
system property to the desired number when starting the cache server.

Keeping the Cache in Sync with Outside Data Sources

Keep your distributed cache in sync with an outside data source by programming and installing
application plug-ins for your region.

Overview of Outside Data Sources

VMware GemFire has application plug-ins to read data into the cache and write it out.

Configuring Database Connections Using JNDI.

Use JNDI to maintain a connection pool that includes outside data sources.

How Data Loaders Work

By default, a region has no data loader defined. Plug an application-defined loader into any
region by setting the region attribute cache-loader on the members that host data for the
region.

Implement a Data Loader

Program a data loader and configure your region to use it.

VMware GemFire 9.10 Documentation

VMware by Broadcom 544

Overview of Outside Data Sources

VMware GemFire has application plug-ins to read data into the cache and write it out.

The application plug-ins:

1. Load data on cache misses using an implementation of a
org.apache.geode.cache.CacheLoader. The CacheLoader.load method is called when the
get operation can’t find the value in the cache. The value returned from the loader is put
into the cache and returned to the get operation. You might use this in conjunction with
data expiration to get rid of old data, and your other data loading applications, which might
be prompted by events in the outside data source. See Configure Data Expiration.

2. Write data out to the data source using the cache event handlers, CacheWriter and
CacheListener. For implementation details, see Implementing Cache Event Handlers.

CacheWriter is run synchronously. Before performing any operation on a region
entry, if any cache writers are defined for the region in the cluster, the system
invokes the most convenient writer. In partitioned and distributed regions, cache
writers are usually defined in only a subset of the caches holding the region - often
in only one cache. The cache writer can cancel the region entry operation.

CacheListener is run synchronously after the cache is updated. This listener works
only on local cache events, so install your listener in every cache where you want it
to handle events. You can install multiple cache listeners in any of your caches.

In addition to using application plug-ins, you can also configure external JNDI database sources in
your cache.xml and use these data sources in transactions. See Configuring Database Connections
Using JNDI for more information.

Configuring Database Connections Using JNDI
To connect to external databases, for example when using JTA transactions, you can configure
database JNDI data sources in cache.xml. The DataSource object points to either a JDBC
connection or, more commonly, a JDBC connection pool. The connection pool is usually preferred,
because a program can use and reuse a connection as long as necessary and then free it for
another thread to use.

The following list shows DataSource connection types used in JTA transactions:

XAPooledDataSource. Pooled SQL connections.

ManagedDataSource. JNDI binding type for the J2EE Connector Architecture (JCA)
ManagedConnectionFactory.

PooledDataSource. Pooled SQL connections.

SimpleDataSource. Single SQL connection. No pooling of SQL connections is done.
Connections are generated on the fly and cannot be reused.

The jndi-name attribute of the jndi-binding element is the key binding parameter. If the value of
jndi-name is a DataSource, it is bound as java:/myDatabase, where myDatabase is the name you
assign to your data source. If the data source cannot be bound to JNDI at runtime, VMware
GemFire logs a warning. For information on the DataSource interface, see:
http://docs.oracle.com/javase/8/docs/api/javax/sql/DataSource.html

VMware GemFire 9.10 Documentation

VMware by Broadcom 545

http://docs.oracle.com/javase/8/docs/api/javax/sql/DataSource.html

VMware GemFire supports JDBC 2.0 and 3.0.

Note: Include any data source JAR files in your CLASSPATH.

Example DataSource Configurations in cache.xml

The following sections show example cache.xml files configured for each of the DataSource
connection types.

XAPooledDataSource cache.xml Example (Derby)

The example shows a cache.xml file configured for a pool of XAPooledDataSource connections
connected to the data resource newDB.

The log-in and blocking timeouts are set lower than the defaults. The connection information,
including user-name and password, is set in the cache.xml file, instead of waiting until connection
time. The password is not encrypted.

When specifying the configuration properties for JCA-implemented database drivers that support
XA transactions (in other words, XAPooledDataSource), you must use configuration properties to
define the datasource connection instead of the connection-url attribute of the <jndi-binding>
element. Configuration properties differ depending on your database vendor. Specify JNDI binding
properties through the config-property tag, as shown in this example. You can add as many
config-property tags as required.

<?xml version="1.0" encoding="UTF-8"?>

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0"

 lock-lease="120" lock-timeout="60" search-timeout="300">

 <region name="root">

 <region-attributes scope="distributed-no-ack" data-policy="cached" initial-capac

ity="16"

load-factor="0.75" concurrency-level="16" statistics-enabled="true">

 . . .

 </region>

 <jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 jndi-name="newDB2trans"

 init-pool-size="20"

 max-pool-size="100"

 idle-timeout-seconds="20"

 blocking-timeout-seconds="5"

 login-timeout-seconds="10"

 xa-datasource-class="org.apache.derby.jdbc.EmbeddedXADataSource"

 user-name="mitul"

 password="thecleartextpassword">

 <config-property>

 <config-property-name>Description</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>pooled_transact</config-property-value>

 </config-property>

VMware GemFire 9.10 Documentation

VMware by Broadcom 546

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>CreateDatabase</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>create</config-property-value>

 </config-property>

 . . .

 </jndi-binding>

 </jndi-bindings>

</cache>

JNDI Binding Configuration Properties for Different
XAPooledDataSource Connections
The following are some example data source configurations for different databases. Consult your
vendor database’s documentation for additional details.

MySQL

...

<jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 ...

 xa-datasource-class="com.mysql.jdbc.jdbc2.optional.MysqlXADataSource">

 <config-property>

 <config-property-name>URL</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>"jdbc:mysql://mysql-servername:3306/databasename"</config-p

roperty-value>

 </config-property>

 ...

 </jndi-binding>

 ...

</jndi-bindings>

PostgreSQL

...

<jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 ...

 xa-datasource-class="org.postgresql.xa.PGXADataSource">

 <config-property>

 <config-property-name>ServerName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>postgresql-hostname</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>postgresqldbname</config-property-value>

 </config-property>

 ...

VMware GemFire 9.10 Documentation

VMware by Broadcom 547

 </jndi-binding>

 ...

</jndi-bindings>

Oracle

...

<jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 ...

 xa-datasource-class="oracle.jdbc.xa.client.OracleXADataSource">

 <config-property>

 <config-property-name>URL</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>jdbc:oracle:oci8:@tc</config-property-value>

 </config-property>

 ...

 </jndi-binding>

 ...

</jndi-bindings>

Microsoft SQL Server

...

<jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 ...

 xa-datasource-class="com.microsoft.sqlserver.jdbc.SQLServerXADataSource">

 <config-property>

 <config-property-name>ServerName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>mysqlserver</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>databasename</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>SelectMethod</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>cursor</config-property-value>

 </config-property>

 ...

 </jndi-binding>

 ...

</jndi-bindings>

ManagedDataSource Connection Example (Derby)
ManagedDataSource connections for the JCA ManagedConnectionFactory are configured as shown in
the example. This configuration is similar to XAPooledDataSource connections, except the type is
ManagedDataSource, and you specify a managed-conn-factory-class instead of an xa-datasource-
class.

VMware GemFire 9.10 Documentation

VMware by Broadcom 548

<?xml version="1.0"?>

<cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0"

 lock-lease="120"

 lock-timeout="60"

 search-timeout="300">

 <region name="root">

 <region-attributes scope="distributed-no-ack" data-policy="cached" initial-capac

ity="16"

load-factor="0.75" concurrency-level="16" statistics-enabled="true">

 . . .

 </region>

 <jndi-bindings>

 <jndi-binding type="ManagedDataSource"

 jndi-name="DB3managed"

 init-pool-size="20"

 max-pool-size="100"

 idle-timeout-seconds="20"

 blocking-timeout-seconds="5"

 login-timeout-seconds="10"

 managed-conn-factory-class="com.myvendor.connection.ConnFactory"

 user-name="mitul"

 password="thecleartextpassword">

 <config-property>

 <config-property-name>Description</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>pooled_transact</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>CreateDatabase</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>create</config-property-value>

 </config-property>

 . . .

 </jndi-binding>

 </jndi-bindings>

 </cache>

PooledDataSource Example (Derby)

Use the PooledDataSource and SimpleDataSource connections for operations executed outside of
any transaction. This example shows a cache.xml file configured for a pool of PooledDataSource
connections to the data resource newDB. For this non-transactional connection pool, the log-in and
blocking timeouts are set higher than for the transactional connection pools in the two previous
examples. The connection information, including user-name and password, is set in the cache.xml
file, instead of waiting until connection time. The password is not encrypted.

VMware GemFire 9.10 Documentation

VMware by Broadcom 549

<?xml version="1.0"?>

<cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0"

 lock-lease="120"

 lock-timeout="60"

 search-timeout="300">

 <region name="root">

 <region-attributes scope="distributed-no-ack" data-policy="cached"

initial-capacity="16" load-factor="0.75" concurrency-level="16" statistics-enabled="tr

ue">

 . . .

 </region>

 <jndi-bindings>

 <jndi-binding

 type="PooledDataSource"

 jndi-name="newDB1"

 init-pool-size="2"

 max-pool-size="7"

 idle-timeout-seconds="20"

 blocking-timeout-seconds="20"

 login-timeout-seconds="30"

 conn-pooled-datasource-class="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSour

ce"

 user-name="mitul"

 password="thecleartextpassword">

 <config-property>

 <config-property-name>Description</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>pooled_transact</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>CreateDatabase</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>create</config-property-value>

 </config-property>

 . . .

 </jndi-binding>

 </jndi-bindings>

</cache>

SimpleDataSource Connection Example (Derby)

The example below shows a very basic configuration in the cache.xml file for a SimpleDataSource
connection to the data resource oldDB. You only need to configure a few properties like a jndi-
name for this connection pool, oldDB1, and the databaseName, oldDB. This password is in clear text.

A simple data source connection does not generally require vendor-specific property settings. If
you need them, add config-property tags as shown in the earlier examples.

VMware GemFire 9.10 Documentation

VMware by Broadcom 550

<?xml version="1.0"?>

<cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0"

 lock-lease="120"

 lock-timeout="60"

 search-timeout="300">

 <region name="root">

 <region-attributes scope="distributed-no-ack" data-policy="cached" initial-capac

ity="16"

load-factor="0.75" concurrency-level="16" statistics-enabled="true">

 . . .

 </region-attributes>

 </region>

 <jndi-bindings>

 <jndi-binding type="SimpleDataSource"

 jndi-name="oldDB1"

 jdbc-driver-class="org.apache.derby.jdbc.EmbeddedDriver"

 user-name="mitul"

 password="thecleartextpassword"

 connection-url="jdbc:derby:newDB;create=true">

 . . .

 </jndi-binding>

 </jndi-bindings>

</cache>

How Data Loaders Work

By default, a region has no data loader defined. Plug an application-defined loader into any region
by setting the region attribute cache-loader on the members that host data for the region.

The loader is called on cache misses during get operations, and it populates the cache with the
new entry value in addition to returning the value to the calling thread.

A loader can be configured to load data into the VMware GemFire cache from an outside data
store. To do the reverse operation, writing data from the VMware GemFire cache to an outside
data store, use a cache writer event handler. See Implementing Cache Event Handlers.

How to install your cache loader depends on the type of region.

Data Loading in Partitioned Regions

Because of the huge amounts of data they can handle, partitioned regions support partitioned
loading. Each cache loader loads only the data entries in the member where the loader is defined.
If data redundancy is configured, data is loaded only if the member holds the primary copy. So you
must install a cache loader in every member where the partitioned attributes local-max-memory is
not zero.

If you depend on a JDBC connection, every data store must have a connection to the data source,
as shown in the following figure. Here the three members require three connections. See
Configuring Database Connections Using JNDI for information on how to configure data sources.

Note: Partitioned regions generally require more JDBC connections than distributed regions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 551

database

Member (M2)

Partitioned Region A

Y

Cache Loader

Member (M1)

Partitioned Region A

X

Cache Loader

Member (M3)

Partitioned Region A

Z

Cache Loader

Data Loading in Distributed Regions
In a non-partitioned distributed region, a cache loader defined in one member is available to all
members that have the region defined. Loaders are usually defined in just a subset of the caches
holding the region. When a loader is needed, all available loaders for the region are invoked,
starting with the most convenient loader, until the data is loaded or all loaders have been tried.

In the following figure, these members of one cluster can be running on different machines.
Loading for the distributed region is performed from M1.

database

Member (M2)

Distributed Region A

X

Member (M1)

Distributed Region A

X

Cache Loader

Member (M3)

Distributed Region A

X

Data Loading in Local Regions

For local regions, the cache loader is available only in the member where it is defined. If a loader is
defined, it is called whenever a value is not found in the local cache.

Implement a Data Loader

VMware GemFire 9.10 Documentation

VMware by Broadcom 552

To use a data loader:

1. Implement the org.apache.geode.cache.CacheLoader interface.

2. Configure and deploy the implementation.

Implement the CacheLoader Interface

For a get operation, if the key is not in the cache, the thread serving the get operation invokes the
CacheLoader.load method. Implement load to return the value for the key, which will be placed
into the region in addition to being returned to the caller.

org.apache.geode.cache.CacheLoader inherits from Declarable, so implement the
Declarable.initialize method if your CacheLoader implementation needs to be initialized with
some arguments. Specify the required arguments either in your cache.xml file or in a gfsh create
region or alter region command. Do not define the Declarable.init() method; it is deprecated.

Here is an example implementation:

public class SimpleCacheLoader implements CacheLoader {

 public Object load(LoaderHelper helper) {

 String key = (String) helper.getKey();

 // Return an entry value created from the key, assuming that

 // all keys are of the form "key1", "key2", "keyN"

 return "LoadedValue" + key.substring(3);

 }

}

If you need to run Region API calls from your implementation, spawn separate threads for them. Do
not make direct calls to Region methods from your load method, as it could cause the cache loader
to block, hurting the performance of the cluster.

Configure and Deploy

Use one of these three ways to configure and deploy the cache loader:

Option 1: If configuring a cluster by defining a cache.xml file, deploy by adding the cache loader to
the classpath when starting servers.

Here is an example configuration within the cache.xml file that specifies the loader without
arguments:

<region-attributes>

 <cache-loader>

 <class-name>myLoader</class-name>

 </cache-loader>

</region-attributes>

Or, here is an example configuration within the cache.xml file that specifies the loader with an
argument:

<cache-loader>

 <class-name>com.company.data.DatabaseLoader</class-name>

 <parameter name="URL">

VMware GemFire 9.10 Documentation

VMware by Broadcom 553

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

</cache-loader>

To deploy the JAR file, add the cache loader JAR file to the classpath when starting servers. For
example:

gfsh>start server --name=s2 --classpath=/var/data/lib/myLoader.jar

Option 2: If deploying the JAR file at server startup, add the JAR file to the classpath and use gfsh
to apply the configuration to the region.

To deploy the JAR file, add the cache loader JAR file to the classpath when starting servers. For
example:

gfsh>start server --name=s2 --classpath=/var/data/lib/myLoader.jar

Use gfsh to apply the configuration of the CacheLoader implementation to the region with gfsh
create region or gfsh alter region. Here is an example of region creation without arguments:

gfsh>create region --name=r3 --cache-loader=com.example.appname.myCacheLoader

Here is an example of region creation with an argument:

gfsh>create region --name=r3 \

--cache-loader=com.example.appname.myCacheLoader{'URL':'jdbc:cloudscape:rmi:MyData'}

Here is an example of altering a region:

gfsh>alter region --name=r3 --cache-loader=com.example.appname.myCacheLoader

Option 3 applies to partitioned regions: If deploying the JAR file with the gfsh deploy command
after servers have been started, use gfsh to apply the configuration to the region.

After server creation use gfsh to deploy the JAR file to all the servers. For example:

gfsh>deploy --jars=/var/data/lib/myLoader.jar

We do not generally use the gfsh deploy command when the servers host replicated regions, as
detailed in How Data Loaders Work.

Use gfsh to apply the configuration of the CacheLoader implementation to the region with gfsh
create region or gfsh alter region. Here is an example of region creation without arguments:

gfsh>create region --name=r3 --cache-loader=com.example.appname.myCacheLoader

Here is an example of region creation with an argument:

gfsh>create region --name=r3 \

--cache-loader=com.example.appname.myCacheLoader{'URL':'jdbc:cloudscape:rmi:MyData'}

Here is an example of altering a region:

VMware GemFire 9.10 Documentation

VMware by Broadcom 554

gfsh>alter region --name=r3 --cache-loader=com.example.appname.myCacheLoader

Implementing a Server or Peer with a Cache Loader

Servers and peers with an embedded cache can configure a cache loader in only the members
where it makes sense to do so. The design might, for example, assign the job of loading from a
database to one or two members for a region hosted by many more members. This can be done to
reduce the number of connections when the outside source is a database.

Implement the org.apache.geode.cache.CacheLoader interface. Region creation configures the the
cache loader as in this example:

RegionFactory<String,Object> rf = cache.createRegionFactory(REPLICATE);

rf.setCacheLoader(new QuoteLoader());

quotes = rf.create("NASDAQ-Quotes");

Data Serialization

Data that you manage in VMware GemFire must be serialized and deserialized for storage and
transmittal between processes. You can choose among several options for data serialization.

Overview of Data Serialization

VMware GemFire offers serialization options other than Java serialization that give you
higher performance and greater flexibility for data storage, transfers, and language types.

VMware GemFire PDX Serialization

VMware GemFire’s Portable Data eXchange (PDX) is a cross-language data format that can
reduce the cost of distributing and serializing your objects. PDX stores data in named fields
that you can access individually, to avoid the cost of deserializing the entire data object.
PDX also allows you to mix versions of objects where you have added or removed fields.

VMware GemFire Data Serialization (DataSerializable and DataSerializer)

VMware GemFire’s DataSerializable interface gives you quick serialization of your objects.

Standard Java Serialization

You can use standard Java serialization for data you only distribute between Java
applications. If you distribute your data between non-Java clients and Java servers, you
need to do additional programming to get the data between the various class formats.

Overview of Data Serialization

VMware GemFire offers serialization options other than Java serialization that give you higher
performance and greater flexibility for data storage, transfers, and language types.

All data that VMware GemFire moves out of the local cache must be serializable. However, you do
not necessarily need to implement java.io.Serializable since other serialization options are
available in VMware GemFire. Region data that must be serializable falls under the following
categories:

Partitioned regions

VMware GemFire 9.10 Documentation

VMware by Broadcom 555

Distributed regions

Regions that are persisted or overflowed to disk

Server or client regions in a client/server installation

Regions configured with a gateway sender for distributing events in a multi-site installation

Regions that receive events from remote caches

Regions that provide function arguments and results

Note: If you are storing objects with the HTTP Session Management Modules, these objects must
be serializable since they are serialized before being stored in the region.

To minimize the cost of serialization and deserialization, VMware GemFire avoids changing the data
format whenever possible. This means your data might be stored in the cache in serialized or
deserialized form, depending on how you use it. For example, if a server acts only as a storage
location for data distribution between clients, it makes sense to leave the data in serialized form,
ready to be transmitted to clients that request it. Partitioned region data is always initially stored in
serialized form.

Data Serialization Options

With VMware GemFire, you have the option to serialize your domain objects automatically or to
implement serialization using one of VMware GemFire’s interfaces. Enabling automatic serialization
means that domain objects are serialized and deserialized without your having to make any code
changes to those objects. This automatic serialization is performed by registering your domain
objects with a custom PdxSerializer called the ReflectionBasedAutoSerializer, which uses Java
reflection to infer which fields to serialize.

If autoserialization does not meet your needs, you can serialize your objects by implementing one
of the VMware GemFire interfaces, PdxSerializable or DataSerializable. You can use these
interfaces to replace any standard Java data serialization for better performance. If you cannot or
do not want to modify your domain classes, each interface has an alternate serializer class,
PdxSerializer and DataSerializer. To use these, you create your custom serializer class and then
associate it with your domain class in the VMware GemFire cache configuration.

VMware GemFire Data serialization is about 25% faster than PDX serialization, however using PDX
serialization will help you to avoid the even larger costs of performing deserialization.

** Serialization Options: Comparison of Features**

Capability
VMware GemFire Data
Serializable

VMware GemFire PDX
Serializable

Implements Java Serializable. X

Handles multiple versions of application domain objects, providing
the versions differ by the addition or subtraction of fields.

 X

Provides single field access of serialized data, without full
deserialization - supported also for OQL querying.

 X

Automatically ported to other languages by VMware GemFire X

Works with .NET clients. X X

VMware GemFire 9.10 Documentation

VMware by Broadcom 556

Capability
VMware GemFire Data
Serializable

VMware GemFire PDX
Serializable

Works with C++ clients. X X

Works with VMware GemFire delta propagation. X X (See note below.)

Note: By default, you can use VMware GemFire delta propagation with PDX serialization. However,
delta propagation will not work if you have set the VMware GemFire property read-serialized to
“true”. In terms of deserialization, to apply a change delta propagation requires a domain class
instance and the fromDeltamethod. If you have set read-serialized to true, then you will receive a
PdxInstance instead of a domain class instance and PdxInstance does not have the fromDelta
method required for delta propagation.

Differences between VMware GemFire Serialization (PDX or
Data Serializable) and Java Serialization
VMware GemFire serialization (either PDX Serialization or Data Serialization) does not support
circular object graphs whereas Java serialization does. In VMware GemFire serialization, if the same
object is referenced more than once in an object graph, the object is serialized for each reference,
and deserialization produces multiple copies of the object. By contrast in this situation, Java
serialization serializes the object once and when deserializing the object, it produces one instance
of the object with multiple references.

VMware GemFire PDX Serialization
VMware GemFire’s Portable Data eXchange (PDX) is a cross-language data format that can reduce
the cost of distributing and serializing your objects. PDX stores data in named fields that you can
access individually, to avoid the cost of deserializing the entire data object. PDX also allows you to
mix versions of objects where you have added or removed fields.

VMware GemFire PDX Serialization Features

VMware GemFire PDX serialization offers several advantages in terms of functionality.

High Level Steps for Using PDX Serialization

To use PDX serialization, you can configure and use VMware GemFire’s reflection-based
autoserializer, or you can program the serialization of your objects by using the PDX
interfaces and classes.

Using Automatic Reflection-Based PDX Serialization

You can configure your cache to automatically serialize and deserialize domain objects
without having to add any extra code to them.

Serializing Your Domain Object with a PdxSerializer

For a domain object that you cannot or do not want to modify, use the PdxSerializer class
to serialize and deserialize the object’s fields. You use one PdxSerializer implementation
for the entire cache, programming it for all of the domain objects that you handle in this
way.

Implementing PdxSerializable in Your Domain Object

VMware GemFire 9.10 Documentation

VMware by Broadcom 557

For a domain object with source that you can modify, implement the PdxSerializable
interface in the object and use its methods to serialize and deserialize the object’s fields.

Programming Your Application to Use PdxInstances

A PdxInstance is a light-weight wrapper around PDX serialized bytes. It provides
applications with run-time access to fields of a PDX serialized object.

Adding JSON Documents to the VMware GemFire Cache

The JSONFormatter API allows you to put JSON formatted documents into regions and
retrieve them later by storing the documents internally as PdxInstances.

Using PdxInstanceFactory to Create PdxInstances

You can use the PdxInstanceFactory interface to create a PdxInstance from raw data when
the domain class is not available on the server.

Persisting PDX Metadata to Disk

VMware GemFire allows you to persist PDX metadata to disk and specify the disk store to
use.

Using PDX Objects as Region Entry Keys

Using PDX objects as region entry keys is highly discouraged.

VMware GemFire PDX Serialization Features

VMware GemFire PDX serialization offers several advantages in terms of functionality.

Application Versioning of PDX Domain Objects

Domain objects evolve along with your application code. You might create an address object with
two address lines, then realize later that a third line is required for some situations. Or you might
realize that a particular field is not used and want to get rid of it. With PDX, you can use old and
new versions of domain objects together in a cluster if the versions differ by the addition or removal
of fields. This compatibility lets you gradually introduce modified code and data into the cluster,
without bringing the cluster down.

VMware GemFire maintains a central registry of the PDX domain object metadata. Using the
registry, VMware GemFire preserves fields in each member’s cache regardless of whether the field
is defined. When a member receives an object with a registered field that the member is not aware
of, the member does not access the field, but preserves it and passes it along with the entire object
to other members. When a member receives an object that is missing one or more fields according
to the member’s version, VMware GemFire assigns the Java default values for the field types to the
missing fields.

Portability of PDX Serializable Objects

When you serialize an object using PDX, VMware GemFire stores the object’s type information in
the central registry. The information is passed among clients and servers, peers, and clusters.

This centralization of object type information is advantageous for client/server installations in which
clients and servers are written in different languages. Clients pass registry information to servers

VMware GemFire 9.10 Documentation

VMware by Broadcom 558

automatically when they store a PDX serialized object. Clients can run queries and functions against
the data in the servers without compatibility between server and the stored objects. One client can
store data on the server to be retrieved by another client, with no requirements on the part of the
server.

Reduced Deserialization of Serialized Objects

The access methods of PDX serialized objects allow you to examine specific fields of your domain
object without deserializing the entire object. Depending on your object usage, you can reduce
serialization and deserialization costs significantly.

Java and other clients can run queries and execute functions against the objects in the server
caches without deserializing the entire object on the server side. The query engine automatically
recognizes PDX objects, retrieves the PdxInstance of the object and uses only the fields it needs.
Likewise, peers can access only the necessary fields from the serialized object, keeping the object
stored in the cache in serialized form.

High Level Steps for Using PDX Serialization

To use PDX serialization, you can configure and use VMware GemFire’s reflection-based
autoserializer, or you can program the serialization of your objects by using the PDX interfaces and
classes.

Optionally, program your application code to deserialize individual fields out of PDX representations
of your serialized objects. You may also need to persist your PDX metadata to disk for recovery on
startup.

Procedure

1. Use one of these serialization options for each object type that you want to serialize using
PDX serialization:

Using Automatic Reflection-Based PDX Serialization

Serializing Your Domain Object with a PdxSerializer

Implementing PdxSerializable in Your Domain Object

2. To ensure that your servers do not need to load the application classes, set the pdx read-
serialized attribute to true. In gfsh, execute the following command before starting up
your servers:

gfsh>configure pdx --read-serialized=true

By using gfsh, this configuration can be propagated across the cluster through the Cluster
Configuration Service. Alternately, you would need to configure pdx read-serialized in
each server’s cache.xml file.

3. If you are storing any VMware GemFire data on disk, then you must configure PDX
serialization to use persistence. See Persisting PDX Metadata to Disk for more information.

4. (Optional) Wherever you run explicit application code to retrieve and manage your cached
entries, you may want to manage your data objects without using full deserialization. To do
this, see Programming Your Application to Use PdxInstances.

VMware GemFire 9.10 Documentation

VMware by Broadcom 559

PDX and Multi-Site (WAN) Deployments

For multisite (WAN) installations only: If you will use PDX serialization in any of your WAN-enabled
regions, for each cluster, you must choose a unique integer between 0 (zero) and 255 and set the
distributed-system-id in every member’s gemfire.properties file. See Configuring a Multi-site
(WAN) System.

Using Automatic Reflection-Based PDX Serialization

You can configure your cache to automatically serialize and deserialize domain objects without
having to add any extra code to them.

You can automatically serialize and deserialize domain objects without coding a PdxSerializer
class. You do this by registering your domain objects with a custom PdxSerializer called
ReflectionBasedAutoSerializer that uses Java reflection to infer which fields to serialize.

You can also extend the ReflectionBasedAutoSerializer to customize its behavior. For example, you
could add optimized serialization support for BigInteger and BigDecimal types. See Extending the
ReflectionBasedAutoSerializer for details.

Note: Your custom PDX autoserializable classes cannot use the org.apache.geode package. If they
do, the classes will be ignored by the PDX auto serializer.

Prerequisites

Understand generally how to configure the VMware GemFire cache.

Understand how PDX serialization works and how to configure your application to use
PdxSerializer.

Procedure

In your application where you manage data from the cache, provide the following configuration and
code as appropriate:

1. In the domain classes that you wish to autoserialize, make sure each class has a zero-arg
constructor. For example:

public PortfolioPdx(){}

2. Using one of the following methods, set the PDX serializer to
ReflectionBasedAutoSerializer.

1. In gfsh, execute the following command prior to starting up any members that host
data:

gfsh>configure pdx --auto-serializable-classes=com\.company\.domain\..*

By using gfsh, this configuration can propagated across the cluster through the
Cluster Configuration Service.

2. Alternately, in cache.xml:

<!-- Cache configuration configuring auto serialization behavior -->

<cache>

VMware GemFire 9.10 Documentation

VMware by Broadcom 560

 <pdx>

 <pdx-serializer>

 <class-name>

 org.apache.geode.pdx.ReflectionBasedAutoSerializer

 </class-name>

 <parameter name="classes">

 <string>com.company.domain.DomainObject</string>

 </parameter>

 </pdx-serializer>

 </pdx>

 ...

</cache>

The parameter, classes, takes a comma-separated list of class patterns to define
the domain classes to serialize. If your domain object is an aggregation of other
domain classes, you need to register the domain object and each of those domain
classes explicitly for the domain object to be serialized completely.

3. Using the Java API:

Cache c = new CacheFactory()

 .setPdxSerializer(new ReflectionBasedAutoSerializer("com.company.domai

n.DomainObject"))

 .create();

3. Customize the behavior of the ReflectionBasedAutoSerializer using one of the following
mechanisms:

By using a class pattern string to specify the classes to auto-serialize and customize
how the classes are serialized. Class pattern strings can be specified in the API by
passing strings to the ReflectionBasedAutoSerializer constructor or by specifying
them in cache.xml. See Customizing Serialization with Class Pattern Strings for
details.

By creating a subclass of ReflectionBasedAutoSerializer and overriding specific
methods. See Extending the ReflectionBasedAutoSerializer for details.

4. If desired, configure the ReflectionBasedAutoSerializer to check the portability of the
objects it is passed before it tries to autoserialize them. When this flag is set to true, the
ReflectionBasedAutoSerializer will throw a NonPortableClassException error when trying
to autoserialize a non-portable object. To set this, use the following configuration:

In gfsh, use the following command:

gfsh>configure pdx --portable-auto-serializable-classes=com\.company\.dom

ain\..*

By using gfsh, this configuration can propagated across the cluster through the
Cluster Configuration Service.

In cache.xml:

<!-- Cache configuration configuring auto serialization behavior -->

<cache>

 <pdx>

 <pdx-serializer>

VMware GemFire 9.10 Documentation

VMware by Broadcom 561

 <class-name>

 org.apache.geode.pdx.ReflectionBasedAutoSerializer

 </class-name>

 <parameter name="classes">

 <string>com.company.domain.DomainObject</string>

 </parameter>

 <parameter name="check-portability">

 <string>true</string>

 </parameter>

 </pdx-serializer>

 </pdx>

 ...

</cache>

Using the Java API:

Cache c = new CacheFactory()

 .setPdxSerializer(new ReflectionBasedAutoSerializer(true,"com.company.d

omain.DomainObject"))

 .create();

For each domain class you provide, all fields are considered for serialization except those defined as
static or transient and those you explicitly exclude using the class pattern strings.

Note: The ReflectionBasedAutoSerializer traverses the given domain object’s class hierarchy to
retrieve all fields to be considered for serialization. So if DomainObjectB inherits from DomainObjectA,
you only need to register DomainObjectB to have all of DomainObjectB serialized.

Customizing Serialization with Class Pattern Strings

Use class pattern strings to name the classes that you want to serialize using VMware GemFire’s
reflection-based autoserializer and to specify object identity fields and to specify fields to exclude
from serialization.

The class pattern strings used to configured the ReflectionBasedAutoSerializer are standard
regular expressions. For example, this expression would select all classes defined in the
com.company.domain package and its subpackages:

com\.company\.domain\..*

You can augment the pattern strings with a special notation to define fields to exclude from
serialization and to define fields to mark as PDX identity fields. The full syntax of the pattern string
is:

<class pattern> [# (identity|exclude) = <field pattern>]... [, <class pattern>...]

The following example pattern string sets these PDX serialization criteria:

Classes with names matching the pattern com.company.DomainObject.* are serialized. In
those classes, fields beginning with id are marked as identity fields and fields named
creationDate are not serialized.

The class com.company.special.Patient is serialized. In the class, the field, ssn is marked as
an identity field

VMware GemFire 9.10 Documentation

VMware by Broadcom 562

com.company.DomainObject.*#identity=id.*#exclude=creationDate,

com.company.special.Patient#identity=ssn

Note: There is no association between the identity and exclude options, so the pattern above
could also be expressed as:

com.company.DomainObject.*#identity=id.*, com.company.DomainObject.*#exclude=creationD

ate,

com.company.special.Patient#identity=ssn

Note: The order of the patterns is not relevant. All defined class patterns are used when
determining whether a field should be considered as an identity field or should be excluded.

Examples:

This XML uses the example pattern shown above:

<parameter name="classes">

 <string>com.company.DomainObject.*#identity=id.*#exclude=creationDate,

com.company.special.Patient#identity=ssn</string>

</parameter>

This application code sets the same pattern:

classPatterns.add("com.company.DomainObject.*#identity=id.*#exclude=creationDat

e,

 com.company.special.Patient#identity=ssn");

This application code has the same effect:

 Cache c = new CacheFactory().set("cache-xml-file", cacheXmlFileName)

 .setPdxSerializer(new ReflectionBasedAutoSerializer("com.foo.DomainObject*

#identity=id.*",

 "com.company.DomainObject.*#exclude=creationDate","com.company.specia

l.Patient#identity=ssn"))

 .create();

Extending the ReflectionBasedAutoSerializer

You can extend the ReflectionBasedAutoSerializer to handle serialization in a customized
manner. This section provides an overview of the available method-based customization options
and an example of extending the serializer to support BigDecimal and BigInteger types.

Reasons to Extend the ReflectionBasedAutoSerializer

One of the main use cases for extending the ReflectionBasedAutoSerializer is that you want it to
handle an object that would currently need to be handled by standard Java serialization. There are
several issues with having to use standard Java serialization that can be addressed by extending the
PDX ReflectionBasedAutoSerializer.

Each time we transition from a VMware GemFire serialized object to an object that will be
Java I/O serialized, extra data must get serialized. This can cause a great deal of serialization

VMware GemFire 9.10 Documentation

VMware by Broadcom 563

overhead. This is why it is worth extending the ReflectionBasedAutoSerializer to handle
any classes that normally would have to be Java I/O serialized.

Expanding the number of classes that can use the ReflectionBasedAutoSerializer is
beneficial when you encounter object graphs. After we use Java I/O serialization on an
object, any objects under that object in the object graph will also have to be Java I/O
serialized. This includes objects that normally would have been serialized using PDX or
DataSerializable.

If standard Java I/O serialization is done on an object and you have enabled check-
portability, then an exception will be thrown. Even if you are not concerned with the
object’s portability, you can use this flag to find out what classes would use standard Java
serialization (by getting an exception on them) and then enhancing your auto serializer to
handle them.

Overriding ReflectionBasedAutoSerializer Behavior

You can customize the specific behaviors in ReflectionBasedAutoSerializer by overriding the
following methods:

isClassAutoSerialized customizes which classes to autoserialize.

isFieldIncluded specifies which fields of a class to autoserialize.

getFieldName defines the specific field names that will be generated during autoserialization.

isIdentifyField controls which field is marked as the identity field. Identity fields are used
when a PdxInstance computes its hash code to determine whether it is equal to another
object.

getFieldType determines the field type that will be used when autoserializing the given
field.

transformFieldValue controls whether specific field values of a PDX object can be
transformed during serialization.

writeTransform controls what field value is written during auto serialization.

readTransform controls what field value is read during auto deserialization.

These methods are only called the first time the ReflectionBasedAutoSerializer sees a new class.
The results will be remembered and used the next time the same class is seen.

For details on these methods and their default behaviors, see the JavaDocs on
ReflectionBasedAutoSerializer for details.

Example of Optimizing Autoserialization of BigInteger and
BigDecimal Types
This section provides an example of extending the ReflectionBasedAutoSerializer to optimize the
automatic serialization of BigInteger and BigDecimal types.

The following code sample illustrates a subclass of the ReflectionBasedAutoSerializer that
optimizes BigInteger and BigDecimal autoserialization:

VMware GemFire 9.10 Documentation

VMware by Broadcom 564

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html

public static class BigAutoSerializer extends ReflectionBasedAutoSerializer {

 public BigAutoSerializer(Boolean checkPortability, string… patterns) {

 super(checkPortability, patterns);

}

@Override

public FieldType get FieldType(Field f, Class<?> clazz) {

 if (f.getType().equals(BigInteger.class)) {

 return FieldType.BYTE_ARRAY;

 } else if (f.getType().equals(BigDecimal.class)) {

 return FieldType.STRING;

 } else {

 return super.getFieldType(f, clazz);

 }

 }

@Override

 public boolean transformFieldValue(Field f, Class<?> clazz) {

 if (f.getType().equals(BigInteger.class)) {

 return true;

 } else if (f.getType().equals(BigDecimal.class)) {

 return true;

 } else {

 return super.transformFieldValue(f, clazz);

 }

 }

@Override

 public Object writeTransform(Field f, Class<?> clazz, Object originalValue) {

 if (f.getType().equals(BigInteger.class)) {

 byte[] result = null;

 if (originalValue != null) {

 BigInteger bi = (BigInteger)originalValue;

 result = bi.toByteArray();

 }

 return result;

 } else if (f.getType().equals(BigDecimal.class)) {

 Object result = null;

 if (originalValue != null) {

 BigDecimal bd = (BigDecimal)originalValue;

 result = bd.toString();

 }

 return result;

 } else {

 return super.writeTransform(f, clazz, originalValue);

 }

 }

@Override

 public Object readTransform(Field f, Class<?> clazz, Object serializedValue) {

 if (f.getType().equals(BigInteger.class)) {

 BigInteger result = null;

 if (serializedValue != null) {

 result = new BigInteger((byte[])serializedValue);

 }

 return result;

 } else if (f.getType().equals(BigDecimal.class)) {

 BigDecimal result = null;

 if (serializedValue != null) {

 result = new BigDecimal((String)serializedValue);

VMware GemFire 9.10 Documentation

VMware by Broadcom 565

 }

 return result;

 } else {

 return super.readTransform(f, clazz, serializedValue);

 }

 }

 }

Serializing Your Domain Object with a PdxSerializer

For a domain object that you cannot or do not want to modify, use the PdxSerializer class to
serialize and deserialize the object’s fields. You use one PdxSerializer implementation for the
entire cache, programming it for all of the domain objects that you handle in this way.

With PdxSerializer, you leave your domain object as-is and handle the serialization and
deserialization in the separate serializer. You register the serializer in your cache PDX configuration.
Program the serializer to handle all of the domain objects you need.

If you write your own PdxSerializer and you also use the ReflectionBasedAutoSerializer, then
the PdxSerializer needs to own the ReflectionBasedAutoSerializer and delegate to it. A Cache
can only have a single PdxSerializer instance.

Note: The PdxSerializer toData and fromData methods differ from those for PdxSerializable.
They have different parameters and results.

Procedure

1. In the domain classes that you wish to PDX serialize, make sure each class has a zero-arg
constructor. For example:

public PortfolioPdx(){}

2. If you have not already implemented PdxSerializer for some other domain object, perform
these steps:

1. Create a new class as your cache-wide serializer and make it implement
PdxSerializer. If you want to declare your new class in the cache.xml file, have it
also implement Declarable.

Example:

import org.apache.geode.cache.Declarable;

import org.apache.geode.pdx.PdxReader;

import org.apache.geode.pdx.PdxSerializer;

import org.apache.geode.pdx.PdxWriter;

public class ExamplePdxSerializer implements PdxSerializer, Declarable {

...

2. In your cache PDX configuration, register the serializer class in the cache’s <pdx>
<pdx-serializer> <class-name> attribute.

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 566

// Configuration setting PDX serializer for the cache

<cache>

 <pdx>

 <pdx-serializer>

 <class-name>com.company.ExamplePdxSerializer</class-name>

 </pdx-serializer>

 </pdx>

 ...

</cache>

Or use the CacheFactory.setPdxSerializer API.

Cache c = new CacheFactory

 .setPdxSerializer(new ExamplePdxSerializer())

 .create();

Note: You cannot specify a custom pdx-serializer class using gfsh, however the configure
pdx command automatically configures the
org.apache.geode.pdx.ReflectionBasedAutoSerializer class. See configure pdx.

3. Program PdxSerializer.toData to recognize, cast, and handle your domain object:

1. Write each standard Java data field of your domain class using the PdxWriter write
methods.

2. Call the PdxWriter markIdentityField method for each field you want to have
VMware GemFire use to identify your object. Put this after the field’s write method.
VMware GemFire uses this information to compare objects for operations like
distinct queries. If you do not set as least one identity field, then the equals and
hashCode methods will use all PDX fields to compare objects and consequently, will
not perform as well. It is important that the fields used by your equals and hashCode
implementations are the same fields that you mark as identity fields.

3. For a particular version of your class, you need to consistently write the same
named field each time. The field names or number of fields must not change from
one instance to another for the same class version.

4. For best performance, do fixed width fields first and then variable length fields.

5. If desired, you can check the portability of the object before serializing it by adding
the checkPortability parameter when using thePdxWriter writeObject,
writeObjectArray, and writeField methods.

Example toData code:

public boolean toData(Object o, PdxWriter writer)

 {

 if(!(o instanceof PortfolioPdx)) {

 return false;

 }

 PortfolioPdx instance = (PortfolioPdx) o;

 writer.writeInt("id", instance.id)

 //identity field

 .markIdentityField("id")

 .writeDate("creationDate", instance.creationDate)

VMware GemFire 9.10 Documentation

VMware by Broadcom 567

 .writeString("pkid", instance.pkid)

 .writeObject("positions", instance.positions)

 .writeString("type", instance.type)

 .writeString("status", instance.status)

 .writeStringArray("names", instance.names)

 .writeByteArray("newVal", instance.newVal)

 return true;

 }

1. Program PdxSerializer.fromData to create an instance of your class, read your data
fields from the serialized form into the object’s fields using the PdxReader read
methods, and return the created object.

Provide the same names that you did in toData and call the read operations in the
same order as you called the write operations in your toData implementation.

VMware GemFire provides the domain class type and PdxReader to the fromData
method.

Example fromData code:

 public Object fromData(Class<?> clazz, PdxReader reader)

 {

 if(!clazz.equals(PortfolioPdx.class)) {

 return null;

 }

 PortfolioPdx instance = new PortfolioPdx();

 instance.id = reader.readInt("id");

 instance.creationDate = reader.readDate("creationDate");

 instance.pkid = reader.readString("pkid");

 instance.positions = (Map<String, PositionPdx>)reader.readObject("pos

itions");

 instance.type = reader.readString("type");

 instance.status = reader.readString("status");

 instance.names = reader.readStringArray("names");

 instance.newVal = reader.readByteArray("newVal");

 return instance;

 }

4. If desired, you can also enable extra validation in your use of PdxWriter. You can set this by
setting the system property gemfire.validatePdxWriters to true. Note that you should
only set this option if you are debugging new code as this option can decrease system
performance.

Implementing PdxSerializable in Your Domain Object

For a domain object with source that you can modify, implement the PdxSerializable interface in
the object and use its methods to serialize and deserialize the object’s fields.

Procedure

1. In your domain class, implement PdxSerializable, importing the required
org.apache.geode.pdx classes.

VMware GemFire 9.10 Documentation

VMware by Broadcom 568

For example:

import org.apache.geode.pdx.PdxReader;

import org.apache.geode.pdx.PdxSerializable;

import org.apache.geode.pdx.PdxWriter;

public class PortfolioPdx implements PdxSerializable {

 ...

2. If your domain class does not have a zero-arg constructor, create one for it.

For example:

public PortfolioPdx(){}

3. Program PdxSerializable.toData.

1. Write each standard Java data field of your domain class using the PdxWriter write
methods. VMware GemFire automatically provides PdxWriter to the toData method
for PdxSerializable objects.

2. Call the PdxWriter markIdentifyField method for each field you want to have
VMware GemFire use to identify your object. Put this after the field’s write method.
VMware GemFire uses this information to compare objects for operations like
distinct queries. If you do not set as least one identity field, then the equals and
hashCode methods will use all PDX fields to compare objects and consequently, will
not perform as well. It is important that the fields used by your equals and hashCode
implementations are the same fields that you mark as identity fields.

3. For a particular version of your class, you need to consistently write the same
named field each time. The field names or number of fields must not change from
one instance to another for the same class version.

4. For best performance, do fixed width fields first and then variable length fields.

Example toData code:

// PortfolioPdx fields

 private int id;

 private String pkid;

 private Map<String, PositionPdx> positions;

 private String type;

 private String status;

 private String[] names;

 private byte[] newVal;

 private Date creationDate;

 ...

 public void toData(PdxWriter writer)

 {

 writer.writeInt("id", id)

// The markIdentifyField call for a field must

// come after the field's write method

 .markIdentityField("id")

 .writeDate("creationDate", creationDate) //fixed length field

 .writeString("pkid", pkid)

 .writeObject("positions", positions)

VMware GemFire 9.10 Documentation

VMware by Broadcom 569

 .writeString("type", type)

 .writeString("status", status)

 .writeStringArray("names", names)

 .writeByteArray("newVal", newVal)

 }

4. Program PdxSerializable.fromData to read your data fields from the serialized form into
the object’s fields using the PdxReader read methods.

Provide the same names that you did in toData and call the read operations in the same
order as you called the write operations in your toData implementation.

VMware GemFire automatically provides PdxReader to the fromData method for
PdxSerializable objects.

Example fromData code:

public void fromData(PdxReader reader)

 {

 id = reader.readInt("id");

 creationDate = reader.readDate("creationDate");

 pkid = reader.readString("pkid");

 position1 = (PositionPdx)reader.readObject("position1");

 position2 = (PositionPdx)reader.readObject("position2");

 positions = (Map<String, PositionPdx>)reader.readObject("positions");

 type = reader.readString("type");

 status = reader.readString("status");

 names = reader.readStringArray("names");

 newVal = reader.readByteArray("newVal");

 arrayNull = reader.readByteArray("arrayNull");

 arrayZeroSize = reader.readByteArray("arrayZeroSize");

 }

What to do next

As needed, configure and program your VMware GemFire applications to use PdxInstance
for selective object deserialization. See Programming Your Application to Use PdxInstances.

Programming Your Application to Use PdxInstances

A PdxInstance is a light-weight wrapper around PDX serialized bytes. It provides applications with
run-time access to fields of a PDX serialized object.

You can configure your cache to return a PdxInstance when a PDX serialized object is deserialized
instead of deserializing the object to a domain class. You can then program your application code
that reads your entries to handle PdxInstances fetched from the cache.

Note: This applies only to entry retrieval that you explicitly code using methods like
EntryEvent.getNewValue and Region.get, as you do inside functions or in cache listener code. This
does not apply to querying because the query engine retrieves the entries and handles object
access for you.

If you configure your cache to allow PDX serialized reads, a fetch from the cache returns the data in
the form it is found. If the object is not serialized, the fetch returns the domain object. If the object
is serialized, the fetch returns the PdxInstance for the object.

VMware GemFire 9.10 Documentation

VMware by Broadcom 570

Note: If you are using PdxInstances, you cannot use delta propagation to apply changes to PDX
serialized objects.

For example, in client/server applications that are programmed and configured to handle all data
activity from the client, PDX serialized reads done on the server side will always return a
PdxInstance. This is because all of data is serialized for transfer from the client, and you are not
performing any server-side activities that would deserialize the objects in the server cache.

In mixed situations, such as where a server cache is populated from client operations and also from
data loads done on the server side, fetches done on the server can return a mix of PdxInstances
and domain objects.

When fetching data in a cache with PDX serialized reads enabled, the safest approach is to code to
handle both types, receiving an Object from the fetch operation, checking the type and casting as
appropriate. However, if you know that the class is not available in the JVM, then you can avoid
performing the type check.

PdxInstance overrides any custom implementation you might have coded for your object’s equals
and hashcode methods. Make sure you have marked at least one identity field when writing PDX
serialized objects. If you do not set as least one identity field, then the PdxInstanceequals and
hashCode methods will use all PDX fields to compare objects and consequently, will not perform as
well.

Prerequisites

Understand generally how to configure the VMware GemFire cache. See Basic
Configuration and Programming.

Procedure

In your application where you fetch data from the cache, provide the following configuration and
code as appropriate:

1. In the cache.xml file of the member where entry fetches are run, set the <pdx> read-
serialized attribute to true. Data is not necessarily accessed on the member that you have
coded for it. For example, if a client application runs a function on a server, the actual data
access is done on the server, so you set read-serialized to true on the server.

For example:

// Cache configuration setting PDX read behavior

<cache>

 <pdx read-serialized="true" />

 ...

</cache>

2. Write the application code that fetches data from the cache to handle a PdxInstance. If you
are sure you will only retrieve PdxInstances from the cache, you can code only for that. In
many cases, a PdxInstance or a domain object may be returned from your cache entry
retrieval operation, so you should check the object type and handle each possible type.

For example:

// put/get code with serialized read behavior

// put is done as normal

VMware GemFire 9.10 Documentation

VMware by Broadcom 571

myRegion.put(myKey, myPdxSerializableObject);

// get checks Object type and handles each appropriately

Object myObject = myRegion.get(myKey);

if (myObject instanceof PdxInstance) {

 // get returned PdxInstance instead of domain object

 PdxInstance myPdxInstance = (PdxInstance)myObject;

 // PdxInstance.getField deserializes the field, but not the object

 String fieldValue = myPdxInstance.getField("stringFieldName");

 // Update a field and put it back into the cache

 // without deserializing the entire object

 WritablePdxInstance myWritablePdxI = myPdxInstance.createWriter();

 myWritablePdxI.setField("fieldName", fieldValue);

 region.put(key, myWritablePdxI);

 // Deserialize the entire object if needed, from the PdxInstance

 DomainClass myPdxObject = (DomainClass)myPdxInstance.getObject();

}

else if (myObject instanceof DomainClass) {

 // get returned instance of domain object

 // code to handle domain object instance

 ...

}

...

Note: Due to a limitation with PDX, if your PDX-enabled cache contains TreeSet domain
objects, you should implement a Comparator that can handle both your domain objects and
PdxInstance objects. You will also need to make the domain classes available on the server.

Adding JSON Documents to the Tanzu GemFire Cache

The JSONFormatter API allows you to put JSON formatted documents into regions and retrieve
them later by storing the documents internally as PdxInstances.

VMware GemFire supports the use of JSON formatted documents natively. When you add a JSON
document to a VMware GemFire cache, you call the JSONFormatter APIs to transform them into
the PDX format (as a PdxInstance), which enables VMware GemFire to understand the JSON
document at a field level.

In terms of querying and indexing, because the documents are stored internally as PDX,
applications can index on any field contained inside the JSON document including any nested field
(within JSON objects or JSON arrays.) Any queries run on these stored documents will return
PdxInstances as results. To update a JSON document stored in VMware GemFire , you can
execute a function on the PdxInstance.

You can then use the JSONFormatter to convert the PdxInstance results back into the JSON
document.

JSONFormatter uses a streaming parser (Jackson, JSON processor) to turn JSON documents into
the optimized PDX format. To use the JSONFormatter, make sure that lib/geode-
dependencies.jar is available in your application’s CLASSPATH.

The JSONFormatter class has four static methods that are used to convert JSON document into
PdxInstances and then to convert those PdxInstances back into JSON document.

VMware GemFire 9.10 Documentation

VMware by Broadcom 572

https://github.com/FasterXML/jackson

You need to call the following methods before putting any JSON document into the VMware
GemFire region:

fromJSON. Creates a PdxInstance from a JSON byte array. Returns the PdxInstance.

fromJSON. Creates a PdxInstance from a JSON string. Returns the PdxInstance.

After putting the JSON document into a region as a PdxInstance, you can execute standard
VMware GemFire queries and create indexes on the JSON document in the same manner you
would query or index any other VMware GemFire PdxInstance.

After executing a VMware GemFire query or calling region.get, you can use the following
methods to convert a PdxInstance back into the JSON format:

toJSON. Reads a PdxInstance and returns a JSON string.

toJSONByteArray. Reads a PdxInstance and returns a JSON byte array.

For more information on using the JSONFormatter, see the Java API documentation for
org.apache.geode.pdx.JSONFormatter.

Sorting Behavior of Serialized JSON Fields

By default, VMware GemFire serialization creates a unique pdx typeID for each unique JSON
document, even if the only difference between the JSON documents is the order in which their
fields are specified.

If you prefer that JSON documents which differ only in the order in which their fields are specified
map to the same typeID, set the property gemfire.pdx.mapper.sort-json-field-names to true.
This tells the system to sort the JSON fields prior to serialization, allowing the system to identify
matching entries, and helps reduce the number of pdx typeIDs that are generated by the
serialization mechanism.

Using PdxInstanceFactory to Create PdxInstances

You can use the PdxInstanceFactory interface to create a PdxInstance from raw data when the
domain class is not available on the server.

This can be particularly useful when you need an instance of a domain class for plug in code such as
a function or a loader. If you have the raw data for the domain object (the class name and each
field’s type and data), then you can explicitly create a PdxInstance. The PdxInstanceFactory is very
similar to the PdxWriter except that after writing each field, you need to call the create method
which returns the created PdxInstance.

To create a factory call RegionService.createPdxInstanceFactory. A factory can only create a
single instance. To create multiple instances create multiple factories or use
PdxInstance.createWriter() to create subsequent instances. Using PdxInstance.createWriter() is
usually faster.

When you create a PdxInstance, set as least one identity field using the markIndentityField
method. If you do not mark an identity field, the PdxInstanceequals and hashCode methods will use
all PDX fields to compare objects and consequently, will not perform as well. It is important that the
fields used by your equals and hashCode implementations are the same fields that you mark as
identity fields.

VMware GemFire 9.10 Documentation

VMware by Broadcom 573

The following is a code example of using PdxInstanceFactory:

PdxInstance pi = cache.createPdxInstanceFactory("com.company.DomainObject")

 .writeInt("id", 37)

 .markIdentityField("id")

 .writeString("name", "Mike Smith")

 .writeObject("favoriteDay", cache.createPdxEnum("com.company.Day", "FRIDAY", 5))

 .create();

For more information, see PdxInstanceFactory in the Java API documentation.

Enum Objects as PdxInstances

You can now work with enum objects as PdxInstances. When you fetch an enum object from the
cache, you can now deserialize it as a PdxInstance. To check whether a PdxInstance is an enum,
use the PdxInstance.isEnum method. An enum PdxInstance will have one field named “name”
whose value is a String that corresponds to the enum constant name.

An enum PdxInstance is not writable; if you call createWriter it will throw an exception.

The RegionService has a method that allows you to create a PdxInstance that represents an enum.
See RegionService.createPdxEnum in the Java API documentation.

Persisting PDX Metadata to Disk

VMware GemFire allows you to persist PDX metadata to disk and specify the disk store to use.

Prerequisites

Understand generally how to configure the VMware GemFire cache. See Basic
Configuration and Programming.

Understand how VMware GemFire disk stores work. See Disk Storage.

Procedure

1. Set the <pdx> attribute persistent to true in your cache configuration. This is required for
caches that use PDX with persistent regions and with regions that use a gateway sender to
distribute events across a WAN.. Otherwise, it is optional.

2. (Optional) If you want to use a disk store that is not the VMware GemFire default disk store,
set the <pdx> attribute disk-store-name to the name of your non-default disk store. Note: If
you are using PDX serialized objects as region entry keys and you are using persistent
regions, then you must configure your PDX disk store to be a different one than the disk
store used by the persistent regions.

3. (Optional) If you later want to rename the PDX types that are persisted to disk, you can do
so on your offline disk-stores by executing the pdx rename command. See pdx rename.

Example cache.xml:

This example cache.xml enables PDX persistence and sets a non-default disk store in a server
cache configuration:

 <pdx read-serialized="true"

 persistent="true" disk-store-name="SerializationDiskStore">

VMware GemFire 9.10 Documentation

VMware by Broadcom 574

 <pdx-serializer>

 <class-name>pdxSerialization.defaultSerializer</class-name>

 </pdx-serializer>

 </pdx>

 <region ...

Using PDX Objects as Region Entry Keys

Using PDX objects as region entry keys is highly discouraged.

The best practice for creating region entry keys is to use a simple key; for example, use a String or
Integer. If the key must be a domain class, then you should use a non-PDX-serialized class.

If you must use PDX serialized objects as region entry keys, ensure that you do not set read-
serialized to true. This configuration setting will cause problems in partitioned regions because
partitioned regions require the hash code of the key to be the same on all JVMs in the distributed
system. When the key is a PdxInstance object, its hash code will likely not be the same as the hash
code of the domain object.

If you are using PDX serialized objects as region entry keys and you are using persistent regions,
then you must configure your PDX disk store to be a different one than the disk store used by the
persistent regions.

VMware GemFire Data Serialization (DataSerializable and
DataSerializer)
VMware GemFire’s DataSerializable interface gives you quick serialization of your objects.

Data Serialization with the DataSerializable Interface
VMware GemFire’s DataSerializable interface gives you faster and more compact data
serialization than the standard Java serialization or VMware GemFire PDX serialization. However,
while VMware GemFire DataSerializable interface is generally more performant than VMware
GemFire’s PdxSerializable, it requires full deserialization on the server and then reserialization to
send the data back to the client.

You can further speed serialization by registering the instantiator for your DataSerializable class
through Instantiator, eliminating the need for reflection to find the right serializer. You can
provide your own serialization through the API.

The recommended way to register your custom Instantiator is by specifying it in the
serialization-registration element of cache.xml.

For more information, see the online Java documentation for DataSerializable and
DataSerializer.

Example cache.xml:

The following provides an example of how to register an instantiator using cache.xml.

<serialization-registration>

<instantiator id="30">

 <class-name>com.package.MyClass</class-name>

VMware GemFire 9.10 Documentation

VMware by Broadcom 575

</instantiator>

</serialization-registration>

In addition to speeding standard object serialization, you can use the DataSerializable interface to
serialize any custom objects you store in the cache.

Serializing Your Domain Object with DataSerializer

You can also use DataSerializer to serialize domain objects. It serializes data in the same way as
DataSerializable but allows you to serialize classes without modifying the domain class code.

See the JavaDocs on DataSerializable and DataSerializer for more information.

Standard Java Serialization

You can use standard Java serialization for data you only distribute between Java applications. If
you distribute your data between non-Java clients and Java servers, you need to do additional
programming to get the data between the various class formats.

Standard Java types are serializable by definition. For your domain classes, implement
java.io.Serializable, then make sure to mark your transient and static variables as needed for
your objects. For information, see the online documentation for java.io.Serializable for your
Java version.

Mixing DataSerializable with Serializable or PdxSerializable use on the same data can result in
increased memory use and lower throughput than using just Serializable on the entire data,
especially if the Serializable entries are in collections. The bigger the data collection, the lower
the throughput as the metadata for the collection entries is not shared when using
DataSerializable.

Events and Event Handling

VMware GemFire provides versatile and reliable event distribution and handling for your cached
data and system member events.

How Events Work

Members in your cluster receive cache updates from other members through cache events.
The other members can be peers to the member, clients or servers or other clusters.

Implementing VMware GemFire Event Handlers

You can specify event handlers for region and region entry operations and for administrative
events.

Configuring Peer-to-Peer Event Messaging

You can receive events from cluster peers for any region that is not a local region. Local
regions receive only local cache events.

Configuring Client/Server Event Messaging

You can receive events from your servers for server-side cache events and query result
changes.

VMware GemFire 9.10 Documentation

VMware by Broadcom 576

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/DataSerializable.html
https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/DataSerializer.html

Configuring Multi-Site (WAN) Event Queues

In a multi-site (WAN) installation, VMware GemFire uses gateway sender queues to
distribute events for regions that are configured with a gateway sender.
AsyncEventListeners also use an asynchronous event queue to distribute events for
configured regions. This section describes additional options for configuring the event
queues that are used by gateway senders or AsyncEventListener implementations.

How Events Work

Members in your VMware GemFire cluster receive cache updates from other members through
cache events. The other members can be peers to the member, clients or servers or other clusters.

Events Features

These are the primary features of VMware GemFire events:

Content-based events

Asynchronous event notifications with conflation

Synchronous event notifications for low latency

High availability through redundant messaging queues

Event ordering and once and only-once delivery

Distributed event notifications

Durable subscriptions

Continuous querying

Types of Events

There are two categories of events and event handlers.

Cache events in the caching API are used by applications with a cache. Cache events
provide detail-level notification for changes to your data. Continuous query events are in
this category.

Administrative events in the administration API are used by administrative applications
without caches.

Both kinds of events can be generated by a single member operation.

Note: You can handle one of these categories of events in a single system member. You cannot
handle both cache and administrative events in a single member.

Because VMware GemFire maintains the order of administrative events and the order of cache
events separately, using cache events and administrative events in a single process can cause
unexpected results.

Event Cycle

The following steps describe the event cycle:

VMware GemFire 9.10 Documentation

VMware by Broadcom 577

1. An operation begins, such as data put or a cache close.

2. The operation execution generates these objects:

An object of type Operation that describes the method that triggered the event.

An event object that describes the event, such as the member and region where
the operation originated.

3. The event handlers that can handle the event are called and passed the event objects.
Different event types require different handler types in different locations. If there is no
matching event handler, that does not change the effect of the operation, which happens
as usual.

4. When the handler receives the event, it triggers the handler’s callback method for this
event. The callback method can hand off the event object as input to another method.
Depending on the type of event handler, the callbacks can be triggered before or after the
operation. The timing depends on the event handler, not on the event itself. Note: For
transactions, after-operation listeners receive the events after the transaction has
committed.

5. If the operation is distributed, so that it causes follow-on operations in other members,
those operations generate their own events, which can be handled by their listeners in the
same way.

Event Objects

Event objects come in several types, depending on the operation. Some operations generate
multiple objects of different types. All event objects contain data describing the event, and each
event type carries slightly different kinds of data appropriate to its matching operation. An event
object is stable. For example, its content does not change if you pass it off to a method on another
thread.

For cache events, the event object describes the operation performed in the local cache. If the
event originated remotely, it describes the local application of the remote entry operation, not the
remote operation itself. The only exception is when the local region has an empty data policy; then
the event carries the information for the remote (originating) cache operation.

Event Distribution

After a member processes an event in its local cache, it distributes it to remote caches according to
the member’s configuration and the configurations of the remote caches. For example, if a client
updates its cache, the update is forwarded to the client’s server. The server distributes the update
to its peers and forwards it to any other clients according to their interest in the data entry. If the
server system is part of a multi-site deployment and the data region is configured to use a gateway
sender, then the gateway sender also forwards the update to a remote site, where the update is
further distributed and propagated.

Event Handlers and Region Data Storage

You can configure a region for no local data storage and still send and receive events for the
region. Conversely, if you store data in the region, the cache is updated with data from the event

VMware GemFire 9.10 Documentation

VMware by Broadcom 578

regardless of whether you have any event handlers installed.

Multiple Listeners

When multiple listeners are installed, as can be done with cache listeners, the listeners are invoked
sequentially in the order they were added to the region or cache. Listeners are executed one at a
time. So, unless you program a listener to pass off processing to another thread, you can use one
listener’s work in later listeners.

Event Ordering

During a cache operation, event handlers are called at various stages of the operation. Some event
handlers are called before a region update and some are called after the region update operation.
Depending on the type of event handler being called, the event handler can receive the events in-
order or out-of-order in which they are applied on Region.

CacheWriter and AsyncEventListener always receive events in the order in which they are
applied on region.

CacheListener and CqListener can receive events in a different order than the order in
which they were applied on the region.

Note: An EntryEvent contains both the old value and the new value of the entry, which helps to
indicate the value that was replaced by the cache operation on a particular key.

Peer-to-Peer Event Distribution

When a region or entry operation is performed, VMware GemFire distributes the associated events
in the cluster according to system and cache configurations.

Install a cache listener for a region in each system member that needs to receive notification of
region and entry changes.

Events in a Partitioned Region

A distributed operation follows this sequence in a partitioned region:

1. Apply the operation to the cache with the primary data entry, if appropriate.

2. Do the distribution based on the subscription-attributes interest-policy of the other
members.

3. Invoke any listeners in the caches that receive the distribution.

4. Invoke the listener in the cache with the primary data entry.

In the following figure:

1. An API call in member M1 creates an entry.

2. The partitioned region creates the new entry in the cache in M2. M2, the holder of the
primary copy, drives the rest of the procedure.

3. These two operations occur simultaneously:

VMware GemFire 9.10 Documentation

VMware by Broadcom 579

The partitioned region creates a secondary copy of the entry in the cache in M3.
Creating the secondary copy does not invoke the listener on M3.

M2 distributes the event to M4. This distribution to the other members is based on
their interest policies. M4 has an interest-policy of all , so it receives notification of
all events anywhere in the region. Since M1 and M3 have an interest-policy of
cache-content , and this event does not affect any pre-existing entry in their local
caches, they do not receive the event.

4. The cache listener on M4 handles the notification of the remote event on M2.

5. Once everything on the other members has completed successfully, the original create
operation on M2 succeeds and invokes the cache listener on M2.

Events in a Distributed Region

A distributed operation follows this sequence in a distributed region:

1. Apply the operation to the local cache, if appropriate.

2. Invoke the local listeners.

3. Do the distribution.

4. Each member that receives the distribution carries out its own operation in response, which
invokes any local listeners.

In the following figure:

1. An entry is created through a direct API call on member M1.

2. The create invokes the cache listener on M1.

3. M1 distributes the event to the other members.

4. M2 and M3 apply the remote change through their own local operations.

5. M3 does a create, but M2 does an update, because the entry already existed in its cache.

6. The cache listener on M2 receives callbacks for the local update. Since there is no cache
listener on M3, the callbacks from the create on M3 are not handled. An API call in member
M1 creates an entry.

VMware GemFire 9.10 Documentation

VMware by Broadcom 580

Managing Events in Multi-threaded Applications

For partitioned regions, VMware GemFire guarantees ordering of events across threads, but for
distributed regions it doesn’t. For multi-threaded applications that create distributed regions, you
need to use your application synchronization to make sure that one operation completes before the
next one begins. Distribution through the distributed-no-ack queue can work with multiple threads
if you set the conserve-sockets attribute to true. Then the threads share one queue, preserving
the order of the events in distributed regions. Different threads can invoke the same listener, so if
you allow different threads to send events, it can result in concurrent invocations of the listener.
This is an issue only if the threads have some shared state - if they are incrementing a serial
number, for example, or adding their events to a log queue. Then you need to make your code
thread safe.

Client-to-Server Event Distribution

Clients and servers distribute events according to client activities and according to interest
registered by the client in server-side cache changes.

When the client updates its cache, changes to client regions are automatically forwarded to the
server side. The server-side update is then propagated to the other clients that are connected and
have subscriptions enabled. The server does not return the update to the sending client.

The update is passed to the server and then passed, with the value, to every other client that has
registered interest in the entry key. This figure shows how a client’s entry updates are propagated.

VMware GemFire 9.10 Documentation

VMware by Broadcom 581

Distributed System

Client 1

Region A

pool-name = ServerPool

Server

Region A

X

Client 2

X

Region A

pool-name = ServerPool

pool “ServerPool”

(with or without

subscriptions enabled)

pool “ServerPool”

(with subscriptions enabled,

interest register in X,

receiveValues = true)

Update/Create

X X

subscription

1

2

3

3

4

The figure shows the following process:

1. Entry X is updated or created in Region A through a direct API call on Client1.

2. The update to the region is passed to the pool named in the region.

3. The pool propagates the event to the cache server, where the region is updated.

4. The server member distributes the event to its peers and also places it into the subscription
queue for Client2 because that client has previously registered interest in entry X.

5. The event for entry X is sent out of the queue to Client2. When this happens is
indeterminate.

Client to server distribution uses the client pool connections to send updates to the server. Any
region with a named pool automatically forwards updates to the server. Client cache modifications
pass first through a client CacheWriter, if one is defined, then to the server through the client pool,
and then finally to the client cache itself. A cache writer, either on the client or server side, may
cancel the operation.

Change in Client Cache Effect on Server Cache

Entry create or update Creation or update of entry.

Distributed entry destroy Entry destroy. The destroy call is propagated to the server even if the entry is
not in the client cache.

Distributed region destroy/clear
(distributed only)

Region destroy/clear

Note: Invalidations on the client side are not forwarded to the server.

VMware GemFire 9.10 Documentation

VMware by Broadcom 582

Server-to-Client Event Distribution

The server automatically sends entry modification events only for keys in which the client has
registered interest. In the interest registration, the client indicates whether to send new values or
just invalidations for the server-side entry creates and updates. If invalidation is used, the client
then updates the values lazily as needed.

This figure shows the complete event subscription event distribution for interest registrations, with
value receipt requested (receiveValues=true) and without.

Client 1

Region A

pool-name = ServerPool

interest in X

receiveValues = true

Server

Region A

X

Cache Server

Client 2

X

Update/Create

Region A

pool-name = ServerPool

interest in X

receiveValues = false

pool “ServerPool”

(with subscriptions enabled)

pool “ServerPool”

(with subscriptions enabled)

Update/Create Invalidate

X X

Change in Server Cache Effect on Client Cache

Entry create/update For subscriptions with receiveValues set to true, entry
create or update.

For subscriptions with receiveValues set to false, entry
invalidate if the entry already exists in the client cache;
otherwise, no effect. The next client get for the entry is
forwarded to the server.

Entry invalidate/destroy (distributed only) Entry invalidate/destroy

Region destroy/clear (distributed only) Region destroy or local region clear

Server-side distributed operations are all operations that originate as a distributed operation in the
server or one of its peers. Region invalidation in the server is not forwarded to the client.

Note: To maintain a unified set of data in your servers, do not do local entry invalidation in your
server regions.

Server-to-Client Message Tracking

VMware GemFire 9.10 Documentation

VMware by Broadcom 583

The server uses an asynchronous messaging queue to send events to its clients. Every event in the
queue originates in an operation performed by a thread in a client, a server, or an application in the
server’s or some other cluster. The event message has a unique identifier composed of the
originating thread’s ID combined with its member’s distributed system member ID, and the
sequential ID of the operation. So the event messages originating in any single thread can be
grouped and ordered by time from lowest sequence ID to highest. Servers and clients track the
highest sequential ID for each member thread ID.

A single client thread receives and processes messages from the server, tracking received
messages to make sure it does not process duplicate sends. It does this using the process IDs from
originating threads.

Server

B

Client

3

A 12

A 11

B 2

A 10

A 9

B 1

send message

A-10

s
u
b
s
c
ri
p
ti
o
n
 q

u
e
u
e

thread op #

Server

B

Client

3

A 12

A 11

B 2

A 10

B 1

s
u
b
s
c
ri
p
ti
o
n
 q

u
e
u
e

thread op #

Stage 1 Stage 2

The client’s message tracking list holds the highest sequence ID of any message received for each
originating thread. The list can become quite large in systems where there are many different
threads coming and going and doing work on the cache. After a thread dies, its tracking entry is
not needed. To avoid maintaining tracking information for threads that have died, the client expires
entries that have had no activity for more than the subscription-message-tracking-timeout.

Client Interest Registration on the Server
The system processes client interest registration following these steps:

1. The entries in the client region that may be affected by this registration are silently
destroyed. Other keys are left alone.

VMware GemFire 9.10 Documentation

VMware by Broadcom 584

For the registerInterest method, the system destroys all of the specified keys,
leaving other keys in the client region alone. So if you have a client region with keys
A, B, and C and you register interest in the key list A, B, at the start of the
registerInterest operation, the system destroys keys A and B in the client cache
but does not touch key C.

For the registerInterestRegex method, the system silently destroys all keys in the
client region.

2. The interest specification is sent to the server, where it is added to the client’s interest list.
The list can specify entries that are not in the server region at the time interest is
registered.

3. If a bulk load is requested in the call’s InterestResultPolicy parameter, before control is
returned to the calling method, the server sends all data that currently satisfies the interest
specification. The client’s region is updated automatically with the downloaded data. If the
server region is partitioned, the entire partitioned region is used in the bulk load.
Otherwise, only the server’s local cache region is used. The interest results policy options
are:

KEYS—The client receives a bulk load of all available keys matching the interest
registration criteria.

KEYS_VALUES—The client receives a bulk load of all available keys and values
matching the interest registration criteria. This is the default interest result policy.

NONE—The client does not receive any immediate bulk loading.

Once interest is registered, the server continually monitors region activities and sends events to its
clients that match the interest.

No events are generated by the register interest calls, even if they load values into the
client cache.

The server maintains the union of all of the interest registrations, so if a client registers
interest in key ‘A’, then registers interest in regular expression “B*”, the server will send
updates for all entries with key ‘A’ or key beginning with the letter ‘B’.

The server maintains the interest registration list separate from the region. The list can
contain specifications for entries that are not currently in the server region.

The registerInterestRegex method uses the standard java.util.regex methods to parse
the key specification.

Server Failover

When a server hosting a subscription queue fails, the queueing responsibilities pass to another
server. How this happens depends on whether the new server is a secondary server. In any case,
all failover activities are carried out automatically by the VMware GemFire system.

Non-HA failover: The client fails over without high availability if it is not configured for
redundancy or if all secondaries also fail before new secondaries can be initialized. As soon
as it can attach to a server, the client goes through an automatic reinitialization process. In
this process, the failover code on the client side silently destroys all entries of interest to the
client and refetches them from the new server, essentially reinitializing the client cache

VMware GemFire 9.10 Documentation

VMware by Broadcom 585

from the new server’s cache. For the notify all configuration, this clears and reloads all of
the entries for the client regions that are connected to the server. For notify by
subscription, it clears and reloads only the entries in the region interest lists. To reduce
failover noise, the events caused by the local entry destruction and refetching are blocked
by the failover code and do not reach the client cache listeners. Because of this, your
clients could receive some out-of-sequence events during and after a server failover. For
example, entries that exist on the failed server and not on its replacement are destroyed
and never recreated during a failover. Because the destruction events are blocked, the
client ends up with entries removed from its cache with no associated destroy events.

HA failover: If your client pool is configured with redundancy and a secondary server is
available at the time the primary fails, the failover is invisible to the client. The secondary
server resumes queueing activities as soon as the primary loss is detected. The secondary
might resend a few events, which are discarded automatically by the client message
tracking activities.

Note: There is a very small potential for message loss during HA server failover. The risk is
not present for failover to secondaries that have fully initialized their subscription queue
data. The risk is extremely low in healthy systems that use at least two secondary servers.
The risk is higher in unstable systems where servers often fail and where secondaries do not
have time to initialize their subscription queue data before becoming primaries. To minimize
the risk, the failover logic chooses the longest-lived secondary as the new primary.

Note: Redundancy management is handled by the client, so when a durable client is
disconnected from the server, client event redundancy is not maintained. Even if the
servers fail one at a time, so that running clients have time to fail over and pick new
secondary servers, an offline durable client cannot fail over. As a result, the client loses its
queued messages.

Multi-Site (WAN) Event Distribution

VMware GemFire distributes a subset of cache events between clusters, with a minimum impact
on each system’s performance. Events are distributed only for regions that you configure to use a
gateway sender for distribution.

Queuing Events for Distribution

In regions that are configured with one or more gateway senders (gateway-sender-ids attribute),
events are automatically added to a gateway sender queue for distribution to other sites. Events
that are placed in a gateway sender queue are distributed asynchronously to remote sites. For
serial gateway queues, the ordering of events sent between sites can be preserved using the
order-policy attribute.

If a queue becomes too full, it is overflowed to disk to keep the member from running out of
memory. You can optionally configure the queue to be persisted to disk (with the enable-
persistence gateway-sender attribute). With persistence, if the member that manages the queue
goes down, the member picks up where it left off after it restarts.

Operation Distribution from a Gateway Sender

VMware GemFire 9.10 Documentation

VMware by Broadcom 586

The multi-site installation is designed for minimal impact on cluster performance, so only the
farthest-reaching entry operations are distributed between sites.

These operations are distributed:

entry create

entry put

entry distributed destroy, providing the operation is not an expiration action

These operations are not distributed:

get

invalidate

local destroy

expiration actions of any kind

region operations

How a Gateway Sender Processes Its Queue

Each primary gateway sender contains a processor thread that reads messages from the queue,
batches them, and distributes the batches to a gateway receiver in a remote site. To process the
queue, a gateway sender thread takes the following actions:

1. Reads messages from the queue

2. Creates a batch of the messages

3. Synchronously distributes the batch to the other site and waits for a reply

4. Removes the batch from the queue after the other site has successfully replied

Because the batch is not removed from the queue until after the other site has replied, the
message cannot get lost. On the other hand, in this mode a message could be processed more
than once. If a site goes offline in the middle of processing a batch of messages, then that same
batch will be sent again once the site is back online.

You can configure the batch size for messages as well as the batch time interval settings. A
gateway sender processes a batch of messages from the queue when either the batch size or the
time interval is reached. In an active network, it is likely that the batch size will be reached before
the time interval. In an idle network, the time interval will most likely be reached before the batch
size. This may result in some network latency that corresponds to the time interval.

How a Gateway Sender Handles Batch Processing Failure

Exceptions can occur at different points during batch processing:

The gateway receiver could fail with acknowledgment. If processing fails while the gateway
receiver is processing a batch, the receiver replies with a failure acknowledgment that
contains the exception, including the identity of the message that failed, and the ID of the
last message that it successfully processed. The gateway sender then removes the
successfully processed messages and the failed message from the queue and logs an

VMware GemFire 9.10 Documentation

VMware by Broadcom 587

exception with the failed message information. The sender then continues processing the
messages remaining in the queue.

The gateway receiver can fail without acknowledgment. If the gateway receiver does not
acknowledge a sent batch, the gateway sender does not know which messages were
successfully processed. In this case the gateway sender re-sends the entire batch.

No gateway receivers may be available for processing. If a batch processing exception
occurs because there are no remote gateway receivers available, then the batch remains in
the queue. The gateway sender waits for a time, and then attempts to re-send the batch.
The time period between attempts is five seconds. The existing server monitor continuously
attempts to connect to the gateway receiver, so that a connection can be made and queue
processing can continue. Messages build up in the queue and possibly overflow to disk
while waiting for the connection.

List of Event Handlers and Events

VMware GemFire provides many types of events and event handlers to help you manage your
different data and application needs.

Event Handlers

Use either cache handlers or membership handlers in any single application. Do not use both. The
event handlers in this table are cache handlers unless otherwise noted.

Handler API Events received Description

AsyncEventListener AsyncEvent
Tracks changes in a region for write-behind processing.
Extends the CacheCallback interface. You install a write-
back cache listener to an AsyncEventQueue instance. You
can then add the AsyncEventQueue instance to one or
more regions for write-behind processing. See
Implementing an AsyncEventListener for Write-Behind
Cache Event Handling.

CacheCallback Superinterface of all cache event listeners. Functions only
to clean up resources that the callback allocated.

CacheListener RegionEvent, EntryEvent Tracks changes to region and its data entries. Responds
synchronously. Extends CacheCallback interface. Installed
in region. Receives only local cache events. Install one in
every member where you want the events handled by this
listener. In a partitioned region, the cache listener only
fires in the primary data store. Listeners on secondaries
are not fired.

CacheWriter RegionEvent, EntryEvent Receives events for pending changes to the region and its
data entries in this member or one of its peers. Has the
ability to cancel the operations in question. Extends
CacheCallback interface. Installed in region. Receives
events from anywhere in the distributed region, so you can
install one in one member for the entire distributed region.
Receives events only in primary data store in partitioned
regions, so install one in every data store.

VMware GemFire 9.10 Documentation

VMware by Broadcom 588

Handler API Events received Description

ClientMembershipListene

r

ClientMembershipEvent One of the interfaces that replaces the deprecated Admin
APIs. You can use the ClientMembershipListener to receive
membership events only about clients. This listener's
callback methods are invoked when this process detects
connection changes to clients. Callback methods include
memberCrashed, memberJoined, memberLeft (graceful exit).

CqListener CqEvent Receives events from the server cache that satisfy a client-
specified query. Extends CacheCallback interface.
Installed in the client inside a CqQuery.

GatewayConflictResolver TimestampedEntryEvent Decides whether to apply a potentially conflicting event
to a region that is distributed over a WAN configuration.
This event handler is called only when the distributed
system ID of an update event is different from the ID that
last updated the region entry.

MembershipListener MembershipEvent Use this interface to receive membership events only
about peers. This listener's callback methods are invoked
when peer members join or leave the cluster. Callback
methods include memberCrashed, memberJoined, and
memberLeft (graceful exit).

RegionMembershipListene

r

RegionEvent Provides after-event notification when a region with the
same name has been created in another member and
when other members hosting the region join or leave the
cluster. Extends CacheCallback and CacheListener.
Installed in region as a CacheListener.

TransactionListener TransactionEvent with
embedded list of
EntryEvent

Tracks the outcome of transactions and changes to data
entries in the transaction.

Extends CacheCallback interface. Installed in cache using
transaction manager. Works with region-level listeners if
needed.

TransactionWriter TransactionEvent with
embedded list of
EntryEvent

Receives events for pending transaction commits. Has the
ability to cancel the transaction. Extends CacheCallback
interface. Installed in cache using transaction manager. At
most one writer is called per transaction. Install a writer in
every transaction host.

UniversalMembershipList

enerAdapter

MembershipEvent and
ClientMembershipEvent

One of the interfaces that replaces the deprecated Admin
APIs. Provides a wrapper for MembershipListener and
ClientMembershipListener callbacks for both clients and
peers.

Note:

Multiple transactions on the same
cache can cause concurrent invocation
of TransactionListener methods, so
implement methods that do the
appropriate synchronizing of the
multiple threads for thread-safe
operation.

VMware GemFire 9.10 Documentation

VMware by Broadcom 589

Events

The events in this table are cache events unless otherwise noted.

Event Passed to handler ... Description

AsyncEvent AsyncEventListener Provides information about a single event in the cache for
asynchronous, write-behind processing.

CacheEvent Superinterface to RegionEvent and EntryEvent. This
defines common event methods, and contains data
needed to diagnose the circumstances of the event,
including a description of the operation being performed,
information about where the event originated, and any
callback argument passed to the method that generated
this event.

ClientMembershipEvent ClientMembershipListene

r

An event delivered to a ClientMembershipListener when
this process detects connection changes to servers or
clients.

CqEvent CqListener Provides information about a change to the results of a
continuous query running on a server on behalf of a client.
CqEvents are processed on the client.

EntryEvent CacheListener,
CacheWriter,
TransactionListener

(inside the
TransactionEvent)

Extends CacheEvent for entry events. Contains information
about an event affecting a data entry in the cache. The
information includes the key, the value before this event,
and the value after this event. EntryEvent.getNewValue
returns the current value of the data entry.
EntryEvent.getOldValue returns the value before this
event if it is available. For a partitioned region, returns the
old value if the local cache holds the primary copy of the
entry. EntryEvent provides the VMware GemFire
transaction ID if available.

You can retrieve serialized values from EntryEvent using
the getSerialized* methods. This is useful if you get
values from one region’s events just to put them into a
separate cache region. There is no counterpart put
function as the put recognizes that the value is serialized
and bypasses the serialization step.

MembershipEvent

(membership event)
MembershipListener

An event that describes the member that originated this
event. Instances of this are delivered to a
MembershipListener when a member has joined or left
the cluster.

RegionEvent CacheListener,
CacheWriter,
RegionMembershipListene

r

Extends CacheEvent for region events. Provides
information about operations that affect the whole region,
such as reinitialization of the region after being destroyed.

TimestampedEntryEvent GatewayConflictResolver Extends EntryEvent to include a timestamp and
distributed system ID associated with the event. The
conflict resolver can compare the timestamp and ID in the
event with the values stored in the entry to decide whether
the local system should apply the potentially conflicting
event.

VMware GemFire 9.10 Documentation

VMware by Broadcom 590

Event Passed to handler ... Description

TransactionEvent TransactionListener,
TransactionWriter

Describes the work done in a transaction. This event may
be for a pending or committed transaction, or for the
work abandoned by an explicit rollback or failed commit.
The work is represented by an ordered list of EntryEvent
instances. The entry events are listed in the order in which
the operations were performed in the transaction.

As the transaction operations are performed, the entry
events are conflated, with only the last event for each
entry remaining in the list. So if entry A is modified, then
entry B, then entry A, the list will contain the event for
entry B followed by the second event for entry A.

Implementing VMware GemFire Event Handlers

You can specify event handlers for region and region entry operations and for administrative
events.

Implementing Cache Event Handlers

Depending on your installation and configuration, cache events can come from local
operations, peers, servers, and remote sites. Event handlers register their interest in one or
more events and are notified when the events occur.

Implementing an AsyncEventListener for Write-Behind Cache Event Handling

An AsyncEventListener asynchronously processes batches of events after they have been
applied to a region. You can use an AsyncEventListener implementation as a write-behind
cache event handler to synchronize region updates with a database.

How to Safely Modify the Cache from an Event Handler Callback

Event handlers are synchronous. If you need to change the cache or perform any other
distributed operation from event handler callbacks, be careful to avoid activities that might
block and affect your overall system performance.

Cache Event Handler Examples

Some examples of cache event handlers.

Implementing Cache Event Handlers

Depending on your installation and configuration, cache events can come from local operations,
peers, servers, and remote sites. Event handlers register their interest in one or more events and
are notified when the events occur.

For each type of handler, VMware GemFire provides a convenience class with empty stubs for the
interface callback methods.

Note: Write-behind cache listeners are created by extending the AsyncEventListener interface,
and they are configured with an AsyncEventQueue that you assign to one or more regions.

Procedure

VMware GemFire 9.10 Documentation

VMware by Broadcom 591

1. Decide which events your application needs to handle. For each region, decide which
events you want to handle. For the cache, decide whether to handle transaction events.

2. For each event, decide which handlers to use. The *Listener and *Adapter classes in
org.apache.geode.cache.util show the options.

3. Program each event handler:

1. Extend the handler’s adapter class.

2. If you want to declare the handler in the cache.xml, implement the
org.apache.geode.cache.Declarable interface as well.

3. Implement the handler’s callback methods as needed by your application.

Note: Improperly programmed event handlers can block your distributed system.
Cache events are synchronous. To modify your cache or perform distributed
operations based on events, avoid blocking your system by following the guidelines
in How to Safely Modify the Cache from an Event Handler Callback.

Example:

package myPackage;

import org.apache.geode.cache.Declarable;

import org.apache.geode.cache.EntryEvent;

import org.apache.geode.cache.util.CacheListenerAdapter;

import java.util.Properties;

public class MyCacheListener extends CacheListenerAdapter implements Decl

arable {

/** Processes an afterCreate event.

 * @param event The afterCreate EntryEvent received

*/

 public void afterCreate(EntryEvent event) {

 String eKey = event.getKey();

 String eVal = event.getNewValue();

 ... do work with event info

 }

 ... process other event types

}

4. Install the event handlers, either through the API or the cache.xml.

XML Region Event Handler Installation:

<region name="trades">

 <region-attributes ... >

 <!-- Cache listener -->

 <cache-listener>

 <class-name>myPackage.MyCacheListener</class-name>

 <cache-listener>

 </region-attributes>

</region>

Java Region Event Handler Installation:

VMware GemFire 9.10 Documentation

VMware by Broadcom 592

tradesRegion = cache.createRegionFactory(RegionShortcut.PARTITION)

 .addCacheListener(new MyCacheListener())

 .create("trades");

XML Transaction Writer and Listener Installation:

<cache search-timeout="60">

 <cache-transaction-manager>

 <transaction-listener>

 <class-name>com.company.data.MyTransactionListener</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

 </transaction-listener>

 <transaction-listener>

 . . .

 </transaction-listener>

 <transaction-writer>

 <class-name>com.company.data.MyTransactionWriter</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

 <parameter

 ...

 </parameter>

 </transaction-writer>

 </cache-transaction-manager>

 . . .

</cache>

The event handlers are initialized automatically during region creation when you start the member.

Installing Multiple Listeners on a Region

XML:

<region name="exampleRegion">

 <region-attributes>

 . . .

 <cache-listener>

 <class-name>myCacheListener1</class-name>

 </cache-listener>

 <cache-listener>

 <class-name>myCacheListener2</class-name>

 </cache-listener>

 <cache-listener>

 <class-name>myCacheListener3</class-name>

 </cache-listener>

 </region-attributes>

</region>

API:

CacheListener listener1 = new myCacheListener1();

CacheListener listener2 = new myCacheListener2();

CacheListener listener3 = new myCacheListener3();

VMware GemFire 9.10 Documentation

VMware by Broadcom 593

Region nr = cache.createRegionFactory()

 .initCacheListeners(new CacheListener[]

 {listener1, listener2, listener3})

 .setScope(Scope.DISTRIBUTED_NO_ACK)

 .create(name);

Implementing an AsyncEventListener for Write-Behind
Cache Event Handling
An AsyncEventListener asynchronously processes batches of events after they have been applied
to a region. You can use an AsyncEventListener implementation as a write-behind cache event
handler to synchronize region updates with a database.

How an AsyncEventListener Works
An AsyncEventListener instance is serviced by its own dedicated thread in which a callback method
is invoked. Events that update a region are placed in an internal AsyncEventQueue, and one or more
threads dispatch batches of events at a time to the listener implementation.

You can configure an AsyncEventQueue to be either serial or parallel. A serial queue is deployed to
one VMware GemFire member, and it delivers all of a region’s events, in order of occurrence, to a
configured AsyncEventListener implementation. A parallel queue is deployed to multiple VMware
GemFire members, and each instance of the queue delivers region events, possibly simultaneously,
to a local AsyncEventListener implementation.

While a parallel queue provides the best throughput for writing events, it provides less control for
ordering those events. With a parallel queue, you cannot preserve event ordering for a region as a
whole because multiple VMware GemFire servers queue and deliver the region’s events at the
same time. However, the ordering of events for a given partition (or for a given queue of a
distributed region) can be preserved.

For both serial and parallel queues, you can control the maximum amount of memory that each
queue uses, as well as the batch size and frequency for processing batches in the queue. You can
also configure queues to persist to disk (instead of simply overflowing to disk) so that write-behind
caching can pick up where it left off when a member shuts down and is later restarted.

Optionally, a queue can use multiple threads to dispatch queued events. When you configure
multiple threads for a serial queue, the logical queue that is hosted on a VMware GemFire member
is divided into multiple physical queues, each with a dedicated dispatcher thread. You can then
configure whether the threads dispatch queued events by key, by thread, or in the same order in
which events were added to the queue. When you configure multiple threads for a parallel queue,
each queue hosted on a VMware GemFire member is processed by dispatcher threads; the total
number of queues created depends on the number of members that host the region.

A GatewayEventFilter can be placed on the AsyncEventQueue to control whether a particular event
is sent to a selected AsyncEventListener. For example, events associated with sensitive data could
be detected and not queued. For more detail, see the Javadocs for GatewayEventFilter.

A GatewayEventSubstitutionFilter can specify whether the event is transmitted in its entirety or
in an altered representation. For example, to reduce the size of the data being serialized, it might

VMware GemFire 9.10 Documentation

VMware by Broadcom 594

be a more efficient to represent a full object by only its key. For more detail, see the Javadocs for
GatewayEventSubstitutionFilter.

Operation Distribution from an AsyncEventQueue

An AsyncEventQueue distributes these operations:

Entry create

Entry put

Entry distributed destroy, providing the operation is not an expiration action

Expiration destroy, if the forward-expiration-destroy attribute is set to true. By default,
this attribute is false, but you can set it to true using cache.xml or gfsh. To set this
attribute in the Java API, use AsyncEventQueueFactory.setForwardExpirationDestroy().
See the javadocs for details.

These operations are not distributed:

Get

Invalidate

Local destroy

Region operations

Expiration actions

Expiration destroy, if the forward-expiration-destroy attribute is set to false. The default
value is false.

Guidelines for Using an AsyncEventListener

Review the following guidelines before using an AsyncEventListener:

If you use an AsyncEventListener to implement a write-behind cache listener, your code
should check for the possibility that an existing database connection may have been closed
due to an earlier exception. For example, check for Connection.isClosed() in a catch block
and re-create the connection as needed before performing further operations.

Use a serial AsyncEventQueue if you need to preserve the order of region events within a
thread when delivering events to your listener implementation. Use parallel queues when
the order of events within a thread is not important, and when you require maximum
throughput for processing events. In both cases, serial and parallel, the order of operations
on a given key is preserved within the scope of the thread.

You must install the AsyncEventListener implementation on a VMware GemFire member
that hosts the region whose events you want to process.

If you configure a parallel AsyncEventQueue, deploy the queue on each VMware GemFire
member that hosts the region.

You can install a listener on more than one member to provide high availability and
guarantee delivery for events, in the event that a member with the active
AsyncEventListener shuts down. At any given time only one member has an active listener

VMware GemFire 9.10 Documentation

VMware by Broadcom 595

for dispatching events. The listeners on other members remain on standby for redundancy.
For best performance and most efficient use of memory, install only one standby listener
(redundancy of at most one).

Install no more than one standby listener (redundancy of at most one) for performance and
memory reasons.

To preserve pending events through member shutdowns, configure VMware GemFire to
persist the internal queue of the AsyncEventListener to an available disk store. By default,
any pending events that reside in the internal queue of an AsyncEventListener are lost if
the active listener’s member shuts down.

To ensure high availability and reliable delivery of events, configure the event queue to be
both persistent and redundant.

Implementing an AsyncEventListener

To receive region events for processing, you create a class that implements the
AsyncEventListener interface. The processEvents method in your listener receives a list of queued
AsyncEvent objects in each batch.

Each AsyncEvent object contains information about a region event, such as the name of the region
where the event occurred, the type of region operation, and the affected key and value.

The basic framework for implementing a write-behind event handler involves iterating through the
batch of events and writing each event to a database. For example:

class MyAsyncEventListener implements AsyncEventListener {

 public boolean processEvents(List<AsyncEvent> events) {

 // Process each AsyncEvent

 for(AsyncEvent event: events) {

 // Write the event to a database

 }

 }

}

Processing AsyncEvents

Use the AsyncEventListener.processEvents method to process AsyncEvents. This method is called
asynchronously when events are queued to be processed. The size of the list reflects the number
of batch events where batch size is defined in the AsyncEventQueueFactory. The processEvents
method returns a boolean; true if the AsyncEvents are processed correctly, and false if any events
fail processing. As long as processEvents returns false, VMware GemFire continues to re-try
processing the events.

You can use the getDeserializedValue method to obtain cache values for entries that have been
updated or created. Since the getDeserializedValue method will return a null value for destroyed

VMware GemFire 9.10 Documentation

VMware by Broadcom 596

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/asyncqueue/AsyncEventListener.html

entries, you should use the getKey method to obtain references to cache objects that have been
destroyed. Here’s an example of processing AsyncEvents:

public boolean processEvents(@SuppressWarnings("rawtypes") List<AsyncEvent> list)

 {

 logger.log (Level.INFO, String.format("Size of List<GatewayEvent> = %s", list.siz

e()));

 List<JdbcBatch> newEntries = new ArrayList<JdbcBatch>();

 List<JdbcBatch> updatedEntries = new ArrayList<JdbcBatch>();

 List<String> destroyedEntries = new ArrayList<String>();

 int possibleDuplicates = 0;

 for (@SuppressWarnings("rawtypes") AsyncEvent ge: list)

 {

 if (ge.getPossibleDuplicate())

 possibleDuplicates++;

 if (ge.getOperation().equals(Operation.UPDATE))

 {

 updatedEntries.add((JdbcBatch) ge.getDeserializedValue());

 }

 else if (ge.getOperation().equals(Operation.CREATE))

 {

 newEntries.add((JdbcBatch) ge.getDeserializedValue());

 }

 else if (ge.getOperation().equals(Operation.DESTROY))

 {

 destroyedEntries.add(ge.getKey().toString());

 }

 }

Configuring an AsyncEventListener

To configure a write-behind cache listener, you first configure an asynchronous queue to dispatch
the region events, and then create the queue with your listener implementation. You then assign
the queue to a region in order to process that region’s events.

Procedure

1. Configure a unique AsyncEventQueue with the name of your listener implementation. You
can optionally configure the queue for parallel operation, persistence, batch size, and
maximum memory size. See WAN Configuration for more information.

gfsh configuration

gfsh>create async-event-queue --id=sampleQueue --persistent --disk-store=exampl

eStore --listener=com.myCompany.MyAsyncEventListener --listener-param=url#jdbc:

db2:SAMPLE,username#gfeadmin,password#admin1

The parameters for this command uses the following syntax:

create async-event-queue --id=value --listener=value [--group=value] [--batch-s

ize=value]

VMware GemFire 9.10 Documentation

VMware by Broadcom 597

[--persistent(=value)?] [--disk-store=value] [--max-queue-memory=value] [--list

ener-param=value(,value)*]

For more information, see create async-event-queue.

cache.xml Configuration

<cache>

 <async-event-queue id="sampleQueue" persistent="true"

 disk-store-name="exampleStore" parallel="false">

 <async-event-listener>

 <class-name>MyAsyncEventListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </async-event-listener>

 </async-event-queue>

...

</cache>

Java Configuration

Cache cache = new CacheFactory().create();

AsyncEventQueueFactory factory = cache.createAsyncEventQueueFactory();

factory.setPersistent(true);

factory.setDiskStoreName("exampleStore");

factory.setParallel(false);

AsyncEventListener listener = new MyAsyncEventListener();

AsyncEventQueue asyncQueue = factory.create("sampleQueue", listener);

2. If you are using a parallel AsyncEventQueue, the gfsh example above requires no alteration,
as gfsh applies to all members. If using cache.xml or the Java API to configure your
AsyncEventQueue, repeat the above configuration in each VMware GemFire member that
will host the region. Use the same ID and configuration settings for each queue
configuration. Note: You can ensure other members use the sample configuration by using
the cluster configuration service available in gfsh. See Overview of the Cluster Configuration
Service.

3. On each VMware GemFire member that hosts the AsyncEventQueue, assign the queue to
each region that you want to use with the AsyncEventListener implementation.

gfsh Configuration

gfsh>create region --name=Customer --async-event-queue-id=sampleQueue

Note that you can specify multiple queues on the command line in a comma-delimited list.

cache.xml Configuration

<cache>

<region name="Customer">

VMware GemFire 9.10 Documentation

VMware by Broadcom 598

 <region-attributes async-event-queue-ids="sampleQueue">

 </region-attributes>

 </region>

...

</cache>

Java Configuration

RegionFactory rf1 = cache.createRegionFactory();

rf1.addAsyncEventQueue(sampleQueue);

Region customer = rf1.create("Customer");

// Assign the queue to multiple regions as needed

RegionFactory rf2 = cache.createRegionFactory();

rf2.addAsyncEventQueue(sampleQueue);

Region order = rf2.create("Order");

Using the Java API, you can also add and remove queues to regions that have already been
created:

AttributesMutator mutator = order.getAttributesMutator();

mutator.addAsyncEventQueueId("sampleQueue");

See the VMware GemFire API documentation for more information.

4. Optionally configure persistence and conflation for the queue. Note: You must configure
your AsyncEventQueue to be persistent if you are using persistent data regions. Using a
non-persistent queue with a persistent region is not supported.

5. Optionally configure multiple dispatcher threads and the ordering policy for the queue using
the instructions in Configuring Dispatcher Threads and Order Policy for Event Distribution.

The AsyncEventListener receives events from every region configured with the associated
AsyncEventQueue.

How to Safely Modify the Cache from an Event Handler
Callback

Event handlers are synchronous. If you need to change the cache or perform any other distributed
operation from event handler callbacks, be careful to avoid activities that might block and affect
your overall system performance.

Operations to Avoid in Event Handlers

Do not perform distributed operations of any kind directly from your event handler. VMware
GemFire is a highly distributed system and many operations that may seem local invoke distributed
operations.

These are common distributed operations that can get you into trouble:

Calling Region methods, on the event’s region or any other region.

Using the VMware GemFire DistributedLockService.

Modifying region attributes.

VMware GemFire 9.10 Documentation

VMware by Broadcom 599

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/AttributesMutator.html

Executing a function through the VMware GemFire FunctionService.

To be on the safe side, do not make any calls to the VMware GemFire API directly from your event
handler. Make all VMware GemFire API calls from within a separate thread or executor.

How to Perform Distributed Operations Based on Events

If you need to use the VMware GemFire API from your handlers, make your work asynchronous to
the event handler. You can spawn a separate thread or use a solution like the
java.util.concurrent.Executor interface.

This example shows a serial executor where the callback creates a Runnable that can be pulled off a
queue and run by another object. This preserves the ordering of events.

public void afterCreate(EntryEvent event) {

 final Region otherRegion = cache.getRegion("/otherRegion");

 final Object key = event.getKey();

 final Object val = event.getNewValue();

 serialExecutor.execute(new Runnable() {

 public void run() {

 try {

 otherRegion.create(key, val);

 }

 catch (org.apache.geode.cache.RegionDestroyedException e) {

 ...

 }

 catch (org.apache.geode.cache.EntryExistsException e) {

 ...

 }

 }

 });

 }

For additional information on the Executor, see the SerialExecutor example on the Oracle Java
web site.

Cache Event Handler Examples

Some examples of cache event handlers.

Declaring and Loading an Event Handler with Parameters

This declares an event handler for a region in the cache.xml. The handler is a cache listener
designed to communicate changes to a DB2 database. The declaration includes the listener’s
parameters, which are the database path, username, and password.

<region name="exampleRegion">

 <region-attributes>

 . . .

 <cache-listener>

 <class-name>JDBCListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

VMware GemFire 9.10 Documentation

VMware by Broadcom 600

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </cache-listener>

 </region-attributes>

 </region>

This code listing shows part of the implementation of the JDBCListener declared in the cache.xml.
This listener implements the Declarable interface. When an entry is created in the cache, this
listener’s afterCreate callback method is triggered to update the database. Here the listener’s
properties, provided in the cache.xml, are passed into the Declarable.init method and used to
create a database connection.

. . .

public class JDBCListener

extends CacheListenerAdapter

implements Declarable {

 public void afterCreate(EntryEvent e) {

 . . .

 // Initialize the database driver and connection using input parameters

 Driver driver = (Driver) Class.forName(DRIVER_NAME).newInstance();

 Connection connection =

 DriverManager.getConnection(_url, _username, _password);

 System.out.println(_connection);

 . . .

 }

 . . .

 public void init(Properties props) {

 this._url = props.getProperty("url");

 this._username = props.getProperty("username");

 this._password = props.getProperty("password");

 }

}

Installing an Event Handler Through the API

This listing defines a cache listener using the RegionFactory method addCacheListener.

Region newReg = cache.createRegionFactory()

 .addCacheListener(new SimpleCacheListener())

 .create(name);

You can create a cache writer similarly, using the RegionFactory method setCacheWriter, like this:

Region newReg = cache.createRegionFactory()

 .setCacheWriter(new SimpleCacheWriter())

 .create(name);

VMware GemFire 9.10 Documentation

VMware by Broadcom 601

Installing Multiple Listeners on a Region

XML:

<region name="exampleRegion">

 <region-attributes>

 . . .

 <cache-listener>

 <class-name>myCacheListener1</class-name>

 </cache-listener>

 <cache-listener>

 <class-name>myCacheListener2</class-name>

 </cache-listener>

 <cache-listener>

 <class-name>myCacheListener3</class-name>

 </cache-listener>

 </region-attributes>

</region>

API:

CacheListener listener1 = new myCacheListener1();

CacheListener listener2 = new myCacheListener2();

CacheListener listener3 = new myCacheListener3();

Region nr = cache.createRegionFactory()

 .initCacheListeners(new CacheListener[]

 {listener1, listener2, listener3})

 .setScope(Scope.DISTRIBUTED_NO_ACK)

 .create(name);

Installing a Write-Behind Cache Listener

//AsyncEventQueue with listener that performs WBCL work

<cache>

 <async-event-queue id="sampleQueue" persistent="true"

 disk-store-name="exampleStore" parallel="false">

 <async-event-listener>

 <class-name>MyAsyncListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </async-event-listener>

 </async-event-queue>

// Add the AsyncEventQueue to region(s) that use the WBCL

 <region name="data">

 <region-attributes async-event-queue-ids="sampleQueue">

 </region-attributes>

VMware GemFire 9.10 Documentation

VMware by Broadcom 602

 </region>

</cache>

Configuring Peer-to-Peer Event Messaging

You can receive events from cluster peers for any region that is not a local region. Local regions
receive only local cache events.

Peer distribution is done according to the region’s configuration.

Replicated regions always receive all events from peers and require no further
configuration. Replicated regions are configured using the REPLICATE region shortcut
settings.

For non-replicated regions, decide whether you want to receive all entry events from the
distributed cache or only events for the data you have stored locally. To configure:

To receive all events, set the subscription-attributes interest-policy to all:

<region-attributes>

 <subscription-attributes interest-policy="all"/>

</region-attributes>

To receive events just for the data you have stored locally, set the subscription-
attributes interest-policy to cache-content or do not set it (cache-content is the
default):

<region-attributes>

 <subscription-attributes interest-policy="cache-content"/>

</region-attributes>

For partitioned regions, this only affects the receipt of events, as the data is stored
according to the region partitioning. Partitioned regions with interest policy of all can
create network bottlenecks, so if you can, run listeners in every member that hosts the
partitioned region data and use the cache-content interest policy.

Note: You can also configure Regions using the gfsh command-line interface. See Region
Commands.

Configuring Client/Server Event Messaging
You can receive events from your servers for server-side cache events and query result changes.

For cache updates, you can configure to receive entry keys and values or just entry keys, with the
data retrieved lazily when requested. The queries are run continuously against server cache events,
with the server sending the deltas for your query result sets.

Before you begin, set up your client/server installation and configure and program your basic event
messaging.

Servers receive updates for all entry events in their client’s client regions.

To receive entry events in the client from the server:

1. Set the client pool subscription-enabled to true. See <pool>.

VMware GemFire 9.10 Documentation

VMware by Broadcom 603

2. Program the client to register interest in the entries you need.

Note: This must be done through the API.

Register interest in all keys, a key list, individual keys, or by comparing key strings to regular
expressions. By default, no entries are registered to receive updates. Specify whether the
server is to send values with entry update events. Interest registration is only available
through the API.

1. Get an instance of the region where you want to register interest.

2. Use the region’s registerInterest* methods to specify the entries you want.
Examples:

// Register interest in a single key and download its entry

// at this time, if it is available in the server cache

Region region1 = . . . ;

region1.registerInterest("key-1");

// Register Interest in a List of Keys but do not do an initial bulk load

// do not send values for creater/update events - just send key with inva

lidation

Region region2 = . . . ;

List list = new ArrayList();

list.add("key-1");

list.add("key-2");

list.add("key-3");

list.add("key-4");

region2.registerInterestForKeys(list, InterestResultPolicy.NONE, false);

// Register interest in all keys and download all available keys now

Region region3 = . . . ;

region3.registerInterestForAllKeys(InterestResultPolicy.KEYS);

// Register Interest in all keys matching a regular expression

Region region1 = . . . ;

region1.registerInterestRegex("[a-zA-Z]+_[0-9]+");

You can call the register interest methods multiple times for a single region. Each
interest registration adds to the server’s list of registered interest criteria for the
client. So if a client registers interest in key ‘A’, then registers interest in regular
expression “B*”, the server will send updates for all entries with key ‘A’ or key
beginning with the letter ‘B’.

3. For highly available event messaging, configure server redundancy. See Configuring
Highly Available Servers.

4. To have events enqueued for your clients during client downtime, configure durable
client/server messaging.

5. Write any continuous queries (CQs) that you want to run to receive continuously
streaming updates to client queries. CQ events do not update the client cache. If
you have dependencies between CQs and/or interest registrations, so that you
want the two types of subscription events to arrive as closely together on the client,
use a single server pool for everything. Using different pools can lead to time

VMware GemFire 9.10 Documentation

VMware by Broadcom 604

differences in the delivery of events because the pools might use different servers
to process and deliver the event messages.

Configuring Highly Available Servers

With highly-available servers, one of the backups steps in and takes over messaging with no
interruption in service if the client’s primary server crashes.

To configure high availability, set the subscription-redundancy in the client’s pool configuration.
This setting indicates the number of secondary servers to use. For example:

<!-- Run one secondary server -->

<pool name="red1" subscription-enabled="true" subscription-redundancy="1">

 <locator host="nick" port="41111"/>

 <locator host="nora" port="41111"/>

</pool>

<!-- Use all available servers as secondaries. One is primary, the rest are secondarie

s -->

<pool name="redX" subscription-enabled="true" subscription-redundancy="-1">

 <locator host="nick" port="41111"/>

 <locator host="nora" port="41111"/>

</pool>

When redundancy is enabled, secondary servers maintain queue backups while the primary server
pushes events to the client. If the primary server fails, one of the secondary servers steps in as
primary to provide uninterrupted event messaging to the client.

The following table describes the different values for the subscription-redundancy setting:

subscription-redundancy Description

0 No secondary servers are configured, so high availability is disabled.

> 0 Sets the precise number of secondary servers to use for backup to the primary.

-1 Every server that is not the primary is to be used as a secondary.

Highly Available Client/Server Event Messaging
With server redundancy, each pool has a primary server and some number of secondaries. The
primaries and secondaries are assigned on a per-pool basis and are generally spread out for load
balancing, so a single client with multiple pools may have primary queues in more than one server.

The primary server pushes events to clients and the secondaries maintain queue backups. If the
primary server fails, one of the secondaries becomes primary to provide uninterrupted event
messaging.

For example, if there are six servers running and subscription-redundancy is set to two, one server
is the primary, two servers are secondary, and the remaining three do not actively participate in HA
for the client. If the primary server fails, the system assigns one of the secondaries as the new
primary and attempts to add another server to the secondary pool to retain the initial redundancy
level. If no new secondary server is found, then the redundancy level is not satisfied but the failover
procedure completes successfully. As soon as another secondary is available, it is added.

VMware GemFire 9.10 Documentation

VMware by Broadcom 605

When high availability is enabled:

The primary server sends event messages to the clients.

Periodically, the clients send received messages to the server and the server removes the
sent messages from its queues.

Periodically, the primary server synchronizes with its secondaries, notifying them of
messages that can be discarded because they have already been sent and received. There
is a lag in notification, so the secondary servers remain only roughly synchronized with the
primary. Secondary queues contain all messages that are contained in the primary queue
plus possibly a few messages that have already been sent to clients.

In the case of primary server failure, one of the secondaries becomes the primary and
begins sending event messages from its queues to the clients. Immediately after failover,
the new primary usually resends some messages that were already sent by the old primary.
The client recognizes these as duplicates and discards them.

In stage 1 of this figure, the primary sends an event message to the client and a synchronization
message to its secondary. By stage 2, the secondary and client have updated their queue and
message tracking information. If the primary failed at stage two, the secondary would start sending
event messages from its queue beginning with message A10. The client would discard the resend
of message A10 and then process subsequent messages as usual.

Change Server Queue Synchronization Frequency

VMware GemFire 9.10 Documentation

VMware by Broadcom 606

By default, the primary server sends queue synchronization messages to the secondaries every
second. You can change this interval with the gfsh alter runtime command

Set the interval for queue synchronization messages as follows:

gfsh:

gfsh>alter runtime --message-sync-interval=2

XML:

<!-- Set sync interval to 2 seconds -->

<cache ... message-sync-interval="2" />

Java:

cache = CacheFactory.create();

cache.setMessageSyncInterval(2);

The ideal setting for this interval depends in large part on your application behavior. These are the
benefits of shorter and longer interval settings:

A shorter interval requires less memory in the secondary servers because it reduces queue
buildup between synchronizations. In addition, fewer old messages in the secondary queues
means reduced message re-sends after a failover. These considerations are most important
for systems with high data update rates.

A longer interval requires fewer distribution messages between the primary and secondary,
which benefits overall system performance.

Set Frequency of Orphan Removal from the Secondary
Queues
Usually, all event messages are removed from secondary subscription queues based on the
primary’s synchronization messages. Occasionally, however, some messages are orphaned in the
secondary queues. For example, if a primary fails in the middle of sending a synchronization
message to its secondaries, some secondaries might receive the message and some might not. If
the failover goes to a secondary that did receive the message, the system will have secondary
queues holding messages that are no longer in the primary queue. The new primary will never
synchronize on these messages, leaving them orphaned in the secondary queues.

To make sure these messages are eventually removed, the secondaries expire all messages that
have been enqueued longer than the time indicated by the servers’ message-time-to-live.

Set the time-to-live as follows:

XML:

<!-- Set message ttl to 5 minutes -->

<cache-server port="41414" message-time-to-live="300" />

Java:

VMware GemFire 9.10 Documentation

VMware by Broadcom 607

Cache cache = ...;

CacheServer cacheServer = cache.addCacheServer();

cacheServer.setPort(41414);

cacheServer.setMessageTimeToLive(200);

cacheServer.start();

Implementing Durable Client/Server Messaging

Use durable messaging for subscriptions that you need maintained for your clients even when your
clients are down or disconnected. You can configure any of your event subscriptions as durable.
Events for durable queries and subscriptions are saved in a queue when the client is disconnected
and played back when the client reconnects. Other queries and subscriptions are removed from
the queue.

Use durable messaging for client/server installations that use event subscriptions.

These are the high-level tasks described in this topic:

1. Configure your client as durable

2. Decide which subscriptions should be durable and configure accordingly

3. Program your client to manage durable messaging for disconnect, reconnect, and event
handling

Configure the Client as Durable

Use one of the following methods:

gemfire.properties file:

durable-client-id=31

durable-client-timeout=200

Java:

Properties props = new Properties();

props.setProperty("durable-client-id", "31");

props.setProperty("durable-client-timeout", "" + 200);

CacheFactory cf = new CacheFactory(props);

The durable-client-id indicates that the client is durable and gives the server an identifier to
correlate the client to its durable messages. For a non-durable client, this id is an empty string. The
ID can be any number that is unique among the clients attached to servers in the same cluster.

The durable-client-timeout tells the server how long to wait for client reconnect. When this
timeout is reached, the server stops storing to the client’s message queue and discards any stored
messages. The default is 300 seconds. This is a tuning parameter. If you change it, take into
account the normal activity of your application, the average size of your messages, and the level of
risk you can handle, both in lost messages and in the servers’ capacity to store enqueued
messages. Assuming that no messages are being removed from the queue, how long can the
server run before the queue reaches the maximum capacity? How many durable clients can the

VMware GemFire 9.10 Documentation

VMware by Broadcom 608

server handle? To assist with tuning, use the VMware GemFire message queue statistics for
durable clients through the disconnect and reconnect cycles.

Configure Durable Subscriptions and Continuous Queries

The register interest and query creation methods all have an optional boolean parameter for
indicating durability. By default all are non-durable.

// Durable registration

// Define keySpecification, interestResultPolicy, durability

exampleRegion.registerInterest(keySpecification, interestResultPolicySpecification, tr

ue);

// Durable CQ

// Define cqName, queryString, cqAttributes, durability

CqQuery myCq = queryService.newCq(cqName, queryString, cqAttributes, true);

Save only critical messages while the client is disconnected by only indicating durability for critical
subscriptions and CQs. When the client is connected to its servers, it receives messages for all keys
and queries reqistered. When the client is disconnected, non-durable interest registrations and
CQs are discontinued but all messages already in the queue for them remain there.

Note: For a single durable client ID, you must maintain the same durability of your registrations and
queries between client runs.

Program the Client to Manage Durable Messaging

Program your durable client to be durable-messaging aware when it disconnects, reconnects, and
handles events from the server.

1. Disconnect with a request to keep your queues active by using Pool.close or
ClientCache.close with the boolean keepalive parameter.

clientCache.close(true);

To be retained during client down time, durable continuous queries (CQs) must be
executing at the time of disconnect.

2. Program your durable client’s reconnection to:

1. If desired, detect whether the previously registered subscription queue is available
upon durable client reconnection and the count of pending events in the queue.
Based on the results, you can then decide whether to receive the remaining events
or close the cache if the number is too large.

For example, for a client with only the default pool created:

int pendingEvents = cache.getDefaultPool().getPendingEventCount();

if (pendingEvents == -2) { // client connected for the first time … // c

ontinue

}

else if (pendingEvents == -1) { // client reconnected but after the timeo

ut period

VMware GemFire 9.10 Documentation

VMware by Broadcom 609

… // handle possible data loss

}

else { // pendingEvents >= 0

… // decide to invoke readyForEvents() or ClientCache::close(false)/pool.

destroy()

}

For a client with multiple pools:

int pendingEvents = 0;

int pendingEvents1 = PoolManager.find(“pool1”).getPendingEventCount();

pendingEvents += (pendingEvents1 > 0) ? pendingEvents1 : 0;

int pendingEvents2 = PoolManager.find(“pool2”).getPendingEventCount();

pendingEvents += (pendingEvents2 > 0) ? pendingEvents2 : 0;

// process individual pool counts separately.

The getPendingEventCount API can return the following possible values: - A value
representing a count of events pending at the server. Note that this count is an
approximate value based on the time the durable client pool connected or
reconnected to the server. Any number of invocations will return the same value. -
A zero value if there are no events pending at server for this client pool - A negative
value indicates that no queue is available at the server for the client pool. - -1
indicates that the client pool has reconnected to the server after its durable-client-
timeout period has elapsed. The pool’s subscription queue has been removed
possibly causing data loss. - A value of -2 indicates that this client pool has
connected to server for the first time.

2. Connect, initialize the client cache, regions, and any cache listeners, and create and
execute any durable continuous queries.

3. Run all interest registration calls.

Note: Registering interest with InterestResultPolicy.KEYS_VALUES initializes the
client cache with the current values of specified keys. If concurrency checking is
enabled for the region, any earlier (older) region events that are replayed to the
client are ignored and are not sent to configured listeners. If your client must
process all replayed events for a region, register with InterestResultPolicy.KEYS or
InterestResultPolicy.NONE when reconnecting. Or, deactivate concurrency
checking for the region in the client cache. See Consistency for Region Updates.

4. Call ClientCache.readyForEvents so the server will replay stored events. If the
ready message is sent earlier, the client may lose events.

ClientCache clientCache = ClientCacheFactory.create();

// Here, create regions, listeners that are not defined in the cache.xml . . .

// Here, run all register interest calls before doing anything else

clientCache.readyForEvents();

3. When you program your durable client CacheListener:

VMware GemFire 9.10 Documentation

VMware by Broadcom 610

1. Implement the callback methods to behave properly when stored events are
replayed. The durable client’s CacheListener must be able to handle having events
played after the fact. Generally listeners receive events very close to when they
happen, but the durable client may receive events that occurred minutes before
and are not relevant to current cache state.

2. Consider whether to use the CacheListener callback method, afterRegionLive,
which is provided specifically for the end of durable event replay. You can use it to
perform application-specific operations before resuming normal event handling. If
you do not wish to use this callback, and your listener is an instance of
CacheListener (instead of a CacheListenerAdapter) implement afterRegionLive as
an empty method.

Initial Operation

The initial startup of a durable client is similar to the startup of any other client, except that it
specifically calls the ClientCache.readyForEvents method when all regions and listeners on the
client are ready to process messages from the server.

Disconnection

While the client and servers are disconnected, their operation varies depending on the
circumstances.

Normal disconnect. When a client closes its connection, the servers stop sending
messages to the client and release its connection. If the client requests it, the servers
maintain the queues and durable interest list information until the client reconnects or times
out. The non-durable interest lists are discarded. The servers continue to queue up
incoming messages for entries on the durable interest list. All messages that were in the
queue when the client disconnected remain in the queue. If the client requests not to have
its subscriptions maintained, or if there are no durable subscriptions, the servers unregister
the client and do the same cleanup as for a non-durable client.

Abnormal disconnect. If the client crashes or loses its connections to all servers, the
servers automatically maintain its message queue and durable subscriptions until it
reconnects or times out.

Client disconnected but operational. If the client operates while it is disconnected, it gets
what data it can from the local client cache. Since updates are not allowed, the data can
become stale. An UnconnectedException occurs if an update is attempted.

Client stays disconnected past timeout period. The servers track how long to keep a
durable subscription queue alive based on the durable-client-timeout setting. If the client
remains disconnected longer than the timeout, the servers unregister the client and do the
same cleanup that is performed for a non-durable client. The servers also log an alert.
When a timed-out client reconnects, the servers treat it as a new client making its initial
connection.

Reconnection

VMware GemFire 9.10 Documentation

VMware by Broadcom 611

During initialization, the client cache is not blocked from doing operations, so you might be
receiving old stored events from the server at the same time that your client cache is being
updated by much more current events. These are the things that can act on the cache
concurrently:

Results returned by the server in response to the client’s interest registrations.

Client cache operations by the application.

Callbacks triggered by replaying old events from the queue

VMware GemFire handles the conflicts between the application and interest registrations so they
do not create cache update conflicts. But you must program your event handlers so they don’t
conflict with current operations. This is true for all event handlers, but it is especially important for
those used in durable clients. Your handlers may receive events well after the fact and you must
ensure your programming takes that into account.

This figure shows the three concurrent procedures during the initialization process. The application
begins operations immediately on the client (step 1), while the client’s cache ready message (also
step 1) triggers a series of queue operations on the servers (starting with step 2 on the primary
server). At the same time, the client registers interest (step 2 on the client) and receives a
response from the server. Message B2 applies to an entry in Region A, so the cache listener
handles B2’s event. Because B2 comes before the marker, the client does not apply the update to
the cache.

Durable Event Replay

When a durable client reconnects before the timeout period, the servers replay the events that
were stored while the client was gone and then resume normal event messaging to the client. To
avoid overwriting current entries with old data, the stored events are not applied to the client

VMware GemFire 9.10 Documentation

VMware by Broadcom 612

cache. Stored events are distinguished from new normal events by a marker that is sent to the
client once all old events are replayed.

1. All servers with a queue for this client place a marker in their queue when the client
reconnects.

2. The primary server sends the queued messages to the client up to the marker.

3. The client receives the messages but does not apply the usual automatic updates to its
cache. If cache listeners are installed, they handle the events.

4. The client receives the marker message indicating that all past events have been played
back.

5. The server sends the current list of live regions.

6. For every CacheListener in each live region on the client, the marker event triggers the
afterRegionLive callback. After the callback, the client begins normal processing of events
from the server and applies the updates to its cache.

Even when a new client starts up for the first time, the client cache ready markers are inserted in
the queues. If messages start coming into the new queues before the servers insert the marker,
those messages are considered as having happened while the client was disconnected, and their
events are replayed the same as in the reconnect case.

Application Operations During Interest Registration

Application operations take precedence over interest registration responses. The client can
perform operations while it is receiving its interest registration responses. When adding register
interest responses to the client cache, the following rules are applied:

If the entry already exists in the cache with a valid value, it is not updated.

If the entry is invalid, and the register interest response is valid, the valid value is put into
the cache.

If an entry is marked destroyed, it is not updated. Destroyed entries are removed from the
system after the register interest response is completed.

If the interest response does not contain any results, because all of those keys are absent
from the server’s cache, the client’s cache can start out empty. If the queue contains old
messages related to those keys, the events are still replayed in the client’s cache.

Tuning Client/Server Event Messaging

The server uses an asynchronous messaging queue to send events to its clients. Every event in the
queue originates in an operation performed by a thread in a client, a server, or an application in the
server’s or some other cluster. The event message has a unique identifier composed of the
originating thread’s ID combined with its member’s distributed system member ID, and the
sequential ID of the operation. So the event messages originating in any single thread can be
grouped and ordered by time from lowest sequence ID to highest. Servers and clients track the
highest sequential ID for each member thread ID.

A single client thread receives and processes messages from the server, tracking received
messages to make sure it does not process duplicate sends. It does this using the process IDs from

VMware GemFire 9.10 Documentation

VMware by Broadcom 613

originating threads.

Server

B

Client

3

A 12

A 11

B 2

A 10

A 9

B 1

send message

A-10

s
u
b
s
c
ri
p
ti
o
n

q
u
e
u
e

thread op #

Server

B

Client

3

A 12

A 11

B 2

A 10

B 1

s
u
b
s
c
ri
p
ti
o
n

q
u
e
u
e

thread op #

Stage 1 Stage 2

The client’s message tracking list holds the highest sequence ID of any message received for each
originating thread. The list can become quite large in systems where there are many different
threads coming and going and doing work on the cache. After a thread dies, its tracking entry is
not needed. To avoid maintaining tracking information for threads that have died, the client expires
entries that have had no activity for more than the subscription-message-tracking-timeout.

Conflate the Server Subscription Queue
Conflating the server subscription queue can save space in the server and time in message
processing.

Enable conflation at the server level in the server region configuration:

<region ... >

 <region-attributes enable-subscription-conflation="true" />

</region>

Override the server setting as needed, on a per-client basis, in the client’s gemfire.properties:

conflate-events=false

Valid conflate-events settings are: - server, which uses the server settings - true, which conflates
everything sent to the client - false, which does not conflate anything sent to this client

VMware GemFire 9.10 Documentation

VMware by Broadcom 614

Conflation can both improve performance and reduce the amount of memory required on the
server for queuing. The client receives only the latest available update in the queue for a particular
entry key. Conflation is deactivated by default.

Conflation is particularly useful when a single entry is updated often and the intermediate updates
don’t require processing by the client. With conflation, if an entry is updated and there is already an
update in the queue for its key, the existing update is removed and the new update is placed at the
end of the queue. Conflation is only done on messages that are not in the process of being sent to
the client.

Note: This method of conflation is different from the one used for multi-site gateway sender queue
conflation. It is the same as the method used for the conflation of peer-to-peer distribution
messages within a single cluster.

Limit the Server's Subscription Queue Memory Use

These are options for limiting the amount of server memory the subscription queues consume.

Optional: Conflate the subscription queue messages.

Optional: Increase the frequency of queue synchronization by decreasing the pool’s
configuration parameter subscription-ack-interval. This applies only to configurations
where server redundancy is used for high availability. Example:

<!-- Set subscription ack interval to 3 seconds -->

<cache>

 <pool ... subscription-enabled="true"

 subscription-ack-interval="3000">

 ...

</pool>

The client periodically sends an acknowledgment (ack) message to the server. Each
message acknowledges the receipt of many events by the client. Since the server must
retain every outbound event in the queue until its receipt is acknowledged, shortening the
acknowledgment delay can reduce the average queue size, reducing the amount of server
memory used for queueing.

Optional: Limit Queue Size. Cap the server queue size using overflow or blocking. These
options help avoid out of memory errors on the server in the case of slow clients. A slow

VMware GemFire 9.10 Documentation

VMware by Broadcom 615

client slows the rate that the server can send messages, causing messages to back up in
the queue, possibly leading to out of memory on the server. You can use one or the other
of these options, but not both:

Optional: Overflow to Disk. Configure subscription queue overflow by setting the
server’s client-subscription properties. With overflow, the most recently used
(MRU) events are written out to disk, keeping the oldest events, the ones that are
next in line to be sent to the client, available in memory. Example:

<!-- Set overflow after 10K messages are enqueued -->

<cache-server port="40404">

 <client-subscription

 eviction-policy="entry"

 capacity="10000"

 disk-store-name="svrOverflow"/>

</cache-server>

Optional: Block While Queue Full. Set the server’s maximum-message-count to the
maximum number of event messages allowed in any single subscription queue
before incoming messages are blocked. You can only limit the message count, not
the size allocated for messages. Examples:

XML:

<!-- Set the maximum message count to 50000 entries -->

 <cache-server port="41414" maximum-message-count="50000" />

API:

Cache cache = ...;

CacheServer cacheServer = cache.addCacheServer();

cacheServer.setPort(41414);

cacheServer.setMaximumMessageCount(50000);

cacheServer.start();

Note: With this setting, one slow client can slow the server and all of its other
clients because this blocks the threads that write to the queues. All operations that
add messages to the queue block until the queue size drops to an acceptable level.
If the regions feeding these queues are partitioned or have distributed-ack or
global scope, operations on them remain blocked until their event messages can be
added to the queue. If you are using this option and see stalling on your server
region operations, your queue capacity might be too low for your application
behavior.

Tune the Client's Subscription Message Tracking Timeout

If the client pool’s subscription-message-tracking-timeout is set too low, your client will discard
tracking records for live threads, increasing the likelihood of processing duplicate events from those
threads.

This setting is especially important in systems where it is vital to avoid or greatly minimize duplicate
events. If you detect that duplicate messages are being processed by your clients, increasing the

VMware GemFire 9.10 Documentation

VMware by Broadcom 616

timeout may help. Setting subscription-message-tracking-timeout may not completely eliminate
duplicate entries, but careful configuration can help minimize occurrences.

Duplicates are monitored by keeping track of message sequence IDs from the source thread where
the operation originated. For a long-running system, you would not want to track this information
for very long periods or the information may be kept long enough for a thread ID to be recycled. If
this happens, messages from a new thread may be discarded mistakenly as duplicates of messages
from an old thread with the same ID. In addition, maintaining this tracking information for old
threads uses memory that might be freed up for other things.

To minimize duplicates and reduce the size of the message tracking list, set your client
subscription-message-tracking-timeout higher than double the sum of these times:

The longest time your originating threads might wait between operations

For redundant servers add:

The server’s message-sync-interval

Total time required for failover (usually 7-10 seconds, including the time to detect
failure)

You risk losing live thread tracking records if you set the value lower than this. This could result in
your client processing duplicate event messages into its cache for the associated threads. It is
worth working to set the subscription-message-tracking-timeout as low as you reasonably can.

<!-- Set the tracking timeout to 70 seconds -->

<pool name="client" subscription-enabled="true" subscription-message-tracking-timeout

="70000">

 ...

</pool>

Configuring Multi-Site (WAN) Event Queues
In a multi-site (WAN) installation, VMware GemFire uses gateway sender queues to distribute
events for regions that are configured with a gateway sender. AsyncEventListeners also use an
asynchronous event queue to distribute events for configured regions. This section describes
additional options for configuring the event queues that are used by gateway senders or
AsyncEventListener implementations.

Before you begin, set up your multi-site (WAN) installation or configure asynchronous event
queues and AsyncEventListener implementations. See Configuring a Multi-site (WAN) System or
Implementing an AsyncEventListener for Write-Behind Cache Event Handling.

Persisting an Event Queue

You can configure a gateway sender queue or an asynchronous event queue to persist data
to disk similar to the way in which replicated regions are persisted.

Configuring Dispatcher Threads and Order Policy for Event Distribution

By default, VMware GemFire uses multiple dispatcher threads to process region events
simultaneously in a gateway sender queue for distribution between sites, or in an
asynchronous event queue for distributing events for write-behind caching. With serial
queues, you can also configure the ordering policy for dispatching those events.

VMware GemFire 9.10 Documentation

VMware by Broadcom 617

Conflating Events in a Queue

Conflating a queue improves distribution performance. When conflation is enabled, only the
latest queued value is sent for a particular key.

Persisting an Event Queue

You can configure a gateway sender queue or an asynchronous event queue to persist data to disk
similar to the way in which replicated regions are persisted.

Persisting a queue provides high availability for the event messaging that the sender performs. For
example, if a persistent gateway sender queue exits for any reason, when the member that hosts
the sender restarts it automatically reloads the queue and resumes sending messages. If an
asynchronous event queue exits for any reason, write-back caching can resume where it left off
when the queue is brought back online. VMware GemFire persists an event queue if you set the
enable-persistence attribute to true. The queue is persisted to the disk store specified in the
queue’s disk-store-name attribute, or to the default disk store if you do not specify a store name.

You must configure the event queue to use persistence if you are using persistent regions. The use
of non-persistent event queues with persistent regions is not supported.

When you enable persistence for a queue, the maximum-queue-memory attribute determines how
much memory the queue can consume before it overflows to disk. By default, this value is set to
100MB.

Note: If you configure a parallel queue and/or you configure multiple dispatcher threads for a
queue, the values that are defined in the maximum-queue-memory and disk-store-name attributes
apply to each instance of the queue.

In the example below the gateway sender queue uses “diskStoreA” for persistence and overflow,
and the queue has a maximum queue memory of 100MB:

XML example:

<cache>

 <gateway-sender id="persistedsender1" parallel="false"

 remote-distributed-system-id="1"

 enable-persistence="true"

 disk-store-name="diskStoreA"

 maximum-queue-memory="100"/>

 ...

</cache>

API example:

Cache cache = new CacheFactory().create();

GatewaySenderFactory gateway = cache.createGatewaySenderFactory();

gateway.setParallel(false);

gateway.setPersistenceEnabled(true);

gateway.setDiskStoreName("diskStoreA");

gateway.setMaximumQueueMemory(100);

GatewaySender sender = gateway.create("persistedsender1", "1");

sender.start();

VMware GemFire 9.10 Documentation

VMware by Broadcom 618

gfsh:

gfsh>create gateway-sender --id="persistedsender1 --parallel=false

--remote-distributed-system-id=1 --enable-persistence=true --disk-store-name=di

skStoreA

--maximum-queue-memory=100

If you were to configure 10 dispatcher threads for the serial gateway sender, then the total
maximum memory for the gateway sender queue would be 1000MB on each VMware GemFire
member that hosted the sender, because VMware GemFire creates a separate copy of the queue
per thread..

The following example shows a similar configuration for an asynchronous event queue:

XML example:

<cache>

 <async-event-queue id="persistentAsyncQueue" persistent="true"

 disk-store-name="diskStoreA" parallel="true">

 <async-event-listener>

 <class-name>MyAsyncEventListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </async-event-listener>

 </async-event-queue>

...

</cache>

API example:

Cache cache = new CacheFactory().create();

AsyncEventQueueFactory factory = cache.createAsyncEventQueueFactory();

factory.setPersistent(true);

factory.setDiskStoreName("diskStoreA");

factory.setParallel(true);

AsyncEventListener listener = new MyAsyncEventListener();

AsyncEventQueue persistentAsyncQueue = factory.create("customerWB", listener);

gfsh:

gfsh>create async-event-queue --id="persistentAsyncQueue" --persistent=true

--disk-store="diskStoreA" --parallel=true --listener=MyAsyncEventListener

--listener-param=url#jdbc:db2:SAMPLE --listener-param=username#gfeadmin --liste

ner-param=password#admin1

Configuring Dispatcher Threads and Order Policy for Event
Distribution

VMware GemFire 9.10 Documentation

VMware by Broadcom 619

By default, VMware GemFire uses multiple dispatcher threads to process region events
simultaneously in a gateway sender queue for distribution between sites, or in an asynchronous
event queue for distributing events for write-behind caching. With serial queues, you can also
configure the ordering policy for dispatching those events.

By default, a gateway sender queue or asynchronous event queue uses 5 dispatcher threads per
queue. This provides support for applications that have the ability to process queued events
concurrently for distribution to another VMware GemFire site or listener. If your application does
not require concurrent distribution, or if you do not have enough resources to support the
requirements of multiple dispatcher threads, then you can configure a single dispatcher thread to
process a queue.

Using Multiple Dispatcher Threads to Process a Queue

Performance and Memory Considerations

Configuring the Ordering Policy for Serial Queues

Examples—Configuring Dispatcher Threads and Ordering Policy for a Serial Gateway Sender
Queue

Using Multiple Dispatcher Threads to Process a Queue

When multiple dispatcher threads are configured for a parallel queue, VMware GemFire simply
uses multiple threads to process the contents of each individual queue. The total number of queues
that are created is still determined by the number of VMware GemFire members that host the
region.

When multiple dispatcher threads are configured for a serial queue, VMware GemFire creates an
additional copy of the queue for each thread on each member that hosts the queue. To obtain the
maximum throughput, increase the number of dispatcher threads until your network is saturated.

The following diagram illustrates a serial gateway sender queue that is configured with multiple
dispatcher threads.

VMware GemFire 9.10 Documentation

VMware by Broadcom 620

Performance and Memory Considerations

When a serial gateway sender or an asynchronous event queue uses multiple dispatcher threads,
consider the following:

Queue attributes are repeated for each copy of the queue that is created for a dispatcher
thread. That is, each concurrent queue points to the same disk store, so the same disk
directories are used. If persistence is enabled and overflow occurs, the threads that insert
entries into the queues compete for the disk. This applies to application threads and
dispatcher threads, so it can affect application performance.

The maximum-queue-memory setting applies to each copy of the serial queue. If you configure
10 dispatcher threads and the maximum queue memory is set to 100MB, then the total
maximum queue memory for the queue is 1000MB on each member that hosts the queue.

Configuring the Ordering Policy for Serial Queues

When using multiple dispatcher-threads (greater than 1) with a serial event queue, you can also
configure the order-policy that those threads use to distribute events from the queue. The valid
order policy values are:

key (default). All updates to the same key are distributed in order. VMware GemFire
preserves key ordering by placing all updates to the same key in the same dispatcher
thread queue. You typically use key ordering when updates to entries have no relationship

VMware GemFire 9.10 Documentation

VMware by Broadcom 621

to each other, such as for an application that uses a single feeder to distribute stock
updates to several other systems.

thread. All region updates from a given thread are distributed in order. VMware GemFire
preserves thread ordering by placing all region updates from the same thread into the same
dispatcher thread queue. In general, use thread ordering when updates to one region entry
affect updates to another region entry.

partition. All region events that share the same partitioning key are distributed in order.
Specify partition ordering when applications use a PartitionResolver to implement custom
partitioning. With partition ordering, all entries that share the same “partitioning key”
(RoutingObject) are placed into the same dispatcher thread queue.

You cannot configure the order-policy for a parallel event queue, because parallel queues cannot
preserve event ordering for regions. Only the ordering of events for a given partition (or in a given
queue of a distributed region) can be preserved.

Examples—Configuring Dispatcher Threads and Ordering
Policy for a Serial Gateway Sender Queue
To increase the number of dispatcher threads and set the ordering policy for a serial gateway
sender, use one of the following mechanisms.

cache.xml configuration

<cache>

 <gateway-sender id="NY" parallel="false"

 remote-distributed-system-id="1"

 enable-persistence="true"

 disk-store-name="gateway-disk-store"

 maximum-queue-memory="200"

 dispatcher-threads=7 order-policy="key"/>

 ...

</cache>

Java API configuration

Cache cache = new CacheFactory().create();

GatewaySenderFactory gateway = cache.createGatewaySenderFactory();

gateway.setParallel(false);

gateway.setPersistenceEnabled(true);

gateway.setDiskStoreName("gateway-disk-store");

gateway.setMaximumQueueMemory(200);

gateway.setDispatcherThreads(7);

gateway.setOrderPolicy(OrderPolicy.KEY);

GatewaySender sender = gateway.create("NY", "1");

sender.start();

gfsh:

gfsh>create gateway-sender -d="NY"

 --parallel=false

 --remote-distributed-system-id="1"

 --enable-persistence=true

VMware GemFire 9.10 Documentation

VMware by Broadcom 622

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/PartitionResolver.html

 --disk-store-name="gateway-disk-store"

 --maximum-queue-memory=200

 --dispatcher-threads=7

 --order-policy="key"

The following examples show how to set dispatcher threads and ordering policy for an
asynchronous event queue:

cache.xml configuration

<cache>

 <async-event-queue id="sampleQueue" persistent="true"

 disk-store-name="async-disk-store" parallel="false"

 dispatcher-threads=7 order-policy="key">

 <async-event-listener>

 <class-name>MyAsyncEventListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </async-event-listener>

 </async-event-queue>

...

</cache>

Java API configuration

Cache cache = new CacheFactory().create();

AsyncEventQueueFactory factory = cache.createAsyncEventQueueFactory();

factory.setPersistent(true);

factory.setDiskStoreName("async-disk-store");

factory.setParallel(false);

factory.setDispatcherThreads(7);

factory.setOrderPolicy(OrderPolicy.KEY);

AsyncEventListener listener = new MyAsyncEventListener();

AsyncEventQueue sampleQueue = factory.create("customerWB", listener);

Entry updates in the current, in-process batch are not eligible for conflation.

gfsh:

gfsh>create async-event-queue --id="sampleQueue" --persistent=true

--disk-store="async-disk-store" --parallel=false

--dispatcher-threads=7 order-policy="key"

--listener=myAsycEventListener

--listener-param=url#jdbc:db2:SAMPLE

--listener-param=username#gfeadmin

--listener-param=password#admin1

Conflating Events in a Queue

VMware GemFire 9.10 Documentation

VMware by Broadcom 623

Conflating a queue improves distribution performance. When conflation is enabled, only the latest
queued value is sent for a particular key.

Note: Do not use conflation if your receiving applications depend on the specific ordering of entry
modifications, or if they need to be notified of every change to an entry.

Conflation is most useful when a single entry is updated frequently, but other sites only need to
know the current value of the entry (rather than the value of each update). When an update is
added to a queue that has conflation enabled, if there is already an update message in the queue
for the entry key, then the existing message assumes the value of the new update and the new
update is dropped, as shown here for key A.

Note: This method of conflation is different from the one used for server-to-client subscription
queue conflation and peer-to-peer distribution within a cluster.

Examples—Configuring Conflation for a Gateway Sender
Queue
To enable conflation for a gateway sender queue, use one of the following mechanisms:

cache.xml configuration

<cache>

 <gateway-sender id="NY" parallel="true"

 remote-distributed-system-id="1"

 enable-persistence="true"

 disk-store-name="gateway-disk-store"

 enable-batch-conflation="true"/>

 ...

</cache>

Java API configuration

Cache cache = new CacheFactory().create();

GatewaySenderFactory gateway = cache.createGatewaySenderFactory();

gateway.setParallel(true);

gateway.setPersistenceEnabled(true);

gateway.setDiskStoreName("gateway-disk-store");

gateway.setBatchConflationEnabled(true);

VMware GemFire 9.10 Documentation

VMware by Broadcom 624

GatewaySender sender = gateway.create("NY", "1");

sender.start();

Entry updates in the current, in-process batch are not eligible for conflation.

gfsh:

gfsh>create gateway-sender --id="NY" --parallel=true

 --remote-distributed-system-id="1"

 --enable-persistence=true

 --disk-store-name="gateway-disk-store"

 --enable-batch-conflation=true

The following examples show how to configure conflation for an asynchronous event queue:

cache.xml configuration

<cache>

 <async-event-queue id="sampleQueue" persistent="true"

 disk-store-name="async-disk-store" parallel="false"

 enable-batch-conflation="true">

 <async-event-listener>

 <class-name>MyAsyncEventListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </async-event-listener>

 </async-event-queue>

...

</cache>

Java API configuration

Cache cache = new CacheFactory().create();

AsyncEventQueueFactory factory = cache.createAsyncEventQueueFactory();

factory.setPersistent(true);

factory.setDiskStoreName("async-disk-store");

factory.setParallel(false);

factory.setBatchConflationEnabled(true);

AsyncEventListener listener = new MyAsyncEventListener();

AsyncEventQueue sampleQueue = factory.create("customerWB", listener);

Entry updates in the current, in-process batch are not eligible for conflation.

gfsh:

gfsh>create async-event-queue --id="sampleQueue" --persistent=true

--disk-store="async-disk-store" --parallel="false"

--listener=myAsyncEventListener

--listener-param=url#jdbc:db2:SAMPLE

VMware GemFire 9.10 Documentation

VMware by Broadcom 625

--listener-param=username#gfeadmin

--listener-param=password#admin1

Delta Propagation

Delta propagation allows you to reduce the amount of data you send over the network by including
only changes to objects rather than the entire object.

How Delta Propagation Works

Delta propagation reduces the amount of data you send over the network. You do this by
only sending the change, or delta, information about an object, instead of sending the
entire changed object. If you do not use cloning when applying the deltas, you can also
expect to generate less garbage in your receiving JVMs.

When to Avoid Delta Propagation

Generally, the larger your objects and the smaller the deltas, the greater the benefits of
using delta propagation. Partitioned regions with higher redundancy levels generally benefit
more from delta propagation. However, in some application scenarios, delta propagation
does not show any significant benefits. On occasion it results in performance degradation.

Delta Propagation Properties

This topic describes the properties that can be used to configure delta propagation.

Implementing Delta Propagation

By default, delta propagation is enabled in your cluster. When enabled, delta propagation is
used for objects that implement org.apache.geode.Delta. You program the methods to
store and extract delta information for your entries and to apply received delta information.

Errors In Delta Propagation

This topic lists the errors that can occur when using delta propagation.

Delta Propagation Example

This topic provides an example of delta propagation.

How Delta Propagation Works

Delta propagation reduces the amount of data you send over the network. You do this by only
sending the change, or delta, information about an object, instead of sending the entire changed
object. If you do not use cloning when applying the deltas, you can also expect to generate less
garbage in your receiving JVMs.

In most distributed data management systems, the data stored in the system tends to be created
once and then updated frequently. These updates are sent to other members for event
propagation, redundancy management, and cache consistency in general. Tracking only the
changes in an updated object and sending only the deltas mean lower network transmission costs
and lower object serialization/deserialization costs. Performance improvements can be significant,
especially when changes to an object are small relative to its overall size.

VMware GemFire propagates object deltas using methods that you program. The methods are in
the Delta interface, which you implement in your cached objects’ classes. If any of your classes are

VMware GemFire 9.10 Documentation

VMware by Broadcom 626

plain old Java objects, you need to wrap them for this implementation.

This figure shows delta propagation for a change to an entry with key, k, and value object, v.

1. get operation. The get works as usual: the cache returns the full entry object from the local
cache or, if it isn’t available there, from a remote cache or from a loader.

2. update methods. You need to add code to the object’s update methods so that they save
delta information for object updates, in addition to the work they were already doing.

3. put operation. The put works as usual in the local cache, using the full value, then calls
hasDelta to see if there are deltas and toDelta to serialize the information. Distribution is
the same as for full values, according to member and region configuration.

4. receipt of delta at remote member. fromDelta extracts the delta information that was
serialized by toDelta and applies it to the object in the local cache. The delta is applied
directly to the existing value or to a clone, depending on how you configure it for the
region.

5. additional distributions. As with full distributions, receiving members forward the delta
according to their configurations and connections to other members. For example, if VM1 is
a client and VM2 is a server, VM2 forwards the delta to its peers and its other clients as
needed. Receiving members do not recreate the delta; toDelta is only called in the
originating member.

General Characteristics of Delta Propagation

To use the delta propagation feature, all updates on a key in a region must have value types that
implement the Delta interface. You cannot mix object types for an entry key where some of the
types implement delta and some do not. This is because, when a type implementing the delta
interface is received for an update, the existing value for the key is cast to a Delta type to apply the

VMware GemFire 9.10 Documentation

VMware by Broadcom 627

received delta. If the existing type does not also implement the Delta interface, the operation
throws a ClassCastException.

Note: Only the object itself being placed in the cache can implement the Delta interface and
propagate changes. Any sub-objects of the cache object do not propagate their changes.

Sometimes fromDelta cannot be invoked because there is no object to apply the delta to in the
receiving cache. When this happens, the system automatically does a full value distribution to the
receiver. These are the possible scenarios: 1. If the system can determine beforehand that the
receiver does not have a local copy, it sends the initial message with the full value. This is possible
when regions are configured with no local data storage, such as with the region shortcut settings
PARTITION_PROXY and REPLICATE_PROXY. These configurations are used to accomplish things like
provide data update information to listeners and to pass updates forward to clients. 2. In less
obvious cases, such as when an entry has been locally deleted, first the delta is sent, then the
receiver requests a full value and that is sent. Whenever the full value is received, any further
distributions to the receiver’s peers or clients uses the full value.

VMware GemFire also does not propagate deltas for:

Transactional commit

The putAll operation

JVMs running VMware GemFire versions that do not support delta propagation (6.0 and
earlier)

Supported Topologies and Limitations

The following topologies support delta propagation (with some limitations):

Peer-to-peer. VMware GemFire system members distribute and receive entry changes
using delta propagation, with these requirements and caveats:

Regions must be partitioned or have their scope set to distributed-ack or global.
The region shortcut settings for distributed regions use distributed-ack scope.
Delta propagation does not work for regions with distributed-no-ack scope
because the receiver could not recover if an exception occurred while applying the
delta.

For partitioned regions, if a receiving peer does not hold the primary or a secondary
copy of the entry, but still requires a value, the system automatically sends the full
value.

To receive deltas, a region must be non-empty. The system automatically sends the
full value to empty regions. Empty regions can send deltas.

Client/server. VMware GemFire clients can always send deltas to the servers, and servers
can usually sent deltas to clients. These configurations require the servers to send full
values to the clients, instead of deltas:

When the client’s gemfire.properties setting conflate-events is set to true, the
servers send full values for all regions.

When the server region attribute enable-subscription-conflation is set to true
and the client gemfire.properties setting conflate-events is set to server, the
servers send full values for the region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 628

When the client region is configured with the PROXY client region shortcut setting
(empty client region), servers send full values.

Multi-site (WAN). Gateway senders do not send Deltas. The full value is always sent.

When to Avoid Delta Propagation

Generally, the larger your objects and the smaller the deltas, the greater the benefits of using delta
propagation. Partitioned regions with higher redundancy levels generally benefit more from delta
propagation. However, in some application scenarios, delta propagation does not show any
significant benefits. On occasion it results in performance degradation.

By default, delta propagation is enabled in your cluster.

These are the main factors that can reduce the performance benefits of using delta propagation:

The added costs of deserializing your objects to apply deltas. Applying a delta requires the
entry value to be deserialized. Once this is done, the object is stored back in the cache in
deserialized form. This aspect of delta propagation only negatively impacts your system if
your objects are not already being deserialized for other reasons, such as for indexing and
querying or for listener operations. Once stored in deserialized form, there are
reserialization costs for operations that send the object outside of the member, like
distribution from a gateway sender, values sent in response to netSearch or client requests,
and storage to disk. The more operations that require reserialization, the higher the
overhead of deserializing the object. As with all serialization efforts, you can improve
performance in serialization and deserialization by providing custom implementations of
DataSerializable for your objects.

Cloning when applying the delta. Using cloning can affect performance and generates extra
garbage. Not using cloning is risky however, as you are modifying cached values in place.
Without cloning, make sure you synchronize your entry access to keep your cache from
becoming inconsistent.

Problems applying the delta that cause the system to go back to the originator for the full
entry value. When this happens, the overall operation costs more than sending the full
entry value in the first place. This can be additionally aggravated if your delta is sent to a
number of recipients, all or most of them request a full value, and the full value send
requires the object to be serialized.

Disk I/O costs associated with overflow regions. If you use eviction with overflow to disk,
on-disk values must be brought into memory in order to apply the delta. This is much more
costly than just removing the reference to the disk copy, as you would do with a full value
distribution into the cache.

Delta Propagation Properties

This topic describes the properties that can be used to configure delta propagation.

Delta propagation properties can be configured through the API and through the
gemfire.properties and cache.xml files.

delta-propagation

VMware GemFire 9.10 Documentation

VMware by Broadcom 629

A gemfire.properties boolean that enables or disables delta propagation. When false, full entry
values are sent for every update. The default setting is true, which enables delta propagation.

Disable delta propagation as follows:

gemfire.properties:

delta-propagation=false

API:

Properties props = new Properties();

props.setProperty("delta-propagation", false);

this.cache = new ClientCacheFactory(props).create();

cloning-enabled
A region attributes boolean that affects how fromDelta applies deltas to the local cache. When
true, the updates are applied to a clone of the value and then the clone is saved to the cache.
When false, the value is modified in place in the cache. The default value is false.

Exceptions to this behavior:

If the Cache attribute copy-on-read is true, cloning is enabled, regardless of what this
attribute is set to.

If the Region attribute off-heap is true, cloning is enabled, regardless of what this attribute
is set to.

Cloning can be expensive, but it ensures that the new object is fully initialized with the delta before
any application code sees it.

When cloning is enabled, by default VMware GemFire does a deep copy of the object, using
serialization. You may be able to improve performance by implementing java.lang.Cloneable and
then implementing the clone method, making a deep copy of anything to which a delta may be
applied. The goal is to reduce significantly the overhead of copying the object while still retaining
the isolation needed for your deltas.

Without cloning:

It is possible for application code to read the entry value as it is being modified, possibly
seeing the value in an intermediate, inconsistent state, with just part of the delta applied.
You may choose to resolve this issue by having your application code synchronize on reads
and writes.

VMware GemFire loses any reference to the old value because the old value is transformed
in place into the new value. Because of this, your CacheListener sees the same new value
returned for EntryEvent.getOldValue and EntryEvent.getNewValue .

Exceptions thrown from fromDelta may leave your cache in an inconsistent state. Without
cloning, any interruption of the delta application could leave you with some of the fields in
your cached object changed and others unchanged. If you do not use cloning, keep this in
mind when you program your error handling in your fromDelta implementation.

With cloning:

VMware GemFire 9.10 Documentation

VMware by Broadcom 630

The fromDelta method generates more garbage in memory.

Performance is reduced.

Enable cloning as follows:

cache.xml:

<region name="region_with_cloning">

 <region-attributes refid="REPLICATE" cloning-enabled="true">

 </region-attributes>

</region>

API:

RegionFactory rf = cache.createRegionFactory(REPLICATE);

rf.setCloningEnabled(true);

custRegion = rf.create("customer");

gfsh:

gfsh>create region --name="region_with_cloning" --type=REPLICATE

--enable-cloning=true

Implementing Delta Propagation

By default, delta propagation is enabled in your cluster. When enabled, delta propagation is used
for objects that implement org.apache.geode.Delta. You program the methods to store and
extract delta information for your entries and to apply received delta information.

Use the following procedure to implement delta propagation in your cluster.

1. Study your object types and expected application behavior to determine which regions can
benefit from using delta propagation. Delta propagation does not improve performance for
all data and data modification scenarios. See When to Avoid Delta Propagation.

2. For each region where you are using delta propagation, choose whether to enable cloning
using the delta propagation property cloning-enabled. Cloning is disabled by default. See
Delta Propagation Properties.

3. If you do not enable cloning, review all associated listener code for dependencies on
EntryEvent.getOldValue. Without cloning, VMware GemFire modifies the entry in place
and so loses its reference to the old value. For delta events, the EntryEvent methods
getOldValue and getNewValue both return the new value.

4. For every class where you want delta propagation, implement org.apache.geode.Delta and
update your methods to support delta propagation. Exactly how you do this depends on
your application and object needs, but these steps describe the basic approach:

1. If the class is a plain old Java object (POJO), wrap it for this implementation and
update your code to work with the wrapper class.

2. Define as transient any extra object fields that you use to manage delta state. This
can help performance when the full object is distributed. Whenever standard Java
serialization is used, the transient keyword indicates to Java to not serialize the field.

VMware GemFire 9.10 Documentation

VMware by Broadcom 631

3. Study the object contents to decide how to handle delta changes. Delta
propagation has the same issues of distributed concurrency control as the
distribution of full objects, but on a more detailed level. Some parts of your objects
may be able to change independent of one another while others may always need
to change together. Send deltas large enough to keep your data logically
consistent. If, for example, field A and field B depend on each other, then your delta
distributions should either update both fields or neither. As with regular updates,
the fewer producers you have on a data region, the lower your likelihood of
concurrency issues.

4. In the application code that puts entries, put the fully populated object into the local
cache. Even though you are planning to send only deltas, errors on the receiving
end could cause VMware GemFire to request the full object, so you must provide it
to the originating put method. Do this even in empty producers, with regions
configured for no local data storage. This usually means doing a get on the entry
unless you are sure it does not already exist anywhere in the distributed region.

5. Change each field’s update method to record information about the update. The
information must be sufficient for toDelta to encode the delta and any additional
required delta information when it is invoked.

6. Write hasDelta to report on whether a delta is available.

7. Write toDelta to create a byte stream with the changes to the object and any other
information fromDelta will need to apply the changes. Before returning from
toDelta, reset your delta state to indicate that there are no delta changes waiting to
be sent.

8. Write fromDelta to decode the byte stream that toDelta creates and update the
object.

9. Make sure you provide adequate synchronization to your object to maintain a
consistent object state. If you do not use cloning, you will probably need to
synchronize on reads and writes to avoid reading partially written updates from the
cache.This synchronization might involve toDelta, fromDelta, toData, fromData, and
other methods that access or update the object. Additionally, your implementation
should take into account the possibility of concurrent invocations of fromDelta and
one or more of the object’s update methods.

Errors In Delta Propagation

This topic lists the errors that can occur when using delta propagation.

Errors in delta propagation fall into two categories based on how they are handled by the system:

Problems applying the delta that can be remedied by requesting the full value in place of
the delta. Your put operation does not see errors or exceptions related to this type of delta
propagation failure. The system automatically does a full value distribution from the sender
to the receiver where the problem occurs. This type of error includes:

Unavailable entry value in the receiving cache, either because the entry is missing
or its value is null. In both cases, there is nothing to apply the delta to and the full
value must be sent. This is most likely to occur if you destroy or invalidate your

VMware GemFire 9.10 Documentation

VMware by Broadcom 632

entries locally, either through application calls or through configured actions like
eviction or entry expiration.

InvalidDeltaException thrown by fromDelta method, programmed by you. This
exception enables you to avoid applying deltas that would violate data consistency
checks or other application requirements.

Any error applying the delta in a client in server-to-client propagation. The client
logs a warning in addition to retrieving the full value from the server.

Problems creating or distributing the delta that cannot be fixed by distributing the full value.
In these cases, your put operation fails with an exception. This type of error includes:

Error or exception in hasDelta or toDelta.

Error or exception in a server or peer receiver that fall outside of the situations
described above in the first category.

Delta Propagation Example

This topic provides an example of delta propagation.

In this example, the feeder client is connected to the first server, and the receiver client is
connected to the second. The servers are peers to each other.

The example demonstrates the following operations:

1. In the Feeder client, the application updates the entry object and puts the entry. In
response to the put, VMware GemFire calls hasDelta, which returns true, so VMware
GemFire calls toDelta and forwards the extracted delta to the server. If hasDelta returned
false, VMware GemFire would distribute the full entry value.

2. In Server1, VMware GemFire applies the delta to the cache, distributes the received delta
to the server’s peers, and forwards it to any other clients with interest in the entry (there
are no other clients to Server1 in this example)

3. In Server2, VMware GemFire applies the delta to the cache and forwards it to its interested
clients, which in this case is just the Receiver client.

This example shows the basic approach to programming a Delta implementation.

package delta;

VMware GemFire 9.10 Documentation

VMware by Broadcom 633

import org.apache.geode.Delta;

import org.apache.geode.InvalidDeltaException;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import java.io.Serializable;

/**

 * Sample implementation of Delta

 *

 * @author GemStone Systems, Inc.

 * @since 6.1

 */

public class SimpleDelta implements Delta, Serializable {

// Original object fields

 private int intVal;

 private double doubleVal;

 // Added for delta - one boolean per field to track changed status

 private transient boolean intFldChd = false;

 private transient boolean dblFldChd = false;

 public SimpleDelta(){}

 public SimpleDelta(int i, double d){

 this.intVal = i;

 this.doubleVal = d;

 }

 public boolean hasDelta() {

 return this.intFldChd || this.dblFldChd;

 }

 public void toDelta(DataOutput out) throws IOException {

 System.out.println("Extracting delta from " + this.toString());

 // Write information on what has changed to the

 // data stream, so fromDelta knows what it's getting

 out.writeBoolean(intFldChd);

 if (intFldChd) {

 // Write just the changes into the data stream

 out.writeInt(this.intVal);

 // Once the delta information is written, reset the delta status field

 this.intFldChd = false;

 System.out.println(" Extracted delta from field 'intVal' = "

 + this.intVal);

 }

 out.writeBoolean(dblFldChd);

 if (dblFldChd) {

 out.writeDouble(this.doubleVal);

 this.dblFldChd = false;

 System.out.println(" Extracted delta from field 'doubleVal' = "

 + this.doubleVal);

 }

 }

 public void fromDelta(DataInput in) throws IOException, InvalidDeltaException {

 System.out.println("Applying delta to " + this.toString());

 // For each field, read whether there is a change

VMware GemFire 9.10 Documentation

VMware by Broadcom 634

 if (in.readBoolean()) {

 // Read the change and apply it to the object

 this.intVal = in.readInt();

 System.out.println(" Applied delta to field 'intVal' = "

 + this.intVal);

 }

 if (in.readBoolean()) {

 this.doubleVal = in.readDouble();

 System.out.println(" Applied delta to field 'doubleVal' = "

 + this.doubleVal);

 }

 }

 // In the setter methods, add setting of delta-related

 // fields indicating what has changed

 public void setIntVal(int anIntVal) {

 this.intFldChd = true;

 this.intVal = anIntVal;

 }

 public void setDoubleVal(double aDoubleVal) {

 this.dblFldChd = true;

 this.doubleVal = aDoubleVal;

 }

 public String toString() {

 return "SimpleDelta [hasDelta = " + hasDelta() + ", intVal = " +

 this.intVal + ", doubleVal = {" + this.doubleVal + "}]";

 }

}

Querying

VMware GemFire provides a SQL-like querying language called OQL that allows you to access data
stored in VMware GemFire regions.

Since VMware GemFire regions are key-value stores where values can range from simple byte
arrays to complex nested objects, VMware GemFire uses a query syntax based on OQL (Object
Query Language) to query region data. OQL is very similar to SQL, but OQL allows you to query
complex objects, object attributes, and methods.

Querying FAQ and Examples

This topic answers some frequently asked questions on querying functionality. It provides
examples to help you get started with VMware GemFire querying.

Querying with OQL

This section provides a high-level introduction to VMware GemFire querying such as
building a query string and describes query language features.

Advanced Querying

This section includes advanced querying topics such as using query indexes, using query
bind parameters, querying partitioned regions and query debugging.

Working with Indexes

VMware GemFire 9.10 Documentation

VMware by Broadcom 635

The VMware GemFire query engine supports indexing. An index can provide significant
performance gains for query execution.

Querying FAQ and Examples

This topic answers some frequently asked questions on querying functionality. It provides examples
to help you get started with VMware GemFire querying.

For additional information on VMware GemFire querying, see Querying.

How do I write and execute a query against a VMware GemFire region?

Can I see query string examples, listed by query type?

Which APIs should I use to write my queries?

How do I invoke an object’s method in a query?

Can I invoke a static method on an object in a query?

How do I write a reusable query?

When should I create indexes to use in my queries?

How do I create an index?

Can I query a partitioned region? Can I perform a join query on a partitioned region?

How can I improve the performance of a partitioned region query?

Which query language elements are supported in VMware GemFire?

How do I debug queries?

Can I use implicit attributes or methods in my query?

How do I perform a case-insensitive search on a field in OQL?

How do I write and execute a query against a VMware
GemFire region?
To write and execute a query in VMware GemFire, you can use any of the following mechanisms.
Sample query code follows.

VMware GemFire querying APIs

gfsh command-line interface; in particular the query command

REST API query endpoints

Sample VMware GemFire Query Code (Java)

// Identify your query string.

 String queryString = "SELECT * FROM /exampleRegion";

 // Get QueryService from Cache.

 QueryService queryService = cache.getQueryService();

 // Create the Query Object.

 Query query = queryService.newQuery(queryString);

VMware GemFire 9.10 Documentation

VMware by Broadcom 636

 // Execute Query locally. Returns results set.

 SelectResults results = (SelectResults)query.execute();

 // Find the Size of the ResultSet.

 int size = results.size();

 // Iterate through your ResultSet.

 Portfolio p = (Portfolio)results.iterator().next(); /* Region containing Portfolio ob

ject. */

Can I see query string examples, listed by query type?

The following example query strings use the /exampleRegion whose keys are the portfolio ID and
whose values correspond to the summarized data shown in the following class definitions:

class Portfolio implements DataSerializable {

 int ID;

 String type;

 String status;

 Map positions;

}

class Position implements DataSerializable {

 String secId;

 double mktValue;

 double qty;

}

Basic WHERE Clause Examples

In the following examples, the status field is type String and the ID field is type int. See Supported
Literals for a complete list of literals supported in VMware GemFire querying.

1. Select all active portfolios.

SELECT * FROM /exampleRegion WHERE status = 'active'

2. Select all portfolios whose status begins with ‘activ’.

SELECT * FROM /exampleRegion p WHERE p.status LIKE 'activ%'

3. Select all portfolios whose ID is greater than 100.

SELECT * from /exampleRegion p WHERE p.ID > 100

Using DISTINCT

Select distinct Objects from the region that satisfy the where clause condition of status = ‘active’.

SELECT DISTINCT * FROM /exampleRegion WHERE status = 'active'

Aliases and Synonyms

In the query string, the path expressions (region and its objects) can be defined using an alias. This
alias can be used or referred to in other places in the query.

VMware GemFire 9.10 Documentation

VMware by Broadcom 637

SELECT DISTINCT * FROM /exampleRegion p WHERE p.status = 'active'

SELECT p.ID, p.status FROM /exampleRegion p WHERE p.ID > 0

Using the NOT Operator

See Operators for a complete list of supported operators.

SELECT DISTINCT * FROM /exampleRegion WHERE NOT (status = 'active') AND ID = 2

SELECT * FROM /exampleRegion WHERE NOT (ID IN SET(1,2))

Using the AND and OR Operators

See Operators for a complete list of supported operators.

SELECT * FROM /exampleRegion WHERE ID > 4 AND ID < 9

SELECT * FROM /exampleRegion WHERE ID = 0 OR ID = 1

SELECT DISTINCT p.status FROM /exampleRegion p

WHERE (p.createTime IN SET (10|) OR p.status IN SET ('active')) AND p.ID > 0

Using not equal to

SELECT * FROM /exampleRegion portfolio WHERE portfolio.ID <> 2

SELECT * FROM /exampleRegion portfolio WHERE portfolio.ID != 2

Projection attribute example

SELECT p.get('account') FROM /exampleRegion p

Querying nested collections

The following query uses Positions of type HashMap.

SELECT p, pos FROM /exampleRegion p, p.positions.values pos WHERE pos.secId = 'VMW'

Using LIMIT

SELECT * FROM /exampleRegion p WHERE p.ID > 0 LIMIT 2

Using MIN and MAX

See MIN and MAXfor more information.

SELECT MIN(ID)

FROM /exampleRegion

WHERE ID > 0

VMware GemFire 9.10 Documentation

VMware by Broadcom 638

SELECT MAX(ID)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT MIN(pos.mktValue)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID = 10

SELECT MAX(p.ID)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active' OR pos.secId = 'IBM'

Using AVG

See AVG for more information.

SELECT AVG(ID)

FROM /exampleRegion

WHERE ID > 0

SELECT AVG(ID)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT AVG(pos.mktValue)

FROM /exampleRegion p, p.positions.values pos

WHERE p.isActive()

SELECT AVG(DISTINCT p.ID)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active' OR pos.secId = 'IBM'

Using COUNT

See COUNT for more information.

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID > 0

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID > 0 LIMIT 50

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID IN SET(1,2,3,4,5)

VMware GemFire 9.10 Documentation

VMware by Broadcom 639

SELECT COUNT(DISTINCT p.status)

FROM /exampleRegion p

WHERE p.ID > 0

SELECT COUNT(*)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 AND pos.secId 'IBM'

SELECT DISTINCT COUNT(*)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active' OR pos.secId = 'IBM'

Using SUM

See SUM for more information.

SELECT SUM(ID)

FROM /exampleRegion

WHERE ID > 0

SELECT SUM(ID)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT SUM(pos.mktValue)

FROM /exampleRegion p, p.positions.values pos

WHERE p.status = 'active'

SELECT SUM(DISTINCT p.ID)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active' OR pos.secId = 'IBM'

Using GROUP BY

See GROUP BY for more information.

SELECT p.status, MAX(p.ID)

FROM /exampleRegion p

WHERE p.ID > 0

GROUP BY p.status

SELECT p.ID, MIN(pos.qty) AS lessQty

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 AND p.status = 'active'

GROUP BY p.ID

ORDER BY lessQty ASC

SELECT p.ID, MAX(pos.mktValue) AS maxValue

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 AND p.status = 'active'

GROUP BY p.ID

ORDER BY maxValue DESC

VMware GemFire 9.10 Documentation

VMware by Broadcom 640

SELECT p.status, AVG(p.ID)

FROM /exampleRegion p

WHERE p.ID > 0

GROUP BY p.status

SELECT p.ID, pos.secId, AVG(pos.mktValue)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active'

GROUP BY p.ID, pos.secId

SELECT p.status, AVG(p.ID) as sm

FROM /exampleRegion p

WHERE p.ID > 0

GROUP BY p.status

ORDER BY sm DESC

SELECT p.status, COUNT(*)

FROM /exampleRegion p

WHERE p.ID > 0

GROUP BY p.status

SELECT p.ID, COUNT(pos) AS positionsAmount

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active'

GROUP BY p.ID

ORDER BY positionsAmount

SELECT p.status, SUM(p.ID)

FROM /exampleRegion p

WHERE p.ID > 0

GROUP BY p.status

SELECT p.ID, pos.secId, SUM(pos.mktValue)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active'

GROUP BY p.ID, pos.secId

SELECT p.status, SUM(p.ID) as sm

FROM /exampleRegion p

WHERE p.ID > 0

GROUP BY p.status

ORDER BY sm DESC

SELECT p.ID, SUM(pos.mktValue) AS marketValue

FROM /exampleRegion p, p.positions.values pos

WHERE p.isActive()

GROUP BY p.ID

ORDER BY marketValue DESC

Using LIKE

VMware GemFire 9.10 Documentation

VMware by Broadcom 641

SELECT * FROM /exampleRegion ps WHERE ps.pkid LIKE '_bc'

SELECT * FROM /exampleRegion ps WHERE ps.status LIKE '_b_' OR ps.pkid = '2'

SELECT * FROM /exampleRegion ps WHERE ps.status LIKE '%b%

Using Region Entry Keys and Values

SELECT * FROM /exampleRegion.keys k WHERE k.ID = 1

SELECT entry.value FROM /exampleRegion.entries entry WHERE entry.key = '1'

SELECT key, positions FROM /exampleRegion.entrySet, value.positions.values positions

WHERE positions.mktValue >= 25.00

SELECT DISTINCT entry.value FROM /exampleRegion.entries entry WHERE entry.key = '1'

SELECT * FROM /exampleRegion.entries entry WHERE entry.value.ID > 1

SELECT * FROM /exampleRegion.keySet key WHERE key = '1'

SELECT * FROM /exampleRegion.values portfolio

WHERE portfolio.status = 'active'

Nested Queries

IMPORT "query".Portfolio;

SELECT * FROM /exampleRegion, (SELECT DISTINCT * FROM /exampleRegion p TYPE Portfolio,

p.positions

WHERE value!=null)

SELECT DISTINCT * FROM (SELECT DISTINCT * FROM /exampleRegion portfolios, positions po

s)

WHERE pos.value.secId = 'IBM'

SELECT * FROM /exampleRegion portfolio

WHERE portfolio.ID IN (SELECT p2.ID FROM /exampleRegion2 p2 WHERE p2.ID > 1)

SELECT DISTINCT * FROM /exampleRegion p, (SELECT DISTINCT pos

FROM /exampleRegion x, x.positions.values pos WHERE x.ID = p.ID) AS itrX

Query the results of a FROM clause expression

SELECT DISTINCT * FROM (SELECT DISTINCT * FROM /Portfolios ptf, positions pos) p

WHERE p.get('pos').value.secId = 'IBM'

Hash Map Query

VMware GemFire 9.10 Documentation

VMware by Broadcom 642

Query using a hashmap. In the following examples, ‘version’ is one of the keys in the hashmap.

SELECT * FROM /exampleRegion p WHERE p['version'] = '1.0'

SELECT entry.key, entry.value FROM /exampleRegion.entries entry

WHERE entry.value['version'] = '100'

Map example where “map” is a nested HashMap object

SELECT DISTINCT * FROM /exampleRegion p WHERE p.portfolios['key2'] >= 3

Example Queries that Fetch Array Values

SELECT * FROM /exampleRegion p WHERE p.names[0] = 'aaa'

SELECT * FROM /exampleRegion p WHERE p.collectionHolderMap.get('1').arr[0] = '0'

Using ORDER BY (and ORDER BY with LIMIT)

You must use the DISTINCT keyword with ORDER BY queries.

SELECT DISTINCT * FROM /exampleRegion WHERE ID < 101 ORDER BY ID

SELECT DISTINCT * FROM /exampleRegion WHERE ID < 101 ORDER BY ID asc

SELECT DISTINCT * FROM /exampleRegion WHERE ID < 101 ORDER BY ID desc

SELECT DISTINCT key.ID, key.status AS st FROM /exampleRegion.keys key

WHERE key.status = 'inactive' ORDER BY key.status desc, key.ID LIMIT 1

SELECT DISTINCT * FROM /exampleRegion p ORDER BY p.getP1().secId, p.ID dec, p.ID LIMIT

9

SELECT DISTINCT * FROM /exampleRegion p ORDER BY p.ID, val.secId LIMIT 1

SELECT DISTINCT e.key FROM /exampleRegion.entrySet e ORDER BY e.key.ID desc, e.key.pki

d desc

SELECT DISTINCT p.names[1] FROM /exampleRegion p ORDER BY p.names[1]

Join Queries

SELECT * FROM /exampleRegion portfolio1, /exampleRegion2 portfolio2

WHERE portfolio1.status = portfolio2.status

SELECT portfolio1.ID, portfolio2.status FROM /exampleRegion portfolio1, /exampleRegion

2 portfolio2

WHERE portfolio1.status = portfolio2.status

VMware GemFire 9.10 Documentation

VMware by Broadcom 643

SELECT * FROM /exampleRegion portfolio1, portfolio1.positions.values positions1,

/exampleRegion2 portfolio2, portfolio2.positions.values positions2 WHERE positions1.se

cId = positions1.secId

SELECT * FROM /exampleRegion portfolio1, portfolio1.positions.values positions1,

/exampleRegion2 portfolio2, portfolio2.positions.values positions2 WHERE portfolio1.ID

= 1

AND positions1.secId = positions1.secId

SELECT DISTINCT a, b.price FROM /exampleRegoin1 a, /exampleRegion2 b WHERE a.price =

b.price

Using AS

SELECT * FROM /exampleRegion p, p.positions.values AS pos WHERE pos.secId != '1'

Using TRUE

SELECT DISTINCT * FROM /Portfolios WHERE TRUE

Using IN and SET

See also IN and SET.

SELECT * FROM /exampleRegion portfolio WHERE portfolio.ID IN SET(1, 2)

SELECT * FROM /exampleRegion portfolio, portfolio.positions.values positions

WHERE portfolio.Pk IN SET ('1', '2') AND positions.secId = '1'

SELECT * FROM /exampleRegion portfolio, portfolio.positions.values positions

WHERE portfolio.Pk IN SET ('1', '2') OR positions.secId IN SET ('1', '2', '3')

SELECT * FROM /exampleRegion portfolio, portfolio.positions.values positions

WHERE portfolio.Pk IN SET ('1', '2') OR positions.secId IN SET ('1', '2', '3')

AND portfolio.status = 'active'

Querying for Set values

In the following query, sp is of type Set.

SELECT * FROM /exampleRegion WHERE sp = set('20', '21', '22')

If the Set (sp) only contains ‘20’ and ‘21’, then the query will evaluate to false. The query compares
the two sets and looks for the presence of elements in both sets.

For other collection types like list (sp is of type List), the query can be written as follows:

SELECT * FROM /exampleRegion WHERE sp.containsAll(set('20', '21', '22'))

Invoking Methods on Objects

See Method Invocations for more information.

VMware GemFire 9.10 Documentation

VMware by Broadcom 644

SELECT * FROM /exampleRegion p WHERE p.length > 1

SELECT DISTINCT * FROM /exampleRegion p WHERE p.positions.size >= 2

SELECT DISTINCT * FROM /exampleRegion p WHERE p.positions.isEmpty

SELECT DISTINCT * FROM /exampleRegion p WHERE p.name.startsWith('Bo')

Using Query-Level Debugging

To set debugging on the query level, add the <trace> keyword before the query. (If you are using
an IMPORT statement, include it before the IMPORT).

<trace>

SELECT * from /exampleRegion, positions.values TYPE myclass

Using Reserved Words in Queries

To access any method, attribute, or named object that has the same name as a query language
reserved word, enclose the name within double quotation marks.

SELECT * FROM /exampleRegion WHERE status = 'active' AND "type" = 'XYZ'

SELECT DISTINCT "type" FROM /exampleRegion WHERE status = 'active'

Using IMPORT

In the case where the same class name resides in two different namescopes (packages), there
needs to be a means of referring to different classes of the same name. The IMPORT statement is
used to establish a namescope for a class in a query.

IMPORT package.Position;

SELECT DISTINCT * FROM /exampleRegion, positions.values positions TYPE Position WHERE

positions.mktValue >= 25.00

Using TYPE

Specifying object type helps the query engine to process the query at optimal speed. Apart from
specifying the object types during configuration (using key-constraint and value-constraint), type
can be explicitly specified in the query string.

SELECT DISTINCT * FROM /exampleRegion, positions.values positions TYPE Position WHERE

positions.mktValue >= 25.00

Using ELEMENT

Using ELEMENT(expr) extracts a single element from a collection or array. This function throws a
FunctionDomainException if the argument is not a collection or array with exactly one element.

ELEMENT(SELECT DISTINCT * FROM /exampleRegion WHERE id = 'XYZ-1').status = 'active'

VMware GemFire 9.10 Documentation

VMware by Broadcom 645

Which APIs should I use to write my queries?

If you are querying a Java application’s local cache or querying other members, use
org.apache.geode.cache.Cache.getQueryService.

If you are writing a Java client to server query, use
org.apache.geode.cache.client.Pool.getQueryService.

How do I invoke an object’s method in a query?

To use a method in a query, use the attribute name that maps to the public method you want to
invoke. For example:

/*valid method invocation*/

SELECT DISTINCT * FROM /exampleRegion p WHERE p.positions.size >= 2 - maps to position

s.size()

Can I invoke a static method on an object in a query?
No, you cannot invoke a static method on an object. For example, the following query is invalid.

/*invalid method invocation*/

SELECT DISTINCT * FROM /exampleRegion WHERE aDay = Day.Wednesday

To work around this limitation, write a reusable query that uses a query bind parameter to invoke
the static method. Then at query run time, set the parameter to the static method invocation
(Day.Wednesday). For example:

SELECT DISTINCT * FROM /exampleRegion WHERE aDay = $1

How do I write a reusable query?

Using query APIs, you can set query bind parameters that are passed values at query run time. For
example:

// specify the query string

 String queryString = "SELECT DISTINCT * FROM /exampleRegion p WHERE p.status = $1";

QueryService queryService = cache.getQueryService();

Query query = queryService.newQuery(queryString);

// set a query bind parameter

Object[] params = new Object[1];

params[0] = "active";

// Execute the query locally. It returns the results set.

SelectResults results = (SelectResults) query.execute(params);

// use the results of the query; this example only looks at the size

 int size = results.size();

VMware GemFire 9.10 Documentation

VMware by Broadcom 646

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/QueryService.html
https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/client/Pool.html

If you use a query bind parameter in place of a region path in your path expression, the parameter
value must reference a collection (and not a String such as the name of the region path.)

See Using Query Bind Parameters for more details.

When should I create indexes to use in my queries?

Determine whether your query’s performance will benefit from an index. For example, in the
following query, an index on pkid can speed up the query.

SELECT DISTINCT * FROM /exampleRegion portfolio WHERE portfolio.pkid = '123'

How do I create an index?

An index can be created programmatically using APIs or by using xml. Here are two examples:

Sample Code

QueryService qs = cache.getQueryService();

 qs.createIndex("myIndex", "status", "/exampleRegion");

 qs.createKeyIndex("myKeyIndex", "id", "exampleRegion");

For more information on using this API, see the JavaDocs.

Sample XML

<region name="portfolios">

 <region-attributes . . . >

 </region-attributes>

 <index name="myIndex">

 <functional from-clause="/exampleRegion"

 expression="status"/>

 </index>

 <index name="myKeyIndex">

 <primary-key field="id"/>

 </index>

 <entry>

For more details on indexes, see Working with Indexes.

Can I create indexes on overflow regions?

You can create indexes on overflow regions, but you are subject to some limitations. For example,
the data contained in the index itself cannot be overflowed to disk. See Using Indexes with
Overflow Regions for more information.

Can I query a partitioned region? Can I perform a join query
on a partitioned region?
You can query partitioned regions, but there are some limitations. You cannot perform join queries
on partitioned regions, however you can perform equi-join queries on colocated partitioned regions
by executing a function on a local data set.

VMware GemFire 9.10 Documentation

VMware by Broadcom 647

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/index.html

For a full list of restrictions, see Partitioned Region Query Restrictions.

How can I improve the performance of a partitioned region
query?
If you know the data you need to query, you can target particular nodes in your queries (thus
reducing the number of servers the query needs to access) by executing the query with the
FunctionService. See Querying a Partitioned Region on a Single Node for details. If you are
querying data that has been partitioned by a key or specific field, you should first create a key index
and then execute the query using the FunctionService with the key or field as a filter. See
Optimizing Queries on Data Partitioned by a Key or Field Value.

Which query language elements are supported in VMware
GemFire?

Supported elements

AND LIMIT TO_DATE

AS LIKE TYPE

COUNT NOT WHERE

DISTINCT NVL

ELEMENT OR

FROM ORDER BY

<HINT> SELECT

IMPORT SET

IN <TRACE>

IS_DEFINED TRUE

IS_UNDEFINED

For more information and examples on using each supported keyword, see Supported Keywords.

How do I debug queries?

You can debug a specific query at the query level by adding the <trace> keyword before the query
string that you want to debug. Here is an example:

<trace> SELECT * FROM /exampleRegion

You can also write:

<TRACE> SELECT * FROM /exampleRegion

When the query is executed, VMware GemFire will log a message in $GEMFIRE_DIR/system.log
with the following information:

VMware GemFire 9.10 Documentation

VMware by Broadcom 648

[info 2011/08/29 11:24:35.472 PDT CqServer <main> tid=0x1] Query Executed in 9.619656

ms; rowCount = 99;

indexesUsed(0) "select * from /exampleRegion"

If you want to enable debugging for all queries, you can enable query execution logging by setting
a System property on the command line during start-up:

gfsh>start server --name=server_name -–J=-Dgemfire.Query.VERBOSE=true

Or you can set the property programmatically:

System.setProperty("gemfire.Query.VERBOSE","true");

Can I use implicit attributes or methods in my query?
If an implicit attribute or method name can only be associated with one untyped iterator, the
VMware GemFire query processor will assume that it is associated with that iterator. However, if
more than one untyped iterator is in scope, then the query will fail with a TypeMismatchException.
The following query fails because the query processor does not fully type expressions:

select distinct value.secId from /pos , getPositions(23)

The following query, however, succeeds because the iterator is either explicitly named with a
variable or it is typed:

select distinct e.value.secId from /pos , getPositions(23) e

Can I instruct the query engine to use specific indexes with
my queries?

Using HINT indexname allows you to instruct the query engine to prefer and filter results from the
specified indexes. If you provide multiple index names, the query engine will use all available
indexes but prefer the specified indexes.

<HINT 'IDIndex'> SELECT * FROM /Portfolios p WHERE p.ID > 10 AND p.owner = 'XYZ'

<HINT 'IDIndex', 'OwnerIndex'> SELECT * FROM /Portfolios p WHERE p.ID > 10 AND p.owner

= 'XYZ' AND p.value < 100

How do I perform a case-insensitive search on a field in
OQL?

You can use the Java String class methods toUpperCase and toLowerCase to transform fields where
you want to perform a case-insensitive search. For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 649

SELECT entry.value FROM /exampleRegion.entries entry WHERE entry.value.toUpperCase LIK

E '%BAR%'

or

SELECT * FROM /exampleRegion WHERE foo.toLowerCase LIKE '%bar%'

Querying with OQL

This section provides a high-level introduction to VMware GemFire querying such as building a
query string and describes query language features.

VMware GemFire provides a SQL-like querying language that allows you to access data stored in
VMware GemFire regions. Since VMware GemFire regions are key-value stores where values can
range from simple byte arrays to complex nested objects, VMware GemFire uses a query syntax
based on OQL (Object Query Language) to query region data. OQL and SQL have many syntactical
similarities, however they have significant differences. For example, while OQL does not offer all of
the capabilities of SQL like aggregates, OQL does allow you to execute queries on complex object
graphs, query object attributes and invoke object methods.

The syntax of a typical VMware GemFire OQL query is:

[IMPORT package]

SELECT [DISTINCT] projectionList

FROM collection1, [collection2, …]

[WHERE clause]

[ORDER BY order_criteria [desc]]

Therefore, a simple VMware GemFire OQL query resembles the following:

SELECT DISTINCT * FROM /exampleRegion WHERE status = ‘active’

An important characteristic of VMware GemFire querying to note is that by default, VMware
GemFire queries on the values of a region and not on keys. To obtain keys from a region, you must
use the keySet path expression on the queried region. For example, /exampleRegion.keySet.

For those new to the VMware GemFire querying, see also the VMware GemFire Querying FAQ
and Examples.

Advantages of OQL

The following list describes some of the advantages of using an OQL-based querying language:

You can query on any arbitrary object

You can navigate object collections

You can invoke methods and access the behavior of objects

Data mapping is supported

You are not required to declare types. Since you do not need type definitions, you can
work across multiple languages

VMware GemFire 9.10 Documentation

VMware by Broadcom 650

You are not constrained by a schema

Writing and Executing a Query in VMware GemFire

The VMware GemFire QueryService provides methods to create the Query object. You can then
use the Query object to perform query-related operations.

The QueryService instance you should use depends on whether you are querying the local cache
of an application or if you want your application to query the server cache.

Querying a Local Cache

To query the application’s local cache or to query other members, use
org.apache.geode.cache.Cache.getQueryService.

Sample Code

 // Identify your query string.

 String queryString = "SELECT DISTINCT * FROM /exampleRegion";

 // Get QueryService from Cache.

 QueryService queryService = cache.getQueryService();

 // Create the Query Object.

 Query query = queryService.newQuery(queryString);

 // Execute Query locally. Returns results set.

 SelectResults results = (SelectResults)query.execute();

 // Find the Size of the ResultSet.

 int size = results.size();

 // Iterate through your ResultSet.

 Portfolio p = (Portfolio)results.iterator().next(); /* Region containing Portfolio ob

ject. */

Querying a Server Cache from a Client

To perform a client to server query, use org.apache.geode.cache.client.Pool.getQueryService.

Sample Code

// Identify your query string.

 String queryString = "SELECT DISTINCT * FROM /exampleRegion";

 // Get QueryService from client pool.

 QueryService queryService = pool.getQueryService();

 // Create the Query Object.

 Query query = queryService.newQuery(queryString);

 // Execute Query locally. Returns results set.

 SelectResults results = (SelectResults)query.execute();

 // Find the Size of the ResultSet.

VMware GemFire 9.10 Documentation

VMware by Broadcom 651

 int size = results.size();

 // Iterate through your ResultSet.

 Portfolio p = (Portfolio)results.iterator().next(); /* Region containing Portfolio ob

ject. */

Refer to the following JavaDocs for specific APIs:

Query package

QueryService

Note: You can also perform queries using the gfsh query command. See query.

Building a Query String

A query string is a fully formed OQL statement that can be passed to a query engine and executed
against a data set. To build a query string, you combine supported keywords, expressions, and
operators to create an expression that returns the information you require.

A query string follows the rules specified by the query language and grammar. It can include:

Namescopes. For example, the IMPORT statement. See IMPORT Statement.

Path expressions. For example, in the query SELECT * FROM
/exampleRegion,/exampleRegion is a path expression. See FROM Clause.

Attribute names. For example, in the query SELECT DISTINCT * FROM /exampleRegion p
WHERE p.position1.secId = '1', we access the secId attribute of the Position object. See
WHERE Clause.

Method invocations. For example, in the query SELECT DISTINCT * FROM /exampleRegion p
WHERE p.name.startsWith('Bo'), we invoke the startsWith method on the Name object.
See WHERE Clause.

Operators. For example, comparison operators (=,<,>,<>), unary operators (NOT), logical
operators (AND, OR) and so on. See Operators for a complete list.

Literals. For example, boolean, date, time and so on. See Supported Literals for a
complete list.

Query bind parameters. For example, in the query SELECT DISTINCT * FROM $1 p WHERE
p.status = $2, $1 and $2 are parameters that can be passed to the query during runtime.
See Using Query Bind Parameters for more details.

Preset query functions. For example, ELEMENT(expr) and IS_DEFINED(expr). See
SELECT Statement for other available functions.

SELECT statements. For example, in the example queries above SELECT * or SELECT
DISTINCT *. See SELECT Statement for other available functions.

Comments. OQL permits extra characters to accompany the query string without changing
the string’s definition. Form a multi-line comment by enclosing the comment body within
/* and */ delimiters; OQL does not permit nested comments. A single line comment body
is all the characters to the right of -- (two hyphens) up to the end of the line.

The components listed above can all be part of the query string, but none of the components are
required. At a minimum, a query string contains an expression that can be evaluated against

VMware GemFire 9.10 Documentation

VMware by Broadcom 652

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/package-summary.html
https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/QueryService.html

specified data.

The following sections provide guidelines for the query language building blocks that are used
when writing typical VMware GemFire queries.

IMPORT Statement

FROM Clause

WHERE Clause

SELECT Statement

OQL Aggregate Functions

IMPORT Statement

It is sometimes necessary for an OQL query to refer to the class of an object. In cases where the
same class name resides in two different namescopes (packages), you must be able to differentiate
the classes having the same name.

The IMPORT statement is used to establish a name for a class in a query.

IMPORT package.Position;

SELECT DISTINCT * FROM /exampleRegion, positions.values positions TYPE Position WHERE

positions.mktValue >= 25.00

FROM Clause

Use the FROM clause to bring the data you need into scope for the rest of your query. The FROM
clause also includes object typing and iterator variables.

The query engine resolves names and path expressions according to the name space that is
currently in scope in the query.

Path Expressions

The initial name space for any query is composed of:

Regions. In the context of a query, the name of a region is specified by its full path starting
with a forward slash (/) and delimited by the forward slash between region names. For
example, /exampleRegion or /root/exampleRegion.

Region querying attributes. From a region path, you can access the Region object’s public
fields and methods, referred to in querying as the region’s attributes. For example,
/exampleRegion.size.

Top-level region data. You can access entry keys and entry data through the region path.

1. /exampleRegion.keySet returns the Set of entry keys in the region

2. /exampleRegion.entryset returns the Set of Region.Entry objects

3. /exampleRegion.values returns the Collection of entry values

4. /exampleRegion returns the Collection of entry values

VMware GemFire 9.10 Documentation

VMware by Broadcom 653

New name spaces are brought into scope based on the FROM clause in the SELECT statement.

Examples:

Query a region for all distinct values. Return a collection of unique entry values from the region:

SELECT DISTINCT * FROM /exampleRegion

Query the top level region data using entrySet. Return the keys and positions of Region.Entry
objects whose mktValue attribute is greater than 25.00:

SELECT key, positions FROM /exampleRegion.entrySet, value.positions.values positions W

HERE positions.mktValue >= 25.00

Query the region for its entry values. Return a set of unique values from Region.Entry objects that
have the key equal to 1:

SELECT DISTINCT entry.value FROM /exampleRegion.entries entry WHERE entry.key = '1'

Query the region for its entry values. Return the set of all entry values in which the ID field is
greater than 1000:

SELECT * FROM /exampleRegion.entries entry WHERE entry.value.ID > 1000

Query entry keys in the region. Return a set of entry keys in the region that have the key equal to
‘1’:

SELECT * FROM /exampleRegion.keySet key WHERE key = '1'

Query values in the region. Return a collection of entry values in the region that have the status
attribute value of ‘active’:

SELECT * FROM /exampleRegion.values portfolio WHERE portfolio.status = 'active'

Aliases and Synonyms

In query strings, you can use aliases in path expressions (region and its objects) so that you can
refer to the region or objects in other places in the query.

You can also use the AS keyword to provide a label for joined path expressions.

Examples:

SELECT DISTINCT * FROM /exampleRegion p WHERE p.status = 'active'

SELECT * FROM /exampleRegion p, p.positions.values AS pos WHERE pos.secId != '1'

Object Typing
Specifying object type in the FROM clause helps the query engine to process the query at optimal
speed. Apart from specifying the object types during configuration (using key-constraint and value-

VMware GemFire 9.10 Documentation

VMware by Broadcom 654

constraint), type can be explicitly specified in the query string.

Example:

SELECT DISTINCT * FROM /exampleRegion, positions.values positions TYPE Position WHERE

positions.mktValue >= 25.00

WHERE Clause

Each FROM clause expression must resolve to a collection of objects. The collection is then
available for iteration in the query expressions that follow in the WHERE clause.

For example:

SELECT DISTINCT * FROM /exampleRegion p WHERE p.status = 'active'

The entry value collection is iterated by the WHERE clause, comparing the status field to the string
‘active’. When a match is found, the value object of the entry is added to the return set.

In the next example query, the collection specified in the first FROM clause expression is used by
the rest of the SELECT statement, including the second FROM clause expression.

SELECT DISTINCT * FROM /exampleRegion, positions.values p WHERE p.qty > 1000.00

Implementing equals and hashCode Methods

You must implement the equals and hashCode methods in your custom objects if you are doing
ORDER BY and DISTINCT queries on the objects. The methods must conform to the properties
and behavior documented in the online Java API documentation for java.lang.Object.
Inconsistent query results may occur if these methods are absent.

If you have implemented equals and hashCode methods in your custom objects, you must provide
detailed implementations of these methods so that queries execute properly against the objects.
For example, assume that you have defined a custom object (CustomObject) with the following
variables:

int ID

int otherValue

Let’s put two CustomObjects (we’ll call them CustomObjectA and CustomObjectB) into the cache:

CustomObjectA:

ID=1

otherValue=1

CustomObjectB:

ID=1

otherValue=2

VMware GemFire 9.10 Documentation

VMware by Broadcom 655

If you have implemented the equals method to simply match on the ID field (ID == ID), queries will
produce unpredictable results.

The following query:

SELECT * FROM /CustomObjects c

WHERE c.ID > 1 AND c.ID < 3

AND c.otherValue > 0 AND c.otherValue < 3

returns two objects, however the objects will be two of either CustomObjectA or CustomObjectB.

Alternately, the following query:

SELECT * FROM /CustomObjects c

WHERE c.ID > 1 AND c.ID < 3

AND c.otherValue > 1 AND c.otherValue < 3

returns either 0 results or 2 results of CustomObjectB, depending on which entry is evaluated last.

To avoid unpredictable querying behavior, implement detailed versions of the equals and hashCode
methods.

If you are comparing a non-primitive field of the object in the WHERE clause, use the equals
method instead of the = operator. For example instead of nonPrimitiveObj = objToBeCompared use
nonPrimitiveObj.equals(objToBeCompared).

Querying Serialized Objects
Objects must implement serializable if you will be querying partitioned regions or if you are
performing client-server querying.

If you are using PDX serialization, you can access the values of individual fields without having to
deserialize the entire object. This is accomplished by using PdxInstance, which is a wrapper around
the serialized stream. The PdxInstance provides a helper method that takes field-name and returns
the value without deserializing the object. While evaluating the query, the query engine will access
field values by calling the getField method thus avoiding deserialization.

To use PdxInstances in querying, ensure that PDX serialization reads are enabled in your server’s
cache. In gfsh, execute the following command before starting up your data members:

gfsh>configure pdx --read-serialized=true

See configure pdx for more information.

In cache.xml, set the following:

// Cache configuration setting PDX read behavior

<cache>

 <pdx read-serialized="true">

 ...

 </pdx>

</cache>

Attribute Visibility

VMware GemFire 9.10 Documentation

VMware by Broadcom 656

You can access any object or object attribute that is available in the current scope of a query. In
querying, an object’s attribute is any identifier that can be mapped to a public field or method in
the object. In the FROM specification, any object that is in scope is valid. Therefore, at the
beginning of a query, all locally cached regions and their attributes are in scope.

For attribute Position.secId which is public and has getter method “getSecId()”, the query can be
written as the following:

SELECT DISTINCT * FROM /exampleRegion p WHERE p.position1.secId = '1'

SELECT DISTINCT * FROM /exampleRegion p WHERE p.position1.SecId = '1'

SELECT DISTINCT * FROM /exampleRegion p WHERE p.position1.getSecId() = '1'

The query engine tries to evaluate the value using the public field value. If a public field value is not
found, it makes a get call using field name (note that the first character is uppercase.)

Joins

If collections in the FROM clause are not related to each other, the WHERE clause can be used to
join them.

The statement below returns all portfolios from the /exampleRegion and /exampleRegion2 regions
that have the same status.

SELECT * FROM /exampleRegion portfolio1, /exampleRegion2 portfolio2 WHERE portfolio1.s

tatus = portfolio2.status

To create indexes for region joins you create single-region indexes for both sides of the join
condition. These are used during query execution for the join condition. Partitioned regions do not
support region joins. For more information on indexes, see Working with Indexes.

Examples:

Query two regions. Return the ID and status for portfolios that have the same status.

SELECT portfolio1.ID, portfolio2.status FROM /exampleRegion portfolio1, /exampleRegion

2 portfolio2 WHERE portfolio1.status = portfolio2.status

Query two regions, iterating over all positions within each portfolio. Return all 4-tuples consisting
of the value from each of the two regions and the value portion of the positions map from both
regions in which the secId field of positions match.

SELECT * FROM /exampleRegion portfolio1, portfolio1.positions.values positions1, /exam

pleRegion2 portfolio2, portfolio2.positions.values positions2 WHERE positions1.secId =

positions2.secId

Same query as the previous example, with the additional constraint that matches will have a ID of 1.

SELECT * FROM /exampleRegion portfolio1, portfolio1.positions.values positions1, /exam

pleRegion2 portfolio2, portfolio2.positions.values positions2 WHERE portfolio1.ID = 1

AND positions1.secId = positions2.secId

LIKE

VMware GemFire 9.10 Documentation

VMware by Broadcom 657

VMware GemFire offers limited support for the LIKE predicate. LIKE can be used to mean ‘equals
to’. If you terminate the string with a wildcard (‘%’), it behaves like ‘starts with’. You can also place
a wildcard (either ‘%’ or ‘_’) at any other position in the comparison string. You can escape the
wildcard characters to represent the characters themselves.

Note: The ‘*’ wildcard is not supported in OQL LIKE predicates.

You can also use the LIKE predicate when an index is present.

Examples:

Query the region. Return all objects where status equals ‘active’:

SELECT * FROM /exampleRegion p WHERE p.status LIKE 'active'

Query the region using a wild card for comparison. Returns all objects where status begins with
‘activ’:

SELECT * FROM /exampleRegion p WHERE p.status LIKE 'activ%'

Case Insensitive Fields
You can use the Java String class methods toUpperCase and toLowerCase to transform fields where
you want to perform a case-insensitive search. For example:

SELECT entry.value FROM /exampleRegion.entries entry WHERE entry.value.toUpperCase LIK

E '%BAR%'

or

SELECT * FROM /exampleRegion WHERE foo.toLowerCase LIKE '%bar%'

Method Invocations

To use a method in a query, use the attribute name that maps to the public method you want to
invoke, or directly use the public method name instead. It is important to note that when you use
the attribute name instead of the method name, VMware GemFire will search for public methods
named as the attribute itself or public methods with the get prefix.

SELECT r.id FROM /exampleRegion r - maps to obje

ct.id() or object.getId()

SELECT q.getName() FROM /exampleRegion q - maps to obje

ct.getName()

SELECT DISTINCT * FROM /exampleRegion p WHERE p.positions.size >= 2 - maps to posi

tions.size()

Methods declared to return void evaluate to null when invoked through the query processor.

You cannot invoke a static method. See Enum Objects for more information.

Methods without parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 658

If the attribute name maps to a public method that takes no parameters, just include the method
name in the query string as an attribute. For example, emps.isEmpty is equivalent to
emps.isEmpty().

In the following example, the query invokes isEmpty on positions, and returns the set of all
portfolios with no positions:

SELECT DISTINCT * FROM /exampleRegion p WHERE p.positions.isEmpty

Methods with parameters

To invoke methods with parameters, include the method name in the query string as an attribute
and provide method arguments between parentheses.

This example passes the argument "Bo" to the public method, and returns all names that begin
with "Bo".

SELECT DISTINCT * FROM /exampleRegion p WHERE p.name.startsWith('Bo')

For overloaded methods, the query processor decides which method to call by matching the
runtime argument types with the parameter types required by the method. If only one method’s
signature matches the parameters provided, it is invoked. The query processor uses runtime types
to match method signatures.

If more than one method can be invoked, the query processor chooses the method whose
parameter types are the most specific for the given arguments. For example, if an overloaded
method includes versions with the same number of arguments, but one takes a Person type as an
argument and the other takes an Employee type, derived from Person, Employee is the more specific
object type. If the argument passed to the method is compatible with both types, the query
processor uses the method with the Employee parameter type.

The query processor uses the runtime types of the parameters and the receiver to determine the
proper method to invoke. Because runtime types are used, an argument with a null value has no
typing information, and so can be matched with any object type parameter. When a null argument
is used, if the query processor cannot determine the proper method to invoke based on the non-
null arguments, it throws an AmbiguousNameException.

Methods calls with the SecurityManager enabled

When the SecurityManager is enabled, by default VMware GemFire throws a
NotAuthorizedException when any method that does not belong to the to the list of default
allowed methods, given in RestrictedMethodAuthorizer, is invoked.

In order to further customize this authorization check, see Changing the Method Authorizer.

In the past you could use the system property
gemfire.QueryService.allowUntrustedMethodInvocation to disable the check altogether, but this
approach is deprecated and will be removed in future releases; you need to configure the
UnrestrictedMethodAuthorizer instead.

Enum Objects
To write a query based on the value of an Enum object field, you must use the toString method of
the enum object or use a query bind parameter.

VMware GemFire 9.10 Documentation

VMware by Broadcom 659

For example, the following query is NOT valid:

//INVALID QUERY

select distinct * from /QueryRegion0 where aDay = Day.Wednesday

The reason it is invalid is that the call to Day.Wednesday involves a static class and method invocation
which is not supported.

Enum types can be queried by using toString method of the enum object or by using bind
parameter. When you query using the toString method, you must already know the constraint
value that you wish to query. In the following first example, the known value is ‘active’.

Examples:

Query enum type using the toString method:

// eStatus is an enum with values 'active' and 'inactive'

select * from /exampleRegion p where p.eStatus.toString() = 'active'

Query enum type using a bind parameter. The value of the desired Enum field (Day.Wednesday) is
passed as an execution parameter:

select distinct * from /QueryRegion0 where aDay = $1

IN and SET

The IN expression is a boolean indicating if one expression is present inside a collection of
expressions of compatible type. The determination is based on the expressions’ equals semantics.

If e1 and e2 are expressions, e2 is a collection, and e1 is an object or a literal whose type is a
subtype or the same type as the elements of e2, then e1 IN e2 is an expression of type boolean.

The expression returns:

TRUE if e1 is not UNDEFINED and is contained in collection e2

FALSE if e1 is not UNDEFINED and is not contained in collection e2 #

UNDEFINED if e1 is UNDEFINED

For example, 2 IN SET(1, 2, 3) is TRUE.

Another example is when the collection you are querying into is defined by a subquery. This query
looks for companies that have an active portfolio on file:

SELECT name, address FROM /company

 WHERE id IN (SELECT id FROM /portfolios WHERE status = 'active')

The interior SELECT statement returns a collection of ids for all /portfolios entries whose status is
active. The exterior SELECT iterates over /company, comparing each entry’s id with this collection.
For each entry, if the IN expression returns TRUE, the associated name and address are added to
the outer SELECT’s collection.

Comparing Set Values

The following is an example of a set value type comparison where sp is of type Set:

VMware GemFire 9.10 Documentation

VMware by Broadcom 660

SELECT * FROM /exampleRegion WHERE sp = set('20','21','22')

In this case, if sp contains only ‘20’ and ‘21’, then the query evaluates to false. The query compares
the two sets and looks for the presence of all elements in both sets.

For other collections types like list, the query can be written as follows:

SELECT * FROM /exampleRegion WHERE sp.containsAll(set('20','21','22))

where sp is of type List.

In order to use it for Set value, the query can be written as:

SELECT * FROM /exampleRegion WHERE sp IN SET (set('20','21','22'),set('10',11','12'))

where a set value is searched in collection of set values.

One problem is that you cannot create indexes on Set or List types (collection types) that are not
comparable. To workaround this, you can create an index on a custom collection type that
implements Comparable.

Double.NaN and Float.NaN Comparisons
The comparison behavior of Double.NaN and Float.NaN within VMware GemFire queries follow
the semantics of the JDK methods Float.compareTo and Double.compareTo.

In summary, the comparisons differ in the following ways from those performed by the Java
language numerical comparison operators (<, <=, ==, >= >) when applied to primitive double [float]
values:

Double.NaN [Float.NaN] is considered to be equal to itself and greater than all other
double [float] values (including Double.POSITIVE_INFINITY [Float.POSITIVE_INFINITY]).

0.0d [0.0f] is considered by this method to be greater than -0.0d [-0.0f].

Therefore, Double.NaN[Float.NaN] is considered to be larger than
Double.POSITIVE_INFINITY[Float.POSITIVE_INFINITY]. Here are some example queries and
what to expect.

If p.value is NaN, the following query: Evaluates to: Appears in the result set?

SELECT * FROM /positions p WHERE p.value = 0 false no

SELECT * FROM /positions p WHERE p.value > 0 true yes

SELECT * FROM /positions p WHERE p.value >= 0 true yes

SELECT * FROM /positions p WHERE p.value < 0 false no

SELECT * FROM /positions p WHERE p.value <= 0 false no

When p.value and p.value1 are both NaN, the following query: Evaluates to: Appears in the result set:

SELECT * FROM /positions p WHERE p.value = p.value1 true yes

If you combine values when defining the following query in your code, when the query is executed
the value itself is considered UNDEFINED when parsed and will not be returned in the result set.

VMware GemFire 9.10 Documentation

VMware by Broadcom 661

String query = "SELECT * FROM /positions p WHERE p.value =" + Float.NaN

Executing this query, the value itself is considered UNDEFINED when parsed and will not be
returned in the result set.

To retrieve NaN values without having another field already stored as NaN, you can define the
following query in your code:

String query = "SELECT * FROM /positions p WHERE p.value > " + Float.MAX_VALUE;

Arithmetic Operations

Arithmetic operators may be used in any expression.

For example, this query selects all people with a body mass index less than 25:

String query = "SELECT * FROM /people p WHERE p.height * p.height/p.weight < 25";

SELECT Statement
The SELECT statement allows you to filter data from the collection of object(s) returned by a
WHERE search operation. The projection list is either specified as * or as a comma delimited list of
expressions.

For *, the interim results of the WHERE clause are returned from the query.

Examples:

Query all objects from the region using *. Returns the Collection of portfolios (The exampleRegion
contains Portfolio as values).

SELECT * FROM /exampleRegion

Query secIds from positions. Returns the Collection of secIds from the positions of active portfolios:

SELECT secId FROM /exampleRegion, positions.values TYPE Position

WHERE status = 'active'

Returns a Collection of struct<type: String, positions: map> for the active portfolios. The second
field of the struct is a Map (jav.utils.Map) object, which contains the positions map as the value:

SELECT "type", positions FROM /exampleRegion

WHERE status = 'active'

Returns a Collection of struct<portfolios: Portfolio, values: Position> for the active portfolios:

SELECT * FROM /exampleRegion, positions.values

TYPE Position WHERE status = 'active'

Returns a Collection of struct<pflo: Portfolio, posn: Position> for the active portfolios:

VMware GemFire 9.10 Documentation

VMware by Broadcom 662

SELECT * FROM /exampleRegion portfolio, positions positions

TYPE Position WHERE portfolio.status = 'active'

SELECT Statement Results

The result of a SELECT statement is either UNDEFINED or is a Collection that implements the
SelectResults interface.

The SelectResults returned from the SELECT statement is either:

1. A collection of objects, returned for these two cases:

When only one expression is specified by the projection list and that expression is
not explicitly specified using the fieldname:expression syntax

When the SELECT list is * and a single collection is specified in the FROM clause

2. A collection of Structs that contains the objects

When a struct is returned, the name of each field in the struct is determined following this order of
preference:

1. If a field is specified explicitly using the fieldname:expression syntax, the fieldname is used.

2. If the SELECT projection list is * and an explicit iterator expression is used in the FROM
clause, the iterator variable name is used as the field name.

3. If the field is associated with a region or attribute path, the last attribute name in the path is
used.

4. If names cannot be decided based on these rules, arbitrary unique names are generated by
the query processor.

DISTINCT

Use the DISTINCT keyword if you want to limit the results set to unique rows. Note that in the
current version of VMware GemFire you are no longer required to use the DISTINCT keyword in
your SELECT statement.

SELECT DISTINCT * FROM /exampleRegion

Note: If you are using DISTINCT queries, you must implement the equals and hashCode methods
for the objects that you query.

LIMIT

You can use the LIMIT keyword at the end of the query string to limit the number of values
returned.

For example, this query returns at most 10 values:

SELECT * FROM /exampleRegion LIMIT 10

VMware GemFire 9.10 Documentation

VMware by Broadcom 663

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/SelectResults.html

ORDER BY

You can order your query results in ascending or descending order by using the ORDER BY clause.
You must use DISTINCT when you write ORDER BY queries.

SELECT DISTINCT * FROM /exampleRegion WHERE ID < 101 ORDER BY ID

The following query sorts the results in ascending order:

SELECT DISTINCT * FROM /exampleRegion WHERE ID < 101 ORDER BY ID asc

The following query sorts the results in descending order:

SELECT DISTINCT * FROM /exampleRegion WHERE ID < 101 ORDER BY ID desc

Note: If you are using ORDER BY queries, you must implement the equals and hashCode methods
for the objects that you query.

Preset Query Functions

VMware GemFire provides several built-in functions for evaluating or filtering data returned from a
query. They include the following:

Function Description Example

ELEMENT(expr) Extracts a single element from a
collection or array. This function
throws a FunctionDomainException if
the argument is not a collection or
array with exactly one element.

ELEMENT(SELECT DISTINCT *

 FROM /exampleRegion

 WHERE id = 'XYZ-1').stat

us = 'active'

IS_DEFINED(expr) Returns TRUE if the expression does
not evaluate to UNDEFINED.
Inequality queries include undefined
values in their query results. With the
IS_DEFINED function, you can limit
results to only those elements with
defined values.

IS_DEFINED(SELECT DISTINC

T *

FROM /exampleRegion p

WHERE p.status = 'activ

e')

IS_UNDEFINED (expr) Returns TRUE if the expression
evaluates to UNDEFINED. With the
exception of inequality queries, most
queries do not include undefined
values in their query results. The
IS_UNDEFINED function allows
undefined values to be included, so
you can identify elements with
undefined values.

SELECT DISTINCT *

FROM /exampleRegion p

WHERE IS_UNDEFINED(p.stat

us)

NVL(expr1, expr2) Returns expr2 if expr1 is null. The
expressions can be query parameters
(bind arguments), path expressions,
or literals.

VMware GemFire 9.10 Documentation

VMware by Broadcom 664

Function Description Example

TO_DATE(date_str, format_str) Returns a Java Data class object. The
arguments must be String S with
date_str representing the date and
format_str representing the format
used by date_str. The format_str you
provide is parsed using
java.text.SimpleDateFormat.

OQL Aggregate Functions

The aggregate functions MIN, MAX, COUNT, COUNT over a DISTINCT expression, SUM, SUM over a
DISTINCT expression, AVG, AVG over a DISTINCT expression, and GROUP BY are supported.

The following sections provide descriptions and limitations (if any) about the aggregate functions,
how do they work and how they can be used.

GROUP BY

You can collect data across multiple entries and group the results by one or more columns through
the usage of the GROUP BY statement. It’s important to note some facts about its usage:

It can group results by one or more fields.

It returns a single record / entry per group.

It must always be placed before the ORDER BY clause, if any.

It can be used in conjunction with other aggregate functions: MIN, MAX, COUNT, SUM and AVG.

It groups records using the selected fields if and only if the fields have identical data across
entries.

It is required, whenever an aggregate function is used within a query with other selected
fields, to also use GROUP BY.

If there are no other aggregate functions within the query, all fields included within a
GROUP BY clause must also be part of the original projection list, and all fields included
within the projection list must also be part of the GROUP BY clause.

The following are example GROUP BY queries.

The following GROUP BY query returns the maximum amount of sales per employee.

SELECT ID, MAX(e.sales)

FROM /employees e

GROUP BY ID

The following GROUP BY query returns the minimum, maximum, total count, average and summation
of IDs grouped by status.

SELECT pf.status, MIN(pf.ID), MAX(pf.ID), COUNT(pf.ID), AVG(pf.ID), SUM(pf.ID)

FROM /portfolio pf

GROUP BY pf.status

VMware GemFire 9.10 Documentation

VMware by Broadcom 665

MIN

The MIN keyword returns the minimum or smallest value from the selected expression. The
expression itself must always evaluate to java.lang.Comparable. The MIN statement returns the
actual type of the selected element as its result.

The following are example MIN queries that return region entries (the entries implement the
java.lang.Comparable interface).

SELECT MIN(pf)

FROM /exampleRegion pf

SELECT MIN(pf)

FROM /exampleRegion

pf WHERE pf.ID > 0

SELECT MIN(pf)

FROM /exampleRegion pf

WHERE pf.ID > 10 LIMIT 50

SELECT MIN(pf)

FROM /exampleRegion pf

WHERE pf.ID > 0 AND pf.status LIKE 'act%'

The following MIN query returns the lowest entry ID that matches the query’s selection criteria.

SELECT MIN(pf.ID)

FROM /exampleRegion pf, pf.positions.values pos

WHERE pf.ID > 0 AND pos.secId = 'IBM'

The following MIN query returns the lowest positive ID grouped by status.

SELECT pf.status, MIN(pf.ID)

FROM /exampleRegion pf

WHERE pf.ID > 0

GROUP BY pf.status

MAX

The MAX keyword returns the maximum or highest value from the selected expression. The
expression itself must always evaluate to java.lang.Comparable. The MAX statement returns the
type of the selected element as its result.

The following are example MAX queries that return region entries (the entries implement the
java.lang.Comparable interface).

SELECT MAX(pf)

FROM /exampleRegion pf

SELECT MAX(pf)

FROM /exampleRegion

VMware GemFire 9.10 Documentation

VMware by Broadcom 666

pf WHERE pf.ID > 0

SELECT MAX(pf)

FROM /exampleRegion pf

WHERE pf.ID > 10 LIMIT 50

SELECT MAX(pf)

FROM /exampleRegion pf

WHERE pf.ID > 0 AND pf.status LIKE 'act%'

The following MAX query returns the highest entry ID that matches the query’s selection criteria.

SELECT MAX(pf.ID)

FROM /exampleRegion pf, pf.positions.values pos

WHERE pf.ID > 0 AND pos.secId = 'IBM'

The following MAX query returns the highest positive IDs grouped by status.

SELECT pf.status, MAX(pf.ID)

FROM /exampleRegion pf

WHERE pf.ID > 0

GROUP BY pf.status

COUNT

The COUNT keyword returns the number of results that match the query selection conditions
specified in the WHERE clause. Using COUNT allows you to determine the size of a results set. The
COUNT statement always returns a java.lang.Integer or java.lang.Long as the result (depending
on how big the value is); you should take this into consideration when executing the query: if an
overflow occurs while computing the COUNT function because the value is higher than

Long.MAX_VALUE (263 - 1), the result will be incorrect.

The following queries are example COUNT queries that return region entries:

SELECT COUNT(*)

FROM /exampleRegion

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID > 0

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID > 0 LIMIT 50

SELECT COUNT(*)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT COUNT(*)

FROM /exampleRegion

VMware GemFire 9.10 Documentation

VMware by Broadcom 667

WHERE ID IN SET(1,2,3,4,5)

The following COUNT query returns the total number of StructTypes that match the query’s selection
criteria.

SELECT COUNT(*)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 AND pos.secId 'IBM'

The following COUNT query uses the DISTINCT keyword and eliminates duplicates from the number
of results.

SELECT DISTINCT COUNT(*)

FROM /exampleRegion p, p.positions.values pos

WHERE p.ID > 0 OR p.status = 'active' OR pos.secId = 'IBM'

SUM
The SUM keyword returns the summation of all results that match the query selection conditions
specified in the WHERE clause. Using SUM allows you to aggregate specific numeric values within a
results set. For partitioned regions, each node’s buckets compute a sum over that node and return
the result to the coordinator node executing the query, which then aggregates the sums across all
nodes.

The SUM function where the DISTINCT modifier is applied to the expression returns the summation
over the set of unique (distinct) values. For partitioned regions, the distinct values in a node’s
buckets are returned to the coordinator node, which can then calculate the sum over the values
that are unique across nodes, after eliminating duplicate values that come from separate nodes.

The actual expression used to calculate the aggregation should be an instance of
java.lang.Number. The SUM statement always returns a java.lang.Number as the result and,
depending on how big the value is and whether it has a decimal component or not, the returned
type could be an instance of java.lang.Integer, java.lang.Long, java.lang.Float or
java.lang.Double; you should take this into consideration when executing the query: if an overflow

occurs while computing the SUM function because the value is higher than Double.MAX_VALUE ((2 - 2-

52) * 21023), the result will be incorrect.

The following are example SUM queries that return the summation of the entries ID.

SELECT SUM(ID)

FROM /exampleRegion

SELECT SUM(ID)

FROM /exampleRegion

WHERE ID > 0

SELECT SUM(ID)

FROM /exampleRegion

WHERE ID > 0 LIMIT 50

VMware GemFire 9.10 Documentation

VMware by Broadcom 668

SELECT SUM(ID)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT SUM(ID)

FROM /exampleRegion

WHERE ID IN SET(1,2,3,4,5)

The following SUM query returns the total summation of positive IDs grouped by status.

SELECT pf.status, SUM(pf.ID)

FROM /exampleRegion pf

WHERE pf.ID > 0

GROUP BY pf.status

The following SUM query uses the DISTINCT keyword and eliminates duplicates from the
aggregation.

SELECT SUM(DISTINCT pf.ID)

FROM /exampleRegion pf, pf.positions.values pos

WHERE pf.ID > 0 OR pf.status = 'active' OR pos.secId = 'IBM'

The following SUM query returns the total aggregation of positive IDs grouped by status and sorted
by the aggregation result in descending order.

SELECT pf.status, SUM(pf.ID) as sm

FROM /exampleRegion pf

WHERE pf.ID > 0

GROUP BY pf.status

ORDER BY sm DESC

AVG

The AVG keyword returns the arithmetic mean of the set formed by the selected expression. For
partitioned regions, each node’s buckets provide both a sum and the number of elements to the
node executing the query (coordinator), such that a correct average may be computed.

The AVG keyword where the DISTINCT modifier is applied to the expression returns the arithmetic
mean of the set of unique (distinct) values. For partitioned regions, the distinct values in a node’s
buckets are returned to the coordinator node, which can then calculate the average over the
values that are unique across nodes, after eliminating duplicate values that come from separate
nodes.

The actual expression used to calculate the aggregation should be an instance of
java.lang.Number. The AVG statement always returns a java.lang.Number as the result and,
depending on how big the value is and whether it has a decimal component or not, the returned
type could be an instance of java.lang.Integer, java.lang.Long, java.lang.Float or
java.lang.Double; you should take this into consideration when executing the query: if an overflow

occurs while computing the AVG function because the value is higher than Double.MAX_VALUE ((2 - 2-

52) * 21023), or if an overflow occurs while computing the intermediate count because the amount

of elements is higher than Long.MAX_VALUE (263 - 1), the result will be incorrect.

VMware GemFire 9.10 Documentation

VMware by Broadcom 669

The following are example AVG queries that calculate the average of the entries ID.

SELECT AVG(ID)

FROM /exampleRegion

SELECT AVG(ID)

FROM /exampleRegion

WHERE ID > 0

SELECT AVG(ID)

FROM /exampleRegion

WHERE ID > 0 LIMIT 50

SELECT AVG(ID)

FROM /exampleRegion

WHERE ID > 0 AND status LIKE 'act%'

SELECT AVG(ID)

FROM /exampleRegion

WHERE ID IN SET(1,2,3,4,5)

The following AVG query returns the average of positive IDs grouped by status.

SELECT pf.status, AVG(pf.ID)

FROM /exampleRegion pf

WHERE pf.ID > 0

GROUP BY pf.status

The following AVG query uses the DISTINCT keyword and eliminates duplicates from the
aggregation.

SELECT AVG(DISTINCT pf.ID)

FROM /exampleRegion pf, pf.positions.values pos

WHERE pf.ID > 0 OR pf.status = 'active' OR pos.secId = 'IBM'

The following AVG query returns the average of positive IDs grouped by status and sorted by the
calculation result in descending order.

SELECT pf.status, AVG(pf.ID) as sm

FROM /exampleRegion pf

WHERE pf.ID > 0

GROUP BY pf.status

ORDER BY sm DESC

OQL Syntax and Semantics
This section covers the following querying language features:

Supported Character Sets

Supported Keywords

Case Sensitivity

VMware GemFire 9.10 Documentation

VMware by Broadcom 670

Comments in Query Strings

Query Language Grammar

Operators

Reserved Words

Supported Literals

Supported Character Sets

VMware GemFire query language supports the full ASCII and Unicode character sets.

Supported Keywords

Query
Language
Keyword

Description Example

AND Logical operator used to create complex expressions by combining two or more
expressions to produce a Boolean result. When you combine two conditional
expressions using the AND operator, both conditions must evaluate to true for the
entire expression to be true.

See
Operators

AS Used to provide a label for a path expression so you can refer to the path by the label
later.

See Aliases
and
Synonyms

AVG Returns the average arithmetic mean of the set formed by the selected expression. The
type of the expression must evaluate to a java.lang.Number.

See AVG

COUNT Returns the quantity of values in the set formed by the selected expression. See COUNT

DISTINCT Restricts the select statement to unique results (eliminates duplicates). See
DISTINCT

ELEMENT Query function. Extracts a single element from a collection or array. This function
throws a FunctionDomainException if the argument is not a collection or array with
exactly one element.

See Preset
Query
Functions

FROM You can access any object or object attribute that is available in the current scope of
the query.

See FROM
Clause

GROUP BY Allows you to summarize data, arranging or grouping results by identical field(s). See GROUP
BY

<HINT> Keyword that instructs the query engine to prefer certain indexes. See Using
Query Index
Hints

IMPORT Used to establish the name for a class in a query. See IMPORT
Statement

IN The IN expression is a Boolean indicating whether one expression is present inside a
collection of expressions of a compatible type.

See IN and
SET

IS_DEFINED Query function. Returns TRUE if the expression does not evaluate to UNDEFINED.
Inequality queries include undefined values in their query results. With the IS_DEFINED
function, you can limit results to only those elements with defined values.

See Preset
Query
Functions

VMware GemFire 9.10 Documentation

VMware by Broadcom 671

Query
Language
Keyword

Description Example

IS_UNDEFIN
ED

Query function. Returns TRUE if the expression evaluates to UNDEFINED. With the
exception of inequality queries, most queries do not include undefined values in their
query results. The IS_UNDEFINED function allows undefined values to be included, so
you can identify elements with undefined values.

See Preset
Query
Functions

LIMIT Limits the number of returned results. If you use the limit keyword, you cannot also run
operations on the query result set that perform any kind of summary activities. For
example trying to run add or addAll or a SelectResult from a query with a LIMIT clause
throws an exception.

See LIMIT

LIKE LIKE can be used to mean ‘equals to’, or if you terminate the string with a wildcard
character (%), it behaves like ‘starts with’. Note that the wildcard can only be used at
the end of the comparison string. You can escape the wildcard character to represent
the % character. You can also use the LIKE predicate if an index is present.

See LIKE

MIN Returns the minimum or smallest value from the selected expression. The type of the
expression must evaluate to a java.lang.Comparable.

See MIN

MAX Returns the maximum or largest value from the selected expression. The type of the
expression must evaluate to a java.lang.Comparable.

See MAX

NOT The example returns the set of portfolios that have positions. Note that NOT cannot
use an index.

See
Operators

NVL Returns expr2 if expr1 is null. The expressions can be query parameters (bind
arguments), path expressions, or literals.

See Preset
Query
Functions

OR If an expression uses both AND and OR operators, the AND expression has higher
precedence than OR.

See
Operators

ORDER BY Allows you to order query results (either in ascending or descending order). See ORDER
BY

SELECT Allows you to filter data from the collection of object(s) returned by a WHERE search
operation.

See SELECT
Statement

SET Specifies a collection of values that can be compared to the returned values of query. See IN and
SET

SUM Returns the summation over the set formed by the selected expression. The type of the
expression must evaluate to a java.lang.Number.

See SUM

<TRACE> Enables debugging on the following query string. See Query
Debugging

TO_DATE Returns a Java Data class object. The arguments must be String S with date_str
representing the date and format_str representing the format used by date_str. The
format_str you provide is parsed using java.text.SimpleDateFormat.

See Preset
Query
Functions

TYPE Specifying object type in the FROM clause helps the query engine to process the query
at optimal speed.

See Object
Typing

WHERE Resolves to a collection of objects. The collection is then available for iteration in the
query expressions that follow in the WHERE clause.

See WHERE
Clause

Case Sensitivity

VMware GemFire 9.10 Documentation

VMware by Broadcom 672

Query language keywords such as SELECT, NULL, DATE, and <TRACE> are case-insensitive.
Identifiers such as attribute names, method names, and path expressions are case-sensitive.

In terms of query string and region entry matching, if you want to perform a case-insensitive search
on a particular field, you can use the Java String class toUpperCase and toLowerCase methods in
your query. For example:

SELECT entry.value FROM /exampleRegion.entries entry WHERE entry.value.toUpperCase LIK

E '%BAR%'

or

SELECT * FROM /exampleRegion WHERE foo.toLowerCase LIKE '%bar%'

Comments in Query Strings
Comment lines being with -- (double dash). Comment blocks begin with /* and end with */. For
example:

SELECT * --my comment

FROM /exampleRegion /* here is

a comment */ WHERE status = ‘active’

Query Language Grammar

Language Grammar

Notation used in the grammar: n
A nonterminal symbol that has to appear at some place within the grammar on the left side of a
rule. All nonterminal symbols have to be derived to be terminal symbols.

t
A terminal symbol (shown in italic bold).

x y
x followed by y

x | y
x or y

(x | y)
x or y

[x]
x or empty

{ x }
A possibly empty sequence of x.

comment
descriptive text

Grammar list:

VMware GemFire 9.10 Documentation

VMware by Broadcom 673

symbol ::= expression

query_program ::= [imports semicolon] query [semicolon]

imports ::= import { semicolon import }

import ::= IMPORT qualifiedName [AS identifier]

query ::= selectExpr | expr

selectExpr ::= SELECT DISTINCT projectionAttributes fromClause [whereClause]

projectionAttributes ::= * | projectionList

projectionList ::= projection { comma projection }

projection ::= field | expr [AS identifier]

field ::= identifier colon expr

fromClause ::= FROM iteratorDef { comma iteratorDef }

iteratorDef ::= expr [[AS] identifier] [TYPE identifier] | identifier IN expr [

TYPE identifier]

whereClause ::= WHERE expr

expr ::= castExpr

castExpr ::= orExpr | left_paren identifier right_paren castExpr

orExpr ::= andExpr { OR andExpr }

andExpr ::= equalityExpr { AND equalityExpr }

equalityExpr ::= relationalExpr { (= | <> | !=) relationalExpr }

relationalExpr ::= additiveExpr { (< | <= | > | >=) additiveExpr }

additiveExpr ::= multiplicativeExpr { (+ | -) multiplicativeExpr }

multiplicativeExpr ::= inExpr { (MOD | % | / | *) inExpr}

inExpr ::= unaryExpr { IN unaryExpr }

unaryExpr ::= [NOT] unaryExpr

postfixExpr ::= primaryExpr { left_bracket expr right_bracket }

 | primaryExpr { dot identifier [argList] }

argList ::= left_paren [valueList] right_paren

qualifiedName ::= identifier { dot identifier }

primaryExpr ::= functionExpr

 | identifier [argList]

 | undefinedExpr

 | collectionConstruction

 | queryParam

 | literal

 | (query)

 | region_path

functionExpr ::= ELEMENT left_paren query right_paren

 | NVL left_paren query comma query right_paren

 | TO_DATE left_paren query right_paren

undefinedExpr ::= IS_UNDEFINED left_paren query right_paren

 | IS_DEFINED left_paren query right_paren

collectionConstruction ::= SET left_paren [valueList] right_paren

valueList ::= expr { comma expr }

queryParam ::= $ integerLiteral

region_path ::= forward_slash region_name { forward_slash region_name }

region_name ::= name_character { name_character }

identifier ::= letter { name_character }

literal ::= booleanLiteral

 | integerLiteral

 | longLiteral

 | doubleLiteral

 | floatLiteral

 | charLiteral

 | stringLiteral

 | dateLiteral

 | timeLiteral

 | timestampLiteral

 | NULL

 | UNDEFINED

VMware GemFire 9.10 Documentation

VMware by Broadcom 674

booleanLiteral ::= TRUE | FALSE

integerLiteral ::= [dash] digit { digit }

longLiteral ::= integerLiteral L

floatLiteral ::= [dash] digit { digit } dot digit { digit } [(E | e) [plus | das

h] digit { digit }] F

doubleLiteral ::= [dash] digit { digit } dot digit { digit } [(E | e) [plus | da

sh] digit { digit }] [D]

charLiteral ::= CHAR single_quote character single_quote

stringLiteral ::= single_quote { character } single_quote

dateLiteral ::= DATE single_quote integerLiteral dash integerLiteral dash integerLiter

al single_quote

timeLiteral ::= TIME single_quote integerLiteral colon

 integerLiteral colon integerLiteral single_quote

timestampLiteral ::= TIMESTAMP single_quote

 integerLiteral dash integerLiteral dash integerLiteral integerLiteral colon

 integerLiteral colon

 digit { digit } [dot digit { digit }] single_quote

letter ::= any unicode letter

character ::= any unicode character except 0xFFFF

name_character ::= letter | digit | underscore

digit ::= any unicode digit

The expressions in the following are all terminal characters:

dot ::= .

left_paren ::= (

right_paren ::=)

left_bracket ::= [

right_bracket ::=]

single_quote ::= ’

underscore ::= _

forward_slash ::= /

comma ::= ,

semicolon ::= ;

colon ::= :

dash ::= -

plus ::= +

Language Notes

Query language keywords such as SELECT, NULL, and DATE are case-insensitive.
Identifiers such as attribute names, method names, and path expressions are case-sensitive.

Comment lines begin with ‑‑ (double dash).

Comment blocks begin with /* and end with */.

String literals are delimited by single-quotes. Embedded single-quotes are doubled.

Examples:

'Hello' value = Hello

'He said, ''Hello''' value = He said, 'Hello'

Character literals begin with the CHAR keyword followed by the character in single
quotation marks. The single-quotation mark character itself is represented as CHAR ''''

VMware GemFire 9.10 Documentation

VMware by Broadcom 675

(with four single quotation marks).

In the TIMESTAMP literal, there is a maximum of nine digits after the decimal point.

Operators

VMware GemFire supports comparison, logical, unary, arithmetic, map, index, dot, and right arrow
operators.

Comparison Operators

Comparison operators compare two values and return the results, either TRUE or FALSE.

The following are supported comparison operators:

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

!= not equal to

<> not equal to

Regarding equality and inequality operators:

The equality and inequality operators have lower precedence than the other comparison
operators.

The equality and inequality operators can be used with null.

Inequality queries return results for which the search field is UNDEFINED.

To perform equality or inequality comparisons with UNDEFINED, use the IS_DEFINED and
IS_UNDEFINED preset query functions instead of these comparison operators.

Logical Operators

The logical operators AND and OR allow you to create more complex expressions by combining
expressions to produce a boolean result. When you combine two conditional expressions using the
AND operator, both conditions must evaluate to true for the entire expression to be true. When
you combine two conditional expressions using the OR operator, the expression evaluates to true if
either one or both of the conditions are true. You can create complex expressions by combining
multiple simple conditional expressions with AND and OR operators. When expressions use AND
and OR operators, AND has higher precedence than OR.

Unary Operators

VMware GemFire 9.10 Documentation

VMware by Broadcom 676

Unary operators operate on a single value or expression, and have lower precedence than
comparison operators in expressions. VMware GemFire supports the unary operator NOT. NOT is
the negation operator, which changes the value of the operand to its opposite. For example, if an
expression evaluates to TRUE, NOT changes it to FALSE. The operand must be a boolean.

Arithmetic Operators

Arithmetic operators operate on two values or expressions. Any of the expected arithmetic
exceptions may result, such as overflow or a divide by zero. QueryInvocationTargetException will
be thrown, and getCause() will state ArithmeticException.

The following are supported arithmetic operators:

Operator Meaning

+ addition

- subtraction

* multiplication

/ division

% modulus

MOD modulus

Map and Index Operators

Map and index operators access elements in key/value collections (such as maps and regions) and
ordered collections (such as arrays, lists, and Strings). The operator is represented by a set of
square brackets ([]) immediately following the name of the collection. The mapping or indexing
specification is provided inside these brackets.

Array, list, and String elements are accessed using an index value. Indexing starts from zero for the
first element, 1 for the second element, and so on. If myList is an array, list, or String and index is
an expression that evaluates to a non-negative integer, then myList[index] represents the (index
+ 1)th element of myList. The elements of a String are the list of characters that make up the
string.

Map and region values are accessed by key using the same syntax. The key can be any Object. For
a Region, the map operator performs a non-distributed get in the local cache only - with no use of
netSearch. So myRegion[keyExpression] is the equivalent of
myRegion.getEntry(keyExpression).getValue.

Dot, Right Arrow, and Forward Slash Operators

The dot operator (.) separates attribute names in a path expression, and specifies the navigation
through object attributes. An alternate equivalent to the dot is the right arrow, (->). The forward
slash is used to separate region names when navigating into subregions.

Reserved Words

VMware GemFire 9.10 Documentation

VMware by Broadcom 677

Reserved Words

These words are reserved for the query language and may not be used as identifiers. The words
with asterisk (*) after them are not currently used by VMware GemFire, but are reserved for future
implementation.

abs*

all

and

andthen*

any*

array

as

asc

avg*

bag*

boolean

by

byte

char

collection

count

date

declare*

define*

desc

dictionary

distinct

double

element

enum*

except*

exists*

false

first*

flatten*

float

for*

from

group*

having*

import

in

int

intersect*

interval*

is_defined

is_undefined

last*

like

limit

list*

listtoset*

long

map

max*

min*

mod

nil

not

null

nvl

octet

or

order

orelse*

query*

select

set

short

some*

string

struct*

sum*

time

timestamp

to_date

true

type

undefine*

undefined

union*

unique*

where

To access any method, attribute, or named object that has the same name as a query language
reserved word, enclose the name within double quotation marks.

Examples:

SELECT DISTINCT "type" FROM /portfolios WHERE status = 'active'

SELECT DISTINCT * FROM /region1 WHERE emps."select"() < 100000

Supported Literals

VMware GemFire supports the following literal types:

boolean
A `boolean` value, either TRUE or FALSE

int and **long**
An integer literal is of type `long` if has a suffix of the ASCII letter L. Otherwise it is of type
`int`.

floating point
A floating-point literal is of type `float` if it has a suffix of an ASCII letter `F`. Otherwise its type
is `double`. Optionally, it can have a suffix of an ASCII letter `D`. A double or floating point
literal can optionally include an exponent suffix of `E` or `e`, followed by a signed or unsigned
number.

string

VMware GemFire 9.10 Documentation

VMware by Broadcom 678

String literals are delimited by single quotation marks. Embedded single-quotation marks are
doubled. For example, the character string `'Hello'` evaluates to the value `Hello`, while the
character string `'He said, ''Hello'''` evaluates to `He said, 'Hello'`. Embedded newlines are
kept as part of the string literal.

char
A literal is of type char if it is a string literal prefixed by the keyword `CHAR`, otherwise it is of
type `string`. The `CHAR` literal for the single-quotation mark character is `CHAR` `''''` (four
single quotation marks).

date
A `java.sql.Date` object that uses the JDBC format prefixed with the DATE keyword: `DATE
yyyy-mm-dd`. In the `Date`, `yyyy` represents the year, `mm` represents the month, and `dd`
represents the day. The year must be represented by four digits; a two-digit shorthand for
the year is not allowed.

time
A `java.sql.Time` object that uses the JDBC format (based on a 24-hour clock) prefixed with
the TIME keyword: `TIME hh:mm:ss`. In the `Time`, `hh` represents the hours, `mm`
represents the minutes, and `ss` represents the seconds.

timestamp
A `java.sql.Timestamp` object that uses the JDBC format with a TIMESTAMP prefix:
`TIMESTAMP yyyy-mm-dd hh:mm:ss.fffffffff` In the `Timestamp`, `yyyy-mm-dd` represents the
`date`, `hh:mm:ss` represents the `time`, and `fffffffff` represents the fractional seconds (up to
nine digits).

NIL
Equivalent alternative of `NULL`.

NULL
The same as `null` in Java.

UNDEFINED
A special literal, valid value for any data type, indicating that no value (not even NULL) has
been designated for a given data item.

The Difference Between NULL and UNDEFINED

In OQL, as in Java, NULL is an assignable entity (an object) indicating “no value”.

In OQL, UNDEFINED is a type. There is no Java equivalent. In OQL search results, an
UNDEFINED value can be returned in two cases:

As the result of a search for a key or value that does not exist

As the result of accessing an attribute of a null-valued attribute.

Searches for inequality return UNDEFINED values in their results.

Note that if you access an attribute that has an explicit value of NULL, then it is not UNDEFINED.

For example, if a query accesses the attribute address.city and address is NULL, the result is
UNDEFINED. If the query accesses address, then the result is not UNDEFINED, it is NULL.

Comparing Values With java.util.Date

VMware GemFire 9.10 Documentation

VMware by Broadcom 679

You can compare temporal literal values DATE, TIME, and TIMESTAMP with java.util.Date values.
There is no literal for java.util.Date in the query language.

Type Conversion

The VMware GemFire query processor performs implicit type conversions and promotions under
certain cases in order to evaluate expressions that contain different types. The query processor
performs binary numeric promotion, method invocation conversion, and temporal type conversion.

Binary Numeric Promotion

The query processor performs binary numeric promotion on the operands of the following
operators:

Comparison operators <, <=, >, and >=

Equality operators = and <>

Binary numeric promotion widens the operands in a numeric expression to the widest
representation used by any of the operands. In each expression, the query processor
applies the following rules in the prescribed order until a conversion is made:

1. If either operand is of type double, the other is converted to double

2. If either operand is of type float, the other is converted to float

3. If either operand is of type long, the other is converted to long

4. Both operands are converted to type int char

Method Invocation Conversion

Method invocation conversion in the query language follows the same rules as Java method
invocation conversion, except that the query language uses runtime types instead of compile time
types, and handles null arguments differently than in Java. One aspect of using runtime types is
that an argument with a null value has no typing information, and so can be matched with any type
parameter. When a null argument is used, if the query processor cannot determine the proper
method to invoke based on the non-null arguments, it throws an AmbiguousNameException

Temporal Type Conversion

The temporal types that the query language supports include the Java types java.util.Date ,
java.sql.Date , java.sql.Time , and java.sql.Timestamp , which are all treated the same and can be
compared and used in indexes. When compared with each other, these types are all treated as
nanosecond quantities.

Enum Conversion

Enums are not automatically converted. To use Enum values in query, you must use the toString
method of the enum object or use a query bind parameter. See Enum Objects for more
information.

VMware GemFire 9.10 Documentation

VMware by Broadcom 680

Query Evaulation of Float.NaN and Double.NaN

Float.NaN and Double.NaN are not evaluated as primitives; instead, they are compared in the
same manner used as the JDK methods Float.compareTo and Double.compareTo. See
Double.NaN and Float.NaN Comparisons for more information.

Query Language Restrictions and Unsupported Features

At a high level, VMware GemFire does not support the following querying features:

Indexes targeted for joins across more than one region are not supported

Static method invocations. For example, the following query is invalid:

SELECT DISTINCT * FROM /QueryRegion0 WHERE aDay = Day.Wednesday

You cannot create an index on fields using Set/List types (Collection types) that are not
comparable. The OQL index implementation expects fields to be Comparable. To
workaround this, you can create a custom Collection type that implements Comparable.

ORDER BY is only supported with DISTINCT queries.

In addition, there are some specific limitations on partitioned region querying. See Partitioned
Region Query Restrictions.

Advanced Querying
This section includes advanced querying topics such as using query indexes, using query bind
parameters, querying partitioned regions and query debugging.

Performance Considerations

This topic covers considerations for improving query performance.

Monitoring Low Memory When Querying

The query monitoring feature prevents out-of-memory exceptions from occurring when
you execute queries or create indexes.

Timeouts for Long-Running Queries

Configure a timeout value for long running queries, such that they do not complete, and
VMware GemFire throws an exception when a query runs for longer than the configured
value.

Using Query Bind Parameters

Using query bind parameters in VMware GemFire queries is similar to using prepared
statements in SQL where parameters can be set during query execution. This allows you to
build a query once and execute it multiple times by passing the query conditions during run
time.

Querying Partitioned Regions

VMware GemFire allows you to manage and store large amounts of data across distributed
nodes using partitioned regions. The basic unit of storage for a partitioned region is a

VMware GemFire 9.10 Documentation

VMware by Broadcom 681

bucket, which resides on a VMware GemFire node and contains all the entries that map to
a single hashcode. In a typical partitioned region query, the system distributes the query to
all buckets across all nodes, then merges the result sets and sends back the query results.

Query Debugging

You can debug a specific query at the query level by adding the <trace> keyword before
the query string that you want to debug.

Performance Considerations

This topic covers considerations for improving query performance.

Some general performance tips:

Improve query performance whenever possible by creating indexes. See Tips and
Guidelines on Using Indexes for some scenarios for using indexes.

Use bind parameters for frequently used queries. When you use a bind parameter, the
query is compiled once. This improves the subsequent performance of the query when it is
re-run. See Using Query Bind Parameters for more details.

When querying partitioned regions, execute the query using the FunctionService. This
function allows you to target a particular node, which will improve performance greatly by
avoiding query distribution. See Querying a Partitioned Region on a Single Node for more
information.

Use key indexes when querying data that has been partitioned by a key or field value. See
Optimizing Queries on Data Partitioned by a Key or Field Value.

The size of a query result set depends on the restrictiveness of the query and the size of
the total data set. A partitioned region can hold much more data than other types of
regions, so there is more potential for larger result sets on partitioned region queries. This
could cause the member receiving the results to run out of memory if the result set is very
large.

Monitoring Low Memory When Querying

The query monitoring feature prevents out-of-memory exceptions from occurring when you
execute queries or create indexes.

You enable this feature when you set a critical-heap-percentage attribute for the resource-
manager element in the cache.xml file or by using the
cache.getResourceManager().setCriticalHeapPercentage(float heapPercentage) API. When this
feature is enabled and heap memory usage exceeds the threshold due to running a query or
creating an index, the resource manager throws an exception and cancels the running query or
index creation.

You can explicitly disable this feature by setting the system property
gemfire.cache.DISABLE_QUERY_MONITOR_FOR_LOW_MEMORY to true.

When system memory is low, as determined by the critical heap percentage threshold defined in
the cache.xml file or in the getResourceManager API, queries will throw a

VMware GemFire 9.10 Documentation

VMware by Broadcom 682

QueryExecutionLowMemoryException. Any indexes that are in the process of being created will
throw an InvalidIndexException with the message indicating the reason.

Partitioned Region Queries and Low Memory

Partitioned region queries are likely causes for out-of-memory exceptions. If query monitoring is
enabled, partitioned region queries drop or ignore results that are being gathered by other servers
if the executing server is low in memory.

Query-monitoring does not address a scenario in which a low-level collection is expanded while the
partitioned region query is gathering results. For example, if a row is added and then causes a Java
level collection or array to expand, it is possible to then encounter an out-of-memory exception.
This scenario is rare and is only possible if the collection size itself expands before a low memory
condition is met and then expands beyond the remaining available memory. As a workaround, in
the event that you encounter this situation, you may be able to tune the system by additionally
lowering the critical-heap-percentage.

Timeouts for Long-Running Queries

VMware GemFire can monitor and throw an exception when a query runs longer than a configured
amount of time. This feature is enabled by setting the critical-heap-percentage attribute which
detects that the JVM has too little heap memory.

The default query timeout is five hours. Set a different amount of time, in milliseconds, by
specifying the system variable gemfire.Cache.MAX_QUERY_EXECUTION_TIME. A value of -1 explicitly
disables the timeout.

When enabled, a query that runs longer than the configured timeout will be cancelled such that it
does not finish, and VMware GemFire throws a QueryExecutionTimeoutException.

Using Query Bind Parameters

Using query bind parameters in VMware GemFire queries is similar to using prepared statements in
SQL where parameters can be set during query execution. This allows user to build a query once
and execute it multiple times by passing the query conditions during run time.

Query objects are thread-safe.

The use of query bind parameters is now supported in Client-to-Server queries.

The query parameters are identified by a dollar sign, $, followed by a digit that represents the
parameter’s position in the parameter array passed to the execute method. Counting begins at 1,
so $1 references the first bound attribute, $2 the second attribute, and so on.

The Query interface provides an overloaded execute method that accepts parameters inside an
Object array. See the Query.execute JavaDocs for more details.

The 0th element of the Object array is used for the first query parameter, and so on. If the
parameter count or parameter types do not match the query specification, the execute method
throws an exception. Specifically, if you pass in the wrong number of parameters, the method call
throws a QueryParameterCountInvalidException. If a parameter object type is not compatible with
what is expected, the method call throws a TypeMismatchException.

VMware GemFire 9.10 Documentation

VMware by Broadcom 683

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/Query.html

In the following example, the first parameter, the integer 2, is bound to the first element in the
object array. The second parameter, active, is bound to the second element.

Sample Code

// specify the query string

String queryString = "SELECT DISTINCT * FROM /exampleRegion p WHERE p.id = $1 and p.st

atus = $2";

QueryService queryService = cache.getQueryService();

Query query = queryService.newQuery(queryString);

// set query bind parameters

Object[] params = new Object[2];

params[0] = 2;

params[1] = "active";

// Execute the query locally. It returns the results set.

SelectResults results = (SelectResults) query.execute(params);

// use the results of the query; this example only looks at the size

 int size = results.size();

Using Query Bind Parameters in the Path Expression

Additionally the query engine supports the use of query bind parameter in place of a region path.
When you specify a bind parameter in the query’s FROM clause, the parameter’s referenced value
must be bound to a collection.

Examples:

The following query can be used on any collection by passing in the collection as a query parameter
value. In this query you could pass in a Region object for $1, but not the String name of a region.

SELECT DISTINCT * FROM $1 p WHERE p.status = $2

Get all the keys from the region passed as a Region object for $1 for those entries whose name
attribute is equal to the value passed for $2:

SELECT e.key FROM ($1).entrySet e WHERE e.value.name=$2"

Querying Partitioned Regions
VMware GemFire allows you to manage and store large amounts of data across distributed nodes
using partitioned regions. The basic unit of storage for a partitioned region is a bucket, which
resides on a VMware GemFire node and contains all the entries that map to a single hashcode. In a
typical partitioned region query, the system distributes the query to all buckets across all nodes,
then merges the result sets and sends back the query results.

The following list summarizes the querying functionality supported by VMware GemFire for
partitioned regions:

VMware GemFire 9.10 Documentation

VMware by Broadcom 684

Ability to target specific nodes in a query. If you know that a specific bucket contains the
data that you want to query, you can use a function to ensure that your query only runs the
specific node that holds the data. This can greatly improve query efficiency. The ability to
query data on a specific node is only available if you are using functions and if the function is
executed on one single region. In order to do this, you need to use
Query.execute(RegionFunctionContext context). See the Java API and Querying a
Partitioned Region on a Single Node for more details.

Ability to optimize partitioned region query performance using key indexes. You can
improve query performance on data that is partitioned by key or a field value by creating a
key index and then executing the query using use Query.execute(RegionFunctionContext
context) with the key or field value used as filter. See the Java API and Optimizing Queries
on Data Partitioned by a Key or Field Value for more details.

Ability to perform equi-join queries between partitioned regions and between
partitioned regions and replicated regions. Join queries between partitioned region and
between partitioned regions and replicated regions are supported through the function
service. In order to perform equi-join operations on partitioned regions or partitioned
regions and replicated regions, the partitioned regions must be colocated, and you need to
use the need to use Query.execute(RegionFunctionContext context). See the Java API
and Performing an Equi-Join Query on Partitioned Regions for more details.

Using ORDER BY on Partitioned Regions

Querying a Partitioned Region on a Single Node

Optimizing Queries on Data Partitioned by a Key or Field Value

Performing an Equi-Join Query on Partitioned Regions

Partitioned Region Query Restrictions

Using ORDER BY on Partitioned Regions

To execute a query with an ORDER BY clause on a partitioned region, the fields specified in the
ORDER BY clause must be part of the projection list.

When an ORDER BY clause is used with a partition region query, the query is executed separately
on each region host, the local query coordinator, and all remote members. The results are all
gathered by the query coordinator. The cumulative result set is built by applying ORDER BY on the
gathered results. If the LIMIT clause is also used in the query, ORDER BY and LIMIT are applied on
each node before each node’s results are returned to the coordinator. Then the clauses are applied
to the cumulative result set to get the final result set, which is returned to the calling application.

Example:

// This query works because p.status is part of projection list

select distinct p.ID, p.status from /region p where p.ID > 5 order by p.status

// This query works providing status is part of the value indicated by *

select distinct * from /region where ID > 5 order by status

Querying a Partitioned Region on a Single Node

VMware GemFire 9.10 Documentation

VMware by Broadcom 685

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/Query.html
https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/Query.html
https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/query/Query.html

To direct a query to specific partitioned region node, you can execute the query within a function.
Use the following steps:

1. Implement a function which executes a query using RegionFunctionContext.

/**

 * This function executes a query using its RegionFunctionContext

 * which provides a filter on data which should be queried.

 *

 */

public class MyFunction extends FunctionAdapter {

 private final String id;

 @Override

 public void execute(FunctionContext context) {

 Cache cache = CacheFactory.getAnyInstance();

 QueryService queryService = cache.getQueryService();

 String qstr = (String) context.getArguments();

 try {

 Query query = queryService.newQuery(qstr);

 //If function is executed on region, context is RegionFunctionContext

 RegionFunctionContext rContext = (RegionFunctionContext)context;

 SelectResults results = (SelectResults) query.execute(rContext)

 //Send the results to function caller node.

 context.getResultSender().sendResult((ArrayList) (results).asList());

 context.getResultSender().lastResult(null);

 } catch (Exception e) {

 throw new FunctionException(e);

 }

 }

 @Override

 public boolean hasResult() {

 return true;

 }

 @Override

 public boolean isHA() {

 return false;

 }

 public MyFunction(String id) {

 super();

 this.id = id;

 }

 @Override

 public String getId() {

 return this.id;

VMware GemFire 9.10 Documentation

VMware by Broadcom 686

 }

 }

2. Decide on the data you want to query. Based on this decision, you can use
PartitionResolver to configure the organization of buckets to be queried in the Partitioned
Region.

For example, let’s say that you have defined the PortfolioKey class:

public class PortfolioKey implements DataSerializable {

 private int id;

 private long startValidTime;

 private long endValidTime

 private long writtenTime

 public int getId() {

 return this.id;

 }

...

}

You could use the MyPartitionResolver to store all keys with the same ID in the same
bucket. This PartitionResolver has to be configured at the time of Partition Region
creation either declaratively using xml OR using APIs. See Configuring Partitioned Regions
for more information.

/** This resolver returns the value of the ID field in the key. With this resol

ver,

 * all Portfolios using the same ID are colocated in the same bucket.

 */

public class MyPartitionResolver implements PartitionResolver, Declarable {

 public Serializable getRoutingObject(EntryOperation operation) {

 return operation.getKey().getId();

}

3. Execute the function on a client or any other node by setting the filter in the function call.

/**

 * Execute MyFunction for query on specified keys.

 *

 */

public class TestFunctionQuery {

 public static void main(String[] args) {

 ResultCollector rcollector = null;

 PortfolioKey portfolioKey1 = ...;

 //Filter data based on portfolioKey1 which is the key used in

 //region.put(portfolioKey1, portfolio1);

 Set filter = Collections.singleton(portfolioKey1);

 //Query to get all positions for portfolio ID = 1

 String qStr = "SELECT positions FROM /myPartitionRegion WHERE ID = 1";

 try {

VMware GemFire 9.10 Documentation

VMware by Broadcom 687

 Function func = new MyFunction("testFunction");

 Region region = CacheFactory.getAnyInstance().getRegion("myPartitionRegio

n");

 //Function will be routed to one node containing the bucket

 //for ID=1 and query will execute on that bucket.

 rcollector = FunctionService

 .onRegion(region)

 .setArguments(qStr)

 .withFilter(filter)

 .execute(func);

 Object result = rcollector.getResult();

 //Results from one or multiple nodes.

 ArrayList resultList = (ArrayList)result;

 List queryResults = new ArrayList();

 if (resultList.size()!=0) {

 for (Object obj: resultList) {

 if (obj != null) {

 queryResults.addAll((ArrayList)obj);

 }

 }

 }

 printResults(queryResults);

 } catch (FunctionException ex) {

 getLogger().info(ex);

 }

 }

}

Optimizing Queries on Data Partitioned by a Key or Field
Value
You can improve query performance on data that is partitioned by key or a field value by creating a
key index and then executing the query using the FunctionService with the key or field value used
as filter.

The following is an example how to optimize a query that will be run on data partitioned by region
key value. In the following example, data is partitioned by the “orderId” field.

1. Create a key index on the orderId field. See Creating Key Indexes for more details.

2. Execute the query using the function service with orderId provided as the filter to the
function context. For example:

/**

 * Execute MyFunction for query on data partitioned by orderId key

 *

 */

public class TestFunctionQuery {

 public static void main(String[] args) {

VMware GemFire 9.10 Documentation

VMware by Broadcom 688

 Set filter = new HashSet();

 ResultCollector rcollector = null;

 //Filter data based on orderId = '12345'

 filter.add(12345);

 //Query to get all orders that match ID 12345 and amount > 1000

 String qStr = "SELECT * FROM /Orders WHERE orderId = '12345' AND amount > 1

000";

 try {

 Function func = new MyFunction("testFunction");

 Region region = CacheFactory.getAnyInstance().getRegion("myPartitionRegio

n");

 //Function will be routed to one node containing the bucket

 //for ID=1 and query will execute on that bucket.

 rcollector = FunctionService

 .onRegion(region)

 .setArguments(qStr)

 .withFilter(filter)

 .execute(func);

 Object result = rcollector.getResult();

 //Results from one or multiple nodes.

 ArrayList resultList = (ArrayList)result;

 List queryResults = new ArrayList();

 if (resultList.size()!=0) {

 for (Object obj: resultList) {

 if (obj != null) {

 queryResults.addAll((ArrayList)obj);

 }

 }

 }

 printResults(queryResults);

 } catch (FunctionException ex) {

 getLogger().info(ex);

 }

 }

}

Performing an Equi-Join Query on Partitioned Regions

In order to perform equi-join operations on partitioned regions or partitioned regions and replicated
regions, you need to use the query.execute method and supply it with a function execution
context. You need to use VMware GemFire’s FunctionService executor because join operations
are not yet directly supported for partitioned regions without providing a function execution
context.

See Partitioned Region Query Restrictions for more information on partitioned region query
limitations.

VMware GemFire 9.10 Documentation

VMware by Broadcom 689

For example, let’s say your equi-join query is the following:

SELECT DISTINCT * FROM /QueryRegion1 r1,

/QueryRegion2 r2 WHERE r1.ID = r2.ID

In this example QueryRegion2 is colocated with QueryRegion1, and both regions have same type of
data objects.

On the server side:

 Function prQueryFunction1 = new QueryFunction();

 FunctionService.registerFunction(prQueryFunction1);

 public class QueryFunction extends FunctionAdapter {

 @Override

 public void execute(FunctionContext context) {

 Cache cache = CacheFactory.getAnyInstance();

 QueryService queryService = cache.getQueryService();

 ArrayList allQueryResults = new ArrayList();

 ArrayList arguments = (ArrayList)(context.getArguments());

 String qstr = (String)arguments.get(0);

 try {

 Query query = queryService.newQuery(qstr);

 SelectResults result = (SelectResults)query

 .execute((RegionFunctionContext)context);

 ArrayList arrayResult = (ArrayList)result.asList();

 context.getResultSender().sendResult((ArrayList)result.asList());

 context.getResultSender().lastResult(null);

 } catch (Exception e) {

 // handle exception

 }

 }

}

On the server side, Query.execute() operates on the local data of the partitioned region.

On the client side:

Function function = new QueryFunction();

String queryString = "SELECT DISTINCT * FROM /QueryRegion1 r1,

 /QueryRegion2 r2 WHERE r1.ID = r2.ID";

ArrayList argList = new ArrayList();

argList.add(queryString);

Object result = FunctionService.onRegion(CacheFactory.getAnyInstance()

 .getRegion("QueryRegion1"))

 .setArguments(argList).execute(function).getResult();

ArrayList resultList = (ArrayList)result;

resultList.trimToSize();

List queryResults = null;

if (resultList.size() != 0) {

 queryResults = new ArrayList();

 for (Object obj : resultList) {

 if (obj != null) {

 queryResults.addAll((ArrayList)obj);

 }

VMware GemFire 9.10 Documentation

VMware by Broadcom 690

 }

}

On the client side, note that you can specify a bucket filter while invoking
FunctionService.onRegion(). In this case, the query engine relies on FunctionService to direct the
query to specific nodes.

Additional Notes on Using the Query.execute and RegionFunctionContext APIs

You can also pass multiple parameters (besides the query itself) to the query function by specifying
the parameters in the client-side code (FunctionService.onRegion(..).setArguments()). Then you
can handle the parameters inside the function on the server side using context.getArguments.
Note that it does not matter which order you specify the parameters as long as you match the
parameter handling order on the server with the order specified in the client.

Partitioned Region Query Restrictions

Query Restrictions in Partitioned Regions

Partitioned region queries function the same as non-partitioned region queries, except for the
restrictions listed in this section. Partitioned region queries that do not follow these guidelines
generate an UnsupportedOperationException.

Join queries between partitioned region and between partitioned regions and replicated
regions are supported through the function service only. Join queries partitioned regions
are not supported through the client server API.

You can run join queries on partitioned regions and on partitioned regions and replicated
regions only if they are co-located. Equi-join queries are supported only on partitioned
regions that are co-located and where the co-located columns are indicated in the WHERE
clause of the query. In the case of multi-column partitioning, there should also be an AND
clause in the WHERE specification. See Colocate Data from Different Partitioned Regions
for more information on partitioned region co-location.

Equi-join queries are allowed between partitioned regions and between partitioned regions
and local replicated regions as long as the local replicated region also exists on all
partitioned region nodes. To perform a join query on a partitioned region and another
region (partitioned or not), you need to use the query.execute method and supply it with a
function execution context. See Performing an Equi-Join Query on Partitioned Regions for
an example.

The query must be just a SELECT expression (as opposed to arbitrary OQL expressions),
preceded by zero or more IMPORT statements. For example, this query is not allowed
because it is not just a SELECT expression:

// NOT VALID for partitioned regions

(SELECT DISTINCT *FROM /prRgn WHERE attribute > 10).size

This query is allowed:

// VALID for partitioned regions

SELECT DISTINCT *FROM /prRgn WHERE attribute > 10

VMware GemFire 9.10 Documentation

VMware by Broadcom 691

The SELECT expression itself can be arbitrarily complex, including nested SELECT
expressions, as long as only one partitioned region is referenced.

The partitioned region reference can only be in the first FROM clause iterator. Additional
FROM clause iterators are allowed if they do not reference any regions (such as drilling
down into the values in the partitioned region).

The first FROM clause iterator must contain only one reference to the partitioned region
(the reference can be a parameter, such as $1).

The first FROM clause iterator cannot contain a subquery, but subqueries are allowed in
additional FROM clause iterators.

You can use ORDER BY on partitioned region queries, but the fields that are specified in
the ORDER BY clause must be part of the projection list.

If a partition region (or a bucket) being queried has been destroyed, the query is
reattempted on the new primary for the destroyed bucket (if it exists). After certain number
of attempts, a QueryException is thrown if all buckets (calculated at the startup of the
query) cannot be queried.

Query Debugging

You can debug a specific query at the query level by adding the <trace> keyword before the query
string that you want to debug.

Here is an example:

<trace> select * from /exampleRegion

You can also write:

<TRACE> select * from /exampleRegion

When the query is executed, VMware GemFire will log a message in $GEMFIRE_DIR/system.log
with the following information:

[info 2011/08/29 11:24:35.472 PDT CqServer <main> tid=0x1] Query Executed in 9.619656

ms; rowCount = 99; indexesUsed(0) "select * from /exampleRegion"

If you want to enable debugging for all queries, you can enable query execution logging by setting
a System property on the command line during start-up:

gfsh>start server --name=server_name -–J=-Dgemfire.Query.VERBOSE=true

Or you can set the property programmatically:

System.setProperty("gemfire.Query.VERBOSE","true");

As an example, let us say you have an EmployeeRegion that that contains Employee objects as
values and the objects have public fields in them like ID and status.

Employee.java

Class Employee {

VMware GemFire 9.10 Documentation

VMware by Broadcom 692

 public int ID;

 public String status;

 - - - - - -

 - - - - - -

}

In addition, you have created the following indexes for the region:

<index name="sampleIndex-1">

<functional from-clause="/test " expression="ID"/>

</index>

<index name="sampleIndex-2">

<functional from-clause="/test " expression="status"/>

</index>

After you have set gemfire.Query.VERBOSE to “true”, you could see the following debug messages
in the logs after running queries on the EmployeeRegion or its indexes:

If indexes are not used in the query execution, you would see a debug message like this:

[info 2011/08/29 11:24:35.472 PDT CqServer <main> tid=0x1] Query Executed in 9.

619656 ms; rowCount = 99; indexesUsed(0) "select * from /test k where ID > 0 an

d status='active'"

When single index is used in query execution, you might see a debug message like this:

[info 2011/08/29 11:24:35.472 PDT CqServer <main> tid=0x1] Query Executed in 10

1.43499 ms; rowCount = 199; indexesUsed(1):sampleIndex-1(Results: 199) "select

count * from /test k where ID > 0"

When multiple indexes are used by a query, you might see a debug message like this:

[info 2011/08/29 11:24:35.472 PDT CqServer <main> tid=0x1] Query Executed in 7

9.43847 ms; rowCount = 199; indexesUsed(2):sampleIndex-2(Results: 100),sampleIn

dex-1(Results: 199) "select * from /test k where ID > 0 OR status='active'"

In above log messages, the following information is provided:

“rowCount” represents ResultSet size for the query.

"indexesUsed(\n) " shows n indexes were used for finding the results of the query.

Each index name and its corresponding results are reported respectively.

The log can be identified with the original query string itself appended in the end.

Working with Indexes

The VMware GemFire query engine supports indexing. An index can provide significant
performance gains for query execution.

A query run without the aid of an index iterates through every object in the collection. If an index is
available that matches part or all of the query specification, the query iterates only over the indexed
set, and query processing time can be reduced.

Tips and Guidelines on Using Indexes

VMware GemFire 9.10 Documentation

VMware by Broadcom 693

Optimizing your queries with indexes requires a cycle of careful planning, testing, and
tuning. Poorly-defined indexes can degrade the performance of your queries instead of
improving it. This section gives guidelines for index usage in the query service.

Creating, Listing and Removing Indexes

The VMware GemFire QueryService API provides methods to create, list and remove the
index. You can also use gfsh command-line interface to create, list and remove indexes,
and use cache.xml to create an index.

Creating Key Indexes

Creating a key index is a good way to improve query performance when data is partitioned
using a key or a field value. You can create key indexes by using the createKeyIndex
method of the QueryService or by defining the index in cache.xml. Creating a key index
makes the query service aware of the relationship between the values in the region and the
keys in the region.

Creating Hash Indexes

Hash indexes are deprecated. VMware GemFire supports the creation of hash indexes for
the purposes of performing equality-based queries.

Creating Indexes on Map Fields (“Map Indexes”)

To assist with the quick lookup of multiple values in a Map (or HashMap) type field, you can
create an index (sometimes referred to as a “map index”) on specific (or all) keys in that
field.

Creating Multiple Indexes at Once

In order to speed and promote efficiency when creating indexes, you can define multiple
indexes and then create them all at once.

Maintaining Indexes (Synchronously or Asynchronously) and Index Storage

Indexes are automatically kept current with the region data they reference. The region
attribute IndexMaintenanceSynchronous specifies whether the region indexes are updated
synchronously when a region is modified or asynchronously in a background thread.

Using Query Index Hints

You can use the hint keyword to allow VMware GemFire’s query engine to prefer certain
indexes.

Using Indexes on Single Region Queries

Queries with one comparison operation may be improved with either a key or range index,
depending on whether the attribute being compared is also the primary key.

Using Indexes with Equi-Join Queries

Equi-join queries are queries in which two regions are joined through an equality condition
in the WHERE clause.

Using Indexes with Overflow Regions

You can use indexes when querying on overflow regions; however, there are caveats.

Using Indexes on Equi-Join Queries using Multiple Regions

VMware GemFire 9.10 Documentation

VMware by Broadcom 694

To query across multiple regions, identify all equi-join conditions. Then, create as few
indexes for the equi-join conditions as you can while still joining all regions.

Index Samples

This topic provides code samples for creating query indexes.

Tips and Guidelines on Using Indexes

Optimizing your queries with indexes requires a cycle of careful planning, testing, and tuning.
Poorly-defined indexes can degrade the performance of your queries instead of improving it. This
section gives guidelines for index usage in the query service.

When creating indexes, keep in mind the following:

Indexes incur maintenance costs as they must be updated when the indexed data changes.
An index that requires many updates and is not used very often may require more system
resources than using no index at all.

Indexes consume memory.

Indexes have limited support on overflow regions. See Using Indexes with Overflow
Regions for details.

If you are creating multiple indexes on the same region, first define your indexes and then
create the indexes all at once to avoid iterating over the region multiple times. See Creating
Multiple Indexes at Once for details.

Tips for Writing Queries that Use Indexes

As with query processors that run against relational databases, the way a query is written can
greatly affect execution performance. Among other things, whether indexes are used depends on
how each query is stated. These are some of the things to consider when optimizing your VMware
GemFire queries for performance:

In general an index will improve query performance if the FROM clauses of the query and
index match exactly.

The query evaluation engine does not have a sophisticated cost-based optimizer. It has a
simple optimizer which selects best index (one) or multiple indexes based on the index size
and the operator that is being evaluated.

For AND operators, you may get better results if the conditions that use indexes and
conditions that are more selective come before other conditions in the query.

Indexes are not used in expressions that contain NOT, so in a WHERE clause of a query,
qty >= 10 could have an index on qty applied for efficiency. However, NOT(qty < 10) could
not have the same index applied.

Whenever possible, provide a hint to allow the query engine to prefer a specific index. See
Using Query Index Hints

Creating, Listing and Removing Indexes

VMware GemFire 9.10 Documentation

VMware by Broadcom 695

The VMware GemFire QueryService API provides methods to create, list and remove the index.
You can also use gfsh command-line interface to create, list and remove indexes, and use
cache.xml to create an index.

Creating Indexes

Indexes can be created programmatically, by using the gfsh command line interface or by using
cache.xml.

To create an index, use one of the following QueryService methods:

createIndex. Creates the default type of index, a range index. Use this type of index if you
will be writing queries that will be doing any kind of comparison operation besides an
equality comparison.

createKeyIndex. Creates a key index. See Creating Key Indexes for more information.

Deprecated. createHashIndex. Creates a hash index. See Creating Hash Indexes for more
information.

createDefinedIndexes. Creates multiple indexes that were previously defined using
defineIndex. See Creating Multiple Indexes at Once for more information.

The following sections provide examples of index creation:

Using gfsh:

gfsh> create index --name=myIndex --expression=status --region=/exampleRegion

gfsh> create index --name=myKeyIndex --type=key --expression=id --region=/exampleRegio

n

See Index Commands for more examples.

Using Java API:

QueryService qs = cache.getQueryService();

 qs.createIndex("myIndex", "status", "/exampleRegion");

 qs.createKeyIndex("myKeyIndex", "id", "/exampleRegion");

Using cache.xml:

<region name=exampleRegion>

 <region-attributes . . . >

 </region-attributes>

 <index name="myIndex" from-clause="/exampleRegion" expression="status"/>

 <index name="myKeyIndex" from-clause="/exampleRegion" expression="id" key-index="tru

e"/>

 ...

</region>

Note: If you do not specify the type of index in cache.xml, the type defaults to “range”.

Listing Indexes

To retrieve a list of indexes from the cache or region, use the QueryService.getIndexes method or
the gfsh command line interface.

VMware GemFire 9.10 Documentation

VMware by Broadcom 696

Using gfsh:

gfsh> list indexes

gfsh> list indexes --with-stats

Using Java API:

QueryService qs = cache.getQueryService();

 qs.getIndexes(); //returns a collection of all indexes in the cache

 qs.getIndexes(exampleRegion); //returns a collection of all indexes in exampleRegion

 qs.getIndexes(exampleRegion, myKeyIndex); //returns the index named myKeyIndex from t

he exampleRegion

Removing Indexes
To remove an index or all indexes from the cache or region, use the QueryService.removeIndexes
method or the gfsh command line interface.

Using gfsh:

gfsh> destroy index

gfsh> destroy index --name=myIndex

gfsh> destroy index --region=/exampleRegion

Using Java API:

QueryService qs = cache.getQueryService();

 qs.removeIndexes(); //removes all indexes from the cache

 qs.removeIndexes(myKeyIndex); //removes the index named myKeyIndex

 qs.removeIndexes(exampleRegion); //removes all indexes from the exampleRegion

Creating Key Indexes

Creating a key index is a good way to improve query performance when data is partitioned using a
key or a field value. You can create key indexes by using the createKeyIndex method of the
QueryService or by defining the index in cache.xml. Creating a key index makes the query service
aware of the relationship between the values in the region and the keys in the region.

The FROM clause for a primary key index must be just a region path. The indexed expression is an
expression that, when applied to an entry value, produces the key. For example, if a region has
Portfolios as the values and the keys are the id field of the Portfolios region, the indexed expression
is id.

You can then use the FunctionService (using the partitioned key as a filter passed to the function
and as part of the query equality condition) to execute the query against the indexed data. See
Optimizing Queries on Data Partitioned by a Key or Field Value for more details.

There are two issues to note with key indexes:

The key index is not sorted. Without sorting, you can only do equality tests. Other
comparisons are not possible. To obtain a sorted index on your primary keys, create a
functional index on the attribute used as the primary key.

VMware GemFire 9.10 Documentation

VMware by Broadcom 697

The query service is not automatically aware of the relationship between the region values
and keys. For this, you must create the key index.

Note: Using a key-index with an explicit type=‘range’ in the cache.xml will lead to an exception.
Key indexes will not be used in ‘range’ queries.

Examples of Creating a Key Index

Using Java API:

QueryService qs = cache.getQueryService();

 qs.createKeyIndex("myKeyIndex", "id", "/exampleRegion");

Using gfsh:

gfsh> create index --name=myKeyIndex --expression=id --region=/exampleRegion

Using cache.xml:

<region name=exampleRegion>

 <region-attributes . . . >

 </region-attributes>

 <index name="myKeyIndex" from-clause="/exampleRegion" expression="id" key-index="tru

e"/>

 ...

</region>

Note: If you do not specify the type of index when defining indexes using cache.xml, the type
defaults to “range”.

Creating Hash Indexes

Hash indexes are deprecated. VMware GemFire supports the creation of hash indexes for the
purpose of performing equality-based queries.

Hash Index Performance

The performance of put operations and recovery time when using a hash index will be worse than a
range index. Queries are expected to be slower due to the implementation of the hash index and
the cost of recalculating the key on request. A hash index can improve the memory usage of the
index. So, the trade-off of the hash index space savings must be weighed against the performance
penalty it imposes. If memory usage is not a concern, a range index is recommended.

Consider the memory usage when an index contains string fields. Copies of the strings are included
in the index. With hash indexes, indexed expressions are canonicalized and stored in the index as
pointers to the objects residing in the region, thereby using less memory. Tests achieved as high as
a 30% reduction in memory footprint, but the savings depend on the keys and data being used.

Performance Considerations

VMware GemFire 9.10 Documentation

VMware by Broadcom 698

Limitations

The following limitations must be considered when creating hash indexes:

You can only use hash indexes with equals and not equals queries.

Hash index maintenance will be slower than the other indexes due to synchronized add
methods.

Hash indexes cannot be maintained asynchronously. If you attempt to create a hash index
on a region with asynchronous set as the maintenance mode, an exception will be thrown.

You cannot use hash indexes for queries with multiple iterators or nested collections.

Using a hash index will degrade put operation performance and recovery time substantially.
If memory is not a concern, use a range index instead of a hash index.

Examples of Creating a Hash Index

Hash indexes are deprecated.

Using the Java API:

QueryService qs = cache.getQueryService();

 qs.createHashIndex("myHashIndex", "mktValue", "/exampleRegion");

Using gfsh:

gfsh> create index --name=myHashIndex --expression=mktValue --region=/exampleRegion

 --type=hash

Using cache.xml:

<region name=exampleRegion>

 <region-attributes . . . >

 </region-attributes>

 <index name="myHashIndex" from-clause="/exampleRegion p" expression="p.mktValue" type

="hash"/>

 ...

</region>

Creating Indexes on Map Fields ("Map Indexes")

To assist with the quick lookup of multiple values in a Map (or HashMap) type field, you can create
an index (sometimes referred to as a “map index”) on specific (or all) keys in that field.

For example, you could create a map index to support the following query:

SELECT * FROM /users u WHERE u.name['first'] = 'John' OR u.name['last'] = 'Smith'

The map index extends regular range indexes created on single key by maintaining indexes for
other specified keys, or for all keys if * is used. The underlying structure of the map index can be
thought of as a wrapper around all these indexes.

The following Java code samples provide examples of how to create a map index:

VMware GemFire 9.10 Documentation

VMware by Broadcom 699

QueryService qs = cache.getQueryService();

//This will create indexes for for keys 'PVTL' and 'VMW'

qs.createIndex("indexName", "p.positions['PVTL', 'VMW']", "/portfolio p");

QueryService qs = cache.getQueryService();

//This will create indexes for all keys

qs.createIndex("indexName", "p.positions[*]", "/portfolio p");

In gfsh, the equivalents are:

gfsh>create index --name="IndexName" --expression="p.positions['PVTL', 'VMW']" --regio

n="/portfolio p"

gfsh>create index --name="IndexName" --expression="p.positions[*]" --region="/portfoli

o p"

In order to create or query a map index, you must use the bracket notation to list the map field
keys you wish to index or query. For example: [*], ['keyX1','keyX2’]. Note that using
p.pos.get('keyX1') will not create or query the map index.

Note: You can still query against Map or HashMap fields without querying against a map index. For
example, you can always create a regular range query on a single key in any Map or HashMap field.
However, note that subsequent query lookups will be limited to a single key.

Creating Multiple Indexes at Once
In order to speed and promote efficiency when creating indexes, you can define multiple indexes
and then create them all at once.

Defining multiple indexes before creating them speeds up the index creation process by iterating
over region entries only once.

You can define multiple indexes of different types at once by specifying the --type parameter at
definition time.

To define multiple indexes, you can use gfsh or the Java API:

gfsh example:

gfsh> define index --name=myIndex1 --expression=exp1 --region=/exampleRegion

gfsh> define index --name=myIndex2 --expression="c.exp2" --region="/exampleRegion e,

e.collection1 c"

gfsh> create defined indexes

If index creation fails, you may receive an error message in gfsh similar to the following:

gfsh>create defined indexes

Exception : org.apache.geode.cache.query.RegionNotFoundException ,

VMware GemFire 9.10 Documentation

VMware by Broadcom 700

Message : Region ' /r3' not found: from /r3Occurred on following members

1. india(s1:17866)<v1>:27809

Java API example:

 Cache cache = new CacheFactory().create();

 QueryService queryService = cache.getQueryService();

 queryService.defineIndex("name1", "indexExpr1", "regionPath1");

 queryService.defineIndex("name2", "indexExpr2", "regionPath2");

 queryService.defineKeyIndex("name4", "indexExpr4", "regionPath2");

 List<Index> indexes = queryService.createDefinedIndexes();

If one or more index population fails, VMware GemFire collect the Exceptions and continues to
populate the rest of the indexes. The collected Exceptions are stored in a Map of index names and
exceptions that can be accessed through MultiIndexCreationException.

Index definitions are stored locally on the gfsh client. If you want to create a new set of indexes or
if one or more of the index creations fail, you might want to clear the definitions stored by using
clear defined indexescommand. The defined indexes can be cleared by using the Java API:

queryService.clearDefinedIndexes();

or gfsh:

gfsh> clear defined indexes

Maintaining Indexes (Synchronously or Asynchronously) and
Index Storage
Indexes are automatically kept current with the region data they reference. The region attribute
IndexMaintenanceSynchronous specifies whether the region indexes are updated synchronously
when a region is modified or asynchronously in a background thread.

Index Maintenance Behavior
Asynchronous index maintenance batches up multiple updates to the same region key. The default
mode is synchronous, since this provides the greatest consistency with region data.

See RegionFactory.setIndexMaintenanceSynchronous.

This declarative index creation sets the maintenance mode to asynchronous:

<region-attributes index-update-type="asynchronous">

</region-attributes>

Internal Index Structure and Storage

Indexes are stored either as compact or non-compact data structures based on the indexed
expression (even if the index key type is the same.) For example, consider the following Passenger
object:

VMware GemFire 9.10 Documentation

VMware by Broadcom 701

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/RegionFactory.html

Passenger {

 String name,

 Date travelDate,

 int age,

 Flight flt,

}

Flight {

 int flightId,

 String origin,

 String dest,

}

An index on the Passenger name field will have different memory space requirements in the cache
than the Flight origin field even though they are both String field types. The internal data structure
selected by VMware GemFire for index storage will depend on the field’s level in the object. In this
example, name is a top-level field and an index on name can be stored as a compact index. Since
origin is a second-level field, any index that uses origin as the indexed expression will be stored as a
non-compact index.

Compact Index

A compact index has simple data structures to minimize its footprint, at the expense of doing extra
work at index maintenance. This index does not support the storage of projection attributes.

Compact indexes only support the creation of an index on a region path. In addition, the following
conditions must be met:

Index maintenance is synchronous.

The indexed expression is a path expression.

The FROM clause has only one iterator. This implies that there is only one value in the
index for each region entry and it is directly on the region values (not supported with keys,
entries).

Non-Compact Index

Used whenever a compact index cannot be used.

Using Query Index Hints

You can use the hint keyword to allow VMware GemFire’s query engine to prefer certain indexes.

In cases where one index is hinted in a query, the query engine filters off the hinted index (if
possible) and then iterates and filters from the resulting values.

Example:

<HINT 'IDIndex'> SELECT * FROM /Portfolios p WHERE p.ID > 10 AND p.owner = 'XYZ'

If multiple indexes are added as hints, then the query engine will try to use as many indexes as
possible while giving a preference for the hinted indexes.

Example:

<HINT 'IDIndex', 'OwnerIndex'> SELECT * FROM /Portfolios p WHERE p.ID > 10 AND p.owner

VMware GemFire 9.10 Documentation

VMware by Broadcom 702

= 'XYZ' AND p.value < 100

Using Indexes on Single Region Queries

Queries with one comparison operation may be improved with either a key or range index,
depending on whether the attribute being compared is also the primary key.

If pkid is the key in the /exampleRegion region, creating a key index on pkid is the best choice as a
key index does not have maintenance overhead. If pkid is not the key, a range index on pkid should
improve performance.

SELECT DISTINCT * FROM /exampleRegion portfolio WHERE portfolio.pkid = '123'

With multiple comparison operations, you can create a range index on one or more of the
attributes. Try the following:

1. Create a single index on the condition you expect to have the smallest result set size.
Check performance with this index.

2. Keeping the first index, add an index on a second condition. Adding the second index may
degrade performance. If it does, remove it and keep only the first index. The order of the
two comparisons in the query can also impact performance. Generally speaking, in OQL
queries, as in SQL queries, you should order your comparisons so the earlier ones give you
the fewest results on which to run subsequent comparisons.

For this query, you would try a range index on name, age, or on both:

SELECT DISTINCT * FROM /exampleRegion portfolio WHERE portfolio.status = 'active' and

portfolio.ID > 45

For queries with nested levels, you may get better performance by drilling into the lower levels in
the index as well as in the query.

This query drills down one level:

SELECT DISTINCT * FROM /exampleRegion portfolio, portfolio.positions.values positions

where positions.secId = 'AOL' and positions.MktValue > 1

Using Indexes with Equi-Join Queries

Equi-join queries are queries in which two regions are joined through an equality condition in the
WHERE clause.

To use an index with an equi-join query:

1. Create an index for each side of the equi-join condition. The query engine can quickly
evaluate the query’s equi-join condition by iterating over the keys of the left-side and right-
side indexes for an equality match.

Note: Equi-join queries require regular indexes. Key indexes are not applied to equi-join
queries.

For this query:

VMware GemFire 9.10 Documentation

VMware by Broadcom 703

SELECT DISTINCT inv.name, ord.orderID, ord.status

FROM /investors inv, /orders ord

WHERE inv.investorID = ord.investorID

Create two indexes:

FROM clause Indexed expression

/investors inv inv.investorID

/orders ord ord.investorID

2. If there are additional, single-region queries in a query with an equi-join condition, create
additional indexes for the single-region conditions only if you are able to create at least one
such index for each region in the query. Any indexing on a subset of the regions in the
query will degrade performance.

For this example query:

SELECT DISTINCT *

FROM /investors inv, /securities sc, inv.heldSecurities inv_hs

 WHERE sc.status = "active"

 AND inv.name = "xyz"

 AND inv.age > 75

 AND inv_hs.secName = sc.secName

Create the indexes for the equi-join condition:

FROM clause Indexed expression

/investors inv, inv.heldSecurities inv_hs inv_hs.secName

/securities sc sc.secName

Then, if you create any more indexes, create one on sc.status and one on inv.age or
inv.name or both.

Using Indexes with Overflow Regions

You can use indexes when querying on overflow regions; however, there are caveats.

The following are caveats for querying overflow regions:

You must use synchronous index maintenance for the region. This is the default
maintenance setting.

The index FROM clause must specify only one iterator, and it must refer to the keys or
entry values. The index cannot refer to the region’s entrySet.

The index data itself is not stored on (overflowed to) disk .

Examples:

The following example index creation calls DO NOT work for overflow regions.

// This index will not work on an overflow region because there are two iterators in t

he FROM clause.

createIndex("secIdIndex", "b.secId","/portfolios pf, pf.positions.values b");

VMware GemFire 9.10 Documentation

VMware by Broadcom 704

// This index will not work on an overflow region because the FROM clause specifies th

e entrySet

createIndex("indx1", "entries.value.getID", "/exampleRegion.entrySet() entries");

The following example indexes will work for overflow regions.

createIndex("pkidIndex", "p.pkid", "/Portfolios p");

createIndex("indx1", "ks.toString", "/portfolio.keySet() ks");

The same working examples in gfsh:

gfsh> create index -name="pkidIndex" --expression="p.pkid" --region="/Portfolios p"

gfsh> create index -name="indx1" --expression="ks.toString" --region="/portfolio.keySe

t() ks"

Using Indexes on Equi-Join Queries using Multiple Regions
To query across multiple regions, identify all equi-join conditions. Then, create as few indexes for
the equi-join conditions as you can while still joining all regions.

If there are equi-join conditions that redundantly join two regions (in order to more finely filter the
data, for example), then creating redundant indexes for these joins will negatively impact
performance. Create indexes only on one equi-join condition for each region pair.

In this example query:

SELECT DISTINCT *

FROM /investors inv, /securities sc, /orders or,

inv.ordersPlaced inv_op, or.securities or_sec

 WHERE inv_op.orderID = or.orderID

 AND or_sec.secID = sc.secID

All conditions are required to join the regions, so you would create four indexes, two for each equi-
join condition:

FROM clause Indexed expression

/investors inv, inv.ordersPlaced inv_op inv_op.orderID

/orders or, or.securities or_sec or.orderID

FROM clause Indexed expression

/orders or, or.securities or_sec or_sec.secID

/securities sc sc.secID

Adding another condition to the example:

SELECT DISTINCT *

FROM /investors inv, /securities sc, /orders or,

inv.ordersPlaced inv_op, or.securities or_sec, sc.investors sc_invs

 WHERE inv_op.orderID = or.orderID

VMware GemFire 9.10 Documentation

VMware by Broadcom 705

 AND or_sec.secID = sc.secID

 AND inv.investorID = sc_invs.investorID

You would still only want to use four indexes in all, as that’s all you need to join all of the regions.
You would need to choose the most performant two of the following three index pairs:

FROM clause Indexed expression

/investors inv, inv.ordersPlaced inv_op inv_op.orderID

/orders or, or.securities or_sec or.orderID

FROM clause Indexed expression

/orders or, or.securities or_sec or_sec.secID

/securities sc, sc.investors sc_invs sc.secID

FROM clause Indexed expression

/investors inv, inv.ordersPlaced inv_op inv.investorID

/securities sc, sc.investors sc_invs sc_invs.investorID

The most performant set is that which narrows the data to the smallest result set possible. Examine
your data and experiment with the three index pairs to see which provides the best performance.

Index Samples

This topic provides code samples for creating query indexes.

 // Key index samples. The field doesn't have to be present.

createKeyIndex("pkidIndex","p.pkid1","/root/exampleRegion p");

createKeyIndex("Index4","ID","/portfolios");

// Simple index

createIndex("pkidIndex","p.pkid","/root/exampleRegion p");

createIndex("i", "p.status", "/exampleRegion p")

createIndex("i", "p.ID", "/exampleRegion p")

createIndex("i", "p.position1.secId", "/exampleRegion p"

// On Set type

 createIndex("setIndex","s","/root/exampleRegion p, p.sp s");

// Positions is a map

createIndex("secIdIndex","b.secId","/portfolios pf, pf.positions.values b");

//...

createIndex("i", "pf.collectionHolderMap[(pf.Id).toString()].arr[pf.ID]", "/exampleReg

ion pf")

createIndex("i", "pf.ID", "/exampleRegion pf", "pf.positions.values pos")

createIndex("i", "pos.secId", "/exampleRegion pf", "pf.positions.values pos")

createIndex("i", "e.value.getID()", "/exampleRegion.entrySet e")

createIndex("i", "e.value.ID", "/exampleRegion.entrySet e")

//...

createIndex("i", "entries.value.getID", "/exampleRegion.entrySet() entries")

createIndex("i", "ks.toString", "/exampleRegion.getKeys() ks")

VMware GemFire 9.10 Documentation

VMware by Broadcom 706

createIndex("i", "key.status", "/exampleRegion.keys key")

createIndex("i", "secIds.length", "/exampleRegion p, p.secIds secIds")

createIndex("i", "secId", "/portfolios.asList[1].positions.values")

createIndex("i", "secId", "/portfolios['1'].positions.valules")

//Index on Map types

createIndex("i", "p.positions['key1']", "/exampleRegion p")

createIndex("i", "p.positions['key1','key2',key3',key7']", "/exampleRegion p")

createIndex("i", "p.positions[*]", "/exampleRegion p")

The following are some sample queries on indexes.

SELECT * FROM (SELECT * FROM /R2 m) r2, (SELECT * FROM /exampleRegion e WHERE e.pkid

IN r2.sp) p

SELECT * FROM (SELECT * FROM /R2 m WHERE m.ID IN SET (1, 5, 10)) r2,

 (SELECT * FROM /exampleRegion e WHERE e.pkid IN r2.sp) p

//examples using position index in the collection

SELECT * FROM /exampleRegion p WHERE p.names[0] = 'aaa'

SELECT * FROM /exampleRegion p WHERE p.position3[1].portfolioId = 2

SELECT DISTINCT positions.values.toArray[0], positions.values.toArray[0], status

FROM /exampleRegion

Continuous Querying

Continuous querying continuously returns events that match the queries you set up.

How Continuous Querying Works

Clients subscribe to server-side events by using SQL-type query filtering. The server sends
all events that modify the query results. CQ event delivery uses the client/server
subscription framework.

Implementing Continuous Querying

Use continuous querying in your clients to receive continuous updates to queries run on
the servers.

Managing Continuous Querying

This topic discusses CQ management options, CQ states, and retrieving initial result sets.

How Continuous Querying Works

Clients subscribe to server-side events by using SQL-type query filtering. The server sends all
events that modify the query results. CQ event delivery uses the client/server subscription
framework.

With CQ, the client sends a query to the server side for execution and receives the events that
satisfy the criteria. For example, in a region storing stock market trade orders, you can retrieve all
orders over a certain price by running a CQ with a query like this:

SELECT * FROM /tradeOrder t WHERE t.price > 100.00

VMware GemFire 9.10 Documentation

VMware by Broadcom 707

When the CQ is running, the server sends the client all new events that affect the results of the
query. On the client side, listeners programmed by you receive and process incoming events. For
this example query on /tradeOrder, you might program a listener to push events to a GUI where
higher-priced orders are displayed. CQ event delivery uses the client/server subscription
framework.

Logical Architecture of Continuous Querying

Your clients can execute any number of CQs, with each CQ assigned any number of listeners.

Data Flow with CQs

CQs do not update the client region. This is in contrast to other server-to-client messaging like the
updates sent to satisfy interest registration and responses to get requests from the client’s Pool.
CQs serve as notification tools for the CQ listeners, which can be programmed in any way your
application requires.

When a CQ is running against a server region, each entry event is evaluated against the CQ query
by the thread that updates the server cache. If either the old or the new entry value satisfies the
query, the thread puts a CqEvent in the client’s queue. The CqEvent contains information from the
original cache event plus information specific to the CQ’s execution. Once received by the client,
the CqEvent is passed to the onEvent method of all CqListeners defined for the CQ.

Here is the typical CQ data flow for entries updated in the server cache:

1. Entry events come to the server’s cache from the server or its peers, distribution from
remote sites, or updates from a client.

2. For each event, the server’s CQ executor framework checks for a match with its running
CQs.

3. If the old or new entry value satisfies a CQ query, a CQ event is sent to the CQ’s listeners
on the client side. Each listener for the CQ gets the event.

In the following figure:

VMware GemFire 9.10 Documentation

VMware by Broadcom 708

Both the new and old prices for entry X satisfy the CQ query, so that event is sent
indicating an update to the query results.

The old price for entry Y satisfied the query, so it was part of the query results. The
invalidation of entry Y makes it not satisfy the query. Because of this, the event is sent
indicating that it is destroyed in the query results.

The price for the newly created entry Z does not satisfy the query, so no event is sent.

CQ Events

CQ events do not change your client cache. They are provided as an event service only. This allows
you to have any collection of CQs without storing large amounts of data in your regions. If you need
to persist information from CQ events, program your listener to store the information where it
makes the most sense for your application.

The CqEvent object contains this information:

Entry key and new value.

Base operation that triggered the cache event in the server. This is the standard Operation
class instance used for cache events in GemFire.

CqQuery object associated with this CQ event.

Throwable object, returned only if an error occurred when the CqQuery ran for the cache
event. This is non-null only for CqListener onError calls.

Query operation associated with this CQ event. This operation describes the change
affected to the query results by the cache event. Possible values are:

CREATE, which corresponds to the standard database INSERT operation

UPDATE

DESTROY, which corresponds to the standard database DELETE operation

Region operations do not translate to specific query operations and query operations do not
specifically describe region events. Instead, the query operation describes how the region event
affects the query results.

VMware GemFire 9.10 Documentation

VMware by Broadcom 709

Query operations based on old and new entry
values

New value does not satisfy the
query

New value satisfies the
query

Old value does not satisfy the query no event CREATE query operation

Old value does satisfies the query DESTROY query operation UPDATE query operation

You can use the query operation to decide what to do with the CqEvent in your listeners. For
example, a CqListener that displays query results on screen might stop displaying the entry, start
displaying the entry, or update the entry display depending on the query operation.

Region Type Restrictions for CQs

You can only create CQs on replicated or partitioned regions. If you attempt to create a CQ on a
non-replicated or non-partitioned region, you will receive the following error message:

The region <region name> specified in CQ creation is neither replicated nor partitione

d; only replicated or partitioned regions are allowed in CQ creation.

In addition, you cannot create a CQ on a replicated region with eviction setting of local-destroy
since this eviction setting changes the region’s data policy. If you attempt to create a CQ on this
kind of region, you will receive the following error message:

CQ is not supported for replicated region: <region name> with eviction action: LOCAL_D

ESTROY

See also Configure Distributed, Replicated, and Preloaded Regions for potential issues with setting
local-destroy eviction on replicated regions.

Implementing Continuous Querying
Use continuous querying in your clients to receive continuous updates to queries run on the
servers.

Before you begin, you should be familiar with Querying and have your client/server system
configured.

1. Configure the client pools you will use for CQs with subscription-enabled set to true.

To have CQ and interest subscription events arrive as closely together as possible, use a
single pool for everything. Different pools might use different servers, which can lead to
greater differences in event delivery time.

2. Write your OQL query to retrieve the data you need from the server.

The query must satisfy these CQ requirements in addition to the standard GemFire
querying specifications: - The FROM clause must contain only a single region specification,
with optional iterator variable. - The query must be a SELECT expression only, preceded by
zero or more IMPORT statements. This means the query cannot be a statement such as
“/tradeOrder.name” or “(SELECT * from /tradeOrder).size”. - The CQ query cannot use:
- Cross region joins - Drill-downs into nested collections - DISTINCT - Projections - Bind
parameters - ORDER BY - GROUP BY - Aggregate Functions (MIN, MAX, AVG, SUM,

VMware GemFire 9.10 Documentation

VMware by Broadcom 710

COUNT) - The CQ query must be created on a partitioned or replicated region. See Region
Type Restrictions for CQs.

The basic syntax for the CQ query is:

SELECT * FROM /fullRegionPath [iterator] [WHERE clause]

This example query could be used to get all trade orders where the price is over $100:

SELECT * FROM /tradeOrder t WHERE t.price > 100.00

3. Write your CQ listeners to handle CQ events from the server. Implement
org.apache.geode.cache.query.CqListener in each event handler you need. In addition to
your main CQ listeners, you might have listeners that you use for all CQs to track statistics
or other general information.

Note: Be especially careful if you choose to update your cache from your CqListener. If
your listener updates the region that is queried in its own CQ and that region has a Pool
named, the update will be forwarded to the server. If the update on the server satisfies the
same CQ, it may be returned to the same listener that did the update, which could put your
application into an infinite loop. This same scenario could be played out with multiple
regions and multiple CQs, if the listeners are programmed to update each other’s regions.

This example outlines a CqListener that might be used to update a display screen with
current data from the server. The listener gets the queryOperation and entry key and value
from the CqEvent and then updates the screen according to the type of queryOperation.

// CqListener class

public class TradeEventListener implements CqListener

{

 public void onEvent(CqEvent cqEvent)

 {

 // org.apache.geode.cache Operation associated with the query op

 Operation queryOperation = cqEvent.getQueryOperation();

 // key and new value from the event

 Object key = cqEvent.getKey();

 TradeOrder tradeOrder = (TradeOrder)cqEvent.getNewValue();

 if (queryOperation.isUpdate())

 {

 // update data on the screen for the trade order . . .

 }

 else if (queryOperation.isCreate())

 {

 // add the trade order to the screen . . .

 }

 else if (queryOperation.isDestroy())

 {

 // remove the trade order from the screen . . .

 }

 }

 public void onError(CqEvent cqEvent)

 {

 // handle the error

 }

 // From CacheCallback public void close()

 {

VMware GemFire 9.10 Documentation

VMware by Broadcom 711

 // close the output screen for the trades . . .

 }

}

When you install the listener and run the query, your listener will handle all of the CQ
results.

4. If you need your CQs to detect whether they are connected to any of the servers that host
its subscription queues, implement a CqStatusListener instead of a CqListener.
CqStatusListener extends the current CqListener, allowing a client to detect when a CQ is
connected and/or disconnected from the server(s). The onCqConnected() method will be
invoked when the CQ is connected, and when the CQ has been reconnected after being
disconnected. The onCqDisconnected() method will be invoked when the CQ is no longer
connected to any servers.

Taking the example from step 3, we can instead implement a CqStatusListener:

public class TradeEventListener implements CqStatusListener

{

 public void onEvent(CqEvent cqEvent)

 {

 // org.apache.geode.cache Operation associated with the query op

 Operation queryOperation = cqEvent.getQueryOperation();

 // key and new value from the event

 Object key = cqEvent.getKey();

 TradeOrder tradeOrder = (TradeOrder)cqEvent.getNewValue();

 if (queryOperation.isUpdate())

 {

 // update data on the screen for the trade order . . .

 }

 else if (queryOperation.isCreate())

 {

 // add the trade order to the screen . . .

 }

 else if (queryOperation.isDestroy())

 {

 // remove the trade order from the screen . . .

 }

 }

 public void onError(CqEvent cqEvent)

 {

 // handle the error

 }

 // From CacheCallback public void close()

 {

 // close the output screen for the trades . . .

 }

 public void onCqConnected() {

 //Display connected symbol

 }

 public void onCqDisconnected() {

 //Display disconnected symbol

 }

}

VMware GemFire 9.10 Documentation

VMware by Broadcom 712

When you install the CqStatusListener, your listener will be able to detect its connection
status to the servers that it is querying.

5. Program your client to run the CQ:

1. Create a CqAttributesFactory and use it to set your CqListeners and
CqStatusListener.

2. Pass the attributes factory and the CQ query and its unique name to the
QueryService to create a new CqQuery.

3. Start the query running by calling one of the execute methods on the CqQuery
object. You can execute with or without an initial result set.

4. When you are done with the CQ, close it.

Continuous Query Implementation

// Get cache and queryService - refs to local cache and QueryService

// Create client /tradeOrder region configured to talk to the server

// Create CqAttribute using CqAttributeFactory

CqAttributesFactory cqf = new CqAttributesFactory();

// Create a listener and add it to the CQ attributes callback defined below

CqListener tradeEventListener = new TradeEventListener();

cqf.addCqListener(tradeEventListener);

CqAttributes cqa = cqf.create();

// Name of the CQ and its query

String cqName = "priceTracker";

String queryStr = "SELECT * FROM /tradeOrder t where t.price > 100.00";

// Create the CqQuery

CqQuery priceTracker = queryService.newCq(cqName, queryStr, cqa);

try

{ // Execute CQ, getting the optional initial result set

 // Without the initial result set, the call is priceTracker.execute();

 SelectResults sResults = priceTracker.executeWithInitialResults();

 for (Object o : sResults) {

 Struct s = (Struct) o;

 TradeOrder to = (TradeOrder) s.get("value");

 System.out.println("Intial result includes: " + to);

 }

}

 catch (Exception ex)

{

 ex.printStackTrace();

}

// Now the CQ is running on the server, sending CqEvents to the listener

. . .

// End of life for the CQ - clear up resources by closing

priceTracker.close();

With continuous queries, you can optionally implement:

Highly available CQs by configuring your servers for high availability.

VMware GemFire 9.10 Documentation

VMware by Broadcom 713

Durable CQs by configuring your clients for durable messaging and indicating which CQs are
durable at creation.

Managing Continuous Querying

This topic discusses CQ management options, CQ states, and retrieving initial result sets.

Using CQs from a RegionService Instance

If you are running durable client queues from the RegionService instance, stop and start the offline
event storage for the client as a whole. The server manages one queue for the entire client
process, so you need to request the stop and start of durable CQ event messaging for the cache as
a whole, through the ClientCache instance. If you closed the RegionService instances, event
processing would stop, but the server would continue to send events, and those events would be
lost.

Stop with:

clientCache.close(true);

Start up again in this order:

1. Create ClientCache instance.

2. Create all RegionService instances. Initialize CQ listeners.

3. Call ClientCache instance readyForEvents method.

States of a CQ

A CQ has three possible states, which are maintained on the server. You can check them from the
client through CqQuery.getState.

Query
State

What does this
mean?

When does the CQ
reach this state?

Notes

STOPP
ED

The CQ is in place
and ready to run,
but is not running.

When CQ is first
created and after
being stopped from a
running state.

A stopped CQ uses system resources. Stopping a CQ only
stops the CQ event messaging from server to client. All
server-side CQ processing continues, but new CQ events are
not placed into the server’s client queue. Stopping a CQ
does not change anything on the client side (but, of course,
the client stops receiving events for the CQ that is stopped).

RUNNI
NG

The CQ is running
against server
region events and
the client listeners
are waiting for CQ
events.

When CQ is executed
from a stopped state.

This is the only state in which events are sent to the client.

VMware GemFire 9.10 Documentation

VMware by Broadcom 714

Query
State

What does this
mean?

When does the CQ
reach this state?

Notes

CLOSE
D

The CQ is not
available for any
further activities.
You cannot rerun a
closed CQ.

When CQ is closed by
the client and when
cache or connection
conditions make it
impossible to maintain
or run.

The closed CQ does not use system resources.

CQ Management Options

You manage your CQs from the client side. All calls are executed only for the calling client’s CQs.

Task For a single CQ use … For groups of CQs use …

Create a CQ QueryService.newCq N/A

Execute a CQ CqQuery.execute and
CqQuery.executeWithInitialResults

QueryService.executeCqs

Stop a CQ CqQuery.stop QueryService.stopCqs

Close a CQ CqQuery.close QueryService.closeCqs

Access a CQ CqEvent.getCq and QueryService.getCq QueryService.getCq

Modify CQ Listeners CqQuery.getCqAttributesMutator N/A

Access CQ Runtime Statistics CqQuery.getStatistics QueryService.getCqStatistics

Get all durable CQs registered
on the server

N/A QueryService.getAllDurableCqsF

romServer

Managing CQs and Durable Clients Using gfsh

Using the gfsh command-line utility, you can perform the following actions:

Close durable clients and durable client CQs. See close.

List all durable CQs for a given durable client ID. See list.

Show the subscription event queue size for a given durable client ID. See show
subscription-queue-size.

Retrieving an Initial Result Set of a CQ

You can optionally retrieve an initial result set when you execute your CQ. To do this, execute the
CQ with the executeWithInitialResults method. The initial SelectResults returned is the same
that you would get if you ran the query ad hoc, by calling QueryService.newQuery.execute on the
server cache, but with the key included. This example retrieves keys and values from an initial
result set:

SelectResults cqResults = cq.executeWithInitialResults();

for (Object o : cqResults.asList()) {

 Struct s = (Struct) o; // Struct with Key, value pair

VMware GemFire 9.10 Documentation

VMware by Broadcom 715

 Portfolio p = (Portfolio) s.get("value"); // get value from the Struct

 String id = (String) s.get("key"); // get key from the Struct

}

If you are managing a data set from the CQ results, you can initialize the set by iterating over the
result set and then updating it from your listeners as events arrive. For example, you might
populate a new screen with initial results and then update the screen from a CQ listener.

If a CQ is executed using the ExecuteWithInitialResults method, the returned result may already
include the changes with respect to the event. This can arise when updates are happening on the
region while CQ registration is in progress. The CQ does not block any region operation as it could
affect the performance of the region operation. Design your application to synchronize between
the region operation and CQ registration to avoid duplicate events from being delivered.

Transactions

This section describes VMware GemFire transactions. VMware GemFire offers an API for client
applications that do transactional work. VMware GemFire implements optimistic transactions, with
the familiar begin, commit, and rollback methods that implement the same operations as in
relational database transactions methods.

Adherence to ACID Promises

This section explains the ways in which VMware GemFire’s implementation of optimistic
transactions provides ACID semantics.

Code Examples

An application-based transaction and a transaction embedded in a function provide
examples to model.

Design Considerations

Designs that extend beyond the basics introduce other considerations. This section
identifies and discusses how transactions interact with other aspects of the system.

Adherence to ACID Promises

This section introduces VMware GemFire transactions. VMware GemFire offers an API for client
applications that do transactional work. VMware GemFire implements optimistic transactions,
choosing the much higher transaction performance they offer over the slow, locking methods of a
traditional relational database.

Optimistic transaction semantics are not identical to the Atomicity-Consistency-Isolation-Durability
(ACID) semantics of a traditional relational database.

Atomicity

Atomicity is “all or nothing” behavior: a transaction completes successfully only when all of the
operations it contains complete successfully. If problems occur during a transaction, perhaps due to
other transactions with overlapping changes, the transaction cannot successfully complete until the
problems are resolved.

VMware GemFire 9.10 Documentation

VMware by Broadcom 716

Optimistic transactions provide atomicity and realize speed by using a reservation system, instead of
using the traditional relational database technique of a two-phase locking of rows. The reservation
prevents other, intersecting transactions from completing, allowing the commit to check for
conflicts and to reserve resources in an all-or-nothing fashion prior to making changes to the data.
After all changes have been made, locally and remotely, the reservation is released. With the
reservation system, an intersecting transaction is simply discarded. The serialization of obtaining
locks is avoided.

Consistency

Consistency requires that data written within a transaction must observe the key and value
constraints established for the affected region. Note that validity of the transaction is the
responsibility of the application.

Isolation

Isolation is the level at which transactional state is visible to system components. VMware GemFire
transactions have repeatable read isolation. Once the committed value is read for a given key, it
always returns that same value. If a write within a transaction deletes a value for a key that has
already been read, subsequent reads return the transactional reference.

The default configuration isolates transactions at the process thread level. While a transaction is in
progress, its changes are visible only inside the thread that is running the transaction. Other
threads within that same process and threads in other processes cannot see changes until after the
commit operation begins. After beginning the commit, the changes are visible in the cache, but
other threads that access the changing data might see partial results of the transaction, leading to a
dirty read. See Changing the Handling of Dirty Reads for how to change the default behavior.

Durability

Relational databases provide durability by using disk storage for recovery and transaction logging.
VMware GemFire is optimized for performance and does not support on-disk durability for
transactions.

See Allowing Transactions to Work on Persistent Regions for how to allow a transaction that
operates on a persistent region in a non-durable way.

Code Examples

An application can run a transaction directly or invoke a function which contains a transaction. This
section illustrates these two use cases with code fragments that demonstrate the proper way to
program a transaction.

An expected use case operates on two regions within a transaction. For performance purposes the
VMware GemFire transaction implementation requires that region entries of partitioned regions be
colocated. See Custom-Partitioning and Colocating Data for details on how to colocate region
entries.

Transaction within an Application

VMware GemFire 9.10 Documentation

VMware by Broadcom 717

An application/client uses the CacheTransactionManager API. This most basic code fragment shows
the structure of a transaction, with its begin to start the transaction, commit to end the transaction,
and handling of exceptions that these methods may throw.

CacheTransactionManager txManager =

 cache.getCacheTransactionManager();

try {

 txManager.begin();

 // ... do transactional, region operations

 txManager.commit();

} catch (CommitConflictException conflict) {

 // ... do necessary work for a transaction that failed on commit

} finally {

 // All other exceptions will be handled by the caller.

 // Examples of some exceptions: the data is not colocated, a rebalance

 // interfered with the transaction, or the server is gone.

 // Any exception thrown by a method other than commit() needs

 // to do a rollback to avoid leaking the transaction state.

 if(txManager.exists()) {

 txManager.rollback();

 }

}

More details of a transaction appear in this next application/client code fragment example. In this
typical transaction, the put operations must be atomic and two regions are involved.

In this transaction, a customer’s purchase is recorded. The cash region contains each customer’s
cash balance available for making trades. The trades region records each customer’s balance spent
on trades.

If there is a conflict upon commit of the transaction, an exception is thrown, and this example tries
again.

// inputs needed for this transaction; shown as variables for simplicity

final String customer = "Customer1";

final Integer purchase = 1000;

// region set up shown to promote understanding

Cache cache = new CacheFactory().create();

Pool pool = PoolManager.createFactory()

 .addLocator("localhost", LOCATOR_PORT)

 .create("pool-name");

Region<String, Integer> cash =

 cache.createClientRegionFactory(ClientRegionShortcut.PROXY)

 .setPoolName(pool.getName())

 .create("cash");

Region<String, Integer> trades =

 cache.createClientRegionFactory(ClientRegionShortcut.PROXY)

 .setPoolName(pool.getName())

 .create("trades");

// transaction code

CacheTransactionManager txManager = cache.getCacheTransactionManager();

boolean retryTransaction = false;

do {

 try {

VMware GemFire 9.10 Documentation

VMware by Broadcom 718

 txManager.begin();

 // Subtract out the cost of the trade for this customer's balance

 Integer cashBalance = cash.get(customer);

 Integer newBalance = (cashBalance != null ? cashBalance : 0) - purchase;

 cash.put(customer, newBalance);

 // Add in the cost of the trade for this customer

 Integer tradeBalance = trades.get(customer);

 newBalance = (tradeBalance != null ? tradeBalance : 0) + purchase;

 trades.put(customer, newBalance);

 txManager.commit();

 retryTransaction = false;

 }

 catch (CommitConflictException conflict) {

 // entry value changed causing a conflict for this customer, so try again

 retryTransaction = true;

 } finally {

 // All other exceptions will be handled by the caller.

 // Any exception thrown by a method other than commit() needs

 // to do a rollback to avoid leaking the transaction state.

 if(txManager.exists()) {

 txManager.rollback();

 }

 }

} while (retryTransaction);

Design transactions such that any get operations are within the transaction. This causes those
entries to be part of the transactional state, which is desired such that intersecting transactions can
be detected and signal commit conficts.

Transaction within a Function

A transaction may be embedded in a function. The application invokes the function, and the
function contains the transaction that does the begin, the region operations, and the commit or
rollback.

This use of a function can have performance benefits. The performance benefit results from both
the function and the region data residing on servers. As the function invokes region operations,
those operations on region entries stay on the server, so there is no network round trip time to do
get or put operations on region data.

This function example accomplishes atomic updates on a single region representing the quantity of
products available in inventory. Doing this in a transaction prevents double allocating inventory for
two orders placed simultaneously.

/**

 * Atomically reduce inventory quantity

 */

public class TransactionalFunction extends Function {

 /**

 * Returns true if the function had the requested quantity of

 * inventory and successfully completed the transaction to

VMware GemFire 9.10 Documentation

VMware by Broadcom 719

 * record the reduced inventory that fulfills the order.

 */

 @Override

 public void execute(FunctionContext context) {

 RegionFunctionContext rfc = (RegionFunctionContext) context;

 Region<ProductId, Integer> inventoryRegion = rfc.getDataSet();

 CacheTransactionManager

 txManager = context.getCache().getCacheTransactionManager();

 // single argument will be a ProductId and a quantity

 ProductRequest request = (ProductRequest) rfc.getArguments();

 ProductId productRequested = request.getProductId();

 Integer qtyRequested = request.getQuantity();

 boolean success = false;

 do {

 boolean commitConflict = false;

 try {

 txManager.begin();

 Integer qtyAvailable = inventoryRegion.get(productRequested);

 if (qtyAvailable >= qtyRequested) {

 // enough inventory is available, so process request

 Integer remaining = qtyAvailable - qtyRequested;

 inventoryRegion.put(productRequested, remaining);

 txManager.commit();

 success = true;

 }

 } catch (CommitConflictException conflict) {

 // retry transaction, as another request on this same key succeeded,

 // so this transaction attempt failed

 commitConflict = true;

 } finally {

 // All other exceptions will be handled by the caller; however,

 // any exception thrown by a method other than commit() needs

 // to do a rollback to avoid leaking the transaction state.

 if(txManager.exists()) {

 txManager.rollback();

 }

 }

 } while (commitConflict);

 context.getResultSender().lastResult(success);

 }

 @Override

 public String getId() {

 return "TxFunction";

 }

 /**

 * Returning true causes this function to execute on the server

 * that holds the primary bucket for the given key. It can save a

 * network hop from the secondary to the primary.

 */

VMware GemFire 9.10 Documentation

VMware by Broadcom 720

 @Override

 public boolean optimizeForWrite() {

 return true;

 }

}

The application-side details on function implementation are not covered in this example. The
application sets up the function context and the argument. See the section on Function Execution
for details on functions.

The function implementation needs to catch the commit conflict exception such that it can retry
the entire transaction. The exception only occurs if another request for the same product
intersected with this one, and that other request’s transaction committed first.

The optimizeForWrite method is defined to cause the system to execute the function on the
server that holds the primary bucket for the given key. It can save a network hop from the
secondary to the primary.

Note that the variable qtyAvailable is a reference, because the Region.get operation returns a
reference within this server-side code. Read Region Operations Return References for details and
how to work around the implications of a reference as a return value when working with server
code.

Design Considerations

Designs that incorporate more complex features introduce further considerations. This section
discusses how transactions interact with other VMware GemFire features.

Colocate Partitioned Regions

Region Operations Return References

First Operation with Mixed Region Types

Allowing Transactions to Work on Persistent Regions

Mixing Transactions with Queries and Indexes

Mixing Transactions with Eviction

Mixing Transactions with Expiration

Mixing Transactions with Non-transactional Operations

Changing the Handling of Dirty Reads

Colocate Partitioned Regions

For performance, transactions that operate on more than one partitioned region require that those
partitioned regions colocate their entries. Colocate Data from Different Partitioned Regions
describes how to colocate entries.

Region Operations Return References

For performance, server-invoked region operations return references to region entries. Any
assignment to that reference changes the entry within the region. This subverts the system’s ability

VMware GemFire 9.10 Documentation

VMware by Broadcom 721

to maintain consistency and the callback chain for handlers such as cache writers and cache
loaders.

Changing an entry using a reference from within a transaction executing on a server has the same
consistency issues, but is even worse, as the change will not be seen as part of the transactional
state.

There are two ways to work with a reference: make a copy, or configure the system to return
copies instead of references. There is a performance penalty to having the system return copies.
Both ways are detailed in Copy on Read Behavior.

First Operation with Mixed Region Types

When more than one region participates in a transaction, and there is at least one partitioned and
at least one replicated region, the code must do its first operation on the partitioned region to
avoid a TransactionDataNotColocatedException. Write the transaction to do its first operation on a
partitioned region, even if the operation will be spurious.

Allowing Transactions to Work on Persistent Regions

VMware GemFire’s implementation of atomic transactions prohibits regions with persistence from
participating in transactions. The invocation of a persistent region operation within a transaction
throws an UnsupportedOperationException with an associated message of

Operations on persist-backup regions are not allowed because this thread

has an active transaction

An application that wishes to allow operations on a persistent region during a transaction can set
this system property:

-Dgemfire.ALLOW_PERSISTENT_TRANSACTIONS=true

Setting this system property eliminates the exception. It does not change the fact that atomicity is
not enforced for disk writes that occur with the commit of a transaction. A server crash during the
commit may succeed in some, but not all of the disk writes.

Mixing Transactions with Queries and Indexes

Queries and query results reflect region state, and not any state or changes that occur within a
transaction. Likewise, the contents and updates to an index do not intersect with any changes
made within a transaction. Therefore, do not mix transactions with queries or indexed regions.

Mixing Transactions with Eviction

LRU eviction and transactions work well together. Any eviction operation on a region entry that is
operated on from within a transaction is deferred until the transaction is committed. Further,
because any entry touched by the transaction has had its LRU clock reset, eviction is not likely to
choose those entries as victims immediately after the commit.

Mixing Transactions with Expiration

VMware GemFire 9.10 Documentation

VMware by Broadcom 722

A transaction disables expiration on any region entries affected by the transaction.

Mixing Transactions with Non-transactional Operations

For best performance, non-transactional operations do not acquire the exclusive locks used to
check for conflicts in a transaction. A transaction operating on the same data as a non-transactional
actor is unable to detect the conflict caused by a non-transactional operation.

If using transactions, an application should adopt the policy of designating certain regions or sets of
entries exclusively for transactional puts, updates, and deletions, so transactional entries will not be
modified by non-transactional operations.

If other, non-transactional sources update the keys the transaction is modifying, the changes may
intermingle with the transaction’s changes. The other sources can include distributions from
remote members, loading activities, and other direct cache modification calls from the same
member. When this happens, after your commit finishes, the cache state may not be what you
expected.

Changing the Handling of Dirty Reads

An application requiring a strict, but slower isolation model, such that dirty reads of transitional
states are not allowed, should set a property and encapsulate read operations within the
transaction. Configure this strict isolation model with the property:

-Dgemfire.detectReadConflicts=true

This property causes read operations to succeed only when they read a consistent pre- or post-
transactional state. If not consistent, VMware GemFire throws a CommitConflictException.

Function Execution

A function is a body of code that resides on a server and that an application can invoke from a client
or from another server without the need to send the function code itself. The caller can direct a
data-dependent function to operate on a particular dataset, or can direct a data-independent
function to operate on a particular server, member, or member group.

The function execution service provides solutions for a variety of use cases, including:

An application needs to perform an operation on the data associated with a key. A
registered server-side function can retrieve the data, operate on it, and put it back, with all
processing performed locally to the server.

An application needs to initialize some of its components once on each server, which might
be used later by executed functions.

A third-party service, such as a messaging service, requires initialization and startup.

Any arbitrary aggregation operation requires iteration over local data sets that can be done
more efficiently through a single call to the cache server.

An external resource needs provisioning that can be done by executing a function on a
server.

VMware GemFire 9.10 Documentation

VMware by Broadcom 723

How Function Execution Works

Executing a Function in VMware GemFire

How Function Execution Works

Where Functions Are Executed

You can execute data-independent functions or data-dependent functions in VMware GemFire in
the following places:

For Data-independent Functions

On a specific member or members: Execute the function within a peer-to-peer cluster,
specifying the member or members where you want to run the function by using
FunctionService methods onMember() and onMembers().

On a specific server or set of servers: If you are connected to a cluster as a client, you
can execute the function on a server or servers configured for a specific connection pool, or
on a server or servers connected to a given cache using the default connection pool. For
data-independent functions on client/server architectures, a client invokes FunctionService
methods onServer() or onServers(). (See How Client/Server Connections Work for details
regarding pool connections.)

On member groups or on a single member within each member group: You can
organize members into logical member groups. (See Configuring and Running a Cluster for
more information about using member groups.) You can invoke a data independent
function on all members in a specified member group or member groups, or execute the
function on only one member of each specified member group.

For Data-dependent Functions

On a region: If you are executing a data-dependent function, specify a region and,
optionally, a set of keys on which to run the function. The method
FunctionService.onRegion() directs a data-dependent function to execute on a specific
region.

See the org.apache.geode.cache.execute.FunctionService Java API documentation for more
details.

How Functions Are Executed

The following things occur when executing a function:

1. For security-enabled clusters, prior to executing the function, a check is made to see that
that caller is authorized to execute the function. The required permissions for authorization
are provided by the function’s Function.getRequiredPermissions() method. See
Authorization of Function Execution for a discussion of this method.

2. Given successful authorization, VMware GemFire invokes the function on all members
where it needs to run. The locations are determined by the FunctionService on* method
calls, region configuration, and any filters.

VMware GemFire 9.10 Documentation

VMware by Broadcom 724

3. If the function has results, they are returned to the addResult method call in a
ResultCollector object.

4. The originating member collects results using ResultCollector.getResult.

Highly Available Functions

Generally, function execution errors are returned to the calling application. You can code for high
availability for onRegion functions that return a result, so VMware GemFire automatically retries a
function if it does not execute successfully. You must code and configure the function to be highly
available, and the calling application must invoke the function using the results collector getResult
method.

When a failure (such as an execution error or member crash while executing) occurs, the system
responds by:

1. Waiting for all calls to return

2. Setting a boolean indicating a re-execution

3. Calling the result collector’s clearResults method

4. Executing the function

For client regions, the system retries the execution according to
org.apache.geode.cache.client.Pool retryAttempts. If the function fails to run every time, the
final exception is returned to the getResult method.

The default number of retries is the total number of servers present. For member calls, if a function
fails then the system will retry on each server only once or until no data remains in the system for
the function to operate on. If the function fails on every server, then an exception will be returned
to the user.

Function Execution Scenarios

This figure shows the sequence of events for a data-independent function invoked from a client on
all available servers.

VMware GemFire 9.10 Documentation

VMware by Broadcom 725

The client contacts a locator to obtain host and port identifiers for each server in the cluster and
issues calls to each server. As the instigator of the calls, the client also receives the call results.

This figure shows the sequence of events for a data-independent function executed against
members in a peer-to-peer cluster.

You can think of onMembers() as the peer-to-peer counterpart of a client-server call to
onServers(). Because it is called from a peer of other members in the cluster, an onMembers()
function invocation has access to detailed metadata and does not require the services of a locator.
The caller invokes the function on itself, if appropriate, as well as other members in the cluster and
collects the results of all of the function executions.

Data-dependent Function on a Region shows a data-dependent function run on a region.

Figure: Data-dependent Function on a Region

VMware GemFire 9.10 Documentation

VMware by Broadcom 726

An onRegion() call requires more detailed metadata than a locator provides in its host:port
identifier. This diagram shows the path followed when the client lacks detailed metadata regarding
target locations, as on the first call or when previously obtained metadata is no longer up to date.

The first time a client invokes a function to be executed on a particular region of a cluster, the
client’s knowledge of target locations is limited to the host and port information provided by the
locator. Given only this limited information, the client sends its execution request to whichever
server is next in line to be called according to the pool allocation algorithm. Because it is a
participant in the cluster, that server has access to detailed metadata and can dispatch the function
call to the appropriate target locations. When the server returns results to the client, it sets a flag
indicating whether a request to a different server would have provided a more direct path to the
intended target. To improve efficiency, the client requests a copy of the metadata. With additional
details regarding the bucket layout for the region, the client can act as its own dispatcher on
subsequent calls and identify multiple targets for itself, eliminating at least one hop.

After it has obtained current metadata, the client can act as its own dispatcher on subsequent calls,
identifying multiple targets for itself and eliminating one hop, as shown in Data-dependent function
after obtaining current metadata.

Figure: Data-dependent function after obtaining current metadata

VMware GemFire 9.10 Documentation

VMware by Broadcom 727

Data-dependent Function on a Region with Keys shows the same data-dependent function with
the added specification of a set of keys on which to run.

Figure: Data-dependent Function on a Region with Keys

Servers that do not hold any keys are left out of the function execution.

Peer-to-peer Data-dependent Function shows a peer-to-peer data-dependent call.

Figure: Peer-to-peer Data-dependent Function

VMware GemFire 9.10 Documentation

VMware by Broadcom 728

The caller is a member of the cluster, not an external client, so the function runs in the caller’s
cluster. Note the similarities between this diagram and the preceding figure (Data-dependent
Function on a Region with Keys), which shows a client-server model where the client has up-to-
date metadata regarding target locations within the cluster.

Client-server system with Up-to-date Target Metadata demonstrates a sequence of steps in a call
to a highly available function in a client-server system in which the client has up-to-date metadata
regarding target locations.

Figure: Client-server system with Up-to-date Target Metadata

VMware GemFire 9.10 Documentation

VMware by Broadcom 729

In this example, three primary keys (X, Y, Z) and their secondary copies (X’, Y’, Z’) are distributed
among three servers. Because optimizeForWrite is true, the system first attempts to invoke the
function where the primary keys reside: Server 1 and Server 2. Suppose, however, that Server 2 is
off-line for some reason, so the call targeted for key Y fails. Because isHA is set to true, the call is
retried on Server 1 (which succeeded the first time, so likely will do so again) and Server 3, where
key Y’ resides. This time, the function call returns successfully. Calls to highly available functions
retry until they obtain a successful result or they reach a retry limit.

Executing a Function in VMware GemFire

In this procedure it is assumed that you have your members and regions defined where you want
to run functions.

Main tasks:

1. Write the function code.

2. Register the function on all servers where you want to execute the function. The easiest
way to register a function is to use the gfsh deploy command to deploy the JAR file
containing the function code. Deploying the JAR automatically registers the function for
you. See Register the Function Automatically by Deploying a JAR for details. Alternatively,
you can write the XML or application code to register the function. See Register the
Function Programmatically for details.

3. Write the application code to run the function and, if the function returns results, to handle
the results.

4. If your function returns results and you need special results handling, code a custom
ResultsCollector implementation and use it in your function execution.

Write the Function Code

To write the function code, you implement the Function interface in the
org.apache.geode.cache.execute package.

Code the methods you need for the function. These steps do not have to be done in this order.

Implement getId to return a unique name for your function. You can use this name to
access the function through the FunctionService API.

For high availability:

1. Code isHa to return true to indicate to VMware GemFire that it can re-execute
your function after one or more members fails

2. Code your function to return a result

3. Code hasResult to return true

Code hasResult to return true if your function returns results to be processed and false if
your function does not return any data - the fire and forget function.

If the function will be executed on a region, implement optimizeForWrite to return false if
your function only reads from the cache, and true if your function updates the cache. The

VMware GemFire 9.10 Documentation

VMware by Broadcom 730

method only works if, when you are running the function, the Execution object is obtained
through a FunctionService onRegion call. optimizeForWrite returns false by default.

If the function should be run with an authorization level other than the default of
DATA:WRITE, implement an override of the Function.getRequiredPermissions() method.
See Authorization of Function Execution for details on this method.

Code the execute method to perform the work of the function.

1. Make execute thread safe to accommodate simultaneous invocations.

2. For high availability, code execute to accommodate multiple identical calls to the
function. Use the RegionFunctionContext isPossibleDuplicate to determine
whether the call may be a high-availability re-execution. This boolean is set to true
on execution failure and is false otherwise. Note: The isPossibleDuplicate boolean
can be set following a failure from another member’s execution of the function, so it
only indicates that the execution might be a repeat run in the current member.

3. Use the function context to get information about the execution and the data:

The context holds the function ID, the ResultSender object for passing
results back to the originator, and function arguments provided by the
member where the function originated.

The context provided to the function is the FunctionContext, which is
automatically extended to RegionFunctionContext if you get the Execution
object through a FunctionService onRegion call.

For data dependent functions, the RegionFunctionContext holds the Region
object, the Set of key filters, and a boolean indicating multiple identical calls
to the function, for high availability implementations.

For partitioned regions, the PartitionRegionHelper provides access to
additional information and data for the region. For single regions, use
getLocalDataForContext. For colocated regions, use
getLocalColocatedRegions. Note: When you use
PartitionRegionHelper.getLocalDataForContext, putIfAbsent may not
return expected results if you are working on local data set instead of the
region.

4. To propagate an error condition or exception back to the caller of the function,
throw a FunctionException from the execute method. VMware GemFire transmits
the exception back to the caller as if it had been thrown on the calling side. See the
Java API documentation for FunctionException for more information.

Example function code:

import java.io.Serializable;

import java.util.HashSet;

import java.util.Iterator;

import java.util.Set;

import org.apache.geode.cache.execute.Function;

import org.apache.geode.cache.execute.FunctionContext;

import org.apache.geode.cache.execute.FunctionException;

import org.apache.geode.cache.execute.RegionFunctionContext;

import org.apache.geode.cache.partition.PartitionRegionHelper;

VMware GemFire 9.10 Documentation

VMware by Broadcom 731

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference/org/apache/geode/cache/execute/FunctionException.html

public class MultiGetFunction implements Function {

 public void execute(FunctionContext fc) {

 if(! (fc instanceof RegionFunctionContext)){

 throw new FunctionException("This is a data aware function, and has

 to be called using FunctionService.onRegion.");

 }

 RegionFunctionContext context = (RegionFunctionContext)fc;

 Set keys = context.getFilter();

 Set keysTillSecondLast = new HashSet();

 int setSize = keys.size();

 Iterator keysIterator = keys.iterator();

 for(int i = 0; i < (setSize -1); i++)

 {

 keysTillSecondLast.add(keysIterator.next());

 }

 for (Object k : keysTillSecondLast) {

 context.getResultSender().sendResult(

 (Serializable)PartitionRegionHelper.getLocalDataForContext(context)

 .get(k));

 }

 Object lastResult = keysIterator.next();

 context.getResultSender().lastResult(

 (Serializable)PartitionRegionHelper.getLocalDataForContext(context)

 .get(lastResult));

 }

 public String getId() {

 return getClass().getName();

 }

}

Register the Function Automatically by Deploying a JAR

When you deploy a JAR file that contains a Function (in other words, contains a class that
implements the Function interface), the Function will be automatically registered via the
FunctionService.registerFunction method.

To register a function by using gfsh:

1. Package your class files into a JAR file.

2. Start a gfsh prompt. If necessary, start a locator and connect to the cluster where you want
to run the function.

3. At the gfsh prompt, type the following command:

gfsh>deploy --jar=group1_functions.jar

where group1_functions.jar corresponds to the JAR file that you created in step 1.

If another JAR file is deployed (either with the same JAR filename or another filename) with the
same Function, the new implementation of the Function will be registered, overwriting the old
one. If a JAR file is undeployed, any Functions that were auto-registered at the time of deployment
will be unregistered. Since deploying a JAR file that has the same name multiple times results in
the JAR being un-deployed and re-deployed, Functions in the JAR will be unregistered and re-

VMware GemFire 9.10 Documentation

VMware by Broadcom 732

registered each time this occurs. If a Function with the same ID is registered from multiple
differently named JAR files, the Function will be unregistered if either of those JAR files is re-
deployed or un-deployed.

See Deploying Application JARs to VMware GemFire Members for more details on deploying JAR
files.

Register the Function Programmatically

This section applies to functions that are invoked using the Execution.execute(String functionId)
signature. When this method is invoked, the calling application sends the function ID to all
members where the Function.execute is to be run. Receiving members use the ID to look up the
function in the local FunctionService. In order to do the lookup, all of the receiving member must
have previously registered the function with the function service.

The alternative to this is the Execution.execute(Function function) signature. When this method
is invoked, the calling application serializes the instance of Function and sends it to all members
where the Function.execute is to be run. Receiving members deserialize the Function instance,
create a new local instance of it, and run execute from that. This option is not available for non-
Java client invocation of functions on servers.

Your Java servers must register functions that are invoked by non-Java clients. You may want to
use registration in other cases to avoid the overhead of sending Function instances between
members.

Register your function using one of these methods:

XML:

<cache>

 ...

 </region>

<function-service>

 <function>

 <class-name>com.bigFatCompany.tradeService.cache.func.TradeCalc</class-name

>

 </function>

</function-service>

Java:

myFunction myFun = new myFunction();

FunctionService.registerFunction(myFun);

Note: Modifying a function instance after registration has no effect on the registered
function. If you want to execute a new function, you must register it with a different
identifier.

Run the Function
This assumes you’ve already followed the steps for writing and registering the function.

In every member where you want to explicitly execute the function and process the results, you
can use the gfsh command line to run the function or you can write an application to run the

VMware GemFire 9.10 Documentation

VMware by Broadcom 733

function.

Running the Function Using gfsh

1. Start a gfsh prompt.

2. If necessary, start a locator and connect to the cluster where you want to run the function.

3. At the gfsh prompt, type the following command:

gfsh> execute function --id=function_id

Where function_id equals the unique ID assigned to the function. You can obtain this ID
using the Function.getId method.

See Function Execution Commands for more gfsh commands related to functions.

Running the Function via API Calls

1. Use one of the FunctionService on* methods to create an Execute object. The on*
methods, onRegion, onMembers, etc., define the highest level where the function is run. For
colocated partitioned regions, use onRegion and specify any one of the colocated regions.
The function run using onRegion is referred to as a data dependent function - the others as
data-independent functions.

2. Use the Execution object as needed for additional function configuration. You can:

Provide a key Set to withFilters to narrow the execution scope for onRegion
Execution objects. You can retrieve the key set in your Function execute method
through RegionFunctionContext.getFilter.

Provide function arguments to setArguments. You can retrieve these in your
Function execute method through FunctionContext.getArguments.

Define a custom ResultCollector

3. Call the Execution object to execute method to run the function.

4. If the function returns results, call getResult from the results collector returned from
execute and code your application to do whatever it needs to do with the results. Note: For
high availability, you must call the getResult method.

Example of running the function - for executing members:

MultiGetFunction function = new MultiGetFunction();

FunctionService.registerFunction(function);

writeToStdout("Press Enter to continue.");

stdinReader.readLine();

Set keysForGet = new HashSet();

keysForGet.add("KEY_4");

keysForGet.add("KEY_9");

keysForGet.add("KEY_7");

Execution execution = FunctionService.onRegion(exampleRegion)

 .withFilter(keysForGet)

 .setArguments(Boolean.TRUE)

 .withCollector(new MyArrayListResultCollector());

VMware GemFire 9.10 Documentation

VMware by Broadcom 734

ResultCollector rc = execution.execute(function);

// Retrieve results, if the function returns results

List result = (List)rc.getResult();

Write a Custom Results Collector

This topic applies to functions that return results.

When you execute a function that returns results, the function stores the results into a
ResultCollector and returns the ResultCollector object. The calling application can then retrieve
the results through the ResultCollector getResult method. Example:

ResultCollector rc = execution.execute(function);

List result = (List)rc.getResult();

VMware GemFire’s default ResultCollector collects all results into an ArrayList. Its getResult
methods block until all results are received. Then they return the full result set.

To customize results collecting:

1. Write a class that extends ResultCollector and code the methods to store and retrieve the
results as you need. Note that the methods are of two types:

1. addResult and endResults are called by VMware GemFire when results arrive from
the Function instance SendResults methods

2. getResult is available to your executing application (the one that calls
Execution.execute) to retrieve the results

2. Use high availability for onRegion functions that have been coded for it:

1. Code the ResultCollector clearResults method to remove any partial results data.
This readies the instance for a clean function re-execution.

2. When you invoke the function, call the result collector getResult method. This
enables the high availability functionality.

3. In your member that calls the function execution, create the Execution object using the
withCollector method, and passing it your custom collector. Example:

Execution execution = FunctionService.onRegion(exampleRegion)

 .withFilter(keysForGet)

 .setArguments(Boolean.TRUE)

 .withCollector(new MyArrayListResultCollector());

Targeting Single Members of a Member Group or Entire
Member Groups

To execute a data independent function on a group of members or one member in a group of
members, you can write your own nested function. You will need to write one nested function if
you are executing the function from client to server and another nested function if you are
executing a function from server to all members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 735

Developing REST Applications for VMware
GemFire

Developing REST Applications for VMware GemFire provides background and instructions on how
to program REST applications with VMware GemFire. VMware GemFire REST APIs allow you to
access region data, queries and functions in your VMware GemFire deployment in wide variety of
programming languages.

Note: This documentation covers the v1 release of VMware GemFire REST APIs for developing
applications.

VMware GemFire REST API Overview

By using the VMware GemFire REST application interface, you can immediately access
VMware GemFire’s data management capabilities in languages other than the natively
supported Java language.

Prerequisites and Limitations for Writing REST Applications

Before development, understand the prerequisites and limitations of the current REST
implementation in VMware GemFire.

Setup and Configuration

The VMware GemFire developer REST interface runs as an embedded HTTP or HTTPS
service (Jetty server) within a VMware GemFire data node.

Using the Swagger UI to Browse REST APIs

VMware GemFire Developer REST APIs are integrated with the Swagger™ framework. This
framework provides a browser-based test client that allows you to visualize and try out
VMware GemFire REST APIs.

Developing REST Applications

This section provides guidelines on writing REST client applications for VMware GemFire.

Sample REST Applications

This section provides examples that illustrate how multiple clients, both REST and native,
can access the same VMware GemFire region data.

Troubleshooting and FAQ

This section provides troubleshooting guidance and frequently asked questions about
VMware GemFire Developer REST APIs.

VMware GemFire REST API Reference

This section summarizes all available VMware GemFire REST API resources and endpoints.

VMware GemFire 9.10 Documentation

VMware by Broadcom 736

VMware GemFire REST API Overview

By using the VMware GemFire REST application interface, you can immediately access VMware
GemFire’s data management capabilities in languages other than the natively supported Java
language.

You can write REST-enabled client applications for VMware GemFire in a variety of languages that
use the open and standard HTTP protocol—for example, Ruby, Python, JavaScript and Scala—as
well as already supported languages such as Java.

When you access VMware GemFire through the REST interface, objects are stored in VMware
GemFire as PdxInstances. A PdxInstance is a light-weight wrapper around PDX serialized bytes. It
provides applications with run-time access to fields of a PDX serialized object. This interoperable
format allows your Java applications to operate on the same data as your REST applications.

As an added benefit, because VMware GemFire’s REST interface stores objects as PdxInstances,
you do not need to write corresponding Java classes to translate JSON data (which you must do
with other REST interface providers such as Oracle Coherence). For example, consider the use
case where a non-Java REST client application (Python, Ruby or Scala) performs VMware GemFire
region operations with JSON data that represents employee data. Since the object is stored in
VMware GemFire as a PdxInstance that can be automatically mapped to JSON, the user does not
need to write a corresponding Employee.java class and also does not need to worry about related
issues such as keeping the Employee object in the CLASSPATH.

See VMware GemFire PDX Serialization for more information on PDX serialization.

Prerequisites and Limitations for Writing REST
Applications

Before development, it is important to understand the prerequisites and limitations of the VMware
GemFire REST implementation.

VMware GemFire and REST-enabled applications accessing VMware GemFire are subject to the
following rules and limitations:

All domain objects, functions and function-arg classes must be properly configured and
registered in the VMware GemFire deployment. Any functions that you wish to execute
through the REST API must be available on the target member’s CLASSPATH.

The current implementation supports only the application/json MIME type. Other return
types (XML, objects, and so on) are not supported. Plain text is supported as a return type
for some error messages.

Keys are strictly of type String. For example, the request PUT
http://localhost:8080/geode/v1/customers/123.456 will add an entry for key (“123.456”)
of type String.

Some special formats of JSON documents are not supported in VMware GemFire REST.
See Key Types and JSON Support for examples.

To achieve interoperability between VMware GemFire Java clients (or VMware GemFire
native clients) and REST clients, the following rules must be followed:

VMware GemFire 9.10 Documentation

VMware by Broadcom 737

All VMware GemFire Java and native client classes operating on data also accessed
by the REST interface must be PDX serialized, either via PDX autoserialization or by
implementing PdxSerializable.

VMware GemFire Java clients and native clients can retrieve REST-enabled data
either as a PdxInstance or as an actual object by using the PdxInstance.getObject
method. If you use the latter method, you must first declare the object type (@type)
in your POST or PUT request payload when creating the object in REST; and
secondly, the Java client must have the actual domain class in its CLASSPATH.

Objects returned by REST-invoked functions must be returned as PdxInstance objects or
other data types that can be written to JSON. You cannot return Java objects.

REST client applications do not support single hop access or notification features.

Specifying subregions as endpoints is not supported.

Setup and Configuration

The VMware GemFire Developer REST interface runs as an embedded HTTP or HTTPS service
(Jetty server) within one or more VMware GemFire servers.

REST API Libraries

All VMware GemFire REST interface classes and required JAR files are distributed as a WAR file
with the VMware GemFire product distribution. You can find the file in the following location:

install-dir/tools/Extensions/geode-web-api-n.n.n.war

where install-dir is the server installation directory and n.n.n is a version number.

Setting a GEODE_HOME environment variable with a path to the VMware GemFire installation
directory allows a server launcher to find the WAR file without any changes to the CLASSPATH.

Enabling the REST API

The REST API service for application development runs only on servers; you cannot run the service
on a locator.

To enable the Developer REST API service on a given server, use the gfsh start server command
with the --start-rest-api option, or set the start-dev-rest-api property to true for the server
via the ServerLauncher API. This starts an embedded Jetty server and deploys the Developer REST
API WAR file on that server.

Enabling the REST API on Multiple Servers

You can configure multiple REST-enabled servers in a single cluster. Each server should have a
separate host name and unique end point. To ensure that the server is reachable on a machine
with multiple NIC addresses, use http-service-bind-address to bind an address to the REST API
service (as well as the other embedded web services, such as Pulse).

You can configure the Developer REST API service to run over HTTPS by enabling SSL for the http
component in gemfire.properties or gfsecurity.properties, or on server startup. See SSL for

VMware GemFire 9.10 Documentation

VMware by Broadcom 738

details on configuring SSL parameters. These SSL parameters apply to all HTTP services hosted on
the configured server, which can include the following:

Developer REST API service

Management REST API service (for remote cluster management)

Pulse monitoring tool

Starting the REST API Service

To start a REST API service-enabled VMware GemFire deployment, configure PDX serialization for
your cluster, then start the service on one or more server nodes.

Configure PDX for your cluster

You must configure PDX if either or both of the following conditions apply:

Application peer member caches will access REST-accessible regions (resources) with
Region.get(key).

Your deployment has persistent regions that must be available as resources to the REST
API.

To configure PDX in your cluster, perform the following steps:

1. Start a locator running the cluster configuration service (enabled by default). For example:

gfsh>start locator --name=locator1

2. If your deployment has application peer member caches (for example, Java clients) that
must also access REST-accessible Regions (resources), use the following gfsh command:

gfsh>configure pdx --read-serialized=true

Note: You do not need to configure --read-serialized=true if no application peer member
caches are accessing the REST-accessible regions (resources) in your deployment.

3. If your deployment contains persistent regions that must be REST-accessible, use the
following gfsh command:

gfsh>configure pdx --disk-store

This command sets pdx persistent equal to true and sets the disk-store-name to
DEFAULT. If desired, specify an existing disk store name as the value for --disk-store.

4. If both of the above cases apply to your deployment, then configure PDX with the following
single command:

gfsh>configure pdx --read-serialized=true --disk-store

After you have configured PDX for your caches, then proceed with starting your REST-
enabled servers and other servers.

VMware GemFire 9.10 Documentation

VMware by Broadcom 739

Start the REST API Service on One or More Servers

As described above, you can start the REST API service on a server by using gfsh start server --
start-rest-api, or by setting the VMware GemFire property start-dev-rest-api to true. If you
wish to start the service on multiple servers, use http-service-bind-address and http-service-
port to identify the cache server and specific port that will host REST services. If you do not specify
the http-service-port, the default port is 7070, which may collide with other locators and servers.
If you do not specify http-service-bind-address, the HTTP service will bind to all local addresses
by default.

Note: If your application will be running in a VM (as when running in the cloud, for example), it is
good practice to specify http-service-bind-address and http-service-port so they will be publicly
visible. The default values may not be visible outside the VM in which the application is running.

For example:

gfsh>start server --name=server1 --start-rest-api=true \

--http-service-port=8080 --http-service-bind-address=localhost

Any server that hosts data, even a server acting as a JMX manager, can start the Developer REST
API service. For example, to start the service on a server that is also a JMX manager, you would
run:

gfsh>start server --name=server1 --start-rest-api=true \

--http-service-port=8080 --http-service-bind-address=localhost \

--J=-Dgemfire.jmx-manager=true --J=-Dgemfire.jmx-manager-start=true

Note that when started as a JMX Manager, the server will also host the Pulse web application in
the same HTTP service.

You may need to specify a CLASSPATH to load any functions that need to be made available to
your REST services. For example:

gfsh>start server --name=server1 --start-rest-api=true \

--http-service-port=8080 --http-service-bind-address=localhost \

--classpath=/myapps/testfunctions.jar

You can specify these properties either upon server startup or in the server’s gemfire.properties
configuration file. For example:

gfsh>start server --name=serverX --server-port=40405 --cache-xml-file=cache-config.xml

\

--properties-file=gemfire.properties --classpath=/myapps/testfunctions.jar

where gemfire.properties contains:

http-service-port=8080

http-service-bind-address=localhost

start-dev-rest-api=true

Verify That The Service is Running

VMware GemFire 9.10 Documentation

VMware by Broadcom 740

Verify that the VMware GemFire REST API service is up and running. To validate this, you can
perform the following checks:

1. Test the list resources endpoint (this step assumes that you have regions defined on your
cluster):

curl -i http://localhost:8080/geode/v1

2. Examine the server logs for the following messages:

[info 2017/06/13 13:48:14.090 PDT gfsec-server1 <main> tid=0x1] Initializing Sp

ring FrameworkServlet 'geode-mgmt'

[info 2017/06/13 13:48:14.091 PDT gfsec-server1 <main> tid=0x1] FrameworkServle

t 'geode-mgmt': initialization started

3. Open a browser and enter the following URL to browse the Swagger-enabled REST APIs:

http://<http-service-bind-address>:<http-service-port>/geode/docs/index.html

where http-service-bind-address is the address and http-service-port is the port number
that you specified when starting the Development REST API service on the server. For
example, based on the server started in an earlier example, you would enter:

http://localhost:8080/geode/docs/index.html

If you did not specify these properties upon server startup or in gemfire.properties, then use the
default of localhost and port 7070. See Using the Swagger UI to Browse REST APIs for more
information.

Implementing Authentication

To turn on integrated security, start your servers and locators with the security-manager property
set in your gemfire.properties file or on the gfsh command-line. The following example uses the
sample implementation that is included in the VMware GemFire source,
org.apache.geode.examples.security.ExampleSecurityManager.

This implementation requires a JSON security configuration file which defines the allowed users
and their corresponding permissions. (See the javadocs for ExampleSecurityManager for details on
how to compose the JSON file.) Place a copy of the JSON security configuration file in the
execution directory of each security-enabled member, then specify --classpath=. in the start
command for each of those members.

To start a server using a username and password that are defined in that server’s security
configuration, include the --user=username and --password=password options in the server’s start
command:

For example, suppose the JSON config file defines user “super-user” with password “1234567”:

gfsh>start server --name=server1 --start-rest-api=true \

--http-service-port=8080 --http-service-bind-address=localhost \

--J=-Dgemfire.security-manager=org.apache.geode.examples.security.ExampleSecurityManag

VMware GemFire 9.10 Documentation

VMware by Broadcom 741

er \

--classpath=. --user=super-user --password=1234567

To contact the server through the REST interface, you must provide the username and password.
Various REST GUI interfaces provide different ways of accomplishing this. The curl command offers
the --user (or -u) option for this purpose, where username and password are specified as a colon-
separated pair:

curl -i --user super-user:1234567 http://localhost:8080/geode/v1

In a simple URL, such as in a browser address bar, the credentials can be given as a prefix to the
host name in the form username:password@:

http://super-user:1234567@localhost:8080/geode/v1

Programmatic Startup
You can also start and configure VMware GemFire REST services programmatically. For example:

import org.apache.geode.distributed.ServerLauncher;

public class MyEmbeddedRestServer {

public static void main(String[] args){

 ServerLauncher serverLauncher = new ServerLauncher.Builder()

 .set("start-dev-rest-api", "true")

 .set("http-service-port", "8080")

 .set("http-service-bind-address", "localhost")

 .setPdxReadSerialized(true)

 .build();

 serverLauncher.start();

 System.out.println("REST server successfully started");

 }

}

You can then verify that the Developer REST API service has been started programmatically by
visiting the following URL:

http://localhost:8080/geode/docs/index.html

Using the Swagger UI to Browse REST APIs

VMware GemFire Developer REST APIs are integrated with the Swagger™ framework. This
framework provides a browser-based test client that allows you to visualize and try out VMware
GemFire REST APIs.

Swagger application JARs are included in the VMware GemFire REST application WAR; you do not
need to install any additional libraries to use Swagger.

The following example demonstrates how to access the Swagger UI to browse the APIs.

VMware GemFire 9.10 Documentation

VMware by Broadcom 742

1. Start a VMware GemFire Locator and a Developer REST API-enabled server as described in
Setup and Configuration. Specify an http-service-port for the developer REST service, as
the default port, 7070, is already taken by the locator. For example:

gfsh>start locator --name=locator1

Starting a VMware GemFire Locator in /Users/admin/apache-geode-1.2.0/locator

1...

....

gfsh>start server --name=server1 --start-rest-api=true \

--http-service-bind-address=localhost --J=-Dgemfire.http-service-port=8080

2. To access Swagger, open a browser and enter the following URL. For example:

http://localhost:8080/geode/swagger-ui.html

The following Web page appears:

3. Using gfsh, create one or more regions on the REST API server. For example:

gfsh>create region --name=region1 --type=REPLICATE --key-constraint=java.lang.S

tring

Member | Status

------- | --

server1 | Region "/region1" created on "server1"

4. In Swagger, click on region : region CRUD operations to list all the available endpoints for
accessing regions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 743

5. In the list of region endpoints, click on the GET /v1 endpoint link. The page displays
additional request and response information about the API.

6. Click the Try it out! button. Any regions you added in step 5 are returned in the response
body.

VMware GemFire 9.10 Documentation

VMware by Broadcom 744

VMware GemFire 9.10 Documentation

VMware by Broadcom 745

7. Add an entry to the region by expanding the POST /v1/{region} endpoint.

8. Click the Try it out! button to see the response body and response code.

You can use the Swagger interface to try out additional VMware GemFire API endpoints and view
sample responses.

For more information on Swagger, see the Swagger website and the OpenAPI specification.

VMware GemFire 9.10 Documentation

VMware by Broadcom 746

http://swagger.io/
https://github.com/OAI/OpenAPI-Specification

Developing REST Applications

This section provides guidelines on writing REST client applications for VMware GemFire.

You can browse, query, update and delete data stored in your VMware GemFire deployment. You
can also manage and execute pre-deployed functions on VMware GemFire members.

Working with Regions

The VMware GemFire REST APIs provide basic CRUD (create, read, update and delete)
operations for data entries stored in your regions.

Working with Queries

VMware GemFire supports the use of queries to extract data from its regions. Using REST
APIs, you can create and execute either prepared or ad-hoc queries on VMware GemFire
regions. You can also update and delete prepared queries.

Working with Functions

VMware GemFire REST APIs support the discovery and execution of predefined VMware
GemFire functions on your cluster deployments.

Working with Regions

The VMware GemFire REST APIs provide basic CRUD (create, read, update and delete) operations
for data entries stored in your regions.

Regions are the resources of the VMware GemFire REST API. Each region represents a resource
or a collection of resources.

You cannot create or delete the regions themselves with the REST APIs, but you can work with
the data stored within predefined VMware GemFire regions. Use the gfsh command utility to add,
configure or delete regions in your VMware GemFire deployment. Any additions or modifications to
regions made through gfsh are then accessible by the REST APIs.

Listing Available Regions

The main resource endpoint to the VMware GemFire API is GET /geode/v1. Use this endpoint to
discover which regions are available in your cluster.

Example call:

curl -i http://localhost:7070/geode/v1

Example response:

Accept: application/json

Response Payload: application/json

200 OK

Server: Apache-Coyote/1.1

Location: http://localhost:7070/geode/v1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 20:05:47 GMT

VMware GemFire 9.10 Documentation

VMware by Broadcom 747

{

 "regions": [

 {

 "name": "customers",

 "type": "REPLICATE",

 "key-constraint": "java.lang.String",

 "value-constraint": "org.apache.geode.pdx.PdxInstance"

 },

 {

 "name": "items",

 "type": "REPLICATE",

 "key-constraint": null,

 "value-constraint": null

 },

 {

 "name": "orders",

 "type": "PARTITION",

 "key-constraint": null,

 "value-constraint": null

 },

 {

 "name": "primitiveKVStore",

 "type": "PARTITION",

 "key-constraint": null,

 "value-constraint": null

 },

 {

 "name": "empty_region",

 "type": "EMPTY",

 "key-constraint": "java.lang.String",

 "value-constraint": "org.apache.geode.pdx.PdxInstance"

 }

]

}

Each region listed in the response includes the following region attributes:

name. Name of the region.

type. Type of region. For example, REPLICATE, PARTITION, or EMPTY. See Region Types
for more information.

key-constraint. If defined, the fully qualified class name of the key’s type. Otherwise, null.

value-constraint. If defined, the fully qualified class name of the value’s type. Otherwise,
null.

If no resources (regions) are available in the cluster, the call returns a 404 NOT FOUND error.

Reading Region Data

You can read data from a region by using any of the following REST-enabled mechanisms:

GET /geode/v1/{region}?limit=ALL - Read all entries in a region

GET /geode/v1/{region}?limit=N - Read a limited number of entries in a region

GET /geode/v1/{region}/keys - List all keys in a region

GET /geode/v1/{region}/{keys} - Read data for specific key or keys in a region

VMware GemFire 9.10 Documentation

VMware by Broadcom 748

Reading Entries

To read entries in a region, use the following REST endpoint:

GET /geode/v1/{region}?[limit={<number>|ALL}]

For example:

http://localhost:7070/geode/v1/items

To read all entries in the region, specify instead:

http://localhost:7070/geode/v1/items?limit=ALL

To read 80 entries from the region, specify:

http://localhost:7070/geode/v1/items?limit=80

Setting the limit parameter is optional. If you do not specify a limit, the request will return 50
results by default. The returned order of the results is not guaranteed; however, the response
values (JSON) are specified in the same order as the list of comma-separated keys returned in the
“Content-location” header.

Reading Keys

To list all keys in a region, use the following endpoint:

/geode/v1/{region}/keys

For example:

http://localhost:7070/geode/v1/items/keys

You can use the returned key to perform additional operations on the keys such as read, update or
delete their values.

Reading Entries By Key

To obtain data for a specific key or set of keys, use the following endpoints:

GET /geode/v1/{region}/{key1}

or

GET /geode/v1/{region}/{key1},{key2},...,{keyN}

where you specify keys in a comma-delimited list.

For example:

http://localhost:7070/geode/v1/items/1

http://localhost:7070/geode/v1/items/1,3,5

VMware GemFire 9.10 Documentation

VMware by Broadcom 749

If one or more of the keys you provide in the list of keys is missing from the region, you will receive
a 400 BAD STATUS error response.

If you are providing multiple keys, you can also use the ignoreMissingKey=true parameter to
prevent 400 errors. Any non-existing keys will instead return a null response. For example:

http://localhost:7070/geode/v1/items/1,3,5?ignoreMissingKey=true

Adding or Modifying Region Data

To add data to a region, you have several options:

Create new a brand new entry (both key and value) in a region

Update or insert a value for a key (if the key does not exist, it will be created)

Update (replace) data for a key if and only if the key already exists in region

Compare existing value for a key before replacing value

Update or insert multiple values in the region for a set of provided keys

Adding entries

To add a new key and value to a region, you can use the following endpoint:

POST /geode/v1/{region}?key=<key>

This endpoint only puts the entry into the region if the specified key does not already exist. If
the key already exists, the request will fail with a 409 CONFLICT error.

Note: If you do not specify a key for this request, a String representation of a numerical key will be
generated automatically for you.

Specify the value for the new entry in the request body. For example:

http://localhost:7070/geode/v1/orders?key=2

Request Payload: application/json

POST /geode/v1/orders?key=2

Accept: application/json

Content-Type: application/json

{

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 112,

 "customerId": 1012,

 "description": "Purchase Order for myCompany",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "John Doe",

 "email": "John.Doe@example.com",

 "phone": "01-2048096",

 "totalPrice": 225,

 "items": [

 {

 "itemNo": 1,

VMware GemFire 9.10 Documentation

VMware by Broadcom 750

 "description": "Product2, PartA",

 "quantity": 10,

 "unitPrice": 5,

 "totalPrice": 50

 },

 {

 "itemNo": 2,

 "description": "Product2, PartB",

 "quantity": 20,

 "unitPrice": 20,

 "totalPrice": 400

 }

]

}

Note that in the example above, @type is used to declare the value-constraint for the new entry.
This declaration is required to provide interoperability between Java cache clients and REST clients.

Alternately, you can also use the following endpoint to create a new entry:

PUT /gemfire/v1/{region}/{key}

This endpoint will add the entry if the key does not exist. If the key already exists, the operation will
update the entry.

http://localhost:7070/geode/v1/orders/2

Request Payload: application/json

PUT /geode/v1/orders/2

Request Payload: application/json

Content-Type: application/json

Accept: application/json

{

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1012,

 "description": "Order for XYZ Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Pie Doe",

 "email": "pie.doe@example.com",

 "phone": "01-2048096",

 "totalPrice": 225,

 "items": [

 {

 "itemNo": 1,

 "description": "Product-100",

 "quantity": 10,

 "unitPrice": 5,

 "totalPrice": 50

 }

]

}

Modifying existing entries

VMware GemFire 9.10 Documentation

VMware by Broadcom 751

VMware GemFire provides three different options for this type of operation. To update a value for
the key, you can use:

PUT /gemfire/v1/{region}/{key}

PUT /gemfire/v1{region}/{key}?op=REPLACE

PUT /gemfire/v1{region}/{key}?op=CAS

If you do not specify a parameter to the PUT operation, the request which will add or update the
entry regardless of whether the key already exists in the region. See the example above.

http://localhost:7070/geode/v1/orders/2

If you specify the op=REPLACE parameter, the request which will explicitly perform a Cache
replace operation and will verify that the key exists before replacing the value. If the key does not
exist in the specified region, you will receive a 404 NOT FOUND error. This operation is
idempotent, meaning multiple identical requests will have the same effect as the initial request.

http://localhost:7070/geode/v1/orders/2?op=REPLACE

If you specify the op=CAS parameter, the value will only be replaced with the @new value only if the
specified @old value matches the current value of the key in the region. If the @old value does not
match the current value, then a 409 CONFLICT error is thrown. If you receive a 409 CONFLICT
error, you can call the GET /geode/v1/{region}/{key} endpoint to get an updated copy of the
value. This operation is not idempotent and multiple identical requests will not have the same effect
as the initial request. You can use this type of REST call to achieve a similar effect as optimistic
locking.

http://localhost:7070/geode/v1/orders/2?op=REPLACE

Request Payload: application/json

PUT /geode/v1/orders/2?op=CAS

Accept: application/json

Content-Type: application/json

{

 "@old": {

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1012,

 "description": "Order for XYZ Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Jelly Bean",

 "email": "jelly.bean@example.com",

 "phone": "01-2048096",

 "items": [

 {

 "itemNo": 1,

 "description": "Product-100",

 "quantity": 12,

 "unitPrice": 5,

 "totalPrice": 60

 }

VMware GemFire 9.10 Documentation

VMware by Broadcom 752

],

 "totalPrice": 225

 },

 "@new ": {

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1013,

 "description": "Order for New Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/25/2014",

 "contact": "Vanilla Bean",

 "email": "vanillabean@example.com",

 "phone": "01-2048096",

 "items": [

 {

 "itemNo": 12345,

 "description": "part 123",

 "quantity": 12,

 "unitPrice": 29.99,

 "totalPrice": 149.95

 }

],

 "totalPrice": 149.95

 }

}

Adding or updating multiple values for a set of keys

To update multiple values for keys, use:

PUT /geode/v1/{region}/{key1},{key2},...,{keyN}

This REST call will update any keys that already exist and insert values for any keys that do not exist
in the region.

Deleting Region Data

There are three options for deleting data in a region using REST APIs:

Delete all the data in the region. Limited to replicated regions only; not available for
partitioned regions.

Delete the data associated with a particular key

Delete the data associated with a set of keys

Deleting all data

To delete all data in the region, use the following endpoint:

DELETE /geode/v1/{region}

For example:

http://localhost:7070/geode/v1/items

Note that this does not delete the region itself, but instead all the entries in the region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 753

Deleting data based on key

Use:

DELETE /geode/v1/{region}/{key}

or

DELETE /geode/v1/{region}/{key}{key1},{key2},...{keyN}

If any of the supplied keys are not found in the region, the request will fail and return a 404 NOT
FOUND ERROR.

Working with Queries
VMware GemFire supports the use of queries to extract data from its regions. Using REST APIs,
you can create and execute either prepared or ad-hoc queries on VMware GemFire regions. You
can also update and delete prepared queries.

Listing Queries
To find out which predefined and named queries are available in your deployment, use the
following endpoint:

GET /geode/v1/queries

All queries that have been predefined and assigned IDs in VMware GemFire are listed.

Creating a New Query

To create a query, use the following endpoint:

POST /geode/v1/queries?id=<queryId>&q=<OQL-statement>

Here are some examples:

http://localhost:7070/geode/v1/queries?id=selectOffers&q="SELECT DISTINCT c FROM /cust

omers c, /orders o WHERE o.totalprice < $1 AND c.customerId = o.customerId"

Note: The query must be provided as a URL parameter. You cannot specify OQL in the request
body at this time.

You can specify query bind parameters ($1) in your predefined queries and then pass in values at
runtime.

To update this query at a later time, use the PUT operation described below.

Executing a Prepared Query
To run a prepared query, use:

VMware GemFire 9.10 Documentation

VMware by Broadcom 754

POST /geode/v1/queries/{queryId}

Specify the queryId in the URL. All query argument must be passed in the request body. For
example:

http://localhost:7070/geode/v1/queries/selectOrders

Request Payload: OQL bind parameter values HTTP message body of media type applicatio

n/json

POST /geode/v1/queries/selectOrders

Accept: application/json

Content-Type: application/json

[

 {

 "@type": "int",

 "@value": 2

 },

 {

 "@type": "double",

 "@value": 110.00

 }

]

Response Payload: application/json

200 OK

Content-Length: <#-of-bytes>

Content-Type: application/json

[

 {

 "description": "Purchase order for company - B",

 "totalPrice": 350,

 "purchaseOrderNo": 1112,

 "customerId": 102,

 "deliveryDate": "Thu Feb 20 00:00:00 IST 2014",

 "contact": "John Doe",

 "email": "jDoe@example.com",

 "phone": "01-2048096",

 "items": [

 {

 "description": "Product-AAAA",

 "quantity": 10,

 "itemNo": 1,

 "unitPrice": 20,

 "totalPrice": 200,

 "type-class": "org.apache.geode.web.rest.domain.Item"

 },

 {

 "description": "Product-BBB",

 "quantity": 15,

 "itemNo": 2,

 "unitPrice": 10,

 "totalPrice": 150,

 "type-class": "org.apache.geode.web.rest.domain.Item"

 }

VMware GemFire 9.10 Documentation

VMware by Broadcom 755

],

 "orderDate": "Mon Feb 10 00:00:00 IST 2014",

 "type-class": "org.apache.geode.web.rest.domain.Order"

 },

 {...},

 {...}

}

Another example:

http://localhost:7070/geode/v1/queries/selectOrders

Request Payload: OQL bind parameter values HTTP message body of media type applicatio

n/json

POST /geode/v1/queries/selectCustomer

Accept: application/json

Content-Type: application/json

{

 "args": [

 {

 "@type": "int",

 "@value": 101

 }

]

}

Response-Payload: application/json

200 Ok

Content-Length: 140

Content-Type: application/json

[

 {

 "firstName": "Jane",

 "lastName": "Doe",

 "customerId": 101,

 "type-class": "org.apache.geode.web.rest.domain.Customer"

 }

]

Modifying a Prepared Query
To modify an existing prepared query, use the following endpoint:

PUT /geode/v1/queries/{queryId}

Here are some examples:

http://localhost:7070/geode/v1/queries/selectOffers&q="SELECT DISTINCT c FROM /custome

rs c, /orders o WHERE o.totalprice < $1 AND c.customerId = o.customerId"

You can specify query bind parameters ($1) in your predefined queries, and then pass in values at
runtime.

VMware GemFire 9.10 Documentation

VMware by Broadcom 756

A PUT operation will only succeed if the specified queryId already exists (for example, created with
the POST operation above.) If the queryId does already exist, you will receive a 404 response -
“Named query (selectKey456) does not exist!”

Deleting a Prepared Query

To delete an existing prepared query, use the following endpoint:

DELETE /geode/v1/queries/{queryId}

Executing an Ad-Hoc Query

To run an unnamed query, use the following endpoint:

GET /geode/v1/queries/adhoc?q=<OQL-statement>

Provide the OQL query string directly in the URL enclosed in single quotes.

For example:

http://localhost:7070/geode/v1/queries/adhoc?q="SELECT * FROM /customers"

Working with Functions

VMware GemFire REST APIs support the discovery and execution of predefined VMware GemFire
functions on your cluster deployments.

Before you can access functions using REST APIs, you must have already defined and registered
the functions in your VMware GemFire deployment. Additionally, any domain objects that are
being accessed by the functions must be available on the CLASSPATH of the server running the
REST endpoint service.

You can do the following with functions:

List all functions available in the VMware GemFire cluster.

Execute a function, optionally specifying the region and members and/or member groups
that are targeted by the function

Listing Functions

To list all functions that are currently registered and deployed in the VMware GemFire cluster, use
the following endpoint:

GET /geode/v1/functions

The list of returned functions includes the functionId, which you can use to execute the function as
described in the next section.

Executing Functions

VMware GemFire 9.10 Documentation

VMware by Broadcom 757

To execute a function on a VMware GemFire cluster, use the following endpoint:

POST /geode/v1/functions/{functionId}?[&onRegion=regionname|&onMembers=member1,member

2,...,memberN|&onGroups=group1,group2,...,groupN]

You have the option to target a specific region and members or member groups when executing
your function. If you do not specify these parameters, the function will execute on all members that
are hosting data in the entire cluster by default. Function arguments are passed in the request
body.

For example:

http://localhost:7070/geode/v1/functions/AddFreeItemToOrders

Request Payload: application/json

POST /geode/v1/functions/AddFreeItemToOrders

Accept: application/json

Content-Type: application/json

[

 {

 "@type": "double",

 "@value": 210

 },

 {

 "@type": "org.apache.geode.web.rest.domain.Item",

 "itemNo": "599",

 "description": "Part X Free on Bumper Offer",

 "quantity": "2",

 "unitprice": "5",

 "totalprice": "10.00"

 }

]

In the above example, the Item domain object must be in the CLASSPATH of all members
receiving the function. If the object is not defined, the function will fail with an Internal Server
error. Look for ClassNotFoundExceptions in the stack trace.

Sample REST Applications

This section provides examples that illustrate how multiple clients, both REST and native, can
access the same VMware GemFire region data.

Note: You must set PDX read-serialized to true when starting the cache server to achieve
interoperability between different clients. See Setup and Configuration for instructions on starting
up REST-enabled cache servers.

The following examples demonstrate the following:

1. A Java REST client creates a Person object on key 1. This client references the following
supporting examples (also provided):

1. VMware GemFire cache client

2. REST client utility

VMware GemFire 9.10 Documentation

VMware by Broadcom 758

3. Date Time utility

4. Person class

5. Gender class

2. A Ruby REST client also gets data for key 1 and updates it.

3. A Python REST Client demonstrates the creation and modification of objects. Note: An
additional Python REST client reference application is available here:
https://github.com/gemfire/py-gemfire-rest.

The following Java examples assume a project directory structure similar to the following:

#1. REST Java Client (RestClientApp.java)

package org.apache.geode.restclient;

 import org.springframework.http.HttpHeaders;

 import org.springframework.http.MediaType;

 import org.springframework.http.HttpMethod;

 import org.springframework.http.HttpEntity;

 import org.springframework.http.ResponseEntity;

 import org.springframework.web.client.HttpClientErrorException;

 import org.springframework.web.client.HttpServerErrorException;

 import org.apache.geode.util.RestClientUtils;

 import java.util.ArrayList;

 import java.util.List;

@SuppressWarnings("unused")

 public class RestClientApp {

 private static final String PEOPLE_REGION = "/People";

 private static final String PERSON1_AS_JSON = "{"

 + "\"@type\ ": \"org.apache.geode.domain.Person\ "," + "\"id\ ": 1,"

 + " \"firstName\ ": \"Jane\ "," + " \"middleName\ ": \"H\ ","

 + " \"lastName\ ": \"Doe1\ "," + " \"birthDate\ ": \"04/12/1983\ ","

VMware GemFire 9.10 Documentation

VMware by Broadcom 759

https://github.com/gemfire/py-gemfire-rest

 + "\"gender\ ": \"MALE\ "" + "}";

 public static void main(final String... args) throws Exception {

 doCreate(PEOPLE_REGION, "1");

 System.out.println("Programme has run successfully...!");

 }

 private static HttpHeaders setAcceptAndContentTypeHeaders(){

 List<MediaType> acceptableMediaTypes = new ArrayList<MediaType>();

 acceptableMediaTypes.add(MediaType.APPLICATION_JSON);

 HttpHeaders headers = new HttpHeaders();

 headers.setAccept(acceptableMediaTypes);

 headers.setContentType(MediaType.APPLICATION_JSON);

 return headers;

 }

 private static void doCreate(final String regionNamePath, final String key) {

 HttpHeaders headers = setAcceptAndContentTypeHeaders();

 HttpEntity< String> entity = new HttpEntity< String>(PERSON1_AS_JSON, headers);

 try {

 ResponseEntity< String> result = RestClientUtils.getRestTemplate().exchange(

 "http://localhost:8080/geode/v1/People?key=1" , HttpMethod.POST,

 entity, String.class);

 System.out.println("STATUS_CODE = " + result.getStatusCode().value());

 System.out.println("HAS_BODY = " + result.hasBody());

 System.out.println("LOCATION_HEADER = " + result.getHeaders().getLocation().to

String());

 } catch (HttpClientErrorException e) {

 System.out.println("Http Client encountered error, msg:: " + e.getMessage());

 } catch(HttpServerErrorException se) {

 System.out.println("Server encountered error, msg::" + se.getMessage());

 } catch (Exception e) {

 System.out.println("Unexpected ERROR...!!");

 }

 }

}

#1a. VMware GemFire Cache Java Client
(MyJavaClient.java)

package org.apache.geode.javaclient;

 import java.util.Calendar;

 import java.util.HashMap;

 import java.util.Map;

 import org.apache.geode.cache.Region;

 import org.apache.geode.cache.client.ClientCache;

 import org.apache.geode.cache.client.ClientCacheFactory;

 import org.apache.geode.cache.client.ClientRegionFactory;

 import org.apache.geode.cache.client.ClientRegionShortcut;

 import org.apache.geode.domain.Gender;

 import org.apache.geode.domain.Person;

 import org.apache.geode.pdx.PdxInstance;

 import org.apache.geode.util.DateTimeUtils;

VMware GemFire 9.10 Documentation

VMware by Broadcom 760

 public class MyJavaClient {

 public static void main(String[] args) {

 ClientCacheFactory cf = new ClientCacheFactory().addPoolServer("localhost", 4040

5);

 ClientCache cache = cf.setPdxReadSerialized(true).create();

 ClientRegionFactory rf = cache.createClientRegionFactory(ClientRegionShortcut.PROX

Y);

 Region region = rf.create("People");

 //Get data on key "1" , update it and put it again in cache

 Person actualObj = null;

 Object obj = region.get("1");

 if(obj instanceof PdxInstance){

 System.out.println("Obj is PdxInstance");

 PdxInstance pi = (PdxInstance)obj;

 Object obj2 = pi.getObject();

 if(obj2 instanceof Person){

 actualObj = (Person)obj2;

 System.out.println("Received Person :" + actualObj.toString());

 } else {

 System.out.println("Error: obj2 is expected to be of type Person");

 }

 } else {

 System.out.println("Error: obj is expected to be of type PdxInstance");

 }

 //update the received object and put it in cache

 if(actualObj != null){

 actualObj.setFirstName("Jane_updated");

 actualObj.setLastName("Doe_updated");

 region.put("1", actualObj);

 }

 //Add/putAll set of person objects

 final Person person2 = new Person(102L, "Sachin", "Ramesh", "Tendulkar", DateTime

Utils.createDate(1975, Calendar.DECEMBER, 14), Gender.MALE);

 final Person person3 = new Person(103L, "Saurabh", "Baburav", "Ganguly", Date

TimeUtils.createDate(1972, Calendar.AUGUST, 29), Gender.MALE);

 final Person person4 = new Person(104L, "Rahul", "subrymanyam", "Dravid", Dat

eTimeUtils.createDate(1979, Calendar.MARCH, 17), Gender.MALE);

 final Person person5 = new Person(105L, "Jhulan", "Chidambaram", "Goswami", D

ateTimeUtils.createDate(1983, Calendar.NOVEMBER, 25), Gender.FEMALE);

 final Person person6 = new Person(101L, "Rahul", "Rajiv", "Gndhi", DateTimeUt

ils.createDate(1970, Calendar.MAY, 14), Gender.MALE);

 final Person person7 = new Person(102L, "Narendra", "Damodar", "Modi", DateTi

meUtils.createDate(1945, Calendar.DECEMBER, 24), Gender.MALE);

 final Person person8 = new Person(103L, "Atal", "Bihari", "Vajpayee", DateTim

eUtils.createDate(1920, Calendar.AUGUST, 9), Gender.MALE);

 final Person person9 = new Person(104L, "Soniya", "Rajiv", "Gandhi", DateTime

Utils.createDate(1929, Calendar.MARCH, 27), Gender.FEMALE);

 final Person person10 = new Person(104L, "Priyanka", "Robert", "Gandhi", Date

TimeUtils.createDate(1973, Calendar.APRIL, 15), Gender.FEMALE);

 final Person person11 = new Person(104L, "Murali", "Manohar", "Joshi", DateTi

meUtils.createDate(1923, Calendar.APRIL, 25), Gender.MALE);

 final Person person12 = new Person(104L, "Lalkrishna", "Parmhansh", "Advani",

DateTimeUtils.createDate(1910, Calendar.JANUARY, 01), Gender.MALE);

VMware GemFire 9.10 Documentation

VMware by Broadcom 761

 final Person person13 = new Person(104L, "Shushma", "kumari", "Swaraj", DateT

imeUtils.createDate(1943, Calendar.AUGUST, 10), Gender.FEMALE);

 final Person person14 = new Person(104L, "Arun", "raman", "jetly", DateTimeUt

ils.createDate(1942, Calendar.OCTOBER, 27), Gender.MALE);

 final Person person15 = new Person(104L, "Amit", "kumar", "shah", DateTimeUti

ls.createDate(1958, Calendar.DECEMBER, 21), Gender.MALE);

 final Person person16 = new Person(104L, "Shila", "kumari", "Dixit", DateTime

Utils.createDate(1927, Calendar.FEBRUARY, 15), Gender.FEMALE);

 Map< String, Object> userMap = new HashMap< String, Object>();

 userMap.put("2", person6);

 userMap.put("3", person6);

 userMap.put("4", person6);

 userMap.put("5", person6);

 userMap.put("6", person6);

 userMap.put("7", person7);

 userMap.put("8", person8);

 userMap.put("9", person9);

 userMap.put("10", person10);

 userMap.put("11", person11);

 userMap.put("12", person12);

 userMap.put("13", person13);

 userMap.put("14", person14);

 userMap.put("15", person15);

 userMap.put("16", person16);

 //putAll all person

 region.putAll(userMap);

 System.out.println("successfully Put set of Person objects into the cache");

 }

}

#1b. REST Client Utilities (RestClientUtils.java)

package org.apache.geode.util;

 import java.net.URI;

 import java.text.SimpleDateFormat;

 import java.util.ArrayList;

 import java.util.List;

 import org.springframework.http.converter.ByteArrayHttpMessageConverter;

 import org.springframework.http.converter.HttpMessageConverter;

 import org.springframework.http.converter.StringHttpMessageConverter;

 import org.springframework.http.converter.json.Jackson2ObjectMapperFactoryBean;

 import org.springframework.http.converter.json.MappingJackson2HttpMessageConverter;

 import org.springframework.web.client.RestTemplate;

 import org.springframework.web.util.UriComponentsBuilder;

 public class RestClientUtils {

 public static final String BASE_URL = "http://192.0.2.0:8080" ;

 public static final String GEODE_REST_API_CONTEXT = "/geode";

 public static final String GEODE_REST_API_VERSION = "/v1";

 public static final URI GEODE_REST_API_WEB_SERVICE_URL = URI

 .create(BASE_URL + GEODE_REST_API_CONTEXT + GEODE_REST_API_VERSION);

VMware GemFire 9.10 Documentation

VMware by Broadcom 762

 public static RestTemplate restTemplate;

 public static RestTemplate getRestTemplate() {

 if (restTemplate == null) {

 restTemplate = new RestTemplate();

 final List<HttpMessageConverter<?>> messageConverters = new ArrayList<HttpMess

ageConverter<?>>();

 messageConverters.add(new ByteArrayHttpMessageConverter());

 messageConverters.add(new StringHttpMessageConverter());

 messageConverters.add(createMappingJackson2HttpMessageConverter());

 restTemplate.setMessageConverters(messageConverters);

 }

 return restTemplate;

 }

 public static HttpMessageConverter< Object> createMappingJackson2HttpMessageConvert

er() {

 final Jackson2ObjectMapperFactoryBean objectMapperFactoryBean = new Jackson2Obje

ctMapperFactoryBean();

 objectMapperFactoryBean.setFailOnEmptyBeans(true);

 objectMapperFactoryBean.setIndentOutput(true);

 objectMapperFactoryBean.setDateFormat(new SimpleDateFormat("MM/dd/yyyy"));

 objectMapperFactoryBean

 .setFeaturesToDisable(com.fasterxml.jackson.databind.DeserializationFeature.FA

IL_ON_UNKNOWN_PROPERTIES);

 objectMapperFactoryBean

 .setFeaturesToEnable(

 com.fasterxml.jackson.core.JsonParser.Feature.ALLOW_COMMENTS,

 com.fasterxml.jackson.core.JsonParser.Feature.ALLOW_SINGLE_QUOTES,

 com.fasterxml.jackson.databind.DeserializationFeature.ACCEPT_EMPTY_STRING_

AS_NULL_OBJECT);

 objectMapperFactoryBean.afterPropertiesSet();

 final MappingJackson2HttpMessageConverter httpMessageConverter = new MappingJack

son2HttpMessageConverter();

 httpMessageConverter.setObjectMapper(objectMapperFactoryBean.getObject());

 return httpMessageConverter;

 }

 public static URI toUri(final String... pathSegments) {

 return toUri(GEODE_REST_API_WEB_SERVICE_URL, pathSegments);

 }

 public static URI toUri(final URI baseUrl, final String... pathSegments) {

 return UriComponentsBuilder.fromUri(baseUrl).pathSegment(pathSegments)

 .build().toUri();

 }

}

#1c. Date and Time Utilities (DateTimeUtils.java)

package org.apache.geode.util;

 import java.text.SimpleDateFormat;

 import java.util.Calendar;

VMware GemFire 9.10 Documentation

VMware by Broadcom 763

 import java.util.Date;

/**

 * The DateTimeUtils class is a utility class for working with dates and times.

 */

@SuppressWarnings("unused")

 public abstract class DateTimeUtils {

 public static Calendar createCalendar(final int year, final int month, final int

day) {

 final Calendar dateTime = Calendar.getInstance();

 dateTime.clear();

 dateTime.set(Calendar.YEAR, year);

 dateTime.set(Calendar.MONTH, month);

 dateTime.set(Calendar.DAY_OF_MONTH, day);

 return dateTime;

 }

 public static Date createDate(final int year, final int month, final int day) {

 return createCalendar(year, month, day).getTime();

 }

 public static String format(final Date dateTime, final String formatPattern) {

 return (dateTime != null ? new SimpleDateFormat(formatPattern).format(dateTime)

: null);

 }

}

#1d. Person Class (Person.java)

package org.apache.geode.domain;

 import java.util.Date;

 import org.apache.geode.internal.lang.ObjectUtils;

 import org.apache.geode.pdx.PdxReader;

 import org.apache.geode.pdx.PdxSerializable;

 import org.apache.geode.pdx.PdxWriter;

 import org.apache.geode.util.DateTimeUtils;

/**

 * The Person class is an abstraction modeling a person.

 */

 public class Person implements PdxSerializable /*ResourceSupport implements DomainO

bject< Long>*/ {

 private static final long serialVersionUID = 42108163264l;

 protected static final String DOB_FORMAT_PATTERN = "MM/dd/yyyy";

 private Long id;

 private Date birthDate;

VMware GemFire 9.10 Documentation

VMware by Broadcom 764

 private Gender gender;

 private String firstName;

 private String middleName;

 private String lastName;

 public Person() {

 }

 public Person(final Long id) {

 this.id = id;

 }

 public Person(final String firstName, final String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public Person(final Long id, final String firstName, final String middleName, f

inal String lastName, Date date, Gender gender) {

 this.id = id;

 this.firstName = firstName;

 this.middleName = middleName;

 this.lastName = lastName;

 this.birthDate = date;

 this.gender = gender;

 }

 public Long getId() {

 return id;

 }

 public void setId(final Long id) {

 this.id = id;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(final String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(final String lastName) {

 this.lastName = lastName;

 }

 public String getMiddleName() {

 return middleName;

 }

 public void setMiddleName(final String middleName) {

 this.middleName = middleName;

 }

VMware GemFire 9.10 Documentation

VMware by Broadcom 765

 public Date getBirthDate() {

 return birthDate;

 }

 public void setBirthDate(final Date birthDate) {

 this.birthDate = birthDate;

 }

 public Gender getGender() {

 return gender;

 }

 public void setGender(final Gender gender) {

 this.gender = gender;

 }

 @Override

 public boolean equals(final Object obj) {

 if (obj == this) {

 return true;

 }

 if (!(obj instanceof Person)) {

 return false;

 }

 final Person that = (Person) obj;

 return (ObjectUtils.equals(this.getId(), that.getId())

 || (ObjectUtils.equals(this.getBirthDate(), that.getBirthDate())

 && ObjectUtils.equals(this.getLastName(), that.getLastName())

 && ObjectUtils.equals(this.getFirstName(), that.getFirstName())));

 }

 @Override

 public int hashCode() {

 int hashValue = 17;

 hashValue = 37 * hashValue + ObjectUtils.hashCode(getId());

 hashValue = 37 * hashValue + ObjectUtils.hashCode(getBirthDate());

 hashValue = 37 * hashValue + ObjectUtils.hashCode(getLastName());

 hashValue = 37 * hashValue + ObjectUtils.hashCode(getFirstName());

 return hashValue;

 }

 @Override

 public String toString() {

 final StringBuilder buffer = new StringBuilder("{ type = ");

 buffer.append(getClass().getName());

 buffer.append(", id = ").append(getId());

 buffer.append(", firstName = ").append(getFirstName());

 buffer.append(", middleName = ").append(getMiddleName());

 buffer.append(", lastName = ").append(getLastName());

 buffer.append(", birthDate = ").append(DateTimeUtils.format(getBirthDate(), DOB_F

ORMAT_PATTERN));

 buffer.append(", gender = ").append(getGender());

 buffer.append(" }");

 return buffer.toString();

 }

VMware GemFire 9.10 Documentation

VMware by Broadcom 766

 @Override

 public void fromData(PdxReader pr) {

 id = pr.readLong("id");

 firstName = pr.readString("firstName");

 middleName = pr.readString("middleName");

 lastName = pr.readString("lastName");

 birthDate = pr.readDate("birthDate");

 gender = (Gender)pr.readObject("gender");

 }

 @Override

 public void toData(PdxWriter pw) {

 pw.writeLong("id", id);

 pw.writeString("firstName", firstName);

 pw.writeString("middleName", middleName);

 pw.writeString("lastName", lastName);

 pw.writeDate("birthDate", birthDate);

 pw.writeObject("gender", gender);

 }

}

#1e. Gender Class (Gender.java)

package org.apache.geode.domain;

/**

 * The Gender enum is a enumeration of genders (sexes).

 */

 public enum Gender {

 FEMALE,

 MALE

}

#2. Ruby REST Client (restClient.rb)

#!/usr/bin/ruby -w

puts "Hello, Ruby!";

!/usr/bin/env ruby

require 'json'

require 'net/http'

class JsonSerializable

 def to_json

 hash = {}

 hash["@type"] = "org.apache.geode.web.rest.domain.Person"

 self.instance_variables.each do |var|

 if !var.to_s.end_with?("links")

 hash[var.to_s[1..-1]] = self.instance_variable_get var

VMware GemFire 9.10 Documentation

VMware by Broadcom 767

 end

 end

 hash.to_json

 end

 def from_json! jsonString

 JSON.load(jsonString).each do |var, val|

 if !var.end_with?("type")

 self.instance_variable_set "@".concat(var), val

 end

 end

 end

end

class Person < JsonSerializable

 attr_accessor :id, :firstName, :middleName, :lastName, :birthDate, :gender

 def initialize(id = nil, firstName = nil, middleName = nil, lastName = nil)

 @id = id

 @firstName = firstName

 @middleName = middleName

 @lastName = lastName

 @birthDate = nil

 @gender = nil

 end

 def to_s

 s = "{ type = Person, id = #{@id}"

 s += ", firstName = #{@firstName}"

 s += ", middleName = #{@middleName}"

 s += ", lastName = #{@lastName}"

 s += ", birthDate = #{@birthDate}"

 s += ", gender = #{@gender}"

 s += "}"

 end

end

if __FILE__ == $0

 #p = Person.new(1, "Jon", "T", "Doe")

 #puts p

 #puts p.inspect

 #puts p.to_json

 uri = URI("http://localhost:8080/geode/v1/People/1");

 personJson = Net::HTTP::get(uri);

 # JSON from server

 puts "JSON read from Server for Person with ID 1...\n #{personJson}"

 p = Person.new

 p.from_json! personJson

 # print the Person to standard out

 puts "Person is...\n #{p}"

VMware GemFire 9.10 Documentation

VMware by Broadcom 768

 p.id = 1

 p.firstName = "Jack"

 p.lastName = "Handy"

 p.gender = "MALE"

 # prints modified Person to standard out

 puts "Person modified is...\n #{p}"

 puts "JSON sent to Server for Person with ID 1...\n #{p.to_json}"

 Net::HTTP.start(uri.hostname, uri.port) do |http|

 putRequest = Net::HTTP::Put.new uri.path, { "Content-Type" => "application/json" }

 putRequest.body = p.to_json

 http.request(putRequest)

 end

end

Output from running the Ruby client:

prompt# ruby restClient.rb

Hello, Ruby!

JSON read from Server for Person with ID 1...

 {

 "@type" : "org.gopivotal.app.domain.Person",

 "id" : 1,

 "firstName" : "Jane_updated",

 "middleName" : "H",

 "lastName" : "Doe_updated",

 "gender" : "MALE",

 "birthDate" : "04/12/1983"

}

Person is...

 { type = Person, id = 1, firstName = Jane_updated, middleName = H, lastName = Doe_upd

ated, birthDate = 04/12/1983, gender = MALE}

Person modified is...

 { type = Person, id = 1, firstName = Jack, middleName = H, lastName = Handy, birthDat

e = 04/12/1983, gender = MALE}

JSON sent to Server for Person with ID 1...

 {"@type":"org.apache.geode.web.rest.domain.Person","id":1,"firstName":"Jack","middleN

ame":"H","lastName":"Handy","birthDate":"04/12/1983","gender":"MALE"}

#3. Python REST Client (restClient.py)

This example uses Python 3 and shows the creation and modification of objects. It uses one
external library called requests, which is nearly ubiquitous and avoids having to use HTTP code.

#!/usr/bin/env python3

This is simple, repetitive and assumes you have created a region called

"demoRegion".

import sys

import json

import uuid

import requests

VMware GemFire 9.10 Documentation

VMware by Broadcom 769

REGION = "demoRegion"

BASE_URI = "http://localhost:8080/geode/v1"

headers = {'content-type': 'application/json'}

person = {'type': 'Person',

 'firstName': 'John',

 'middleName': 'Q',

 'lastName': 'Public',

 'birthDate': '1 Jan 1900'}

def resource_uri(res=None, region=REGION):

 if res:

 return "%s/%s/%s" % (BASE_URI, region, res)

 return "%s/%s" % (BASE_URI, region)

print("[*] First, we'll empty out our demo region - DELETE %s" %

 requests.delete(resource_uri()))

r = requests.delete(resource_uri())

r.raise_for_status()

print("[*] Now, we'll create 5 demo objects")

keys = []

for i in range(1, 6):

 key = uuid.uuid1()

 keys.append(key)

 person['uuid'] = str(key)

 print("\t Creating object with key: POST %s" % key)

 r = requests.post(resource_uri(), data=json.dumps(person),

 params={'key': key},

 headers=headers)

 r.raise_for_status()

print("[*] List our keys - GET %s" % resource_uri("keys"))

r = requests.get(resource_uri("keys"))

print(r.text)

print("[*] Here's all our data - GET %s" % resource_uri())

r = requests.get(resource_uri())

print(r.text)

print("[*] Now each key one by one")

for key in keys:

 print("Fetching key - GET %s" % resource_uri(res=key))

 r = requests.get(resource_uri(res=key))

 print(r.text)

print("[*] Now grab one, change the first name to 'Jane' and save it")

VMware GemFire 9.10 Documentation

VMware by Broadcom 770

print(" GET - %s" % resource_uri(res=keys[0]))

r = requests.get(resource_uri(res=keys[0]))

p = json.loads(r.text)

p['firstName'] = 'Jane'

print(" PUT - %s" % resource_uri(res=keys[0]))

r = requests.put(resource_uri(res=keys[0]), data=json.dumps(p),

 headers=headers)

print(" GET - %s" % resource_uri(res=keys[0]))

r = requests.get(resource_uri(res=keys[0]))

print(r.text)

Troubleshooting and FAQ

This section provides troubleshooting guidance and frequently asked questions about VMware
GemFire Developer REST APIs.

Checking if the REST API Service is Up and Running

Use the ping endpoint to verify whether the REST API server is available.

Use the /geode/v1/ping endpoint to check REST API server availability:

For example:

curl -i http://localhost:7070/geode/v1/ping

Example success response:

200 OK

If the server is not available, your client will receive an HTTP error code and message.

Key Types and JSON Support
When defining regions (your REST resources), you must only use scalar values for keys and also set
value constraints in order to avoid producing JSON that cannot be parsed by VMware GemFire.

If VMware GemFire regions are not defined with scalar values as keys and value constraints, then
you may receive the following error message (even though the JSON is technically valid) in your
REST client applications:

Json doc specified in request body is malformed..!!'

For example, the following JSON documents are not supported by VMware GemFire:

Unsupported JSON Example 1

[

 1,

 [],

 [

 4,

VMware GemFire 9.10 Documentation

VMware by Broadcom 771

 "hello",

 {}

],

 {

 "array": []

 }

]

Unsupported JSON Example 2

[[[[[[[[[[[[[[[[[[["Not too deep"]]]]]]]]]]]]]]]]]]]

Unsupported JSON Example 3

[1,2,3,"hello"]

Unsupported JSON Example 4

[

 "JSON Test Pattern pass1",

 {

 "object with 1 member": [

 "array with 1 element"

]

 },

 {},

 [],

 -42,

 true,

 false,

 null,

 {

 "integer": 1234567890,

 "real": -9876.54321,

 "e": 1.23456789e-13,

 "E": 1.23456789e+34,

 "": 2.3456789012e+76,

 "zero": 0,

 "one": 1,

 "space": " ",

 "quote": "\"",

 "backslash": "\",

 "controls": "\b\f\n\r\t",

 "slash": "/ & /",

 "alpha": "abcdefghijklmnopqrstuvwyz",

 "ALPHA": "ABCDEFGHIJKLMNOPQRSTUVWYZ",

 "digit": "0123456789",

 "0123456789": "digit",

 "special": "`1~!@#$%^&*()_+-={':[,]}|;.</>?",

 "true": true,

 "false": false,

 "null": null,

 "array": [],

 "object": {},

VMware GemFire 9.10 Documentation

VMware by Broadcom 772

 "address": "50 St. James Street",

 "url": "http://www.JSON.org/",

 "comment": "// /* <!-- --",

 "# -- --> */": " ",

 " s p a c e d ": [

 1,

 2,

 3,

 4,

 5,

 6,

 7

],

 "compact": [

 1,

 2,

 3,

 4,

 5,

 6,

 7

],

 "jsontext": "{\"object with 1 member\":[\"array with 1 element\"]}",

 "quotes": "" \" %22 0x22 034 "",

 "/\\"\b\f\n\r\t`1~!@#$%^&*()_+-=[]{}|;:',./<>?": "A key can be any string"

 },

 0.5,

 98.6,

 99.44,

 1066,

 10,

 1,

 0.1,

 1,

 2,

 2,

 "rosebud"

]

VMware GemFire REST API Reference

This section summarizes all available VMware GemFire REST API resources and endpoints.

Note: This documentation covers the v1 release of VMware GemFire REST APIs for developing
applications.

Region Endpoints

A VMware GemFire region is how VMware GemFire logically groups data within its cache.
Regions stores data as entries, which are key-value pairs. Using the REST APIs you can
read, add (or update), and delete region data.

Query Endpoints

VMware GemFire uses a query syntax based on OQL (Object Query Language) to query
region data. Since VMware GemFire regions are key-value stores, values can range from
simple byte arrays to complex nested objects.

VMware GemFire 9.10 Documentation

VMware by Broadcom 773

Function Endpoints

VMware GemFire functions allows you to write and execute server-side transactions and
data operations. These may include anything ranging from initializing components or third-
party services or aggregating data.

Administrative Endpoints

Administrative endpoints provide management and monitoring functionality for the REST
API interface.

Region Endpoints

A VMware GemFire region is how VMware GemFire logically groups data within its cache. Regions
stores data as entries, which are key-value pairs. Using the REST APIs you can read, add (or
update), and delete region data.

See also Data Regions for more information on working with regions.

GET /geode/v1

List all available resources (regions) in the VMware GemFire cluster.

GET /geode/v1/{region}

Read data for the region. The optional limit URL query parameter specifies the number of
values from the Region that will be returned. The default limit is 50. If the user specifies a
limit of “ALL”, then all entry values for the region will be returned.

GET /geode/v1/{region}/keys

List all keys for the specified region.

GET /geode/v1/{region}/{key}

Read data for a specific key in the region.

GET /geode/v1/{region}/{key1},{key2},…,{keyN}

Read data for multiple keys in the region.

HEAD /geode/v1/{region}

An HTTP HEAD request that returns region’s size (number of entries) within the HEADERS,
which is a response without the content-body. Region size is specified in the pre-defined
header named “Resource-Count”.

POST /geode/v1/{region}?key=<key>

Create (put-if-absent) data in region.

PUT /geode/v1/{region}/{key}

Update or insert (put) data for key in region.

PUT /geode/v1/{region}/{key1},{key2},…{keyN}

Update or insert (put) data for multiple keys in the region.

PUT /geode/v1/{region}/{key}?op=REPLACE

VMware GemFire 9.10 Documentation

VMware by Broadcom 774

Update (replace) data with key(s) if and only if the key(s) exists in region. The Key(s) must be
present in the Region for the update to occur.

PUT /geode/v1/{region}/{key}?op=CAS

Update (compare-and-set) value having key with a new value if and only if the “@old” value
sent matches the current value having key in region.

DELETE /geode/v1/{region}

Delete all entries in the region.

DELETE /geode/v1/{region}/{key}

Delete entry for specified key in the region.

DELETE /geode/v1/{region}/{key1},{key2},…{keyN}

Delete entries for multiple keys in the region.

GET /geode/v1

List all available resources (regions) in the VMware GemFire cluster.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1

Parameters

None.

Example Request

GET /gemfire/v1/

Accept: application/json

Example Success Response

Response Payload: application/json

200 OK

Server: Apache-Coyote/1.1

Location: http://localhost:8080/geode/v1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 20:05:47 GMT

 {

 "regions": [

 {

 "name": "customers",

 "type": "REPLICATE",

 "key-constraint": "java.lang.String",

 "value-constraint": "org.apache.geode.pdx.PdxInstance"

VMware GemFire 9.10 Documentation

VMware by Broadcom 775

 },

 {

 "name": "items",

 "type": "REPLICATE",

 "key-constraint": null,

 "value-constraint": null

 },

 {

 "name": "orders",

 "type": "PARTITION",

 "key-constraint": null,

 "value-constraint": null

 },

 {

 "name": "primitiveKVStore",

 "type": "PARTITION",

 "key-constraint": null,

 "value-constraint": null

 },

 {

 "name": "empty_region",

 "type": "EMPTY",

 "key-constraint": "java.lang.String",

 "value-constraint": "org.apache.geode.pdx.PdxInstance"

 }

]

}

Error Codes

Status Code Description

404 NOT FOUND No regions were found at the provided endpoint.

500 INTERNAL SERVER ERROR Encountered error at server.

GET /geode/v1/{region}

Read data for the region. The optional limit URL query parameter specifies the number of values
from the Region that will be returned. The default limit is 50. If the user specifies a limit of “ALL”,
then all entry values for the region will be returned.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}?

[limit={<number>|ALL}]

Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 776

Parameter Description Example Values

limit Optional. Specify a limit to the
number of region entries to return. If
the limit parameter is not specified,
the default is to return 50 results.

Default: 50

ALL

80

Example Request

GET /geode/v1/orders/

Accept: application/json

Example Success Response

Response Payload: application/json

200 OK

Server: Apache-Coyote/1.1

Content-Location: http://localhost:8080/geode/v1/orders/3,1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 21:03:08 GMT

{

 "orders" : [{

 "purchaseOrderNo" : 1112,

 "customerId" : 102,

 "description" : "Purchase order for company - B",

 "orderDate" : "02/10/2014",

 "deliveryDate" : "02/20/2014",

 "contact" : "John Doe",

 "email" : "John.Doe@example.com",

 "phone" : "01-2048096",

 "items" : [{

 "itemNo" : 1,

 "description" : "Product-AAAA",

 "quantity" : 10,

 "unitPrice" : 20.0,

 "totalPrice" : 200.0

 }, {

 "itemNo" : 2,

 "description" : "Product-BBB",

 "quantity" : 15,

 "unitPrice" : 10.0,

 "totalPrice" : 150.0

 }],

 "totalPrice" : 350.0

 }, {

 "purchaseOrderNo" : 111,

 "customerId" : 101,

 "description" : "Purchase order for company - A",

 "orderDate" : "01/10/2014",

 "deliveryDate" : "01/20/2014",

 "contact" : "Jane Doe",

VMware GemFire 9.10 Documentation

VMware by Broadcom 777

 "email" : "Jane.Doe@example.com",

 "phone" : "020-2048096",

 "items" : [{

 "itemNo" : 1,

 "description" : "Product-1",

 "quantity" : 5,

 "unitPrice" : 10.0,

 "totalPrice" : 50.0

 }, {

 "itemNo" : 1,

 "description" : "Product-2",

 "quantity" : 10,

 "unitPrice" : 15.5,

 "totalPrice" : 155.0

 }],

 "totalPrice" : 205.0

 }]

}

Error Codes

Status Code Description

400 BAD REQUEST Limit parameter X is not valid! The specified limit value must be ALL or an integer.

404 NOT FOUND Returned if region does not exist.

500 INTERNAL
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack trace
of the exception.

GET /geode/v1/{region}/keys

List all keys for the specified region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{keys}

Parameters

None.

Example Request

GET /geode/v1/orders/keys

Example Success Response

Response Payload: application/json

VMware GemFire 9.10 Documentation

VMware by Broadcom 778

200 OK

Server: Apache-Coyote/1.1

Location: http://localhost:8080/geode/v1/orders/keys

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 21:20:05 GMT

{ "keys": [

 "1",

 "2",

 "3"

]

}

Error Codes

Status Codes Description

404 NOT FOUND Specified region does not exist.

405 METHOD NOT
ALLOWED

Returned if any HTTP request method other than GET (for example, POST, PUT, DELETE,
etc.) is used.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

GET /geode/v1/{region}/{key}

Read data for a specific key in the region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key}

Parameters

None.

Example Request

GET /geode/v1/orders/1

Request Payload: null

Accept: application/json

Example Responses

Response Payload: application/json

200 OK

Server: Apache-Coyote/1.1

VMware GemFire 9.10 Documentation

VMware by Broadcom 779

Content-Location: http: //localhost:8080/geode/v1/orders/1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 21:27:59 GMT

{

 "purchaseOrderNo" : 111,

 "customerId" : 101,

 "description" : "Purchase order for company - A",

 "orderDate" : "01/10/2014",

 "deliveryDate" : "01/20/2014",

 "contact" : "Jane Doe",

 "email" : "Jane.Doe@example.com",

 "phone" : "020-2048096",

 "items" : [{

 "itemNo" : 1,

 "description" : "Product-1",

 "quantity" : 5,

 "unitPrice" : 10.0,

 "totalPrice" : 50.0

 }, {

 "itemNo" : 1,

 "description" : "Product-2",

 "quantity" : 10,

 "unitPrice" : 15.5,

 "totalPrice" : 155.0

 }],

 "totalPrice" : 205.0

}

Error Codes

Status Code Description

400 BAD REQUEST Returned if the supplied key is not found in the region.

404 NOT FOUND Returned if the region or specified key is not found.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

GET /geode/v1/{region}/{key1},{key2},...,{keyN}

Read data for multiple keys in the region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries[?i

gnoreMissingKey=true]

Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 780

Parameter Description Example Values

ignoreMissingKey Optional. Boolean to indicate
whether to return non-existing keys
as null responses. Use this to prevent
400 errors.

true

false

Example Requests

GET /geode/v1/orders/1,2,13,4,5?ignoreMissingKey=true

Request Payload: null

Accept: application/json

GET /geode/v1/orders/1,3

Request Payload: null

Accept: application/json

Example Success Responses

Response Payload: application/json

200 OK

Server: Apache-Coyote/1.1

Content-Location: http://localhost:8080/geode/v1/orders/13,2,1,5,4

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 21:39:04 GMT

{

 "orders": [

 null,

 {

 "@type": "org.apache.geode.rest.internal.web.controllers.Order",

 "purchaseOrderNo": 1112,

 "customerId": 102,

 "description": "Purchase order for company - B",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "John Doe",

 "email": "john.doe@example.com",

 "phone": "01-2048096",

 "totalPrice": 350,

 "items": [

 {

 "itemNo": 1,

 "description": "Product-AAAA",

 "quantity": 10,

 "unitPrice": 20,

 "totalPrice": 200

 },

 {

 "itemNo": 2,

 "description": "Product-BBB",

 "quantity": 15,

VMware GemFire 9.10 Documentation

VMware by Broadcom 781

 "unitPrice": 10,

 "totalPrice": 150

 }

]

 },

 {

 "@type": "org.apache.geode.rest.internal.web.controllers.Order",

 "purchaseOrderNo": 11101,

 "customerId": 101,

 "description": "Purchase order for company - A",

 "orderDate": "01/10/2014",

 "deliveryDate": "01/20/2014",

 "contact": "Jane Doe",

 "email": "jane.doe@example.com",

 "phone": "020-2048096",

 "totalPrice": 205,

 "items": [

 {

 "itemNo": 1,

 "description": "Product-1",

 "quantity": 5,

 "unitPrice": 10,

 "totalPrice": 50

 },

 {

 "itemNo": 3,

 "description": "Product-3",

 "quantity": 10,

 "unitPrice": 100,

 "totalPrice": 1000

 },

 {

 "itemNo": 1,

 "description": "Product-2",

 "quantity": 10,

 "unitPrice": 15.5,

 "totalPrice": 155

 }

]

 },

 null,

 null

]

}

200 OK

Server: Apache-Coyote/1.1

Content-Location: http://localhost:8080/geode/v1/orders/3,1

Content-Type: application/json

Transfer-Encoding: chunked

Date: Sat, 18 Jan 2014 21:39:04 GMT

{

 "orders" : [{

 "purchaseOrderNo" : 1112,

 "customerId" : 102,

 "description" : "Purchase order for company - B",

 "orderDate" : "02/10/2014",

VMware GemFire 9.10 Documentation

VMware by Broadcom 782

 "deliveryDate" : "02/20/2014",

 "contact" : "John Doe",

 "email" : "john.doe@example.com",

 "phone" : "01-2048096",

 "items" : [{

 "itemNo" : 1,

 "description" : "Product-AAAA",

 "quantity" : 10,

 "unitPrice" : 20.0,

 "totalPrice" : 200.0

 }, {

 "itemNo" : 2,

 "description" : "Product-BBB",

 "quantity" : 15,

 "unitPrice" : 10.0,

 "totalPrice" : 150.0

 }],

 "totalPrice" : 350.0

 }, {

 "purchaseOrderNo" : 111,

 "customerId" : 101,

 "description" : "Purchase order for company - A",

 "orderDate" : "01/10/2014",

 "deliveryDate" : "01/20/2014",

 "contact" : "Jane Doe",

 "email" : "jane.doe@example.com",

 "phone" : "020-2048096",

 "items" : [{

 "itemNo" : 1,

 "description" : "Product-1",

 "quantity" : 5,

 "unitPrice" : 10.0,

 "totalPrice" : 50.0

 }, {

 "itemNo" : 1,

 "description" : "Product-2",

 "quantity" : 10,

 "unitPrice" : 15.5,

 "totalPrice" : 155.0

 }],

 "totalPrice" : 205.0

 }]

}

Error Codes

Status
Code

Description

400 BAD
REQUEST

Returned if one or more of the supplied keys is not found in the region and ignoreMissingKey=false
(default if parameter is not specified); returned if the specified value for the ignoreMissingKey parameter
is a value other than ‘true’ or ‘false’.

404 NOT
FOUND

The specified region does not exist.

Example Error Response

VMware GemFire 9.10 Documentation

VMware by Broadcom 783

GET /geode/v1/orders/1,2,13,4,5

Request Payload: null

Accept: application/json

Response Payload: application/json

400 BAD_REQUEST

Server: Apache-Coyote/1.1

Content-Type: application/json

Content-Length: 51

Date: Wed, 21 May 2014 11:24:00 GMT

Connection: close

"Requested keys [13,4,5] not exist in region [orders]"

Implementation Notes

The response body sets the region name as key to the array of values. For example “orders” :
<VALUE_ARRAY>.

HEAD /geode/v1/{region}

An HTTP HEAD request that returns region’s size (number of entries) within the HEADERS, which
is a response without the content-body. Region size is specified in the pre-defined header named
“Resource-Count”.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}

Parameters

None.

Example Request

Request Payload: null

HEAD /geode/v1/customers

Response Payload: null

Example Success Response

200 OK

Content-Length: <#-of-bytes>

Content-Type: application/json; charset=utf-8

...

Resource-Count: 8192

VMware GemFire 9.10 Documentation

VMware by Broadcom 784

Error Codes

Status Code Description

400 Bad Request Returned if VMware GemFire throws an error while executing the request.

404 Resource Not Found Region does not exist.

500 Internal Server Error VMware GemFire has thown an error or exception.

POST /geode/v1/{region}?key=<key>

Create (put-if-absent) data in region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}?k

ey=<key>

Parameters

Parameter Description Example Values

key Optional. If you do not specify a key
in the URL, a key will automatically
be generated for you.

123

myOrder

Example Request

Request Payload: application/json

POST /geode/v1/orders?key=2

Accept: application/json

Content-Type: application/json

{

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 112,

 "customerId": 1012,

 "description": "Purchase Order for myCompany",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "John Doe",

 "email": "John.Doe@example.com",

 "phone": "01-2048096",

 "totalPrice": 225,

 "items": [

 {

 "itemNo": 1,

 "description": "Product2, PartA",

 "quantity": 10,

 "unitPrice": 5,

 "totalPrice": 50

 },

VMware GemFire 9.10 Documentation

VMware by Broadcom 785

 {

 "itemNo": 2,

 "description": "Product2, PartB",

 "quantity": 20,

 "unitPrice": 20,

 "totalPrice": 400

 }

]

}

Example Success Response

Response Payload: null

201 CREATED

Location: http://localhost:8080/geode/v1/orders/2

Error Codes

Status Code Description

400 BAD REQUEST Returned if JSON content is malformed.

404 NOT FOUND Returned if the specified region does not exist.

409 CONFLICT Returned if the provided key already exists in the region.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

Example Error Response

409 Conflict

Location:http://localhost:8080/geode/v1/orders/2

Content-Type: application/json

{

 "purchaseOrderNo": 112,

 "customerId": 1012,

 "description": "Purchase Order for myCompany",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "John Doe",

 "email": "John.Doe@example.com",

 "phone": "01-2048096",

 "totalPrice": 225,

 "items": [

 {

 "itemNo": 1,

 "description": "Product2, PartA",

 "quantity": 10,

 "unitPrice": 5,

 "totalPrice": 50

 },

 {

 "itemNo": 2,

VMware GemFire 9.10 Documentation

VMware by Broadcom 786

 "description": "Product2, PartB",

 "quantity": 20,

 "unitPrice": 20,

 "totalPrice": 400

 }

]

}

PUT /geode/v1/{region}/{key}

Update or insert (put) data for key in region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key}

Parameters

See PUT /geode/v1/{region}/{key}?op=REPLACE and PUT /geode/v1/{region}/{key}?op=CAS.

Example Request

PUT /geode/v1/orders/2

Request Payload: application/json

Content-Type: application/json

Accept: application/json

{

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1012,

 "description": "Order for XYZ Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Pie Doe",

 "email": "pie.doe@example.com",

 "phone": "01-2048096",

 "totalPrice": 225,

 "items": [

 {

 "itemNo": 1,

 "description": "Product-100",

 "quantity": 10,

 "unitPrice": 5,

 "totalPrice": 50

 }

]

}

Example Success Response

VMware GemFire 9.10 Documentation

VMware by Broadcom 787

Response Payload: null

200 OK

Error Codes

Status Code Description

400 BAD REQUEST Returned if supplied key is an invalid format.

404 NOT FOUND Returned if the region is not found.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

Implementation Notes

This operation is idempotent, meaning multiple identical requests should have the same effect as
the initial request.

PUT /geode/v1/{region}/{key1},{key2},...{keyN}

Update or insert (put) data for multiple keys in the region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key},{key2},...{keyN}

Parameters

See PUT /geode/v1/{region}/{key}?op=REPLACE and PUT /geode/v1/{region}/{key}?op=CAS.

Example Request

Request Payload: application/json

PUT /geode/v1/orders/4,5

Accept: application/json

Content-Type: application/json

[

 {

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 555,

 "customerId": 5,

 "description": "Order for 23 Corp",

 "orderDate": "01/15/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Jane Doe",

 "email": "jane.doe@example.com",

VMware GemFire 9.10 Documentation

VMware by Broadcom 788

 "phone": "01-2048096",

 "items": [

 {

 "itemNo": 321,

 "description": "part 21",

 "quantity": 2,

 "unitPrice": 49.95,

 "totalPrice": 99.9

 }

],

 "totalPrice": 99.9

 },

 {

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 777,

 "customerId": 11,

 "description": "Order for MNP Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Trent Jones",

 "email": "trent.jones@example.com",

 "phone": "503-555-1221",

 "items": [

 {

 "itemNo": 321,

 "description": "Product-21",

 "quantity": 3,

 "unitPrice": 49.95,

 "totalPrice": 149.85

 }

],

 "totalPrice": 149.85

 }

]

Example Success Response

Response-payload: null

200 OK

Error Codes

Status Code Description

400 BAD REQUEST Returned if one or more of the supplied keys is an invalid format.

404 NOT FOUND Returned if the region is not found.

414 REQUEST URI TOO
LONG

Returned if the URI is longer than the system component can handle. Limiting the size to
2000 bytes will work for most components.

500 INTERNAL
SERVER ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

VMware GemFire 9.10 Documentation

VMware by Broadcom 789

PUT /geode/v1/{region}/{key}?op=REPLACE

Update (replace) data with key(s) if and only if the key(s) exists in region. The Key(s) must be
present in the Region for the update to occur.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key}?op=REPLACE

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key1},{key2},...{keyN}?op=REPLACE

Parameters

Parameter Description Example Values

op When you specify REPLACE for this parameter, data is only updated if the
specified key or keys are already present in the region.

REPLACE

@type Specified in the response body. Use this to declare the domain object type of the
entry value.

com.mycompany.Obj
ectName

Example Request

Request Payload: application/json

PUT //geode/v1/orders/2?op=REPLACE

Accept: application/json

Content-Type: application/json

{

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1012,

 "description": "Order for XYZ Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Jelly Bean",

 "email": "jelly.bean@example.com",

 "phone": "01-2048096",

 "totalPrice": 225,

 "items": [

 {

 "itemNo": 1,

 "description": "Product-100",

 "quantity": 12,

 "unitPrice": 5,

 "totalPrice": 60

 }

]

}

Example Success Response

VMware GemFire 9.10 Documentation

VMware by Broadcom 790

Response Payload: null

200 OK

Error Codes

Status Code Description

400 BAD REQUEST Returned if the supplied key is not present in the region.

404 NOT FOUND Returned if the region is not found.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

PUT /geode/v1/{region}/{key}?op=CAS

Update (compare-and-set) value having key with a new value if and only if the “@old” value sent
matches the current value having key in region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key}?op=CAS

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key1},{key2},...{keyN}?op=CAS

Parameters

Parameter Description Example Values

op URL parameter. When you specify
CAS for this parameter, data is only
updated if the @old value specified in
the request body matches the existing
value in the region.

CAS

@type Specified in the response body for
both the old and new value. Use this
to declare the domain object type of
the entry's value.

com.mycompany.ObjectName

VMware GemFire 9.10 Documentation

VMware by Broadcom 791

Parameter Description Example Values

@old Compare this value to the existing
value in the region. {

 "@type": "org.apache.

geode.web.rest.domain.Ord

er",

 "purchaseOrderNo": 112

1,

 "customerId": 1012,

 "description": "Order

for XYZ Corp",

 "orderDate": "02/10/2

014",

 "deliveryDate": "02/2

0/2014",

 "contact": "Jelly Bea

n",

 "email": "jelly.bean@

example.com",

 "phone": "01-204809

6",

 "items": [

 {

 "itemNo": 1,

 "description":

"Product-100",

 "quantity": 12,

 "unitPrice": 5,

 "totalPrice": 60

 }

],

 "totalPrice": 225

}

VMware GemFire 9.10 Documentation

VMware by Broadcom 792

Parameter Description Example Values

@new If @old value matches existing value,
use this value to replace the existing
value.

{

 "@type": "org.apache.

geode.web.rest.domain.Ord

er",

 "purchaseOrderNo": 112

1,

 "customerId": 1013,

 "description": "Order

for New Corp",

 "orderDate": "02/10/2

014",

 "deliveryDate": "02/2

5/2014",

 "contact": "Vanilla B

ean",

 "email": "vanilla.bea

n@example.com",

 "phone": "01-204809

6",

 "items": [

 {

 "itemNo": 12345,

 "description":

"part 123",

 "quantity": 12,

 "unitPrice": 29.

99,

 "totalPrice": 14

9.95

 }

],

 "totalPrice": 149.95

}

Example Request

Request Payload: application/json

PUT /geode/v1/orders/2?op=CAS

Accept: application/json

Content-Type: application/json

{

 "@old": {

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1012,

 "description": "Order for XYZ Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Jelly Bean",

 "email": "jelly.bean@example.com",

 "phone": "01-2048096",

 "items": [

VMware GemFire 9.10 Documentation

VMware by Broadcom 793

 {

 "itemNo": 1,

 "description": "Product-100",

 "quantity": 12,

 "unitPrice": 5,

 "totalPrice": 60

 }

],

 "totalPrice": 225

 },

 "@new ": {

 "@type": "org.apache.geode.web.rest.domain.Order",

 "purchaseOrderNo": 1121,

 "customerId": 1013,

 "description": "Order for New Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/25/2014",

 "contact": "Vanilla Bean",

 "email": "vanillabean@example.com",

 "phone": "01-2048096",

 "items": [

 {

 "itemNo": 12345,

 "description": "part 123",

 "quantity": 12,

 "unitPrice": 29.99,

 "totalPrice": 149.95

 }

],

 "totalPrice": 149.95

 }

}

Example Success Response

Response Payload: null

200 OK

Error Codes

Status Code Description

400 BAD REQUEST Returned if the supplied key is not present in the region.

404 NOT FOUND Returned if the region is not found.

409 CONFLICT Returned if the provided @old value of the key does not match the current value of the
key.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

Example Error Response

VMware GemFire 9.10 Documentation

VMware by Broadcom 794

Response-payload: application/json

409 Conflict

Content-Type: application/json

{

 "purchaseOrderNo": 1121,

 "customerId": 1012,

 "description": "Order for XYZ Corp",

 "orderDate": "02/10/2014",

 "deliveryDate": "02/20/2014",

 "contact": "Jelly Bean",

 "email": "jelly.bean@example.com",

 "phone": "01-2048096",

 "items": [

 {

 "itemNo": 1,

 "description": "Product-100",

 "quantity": 12,

 "unitPrice": 5,

 "totalPrice": 60

 }

],

 "totalPrice": 225

}

Implementation Notes

If the “@old” value sent by the client in the HTTP request, along with the “@new” value, does not
match the existing value having key in region, then a 409 - CONFLICT error is returned indicating
the mismatch in expected state. The “@old” and current value must match in order for the key to
be assigned the “@new” value.

If a “CONFLICT” occurs, it is a simple matter for the client to issue a HTTP GET request for the Key
(GET /geode/v1/orders/222) to get a updated copy of the value. CAS is similar to optimistic locking
(as opposed to optimistic locking assuming the value will change between the time a client
requests a value and subsequently updates the value) in that it assumes the client’s state is up-to-
date when the client tries to update, but if not then fail, hence the 409 - CONFLICT.

DELETE /geode/v1/{region}

Delete all entries in the region. Limited to replicated regions only; not available for partitioned
regions.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}

Parameters

None.

VMware GemFire 9.10 Documentation

VMware by Broadcom 795

Example Request

Request Payload: null

DELETE /geode/v1/orders

Accept: application/json

Example Success Response

Response Payload: null

200 OK

Error Codes

Status Code Description

404 NOT FOUND Returned if the region is not found.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

DELETE /geode/v1/{region}/{key}

Delete entry for specified key in the region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key}

Parameters

None.

Example Request

Request Payload: null

DELETE /geode/v1/orders/11

Accept: application/json

Example Success Response

Response Payload: null

200 OK

Error Codes

VMware GemFire 9.10 Documentation

VMware by Broadcom 796

Status Code Description

404 NOT FOUND Returned if the region or specified key is not found.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

DELETE /geode/v1/{region}/{key1},{key2},...{keyN}

Delete entries for multiple keys in the region.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/{region}/

{key1},{key2},...{keyN}

Parameters

None.

Example Request

Request Payload: null

DELETE /geode/v1/orders/12,13

Accept: application/json

Example Success Response

Response Payload: null

200 OK

Error Codes

Status Code Description

404 NOT FOUND Returned if either the region or one or more of the specified keys is not found.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

Query Endpoints

VMware GemFire uses a query syntax based on OQL (Object Query Language) to query region
data. Since VMware GemFire regions are key-value stores, values can range from simple byte
arrays to complex nested objects.

GET /geode/v1/queries

List all parameterized queries by ID or name.

VMware GemFire 9.10 Documentation

VMware by Broadcom 797

POST /geode/v1/queries?id=<queryId>&q=<OQL-statement>

Create (prepare) the specified parameterized query and assign the corresponding ID for
lookup.

POST /geode/v1/queries/{queryId}

Execute the specified named query passing in scalar values for query parameters in the
POST body.

PUT /geode/v1/queries/{queryId}

Update a named, parameterized query.

DELETE /geode/v1/queries/{queryId}

Delete the specified named query.

GET /geode/v1/queries/adhoc?q=<OQL-statement>

Run an unnamed (unidentified), ad-hoc query passed as a URL parameter.

GET /geode/v1/queries

List all parameterized queries by ID or name.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries

Parameters

None

Example Request

Request Payload: null

GET /geode/v1/queries/

Accept: application/json

Example Response

Response Payload: application/json

200 OK

Content-Type: application/json

Location: http://localhost:8080/geode/v1/queries

{

 "queries": [

 {

 "id": "selectCustomer",

 "oql": "SELECT c FROM /customers c WHERE c.customerId = $1"

VMware GemFire 9.10 Documentation

VMware by Broadcom 798

 },

 {

 "id": "selectHighRollers",

 "oql": "SELECT DISTINCT c FROM /customers c, /orders o WHERE o.totalpric

e > $1 AND c.customerId = o.customerId"

 }

]

}

Error Codes

Status Code Description

401 UNAUTHORIZED Invalid Username or Password

403 FORBIDDEN Insufficient privileges for operation

500 INTERNAL SERVER ERROR Error encountered at VMware GemFire server. Check the HTTP
response body for a stack trace of the exception.

POST /geode/v1/queries?id=<queryId>&q=<OQL-
statement>
Create (prepare) the specified parameterized query and assign the corresponding ID for lookup.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries?id

=<queryId>&q="<OQL-statement>"

Parameters

Parameter Description Example Values

id Required. Unique identifier for the
named parameterized query.

selectCustomers

q Required. OQL query statement. Use
doublequotes to surround the OQL
query statement.

"SELECT o FROM /orders o

WHERE o.quantity > $1 AND

o.totalprice > $2"

Note: For this release, you cannot specify the query string inside the request body (as JSON). You
must specify the query as a URL parameter.

Example Request

POST /geode/v1/queries?id=selectOrders&q="SELECT o FROM /orders o WHERE o.quantity >

$1 AND o.totalprice > $2"

Accept: application/json

VMware GemFire 9.10 Documentation

VMware by Broadcom 799

Example Success Response

Response Payload: null

201 CREATED

Location: http://localhost:8080/geode/v1/queries/selectOrders

Error Codes

Status Code Description

400 BAD REQUEST Query ID not specified or malformed OQL statement

401 UNAUTHORIZED Invalid Username or Password

403 FORBIDDEN Insufficient privileges for operation

409 CONFLICT QueryId already assigned to another query

500 INTERNAL SERVER ERROR Error encountered at VMware GemFire server. Check the
HTTP response body for a stack trace of the exception.

Query store does not exist!

POST /geode/v1/queries/{queryId}
Execute the specified named query passing in scalar values for query parameters in the POST body.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries/{q

ueryId}

Parameters

Parameter Description Example Values

{queryId} QueryID for named query. selectOrders

VMware GemFire 9.10 Documentation

VMware by Broadcom 800

Parameter Description Example Values

query bind parameter values Bind parameters for the query are
specified in the request body (JSON).

Specify the parameter @type and
@value for each bind parameter. For
example, to provide values to the
following query:

SELECT o FROM /orders o W

HERE o.quantity > $1 AND

o.totalprice > $2

You could pass in the following JSON
in the request body as the bind
parameters:

[

 {

 "@type": "i

nt ",

 "@value": 2

 },

 {

 "@type": "do

uble ",

 "@value": 11

0.00

 }

]

Example Request

POST /geode/v1/queries/selectOrders

Accept: application/json

Content-Type: application/json

[

 {

 "@type": "int ",

 "@value": 2

 },

 {

 "@type": "double ",

 "@value": 110.00

 }

]

Example Success Response

Response Payload: application/json

200 OK

Content-Length: <#-of-bytes>

Content-Type: application/json

VMware GemFire 9.10 Documentation

VMware by Broadcom 801

[

 {

 "description": "Purchase order for company - B",

 "totalPrice": 350,

 "purchaseOrderNo": 1112,

 "customerId": 102,

 "deliveryDate": "Thu Feb 20 00:00:00 IST 2014",

 "contact": "John Doe",

 "email": "John.Doe@pivotal.io",

 "phone": "01-2048096",

 "items": [

 {

 "description": "Product-AAAA",

 "quantity": 10,

 "itemNo": 1,

 "unitPrice": 20,

 "totalPrice": 200,

 "type-class": "org.apache.geode.web.rest.domain.Item"

 },

 {

 "description": "Product-BBB",

 "quantity": 15,

 "itemNo": 2,

 "unitPrice": 10,

 "totalPrice": 150,

 "type-class": "org.apache.geode.web.rest.domain.Item"

 }

],

 "orderDate": "Mon Feb 10 00:00:00 IST 2014",

 "type-class": "org.apache.geode.web.rest.domain.Order"

 },

 {...},

 {...}

}

Error Codes

Status Code Description

400 BAD REQUEST JSON document in the request body (specifying query
bind params) is invalid

401 UNAUTHORIZED Invalid Username or Password

403 FORBIDDEN Insufficient privileges for operation

404 NOT FOUND Query with specified ID could not be found

VMware GemFire 9.10 Documentation

VMware by Broadcom 802

Status Code Description

500 INTERNAL SERVER ERROR Encountered error at server:

Syntax of the OQL queryString is invalid!

A function was applied to a parameter that is
improper for that function!

Bind parameter is not of the expected type!

Name in the query cannot be resolved!"

The number of bound parameters does not
match the number of placeholders!

Query is not permitted on this type of region!

Query execution time has exceeded max query
execution time
(gemfire.Cache.MAX_QUERY_EXECUTION_TIM
E) configured!

Data referenced in from clause is not available
for querying!"

Query execution gets canceled due to low
memory conditions and the resource manager
critical heap percentage has been set!"

Error encountered while executing named
query!"

PUT /geode/v1/queries/{queryId}

Update a named, parameterized query.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries/{q

ueryId}

Parameters

Parameter Description Example Values

q OQL String
"SELECT DISTINCT from /customers
WHERE lastName=$1"

Note: For this release, you cannot specify the query string inside the request body (as JSON). You
must specify the query as a URL parameter.

Example Request

PUT /geode/v1/queries/selectOrders?q="SELECT DISTINCT from /customers where lastName=

$1"

VMware GemFire 9.10 Documentation

VMware by Broadcom 803

Accept: application/json

Content-Length: <#-of-bytes>

Example Success Response

Response Payload: null

200 OK

Error Codes

Status Code Description

401 UNAUTHORIZED Invalid Username or Password

403 FORBIDDEN Insufficient privileges for operation

404 NOT FOUND QueryID does not exist

500 INTERNAL SERVER ERROR Error encountered at VMware GemFire server. Check the
HTTP response body for a stack trace of the exception.

Implementation Notes

This operation is idempotent, meaning multiple identical requests should have the same effect as
the initial request.

DELETE /geode/v1/queries/{queryId}

Delete the specified named query.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries/{q

uery}

Parameters

Parameter Description Example Values

{queryId} QueryID for named query to delete. selectOrders

Example Request

DELETE /geode/v1/queries/selectOrders

Accept: application/json

Content-Type: application/json

VMware GemFire 9.10 Documentation

VMware by Broadcom 804

Example Success Response

Response Payload: application/json

200 OK

Error Codes

Status Code Description

401 UNAUTHORIZED Invalid Username or Password

403 FORBIDDEN Insufficient privileges for operation

404 NOT FOUND Query with specified ID could not be found

500 INTERNAL SERVER
ERROR

Encountered error at server. Check the HTTP response body for a stack trace of the
exception.

GET /geode/v1/queries/adhoc?q=<OQL-statement>

Run an unnamed (unidentified), ad-hoc query passed as a URL parameter.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/queries/ad

hoc?q=<OQL-statement>

Parameters

Parameter Description Example Values

q Required. OQL query statement. SELECT o FROM /orders o WHERE

o.quantity > 2 AND o.totalprice

> 110.00

(or URL encoded:
SELECT%20o%20FROM%20%2Forders%20

o%20WHERE%20o.quantity%20%3E%202

%20AND%20o.totalprice%20%3E%2011

0.00)

SELECT * FROM /customers

(or URL encoded:
SELECT%20*%20FROM%20/customers)

Note:

Since the query
string is passed in
the URL, the OQL
must be URL-
encoded. Some
HTTP clients such
as Web browsers
will automatically
encode URLs;
however, if you are
not using one of
those clients, you
will need to URL
encode the query
string yourself.

VMware GemFire 9.10 Documentation

VMware by Broadcom 805

Example Request

curl -i "http://localhost:8080/geode/v1/queries/adhoc?q=select%20*%20%20from%20/custom

ers"

Example Success Response

Response Payload: application/json

200 OK

Content-Length: <#-of-bytes>

Content-Type: application/json

[

 {

 "firstName": "John",

 "lastName": "Doe",

 "customerId": 101,

 },

 {

 "firstName": "Jane",

 "lastName": "Doe",

 "customerId": 102,

 },

 {

 }

]

Error Codes

Status Code Description

401 UNAUTHORIZED Invalid Username or Password

403 FORBIDDEN Insufficient privileges for operation

VMware GemFire 9.10 Documentation

VMware by Broadcom 806

Status Code Description

500 INTERNAL SERVER ERROR Error encountered at VMware GemFire server. Check the
HTTP response body for a stack trace of the exception.
Some possible exceptions include:

A function was applied to a parameter that is
improper for that function!

Bind parameter is not of the expected type!

Name in the query cannot be resolved!

The number of bound parameters does not
match the number of placeholders!

Query is not permitted on this type of region!

Query execution time is exceeded max query
execution time
(gemfire.Cache.MAX_QUERY_EXECUTION_TIM
E) configured!

Data referenced in from clause is not available
for querying!

Query execution gets canceled due to low
memory conditions and the resource manager
critical heap percentage has been set!

Server has encountered an error while executing
Adhoc query!

Function Endpoints

VMware GemFire functions allows you to write and execute server-side transactions and data
operations. These may include anything ranging from initializing components or third-party services
or aggregating data.

GET /geode/v1/functions

List all registered VMware GemFire functions in the cluster.

POST /geode/v1/functions/{functionId}

Execute VMware GemFire function on entire cluster or on a specified region, members and
member groups.

GET /geode/v1/functions

List all registered VMware GemFire functions in the cluster.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/functions

Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 807

None.

Example Request

GET /geode/v1/functions

Accept: application/json

Example Success Response

Response Payload: application/json

200 OK

Content-Length: <#-of-bytes>

Content-Type: application/json

Location: https://localhost:8080/geode/v1/functions

{

 "functions": [

 "AddFreeItemToOrders",

 "GetRegions",

 "GetDeliveredOrders"

]

}

Error Codes

Status Code Description

404 NOT FOUND Returned if no functions are found in the cluster.

500 INTERNAL SERVER
ERROR

Error encountered at VMware GemFire server. Check the HTTP response body for a stack
trace of the exception.

POST /geode/v1/functions/{functionId}

Execute VMware GemFire function on an entire cluster or on a specified region, members, and
member groups.

Resource URL

/geode/v1/functions/{functionId}?[&onRegion=regionname|&onMembers=member1,member2,...,

memberN|&onGroups=group1,group2,...,groupN]

Parameters

{functionId} This required parameter is the name of the function to execute. Place it in the
resource URL, as in the example request: AddFreeItemToOrders.

onRegion This optional parameter specifies the target region for the function. You can only
invoke a function on a single region. Substitute the region’s name for regionname within the

VMware GemFire 9.10 Documentation

VMware by Broadcom 808

sample syntax onRegion=regionname.

onMembers This optional parameter specifies the target members of the function. For
multiple members, specify a comma-delimited list of member names, as in the sample
onMembers=member1,member2.

onGroups This optional parameter specifies the target groups of the function. For multiple
groups, specify a comma-delimited list of group names, as in the sample
onGroups=membergroup1,membergroup2.

filter This optional parameter can only be used with the onRegion parameter, where the
region has a data-policy of PARTITION. The parameter specifies a list of applicable keys that
the function needs to filter on. There are three keys in the example resource URL:

http://serverURL/functions/SampleFunction?onRegion=TestPartitionRegion&filter=k

ey1,key2,key3

Any function arguments are passed in the request body in JSON format. The content of the
arguments depends on how the function is defined. Each function argument must be
written as a JSON object (enclosed in braces { }) and using @type to declare its type.
@value can be used to specify a scalar value. Nested JSON objects ({ }) or JSON
collections ([]) are not accepted. Collections of Java objects cannot be specified as
parameters in JSON format, so if a function expects a collection of objects as one of its
arguments (for example, function(List<Item> list)), it cannot be called using the
VMware GemFire REST API. Following are some examples of functions and their
arguments in JSON format:

Function signature Function arguments in JSON format

myFunction1(int n) [

 {

 "@type": "integer",

 "@value": 10

 }

]

VMware GemFire 9.10 Documentation

VMware by Broadcom 809

Function signature Function arguments in JSON format

myFunction2(double d, Item i) [

 {

 "@type": "double",

 "@value": 210

 },

 {

 "@type": "org.apache.geode.web.

rest.domain.Item",

 "itemNo": "599",

 "description": "Part X Free on

Bumper Offer",

 "quantity": "2",

 "unitprice": "5",

 "totalprice": "10.00"

 }

]

Notice how `item` fields are written in JSON format due to
the restrictions against nested objects. The following
approach would be wrong:

[

 {

 "@type": "double",

 "@value": 210

 },

 {

 "@type": "org.apache.geode.web.

rest.domain.Item",

 "itemNo" : {

 "@type":"double",

 "@value": 599

 },

 "description": "Part X Free on B

umper Offer",

 "quantity": "2",

 "unitprice": "5",

 "totalprice": "10.00"

 }

]

Example Requests

Request Payload: application/json

POST /geode/v1/functions/AddFreeItemToOrders

Accept: application/json

Content-Type: application/json

[

 {

 "@type": "double",

 "@value": 210

 },

 {

VMware GemFire 9.10 Documentation

VMware by Broadcom 810

 "@type": "org.apache.geode.web.rest.domain.Item",

 "itemNo": "599",

 "description": "Part X Free on Bumper Offer",

 "quantity": "2",

 "unitprice": "5",

 "totalprice": "10.00"

 }

]

Another example:

Request Payload: null

POST /geode/v1/functions/getDeliveredOrders

Accept: application/json

Example Success Responses

Response Payload: null

200 OK

Location:http: //localhost:8080/geode/v1/functions/AddFreeItemToOrders

Another example response:

Response Payload: application/json

200 OK

Content-Length: 316

Content-Type: application/json

Location: http://localhost:8080/geode/v1/functions/getDeliveredOrders

[

 {

 "purchaseOrderNo": "1121",

 "deliveryDate": "Thu Oct 10 00:00:00 IST 2019"

 },

 {

 "purchaseOrderNo": "777",

 "deliveryDate": "Thu Oct 10 00:00:00 IST 2019"

 },

 {

 ...

 }

]

Error Codes
Status code 500 INTERNAL SERVER ERROR is an error encountered in a server. Check the HTTP
response body for a stack trace of the exception.

Administrative Endpoints
Administrative endpoints provide management and monitoring functionality for the REST API
interface.

VMware GemFire 9.10 Documentation

VMware by Broadcom 811

[HEAD | GET] /geode/v1/ping

Mechanism to check for REST API server and service availability.

GET /geode/v1/servers

Mechanism to obtain a list of all members in the cluster that are running the REST API
service.

\[HEAD | GET\] /geode/v1/ping

Mechanism to check for REST API server and service availability.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/ping

Parameters

None.

Example Request

HEAD /gemfire/v1/ping

GET /gemfire/v1/ping

Example Success Response

200 OK

Error Codes

Status Code Description

404 NOT FOUND The Developer REST API service is not available.

500 INTERNAL SERVER ERROR Encountered error at server. Check the VMware GemFire exception trace.

GET /geode/v1/servers

Mechanism to obtain a list of all members in the cluster that are running the REST API service.

Resource URL

http://<hostname_or_http-service-bind-address>:<http-service-port>/geode/v1/servers

Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 812

None.

Example Request

Request Payload: null

Request: GET /geode/v1/servers

Response Payload: application/json

Example Success Response

200 OK

Content-Length: <#-of-bytes>

Content-Type: application/json; charset=utf-8

[

 "http://<HOST_NAME1>:<PORT1>",

 "http://<HOST_NAME2>:<PORT2>",

 "http://<HOST_NAME3>:<PORT3>",

 "http://<HOST_NAME4>:<PORT4>"

]

Error Codes

Status Code Description

500 INTERNAL SERVER ERROR Returned if VMware GemFire throws an error while executing the request.

VMware GemFire 9.10 Documentation

VMware by Broadcom 813

Tools and Modules

Tools and Modules describes tools and modules associated with VMware GemFire.

gfsh (VMware GemFire SHell)

gfsh (pronounced “jee-fish”) provides a single, powerful command-line interface from which
you can launch, manage, and monitor VMware GemFire processes, data, and applications.

Gemcached

Gemcached is a VMware GemFire adapter that allows Memcached clients to communicate
with a VMware GemFire server cluster, as if the servers were memcached servers.
Memcached is an open-source caching solution that uses a distributed, in-memory hash
map to store key-value pairs of string or object data.

HTTP Session Management Modules

The VMware GemFire HTTP Session Management modules provide fast, scalable, and
reliable session replication for HTTP servers without requiring application changes.

Apache Lucene® Integration

The Apache Lucene® integration enables users to create Lucene indexes and execute
Lucene searches on data stored in VMware GemFire.

Micrometer

Micrometer is a simple facade for application monitoring (as SLF4J, for example, is a simple
facade for logging) which allows publishing metrics from VMware GemFire to various
Application Performance Monitoring (APM) tools.

Tanzu Observability by Wavefront

The Tanzu GemFire metrics module provides out-of-the-box integration with Tanzu
Observability by Wavefront.

Pulse

Pulse is a Web Application that provides a graphical dashboard for monitoring vital, real-
time health and performance of VMware GemFire clusters, members, and regions.

Visual Statistics Display (VSD)

The Visual Statistics Display utility reads VMware GemFire statistics and produces graphical
displays for analysis.

gfsh

gfsh (pronounced “jee-fish”) provides a single, powerful command-line interface from which you
can launch, manage, and monitor VMware GemFire processes, data, and applications.

VMware GemFire 9.10 Documentation

VMware by Broadcom 814

What You Can Do with gfsh

gfsh supports the administration, debugging, and deployment of VMware GemFire
processes and applications.

Starting gfsh

Before you start gfsh, confirm that you have set JAVA_HOME and that your PATH variable
includes the gfsh executable.

Configuring the gfsh Environment

The gfsh.bat and gfsh bash script automatically append the required VMware GemFire and
JDK .jar libraries to your existing CLASSPATH. There are user-configurable properties you
can set for security, environment variables, logging, and troubleshooting.

Useful gfsh Shell Variables

You can use the built-in gfsh shell variables in scripts.

Basic Shell Features and Command-Line Usage

The gfsh utility provides useful features for a shell environment, including command auto-
complete, preserved command history, and delimiting of multi-line commands. Context-
sensitive help is available by command and by topic.

Tutorial—Performing Common Tasks with gfsh

This topic takes you through a typical sequence of tasks that you execute after starting
gfsh.

Quick Reference of gfsh Commands by Functional Area

This quick reference sorts all commands into functional areas.

gfsh Command Help

This section provides help and usage information on all gfsh commands, listed
alphabetically.

Creating and Running gfsh Command Scripts

gfsh offers several ways to run commands in a scripting environment.

Running gfsh Commands on the OS Command Line

Mapping of cache.xml Elements to gfsh Configuration Commands.

You can configure a VMware GemFire cluster using either cache.xml files, or you can use
gfsh and the cluster configuration service to configure a cluster. This section maps
cache.xml elements to the gfsh commands that configure and manage a cluster.

What You Can Do with gfsh

gfsh supports the administration, debugging, and deployment of VMware GemFire processes and
applications.

With gfsh, you can:

Start and stop VMware GemFire processes, such as locators and cache servers

VMware GemFire 9.10 Documentation

VMware by Broadcom 815

Start and stop gateway sender and gateway receiver processes

Deploy applications

Create and destroy regions

Execute functions

Manage disk stores

Import and export data

Monitor VMware GemFire processes

Launch VMware GemFire monitoring tools

The gfsh command line interface lets developers spend less time configuring cache instance XML,
properties, logs, and statistics. gfsh commands generate reports; capture cluster-wide statistics;
and support the export of statistics, logs, and configurations. Like Spring Roo, gfsh features
command completion (so you do not have to know the syntax), context-sensitive help, scripting,
and the ability to invoke any commands from within an application by using a simple API. The gfsh
interface uses JMX/RMI to communicate with VMware GemFire processes.

You can connect gfsh to a remote cluster using the HTTP protocol. See Using gfsh to Manage a
Remote Cluster Over HTTP or HTTPS.

By default, the cluster configuration service saves the configuration of your VMware GemFire
cluster as you create VMware GemFire objects using gfsh. You can export this configuration and
import it into another VMware GemFire cluster. See Overview of the Cluster Configuration Service.

Starting gfsh

Before you start gfsh, confirm that you have set JAVA_HOME and that your PATH variable
includes the gfsh executable.

Note: On Windows, you must have the JAVA_HOME environment variable set properly to use
start, stop and status commands for both locators and servers.

To launch the gfsh command-line interface, execute the following command at the prompt on any
machine that is currently installed with VMware GemFire:

Start gfsh on Windows:

<product_directory>\bin\gfsh.bat

where <product_directory> corresponds to the location where you installed VMware GemFire.

Start gfsh on Unix:

<product_directory>/bin/gfsh

where <product_directory> corresponds to the location where you installed VMware GemFire.
Upon execution, the gfsh script appends the required VMware GemFire and JDK Jar libraries to
your existing CLASSPATH.

If you have successfully started gfsh, the gfsh splash screen and prompt appears.

VMware GemFire 9.10 Documentation

VMware by Broadcom 816

c:{{{ vars.product_name }}}\Latest>gfsh.bat

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/

Monitor and Manage VMware GemFire

gfsh>

You can also run some gfsh commands directly within your terminal without entering a gfsh
prompt. For example, on Unix/Linux you could enter:

$ gfsh start server --name=server1

or on Windows:

prompt> gfsh start server --name=server1

See Creating and Running gfsh Command Scripts for more information.

Configuring the gfsh Environment
The gfsh.bat and gfsh bash script automatically append the required VMware GemFire and JDK
.jar libraries to your existing CLASSPATH. There are user-configurable properties you can set for
security, environment variables, logging, and troubleshooting.

JAR Libraries in CLASSPATH
When you start up gfsh, it will automatically load required JAR files that have been packaged in the
gfsh-dependencies.jar file. You do not need to modify your CLASSPATH to run gfsh.

The JAR files are packaged within your installation directory in the lib directory.

Machine Hostname
On some operating systems, you may need to ensure that the hostname of your machine is
configured in your system hosts file. For example, on macOS you may need to map your machine’s
hostname to your IP address in the /etc/hosts file in order for gfsh and Pulse to operate correctly.

Configuring gfsh Security
Since gfsh must connect to a JMX Manager member to run certain commands (namely those
commands that manage and monitor other members), JMX Manager configuration properties can
affect gfsh security. In gemfire.properties, the following VMware GemFire properties can affect
gfsh connection settings to the JMX Manager:

jmx-manager-ssl

jmx-manager-port

jmx-manager-password-file

VMware GemFire 9.10 Documentation

VMware by Broadcom 817

jmx-manager-access-file

You may also need to verify that the ports are available and open to client connections. See
Configuring a JMX Manager for details on these security properties.

Configuring gfsh Environment Variables

In addition, you can set gfsh-specific preset SHELL variables by using the set variable command.
For example, you can set gfsh to run in quiet mode. Not all gfsh variables are modifiable. User-
configurable variables include:

APP_FETCH_SIZE

APP_QUIET_EXECUTION

See Useful gfsh Shell Variables for more information.

Configuring gfsh Session Logging

By default, gfsh session logging is disabled. To enable gfsh logging, you must set the Java system
property -Dgfsh.log-level=desired_log_level where desired_log _level is one of the following
values: severe, warning, info, config, fine, finer, finest. For example, in Linux:

export JAVA_ARGS=-Dgfsh.log-level=info

Then, start gfsh.

gfsh produces a log file named gfsh-%u_%g.log. This log file records the events of an individual
gfsh session. It includes environment information, such as Java and system information, and
detailed command execution. The variables are replaced as follows:

%u - a unique number to resolve conflicts

%g - the generation number to distinguish rotated logs

gfsh uses the JDK Logger to generate gfsh session log files. See
http://docs.oracle.com/javase/7/docs/api/java/util/logging/FileHandler.html for a description of
how the variables are used in naming the log file. The default name of the generated gfsh log file
cannot be changed.

By default, the log file is written to the current working directory where you have executed the
gfsh or gfsh.bat script. To modify the directory location where log files are written, use the
gfsh.log-dir Java system property. For example:

export JAVA_ARGS="-Dgfsh.log-level=info -Dgfsh.log-dir=/machinename/logs"

Then, start gfsh.

In addition, gfsh records a history of commands in the ${SYS_USER_HOME}/.geode/.gfsh.history
file, which you can use to create scripts or review past commands.

Member Log Files

VMware GemFire 9.10 Documentation

VMware by Broadcom 818

http://docs.oracle.com/javase/7/docs/api/java/util/logging/FileHandler.html

gfsh writes several log files for any members that are started via gfsh. Useful member log files
include:

<locator_name>.log. Details a locator’s configuration (including all gemfire.properties) and
all activity that occurs on the locator after startup. This log file is written to a directory that
is named after the locator. For example, if you start a locator named locator1, the file is
written as locator1.log in the <product_dir>/locator1 directory.

vf.gf.locator.pid. Contains the process ID of the locator. You can use the PID to stop or
view the status of this locator. This file is written to the same directory location as the
locator’s log file .

<server_name>.log. Details a server’s configuration (including all gemfire.properties) and
all activity that occurs on the server after startup. This log file is written to a directory that is
named after the server. For example, if you start a server named server1, the file is written
as server1.log in the <product_dir>/server1 directory. If you stop and start the server with
an identical name, the older log files are kept in the same directory but renamed for
versioning purposes.

vf.gf.server.pid. Contains the process ID of the server. You can use the PID to stop or
view the status of this server. This file is written to the same location as the server log file.

Viewing Standard Output and Standard Error

By default, VMware GemFire does not show messages written by the application to standard
output and standard error. To allow these messages to be written to the locator and server log
files, respectively, specify the --redirect-output option with the gfsh start locator or start
server commands. For example, the following command causes stdout and stderr messages to be
written to the locator1.log file:

gfsh> start locator --name=locator1 --redirect-output

Tab Completion

This section applies only to UNIX installations.

When you run gfsh commands from a UNIX bash shell, you can enable automatic tab-completion in
the shell by running the following command:

source <gemfire-install-directory>/bin/gfsh-completion.bash

After running this command, you can use auto completion when running gfsh commands from the
bash shell.

See Using Tab Completion.

Command History and gfsh.history
A history of commands that have been executed successfully is logged in .gfsh.history file in a
.gemfire directory under the home directory of the user running gfsh. You can also export a history
file by using the history --file=your_file_name command.

VMware GemFire 9.10 Documentation

VMware by Broadcom 819

JMX Manager Update Rate and System Monitoring

When you perform data operations (such as put) and then monitor the state of the system (such as
using the gfsh show metrics command or VMware GemFire Pulse), the monitored system may not
immediately reflect the most recent operations. For example, if you perform a put operation and
then immediately execute the show metrics gfsh command, you may not see the correct number
of entries in the region. The management layer updates every 2 seconds. Wait a few seconds after
performing operational activity to see the most accurate results.

You can modify the jmx-manager-update-rate property in gemfire.properties to increase or
decrease the rate (specified in milliseconds) at which updates are pushed to the JMX Manager. This
property setting should be greater than or equal to the statistic-sample-rate. You may want to
increase this rate if you are experiencing performance issues; however, setting this value too high
will cause stale values to be seen in gfsh and VMware GemFire Pulse.

Formatting of Results

This section applies only to UNIX installations.

gfsh commands such as query produce output with wide columns that may become misaligned and
require manual reformatting to view the output. If the output cannot fit in the available width of the
terminal, gfsh automatically trims the columns widths to fit. You can disable this behavior by setting
the gfsh environment variable APP_RESULT_VIEWER to an arbitrary value that is not external or
basic.

You can set the APP_RESULT_VIEWER variable to external to enable viewing of the output using the
UNIX less command.

See Configuring gfsh Environment Variables.

Useful gfsh Shell Variables

You can use the built-in gfsh shell variables in scripts.

You can also use the set variable command to modify shell behavior or to define your own
variables.

To see a list of all gfsh shell variables and their current values, use the following command:

gfsh>echo --string=$*

To obtain the current value of an existing variable, use the following command syntax (the variable
must be enclosed in braces):

gfsh>echo --string=${VARIABLE}

For example:

gfsh>echo --string=${SYS_CLASSPATH}

System Variables

VMware GemFire 9.10 Documentation

VMware by Broadcom 820

SYS_CLASSPATH CLASSPATH of the gfsh JVM (read only).

SYS_GEMFIRE_DIR Product directory where VMware GemFire has been installed (read only).

SYS_HOST_NAME Host from which gfsh is started (read only).

SYS_JAVA_VERSION Java version used (read only).

SYS_OS OS name (read only).

SYS_OS_LINE_SEPARATOR Line separator (\ or ^) variable that you can use when writing gfsh scripts. (read only).

SYS_USER User name (read only).

SYS_USER_HOME User’s home directory (read only).

GFSH Environment Variables

APP_FETCH_SIZE Fetch size to be used while querying. Values: 0 - 2147483647. Default value is 100.

APP_LAST_EXIT_STA
TUS

Last command exit status. Similar to $? (Unix) and %errorlevel% (Windows). Values: 0
(successful), 1 (error), 2(crash) (read only).

APP_LOGGING_ENAB
LED

Whether gfsh logging is enabled. Default: false (read only). You can enable gfsh logging by
setting the gfsh.log-level Java system property to a supported Java log level.

APP_LOG_FILE Path and name of current gfsh log file (read only).

APP_NAME Name of the application– “gfsh” (read only).

APP_PWD Current working directory where gfsh was launched (read only).

APP_QUERY_RESULT
S_DISPLAY_MODE

Toggle the display mode for returning query results. Values: table or catalog. Default value is
table.

APP_QUIET_EXECUTI
ON

Whether the execution should be in quiet mode. Values (case insensitive): true, false. Default
value is false.

APP_RESULT_VIEWER Unix only. Set this variable to external to enable viewing of the output using the UNIX less
command. Default value is basic (gfsh).

Basic Shell Features and Command-Line Usage

The gfsh utility provides useful features for a shell environment, including command auto-
complete, preserved command history, and delimiting of multi-line commands. Context-sensitive
help is available by command and by topic.

To view a list of available gfsh commands, press Tab at an empty prompt.

The list of commands you see depends on whether you are connected to a VMware GemFire
cluster. If you are not connected, you see a list of local commands that are available.

Use the hint command to get information on a particular topic.

The hint command displays a one-line description and associated commands for a specified topic.
For example, hint data returns a description of the data topic and all the possible actions available
for data:

VMware GemFire 9.10 Documentation

VMware by Broadcom 821

http://docs.oracle.com/javase/8/docs/api/java/util/logging/Level.html

gfsh>hint Data

User data as stored in regions of the VMware GemFire distributed system.

clear defined indexes: Clears all the defined indexes.

create defined indexes: Creates all the defined indexes.

create index: Create an index that can be used when executing queries.

create lucene index: Create a lucene index that can be used to execute queries.

define index: Define an index that can be used when executing queries.

describe lucene index: Display the description of lucene indexes created for all membe

rs.

destroy index: Destroy/Remove the specified index.

destroy lucene index: Destroy the lucene index.

export data: Export user data from a region to a file.

get: Display an entry in a region. If using a region whose key and value classes have

been set, then specifying --key-class and --value-class is unnecessary.

import data: Import user data from a file to a region.

list indexes: Display the list of indexes created for all members.

list lucene indexes: Display the list of lucene indexes created for all members.

locate entry: Identifies the location, including host, member and region, of entries t

hat have the specified key.

put: Add/Update an entry in a region. If using a region whose key and value classes ha

ve been set, then specifying --key-class and --value-class is unnecessary.

rebalance: Rebalance partitioned regions. The default is for all partitioned regions t

o be rebalanced.

remove: Remove an entry from a region. If using a region whose key class has been set,

then specifying --key-class is unnecessary.

search lucene: Search lucene index

To view a list of hint topics, type hint.

Use the help command to get information on a particular command.

Depending on the command, typing help <command-name> displays usage information for that
particular command or a list of commands related to the command.

For example, type help start to display a list of start commands with short descriptions. The
descriptions indicate whether the command is available, and depend on the connection status of
gfsh. The following example assumes gfsh is not currently connected (via connection to a JMX
Manager node), so some start commands are unavailable.

gfsh>help start

start gateway-receiver (Not Available)

 Start the Gateway Receiver on a member or members.

start gateway-sender (Not Available)

 Start the Gateway Sender on a member or members.

start jconsole (Available)

 Start the JDK's JConsole tool in a separate process. JConsole will be

 launched, but connecting to GemFire must be done manually.

start jvisualvm (Available)

 Start the JDK's Java VisualVM (jvisualvm) tool in a separate process. Java

 VisualVM will be launched, but connecting to GemFire must be done manually.

start locator (Available)

 Start a Locator.

start pulse (Available)

 Open a new window in the default Web browser with the URL for the Pulse

 application.

start server (Available)

 Start a GemFire Cache Server.

VMware GemFire 9.10 Documentation

VMware by Broadcom 822

Use the Tab key to auto-complete a command or trigger possible completions.

Use the Tab key after entering a partial command to trigger auto-completion of the command or a
list of possible command completions. For example, hitting Tab after typing hint displays all
available topics:

gfsh>hint

Configuration Data Debug-Utility

Disk Store Function Execution GFSH

GemFire Help JMX

Lifecycle Locator Management-Monitoring

Manager Region Server

Statistics

Hitting tab after typing hint d displays the topics available that begin with ‘d’:

gfsh>hint d

data debug-Utility disk Store

Auto-completion also supplies available parameters and arguments to commands; for example,
hitting tab after typing start will list all the processes that can be started.

gfsh>start

start data-browser start jconsole start jvisualvm

start locator start pulse start server

Hitting tab after start locator will populate the --name parameter after the command. (If you do
not specify a member name, gfsh will automatically pick a random name. This is useful for
automation.)

Access command history with the Up arrow.

Access a command in your shell history by scrolling through previous commands with the Up arrow.

Delimit multi-line commands with a backslash.

When entering long commands, you can break the command line up by using the backslash
character (’') as a delimiter. For example:

gfsh>create region --name=region1 \

--type=REPLICATE_PERSISTENT \

--cache-writer=org.apache.geode.examples.MyCacheWriter \

--group=Group1 --disk-store=DiskStore1

Enclose strings that contain spaces or commas with single or double quotes

When you execute gfsh commands in the gfsh command shell, enclose any strings that contain
spaces or commas in single quotes. For example:

gfsh>start locator --name='locator 1'

start locator --name=locator1 --port=9009 --mcast-port=0\

VMware GemFire 9.10 Documentation

VMware by Broadcom 823

 --J='-Dgemfire.remote-locators=192.0.2.0[9009],192.0.2.1[9009]'

When you execute multiple gfsh commands in a single line from the operating system shell,
enclose the gfsh commands in double quotes. Within the double quotes, enclose any strings that
contain spaces or commas with single quotes. For example:

$ gfsh -e "start locator --name='locator 1'" -e "start server --name=server1"

Tutorial—Performing Common Tasks with gfsh

This topic takes you through a typical sequence of tasks that you execute after starting gfsh.

Step 1: Create a scratch working directory and change to that directory. For example:

$ mkdir gfsh_tutorial

$ cd gfsh_tutorial

Step 1: Start a gfsh prompt.

$ gfsh

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/

Monitor and Manage VMware GemFire

gfsh>

See Starting gfsh for details.

Step 2: Start up a locator. Enter the following command:

gfsh>start locator --name=locator1

The following output appears:

gfsh>start locator --name=locator1

.....

Locator in /home/username/gfsh_tutorial/locator1 on 192.0.2.0[10334]

as locator1 is currently online.

Process ID: 67666

Uptime: 6 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /home/username/gfsh_tutorial/locator1.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true

 -Dgemfire.load-cluster-configuration-from-dir=false

 -Dgemfire.launcher.registerSignalHandlers=true

 -Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /home/username/geode/geode-assembly/build/install/apache-geode/lib

/geode-core-1.2.0.jar:/home/username/geode/geode-assembly/build/install/apache-geode

/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

VMware GemFire 9.10 Documentation

VMware by Broadcom 824

Cluster configuration service is up and running.

If you run start locator from gfsh without specifying the member name, gfsh will automatically
pick a random member name. This is useful for automation.

In your file system, examine the folder location where you executed gfsh. Notice that the start
locator command has automatically created a working directory (using the name of the locator),
and within that working directory, it has created a log file, a status file, and a .pid (containing the
locator’s process ID) for this locator.

In addition, because no other JMX Manager exists yet, notice that gfsh has automatically started an
embedded JMX Manager on port 1099 within the locator and has connected you to that JMX
Manager.

Step 3: Examine the existing gfsh connection.

In the current shell, type the following command:

gfsh>describe connection

If you are connected to the JMX Manager started within the locator that you started in Step 2, the
following output appears:

gfsh>describe connection

Connection Endpoints

ubuntu.local[1099]

Notice that the JMX Manager is on 1099 whereas the locator was assigned the default port of
10334.

Step 4: Connect to the same locator/JMX Manager from a different terminal.

This step shows you how to connect to a locator/JMX Manager. Open a second terminal window,
and start a second gfsh prompt. Type the same command as you did in Step 3 in the second
prompt:

gfsh>describe connection

This time, notice that you are not connected to a JMX Manager, and the following output appears:

gfsh>describe connection

Connection Endpoints

Not connected

Type the following command in the second gfsh terminal:

gfsh>connect

The command will connect you to the currently running local locator that you started in Step 2.

gfsh>connect

Connecting to Locator at [host=localhost, port=10334] ..

VMware GemFire 9.10 Documentation

VMware by Broadcom 825

Connecting to Manager at [host=ubuntu.local, port=1099] ..

Successfully connected to: [host=ubuntu.local, port=1099]

Note that if you had used a custom --port when starting your locator, or you were connecting
from the gfsh prompt on another member, you would also need to specify --
locator=hostname[port] when connecting to the cluster. For example (type disconnect first if you
want to try this next command):

gfsh>connect --locator=localhost[10334]

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=ubuntu.local, port=1099] ..

Successfully connected to: [host=ubuntu.local, port=1099]

Another way to connect gfsh to the cluster would be to connect to directly to the JMX Manager
running inside the locator. For example (type disconnect first if you want to try this next
command):

gfsh>connect --jmx-manager=localhost[1099]

Connecting to Manager at [host=localhost, port=1099] ..

Successfully connected to: [host=localhost, port=1099]

In addition, you can connect to remote clusters over HTTP. See Using gfsh to Manage a Remote
Cluster Over HTTP or HTTPS.

Step 5: Disconnect and close the second terminal window. Type the following commands to
disconnect and exit the second gfsh prompt:

gfsh>disconnect

Disconnecting from: localhost[1099]

Disconnected from : localhost[1099]

gfsh>exit

Close the second terminal window.

Step 6: Start up a server. Return to your first terminal window, and start up a cache server that
uses the locator you started in Step 2. Type the following command:

gfsh>start server --name=server1 --locators=localhost[10334]

If the server starts successfully, the following output appears:

gfsh>start server --name=server1 --locators=localhost[10334]

Starting a VMware GemFire Server in /home/username/gfsh_tutorial/server1/server1.lo

g...

...

Server in /home/username/gfsh_tutorial/server1 on 192.0.2.0[40404] as server1

is currently online.

Process ID: 68375

Uptime: 4 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /home/username//gfsh_tutorial/server1/server1.log

JVM Arguments: -Dgemfire.locators=localhost[10334]

 -Dgemfire.use-cluster-configuration=true -Dgemfire.start-dev-rest-api=false

 -XX:OnOutOfMemoryError=kill -KILL %p

VMware GemFire 9.10 Documentation

VMware by Broadcom 826

 -Dgemfire.launcher.registerSignalHandlers=true

 -Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /home/username/geode/geode-assembly/build/install/apache-geode/lib

/geode-core-1.2.0.jar:/home/username/geode/geode-assembly/build/install

/apache-geode/lib/geode-dependencies.jar

If you run start server from gfsh without specifying the member name, gfsh will automatically pick
a random member name. This is useful for automation.

In your file system, examine the folder location where you executed gfsh. Notice that just like the
start locator command, the start server command has automatically created a working
directory (named after the server), and within that working directory, it has created a log file and a
.pid (containing the server’s process ID) for this cache server. In addition, it has also written log
files.

Step 7: List members. Use the list members command to view the current members of the
cluster you have just created.

gfsh>list members

 Name | Id

------------ | ---------------------------------------

Coordinator: | ubuntu(locator1:5610:locator)<ec><v0>:34168

locator1 | ubuntu(locator1:5610:locator)<ec><v0>:34168

server1 | ubuntu(server1:5931)<v1>:35285

Step 8: View member details by executing the describe member command.

gfsh>describe member --name=server1

Name : server1

Id : ubuntu(server1:5931)<v1>:35285

Host : ubuntu.local

Regions :

PID : 5931

Groups :

Used Heap : 12M

Max Heap : 239M

Working Dir : /home/username/gfsh_tutorial/server1

Log file : /home/username/gfsh_tutorial/server1/server1.log

Locators : localhost[10334]

Cache Server Information

Server Bind :

Server Port : 40404

Running : true

Client Connections : 0

Note that no regions have been assigned to this member yet.

Step 9: Create your first region. Type the following command followed by the tab key:

gfsh>create region --name=region1 --type=

A list of possible region types appears, followed by the partial command you entered:

gfsh>create region --name=region1 --type=

PARTITION

VMware GemFire 9.10 Documentation

VMware by Broadcom 827

PARTITION_REDUNDANT

PARTITION_PERSISTENT

PARTITION_REDUNDANT_PERSISTENT

PARTITION_OVERFLOW

PARTITION_REDUNDANT_OVERFLOW

PARTITION_PERSISTENT_OVERFLOW

PARTITION_REDUNDANT_PERSISTENT_OVERFLOW

PARTITION_HEAP_LRU

PARTITION_REDUNDANT_HEAP_LRU

REPLICATE

REPLICATE_PERSISTENT

REPLICATE_OVERFLOW

REPLICATE_PERSISTENT_OVERFLOW

REPLICATE_HEAP_LRU

LOCAL

LOCAL_PERSISTENT

LOCAL_HEAP_LRU

LOCAL_OVERFLOW

LOCAL_PERSISTENT_OVERFLOW

PARTITION_PROXY

PARTITION_PROXY_REDUNDANT

REPLICATE_PROXY

gfsh>create region --name=region1 --type=

Complete the command with the type of region you want to create. For example, create a local
region:

gfsh>create region --name=region1 --type=LOCAL

Member | Status

------- | --------------------------------------

server1 | Region "/region1" created on "server1"

Because only one server is in the cluster at the moment, the command creates the local region on
server1.

Step 10: Start another server. This time specify a --server-port argument with a different server
port because you are starting a cache server process on the same host machine.

gfsh>start server --name=server2 --server-port=40405

Starting a VMware GemFire Server in /home/username/gfsh_tutorial/server2...

...

Server in /home/username/gfsh_tutorial/server2 on 192.0.2.0[40405] as

server2 is currently online.

Process ID: 68423

Uptime: 4 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /home/username/gfsh_tutorial/server2/server2.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334]

 -Dgemfire.use-cluster-configuration=true -Dgemfire.start-dev-rest-api=false

 -XX:OnOutOfMemoryError=kill -KILL %p -Dgemfire.launcher.registerSignalHandlers=true

 -Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /home/username/geode/geode-assembly/build/install/apache-geode

/lib/geode-core-1.2.0.jar:/home/username/geode/geode-assembly/build/install

/apache-geode/lib/geode-dependencies.jar

Step 11: Create a replicated region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 828

gfsh>create region --name=region2 --type=REPLICATE

Member | Status

------- | --------------------------------------

server1 | Region "/region2" created on "server1"

server2 | Region "/region2" created on "server2"

Step 12: Create a partitioned region.

gfsh>create region --name=region3 --type=PARTITION

Member | Status

------- | --------------------------------------

server1 | Region "/region3" created on "server1"

server2 | Region "/region3" created on "server2"

Step 13: Create a replicated, persistent region.

gfsh>create region --name=region4 --type=REPLICATE_PERSISTENT

Member | Status

------- | --------------------------------------

server1 | Region "/region4" created on "server1"

server2 | Region "/region4" created on "server2"

Step 14: List regions. A list of all the regions you just created displays.

gfsh>list regions

List of regions

region1

region2

region3

region4

Step 15: View member details again by executing the describe member command.

gfsh>describe member --name=server1

Name : server1

Id : ubuntu(server1:5931)<v1>:35285

Host : ubuntu.local

Regions : region4

 region3

 region2

 region1

PID : 5931

Groups :

Used Heap : 14M

Max Heap : 239M

Working Dir : /home/username/gfsh_tutorial/server1

Log file : /home/username/gfsh_tutorial/server1/server1.log

Locators : localhost[10334]

Cache Server Information

Server Bind :

Server Port : 40404

Running : true

Client Connections : 0

VMware GemFire 9.10 Documentation

VMware by Broadcom 829

Notice that all the regions that you created now appear in the “Regions” section of the member
description.

gfsh>describe member --name=server2

Name : server2

Id : ubuntu(server2:6092)<v2>:17443

Host : ubuntu.local

Regions : region4

 region3

 region2

 region1

PID : 6092

Groups :

Used Heap : 14M

Max Heap : 239M

Working Dir : /home/username/gfsh_tutorial/server2

Log file : /home/username/gfsh_tutorial/server2/server2.log

Locators : 192.0.2.0[10334]

Cache Server Information

Server Bind :

Server Port : 40405

Running : true

Client Connections : 0

Note that even though you brought up the second server after creating the first region (region1),
the second server still lists region1 because it picked up its configuration from the cluster
configuration service.

Step 16: Put data in a local region. Enter the following put command:

gfsh>put --key=('123') --value=('ABC') --region=region1

Result : true

Key Class : java.lang.String

Key : ('123')

Value Class : java.lang.String

Old Value : <NULL>

Step 17: Put data in a replicated region. Enter the following put command:

gfsh>put --key=('123abc') --value=('Hello World!!') --region=region2

Result : true

Key Class : java.lang.String

Key : ('123abc')

Value Class : java.lang.String

Old Value : <NULL>

Step 18: Retrieve data. You can use locate entry, query or get to return the data you just put
into the region.

For example, using the get command:

gfsh>get --key=('123') --region=region1

Result : true

Key Class : java.lang.String

Key : ('123')

VMware GemFire 9.10 Documentation

VMware by Broadcom 830

Value Class : java.lang.String

Value : ('ABC')

For example, using the locate entry command:

gfsh>locate entry --key=('123abc') --region=region2

Result : true

Key Class : java.lang.String

Key : ('123abc')

Locations Found : 2

MemberName | MemberId

---------- | -------------------------------

server2 | ubuntu(server2:6092)<v2>:17443

server1 | ubuntu(server1:5931)<v1>:35285

Notice that because the entry was put into a replicated region, the entry is located on both cluster
members.

For example, using the query command:

gfsh>query --query='SELECT * FROM /region2'

Result : true

startCount : 0

endCount : 20

Rows : 1

Result

('Hello World!!')

NEXT_STEP_NAME : END

Step 19: Export your data. To save region data, you can use the export data command.

For example:

gfsh>export data --region=region1 --file=region1.gfd --member=server1

You can later use the import data command to import that data into the same region on another
member.

Step 20: Shutdown the cluster.

gfsh>shutdown --include-locators=true

Quick Reference of gfsh Commands by Functional Area

This quick reference sorts all commands into functional areas.

Click a command to see additional information, including syntax, a list of options, and examples.

Basic GemFire gfsh Commands

Configuration Commands

VMware GemFire 9.10 Documentation

VMware by Broadcom 831

Data Commands

Deployment Commands

Disk Store Commands

Durable CQ and Client Commands

Function Execution Commands

Gateway (WAN) Commands

GemFire Monitoring Commands

Index Commands

JMX Connection Commands

Locator Commands

PDX Commands

Region Commands

Server Commands

gfsh Command Help

This section provides help and usage information on all gfsh commands, listed alphabetically.

alter

Modify an existing VMware GemFire resource.

backup disk-store

Back up persistent data from all members to the specified directory.

change loglevel

Changes the logging level on specified members.

clear defined indexes

Clears all the defined indexes.

close

Close durable client CQs and durable clients.

compact

Compact online and offline disk-stores.

configure

Configure Portable Data eXchange for all the cache(s) in the cluster.

connect

Connect to a jmx-manager either directly or via a locator.

create

VMware GemFire 9.10 Documentation

VMware by Broadcom 832

Create async-event-queues, disk-stores, gateway receivers, gateway senders, indexes, and
regions.

debug

Activate or deactivate debugging output in gfsh.

define index

Define an index that can be used when executing queries. Then, you can execute a single
command to create multiple indexes all at once using create defined indexes.

deploy

Deploy JAR-packaged applications to a member or members.

describe

Display details of a member’s configuration, shell connection, disk-stores, members, or
regions.

destroy

Delete or unregister functions, remove indexes, disk stores and regions.

disconnect

Close any active connection(s).

echo

Echo the given text, which may include system and user variables.

execute function

Execute functions on members or regions.

exit

Exit the gfsh shell. You can also use quit to exit the shell.

export

Export configurations, data, logs and stack-traces.

gc

Force GC (Garbage Collection) on a member or members.

get

Display an entry in a region.

help

Display syntax and usage information for all the available commands.

hint

Display information on topics and a list of commands associated with a topic.

history

Show or save the command history.

import

VMware GemFire 9.10 Documentation

VMware by Broadcom 833

You can import data into a region or import an existing cluster configuration into the
cluster.

list

List existing VMware GemFire resources such as deployed applications, disk-stores,
functions, members, servers, and regions.

load-balance gateway-sender

Causes the specified gateway sender to close its current connections and reconnect to
remote gateway receivers in a more balanced fashion.

locate entry

Locate a region entry on a member.

netstat

Report network information and statistics via the “netstat” operating system command.

pause gateway-sender

Pause a gateway sender.

pdx rename

Renames PDX types in an offline disk store.

put

Add or update a region entry.

query

Run queries against VMware GemFire regions.

rebalance

Rebalance partitioned regions.

remove

Remove an entry from a region.

resume gateway-sender

Resume any gateway senders that you have paused.

revoke missing-disk-store

Instruct the member(s) of a distributed system to stop waiting for a disk store to be
available.

run

Execute a set of GFSH commands.

set variable

Set variables in the GFSH environment.

sh

Execute operating system commands.

VMware GemFire 9.10 Documentation

VMware by Broadcom 834

show

Display deadlocks, logs, metrics and missing disk-stores.

shutdown

Stop all members.

sleep

Delay gfsh command execution.

start

Start servers, locators, gateway senders and gateway receivers, and monitoring tools.

status

Check the status of the cluster configuration service and VMware GemFire member
processes, including locators, gateway receivers, gateway senders, and servers.

stop

Stop gateway receivers, gateway senders, locators and servers.

undeploy

Undeploy the JAR files that were deployed on members or groups using deploy command.

validate offline-disk-store

Validate offline disk stores.

version

Display product version information.

alter

Modify an existing VMware GemFire resource.

alter async-event-queue

Modifies attributes of an async event queue

alter disk-store

Modifies or removes a region from an offline disk-store.

alter query-service

Alter configuration details of the query configuration service.

alter region

Alters the configuration of a region.

alter runtime

Alters configuration properties for all members or a subset of members while the member
or members are running.

alter async-event-queue

VMware GemFire 9.10 Documentation

VMware by Broadcom 835

Alter attributes of a specified asynchronous event queue. Each server hosting the specified async
event queue must be restarted for the new attribute settings to take effect on that server.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

alter async-event-queue --id=value [--batch-size=value] [--batch-time-interval=value]

 [--max-queue-memory=value] [--if-exists(=value)] [--pause-event-processing(=valu

e)]

The required option, --id, identifies the async event queue to be altered.

Parameters, alter async-event-queue

Name Description

‑‑id Required. ID of the async event queue to be changed

‑‑batch‑size Maximum number of events that a batch can contain

‑‑batch‑tim
e‑interval

Maximum amount of time, in ms, that can elapse before a batch is delivered

‑‑max‑queu
e‑memory

Maximum amount of memory, in megabytes, that the queue can consume before overflowing to disk

‑‑if‑exists If the specified async event queue does not exist, gfsh responds with a message to that effect. If this
parameter is true, the response is prefixed with the label "Skipping: ". Useful for scripted tests. Default (if
the parameter is not specified): false. Default (if the parameter is specified without value): true.

‑‑pause‑eve
nt‑processin
g

Specifies whether event dispatching from the queue to the listener(s) will be paused when the
AsyncEventQueue is started. Default (if the parameter is not specified): false. Default (if the parameter is
specified without value): true.

Example Commands:

alter async-event-queue --id=myAsyncEventQueue --batch-size=50 --if-exists

alter disk-store
Modify or remove a region from an offline disk-store.

When modifying a region’s configuration, it is customary to take the region off-line and restart
using the new configuration. You can use the alter disk-store command to change the
configuration of the region stored in the disk-store to match the configuration you will use at
restart.

Availability: Offline.

Syntax:

alter disk-store --name=value --region=value --disk-dirs=value(,value)*

 [--compressor(=value)] [--concurrency-level=value]

 [--enable-statistics=value] [--initial-capacity=value] [--load-factor=value]

VMware GemFire 9.10 Documentation

VMware by Broadcom 836

 [--lru-algorithm=value] [--lru-action=value] [--lru-limit=value]

 [--off-heap(=value)] [--remove(=value)]

The three required options, --name, --region, and --disk-dirs, identify the disk store and region
to be altered. If no additional options are specified, gfsh displays the current configuration without
making any changes.

Parameters, alter disk-store

Name Description

‑‑name Required. Name of the disk-store whose contents will be
altered.

‑‑region Required. Name (including path) of the region using the
disk store.

‑‑disk-dirs Required. Directories where the data for the disk store was
previously written.

‑‑compressor The fully-qualified class name of the compressor to use
when compressing region entry values. A value of none
removes the compressor.

‑‑concurrency-level An estimate of the maximum number of application
threads that will concurrently access a region entry.
Together with ‑‑initial-capacity and ‑‑load-factor, sets the
parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries. This attribute does not apply to partitioned
regions.

‑‑enable-statistics Enables statistics for the region specified by the --region
option. Valid values are true or false. If the parameter is
specified without a value, the value of true is used.

‑‑initial-capacity Together with ‑‑concurrency-level and ‑‑load-factor, sets
the parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries.

‑‑load-factor Together with ‑‑concurrency-level and ‑‑initial-capacity,
sets the parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries. This must be a floating point number between 0
and 1, inclusive.

‑‑lru-action Action to take when evicting entries from the region. Valid
values are:

none

overflow-to-disk

local-destroy

VMware GemFire 9.10 Documentation

VMware by Broadcom 837

Name Description

‑‑lru-algorithm Least recently used eviction algorithm. Valid types are:

none

lru-entry-count

lru-heap-percentage

lru-memory-size

‑‑lru-limit Number of entries allowed in the region before eviction
occurs.

‑‑off-heap Specifies whether the region values are in heap memory or
off-heap memory. When true, region values are in off-heap
memory. If the parameter is specified without a value, the
value of true is used.

‑‑remove Specifies whether to remove the region from the disk-
store. If the parameter is specified without a value, the
value of true is used. Note: ‑‑remove deletes all persistent
data for the region. Consider copying the disk store files
to a backup before using this option if you might want to
retrieve the data at a later date.

Example Commands:

alter disk-store --name=DiskStore1 --region=region1 --disk-dirs=/Disks/DiskStore1 --of

f-heap

alter disk-store --name=DiskStore1 --region=region1 --disk-dirs=/Disks/DiskStore1 --re

move

alter query-service
Alter configuration details of the query configuration service.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

alter query-service --method-authorizer=value

 [--authorizer-parameters=value(;value)*] [--force-update(=value)]

Parameters, alter query-service

Name Description

‑‑method
-
authorize
r

Required. Fully qualified class name of the MethodInvocationAuthorizer to be used for query
authorization.

‑‑authori
zer-
paramet
ers

A semicolon-separated list of parameters to be used by the specified MethodInvocationAuthorizer. This
requires that a method-authorizer option has been specified.

VMware GemFire 9.10 Documentation

VMware by Broadcom 838

Name Description

‑‑force-
update

Specifies whether to forcibly update the MethodInvocationAuthorizer, even when there are continuous
queries registered in the member. Default (if the parameter is not specified): false. Default (if the parameter
is specified without value): true. Note: when set as true, any registered CQ will pick up the new
MethodInvocationAuthorizer and invalidate its internal cache; consider checking that the new
MethodInvocationAuthorizer allows the methods invoked by the CQs before using this option.

Example Commands:

alter query-service --method-authorizer=org.apache.geode.cache.query.security.Unrestri

ctedMethodAuthorizer

alter query-service --method-authorizer=org.apache.geode.cache.query.security.Unrestri

ctedMethodAuthorizer --force-update=true

alter query-service --method-authorizer=org.apache.geode.cache.query.security.JavaBean

AccessorMethodAuthorizer --authorizer-parameters=java.lang;java.util

alter region

Alters the configuration of a region.

See Specifying JSON within Command-Line Options for syntax details.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

alter region --name=value [--groups=value(,value)*]

 [--entry-idle-time-expiration=value]

 [--entry-idle-time-expiration-action(=value)?]

 [--entry-time-to-live-expiration=value]

 [--entry-time-to-live-expiration-action(=value)?]

 [--entry-idle-time-custom-expiry=value] [--entry-time-to-live-custom-expiry=value]

 [--region-idle-time-expiration=value]

 [--region-idle-time-expiration-action(=value)?]

 [--region-time-to-live-expiration=value]

 [--region-time-to-live-expiration-action(=value)?]

 [--cache-listener=value(,value)*] [--cache-loader=value]

 [--cache-writer=value] [--async-event-queue-id=value(,value)*]

 [--gateway-sender-id=value(,value)*] [--enable-cloning(=value)?]

 [--eviction-max(=value)?]

Parameters, alter region

Name Description Default Value

‑‑async-event-queue-id IDs of the Async Event Queues that will be used for write-behind
operations.

‑‑cache-listener Fully qualified class name of a plug-in to be instantiated for receiving
after-event notification of changes to the region and its entries. Any
number of cache listeners can be configured. A fully qualified class
name may be appended with a JSON specification that will be parsed
to become the fields of the parameter to the init() method for a class
that implements the Declarable interface.

VMware GemFire 9.10 Documentation

VMware by Broadcom 839

Name Description Default Value

‑‑cache-loader Fully qualified class name of a plug-in to be instantiated for receiving
notification of cache misses in the region. At most, one cache loader
can be defined in each member for the region. For distributed regions,
a cache loader may be invoked remotely from other members that
have the region defined. A fully qualified class name may be appended
with a JSON specification that will be parsed to become the fields of
the parameter to the initialize() method for a class that
implements the Declarable interface.

‑‑cache-writer Fully qualified class name of a plug-in to be instantiated for receiving
before-event notification of changes to the region and its entries. The
plug-in may cancel the event. At most, one cache writer can be
defined in each member for the region. A fully qualified class name
may be appended with a JSON specification that will be parsed to
become the fields of the parameter to the init() method for a class
that implements the Declarable interface.

‑‑enable-cloning
Determines how fromDelta applies deltas to the local cache for delta
propagation. When true, the updates are applied to a clone of the
value and then the clone is saved to the cache. When false, the value is
modified in place in the cache.

false

‑‑entry-idle-time-expiration Number of seconds before a region or an entry expires. Specify -1 to
indicate that there is no expiration of this type

-1

‑‑entry-idle-time-
expiration-action

Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

‑‑entry-time-to-live-
expiration

Number of seconds before a region or an entry expires. Specify -1 to
indicate that there is no expiration of this type.

-1

VMware GemFire 9.10 Documentation

VMware by Broadcom 840

Name Description Default Value

‑‑entry-time-to-live-
expiration-action

Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

‑‑entry-idle-time-custom-
expiry

The name of a class implementing CustomExpiry for entry idle time.
Append a JSON string for initialization properties.

‑‑entry-time-to-live-
custom-expiry

The name of a class implementing CustomExpiry for entry time to live.
Append a JSON string for initialization properties.

‑‑eviction-max Maximum value for the Eviction Attributes that the eviction algorithm
uses to determine when to perform its eviction action. The unit of the
maximum value is determined by the Eviction Algorithm.

0

‑‑gateway-sender-id IDs of the Gateway Senders where data is routed.

‑‑groups Group(s) of members where the region will be altered.

‑‑name Required. Name (including path) of the region.

‑‑region-idle-time-
expiration

Number of seconds before a region or an entry expires. If timeout is
not specified, it defaults to zero (which means no expiration).

-1

VMware GemFire 9.10 Documentation

VMware by Broadcom 841

Name Description Default Value

‑‑region-idle-time-
expiration-action

Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

‑‑region-time-to-live-
expiration

Number of seconds before a region or an entry expires. If timeout is
not specified, it defaults to zero (which means no expiration).

-1

‑‑region-time-to-live-
expiration-action

Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

Example Commands:

alter region --name=region1 --eviction-max=5000 [-group=all]

Sample Output:

VMware GemFire 9.10 Documentation

VMware by Broadcom 842

gfsh>alter region --name=customer --eviction-max=5000

Member | Status

------- | ----------------------------------

server1 | Region "/customer" altered on "server1"

alter runtime

Alters configuration properties for all servers or a subset of servers while the member or members
are running. Alter runtime is a cluster configuration command that affects the configuration for
newly joining servers. In order for running members to adopt the alteration, they must be stopped
and restarted.

The alter runtime command does not apply to locators.

For more information on these configuration properties, see cache.xml and configuration
parameter reference.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

alter runtime [--members=value(,value)*] [--groups=value(,value)*]

 [--archive-disk-space-limit=value]

 [--archive-file-size-limit=value] [--log-disk-space-limit=value]

 [--log-file-size-limit=value] [--log-level=value]

 [--statistic-archive-file=value] [--statistic-sample-rate=value]

 [--enable-statistics=value] [--copy-on-read(=value)?] [--lock-lease=value]

 [--lock-timeout=value] [--message-sync-interval=value] [--search-timeout=value]

Parameters, alter runtime

Name Description Default Value

‑‑members Name or ID of the member(s) whose configuration is to be
altered at runtime. If you do not specify this parameter,
the configuration properties are modified for all cluster
members using the cluster configuration service.

If not specified, all
members using the cluster
configuration service

‑‑groups Name of the group(s) whose members's runtime
configuration is to be altered. If you do not specify this
parameter, the configuration properties are modified for
all cluster members using the cluster configuration service.

If not specified, all
members using the cluster
configuration service

‑‑archive-disk-space-limit Archive disk space limit. Maximum size (in megabytes) of
all inactive statistic archive files combined. If this limit is
exceeded, inactive archive files are deleted, oldest first,
until the total size is within the limit. If set to zero, disk
space use is unlimited. Valid values are (in megabytes): 0
- 1000000.

0

‑‑archive-file-size-limit Archive file size limit. The maximum size (in megabytes) of
a single statistic archive file. Once this limit is exceeded, a
new statistic archive file is created, and the current archive
file becomes inactive. If set to zero, file size is unlimited.
Valid values are (in megabytes): 0 - 1000000.

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 843

Name Description Default Value

‑‑log-disk-space-limit Log disk space limit. Maximum size in megabytes of all
inactive log files combined. If this limit is exceeded,
inactive log files are deleted, oldest first, until the total
size is within the limit. If set to zero, disk space use is
unlimited. Valid values are (in megabytes): 0 - 1000000.

0

‑‑log-file-size-limit Log file size limit. Maximum size in megabytes of a log file
before it is closed and logging rolls on to a new (child)
log file. If set to zero, log rolling is disabled. Valid values
are (in megabytes): 0 - 1000000.

0

‑‑log-level The new log level. This option is required and you must
specify a value. Valid values are: `ALL`, `TRACE`, `DEBUG`,
`INFO`, `WARN`, `ERROR`, `FATAL`, `OFF`.

INFO

‑‑statistic-archive-file The file to which the running system member writes
statistic samples. For example: "StatisticsArchiveFile.gfs".
Must be defined to store the archiving to a file. Adding the
.gz suffix to the file name causes it to be compressed. See
Statistics.

not set

‑‑statistic-sample-rate Statistic sampling rate. Valid values are (in milliseconds):
100 - 60000. See Statistics.

1000

‑‑enable-statistics Whether statistic sampling should be enabled. Specify --
statistic-archive-file to store the statistics to a file.
Valid values are: true and false. See Statistics.

false

‑‑copy-on-read True or false. Sets the copy on read region attribute for
cache read operations. See Copy on Read Behavior.

false

‑‑lock-lease Sets the length, in seconds, of distributed lock leases
obtained by this cache. See Setting Cache Timeouts.

120

‑‑lock-timeout Sets the number of seconds a cache operation may wait
to obtain a distributed lock lease before timing out. See
Setting Cache Timeouts.

60

‑‑message-sync-interval Sets the frequency (in seconds) at which a message will be
sent by the primary cache-server node to all the
secondary cache-server nodes to remove the events
which have already been dispatched from the queue. See
Change Server Queue Synchronization Frequency.

1

‑‑search-timeout Sets the number of seconds a cache get operation can
spend searching for a value. See Setting Cache Timeouts.

300

Example Commands:

alter runtime --members=server1 --log-level=WARN --enable-statistics=true

Sample Output:

gfsh>alter runtime --members=server1 --log-level=WARN --enable-statistics=true

Runtime configuration altered successfully for the following member(s)

192.0.2.0(server1:240)<v1>:64871

VMware GemFire 9.10 Documentation

VMware by Broadcom 844

backup disk-store

Back up persistent data from all members to the specified directory.

The specified directory must exist on all members, but it can be a local directory on each machine.
This command ensures that backup files are not corrupted by concurrent operations. Backing up a
running system using the operating system copy command is not recommended.

You can also use this command to perform an incremental backup. See Creating Backups for
System Recovery and Operational Management for more information on incremental backup.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

backup disk-store --dir=value [--baseline-dir=value]

Table 1. Backup Disk-Store Parameters

Name Description

‑‑dir Required. Directory to which backup files are written.

‑‑baseline-dir Directory that contains the baseline backup used for
comparison during an incremental backup.

An incremental backup operation backs up any data that
is not present in the directory specified in ‑‑baseline-dir. If
the member cannot find previously backed up data or if
the previously backed up data is corrupt, the command
performs a full backup on that member.

Table 1. Backup Disk-Store Parameters

Example Commands:

backup disk-store --dir=data/backups

backup disk-store --dir=data/backup/disk-store --baselineDir=data/backups/2012-09-24-1

7-08-50

Sample Output:

gfsh>backup disk-store --dir=data/backups

The following disk stores were backed up successfully

Member | UUID | Directory

| Host

------- | ------------------------------------ | ------------------------------------

| ---------------

server2 | a6bb11f0-0baa-45c9-b23e-64876d02a586 | c:\PivotalGemFire70\Latest\server2\.

| 192.0.2.0

server1 | 8dc365bd-c086-4af4-99d0-86b0b521aa04 | c:\PivotalGemFire70\Latest\server1\.

| 192.0.2.0

change loglevel

VMware GemFire 9.10 Documentation

VMware by Broadcom 845

Changes the logging level on specified members.

The change loglevel command applies only to the members specified, whether they are servers or
locators. The change does not apply to unspecified or subsequently-added members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

change loglevel --log-level=value [--members=value(,value)*] [--groups=value(,value)*]

Table 1. Change Loglevel Parameters

Name Description Default Value

‑‑members Name or ID of one or more member(s) whose logging
level you want to change.

‑‑groups One or more group names. The logging level changes for
all members of these groups.

‑‑log-level Required. Log level to change. Valid options are: ALL,
TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF.

Table 1. Change Loglevel Parameters

Example Commands:

gfsh>change loglevel --log-level=DEBUG --members=server1

Sample Output:

gfsh>change loglevel --log-level=DEBUG --members=server1

Summary

 Member | Changed log-level

--------------------------------- | -----------------

192.0.2.0(server1:3060)<v1>:24653 | true

clear defined indexes

Clears all the defined indexes.

Index definitions are stored locally on the gfsh client. If you want to create a new set of indexes or
if one or more of the index creations fail, you might want to clear the definitions

See also define index.

Availability: Online or offline.

Syntax:

clear defined indexes

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 846

gfsh> clear defined indexes

Sample Output:

gfsh>clear defined indexes

Index definitions successfully cleared

close

Close durable client CQs and durable clients.

close durable-client

Attempts to close a durable client. The client must be disconnected for this command to
work.

close durable-cq

Closes the durable continuous query (CQ) registered by the durable client and drain events
held for the durable CQ from the subscription queue.

close durable-client

Attempts to close a durable client. The client must be disconnected for this command to work.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

close durable-client --durable-client-id=value [--members=value(,value)*]

[--groups=value(,value)*]

Name Description

‑‑durable-client-id Required. The ID of the durable client.

‑‑members Name or ID of the member(s) for which the durable client is to be closed.

‑‑groups Group(s) of members for which the durable client is to be closed.

Table 1. Close Durable-Client Parameters

Example Commands:

close durable-client --durable-client-id=client1

Sample Output:

gfsh>close durable-client --durable-client-id=client1

Closed the durable client : "client1". on following members.

1.server4

2.server3

VMware GemFire 9.10 Documentation

VMware by Broadcom 847

Error Messages:

gfsh>close durable-cq --durable-cq-name=cq1 --durable-client-id=client1

Could not close the durable-cq : "cq1" for the durable-client-id : "client1" due to fo

llowing reasons.

CacheClientProxy: Could not drain cq cq1 because client proxy id client1 is connected.

Occurred on members

1.server4

2.server3

No client found with client-id : client1

Occurred on members

1.server1

close durable-cq

Closes the durable continuous query (CQ) registered by the durable client and drain events held for
the durable CQ from the subscription queue.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

close durable-cq --durable-client-id=value --durable-cq-name=value

[--members=value(,value)*] [--groups=value(,value)*]

Name Description

‑‑durable-client-
id

Required. The ID of the durable client.

‑‑durable-cq-
name

Required. Name of the CQ to be closed.

‑‑members Name or ID of the member(s) for which the durable client is registered and the durable CQ to be
closed.

‑‑groups Group(s) of members for which the durable client is registered and the durable CQ to be closed.

Table 2. Close Durable-CQ Parameters

Example Commands:

close durable-cq --durable-client-id=client1 --durable-cq-name=cq1

Sample Output:

gfsh>close durable-cq --durable-cq-name=cq1 --durable-client-id=client1

Closed the durable cq : "cq1" for the durable client : "client1". on following member

s.

1.server4

2.server3

VMware GemFire 9.10 Documentation

VMware by Broadcom 848

Error Messages:

gfsh>close durable-client --durable-client-id=client1

Unable to close the durable client : "client1" due to following reasons.

Cannot close a running durable client : client1

Occurred on members

1.server4

2.server3

No client found with client-id : client1

Occurred on members

1.server1

compact

Compact online and offline disk-stores.

compact disk-store

Compact a disk store on all members with that disk store.

compact offline-disk-store

Compact an offline disk store.

compact disk-store

Compact a disk store on all members with that disk store.

This command uses the compaction threshold that each member has configured for its disk stores.
The disk store must have the allow-force-compaction property set to true.

See Running Compaction on Disk Store Log Files for more information.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

compact disk-store --name=value [--groups=value(,value)*]

Parameters, compact disk-store

Name Description

‑‑name Required. Name of the disk store to be compacted.

‑‑group
s

Group(s) of members that perform disk compaction. If no group is specified, then the disk store is
compacted by all members.

Example Commands:

compact disk-store --name=Disk1

compact disk-store --name=Disk1 --group=MemberGroup1,MemberGroup2

Error Messages:

VMware GemFire 9.10 Documentation

VMware by Broadcom 849

"Disk store \"{0}\" does not exist.";

 " for group(s) \"{0}\"";

"No members found in the specified group(s) \"{0}\".";

"Compaction was attempted but nothing to compact.";

"Error occurred while doing compaction. Reason: \"{0}\"";

compact offline-disk-store

Compact an offline disk store.

If the disk store is large, you may need to allocate additional memory to the process by using the --
J=-XmxNNNm parameter.

See Running Compaction on Disk Store Log Files for more information.

Note: Do not perform offline compaction on the baseline directory of an incremental backup.

Availability: Online or offline.

Syntax:

compact offline-disk-store --name=value --disk-dirs=value(,value)*

[--max-oplog-size=value] [--J=value(,value)*]

Parameters, compact offline-disk-store

Name Description
Default
Value

‑‑name Required. Name of the offline disk store to be compacted.

‑‑disk-dirs Required. One or more directories where data for the disk store was previously written.
Separate directories with commas.

‑‑max-
oplog-size

Maximum size (in megabytes) of the oplogs created by compaction. -1

‑‑J Arguments passed to the Java Virtual Machine performing the compact operation on the
disk store. For example: --J=-Xmx1024m.

Example Commands:

compact offline-disk-store --name=Disk2 --disk-dirs=/Disks/Disk2

compact offline-disk-store --name=Disk2 --disk-dirs=/Disks/Disk2 --max-oplog-size=512

--J=-Xmx1024m

configure
Configure Portable Data eXchange (PDX) for all the cache(s) in the cluster.

configure pdx
Configures VMware GemFire’s Portable Data eXchange for all the cache(s) in the cluster and
persists the pdx configuration in the locator with the cluster configuration service.

VMware GemFire 9.10 Documentation

VMware by Broadcom 850

For consistent results, PDX should be configured before any servers have started. A server that is
running at the time PDX is configured will not adopt the new configuration until it has been
restarted.

Availability: Online.

Syntax:

configure pdx [--read-serialized=value] [--ignore-unread-fields=value]

 [--disk-store(=value)?] [--auto-serializable-classes=value(,value)*]

 [--portable-auto-serializable-classes=value(,value)*]

Parameters, configure pdx:

Name Description Default

‑‑read-
serialized

When true, PDX deserialization produces a PdxInstance instead of an instance of the domain
class.

false

‑‑ignore-
unread-
fields

Controls whether PDX ignores fields that were unread during deserialization. The default is to
preserve unread fields by including their data during serialization. However, if you configure the
cache to ignore unread fields, then their data will be lost during serialization. You should set this
attribute to true only if you know this member will only be reading cache data. In this use case
you do not need to pay the cost of preserving the unread fields, since you will never be
reserializing PDX data.

false

‑‑disk-
store

Named disk store where the PDX type data will be stored. If specified without a value, then
“DEFAULT” is used.

none

‑‑auto-
serializable
-classes

Configures ReflectionBasedAutoSerializer as the PDX serializer for member classes. Specifies
patterns to be matched against domain class names to determine whether they should be auto-
serialized. Classes are not checked for portability to non-java languages (equivalent to check-
portability=false).

none

‑‑portable-
auto-
serializable
-classes

Configures ReflectionBasedAutoSerializer as the PDX serializer for member classes. Specifies
patterns to be matched against domain class names to determine whether they should be
serialized. Serialization done by the PDX autoserializer will throw an exception if the object of
these classes are not portable to non-Java languages (equivalent to check-portability=true).

none

Example Commands:

gfsh>configure pdx --read-serialized=true

Sample Output:

gfsh>configure pdx --read-serialized=true

persistent = false

read-serialized = true

ignore-unread-fields = false

gfsh>configure pdx --disk-store=/home/username/server4/DEFAULT.drf

persistent = true

disk-store = /home/username/server4/DEFAULT.drf

read-serialized = false

ignore-unread-fields = false

Error Messages:

VMware GemFire 9.10 Documentation

VMware by Broadcom 851

Configure pdx failed because cluster configuration is disabled.

"Failed to persist the configuration changes due to this command, Revert the command t

o maintain consistency.

Please use "status cluster-config-service" to determing whether Cluster configuration

service is RUNNING."

connect

Connect to a JMX manager either directly or via a locator.

If you are connecting via a locator, and a JMX manager does not already exist, the locator starts
one.

gfsh connects as a discovery client to the locator service and asks where the JMX Manager is. The
locator knows when there is no member currently configured as the JMX manager and simply
starts up the JMX manager service within itself. gfsh connects as a JMX client to the locator’s JMX
RMI port.

You can also connect to a remote locator using the HTTP protocol, as illustrated by the second
example below.

Availability: Offline. You will receive a notification “Already connected to: host[port]” if you are
already connected.

Syntax:

connect [--locator=value] [--jmx-manager=value] [--use-http(=value)?] [--url=value]

 [--user=value][--password=value] [--key-store=value] [--key-store-password=value]

 [--trust-store=value] [--trust-store-password=value] [--ciphers=value]

 [--protocols=value] [--security-properties-file=value] [--use-ssl(=value)?]

 [--skip-ssl-validation(=value)?]

Table 1. Connect Parameters

Name Description Default

‑‑locator Network address of the Locator in the
form: host[port].

localhost[10334]

‑‑jmx-manager Network address of the JMX manager
in the form: host[port].

‑‑use-http Deprecated: inferred by the presence
of --url. Connects to a JMX manager
HTTP service using the HTTP protocol.

‑‑url URL used to connect to a JMX
manager's HTTP service.

‑‑username
‑‑user

The user name of the credential to use
in authentication when connecting to
the JMX manager. When specified, if
the --password option is not also
specified, gfsh will prompt for the
password.

VMware GemFire 9.10 Documentation

VMware by Broadcom 852

Name Description Default

‑‑password The password portion of the credential
to use in authentication when
connecting to the JMX manager.

‑‑key-store Java keystore file containing this
application's certificate and private
key. If the --key-store-password
parameter is not specified, gfsh
prompts the operator for the
password.

‑‑key-store-password Password to access the private key
from the keystore file specified by --
key-store.

‑‑trust-store Java keystore file containing the
collection of CA certificates trusted by
this application. If the --trust-store-
password parameter is not specified,
gfsh prompts the operator for the
password.

‑‑trust-store-password Password to unlock the keystore file
specified by --trust-store.

‑‑ciphers SSL/TLS ciphers used when encrypting
the connection. The default is "any".

‑‑protocols SSL/TLS protocol versions to enable
when encrypting the connection. The
default is "any".

‑‑security-properties-file The gfsecurity.properties file for
configuring gfsh to connect to the
Locator/Manager. The file path can be
absolute or relative to the current gfsh
directory.

‑‑use-ssl Whether to use SSL for
communication with Locator and/or
JMX Manager. If set to true, the
connect command also reads
gfsecurity.properties. SSL Options
take precedence over values set in the
properties file. If none are specified,
defaults are used.

If the parameter is not
specified: false

If the parameter is specified
without a value: true

‑‑skip-ssl-validation When SSL communication is enabled
and this option is specified or assigned
the value true, this gfsh client accepts
any SSL certificate, allowing this gfsh
client to authenticate any locator or
server to which it is connecting. This
option exists to facilitate testing, and it
is not intended for production
systems.

false

Table 1. Connect Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 853

Example Commands:

If you do not specify a locator or JMX manager, gfsh connects to the locator on the localhost at the
default port.

gfsh>connect

Sample Output:

gfsh>connect

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=GemFireStymon, port=1099] ..

Successfully connected to: [host=GemFireStymon, port=1099]

Example of connecting to a remote locator over HTTP:

gfsh>connect --use-http=true --url="http://myLocatorHost.example.com:8080/gemfire/v1"

Successfully connected to: GemFire Manager's HTTP service @

http://myLocatorHost.example.com:8080/gemfire/v1

Error Messages:

"Locator could not find a JMX Manager";

"jmx password must be specified.";

"Could not connect to : {0}. {1}";

"Could not find a GemFire jmx-manager service running at {0}.";

"Could not connect to GemFire Locator service at {0}."

create

Create async-event-queues, disk-stores, gateway receivers, gateway senders, indexes, and
regions.

create async-event-queue

Creates an asynchronous event queue for batching events before they are delivered by a
gateway sender.

create defined indexes

Creates all the defined indexes.

create disk-store

Defines a pool of one or more disk stores, which can be used by regions and client
subscription queues, and gateway sender queues for WAN distribution.

create gateway-receiver

Creates a gateway receiver. You can only have one gateway receiver on each member, and
unlike a gateway sender, you do not need to specify an identifier for the gateway receiver .

create gateway-sender

Creates a gateway sender on one or more members of a cluster.

create index

VMware GemFire 9.10 Documentation

VMware by Broadcom 854

Create an index that can be used when executing queries.

create jndi-binding

Create a JNDI binding that specifies resource attributes which describe a JDBC connection.

create lucene index

Create a region with given path and configuration.

create region

Create a region with given path and configuration.

Note: The order in which components are created matters. For example, the recommendation for
WAN setup is:

Create/start WAN senders first

Create Regions

Create/start WAN receivers last

This assures that when WAN receivers are started, their associated regions are in place. Otherwise,
the create region command may fail if events are received before the region exists. For more on
this topic, see Configuring a Multi-site (WAN) System.

create async-event-queue

Creates an asynchronous event queue for batching events before they are delivered by a gateway
sender.

See Configuring Multi-Site (WAN) Event Queues.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

create async-event-queue --id=value --listener=value [--groups=value(,value)*]

 [--parallel(=value)?] [--enable-batch-conflation(=value)?] [--batch-size=value]

 [--batch-time-interval=value] [--persistent(=value)?] [--disk-store=value]

 [--disk-synchronous(=value)?] [--max-queue-memory=value]

 [--dispatcher-threads=value] [--order-policy=value]

 [--gateway-event-filter=value(,value)*]

 [--gateway-event-substitution-filter=value]

 [--listener-param=value(,value)*] [--forward-expiration-destroy(=value)?]

 [--pause-event-processing(=value)?]

Parameters, create async-event-queue:

Name Description Default Value

‑‑id Required. ID of the asynchronous event
queue

‑‑groups The queue is created on all members
of the group(s). If you do not specify a
group, the queue is created on all
members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 855

Name Description Default Value

‑‑parallel Specifies whether the queue is parallel. false

‑‑enable-batch-conflation Enables batch conflation. false

‑‑batch-size Maximum number of messages that a
batch can contain.

100

‑‑batch-time-interval Maximum amount of time, in ms, that
can elapse before a batch is delivered.

5

‑‑persistent Boolean value that determines whether
VMware GemFire persists this queue.

false

If specified with out a value, default is
true.

‑‑disk-store Named disk store to use for storing
queue overflow, or for persisting the
queue. If you specify a value, the
named disk store must exist. If you
specify a null value, VMware GemFire
uses the default disk store for overflow
and queue persistence.

‑‑disk-synchronous Specifies whether disk writes are
synchronous.

true

‑‑max-queue-memory Maximum amount of memory in
megabytes that the queue can
consume before overflowing to disk.

100

‑‑dispatcher-threads Number of threads used for sending
events.

5

‑‑order-policy Policy for dispatching events when
‑‑dispatcher-threads is > 1. Possible
values are THREAD, KEY, PARTITION.

KEY

‑‑gateway-event-filter List of fully qualified class names of
GatewayEventFilters for this queue.
These classes filter events before
dispatching to remote servers.

‑‑gateway-event-substitution-filter Fully-qualified class name of the
GatewayEventSubstitutionFilter for
this queue.

‑‑listener Required. Fully-qualified class name of
Async Event Listener for this queue

‑‑listener-param Parameter name and value to be
passed to the Async Event Listener
class. Optionally, you can specify a
value by following the parameter
name with the # character and the
value. For example:

--listener-param=myParam#

24

VMware GemFire 9.10 Documentation

VMware by Broadcom 856

Name Description Default Value

‑‑forward-expiration-destroy Enables forwarding of expiration
destroy operations to
AsyncEventListener instances. If
specified without a value, this
parameter is set to “false”.

false

‑‑pause-event-processing Specifies whether event dispatching
from the queue to the listener(s) will
be paused when the AsyncEventQueue
is started. If specified without a value,
this parameter is set to "true".

false

Example Commands:

create async-event-queue --id=myAEQ --listener=myApp.myListener

create defined indexes

Creates all the defined indexes.

See also define index and clear defined indexes.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

create defined indexes [--members=value(,value)*] [--groups=value(,value)*]

Parameters, create defined indexes:

Name Description Default

‑‑members Name/Id of the member(s) on which index will be created.

‑‑groups The index will be created on all the members in the member group(s).

Example Commands:

create defined indexes

Sample Output:

gfsh>create defined indexes

Indexes successfully created. Use list indexes to get details.

1. ubuntu(server1:17682)<v1>:27574

If index creation fails, you may receive an error message in gfsh similar to the following:

gfsh>create defined indexes

Exception : org.apache.geode.cache.query.RegionNotFoundException ,

Message : Region ' /r3' not found: from /r3Occurred on following members

1. india(s1:17866)<v1>:27809

VMware GemFire 9.10 Documentation

VMware by Broadcom 857

create disk-store

Defines a pool of one or more disk stores, which can be used by regions and client subscription
queues, and gateway sender queues for WAN distribution.

See Disk Storage

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

create disk-store --name=value --dir=value(,value)* [--allow-force-compaction(=valu

e)?]

[--auto-compact(=value)?] [--compaction-threshold=value] [--max-oplog-size=value]

[--queue-size=value] [--time-interval=value] [--write-buffer-size=value]

[--groups=value(,value)*]

[--disk-usage-warning-percentage=value] [--disk-usage-critical-percentage=value]

Parameters, create disk-store:

Name Description Default Value

‑‑name Required. The name of this disk store.

‑‑dir Required. One or more directory names where the disk
store files are written. Optionally, directory names may be
followed by # and the maximum number of megabytes
that the disk store can use in the directory. For example:

--dir=/data/ds1

--dir=/data/ds2#5000

If the specified directory does not exist, the command will
create the directory for you.

If the maximum directory
size in megabytes is not
specified, it will be set to
`2147483647` (the value of
`Integer.MAX_VALUE`)

‑‑allow-force-compaction Set to true to allow disk compaction to be forced on this
disk store.

false

‑‑auto-compact Set to true to automatically compact the disk files. true

‑‑compaction-threshold Percentage (0..100) of live data (non-garbage content)
remaining in the operation log, below which it is eligible
for compaction. As garbage is created (by entry destroys,
entry updates, and region destroys and creates) the
percentage of remaining live data declines. Falling below
this percentage initiates compaction if auto-compaction
is turned on. If not, the file will be eligible for manual
compaction at a later time.

50

‑‑max-oplog-size Maximum size, in megabytes, for an oplog file. When the
oplog file reaches this size, the file is rolled over to a new
file.

1024

‑‑queue-size Maximum number of operations that can be
asynchronously queued to be written to disk.

0

‑‑time-interval The number of milliseconds that can elapse before
unwritten data is written to disk.

1000

VMware GemFire 9.10 Documentation

VMware by Broadcom 858

Name Description Default Value

--groups The disk store is created on all members of the group(s). If
no group is specified, the disk store is created on all
members.

‑‑write-buffer-size The size in bytes of the write buffer that this disk store uses
when writing data to disk. Larger values may increase
performance but use more memory. The disk store
allocates one direct memory buffer of this size.

32768

‑‑disk-usage-warning-
percentage

Disk usage above this threshold generates a warning
message. For example, if the threshold is set to 90%, then
on a 1 TB drive falling under 100 GB of free disk space
generates the warning.

Set to "0" (zero) to disable.

90

‑‑disk-usage-critical-
percentage

Disk usage above this threshold generates an error
message and shuts down the member's cache. For
example, if the threshold is set to 99%, then falling under
10 GB of free disk space on a 1 TB drive generates the error
and shuts down the cache.

Set to "0" (zero) to disable.

99

Example Commands:

create disk-store --name-store1 --dir=/data/ds1

Sample Output:

gfsh>create disk-store --name-store1 --dir=/data/ds1

Member | Result

------- | -------

server1 | Success

create gateway-receiver
Creates gateway receivers. You can only have one gateway receiver on each member, and unlike a
gateway sender, you do not need to specify an identifier for the gateway receiver.

The create occurs on all servers, unless the --groups or --members option is specified.

If the gateway receiver creation succeeds on at least one member, this gfsh command exits with
an exit code indicating success.

Outputs a tabular format status of each member’s gateway receiver, independent of the success or
failure of the creation.

See Gateway Receivers.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

VMware GemFire 9.10 Documentation

VMware by Broadcom 859

create gateway-receiver [--groups=value(,value)*] [--members=value(,value)*]

 [--manual-start=(value)?] [--start-port=value] [--end-port=value] [--bind-address=va

lue]

 [--maximum-time-between-pings=value] [--socket-buffer-size=value]

 [--gateway-transport-filter=value(,value)*] [--hostname-for-senders=value]

 [--if-not-exists=(value)?]

Parameters, create gateway-receiver:

Name Description
Default
Value

‑‑groups Gateway receivers are created on the members of the group(s).

‑‑members Name of the member(s) on which to create the gateway receiver. For
backward compatibility, no gateway receiver configuration is persisted if
this option is specified and cluster configuration is enabled.

‑‑manual-start Boolean value that specifies whether you need to manually start the gateway
receiver. When specified without providing a boolean value or when
specified and set to "true", the gateway receiver must be started manually.

false

‑‑start-port
Starting port number to use when specifying the range of possible port
numbers this gateway receiver will use to connects to gateway senders in
other sites. VMware GemFire chooses an unused port number in the
specified port number range to start the receiver. If no port numbers in the
range are available, an exception is thrown.

The start-port and end-port values are inclusive. For example, if you
specify start-port="50510" and end-port="50520", VMware GemFire
chooses a port value from 50510 to 50520.

5000

‑‑end-port
Defines the upper bound port number to use when specifying the range of
possible port numbers this gateway receiver will use to for connections from
gateway senders in other sites. VMware GemFire chooses an unused port
number in the specified port number range to start the receiver. If no port
numbers in the range are available, an exception is thrown.

The end-port and start-port values are inclusive. For example, if you
specify start-port="50510" and end-port="50520", VMware GemFire
chooses a port value from 50510 to 50520.

5500

‑‑bind-address Network address for connections from gateway senders in other sites.
Specify the address as a literal string value.

‑‑socket-buffer-size An integer value that sets the buffer size (in bytes) of the socket connection
for this gateway receiver. This value should match the socket-buffer-size
setting of gateway senders that connect to this receiver.

32768

‑‑gateway-transport-filter The fully qualified class name of the GatewayTransportFilter to be added to
the Gateway receiver.

‑‑maximum-time-between-
pings

Integer value that specifies the time interval (in milliseconds) to use between
pings to connected WAN sites. This value determines the maximum amount
of time that can elapse before a remote WAN site is considered offline.

60000

‑‑hostname-for-senders The host name or IP address told to gateway senders as the address for them
to connect to. The locator informs gateway senders of this value.

VMware GemFire 9.10 Documentation

VMware by Broadcom 860

Name Description
Default
Value

‑‑if-not-exists When specified without providing a boolean value or when specified and set
to "true", gateway receivers will not be created if they already exist.
Command output reports the status of each creation attempt.

false

Example Commands:

gfsh>create gateway-receiver --members=server1

Sample Output:

gfsh>create gateway-receiver --members=server1

Member | Status

------- | ---

server1 | GatewayReceiver created on member "server1" and will listen on the port "0"

create gateway-sender
Creates a gateway sender on one or more members of a cluster.

See Gateway Senders.

Note: The gateway sender configuration for a specific sender id must be identical on each VMware
GemFire member that hosts the gateway sender.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

create gateway-sender --id=value --remote-distributed-system-id=value

 [--groups=value(,value)*] [--members=value(,value)*] [--parallel(=value)?]

 [--manual-start=value] [--socket-buffer-size=value] [--socket-read-timeout=value]

 [--enable-batch-conflation=value] [--batch-size=value] [--batch-time-interval=valu

e]

 [--enable-persistence=value] [--disk-store-name=value] [--disk-synchronous=value]

 [--maximum-queue-memory=value] [--alert-threshold=value] [--dispatcher-threads=valu

e]

 [--order-policy=value][--gateway-event-filter=value(,value)*]

 [--gateway-transport-filter=value(,value)*]

 [--group-transaction-events(=value)?]

Parameters, create gateway-sender:

Name Description Default

‑‑id Required. Unique identifier for the gateway sender, usually
an identifier associated with a physical location.

‑‑remote-distributed-system-id Required. ID of the remote cluster where this gateway
sender sends events.

‑‑groups Gateway senders are created on the members of the
group(s).

VMware GemFire 9.10 Documentation

VMware by Broadcom 861

Name Description Default

‑‑members Name of the member(s) on which to create the gateway
sender.

‑‑parallel When set to true, specifies a parallel Gateway Sender. false

‑‑enable-batch-conflation Boolean value that determines whether VMware GemFire
should conflate messages.

false

‑‑manual-start Deprecated. Boolean value that specifies whether you
need to manually start the gateway sender. If you supply a
null value, the default value of false is used, and the
gateway sender starts automatically. A manual start is
likely to cause data loss, so manual start should never be
used in a production system.

false

‑‑socket-buffer-size Size of the socket buffer that sends messages to remote
sites. This size should match the size of the socket-
buffer-size attribute of remote gateway receivers that
process region events.

32768

‑‑socket-read-timeout Amount of time in milliseconds that the gateway sender
will wait to receive an acknowledgment from a remote
site. By default this is set to 0, which means there is no
timeout. If you do set this timeout, you must set it to a
minimum of 30000 (milliseconds). Setting it to a lower
number will generate an error message and reset the value
to the default of 0.

0

‑‑batch-size Maximum number of messages that a batch can contain. 100

‑‑batch-time-interval Maximum number of milliseconds that can elapse between
sending batches.

1000

‑‑enable-persistence Boolean value that determines whether VMware GemFire
persists the gateway queue.

false

‑‑disk-store-name Named disk store to use for storing the queue overflow, or
for persisting the queue. If you specify a value, the named
disk store must exist. If you specify a null value, VMware
GemFire uses the default disk store for overflow and
queue persistence.

‑‑disk-synchronous For regions that write to disk, boolean that specifies
whether disk writes are done synchronously for the region.

true

‑‑maximum-queue-memory Maximum amount of memory in megabytes that the queue
can consume before overflowing to disk.

100 MB

‑‑alert-threshold Maximum number of milliseconds that a region event can
remain in the gateway sender queue before VMware
GemFire logs an alert.

0

‑‑dispatcher-threads Number of dispatcher threads that are used to process
region events from a gateway sender queue or
asynchronous event queue.

5

VMware GemFire 9.10 Documentation

VMware by Broadcom 862

Name Description Default

‑‑order-policy When the dispatcher-threads attribute is greater than 1,
order-policy configures the way in which multiple
dispatcher threads process region events from a serial
gateway queue or serial asynchronous event queue. This
attribute can have one of the following values:
key

When distributing region events from the local
queue, multiple dispatcher threads preserve the
order of key updates.

thread
When distributing region events from the local
queue, multiple dispatcher threads preserve the
order in which a given thread added region events
to the queue.

partition
When distributing region events from the local
queue, multiple dispatcher threads preserve the
order in which region events were added to the
local queue. For a partitioned region, this means
that all region events delivered to a specific
partition are delivered in the same order to the
remote VMware GemFire site. For a distributed
region, this means that all key updates delivered
to the local gateway sender queue are distributed
to the remote site in the same order.

You cannot configure the order-policy for a parallel
event queue, because parallel queues cannot preserve
event ordering for regions. Only the ordering of events for
a given partition (or in a given queue of a distributed
region) can be preserved.

key

‑‑gateway-event-filter A list of fully-qualified class names of GatewayEventFilters
(separated by commas) to be associated with the
GatewaySender. This serves as a callback for users to filter
out events before dispatching to a remote cluster. For
example:

gateway-event-filter=com.user.filters.My

Filter1,com.user.filters.MyFilters2

‑‑gateway-transport-filter The fully-qualified class name of the
GatewayTransportFilter to be added to the
GatewaySender.

VMware GemFire 9.10 Documentation

VMware by Broadcom 863

Name Description Default

‑‑group-transaction-events Boolean value to ensure that all the events of a transaction
are sent in the same batch, i.e., they are never spread
across different batches.

Only allowed to be set on gateway senders with the
parallel attribute set to false and dispatcher-threads
attribute equal to 1, or on gateway senders with the
parallel attribute set to true. Also, the enable-batch-
conflation attribute of the gateway sender must be set to
false.

Note: In order to work for a transaction, the regions to
which the transaction events belong must be replicated by
the same set of senders with this flag enabled.

Note: If the above condition is not fulfilled or under very
high load traffic conditions, it may not be guaranteed that
all the events for a transaction will be sent in the same
batch, even if group-transaction-events is enabled. The
number of batches sent with incomplete transactions can
be retrieved from the GatewaySenderMXBean bean.

false

‑‑enforce-threads-connect-same-
receiver

This parameter applies only to serial gateway senders. If
true, receiver member id is checked by all dispatcher
threads when the connection is established to ensure they
connect to the same receiver. Instead of starting all
dispatcher threads in parallel, one thread is started first,
and after that the rest are started in parallel.

false

Example Commands:

gfsh>create gateway-sender --remote-distributed-system-id="2" --id="sender2"

Sample Output:

gfsh>create gateway-sender --remote-distributed-system-id="2" --id="sender2"

Member | Status

------- | --

server1 | GatewaySender "sender2" created on "server1"

create index
Create an index that can be used when executing queries.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

See Working with Indexes.

Syntax:

create index --name=value --expression=value --region=value

[--members=value(,value)*] [--type=value] [--groups=value(,value)*]

Parameters, create index:

VMware GemFire 9.10 Documentation

VMware by Broadcom 864

Name Description Default

‑‑name Required. Name of the index to create.

‑‑expressi
on

Required. Field of the region values that are referenced by the index.

‑‑region Required. Name/Path of the region which corresponds to the “from” clause in a query.

‑‑member
s

Name/Id of the member(s) on which index will be created.

‑‑type Type of the index. Valid values are: range and key. (A third type, hash, is still recognized but
hash indexes are deprecated.)

range

‑‑groups The index will be created on all the members in the group(s).

Example Commands:

create index --name=myKeyIndex --expression=region1.Id --region=region1 --type=key

Sample Output:

gfsh>create index --name=myKeyIdex --expression=region1.Id --region=region1 --type=key

Index successfully created with following details

Name : myKeyIdex

Expression : region1.Id

RegionPath : /region1

Members which contain the index

1. ubuntu(server1:17682)<v1>:27574

gfsh>create index --name=myIndex2 --expression=exp2 --region=/exampleRegion

Failed to create index "myIndex2" due to following reasons

Index "myIndex2" already exists. Create failed due to duplicate name.

Occurred on following members

1. ubuntu(server1:17682)<v1>:27574

create jndi-binding
Create a JNDI binding that specifies resource attributes which describe a JDBC connection.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

create jndi-binding --name=value --url=value

 [--jdbc-driver-class=value] [--type=value] [--blocking-timeout-seconds=value]

 [--conn-pooled-datasource-class=value] [--idle-timeout-seconds=value]

 [--init-pool-size=value] [--login-timeout-seconds=value]

 [--managed-conn-factory-class=value] [--max-pool-size=value] [--password=value]

 [--transaction-type=value] [--username=value] [--xa-datasource-class=value]

 [--if-not-exists(=value)?] [--datasource-config-properties=value(,value)*]

Parameters, create jndi-binding:

VMware GemFire 9.10 Documentation

VMware by Broadcom 865

Name Description Default

‑‑name Required. Name of the binding to create.

‑‑url or
‑‑connecti
on-url

Required. the JDBC driver connection URL string. For example,
jdbc:hsqldb:hsql://localhost:1701.

‑‑jdbc-
driver-
class

The fully qualified name of the JDBC driver class.

‑‑type Type of the XA datasource. One of: MANAGED, SIMPLE, POOLED, or XAPOOLED. If --type=POOLED and
a --conn-pooled-datasource-class option is not specified, a pool will be created using Hikari.
For more information on Hikari, see https://github.com/brettwooldridge/HikariCP.

SIMPLE

‑‑blocking
-timeout-
seconds

Specifies the maximum time, in seconds, to block while waiting for a connection before
throwing an exception.

‑‑conn-
pooled-
datasourc
e-class

The fully qualified name of the connection pool implementation that holds XA datasource
connections. If --type=POOLED, then this class must implement
org.apache.geode.datasource.PooledDataSourceFactory.

‑‑idle-
timeout-
seconds

Specifies the time, in seconds, that a connection may be idle before being closed.

‑‑init-
pool-size

Specifies the initial number of connections the pool should hold.

‑‑login-
timeout-
seconds

The quantity of seconds after which the client thread will be disconnected due to inactivity.

‑‑manage
d-conn-
factory-
class

The fully qualified name of the connection factory implementation.

‑‑max-
pool-size

The maximum number of connections that may be created in a pool.

‑‑passwor
d

The default password used when creating a new connection.

‑‑transacti
on-type

Type of the transaction. One of XATransaction, NoTransaction, or LocalTransaction.

‑‑usernam
e

Specifies the user name to be used when creating a new connection. When specified, if the --
password option is not also specified, gfsh will prompt for the password.

‑‑xa-
datasourc
e-class

The fully qualified name of the javax.sql.XADataSource implementation class.

‑‑if-not-
exists

When true, a duplicate jndi binding will not be created if one with the same name already exists.
When false, an attempt to create a duplicate jndi binding results in an error. The option is set to
true if the option is specified without a value.

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 866

https://github.com/brettwooldridge/HikariCP

Name Description Default

‑‑datasour
ce-
config-
properties

Properties for the custom XADataSource driver. Append a JSON string containing a (name, type,
value) tuple to set any property. If --type=POOLED, the properties will configure the database
data source. If --type=POOLED and the value of a name within the tuple begins with the string
“pool.”, then the properties will configure the pool data source. For example: --datasource-
config-properties={'name':'name1','type':'type1','value':'value1'},

{'name':'pool.name2','type':'type2','value':'value2'}

Example Commands:

gfsh>create jndi-binding --name=jndi1 --type=SIMPLE \

 --jdbc-driver-class=org.apache.derby.jdbc.EmbeddedDriver \

 --url="jdbc:derby:newDB;create=true"

create lucene index

Create a Lucene index. For details on Lucene index creation, see Apache Lucene Integration.

For additional Lucene-related gfsh commands, see describe lucene index, destroy lucene index, list
lucene indexes and search lucene.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

create lucene index --name=value --region=value --field=value(,value)*

 [--analyzer=value(,value)*] [--serializer=value] [--group=value(,value)*]

Parameters, create lucene index:

Name Description Default

‑‑nam
e

Required. Name of the index to create.

‑‑regio
n

Required. Name/Path of the region on which to define the index.

‑‑field Required. Field(s) of the region values that are referenced by the index, specified as a comma-
separated list. To treat the entire value as a single field, specify __REGION_VALUE_FIELD.

‑‑analy
zer

Analyzer(s) to extract terms from text, specified as a comma-separated list. If not specified, the
default analyzer is used for all fields. If specified, the number of analyzers must exactly match the
number of fields specified. When listing analyzers, use the keyword DEFAULT for any field that
will use the default analyzer.

Lucene
StandardAn

alyzer

‑‑serial
izer

Fully qualified class name of the serializer to be used with this index. The serializer must
implement the LuceneSerializer interface. You can use the built-in
org.apache.geode.cache.lucene.FlatFormatSerializer to index and search collections and
nested fields. If not specified, the simple default serializer is used, which indexes and searches
only the top level fields of the region objects.

simple
serializer

‑‑grou
p

The index will be created on all the members in the specified member groups.

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 867

gfsh>create lucene index --name=customerIndex --region=/Customer

 --field=__REGION_VALUE_FIELD

gfsh>create lucene index --name=analyzerIndex --region=/Person

 --field=name,email,address,revenue

 --analyzer=DEFAULT,org.apache.lucene.analysis.core.KeywordAnalyzer,

 examples.MyCharacterAnalyzer,DEFAULT

Sample Output:

gfsh>create lucene index --name=testIndex --region=testRegion

 --field=__REGION_VALUE_FIELD

 Member | Status

-------------------------------------- | ---------------------------------

192.168.1.23(server505:17200)<v1>:1025 | Successfully created lucene index

create region

Create a region with given path and configuration.

You must specify either a --type or a --template-region for initial configuration when creating a
region. Specifying a --key-constraint and --value-constraint makes object type information
available during querying and indexing.

See Region Data Storage and Distribution.

See Specifying JSON within Command-Line Options for syntax details.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

 create region --name=value [--type=value] [--template-region=value]

 [--groups=value(,value)*] [--if-not-exists(=value)?]

 [--key-constraint=value] [--value-constraint=value]

 [--enable-statistics=value] [--entry-idle-time-expiration=value]

 [--entry-idle-time-expiration-action=value]

 [--entry-time-to-live-expiration=value]

 [--entry-time-to-live-expiration-action=value]

 [--entry-idle-time-custom-expiry=value] [--entry-time-to-live-custom-expiry=value]

 [--region-idle-time-expiration=value]

 [--region-idle-time-expiration-action=value]

 [--region-time-to-live-expiration=value]

 [--region-time-to-live-expiration-action=value] [--disk-store=value]

 [--enable-synchronous-disk=value] [--enable-async-conflation=value]

 [--enable-subscription-conflation=value] [--cache-listener=value(,value)*]

 [--cache-loader=value] [--cache-writer=value]

 [--async-event-queue-id=value(,value)*]

 [--gateway-sender-id=value(,value)*] [--enable-concurrency-checks=value]

 [--enable-cloning=value] [--concurrency-level=value]

 [--colocated-with=value] [--local-max-memory=value]

 [--recovery-delay=value] [--redundant-copies=value]

 [--startup-recovery-delay=value] [--total-max-memory=value]

 [--total-num-buckets=value] [--compressor=value] [--off-heap(=value)?]

 [--partition-listener=value(,value)*] [--partition-resolver=value]

 [--eviction-entry-count=value] [--scope=value]

VMware GemFire 9.10 Documentation

VMware by Broadcom 868

 [--eviction-max-memory=value] [--eviction-action=value]

 [--eviction-object-sizer=value]

Parameters, create region:

Name Description Default

‑‑name Required. Name/Path of the region to be created.

‑‑type Required (if template-region is not specified.) Type of
region to create. Options include: PARTITION,
PARTITION_REDUNDANT, REPLICATE, LOCAL, etc.

To get a list of of all region type options, add the ‑‑type
parameter and then select the TAB key to display a full list.

‑‑template-region Required (if type is not specified.) Name/Path of the
region whose attributes should be duplicated when
creating this region.

‑‑groups Group(s) of members on which the region will be created.

‑‑if-not-exists A new region will not be created if a region with the same
name already exists. By default, an attempt to create a
duplicate region is reported as an error. If this option is
specified without a value or is specified with a value of
true, then gfsh displays a "Skipping..." acknowledgement,
but does not throw an error.

false

‑‑key-constraint Fully qualified class name of the objects allowed as region
keys. Ensures that keys for region entries are all of the
same class.

‑‑value-constraint Fully qualified class name of the objects allowed as region
values. If not specified, then region values can be of any
class.

‑‑enable-statistics Whether to gather statistics for the region. Must be true to
use expiration on the region.

‑‑entry-idle-time-
expiration

How long, in seconds, the region's entries can remain in
the cache without being accessed.

no expiration

‑‑entry-idle-time-
expiration-action

Action to be taken on an entry that has exceeded the idle
expiration. Valid expiration actions include destroy, local-
destroy, invalidate (default), local-invalidate.

‑‑entry-time-to-live-
expiration

How long, in seconds, the region's entries can remain in
the cache without being accessed or updated. The default
is no expiration of this type.

no expiration

‑‑entry-time-to-live-
expiration-action

Action to be taken on an entry that has exceeded the TTL
expiration. Valid expiration actions include destroy, local-
destroy, invalidate (default), local-invalidate.

‑‑entry-idle-time-
custom-expiry

The name of a class implementing CustomExpiry for entry
idle time. Append a JSON string for initialization
properties.

VMware GemFire 9.10 Documentation

VMware by Broadcom 869

Name Description Default

‑‑entry-time-to-live-
custom-expiry

The name of a class implementing CustomExpiry for entry
time to live. Append a JSON string for initialization
properties.

‑‑region-idle-time-
expiration

How long, in seconds, the region can remain in the cache
without its entries being accessed. The default is no
expiration of this type.

‑‑region-idle-time-
expiration-action

Action to be taken on a region that has exceeded the idle
expiration. Valid expiration actions include destroy, local-
destroy, invalidate (default), local-invalidate. The destroy
and local-destroy actions destroy the region. The
invalidate and local-invalidate actions leave the region in
place, but invalidate all of its entries.

‑‑region-time-to-
live-expiration

How long, in seconds, the region can remain in the cache
without its entries being accessed or updated. The default
is no expiration of this type.

no expiration

‑‑region-time-to-
live-expiration-action

Action to be taken on a region that has exceeded the TTL
expiration. Valid expiration actions include destroy, local-
destroy, invalidate (default), local-invalidate. The destroy
and local-destroy actions destroy the region. The
invalidate and local-invalidate actions leave the region in
place, but invalidate all of its entries.

‑‑disk-store Disk Store to be used by this region. The list disk-stores
command can be used to display existing disk stores.

‑‑enable-
synchronous-disk

Whether writes are done synchronously for regions that
persist data to disk.

‑‑enable-async-
conflation

Whether to allow aggregation of asynchronous TCP/IP
messages sent by the producer member of the region. A
false value causes all asynchronous messages to be sent
individually.

‑‑enable-
subscription-
conflation

Whether the server should conflate its messages to the
client. A false value causes all server-client messages to
be sent individually.

‑‑cache-listener Fully qualified class name of a plug-in to be instantiated
for receiving after-event notification of changes to the
region and its entries. Any number of cache listeners can
be configured. A fully qualified class name may be
appended with a JSON specification that will be parsed
to become the fields of the parameter to the init()
method for a class that implements the Declarable
interface.

VMware GemFire 9.10 Documentation

VMware by Broadcom 870

Name Description Default

‑‑cache-loader Fully qualified class name of a plug-in to be instantiated
for receiving notification of cache misses in the region. At
most, one cache loader can be defined in each member
for the region. For distributed regions, a cache loader may
be invoked remotely from other members that have the
region defined. A fully qualified class name may be
appended with a JSON specification that will be parsed
to become the fields of the parameter to the
initialize() method for a class that implements the
Declarable interface.

‑‑cache-writer Fully qualified class name of a plug-in to be instantiated
for receiving before-event notification of changes to the
region and its entries. The plug-in may cancel the event.
At most, one cache writer can be defined in each member
for the region. A fully qualified class name may be
appended with a JSON specification that will be parsed
to become the fields of the parameter to the init()
method for a class that implements the Declarable
interface.

‑‑async-event-queue-
id

IDs of the Async Event Queues that will be used for write-
behind operations.

‑‑gateway-sender-id IDs of the Gateway Senders to which data will be routed.

‑‑enable-
concurrency-checks

Whether Region Version Vectors are implemented. Region
Version Vectors are an extension to the versioning scheme
that aid in synchronization of replicated regions.

‑‑enable-cloning Determines how fromDelta applies deltas to the local
cache for delta propagation. When true, the updates are
applied to a clone of the value and then the clone is saved
to the cache. When false, the value is modified in place in
the cache.

‑‑concurrency-level Estimate of the maximum number of application threads
that will concurrently access a region entry at one time.
This attribute does not apply to partitioned regions.

‑‑colocated-with Central Region with which this region should be
colocated.

‑‑local-max-memory Maximum amount of memory, in megabytes, to be used
by the region in this process. (The default is 90% of
available heap.)

‑‑recovery-delay Delay in milliseconds that existing members will wait after
a member crashes before restoring this region's
redundancy on the remaining members. The default value
(-1) indicates that redundancy will not be recovered after a
failure.

‑‑redundant-copies Number of extra copies of buckets desired. Extra copies
allow for both high availability in the face of VM departure
(intended or unintended) and load balancing read
operations. (Allowed values: 0, 1, 2 and 3)

VMware GemFire 9.10 Documentation

VMware by Broadcom 871

Name Description Default

‑‑startup-recovery-
delay

Delay in milliseconds that new members will wait before
assuming their share of cluster-level redundancy. This
allows time for multiple regions to start before the
redundancy workload is parceled out to the new
members. A value of -1 indicates that adding new
members will not trigger redundancy recovery.

The default is to recover
redundancy immediately when a
new member is added.

‑‑total-max-memory Maximum amount of memory, in megabytes, to be used
by the region in all processes.

‑‑total-num-buckets Total number of hash buckets to be used by the region in
all processes.

113

‑‑compressor Java class name that implements compression for the
region. You can write a custom compressor that
implements org.apache.geode.compression.Compressor
or you can specify the Snappy compressor
(org.apache.geode.compression.SnappyCompressor),
which is bundled with VMware GemFire. See Region
Compression.

no compression

‑‑off-heap Specifies whether the region values are stored in heap
memory or off-heap memory. When true, region values
are in off-heap memory. If the parameter is specified
without a value, the value of true is used.

false

‑‑partition-listener Specifies fully-qualified class names of one or more
custom partition listeners.

‑‑partition-resolver Specifies the full path to a custom partition resolver.
Specify
org.apache.geode.cache.util.StringPrefixPartition

Resolver to use the included string prefix
PartitionResolver.

‑‑eviction-entry-
count

Enables eviction, where the eviction policy is based on the
number of entries in the region.

‑‑eviction-max-
memory

Enables eviction, where the eviction policy is based on the
amount of memory consumed by the region, specified in
megabytes.

‑‑eviction-action Action to take when the eviction threshold is reached.

local-
destroy

Entry is destroyed locally. Use with caution -
may lead to inconsistencies.

overflo
w-to-
disk

Entry is overflowed to disk. For partitioned
regions, this provides the most reliable read
behavior across the region.

‑‑eviction-object-
sizer

Specifies your implementation of the ObjectSizer interface
to measure the size of objects in the region. The sizer
applies only to heap and memory based eviction.

VMware GemFire 9.10 Documentation

VMware by Broadcom 872

Name Description Default

‑‑scope Specifies the scope of the Replicated region. This field can
be only used if the --type parameter is set with a
replicated region type. This parameter is invalid for all
other region types. If this parameter is not set and --type
is set to a replicated region, the the default scope
DISTRIBUTED_ACK is set.

Example Commands:

create region --name=region1 --type=REPLICATE_PERSISTENT \

--cache-writer=org.apache.geode.examples.MyCacheWriter \

--group=Group1 --disk-store=DiskStore1

create region --name=region12 --template-region=/region1

create region --name=region2 --type=REPLICATE \

--cache-listener=org.apache.geode.examples.MyCacheListener1,\

org.apache.geode.examples.MyCacheListener2 \

--group=Group1,Group2

create region --name=region3 --type=PARTITION_PERSISTENT --redundant-copies=2 \

--total-max-memory=1000 --startup-recovery-delay=5 --total-num-buckets=100 \

--disk-store=DiskStore2 --cache-listener=org.apache.geode.examples.MyCacheListener3 \

--group=Group2

create region --name=region4 --type=REPLICATE_PROXY \

--cache-listener=org.apache.geode.examples.MyCacheListener1 --group=Group1,Group2

create region --name=myRegion --type=REPLICATE --eviction-max-memory=100 \

--eviction-action=overflow-to-disk --eviction-object-sizer=my.company.geode.MySizer

create region --name=r1 --type=PARTITION \

--cache-loader=org.example.myLoader{'URL':'jdbc:cloudscape:rmi:MyData'}

Sample Output:

gfsh>create region --name=myRegion --type=LOCAL

Member | Status

------- | ---------------------------------------

server1 | Region "/myRegion" created on "server1"

debug
Enable or disable debugging output in gfsh.

Availability: Online or offline.

Syntax:

debug --state=value

Name Description Default Value

‑‑state Whether to turn debugging ON or OFF. Valid options are: ON, OFF (Case insensitive) OFF

VMware GemFire 9.10 Documentation

VMware by Broadcom 873

Table 1. Debug Parameters

Example Commands:

debug --state=off

debug --state=on

Sample Output:

gfsh>debug --state=on

Debug is on

define index
Define an index that can be used when executing queries. Then, you can execute a single
command to create multiple indexes all at once using create defined indexes.

Availability: Online or offline.

Syntax:

define index --name=value --expression=value --region=value [--type=value]

Name Description Default Value

‑‑name Required. Name of the index to define.

‑‑expression Required. Field of the region values that are referenced by the index.

‑‑region Required. Name/Path of the region which corresponds to the “from” clause in a query.

‑‑type Type of the index. Valid values are: range, key and hash. range

Table 1. Define Index Parameters

Example Commands:

gfsh> define index --name=myIndex1 --expression=exp1 --region=/exampleRegion

gfsh> define index --name=myIndex2 --expression=”c.exp2” --region="/exampleRegion e,

e.collection1 c"

gfsh> define index --name=myIndex3 --expression=exp3 --region=/exampleRegion --type=ha

sh

//then to create the indexes, execute:

gfsh> create defined indexes

Sample Output:

gfsh>define index --name=myIndex1 --expression=exp1 --region=/exampleRegion

Index successfully defined with following details

Name : myIndex1

VMware GemFire 9.10 Documentation

VMware by Broadcom 874

Expression : exp1

RegionPath : /exampleRegion

deploy

Deploy JAR-packaged applications to a member or members.

Only one of either --jars or --dir may be specified.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

deploy [--groups=value(,value)*] [--jars=value(,value)*] [--dir=value]

Name Description

‑‑group
s

Group(s) to which the specified JARs will be deployed. If this option is not specified, the deployment will
occur on all members.

‑‑jars Path(s) of the JAR(s) to deploy.

‑‑dir Directory from which to deploy the JARs.

Table 1. Deploy Parameters

Example Commands:

deploy --jars=group1_functions.jar --groups=Group1

deploy --dir=libs/group1-libs --groups=Group2

Sample Output:

gfsh> deploy --jars=group1_functions.jar --groups=Group1

 Member | Deployed JAR | Deployed JAR Location

--------- | -------------------- | ---

datanode1 | group1_functions.jar | /usr/local/gemfire/deploy/GF#group1_functions.jar#1

datanode2 | group1_functions.jar | /usr/local/gemfire/deploy/GF#group1_functions.jar#1

gfsh> deploy --dir=libs/group1-libs --groups=Group2

Deploying files: group2_functions.jar, group2_dependencies.jar

Total file size is: 0.64MB

Continue? (Y/n): Y

 Member | Deployed JAR | Deployed JAR Location

--------- | ----------------------- | ---

datanode3 | group2_functions.jar | /usr/local/gemfire/deploy/GF#group2_functions.ja

r#1

datanode3 | group2_dependencies.jar | /usr/local/gemfire/deploy/GF#group2_dependencie

s.jar#1

datanode4 | group2_functions.jar | /usr/local/gemfire/deploy/GF#group2_functions.ja

r#1

VMware GemFire 9.10 Documentation

VMware by Broadcom 875

datanode4 | group2_dependencies.jar | /usr/local/gemfire/deploy/GF#group2_dependencie

s.jar#1

describe

Display details of a member’s configuration, shell connection, disk-stores, members, or regions.

describe client

Displays details about a specified client.

describe config

Display the configuration of a member.

describe connection

Display connection information details.

describe disk-store

Display information about a member’s disk store.

describe jndi-binding

Display information about the configuration of a JNDI binding.

describe lucene index

Display information about a Lucene index.

describe member

Display details of a member with given name/id.

describe offline-disk-store

Display information about an offline member’s disk store.

describe query-service

Display information about the configuration of the query service.

describe region

Display the attributes and key information of a region.

describe client

Displays details about a specified client.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe client --clientID=value

Parameters, describe client:

VMware GemFire 9.10 Documentation

VMware by Broadcom 876

Name Description

‑‑clientI
D

Required. ID of the client. To find a client ID, you can use the list clients command to display a list of
connected clients and their IDs.

Example Commands:

describe client --clientID=192.0.2.0(4987:loner):58922:7b3398cf

Sample Output:

gfsh>describe client --clientID=192.0.2.0(4987:loner):58922:7b3398cf

Primary Servers : 192.0.2.0(server1:5764)<v1>:15189

Secondary Servers : 192.0.2.0(server2:5891)<v2>:39082

CPU : 0

Number of Cache Listner Calls : 0

Number of Gets : 0

Number of Misses : 0

Number of Puts : 0

Number of Threads : 0

Process CPU Time (nanoseconds) : 0

Queue size : 1

UP Time (seconds) : 67

Is Durable : No

describe config
Display the configuration of a member.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe config --member=value [--hide-defaults(=value)?]

Parameters, describe config:

Name Description Default Value

‑‑member Name or ID of a member whose configuration is to be shown.

‑‑hide-defaults Whether to hide configuration information for properties with the default value. true

Example Commands:

describe config --member=Member1;

Sample Output:

gfsh>describe config --member=server1

Configuration of member : "server1"

JVM command line arguments

VMware GemFire 9.10 Documentation

VMware by Broadcom 877

-Dgemfire.mcast-port=0

-Dgemfire.locators=localhost[10334]

GemFire properties defined using the API

..

log-file : vf.gf.server.log

name : server1

GemFire properties defined at the runtime

..

log-level : finest

statistic-sampling-enabled : true

Cache attributes

..

is-server : true

Cache-server attributes

 . bind-address : localhost

describe connection

Display connection information details.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe connection

Example Commands:

describe connection

Sample Output:

gfsh>describe connection

Connection Endpoints

GemFireUser[1099]

describe disk-store

Display information about a member’s disk store.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe disk-store --member=value --name=value

Parameters, describe disk-store:

VMware GemFire 9.10 Documentation

VMware by Broadcom 878

Name Description

‑‑member Required. Name/ID of the member with the disk store to be described.

‑‑name Required. Name of the disk store to be described.

Example Commands:

describe disk-store --member=server1 --name=DiskStore1

Sample Output:

gfsh>describe disk-store --name=disk1 --member=server1

Disk Store ID : a531bc7b-5188-4510-85d7-de7de30c6671

Disk Store Name : disk1

Member ID : ubuntu(server1:7467)<v1>:35249

Member Name : server1

Allow Force Compaction : No

Auto Compaction : Yes

Compaction Threshold : 50

Max Oplog Size : 1024

Queue Size : 0

Time Interval : 1000

Write Buffer Size : 32768

Disk Usage Warning Percentage : 90

Disk Usage Critical Percentage : 99

PDX Serialization Meta-Data Stored : No

 Disk Directory | Size

------------------------------- | ----------

/home/user/server1/DiskStore1 | 2147483647

describe jndi-binding
Print the configuration information that describes a JDBC connection.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe jndi-binding --name=value

Parameters, describe jndi-binding:

Name Description

‑‑name Required. Name of the JNDI binding to be described.

Example Commands:

describe jndi-binding --name=jndi1

Sample Output:

VMware GemFire 9.10 Documentation

VMware by Broadcom 879

gfsh>describe jndi-binding --name=jndi1

 Property | Value

----------------- | ------------------------------------

type | SimpleDataSource

jndi-name | jndi1

jdbc-driver-class | org.apache.derby.jdbc.EmbeddedDriver

user-name |

connection-url | jdbc:derby:newDB

describe lucene index

Describe a Lucene index.

See also create lucene index, destroy lucene index, list lucene indexes and search lucene.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe lucene index --name=value --region=value

Parameters, describe lucene index:

Name Description

‑‑name Required. Name of the Lucene index to describe

‑‑region Required. Name and path of the region in which the Lucene index exists

Example Commands:

gfsh>describe lucene index --name=personIndex --region=/Person

Sample Output:

gfsh>describe lucene index --name=personIndex --region=/Person

Index Name | Region Path | Indexed Fields | Field Ana

lyzer | Status | Query Executions | Updates | Commits | Documents

----------- | ----------- | -- | ---------

----- | ----------- | ---------------- | ------- | ------- | ---------

personIndex | /Person | [name, email, address, streetAddress, revenue] | {}

| Initialized | 339 | 1008 | 962 | 1004

gfsh>describe lucene index --name=analyzerIndex --region=/Person

 Index Name | Region Path | Indexed Fields | Field Analyzer

| Status | Query Executions | Updates | Commits | Documents

------------- | ----------- | ---------------------- | -------------------------------

------ | ----------- | ---------------- | ------- | ------- | ---------

analyzerIndex | /Person | [address, name, email] | {address=MyCharacterAnalyzer, e

mail.. | Initialized | 1695 | 1008 | 962 | 1004

describe member

Display details of a member with given name/id.

VMware GemFire 9.10 Documentation

VMware by Broadcom 880

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe member --name=value

Parameters, describe member:

Name Description

‑‑name Required. Display information about a member, including name, ID, groups, regions, etc.

Example Commands:

describe member --name=server1

Sample Output:

gfsh>describe member --name=server1

Name : server1

Id : GemFireUser(server1:240)<v1>:64871

Host : 192.0.2.0

Regions : region4

region5

region3

region2

region1

PID : 240

Groups :

Used Heap : 5M

Max Heap : 123M

Working Dir : c:\PivotalGemFire70\Latest\server1

Log file : C:\PivotalGemFire70\Latest\server1\vf.gf.server.log

Locators : localhost[10334]

Server Bind : localhost

Server Port : 40404

Running : true

Client Connections : 0

describe offline-disk-store

Display information about an offline member’s disk store.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe offline-disk-store --name=value --disk-dirs=value(,value)* [--pdx=value] [--r

egion=value]

Parameters, describe offline-disk-store:

VMware GemFire 9.10 Documentation

VMware by Broadcom 881

Name Description

‑‑name Required. Name of the disk store to be described.

‑‑disk-dirs Required. Directory that contains the disk store files.

‑‑pdx If set (or set to true), display all the pdx types stored in the disk store.

‑‑region Name and path of the region in the disk store to be described.

Example Commands:

describe offline-disk-store --name=DiskStore1\

 --disk-dirs=/home/username/gemfire/mydiskStore1Dir

describe offline-disk-store --name=DiskStore1 --disk-dirs=/DiskDir1 --pdx=true

Sample Output:

gfsh>describe offline-disk-store --name=DiskStore1 --disk-dirs=/DiskDir1 --pdx=true

Regions in the disk store:

 /PdxTypes: -lru=none -concurrencyLevel=16 -initialCapacity=16 -loadFactor=0.75 -comp

ressor=none -statisticsEnabled=false

 /Region1: -lru=none -concurrencyLevel=16 -initialCapacity=16 -loadFactor=0.75 -compr

essor=none -statisticsEnabled=false

PDX Types:

 com.app.data.PositionPdx: id=1

 long avg20DaysVol;

 String bondRating;

 double convRatio;

 String country;

 double delta;

 long industry;

 long issuer;

 double mktValue;

 double qty;

 String secId; // identity

 String secIdIndexed;

 String secLinks;

 double sharesOutstanding;

 String underlyer;

 long volatility;

 int pid;

 int portfolioId;

 com.app.data.StockPdx: id=2

 int ID; // identity

 String pkid;

 Object position1;

 Object position2;

 Object positions;

 Object collectionHolderMap;

 String type;

 String status;

 String[] names;

 String description;

 long createTime;

 Object[] position3;

 Object aDay;

 Date date;

VMware GemFire 9.10 Documentation

VMware by Broadcom 882

PDX Enums:

 com.app.data.StockPdx$Day.Monday

describe query-service

Print the information that describes the current configuration of the query service.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe query-service

Example Commands:

describe query-service

Sample Output:

gfsh>describe query-service

Method Authorizer Class : org.apache.geode.cache.query.security.JavaBeanAccessorMethod

Authorizer

describe region

Display the attributes and key information of a region.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

describe region --name=value

Parameters, describe region:

Name Description

‑‑name Required. Name/Path of the region to be described.

Example Commands:

describe region --name=region1

Sample Output:

gfsh>describe region --name=Region1

..

Name : Region1

Data Policy : persistent replicate

Hosting Members : server-5

server-4

server-3

VMware GemFire 9.10 Documentation

VMware by Broadcom 883

server-2

Non-Default Attributes Shared By Hosting Members

Type | Name | Value

------ | --------------- | --------------------

Region | data-policy | PERSISTENT_REPLICATE

 | disk-store-name | DiskStore1

 | size | 0

 | scope | distributed-ack

...

Name : Region1

Data Policy : empty

Accessor Members : server-1

Non-Default Attributes Shared By Accessor Members

 Type | Name | Value

------ | ----------- | ---------------

Region | data-policy | EMPTY

 | size | 0

 | scope | distributed-ack

destroy

Delete or unregister functions, remove indexes, disk stores and regions.

destroy async-event-queue

Destroy an asynchronous event queue.

destroy disk-store

Delete a disk store and all files on disk used by the disk store.

destroy function

Destroy or unregister a function.

destroy gateway-receiver

Destroy a gateway receiver.

destroy gateway-sender

Destroy a gateway sender.

destroy index

Destroy or remove the specified index.

destroy jndi-binding

Destroy the specified JNDI binding.

destroy lucene index

Destroy or remove the specified Lucene index.

destroy region

VMware GemFire 9.10 Documentation

VMware by Broadcom 884

Destroy or remove a region.

destroy async-event-queue

Destroy an asynchronous event queue.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy async-event-queue --id=value [--groups=value(,value)*] [--if-exists=value]

Parameters, destroy async-event-queue:

Name Description

‑‑id Required. ID of the async event queue to be deleted.

‑‑grou
ps

Group(s) of members on which the async event queue will be destroyed. If no group is specified, the queue is
destroyed on all members.

‑‑if‑exi
sts

If the specified async event queue does not exist, gfsh responds with a message to that effect. If this parameter
is true, the response is prefixed with the label "Skipping: ". Useful for scripted tests. Default (if the parameter is
not specified): false. Default (if the parameter is specified without value): true.

Example Commands:

destroy async-event-queue --id=myAsyncEventQueue

destroy disk-store
Delete a disk store and all files on disk used by the disk store. Data for closed regions that
previously used this disk store are lost.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy disk-store --name=value [--groups=value(,value)*] [--if-exists=value]

Parameters, destroy disk-store:

Name Description

‑‑name Required. Name of the disk store to be deleted.

‑‑grou
ps

Group(s) of members on which the disk store will be destroyed. If no group is specified, the disk store is
destroyed on all members.

‑‑if‑exi
sts

If the specified disk store does not exist, gfsh responds with a message to that effect. If this parameter is true,
the response is prefixed with the label "Skipping: ". Useful for scripted tests. Default (if the parameter is not
specified): false. Default (if the parameter is specified without value): true.

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 885

destroy disk-store --name=store1

Sample Output:

gfsh>destroy disk-store --name=store1

Member | Result

------- | -------

server1 | Success

destroy function

Destroy or unregister a function.

The default is for the function to be unregistered from all members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy function --id=value [--groups=value(,value)*] [--member=value]

Parameters, destroy function:

Name Description

‑‑id Required. Unique function identifier. Use the list functions command to obtain the ID.

‑‑groups One or more groups of members from which this function will be unregistered.

‑‑member Name or ID of the member from which this function will be unregistered.

Example Commands:

(1) destroy function --id=InterestCalculations

(2) destroy function --id=InterestCalculations --member=server1

(3) destroy function --id=InterestCalculations --group=Group1

destroy gateway-receiver

Destroy the gateway receiver on one or more members. Since there can be only one gateway
receiver per member, specifying the member specifies which gateway receiver to destroy.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy gateway-receiver [--group=value(,value)*]

 [--member=value(,value)*] [--if-exists(=value)?]

Parameters, destroy gateway-receiver:

VMware GemFire 9.10 Documentation

VMware by Broadcom 886

Name Description

‑‑group One or more groups of members on which the gateway receiver will be destroyed.

‑‑mem
bers

Name or ID of each member on which the gateway receiver will be destroyed.

‑‑if‑exis
ts

If this option is true and the gateway receiver does not exist, gfsh responds with a message prefixed with the
label "Skipping: ". If this option is false and the gateway receiver does not exist, an error message is output.
Default (if this option is not specified): false. Default (if this option is specified without a value): true.

Example Commands:

destroy gateway-receiver --member=server1,server2

destroy gateway-sender

Destroy a gateway sender that is no longer used by a region.

The default is for the gateway sender to be destroyed on all members.

No region may be attached to the gateway sender to be destroyed. If a region is still attached, the
system issues an error message similar to:

ERROR: The GatewaySender ParallelGatewaySender{id=ln,remoteDsId=2,isRunning =false}

could not be destroyed as it is still used by region(s).

Remove the gateway sender from the region with a command similar to:

gfsh>alter region --name=regionA --gateway-sender-id=""

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy gateway-sender --id=value [--groups=value(,value)*]

 [--members=value(,value)*] [--if-exists=value]

Parameters, destroy gateway-sender:

Name Description

‑‑id Required. Unique gateway sender identifier. Use the list gateways command to obtain the ID.

‑‑group
s

One or more groups of members from which this gateway sender will be destroyed.

‑‑mem
bers

Name or ID of the member(s) from which this gateway sender will be destroyed.

‑‑if‑exis
ts

If the specified gateway sender does not exist, gfsh responds with a message to that effect. If this parameter is
true, the response is prefixed with the label "Skipping: ". Useful for scripted tests. Default (if the parameter is
not specified): false. Default (if the parameter is specified without value): true.

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 887

destroy gateway-sender --id=SiteASender

destroy index

Destroy or remove the specified index.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy index [--name=value] [--region=value] [--members=value(,value)*]

[--groups=value(,value)*] [--if-exists=value]

Note: You must specify at least one of the parameter options. If you enter destroy index without
any parameters, the command will ask you to specify at least one option.

Parameters, destroy index:

Name Description

‑‑name Name of the index to be removed.

‑‑mem
bers

Id of the member(s) on which index is to be removed.

‑‑regio
n

Name of the region from which an index or all indexes are to be destroyed.

‑‑group
s

The index will be removed on all the members in the group(s).

‑‑if‑exis
ts

If the specified index does not exist, gfsh responds with a message to that effect. If this parameter is true, the
response is prefixed with the label "Skipping: ". Useful for scripted tests. Default (if the parameter is not
specified): false. Default (if the parameter is specified without value): true.

Example Commands:

destroy index --members=server2

destroy index --name=MyKeyIndex

destroy jndi-binding
Destroy a specified JNDI binding that holds the configuration for an XA data source.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy jndi-binding --name=value [--if-exists=value]

Parameters, destroy jndi-binding:

VMware GemFire 9.10 Documentation

VMware by Broadcom 888

Name Description

‑‑name Required. Name of the JNDI binding to be destroyed.

‑‑if‑exi
sts

Skip the destroy operation when the specified JNDI binding does not exist. Without this option, an error
results from the specification of a JNDI binding that does not exist. Default (if the parameter is not specified):
false. Default (if the parameter is specified without value): true.

Example Command:

destroy jndi-binding --name=jndi1

destroy lucene index

Destroy or remove the specified Lucene index.

See also create lucene index, describe lucene index, list lucene indexes and search lucene.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy lucene index --region=value [--name=value]

Parameters, destroy lucene index:

Name Description

‑‑regio
n

Required. Name of the region from which indexes are to be removed. If no --name option is specified, all
indexes associated with the region are destroyed.

‑‑name Name of the index to be removed.

Example Commands:

destroy lucene index --region=region1

destroy lucene index --region=region1 --name=MyKeyIndex

destroy region

Destroy or remove a region.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

destroy region --name=value [--if-exists=value]

Parameters, destroy region:

Name Description

‑‑name Required. Name and path of the region to be removed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 889

Name Description

‑‑if‑exi
sts

If the specified region does not exist, gfsh responds with a message to that effect. If this parameter is true, the
response is prefixed with the label "Skipping: ". Useful for scripted tests. Default (if the parameter is not
specified): false. Default (if the parameter is specified without value): true.

Example Commands:

destroy region --name=region4

destroy region --name=/region1/subregion1

Sample Output:

gfsh>destroy region --name=region1

"region1" destroyed successfully.

disconnect
Close any active connection(s).

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

disconnect

Example Commands:

disconnect

Sample Output:

gfsh>disconnect

Disconnecting from: Locator1[1099]

Disconnected from : Locator1[1099]

Error Messages:

Error occurred while disconnecting: {0}

Not connected!

echo

Echo the given text, which may include system and user variables.

The command can also echo gfsh environment properties (using ‘set variable’ command) if variable
name is pre-pended with ‘$’ - like UNIX.

See Useful gfsh Shell Variables for a list of gfsh environment variables.

Availability: Online or offline.

VMware GemFire 9.10 Documentation

VMware by Broadcom 890

Syntax:

echo [--string=value]

Name Description

‑‑string String to be echoed. For example, SYS_USER variable is set to ${SYS_USER}.

Table 1. Echo Parameters

Example Commands:

echo --string="Hello World!"

echo --string="Hello World! This is ${SYS_USER}"

echo --string=${APP_FETCH_SIZE}

To see all the variable set in the shell:

echo --string=$*

Sample Output:

gfsh>echo --string=${SYS_JAVA_VERSION}

Post substitution: echo --string=1.8.0_60

1.8.0_60

execute function

Execute functions on members or regions.

execute function

Execute the function with the specified ID. By default, the function executes on all members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

execute function --id=value [--groups=value(,value)*]

[--members=value(,value)*] [--region=value]

[--arguments=value] [--result-collector=value] [--filter=value]

‑‑id Required. ID of the function to execute.

‑‑groups One or more groups of members on which this function should be executed.

‑‑members Name/ID of the member(s) on which the function will be executed.

‑‑region Region on which the data dependent function will be executed.

‑‑arguments Arguments to the function in comma-separated string format.

VMware GemFire 9.10 Documentation

VMware by Broadcom 891

‑‑result-
collector

Fully qualified class name of the ResultCollector to instantiate for gathering results.

‑‑filter Key list which causes the function to only be executed on members which have entries with these
keys.

Table 1. Execute Function Parameters

Example Commands:

execute function --id=InterestCalculations --region=/InterestRegion

execute function --id=InterestCalculations --members=server1

execute function --id=InterestCalculations --groups=Group1

exit

Exit the gfsh shell. You can also use quit to exit the shell.

Exits the gfsh shell and returns to the OS shell.

Availability: Online or offline.

Syntax:

exit

Example Commands:

exit

export
Export configurations, data, logs and stack-traces.

export cluster-configuration

Export a cluster configuration ZIP file that contains the cache.xml files, gemfire.properties
files, and application JAR files needed to configure and operate a cluster.

export config

Export configuration properties for a member or members.

export data

Export user data from a region to a file.

export logs

Export logs to a given directory.

Note: The execute function passes the value of --arguments as a String Array to
any executed function. This differs from the behavior of FunctionExecutionService
API. FunctionExecutionService API passes the value of the argument as an Object.

VMware GemFire 9.10 Documentation

VMware by Broadcom 892

export offline-disk-store

Export region data from an offline disk store into gemfire snapshot files.

export stack-traces

Export the stack trace for a member or members.

export cluster-configuration

Exports a single XML file or a ZIP file with cluster configuration that contains the cache.xml files,
gemfire.properties files, and application JAR files needed to configure and operate a cluster.

When neither a file name nor a ZIP file name is specified, the cluster configuration is written to
standard output.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

See Overview of the Cluster Configuration Service.

Syntax:

export cluster-configuration [--group(=value)?] [--xml-file=value]

 [--zip-file-name=value]

Export Cluster-Configuration Parameters:

Name Description
Default
Value

‑‑group Export the configuration for the specified server group. When no group is specified, use the
default cluster group.

‑‑xml-file Filename to contain the exported cluster configuration. May also include an absolute or
relative path. Only specify one of --xml-file or --zip-file-name.

‑‑zip-file-
name

Filename of the ZIP file to contain the exported cluster configuration. May also include an
absolute or relative path. Only specify one of --xml-file or --zip-file-name.

Example Commands:

gfsh>export cluster-configuration --zip-file-name=/group/shared-configs/devClusterConf

ig.zip

gfsh>export cluster-configuration --zip-file-name=my-configs/myClusterConfig.zip

gfsh>export cluster-configuration --zip-file-name=myClusterConfig.zip

gfsh>export cluster-configuration --xml-file=Cluster3Config.xml

Sample Output:

gfsh>export cluster-configuration --zip-file-name=mySharedConfig.zip

Downloading cluster configuration : /home/username/gemfire/mySharedConfig.zip

export config

Export configuration properties for a member or members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 893

If you do not specify any parameters, all member configurations will be exported.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

export config [--members=value(,value)*] [--groups=value(,value)*]

[--dir=value]

Export Config Parameters:

Name Description

‑‑members Name/Id of the member(s) whose configuration will be exported.

‑‑groups Group(s) of members whose configuration will be exported.

‑‑dir Directory to which the exported configuration files will be written.

Example Commands:

export config

export config --members=member1

Sample Output:

gfsh>export config --members=member1

Downloading Cache XML file: c:\PivotalGemFire\Latest\.\member1-cache.xml

Downloading properties file: c:\PivotalGemFire\Latest\.\member1-gf.properties

export data

Export user data from a region to a file or files.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

To export data from any region, replicated or partitioned, sequentially to a single file, use the --
file option:

export data --region=value --member=value --file=value

In this scenario, data from replicated and partitioned regions is exported sequentially to a single file
on the specified member.

In the case of partitioned regions, you can speed up the export process by using the --parallel
option:

export data --parallel --region=value --member=value --dir=value

In this scenario, partitioned region data is exported simultaneously on all hosting nodes to
directories local to those respective nodes.

VMware GemFire 9.10 Documentation

VMware by Broadcom 894

Parallel export applies only to partitioned regions.

The --file and --dir options are mutually exclusive; --file can be used only for serial
export, --dir can be used for both serial and parallel exports.

Export Data Parameters:

Name Description

‑‑regio
n

Required. Region from which data is to be exported.

‑‑mem
ber

Required. Name/Id of a member that hosts the region. In a serial export, all data is exported to the specified
file on the host where the member is running. In a parallel export, data from a partitioned region partially
hosted on this member is exported for each partition to files on the nodes that host those partitions.

‑‑file File to which the exported data is to be written. The file must have an extension of .gfd. Cannot be specified
at the same time as ‑‑dir, cannot be used with ‑‑parallel.

‑‑dir Directory to which the exported data is to be written. Required if ‑‑parallel is true. Cannot be specified at the
same time as ‑‑file.

‑‑parall
el

Export local data on each node to a directory on that machine. Available for partitioned regions only.

Example Commands:

export data --region=region2 --file=region2_20121001.gfd --member=server2

Sample Output:

 gfsh>export data --region=region2 --file=region2_20121001.gfd --member=server1

Data succesfully exported from region : region2 to file : C:\PivotalGemFire\

Latest\server1\region2_20121001.gfd on host : 192.0.2.0

export logs
Export logs to a given directory.

All files that have logs in the specified time range will be exported. If no time range is specified, all
logs will be exported.

The --dir parameter specifies a local directory to which log files will be written. This is used only
when you are exporting logs using an http connection. If executed over http, the zip archive will be
saved in the specified directory on the user’s client machine. If not specified, logs are written to the
location specified by the user.dir system property. When the command is executed over JMX,
logs will be saved as exportedLogs_xxx.zip in the connected locator’s working directory.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

export logs [--dir=value] [--groups=value(,value)*] [--members=value(,value)*]

[--log-level=value] [--only-log-level=value] [--merge-log=value]

[--start-time=value] [--end-time=value] [logs-only(=value)?]

[--stats-only(=value)?] [--file-size-limit(=value)?]

VMware GemFire 9.10 Documentation

VMware by Broadcom 895

Export Logs Parameters:

Name Description Default Value

‑‑dir Local directory to which log files will be written when logs are exported using an http
connection. Ignored when the command is executed over JMX.

‑‑group
s

Group(s) of members whose log files will be exported.

‑‑mem
bers

Name/ID of the member(s) whose log files will be exported.

‑‑log-
level

Minimum level of log entries to export. Valid values are: OFF, FATAL, ERROR, WARN, INFO,
DEBUG, TRACE, and ALL.

INFO

‑‑only-
log-
level

Whether to only include only entries that exactly match the ‑‑log-level specified. false

‑‑merg
e‑log

Whether to merge logs after exporting to the target directory (deprecated). false

‑‑start-
time

Log entries that occurred after this time will be exported. Format:
yyyy/MM/dd/HH/mm/ss/SSS/z OR yyyy/MM/dd. When using the
yyyy/MM/dd/HH/mm/ss/SSS/z format, the time zone, denoted z, should be specified as
either a 3-letter time zone such as PST or as an offset to GMT/UTC such as GMT+08:00.

no limit

‑‑end-
time

Log entries that occurred before this time will be exported. Format:
yyyy/MM/dd/HH/mm/ss/SSS/z OR yyyy/MM/dd. When using the
yyyy/MM/dd/HH/mm/ss/SSS/z format, the time zone, denoted z, should be specified as
either a 3-letter time zone such as PST or as an offset to GMT/UTC such as GMT+08:00.
An end time specified by only a date implements a time of 00:00. This exports logs
written up until 23:59:59.999 on the date prior to the one specified.

no limit

‑‑logs-
only

Whether to export only logs (not statistics) If parameter not
specified: false. If
parameter
specified without a
value: true

‑‑stats-
only

Whether to export only statistics (not logs) If parameter not
specified: false. If
parameter
specified without a
value: true

‑‑file-
size-
limit

Limits total unzipped size of the exported files. Specify 0 (zero) for no limit. Value is in
megabytes by default or [k,m,g,t] may be specified.

If parameter not
specified: 100m. If
parameter
specified without a
value: 0

Example commands, showing output:

gfsh>export logs --dir=data/logs

Logs exported to the connected member's file system: /my-locator/data/logs/exportedLog

s_1489513007261.zip

VMware GemFire 9.10 Documentation

VMware by Broadcom 896

gfsh>export logs --start-time=2020/12/14/12/00/00/000/GMT-08:00 --end-time=2020/12/27

--dir=data/logs

Start time parsed as 2020-12-14T12:00 PST

End time parsed as 2020-12-27T00:00 PST

Logs exported to the connected member's file system: /my-locator/data/logs/exportedLog

s_1608165308676.zip

gfsh>export logs --dir=data/logs --file-size-limit=1k

Estimated exported logs expanded file size = 95599, file-size-limit = 1024.

To disable exported logs file size check use option "--file-size-limit=0".

gfsh>export logs --dir=data/logs --file-size-limit=99k

Logs exported to the connected member's file system: /my-locator/data/logs/exportedLog

s_1489513007261.zip

export offline-disk-store

Export region data from an offline disk store into gemfire snapshot files.

Availability: Online or offline.

Syntax:

export offline-disk-store --name=value --disk-dirs=value(,value)* --dir=value

Export Offline-Disk-Store Parameters:

Name Description

‑‑name Required. Name of the disk store to be exported.

‑‑disk-dirs Directories which contain the disk store files.

‑‑dir Directory to export the snapshot files to.

Example Commands:

 export offline-disk-store --name= DiskStore1 \

--disk-dirs=/home/username/gemfire/mydiskStore1Dir --dir=/home/username/gemfire/export

export stack-traces

Export the stack trace for one or more servers.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

export stack-traces [--members=value(,value)*] [--groups=value(,value)*]

[--file=value] [--abort-if-file-exists(=value)?]

Export Stack-Traces Parameters:

VMware GemFire 9.10 Documentation

VMware by Broadcom 897

Name Description

‑‑members Name or ID of the member(s) whose stack traces will be exported.

‑‑groups Group(s) of members whose stack traces will be exported.

‑‑file File name to which the stack traces will be written. When not specified, the file name will be the string
“stacktrace_” followed by the current time in milliseconds.

‑‑abort-if-file-
exists

When true, abort the command if the file already exists in the locator’s directory. If this option is not
specified, the default value is false.

Example Commands:

export stack-traces --file=stack.txt --abort-if-file-exists=true

Sample Output:

gfsh>export stack-traces

stack-trace(s) exported to file: /data/stacktrace_1612316330340

On host : cluster-locator-0.cluster-locator.system.svc.cluster.local

gc
Force GC (Garbage Collection) on a member or members.

The default is for garbage collection to occur on all caching members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

gc [--groups=value(,value)*] [--member=value]

Name Description

‑‑groups One or more group(s) of members on which garbage collection will be forced.

‑‑member Name/ID of the member on which garbage collection will be forced.

Table 1. GC Parameters

Example Commands:

gc --member=server1

gc --groups=Group1

gc

Sample Output:

gfsh>gc

Sucessfully executed GC

get

VMware GemFire 9.10 Documentation

VMware by Broadcom 898

Display an entry in a region.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

get --key=value --region=value [--key-class=value] [--value-class=value]

Name Description Default Value

‑‑key Required. String or JSON text from which to create the key. For
example: “James”, “100L” and “('id': 'l34s')”.

‑‑region Required. Region from which to get the entry.

‑‑key-class Fully qualified class name of the key’s type. The default is the key
constraint for the current
region or String.

‑‑value-
class

Fully qualified class name of the value’s type. The default is the value
constraint for the current
region or String.

‑‑load-on-
cache-miss

Explicitly enables or disables the use of any registered CacheLoaders
on the specified Region when retrieving a value for the specified Key
on Cache misses.

true (enabled)

Table 1. Get Parameters

Example Commands:

get --key=('id':'133abg124') --region=region1

// Retrieving when key type is a wrapper(primitive)/String

get --key=('133abg124') --region=/region1/region12 --value-class=data.ProfileDetails

get --key=('100L') --region=/region1/region12 --value-class=data.ProfileDetails

--key-class=java.lang.Long

Sample Output:

gfsh>get --key=('123') --region=region1

Result : true

Key Class : java.lang.String

Key : ('123')

Value Class : java.lang.String

Value : ABC

help

Display syntax and usage information for all the available commands.

Typing help without a command as an argument lists all available commands.

Availability: Online or offline.

Syntax:

VMware GemFire 9.10 Documentation

VMware by Broadcom 899

help [command]

Examples Commands:

help

help rebalance

Sample Output:

gfsh>help rebalance

NAME

 rebalance

IS AVAILABLE

 true

SYNOPSIS

 Rebalance partitioned regions. The default is for all partitioned region

s to be rebalanced.

SYNTAX

 rebalance [--include-region=value(,value)*] [--exclude-region=value(,val

ue)*] [--time-out=value] [--simulate(=value)?]

PARAMETERS

 include-region

 Partitioned regions to be included when rebalancing. Includes ta

ke precedence over excludes.

 Required:false

 exclude-region

 Partitioned regions to be excluded when rebalancing.

 Required:false

 time-out

 Time to wait (in seconds) before GFSH returns to a prompt while

rebalancing continues in the background. The default is to wait for rebalancing

to complete.

 Required:false

 Default if the parameter is not specified:-1

 simulate

 Whether to only simulate rebalancing. The --time-out parameter i

s not available when simulating.

 Required:false

 Default if no value for the parameter is given:true

 Default if the parameter is not specified:false

hint
Display information on topics and a list of commands associated with a topic.

Provide hints for a topic or lists all available topics if a topic is not specified.

Availability: Online or offline.

Syntax:

hint [topic]

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 900

hint

hint Server

Sample Output:

gfsh>hint

Hints are available for the following topics. Use "hint <topic-name>" for a specific

 hint.

Configuration

Data

Debug-Utility

Disk Store

Function Execution

GFSH

Help

JMX

Lifecycle

Locator

Management-Monitoring

Manager

Region

Server

Statistics

gfsh>hint server

A server is GemFire cluster member which holds a GemFire cache. Depending on the

 topology used it can refer to either a system that responds to client requests

or a system that is only a peer to other members.

describe member : Display information about a member, including name, id, groups

, regions, etc.

export logs : Export the log files for a member or members.

list members : Display all or a subset of members.

start server : Start a GemFire Cache Server.

status server : Display the status of a GemFire Cache Server.

stop server : Stop a GemFire Cache Server..

history

Show or save the command history.

This history can be saved to a file which can also be used as a script later.

A history of commands that have been executed successfully is also logged in the
.geode/.gfsh.history file within the home directory of the user running gfsh.

Availability: Online or offline.

Syntax:

history [--file=<history text file>]

Name Description Default Value

‑‑file File to which the history is to be saved.

‑‑clear When set to true, clears the history of gfsh commands. false

VMware GemFire 9.10 Documentation

VMware by Broadcom 901

Table 1. History Parameters

Example Commands:

history

history --file=./mycommands.gfsh;

Sample Output:

gfsh>history --file=./mycommands.gfsh

Wrote successfully to file ./mycommands.gfsh

import
You can import an exported cluster configuration to create a new cluster or import data into a
region.

import cluster-configuration

Import a cluster configuration.

import data

Import user data from a file to a region.

import cluster-configuration
Imports a previously exported cluster configuration from a ZIP file or an XML file. This command is
useful when spinning up a new cluster.

In a given cluster, only one locator needs to perform the import. That locator shares the
imported configuration with all other connected locators in the cluster.

Locators share the imported configuration with data members (servers) when the servers
start, or if the servers have been recently started, have no regions defined in them, and
have been given no other configuration changes since they started.

To import a cluster configuration, start one or more locators and then run the gfsh import
cluster-configuration command.

Availability: Online. You must be connected in gfsh to a locator to use this command.

Syntax:

import cluster-configuration [--action=value] [--group(=value)?]

 [--xml-file=value] [--zip-file-name=value]

Import Cluster-Configuration Parameters:

Name Description

‑‑action When the value is APPLY (the default), the configuration is applied to the running servers that have no
configuration. If any servers already have configuration, the command fails. When the value is STAGE, the
configuration is overwritten and will be used during future server creation; the configuration of currently
running servers is not changed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 902

Name Description

‑‑group Do the import for the specified server group. When no group is specified, the cluster is implied.

‑‑xml-
file

Filename from which to import the cluster configuration. May also include an absolute or relative path.
Only specify one of --xml-file or --zip-file-name.

‑‑zip-
file-
name

Name of the ZIP file containing the cluster configuration artifacts to be imported. Only specify one of --
xml-file or --zip-file-name.

Example Commands:

gfsh>import cluster-configuration --zip-file-name=/home/username/myClusterConfig.zip

gfsh>import cluster-configuration --xml-file=configs/Cluster3Config.xml

Sample Output:

gfsh>import cluster-configuration --zip-file-name=/home/username/myClusterConfig.zip

Cluster configuration successfully imported

import data
Import user data from a file or files to a region.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

If the data was exported sequentially to a single file, use the serial form of the import command to
import the data:

import data --region=value --file=value --member=value [--invoke-callbacks=value]

In this scenario, data from replicated and partitioned regions is imported sequentially from a single
file on the specified member.

See export data for an explanation of the difference between serial and parallel data exports.

If the data was exported from a partitioned region in parallel format, use the --parallel option to
import the data:

import data --parallel --region=value --member=value --dir=value

 [--invoke-callbacks=value]

In this scenario, partitioned region data is imported simultaneously on all hosting nodes from
directories local to those respective nodes.

Parallel import applies only to partitioned regions exported in parallel mode.

The --file and --dir options are mutually exclusive; --file can be used only for serial
import, --dir can be used for both serial and parallel imports.

Import Data Parameters:

VMware GemFire 9.10 Documentation

VMware by Broadcom 903

Name Description
Default
Value

‑‑region Required. Region into which data will be imported.

‑‑membe
r

Required. Name/ID of a member that hosts the region. In a serial import, all data is imported
from the specified file on the host where the member is running. In a parallel import, data from a
partitioned region partially hosted on this member is imported for each partition from files on
the nodes that host those partitions.

‑‑file File from which the imported data will be read. The file must have an extension of .gfd and
must be on the file system of the member (or accessible to that member via NFS) that is being
targeted for the import. Cannot be specified at the same time as ‑‑dir, cannot be used with
‑‑parallel.

‑‑dir Directory from which the data is to be imported. Required if ‑‑parallel is true. Cannot be
specified at the same time as ‑‑file. If a given node has no data file in the specified directory, the
import operation is silently skipped for that node.

‑‑invoke‑

callbacks
Boolean value that, when true, invokes callbacks during the data import. false

Example Commands:

import data --region=region2 --file=/mnt5/region2_20121001.gfd --member=server1

list

List existing VMware GemFire resources such as deployed applications, disk-stores, functions,
members, servers, and regions.

list async-event-queues

Display a list of async event queues for all members.

list clients

Display a list of connected clients.

list deployed

Display a list of JARs that were deployed to members using the deploy command.

list disk-stores

List all available disk stores across the VMware GemFire cluster

list durable-cqs

List durable client CQs associated with the specified durable client id.

list functions

Display a list of registered functions. The default is to display functions for all members.

list gateways

Display the gateway senders and receivers for a member or members.

list indexes

Display the list of indexes created for all members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 904

list jndi-binding

List all JNDI bindings, active and configured.

list lucene indexes

List Lucene indexes created for all members.

list members

Display all or a subset of members.

list regions

Display regions of a member or members. If no parameter is specified, all regions in the
cluster are listed.

list async-event-queues

Display a list of async event queues for all members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list async-event-queues

Example Commands:

list async-event-queues

list clients
Display a list of connected clients and the servers to which they connect.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list clients

Example Commands:

list clients

Sample Output:

gfsh>list clients

ClientList

 Client Name / ID | Server Name / ID

------------------------------------ | ---

192.0.2.0(4987:loner):58922:7b3398cf | member=server2,port=53508; member=server1,port

VMware GemFire 9.10 Documentation

VMware by Broadcom 905

=56806

192.0.2.0(5065:loner):39906:a6f598cf | member=server2,port=53508; member=server1,port

=56806

list deployed

Display a list of JARs that were deployed to members using the deploy command.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list deployed [--groups=value(,value)*]

Parameters, list deployed:

Name Description

‑‑group
s

Group(s) of members for which deployed JARs will be displayed. If not specified, JARs for all members are
displayed.

Example Commands:

list deployed

list deployed --groups=Group2

Sample Output:

gfsh> list deployed --groups=Group2

 Member | Deployed JAR | JAR Location

--------- | -------------------- | ---

datanode1 | group1_functions.jar | /usr/local/gemfire/deploy/vf.gf#group1_functions.ja

r#1

datanode2 | group1_functions.jar | /usr/local/gemfire/deploy/vf.gf#group1_functions.ja

r#1

Error Messages:

No JAR Files Found

list disk-stores

List all available disk stores across the VMware GemFire cluster.

The command also lists the configured disk directories and any Regions, Cache Servers, Gateways,
PDX Serialization and Async Event Queues using Disk Stores to either overflow and/or persist
information to disk. Use the describe disk-store command to see the details for a particular Disk
Store.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

VMware GemFire 9.10 Documentation

VMware by Broadcom 906

list disk-stores

Example Commands:

list disk-stores

Sample Output:

gfsh> list disk-stores

 Member Name | Member Id | Disk Store Name |

Disk Store ID

 -------------- | --| --------------- | -----

 consumerServer | 192.0.2.0(consumerServer:13825)<v5>:3545 | consumerData | 4029a

f26-fd82-4997-bd6c-33382cdbb5e9

 consumerServer | 192.0.2.0(consumerServer:13825)<v5>:3545 | observerData | 7e031

6ad-963c-49b0-9b01-8f59b8d9e29e

 producerServer | 192.0.2.0(producerServer:13826)<v3>:53764 | producerData | 4670e

4eb-1c50-4465-b418-08ede3d5dbed

Error Messages:

No Disk Stores Found

list durable-cqs

List durable client CQs associated with the specified durable client id.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list durable-cqs --durable-client-id=value

 [--members=value(,value)*] [--groups=value(,value)*]

Parameters, list durable-cqs:

Name Description

‑‑durable-client-
id

Required. The ID used to identify the durable client.

‑‑members Name or Id of the member(s) for which the durable client is registered and durable CQs will be
displayed.

‑‑groups Group(s) of members for which the durable client is registered and durable CQs will be displayed.

Example Commands:

list durable-cqs --durable-client-id=client1

Sample Output:

VMware GemFire 9.10 Documentation

VMware by Broadcom 907

gfsh>list durable-cqs --durable-client-id=client1

member | durable-cq-name

------- | ---------------

server3 | cq3

 | cq1

 | cq2

server4 | cq3

 | cq1

Error Messages:

Unable to list durable-cqs for durable-client-id : "client1" due to following reasons.

No client found with client-id : client1

Occurred on members

1.server4

2.server1

3.server3

list functions

Display a list of registered functions. The default is to display functions for all members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list functions [--matches=value] [--groups=value(,value)*]

[--members=value(,value)*]

Parameters, list functions:

Name Description

‑‑match
es

Pattern that the function ID must match in order to be included. Uses Java pattern matching rules, not UNIX.
For example, to match any character any number of times use “.*” rather than “*”.

‑‑groups Group(s) of members for which functions will be displayed. Use a comma separated list for multiple groups.

‑‑memb
ers

Name or ID of the member(s) for which functions will be displayed. Use a comma separated list for multiple
members.

Example Commands:

list functions

list functions --matches=reconcile.*

Sample Output:

gfsh> list functions

 Member | Function

 --------- | --------------------------

 camelot | loadDataFromExternalSource

 camelot | reconcileWeeklyExpenses

VMware GemFire 9.10 Documentation

VMware by Broadcom 908

 excalibur | loadDataFromExternalSource

 excalibur | reconcileDailyExpenses

Example of list functions with a “matches” filter:

gfsh> list functions --matches=reconcile.*

 Member | Function

 --------- | -----------------------

 camelot | reconcileWeeklyExpenses

 excalibur | reconcileDailyExpenses

Error Messages:

No Functions Found

list gateways
Display the gateway senders and receivers for a member or members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list gateways [--members=value(,value)*] [--groups=value(,value)*]

Parameters, list gateways:

Name Description

‑‑members Member(s) whose gateways senders and receiver display.

‑‑groups Group(s) of members for which Gateway Senders and Receivers will be displayed. Use a comma
separated list for multiple groups.

‑‑senders‑onl
y

List only gateway senders. This parameter cannot be used together with --receivers-only

‑‑receivers‑o
nly

List only gateway receivers. This parameter cannot be used together with --senders-only.

Example Commands:

list gateways

Sample Output:

gfsh>list gateways

GatewaySender Section

GatewaySender Id | Member | Remote Cluster Id | Type | Status

| Queued Events | Receiver Location

---------------- | --------------------------- | ----------------- | -------- | ------

VMware GemFire 9.10 Documentation

VMware by Broadcom 909

- | ------------- | -----------------

ln | mymac(ny-1:88641)<v2>:33491 | 2 | Parallel | Runnin

g | 0 | mymac:5037

ln | mymac(ny-2:88705)<v3>:29329 | 2 | Parallel | Runnin

g | 0 | mymac:5064

ln | mymac(ny-3:88715)<v4>:36808 | 2 | Parallel | Runnin

g | 0 | mymac:5132

ln | mymac(ny-4:88724)<v5>:52993 | 2 | Parallel | Runnin

g | 0 | mymac:5324

GatewayReceiver Section

 Member | Port | Sender Count | Senders Connected

--------------------------- | ---- | ------------ | ----------------------------------

mymac(ny-1:88641)<v2>:33491 | 5057 | 9 |["mymac(ln-1:88651)<v2>:48277","mym

ac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675","mymac(ln-2:88662)<v3>:12796"]

mymac(ny-2:88705)<v3>:29329 | 5082 | 4 |["mymac(ln-1:88651)<v2>:48277","mym

ac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675"]

mymac(ny-3:88715)<v4>:36808 | 5371 | 4 |["mymac(ln-1:88651)<v2>:48277","mym

ac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675"]

mymac(ny-4:88724)<v5>:52993 | 5247 | 3 |["mymac(ln-1:88651)<v2>:48277","mym

ac(ln-4:88681)<v5>:42784","mymac(ln-3:88672)<v4>:43675"]

list indexes

Display the list of indexes created for all members.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list indexes [--with-stats(=value)?]

Parameters, list indexes:

Name Description Default Value

‑‑with-stats Specifies whether statistics should also be displayed. false

Example Commands:

list indexes

list indexes --with-stats

Sample Output:

gfsh>list indexes

Member Name | Member ID | Region Path | Name |

Type | Indexed Expression | From Clause

-------------- | --- | ----------- | -------- |

----- | ------------------ | -----------

consumerServer | 192.0.2.0(consumerServer:13873):6317 | /consumers | cidIdx |

KEY | id | /consumers

consumerServer | 192.0.2.0(consumerServer:13873):6317 | /consumers | cnameIdx |

VMware GemFire 9.10 Documentation

VMware by Broadcom 910

RANGE | name | /consumers

producerServer | 192.0.2.0(producerServer:13874):19198 | /producers | pidIdx |

RANGE | id | /producers

Example of ‘list indexes’ with stats printed:

gfsh>list indexes --with-stats

Member Name | Member ID | Region Path | Name | Type | Indexed Expression | From

Clause | Uses | Updates | Update Time | Keys | Values

------------ | --------- | ----------- | -------- | ----- | ------------------ | -----

------ | ---- | ------- | ----------- | ---- | ------

cs... | 192... | /consumers | cidIdx | KEY | id | /cons

umers | 2512 | 0 | 0 | 5020 | 5020

cs... | 192... | /consumers | cnameIdx | RANGE | name | /cons

umers | 0 | 5020 | 421224000 | 0 | 5020

ps... | 192... | /producers | pidIdx | RANGE | id | /prod

ucers | 0 | 5031 | 497872000 | 5031 | 5031

Error Messages:

No Indexes Found

list jndi-binding
List all JNDI bindings, active and configured. An active binding is one that is bound to the server’s
JNDI context and is also listed in the cluster configuration. A configured binding is one that is listed
in the cluster configuration, but may not be active on the servers.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list jndi-binding

Sample Output:

gfsh>list jndi-binding

Configured JNDI bindings:

Group Name | JNDI Name | JDBC Driver Class

---------- | --------- | ------------------------------------

cluster | jndi1 | org.apache.derby.jdbc.EmbeddedDriver

Active JNDI bindings found on each member:

 Member | JNDI Name | JDBC Driver Class

--------------- | ----------------------- | --

land-gifted-gun | java:UserTransaction | org.apache.geode.internal.jta.UserTransact

ionImpl

land-gifted-gun | java:TransactionManager | org.apache.geode.internal.jta.TransactionM

anagerImpl

VMware GemFire 9.10 Documentation

VMware by Broadcom 911

list lucene indexes

Display the list of Lucene indexes created for all members. The optional --with-stats qualifier
shows activity on the indexes.

See also create lucene index, describe lucene index, destroy lucene index and search lucene.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list lucene indexes [--with-stats(=value)]

Parameters, list lucene indexes:

Name Description Default Value

‑‑with‑stats Specifies whether statistics should also be displayed. false if not specified, true if specified

Example Commands:

list lucene indexes

Sample Output:

gfsh>list lucene indexes --with-stats

Index Name | Region Path | Indexed Fields | Field Analy.. | Status | Query Ex

ecutions | Updates | Commits | Documents

---------- | ----------- | ---------------------- | ------------- | ------- | --------

-------- | ------- | ------- | ---------

testIndex | /testRegion | [__REGION_VALUE_FIELD] | {__REGION_V.. | Defined | NA

| NA | NA | NA

gfsh>list lucene indexes

 Index Name | Region Path | Indexed Fields

| Field Analy.. | Status

------------- | ----------- | --

---------- | ------------- | -----------

analyzerIndex | /Person | [revenue, address, name, email]

| {revenue=St.. | Initialized

customerIndex | /Customer | [symbol, revenue, SSN, name, email, address, __REGION_VA

LUE_FIELD] | {} | Initialized

pageIndex | /Page | [id, title, content]

| {} | Initialized

personIndex | /Person | [name, email, address, revenue]

| {} | Initialized

list members

Display all or a subset of members.

Within the output, the membership coordinator is listed. <vN> identifies which view the member
currently has; N will be zero or a positive integer. <ec> indicates which members are eligible to be a
membership coordinator.

VMware GemFire 9.10 Documentation

VMware by Broadcom 912

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

list members [--group=value]

Parameters, list members:

Name Description

‑‑group Group name for which members will be displayed.

Example Commands:

list members

list members --group=Group1

Sample Output:

gfsh>list members

 Name | Id

------------ | -------------------------------------

Coordinator: | 192.0.2.0(locator1:216:locator)<ec><v6>:33368

locator1 | 192.0.2.0(locator1:216:locator)<ec><v6>:33368

server1 | 192.0.2.0(server1:888)<v7>:10839

server2 | 192.0.2.0(server2:3260)<v8>:16721

list regions

Display regions of a member or members. If no parameter is specified, all regions in the cluster are
listed.

Syntax:

list regions [--groups=value(,value)*] [--members=value(,value)*]

Parameters, list regions:

Name Description

‑‑groups Group(s) of members for which regions will be displayed.

‑‑members Name or ID of the member(s) for which regions will be displayed.

Example Commands:

list regions

list regions --groups=G1

list regions --members=member1

Sample Output:

gfsh>list regions

List of regions

VMware GemFire 9.10 Documentation

VMware by Broadcom 913

region1

region2

load-balance gateway-sender

Causes the specified gateway sender to close its current connections and reconnect to remote
gateway receivers in a more balanced fashion.

Use this command to load balance connections between gateway senders to receivers. For
example, when you add a new gateway receiver node at a remote site, execute this command so
that the new gateway receiver can pick up connections from the specified gateway sender.
Invoking this command redistributes a sender’s connections more evenly among all the gateway
receivers.

Note: This command has no effect on ping connections.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

load-balance gateway-sender --id=value

Name Description

‑‑id Required. ID of the Gateway Sender.

Table 1. Load-Balance Gateway-Sender Parameters

Example Commands:

load-balance gateway-sender --id=sender1-LN

Sample Output:

load-balance gateway-sender --id=ny

 Member | Result | Message

 --------------------------------- | ------ |--

boglesbymac(ln-1:88651)<v2>:48277 | OK | GatewaySender ny is rebalanced on member

boglesbymac(ln-1:88651)<v2>:48277

boglesbymac(ln-4:88681)<v5>:42784 | OK | GatewaySender ny is rebalanced on member

boglesbymac(ln-4:88681)<v5>:42784

boglesbymac(ln-3:88672)<v4>:43675 | OK | GatewaySender ny is rebalanced on member

boglesbymac(ln-3:88672)<v4>:43675

boglesbymac(ln-2:88662)<v3>:12796 | OK | GatewaySender ny is rebalanced on member

boglesbymac(ln-2:88662)<v3>:12796

locate entry

Locate a region entry on a member.

VMware GemFire 9.10 Documentation

VMware by Broadcom 914

locate entry

Locate a given entry on members using the specified key. This command is useful when using
partitioned regions.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

locate entry --key=value --region=value [--key-class=value]

[--value-class=value] [--recursive=value]

Name Description Default Value

‑‑key Required. String or JSON text from which to create a key. Examples include: “James”,
“100L” and “('id': 'l34s')”.

‑‑region Required. Region in which to locate values.

‑‑key-
class

Fully qualified class name of the key’s type. java.lang.Str

ing

‑‑value-
class

Fully qualified class name of the value’s type. java.lang.Str

ing

‑‑recursive Whether to traverse regions and subregions recursively. false

Table 1. Locate Entry Parameters

Example Commands:

locate entry --key=('id':'133abg124') --region=/region1

--key-class=data.ProfileKey --recursive=true;

Sample Output:

gfsh>locate entry --key=('123abc') --region=region2

Result : true

Key Class : java.lang.String

Key : ('123abc')

Locations Found : 2

MemberName | MemberId

---------- | -------------------------------------

server1 | GemFireStymon(server1:3692)<v1>:13487

server2 | GemFireStymon(server2:2340)<v2>:11613

netstat

Report network information and statistics via the “netstat” operating system command.

Report important network usage information/statistics for the given member.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

VMware GemFire 9.10 Documentation

VMware by Broadcom 915

Syntax:

netstat [--members=value(,value)*] [--group=value] [--file=value]

[--with-lsof(=value)?]

Name Description
Default
Value

‑‑memb
ers

Name or ID of the member(s) on which to run the netstat command.

‑‑group Group of members on which to run the netstat command.

‑‑file Text file to which output from the netstat command will be written. A “.txt” extension will
be added if it is not already part of the specified name.

‑‑with‑ls
of

Specifies whether lsof (list open files) command output should also be displayed. Not
applicable for Microsoft Windows hosts.

false

Table 1. Netstat Parameters

Example Commands:

netstat

netstat --members=server1

netstat --members=server1 --file=server1_netstat.txt

Sample Output:

gfsh>netstat

####################################

Host: GemFireTest

OS: Windows XP 5.1 x86

Member(s):

 server2, locator1, server1

####################################

Active Connections

 Proto Local Address Foreign Address State

 TCP GemFireTest:epmap GemFireTest:0 LISTENING

 TCP GemFireTest:microsoft-ds GemFireTest:0 LISTENING

 TCP GemFireTest:1034 GemFireTest:0 LISTENING

 TCP GemFireTest:1069 GemFireTest:0 LISTENING

 TCP GemFireTest:1099 GemFireTest:0 LISTENING

 TCP GemFireTest:1134 GemFireTest:0 LISTENING

 TCP GemFireTest:3389 GemFireTest:0 LISTENING

 TCP GemFireTest:8080 GemFireTest:0 LISTENING

 TCP GemFireTest:8081 GemFireTest:0 LISTENING

 TCP GemFireTest:10334 GemFireTest:0 LISTENING

 TCP GemFireTest:40404 GemFireTest:0 LISTENING

 TCP GemFireTest:40405 GemFireTest:0 LISTENING

 TCP GemFireTest:1025 GemFireTest:0 LISTENING

 TCP GemFireTest:5152 GemFireTest:0 LISTENING

 TCP GemFireTest:netbios-ssn GemFireTest:0 LISTENING

 TCP GemFireTest:1035 GemFireTest:0 LISTENING

 TCP GemFireTest:1035 GemFireTest:1081 ESTABLISHED

 TCP GemFireTest:1035 GemFireTest:1086 ESTABLISHED

 TCP GemFireTest:1035 GemFireTest:1147 ESTABLISHED

VMware GemFire 9.10 Documentation

VMware by Broadcom 916

 TCP GemFireTest:1035 GemFireTest:1156 ESTABLISHED

 TCP GemFireTest:1046 GemFireTest:1099 ESTABLISHED

 TCP GemFireTest:1049 osdc-proxy-vip.vmware.com:http CLOSE_WA

 TCP GemFireTest:1050 osdc-proxy-vip.vmware.com:3128 CLOSE_WA

 TCP GemFireTest:1071 GemFireTest:0 LISTENING

 TCP GemFireTest:1071 GemFireTest:1077 ESTABLISHED

 TCP GemFireTest:1071 GemFireTest:1150 ESTABLISHED

 TCP GemFireTest:1071 GemFireTest:1157 ESTABLISHED

 TCP GemFireTest:1077 GemFireTest:1071 ESTABLISHED

 TCP GemFireTest:1078 GemFireTest:24400 ESTABLISHED

 TCP GemFireTest:1081 GemFireTest:1035 ESTABLISHED

 TCP GemFireTest:1086 GemFireTest:1035 ESTABLISHED

 TCP GemFireTest:1099 GemFireTest:1046 ESTABLISHED

 TCP GemFireTest:1136 GemFireTest:0 LISTENING

 TCP GemFireTest:1136 GemFireTest:1143 ESTABLISHED

 TCP GemFireTest:1136 GemFireTest:1151 ESTABLISHED

 TCP GemFireTest:1136 GemFireTest:1201 ESTABLISHED

 TCP GemFireTest:1141 GemFireTest:4247 ESTABLISHED

 TCP GemFireTest:1142 GemFireTest:48640 ESTABLISHED

 TCP GemFireTest:1143 GemFireTest:1136 ESTABLISHED

 TCP GemFireTest:1147 GemFireTest:1035 ESTABLISHED

 TCP GemFireTest:1150 GemFireTest:1071 ESTABLISHED

 TCP GemFireTest:1151 GemFireTest:1136 ESTABLISHED

 TCP GemFireTest:1156 GemFireTest:1035 ESTABLISHED

 TCP GemFireTest:1157 GemFireTest:1071 ESTABLISHED

 TCP GemFireTest:1201 GemFireTest:1136 ESTABLISHED

 TCP GemFireTest:1349 GemFireTest:10334 TIME_WAIT

 TCP GemFireTest:1350 GemFireTest:10334 TIME_WAIT

 TCP GemFireTest:1351 GemFireTest:10334 TIME_WAIT

 TCP GemFireTest:1352 GemFireTest:10334 TIME_WAIT

 TCP GemFireTest:1353 GemFireTest:10334 TIME_WAIT

 TCP GemFireTest:1354 GemFireTest:10334 TIME_WAIT

 TCP GemFireTest:4247 GemFireTest:0 LISTENING

 TCP GemFireTest:4247 GemFireTest:1141 ESTABLISHED

 TCP GemFireTest:24400 GemFireTest:0 LISTENING

 TCP GemFireTest:24400 GemFireTest:1078 ESTABLISHED

 TCP GemFireTest:48640 GemFireTest:0 LISTENING

 TCP GemFireTest:48640 GemFireTest:1142 ESTABLISHED

 UDP GemFireTest:microsoft-ds *:*

 UDP GemFireTest:isakmp *:*

 UDP GemFireTest:4500 *:*

 UDP GemFireTest:ntp *:*

 UDP GemFireTest:1900 *:*

 UDP GemFireTest:ntp *:*

 UDP GemFireTest:netbios-ns *:*

 UDP GemFireTest:netbios-dgm *:*

 UDP GemFireTest:1900 *:*

 UDP GemFireTest:32270 *:*

 UDP GemFireTest:42838 *:*

 UDP GemFireTest:47727 *:*

pause gateway-sender

Pause a gateway sender.

Pause the gateway sender on a member or members. See Pausing Gateway Senders for details on
pausing gateway senders.

VMware GemFire 9.10 Documentation

VMware by Broadcom 917

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

pause gateway-sender --id=value [--groups=value(,value)*]

[--members=value(,value)*]

Name Description

‑‑id Required. ID of the gateway sender.

‑‑groups Group(s) of members on which to pause the gateway sender.

‑‑members Name or ID of the member(s) on which to pause the gateway sender.

Table 1. Pause Gateway-Sender Parameters

Example Commands:

pause gateway-sender --id=sender1

pdx rename
Renames PDX types in an offline disk store.

Any PDX types that are renamed will be listed in the output. If no renames are done or the disk-
store is online, then this command will fail.

Availability: Offline.

Syntax:

pdx rename --old=value --new=value --disk-store=value --disk-dirs=value(,value)*

Name Description

‑‑old Required. If a PDX type’s fully qualified class name has a word that matches this text then it will be
renamed. Words are delimited by ‘.’ and ‘$’.

‑‑new Required. The text to replace the word that matched old.

‑‑disk‑sto
re

Required. Name of the disk store to operate on.

‑‑disk-
dirs

Required. Directories which contain the disk store files.

Example Commands:

Change all packages that start with “com.gemstone” to “com.pivotal”:

gfsh>pdx rename --old=com.gemstone --new=com.pivotal --disk-store=ds1 --disk-dirs=/dis

kDir1

Change a class named “MyClassName” to “YourClassName”:

VMware GemFire 9.10 Documentation

VMware by Broadcom 918

gfsh>pdx rename --old=MyClassName --new=YourClassName --disk-store=ds1 --disk-dirs=/di

skDir1

Change the FQCN “com.target.app1.OldClass” to “com.target.app2.NewClass”:

gfsh>pdx rename --old=com.target.app1.OldClass --new=com.target.app2.NewClass --disk-s

tore=ds1 --disk-dirs=/diskDir1

Sample Output:

gfsh>pdx rename --old=PortfolioPdx --new=StockPdx --disk-store=DiskStore1 --disk-dirs

=/DiskDir1

Successfully renamed pdx types:

 com.app.data.StockPdx: id=2

 com.app.data.StockPdx$Day.Monday

Error Messages:

If no types match, you may receive the following error message:

gfsh>pdx rename --old=gemstone --new=pivotal --disk-store=DiskStore1 --disk-dirs=/Disk

Dir1

Could not process command due to GemFire error. No Pdx types found to rename.

If the disk-store where the PDX types are stored is online, you will receive the following error
message:

gfsh>pdx rename --old=StockPdx --new=PortfolioPdx --disk-store=DiskStore1 --disk-dirs

=/DiskDir1

Could not process command due to GemFire error. Error renaming pdx types :

GemFireCache[id = 484629896; isClosing = false; isShutDownAll = false;

closingGatewayHubsByShutdownAll = false; created = Wed Jan 07 10:29:45 PST 2015;

server = false; copyOnRead = false; lockLease = 120; lockTimeout = 60]: An open cache

already exists.

put

Add or update a region entry.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

put --key=value --value=value --region=value [--key-class=value]

[--value-class=value] [--if-not-exists(=value)]

Name Description Default Value

‑‑key Required. String or JSON text from which to create the key. For example: “James”,
“100L” and “('id': 'l34s')”.

‑‑value Required. String or JSON text from which to create the value. For example: “James”,
“100L” and “('id': 'l34s')”.

VMware GemFire 9.10 Documentation

VMware by Broadcom 919

Name Description Default Value

‑‑region Required. Region into which the entry will be put.

‑‑key-class Fully qualified class name of the key’s type. java.lang.Str

ing

‑‑value-
class

Fully qualified class name of the value’s type. The type may not be an internal PDX
class.

java.lang.Str

ing

‑‑value-
class

Fully qualified class name of the value’s type. The type may not be an internal PDX
class.

java.lang.Str

ing

‑‑if-not-
exists

Skip the put operation when an entry with the same key already exists. false

Example Commands:

put --key=('id':'133abg125') --value=('firstname':'James','lastname':'Gosling')

--region=/region1 --key-class=data.ProfileKey --value-class=data.ProfileDetails

put --key=('133abg124') --value=('Hello World!!') --region=/region2

put --key=('100F') --value=('2146547689879658564') --region=/region1/region12

--key-class=java.lang.Float --value-class=java.lang.Long

Sample Output:

gfsh>put --key=('123abc') --value=('Hello World!!') --region=region2

Result : true

Key Class : java.lang.String

Key : ('123abc')

Value Class : java.lang.String

Old Value : <NULL>

Error Messages:

"Region name is either empty or Null";

"Key is either empty or Null";

"Value is either empty or Null";

"Region <{0}> not found in any of the members";

"Region <{0}> Not Found";

"Key is not present in the region";

query

Run queries against VMware GemFire regions.

If a limit restricting the result size is not set in the query, then a default limit of the gfsh
environment variable APP_FETCH_SIZE, as defined in Useful gfsh Shell Variables, will be applied.

Surround the OQL query with single quote marks.

Note: This command should not be executed from gfsh if the objects being queried contain cyclic
references.

VMware GemFire 9.10 Documentation

VMware by Broadcom 920

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

query --query=value [--step-name=value] [--file=path/to/results/file]

Name Description

--query Required. The OQL string.

--file When specified, all query results are written to the specified file. An error is issued if the file already exists.

Table 1. Query Parameters

Sample Output:

gfsh>query --query='SELECT * FROM /region2'

Result : true

startCount : 0

endCount : 20

Rows : 1

Result

('Hello World!!')

NEXT_STEP_NAME : END

rebalance
Rebalance partitioned regions.

The default is for all partitioned regions to be rebalanced.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

rebalance [--include-region=value(,value)*]

[--exclude-region=value(,value)*] [--time-out=value] [--simulate(=value)?]

Name Description Default Value

‑‑include-
region

Partitioned Region paths to be included for rebalance operation. Includes
take precedence over excludes.

‑‑exclude-
region

Partitioned Region paths to be excluded for rebalance operation.

‑‑time-out Time to wait (in seconds) before GFSH returns to a prompt while
rebalancing continues in the background.

-1 (wait for rebalancing to
complete

‑‑simulate Whether to only simulate rebalancing. The –time-out parameter is not
available when simulating.

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 921

Table 1. Rebalance Parameters

Example Commands:

rebalance --include-region=/region3 --simulate=true

Sample Output:

rebalance

1. server1 host1(3467):12435:12423

Row Rebalanced Stats | Value

--- ---------------- | -----

1 TotalBucketCreateBytes | 0

2 TotalBucketCreateTime | 0

3 TotalBucketCreatesCompleted | 0

4 TotalBucketTransferBytes | 0

5 TotalBucketTransferTime | 0

6 TotalBucketTransfersCompleted | 0

7 TotalPrimaryTransferTime | 0

8 TotalPrimaryTransfersCompleted | 0

9 TotalTime | 56

Rebalance complete on host1(3467):12435:12423.

remove
Remove an entry from a region.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

remove --region=value [--key=value] [--all(=value)?] [--key-class=value]

Name Description Default Value

‑‑key String or JSON text that will be used to create a key to retrieve a value .

‑‑key‑cl
ass

Fully qualified class name of the key’s type. key constraint for the current
region or String

‑‑region Required. Region from which to remove the entry.

‑‑all A boolean value that, when true, clears the region by removing all entries.
This option is not available for partitioned regions.

false

Example Commands:

gfsh>remove --region=/region1 --key=('id': '133abg134')

gfsh>remove --region=/region1 --key=('id': '133abg134') --key-class=data.ProfileKey

gfsh>remove --region=/region1 --all=true

Error Messages:

VMware GemFire 9.10 Documentation

VMware by Broadcom 922

"Region name is either empty or Null"

"Key is either empty or Null"

"Value is either empty or Null"

"Region <{0}> not found in any of the members"

"Region <{0}> Not Found"

"Key is not present in the region"

"Option --all is not supported on partitioned region"

resume

Modify an existing VMware GemFire resource.

resume async-event-queue-dispatcher

Resume dispatching of events from the queue to the listener(s) for a specified asynchronous
event queue which is currently in a paused state.

resume gateway-sender

Resume specified gateway sender that is currently in a paused state.

resume async-event-queue-dispatcher

Resume dispatching of events on a specified asynchronous event queue which is currently in a
paused state.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

resume async-event-queue-dispatcher --id=value [--groups=value(,value)*]

[--members=value(,value)*]

Name Description

‑‑id Required. ID of the Asynchronous Event Queue.

‑‑groups Group(s) of members on which to resume event dispatching for this queue.

‑‑members Name/Id of the member(s) on which to resume event dispatching for this queue.

Example Commands:

resume async-event-queue-dispatcher --id=AEQ1 --groups=Group1

resume gateway-sender
Resume a gateway sender which is currently in a paused sate.

VMware GemFire 9.10 Documentation

VMware by Broadcom 923

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

resume gateway-sender --id=value [--groups=value(,value)*]

[--members=value(,value)*]

Name Description

‑‑id Required. ID of the Gateway Sender.

‑‑groups Group(s) of members on which to resume the Gateway Sender.

‑‑members Name/Id of the member(s) on which to resume the Gateway Sender.

Example Commands:

resume gateway-sender --id=sender1-LN --groups=LN-Group1

revoke missing-disk-store
Instruct the member(s) of a cluster to stop waiting for a disk store to be available.

Only revoke a disk store if its files are lost as it will no longer be recoverable after revoking is
initiated. Use the “show missing-disk-store” command to get descriptions of missing disk stores.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

revoke missing-disk-store --id=value

Name Description

‑‑id Required. ID of the missing disk store to be revoked.

Table 1. Revoke Missing-Disk-Store Parameters

Example Commands:

revoke missing-disk-store --id=60399215-532b-406f-b81f-9b5bd8d1b55a

Sample Output:

gfsh>revoke missing-disk-store --id=60399215-532b-406f-b81f-9b5bd8d1b55a

Missing disk store successfully revoked

Error Messages:

Example of revoke missing-disk-store when the disk store cannot be found:

gfsh> revoke missing-disk-store --id=60399215-532b-406f-b81f

VMware GemFire 9.10 Documentation

VMware by Broadcom 924

Unable to find missing disk store to revoke

run

Execute a set of GFSH commands.

Commands that normally prompt for additional input will instead use default values.

Availability: Online or offline.

Note: Some commands specified in the file require online status.

Syntax:

run --file=value [--quiet(=value)?] [--continue-on-error(=value)?]

Table 1. Parameters

Name Description Default Value

‑‑file Required. Path of the file scripted with commands that
gfsh recognizes. Path should be relative or absolute.

‑‑quiet Specifies whether to show command output. false

‑‑continue-on-error Specifies whether further execution of the script should
continue if there is an error while executing one of the
commands fails.

false

Table 1. Run Parameters

Example Commands:

run --file=create-regions.gfsh --quiet=true

(2) From command line:

prompt> /home/user1/gemfire70/bin/gfsh run ./create-regions.gfsh --quiet=true

prompt> /home/user1/gemfire70/bin/gfsh run ./create-regions.gfsh

--continue-on-error=true

Sample Output:

gfsh>run --file=create-regions.gfsh

1. Executing - create region --name=region4 --type=REPLICATE

Member | Status

------- | --------------------------------------

server2 | Region "/region4" created on "server2"

server1 | Region "/region4" created on "server1"

2. Executing - create region --name=region1/subregion1 --type=LOCAL

Note: All commands in a script are run
non-interactively when the run
command is used. This option does not
change that functionality.

VMware GemFire 9.10 Documentation

VMware by Broadcom 925

Parent region for "region1/subregion1" doesn't exist.

search lucene

search lucene

Search a Lucene index

See also create lucene index, describe lucene index, destroy lucene index and list lucene indexes.

Availability: Online.

Syntax:

search lucene --name=value --region=value --queryString=value --defaultField=value

 [--limit=value] [--keys-only=value]

Parameters, search lucene:

Name Description Default Value

‑‑name Required. Name of the Lucene index to
search.

‑‑region Required. Name/Path of the region
where the Lucene index exists.

‑‐queryString Required. Query string to search the
Lucene index. Use
__REGION_VALUE_FIELD as the field
name within the query string when the
field is a primitive value. Surround a
string with double quote marks to do
an exact match of the string.

‑‐defaultField Required. Default field to search in.
__REGION_VALUE_FIELD identifies the
field as a primitive value.

‑‑limit Number of search results needed. If the parameter is not specified: 100

‑‑keys-only Return only keys of search results. If the parameter is not specified:
false

Example Commands:

gfsh> search lucene --name=testIndex --region=/testRegion --queryString=value1

 --defaultField=__REGION_VALUE_FIELD

gfsh> search lucene --name=indexOfStrings --region=/stringTestRegion

 --queryString='__REGION_VALUE_FIELD:"my exact string"'

 --defaultField=__REGION_VALUE_FIELD

Sample Output:

VMware GemFire 9.10 Documentation

VMware by Broadcom 926

gfsh>search lucene --name=testIndex --region=/testRegion --queryString=value*

 --defaultField=__REGION_VALUE_FIELD

key | value | score

--- | ------ | -----

3 | value3 | 1

2 | value2 | 1

1 | value1 | 1

gfsh>search lucene --region=/Person --name=analyzerIndex

 --defaultField=addr --queryString="97763"

 key | value | score

------ | -- | --------

key763 | Person{name='Kris Cat', addr='7 Ash St, Portland_OR_97763', emai.. | 1.669657

set variable

Set variables in the gfsh environment.

Set gfsh variables that can be used by commands.

You can use the gfsh echo command to view the value of a variable. For example, to see a list of all
environment variables and their current values, use the following command:

gfsh>echo --string=$*

See Useful gfsh Shell Variables for a description of preset environment variables.

Availability: Online or offline.

Syntax:

set variable --name=value --value=value

Name Description

‑‑nam
e

Required. The name to be assigned for the variable. The name must only be composed of letters, digits, and
the underscore character (_); the name may not start with a digit.

‑‑valu
e

Required. Value that the variable will be set to.

Example Commands:

set variable --name=FOO --value="foo"

set variable --name=BAR --value="bar"

Sample Output:

gfsh>set variable --name=BAR --value="bar"

Value for variable BAR is now: "bar".

sh
Execute operating system commands.

VMware GemFire 9.10 Documentation

VMware by Broadcom 927

Executes operating system (OS) commands. Use “&” to return to the gfsh prompt immediately.

Note: Commands that pass output to another shell command are not supported.

Syntax:

sh command [--use-console(=value)?]

Name Description
Default
Value

‑‑use-
console

Set this parameter on UNIX systems for applications which need a handle to the console.
Adds “</dev/tty >/dev/tty” to the specified command.

false

Table 1. Sh Parameters

Example Commands:

gfsh>sh ls -al

total 80

drwxrwxr-x. 10 username username 4096 Sep 3 15:10 .

drwxrwxr-x. 4 username username 4096 Sep 3 14:58 ..

drwx------. 2 username username 4096 Sep 3 15:09 bin

drwx------. 2 username username 4096 Sep 3 15:09 defaultConfigs

drwx------. 3 username username 4096 Sep 3 15:09 docs

drwx------. 2 username username 4096 Sep 3 15:09 dtd

-rwx------. 1 username username 31830 Sep 3 15:09 EULA.txt

drwx------. 2 username username 4096 Sep 3 15:09 lib

drwx------. 6 username username 4096 Sep 3 15:09 SampleCode

drwx------. 4 username username 4096 Sep 3 15:09 templates

drwx------. 5 username username 4096 Sep 3 15:09 tools

show
Display deadlocks, logs, metrics and missing disk-stores.

show dead-locks

Display any deadlocks in the cluster.

show log

Display the log for a member.

show metrics

Display or export metrics for the entire cluster, a member, or a region.

show missing-disk-stores

Display a summary of the disk stores that are currently missing from the cluster.

show subscription-queue-size

Shows the number of events in the subscription queue.

show dead-locks

VMware GemFire 9.10 Documentation

VMware by Broadcom 928

Display any deadlocks in the cluster.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

show dead-locks --file=value

Name Description

‑‑file Required. Name of the file to which dependencies between members will be written.

Table 1. Show Dead-Locks Parameters

Example Commands:

show dead-locks --file=deadlocks.txt

Sample Output:

gfsh>show dead-locks --file=deadlocks.txt

No dead lock detected.

Please view the dependencies between the members in file : deadlocks.txt

show log

Display the log for a member.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

show log --member=value [--lines=value]

Name Description Default Value

‑‑member Required. Name/ID of the member whose log file will be displayed.

‑‑lines Number of lines from the log file to display. The maximum is 100. 0

Example Commands:

show log --member=locator1 --lines=5

Sample Output:

gfsh>show log --member=locator1 --lines=5

SystemLog:

[info 2012/09/25 14:04:51.340 PDT locator1 <RMI TCP Connection(14)-192.0.2.0> tid=0x5

7] (tid=12 msgId=4) Parent region for "region1/subregion1" doesnt exi

st.

[info 2012/09/25 14:04:51.372 PDT locator1 <RMI TCP Connection(14)-192.0.2.0> tid=0x5

VMware GemFire 9.10 Documentation

VMware by Broadcom 929

7] (tid=12 msgId=5) Error occurred while executing "create region --n

ame=region1/subregion1 --type=LOCAL".

[info 2012/09/25 15:14:34.314 PDT locator1 <RMI TCP Connection(159)-192.0.2.0> tid=0x6

8] (tid=13 msgId=6) Error occurred while executing "show log --membe

r=server1 --lines=5".

show metrics

Display or export metrics for the entire cluster, a member, or a region.

When no command line arguments are given, metrics under the categories of cluster, cache,
diskstore, and query are displayed.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

show metrics [--member=value] [--region=value] [--file=value]

[--port=value] [--categories=value(,value)*]

Table 3. Show Metrics Parameters

Name Description

‑‑member Name/ID of the member whose metrics will be
displayed/exported.

‑‑region Name/Path of the region whose metrics will be
displayed/exported.

‑‑file Name of the file to which metrics will be written.

‑‑port Port number of the Cache Server whose metrics are to be
displayed/exported. This can only be used along with the
--member parameter.

‑‑categories Categories available based upon the parameters specified
(listed above) are:

region specified: cluster, region, partition,
diskstore, callback, eviction

member specified: member, jvm, region,
serialization, communication, function,
transaction, diskstore, lock, eviction,
distribution, offheap

member and region specified: region, partition,
diskstore, callback, eviction

Table 3. Show Metrics Parameters

Example Commands:

// Metrics for the entire system

show metrics

// Metrics for a region:

show metrics --region=region1

// Metrics for a given member

VMware GemFire 9.10 Documentation

VMware by Broadcom 930

show metrics --member=server1

// Metrics for a region on a member

show metrics --region=region1 --member=server1

// Metrics for a member and the cacheserver it hosts

// NOTE: port option only work when used with --member option

show metrics --member=server1 --port=10334

// Export metrics for the entire system

show metrics --file=data/stats/system-stats.csv

Sample Output:

gfsh>show metrics

Cluster-wide Metrics

 Type | Metric | Value

--------- | --------------------- | -----

cluster | totalHeapSize | 123

cache | totalRegionEntryCount | 0

 | totalRegionCount | 0

 | totalMissCount | 0

 | totalHitCount | 0

diskstore | totalBytesOnDisk | 0

 | diskReadsRate | 0

 | diskWritesRate | 0

 | flushTimeAvgLatency | 0

 | totalBackupInProgress | 0

query | queryRequestRate | 0

show missing-disk-stores

Display a summary of the disk stores that are currently missing from the cluster.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

show missing-disk-stores

Example Commands:

show missing-disk-stores

Sample Output:

gfsh> show missing-disk-stores

 Disk Store ID | Host | Directory

------------------------------------ | --------- | -----------------------------------

--

60399215-532b-406f-b81f-9b5bd8d1b55a | excalibur | /usr/local/gemfire/deploy/disk_stor

e1

VMware GemFire 9.10 Documentation

VMware by Broadcom 931

show subscription-queue-size

Shows the number of events in the subscription queue.

If a CQ name is provided, it counts the number of events in the subscription queue for the specified
CQ.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

show subscription-queue-size --durable-client-Id=value

 [--members=value(,value)*] [--groups=value(,value)*]

Name Description

‑‑durable-client-id Required. The ID used to identify the durable client.

‑‑durable-cq-name The name that identifies the CQ.

‑‑members Name/Id of the member(s) for which subscription queue events are to be counted.

‑‑groups Group(s) of members for which subscription queue events are to be counted.

Table 4. Show Subscription-Queue-Size Parameters

Example Commands:

show subscription-queue-size --durable-client-id=client1

Sample Output:

gfsh>show subscription-queue-size --durable-client-Id=client1

member | subcription-queue-size for durable-client : "client1".

------- | --

server3 | 1

server4 | 0

Error Messages:

gfsh>show subscription-queue-size --durable-client-Id=client1

No client found with client-id : client1

Occurred on members

1.server4

2.server1

3.server3

shutdown
Stop all members.

Asks all the members that have a cache to close the cache and disconnect from the system. If the -
-include-locators parameter is specified, the command shuts down any running locators one by

VMware GemFire 9.10 Documentation

VMware by Broadcom 932

one. The timeout parameter allows you to specify that the system should be shutdown forcibly
after the time has exceeded.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

shutdown [--time-out=value] [--include-locators=value]

Name Description
Default
Value

‑‑time-out Time to wait (in seconds) for a graceful shutdown. Should be at least 10 seconds. The
default value if not specified is 10.

10

‑‑include-
locators

To shutdown locators, specify this option as true. false

Table 1. Shutdown Parameters

Example Commands:

shutdown

shutdown --time-out=15

shutdown --include-locators=true

Sample Output:

gfsh>shutdown

"As a lot of data in memory will be lost, including possibly events in

queues, do you really want to shutdown the entire distributed system? (Y/n):"

Y

Shutdown is triggered

sleep

Delay gfsh command execution.

Delay for a specified amount of time in seconds - floating point values are allowed.

Availability: Online of offline.

Syntax:

sleep [--time=value]

Name Description Default Value

‑‑time Number of seconds to sleep. 3

Table 1. Sleep Parameters

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 933

sleep

sleep --time=60

Sample Output:

gfsh>sleep --time=60

gfsh>

start

Start servers, locators, gateway senders and gateway receivers, and monitoring tools.

start gateway-receiver

Start the gateway receiver on a given member or group of members.

start gateway-sender

Start the gateway sender on a member or members.

start jconsole

Start the JDK JConsole monitoring application in a separate process.

start jvisualvm

Start the JDK’s Java VisualVM monitoring application in a separate process.

start locator

Start a locator.

start pulse

Launch the VMware GemFire Pulse monitoring dashboard tool in the user’s default system
browser and navigates the user to the landing page (login page).

start server

Start a VMware GemFire cache server process.

start vsd

Launch GemFire Visual Statistics Display (VSD) in a separate process.

start gateway-receiver

Start the gateway receiver on a given member or group of members.

Note that you can only have one gateway receiver on each member, and unlike a gateway sender,
you do not need to specify an identifier for the gateway receiver.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

start gateway-receiver [--groups=value(,value)*] [--members=value(,value)*]

VMware GemFire 9.10 Documentation

VMware by Broadcom 934

Parameters, start gateway-receiver

Name Description

--members Name or ID of the member(s) on which to start the Gateway Receiver.

--groups Group(s) of members on which to start the Gateway Receiver.

Example Commands:

start gateway-receiver

start gateway-receiver --members=member1

Sample Output:

gfsh>start gateway-receiver

 Member | Result | Message

--------------------------- | -------| ---

pc13(2266)<v6>:56852 | OK | GatewayReceiver is started on member pc13(2266)

<v6>:56852

pc13(Manager:2242)<v5>:57631| Error | GatewayReceiver is not available on member pc13

(Manager:2242)<v5>:57631

pc13(2275)<v7>:47480 | OK | GatewayReceiver is started on member pc13(2275)

<v7>:47480

pc13(2293)<v8>:55472 | OK | GatewayReceiver is started on member pc13(2293)

<v8>:55472

gfsh>start gateway-receiver --members=pc13(2266)<v14>:36579

GatewayReceiver is started on member pc13(2266)<v14>:36579

gfsh>start gateway-receiver --group=RG1

 Member | Result | Message

-------------------- | -------| --

pc13(2275)<v23>:27484| OK | GatewayReceiver is started on member pc13(2275)<v23>:2

7484

pc13(2293)<v24>:55810| OK | GatewayReceiver is started on member pc13(2293)<v24>:5

5810

pc13(2266)<v22>:4522 | OK | GatewayReceiver is started on member pc13(2266)<v22>:4

522

start gateway-sender
Start the gateway sender on a member or members.

For information on how to configure a gateway sender, see Configure Gateway Senders.

Note: By default, gateway senders are configured to start automatically. Manual restart introduces
a risk of data loss; it is not intended for production systems.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

start gateway-sender --id=value [--groups=value(,value)*] [--members=value(,value)*]

VMware GemFire 9.10 Documentation

VMware by Broadcom 935

Parameters, start gateway-sender

Name Description

--id Required. ID of the GatewaySender.

--groups Group(s) of members on which to start the Gateway Sender.

--members Member(s) on which to start the Gateway Sender

Example Commands:

start gateway-sender --id=sender1-NY

start gateway-sender --id=sender1-NY --members=server1

start gateway-sender --id=sender1-NY --groups=MemberGroup1,MemberGroup2

Sample Output:

gfsh>start gateway-sender --id=ln

 Member | Result | Message

------------------------------| ------- | --

pc13(30614)<v6>:63670 | OK | GatewaySender ln is started on member pc13(3

0614)<v6>:63670

pc13(30621)<v7>:36015 | OK | GatewaySender ln is started on member pc13(3

0621)<v7>:36015

pc13(30633)<v8>:13633 | OK | GatewaySender ln is started on member pc13(3

0633)<v8>:13633

pc13(Manager:30588)<v5>:42792 | Error | GatewaySender ln is not available on member

pc13(Manager:30588)<v5>:42792

gfsh>start gateway-sender --id=ln --members=pc13(30614)<v14>:44519

GatewaySender ln is started on member pc13(30614)<v14>:44519

gfsh>start gateway-sender --id=ln --groups=SenderGroup1

Member | Result| Message

---------------------- | ------| ---

pc13(30614)<v18>:15201 | OK | GatewaySender ln is started on member pc13(30614)<v18

>:15201

pc13(30621)<v19>:61437 | OK | GatewaySender ln is started on member pc13(30621)<v19

>:61437

pc13(30633)<v20>:22567 | OK | GatewaySender ln is started on member pc13(30633)<v20

>:22567

start jconsole
Start the JDK JConsole monitoring application in a separate process.

JConsole automatically connects to a running JMX Manager node if one is available.

Note that you must have a JDK installed (not just a JRE) and the correct PATH and JAVA_HOME
environment variables set.

See Browsing VMware GemFire MBeans through JConsole for an example of using JConsole with
the VMware GemFire management and monitoring system.

Availability: Online or offline.

VMware GemFire 9.10 Documentation

VMware by Broadcom 936

Syntax:

start jconsole [--interval=<seconds>] [--notile] [--version]

[--J<jconsole JVM options>]

Parameters, start jconsole

Name Description
Default
Value

--
interval

Set the update interval to n seconds (default is 4 seconds). (Equivalent to JConsole’s -
interval=n)

4

--notile Whether to initially tile windows for two or more connections. This parameter is passed as -
notile to JConsole.

false

‑‑plugi
npath

Directories or JAR files which are searched for JConsole plugins. The path should contain a
provider-configuration file named:META-
INF/services/com.sun.tools.jconsole.JConsolePlugin containing one line for each plugin
specifying the fully qualified class name of the class implementing the
com.sun.tools.jconsole.JConsolePlugin class.

--
version

Display the JConsole version information. This parameter is passed as -version to JConsole. false

--J Arguments passed to the JVM on which JConsole runs

Example Commands:

gfsh>start jconsole --interval=8 --notile;

Running JDK JConsole

gfsh>start jconsole --version;

JConsole version "1.8.0_31-b01-1"

Java(TM) SE Runtime Environment (build 1.8.0_31-b01-1-11)

Java HotSpot(TM) 64-Bit Server VM (build 20.6-b01-11, mixed mode)

Sample Output:

gfsh>start jconsole

Running JDK JConsole

The JConsole application appears and auto-connects to a JMX Manager node if one is available:

VMware GemFire 9.10 Documentation

VMware by Broadcom 937

Error Messages:

An error occurred while launching JConsole = %1$s

Connecting by the VMware GemFire member's name or ID is not currently supported.

Please specify the member as '<hostname|IP>[PORT].

An IO error occurred while launching JConsole.

Please ensure that JAVA_HOME is set to the JDK installation

or the JDK bin directory is in the system PATH.

JConsole could not be found.\nPlease ensure that JAVA_HOME is set to the

JDK installation or the JDK bin directory is in the system PATH.

start jvisualvm

Start the JDK’s Java VisualVM monitoring application in a separate process.

Availability: Online or offline.

Syntax:

start jvisualvm [--J=value(,value)*]

Parameters, start jvisualvm

VMware GemFire 9.10 Documentation

VMware by Broadcom 938

Name Description

--J VM-option passed to the spawned CacheServer VM. For example: -J-Dfoo.bar=true for setting foo.bar to
‘true’.

Example Commands:

start jvisualvm

Sample Output:

start locator

Start a locator.

The command creates a subdirectory and log file named after the locator. If the locator detects that
no other JMX Manager exists, then the locator will automatically start an embedded JMX Manager
and connect the current gfsh session to the JMX Manager.

Note: You must have JAVA_HOME set before starting gfsh to use this command.

In addition, if gfsh is not already connected to a JMX Manager, the gfsh console will automatically
connect to the new embedded JMX Manager started by the new locator.

Note: When --max-heap is specified, gfsh enables the CMS garbage collector and sets -
XX:CMSInitiatingOccupancyFraction to 60. If you do not want gfsh to set these GC properties,
then use the -Xms JVM option instead. See Controlling Heap Use with the Resource Manager for
more information.

Note: The additional GC parameters introduced by the --max-heap option are not compatible with
the G1 garbage collector.

VMware GemFire 9.10 Documentation

VMware by Broadcom 939

Availability: Online or offline.

Syntax:

start locator --name=value [--bind-address=value] [--force(=value)]

 [--groups=value(,value)*] [--hostname-for-clients=value]

 [--locators=value] [--log-level=value] [--mcast-address=value] [--mcast-port=value]

[--port=value] [--dir=value]

 [--properties-file=value] [--security-properties-file=value] [--initial-heap=value]

[--max-heap=value]

 [--connect(=value)] [--enable-cluster-configuration(=value)] [--load-cluster-configur

ation-from-dir(=value)]

 [--cluster-config-dir=value]

 [--http-service-port=value] [--http-service-bind-address=value]

 [--J=value(,value)*]

Parameters, start locator

Name Description Default Value

--name Name to be used for this VMware GemFire locator service. If not specified, gfsh
generates a random name.

--bind-address IP address on which the locator will be bound. bind to all
addresses

--force Whether to allow the PID file from a previous locator run to be overwritten. false

--groups Group(s) the locator will be a part of.

--hostname-for-
clients

Host name or IP address that will be sent to clients so they can connect to this
locator.

uses bind-
address

--locators List of locators used by this locator to join the appropriate VMware GemFire
cluster.

--log-level Level of output logged to the locator log file. Possible values for log-level
include: ALL, TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF.

--mcast-address IP address or hostname used to bind the UPD socket for multi-cast networking
so the locator can locate other members in the VMware GemFire cluster. If
mcast-port is zero, then mcast-address is ignored.

--mcast-port Port used for multi-cast networking so the locator can locate other members of
the VMware GemFire cluster. A zero value deactivates mcast.

--port Port the locator will listen on. 10334

--dir Directory in which the Locator will be started and run. .<locator-

member-name>

--properties-file Specify the gemfire.properties file for configuring the locator’s cluster. The
file’s path should be absolute or relative to gfsh’s working directory.

--security-
properties-file

The gfsecurity.properties file for configuring the Locator’s security
configuration in the cluster. The file’s path can be absolute or relative to gfsh’s
working directory.

--initial-heap Size has the same format as the -Xmx/-Xms JVM options.

VMware GemFire 9.10 Documentation

VMware by Broadcom 940

Name Description Default Value

--max-heap Size has the same format as the -Xmx/-Xms JVM options.

Note: The additional GC parameters introduced by the -max-heap option are not
compatible with the usage of the G1 garbage collector.

--connect When connect is set to false, gfsh does not automatically connect to the locator
which is started using this command.

true

--enable-
cluster-
configuration

Enables cluster configuration behavior where locators maintain configurations for
all members of the cluster.
See Overview of the Cluster Configuration Service.

true

--load-cluster-
configuration-
from-dir

Deprecated. Use gfsh import cluster-configuration for this functionality.
Loads the cluster configuration from the shared-config directory. (When set to
false, the configuration is loaded from the disk store of the internal, persistent
region used by the locator to persist the configuration.)

false

--cluster-config-
dir

Directory used by the cluster configuration service to store the cluster
configuration on the filesystem

cluster-config

--http-service-
port

Specifies the HTTP service port. 7070

--http-service-
bind-address

Specifies the IP address to which the HTTP service will be bound. the local host
machine’s
address

--J Argument passed to the JVM on which the Locator will run. For example,
specifying --J=-Dfoo.bar=true sets property "foo.bar" to "true".

Note: If the argument you are passing contains spaces or commas, enclose the
option in single quotes. For example:
start locator --name=locator1 --port=9009 --mcast-port=0 --J='-

Dgemfire.remote-locators=192.0.2.0[9009],192.0.2.1[9009]'

none

Example Commands:

start locator --name=locator1

start pulse

Launch the VMware GemFire Pulse monitoring dashboard tool in the user’s default system browser
and navigate the user to the landing page (login page).

For more information on VMware GemFire Pulse, see VMware GemFire Pulse.

Availability: Online or offline.

Syntax:

start pulse [--url=value]

Parameters, start pulse

VMware GemFire 9.10 Documentation

VMware by Broadcom 941

Name Description Default

--url URL of the Pulse Web application http://localhost:7070/pulse

Example Commands:

start pulse

start pulse --url=http://gemfire.example.com:7070/pulse

Sample Output: See VMware GemFire Pulse for examples of Pulse.

start server

Start a VMware GemFire cache server process.

Note: When --max-heap is specified, gfsh enables the CMS garbage collector and sets -
XX:CMSInitiatingOccupancyFraction to 60. If you do not want gfsh to set these GC properties,
then use the -Xms JVM option instead. See Controlling Heap Use with the Resource Manager for
more information.

Note: The additional GC parameters introduced by the --max-heap option are not compatible with
the G1 garbage collector.

Availability: Online or offline.

Syntax:

start server --name=value [--assign-buckets(=value)] [--bind-address=value]

 [--cache-xml-file=value] [--classpath=value] [--disable-default-server(=value)]

 [--disable-exit-when-out-of-memory(=value)] [--enable-time-statistics(=value)]

 [--force(=value)] [--include-system-classpath(=value)] [--properties-file=value]

 [--security-properties-file=value] [--groups=value(,value)*]

 [--locators=value] [--locator-wait-time=value] [--log-level=value]

 [--mcast-address=value] [--mcast-port=value] [--memcached-port=value]

 [--memcached-protocol=value] [--rebalance(=value)] [--server-bind-address=value]

 [--server-port=value] [--spring-xml-location=value]

 [--statistic-archive-file=value] [--dir=value] [--initial-heap=value]

 [--max-heap=value] [--use-cluster-configuration(=value)] [--J=value(,value)*]

 [--critical-heap-percentage=value] [--critical-off-heap-percentage=value]

 [--eviction-heap-percentage=value] [--eviction-off-heap-percentage=value]

 [--hostname-for-clients=value] [--max-connections=value]

 [--message-time-to-live=value] [--max-message-count=value] [--max-threads=value]

 [--socket-buffer-size=value] [--lock-memory=value] [--off-heap-memory-size=value]

 [--start-rest-api=value]

 [--http-service-port=value] [--http-service-bind-address=value]

 [--user=value] [--password=value]

Parameters, start server

Name Description Default Value

--name Member name for this server. If not specified, gfsh generates a random name.

--assign-
buckets

Whether to assign buckets to the partitioned regions of the cache on server start. false

VMware GemFire 9.10 Documentation

VMware by Broadcom 942

Name Description Default Value

--bind-
address

The IP address on which the server will be bound. binds to all local
addresses

--cache-
xml-file

Specifies the name of the XML file or resource to initialize the cache with when it is
created.

--
classpath

Application classes to be added to the server’s CLASSPATH after the core jar file.
See Setting Up the CLASSPATH for details.

--
include-
system-
classpath

When true, include the System CLASSPATH on the Server’s CLASSPATH, as the
System CLASSPATH is not included by default. If specified without a value, the
value is set to true.

false

--
disable-
default-
server

Whether the cache server will be started by default. If the parameter is specified
without a value, the value is set to true. If set to true, the cache server acts as a
peer.

false

--
disable-
exit-
when-
out-of-
memory

Prevents the JVM from exiting when an OutOfMemoryError occurs. false

--enable-
time-
statistics

Causes additional time-based statistics to be gathered for VMware GemFire
operations.

true

--
propertie
s-file

The gemfire.properties file for configuring the server’s cluster. The file’s path can
be absolute or relative to the gfsh working directory.

--
security-
propertie
s-file

The gfsecurity.properties file for configuring the server’s security configuration
in the cluster. The file’s path can be absolute or relative to gfsh directory.

--groups Group(s) the Cache Server will be a part of.

--force Whether to allow the PID file from a previous Cache Server run to be overwritten. false

--
locators

Sets the list of locators used by the Cache Server to join the appropriate VMware
GemFire cluster.

--
locator-
wait-time

Sets the number of seconds the server will wait for a locator to become available
during startup before giving up.

0

--log-
level

Sets the level of output logged to the Cache Server log file. Possible values for log-
level include: ALL, TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF.

--mcast-
address

The IP address or hostname used to bind the UDP socket for multi-cast networking
so the Cache Server can locate other members in the VMware GemFire cluster. If
mcast-port is zero, then mcast-address is ignored.

--mcast-
port

Sets the port used for multi-cast networking so the Cache Server can locate other
members of the VMware GemFire cluster. A zero value deactivates mcast.

VMware GemFire 9.10 Documentation

VMware by Broadcom 943

Name Description Default Value

‑‑memca
ched-
port

If specified and is non-zero, sets the port number for an embedded Gemcached
server and starts the Gemcached server.

‑‑memca
ched-
protocol

Sets the protocol used by an embedded Gemcached server. Valid values are
BINARY and ASCII. If you omit this property, the ASCII protocol is used.

--server-
bind-
address

Overrides the bind-address on which this server will listen for client connections.
Set this option in a multi-homed server environment to distinguish
communications from clients. Setting a value of the empty string ("") uses the value
of bind-address.

value of bind-
address

--server-
port

Port the Server will listen on for client connections. 40404

--spring-
xml-
location

Specifies the location of a Spring XML configuration file(s) for bootstrapping and
configuring a VMware GemFire Server. This configuration file can exist on the
CLASSPATH (default) or any location supported by Spring’s Resource(Loader)
location specifiers (for example, classpath:, file:, etc).
ResourceLoader is described in the Spring documentation.

--
rebalance

Whether to initiate rebalancing across the VMware GemFire cluster. false

--dir Specify the directory in which the server will run in. This directory is written to the
location where you started gfsh.

If not specified, the
directory is named
after the server.

--
statistic-
archive-
file

The file that statistic samples are written to. For example:
"StatisticsArchiveFile.gfs". Must be defined to store the archiving to a file. An
empty string (default) deactivates statistic archival.

not set

--initial-
heap

Initial size of the heap in the same format as the JVM -Xms parameter.

--max-
heap

Maximum size of the heap in the same format as the JVM -Xmx parameter.

Note: The additional GC parameters introduced by the --max-heap option are not
compatible with the G1 garbage collector.

--J Argument passed to the JVM on which the Cache Server will run. For example, --
J=-Dfoo.bar=true will set the property "foo.bar" to "true".

If the argument you are passing contains spaces or commas, enclose the option in
single quotes.

--use-
cluster-
configura
tion

Specifies whether the server requests a cluster configuration from the locator.

See Overview of the Cluster Configuration Service.

true

VMware GemFire 9.10 Documentation

VMware by Broadcom 944

http://docs.spring.io/spring/docs/4.0.9.RELEASE/spring-framework-reference/htmlsingle/#resources-resourceloader

Name Description Default Value

--critical-
heap-
percenta
ge

Set the percentage of heap at or above which the cache is considered in danger of
becoming inoperable due to garbage collection pauses or out of memory
exceptions. Past the threshold, operations that require heap space will throw a
LowMemoryException. This feature requires additional VM flags to perform
properly; you must set --initial-heap and --max-heap or the corresponding JVM
properties to use this threshold. You must also set --max-heap and --initial-
heap to the same value.

0 (no critical heap
threshold enforced)

--critical-
off-heap-
percenta
ge

The percentage of off-heap memory used at or above which the cache is
considered in danger of becoming inoperable due to out of memory exceptions.
Past the threshold, operations that require heap space will throw a
LowMemoryException.

0 (no critical off-
heap threshold
enforced)

--
eviction-
heap-
percenta
ge

Set the percentage of heap at or above which the eviction should begin on Regions
configured for HeapLRU eviction. Changing this value may cause eviction to begin
immediately. Only one change to this attribute or critical heap percentage will be
allowed at any given time and its effect will be fully realized before the next change
is allowed. This feature requires additional VM flags to perform properly; you must
set --initial-heap and --max-heap or the corresponding JVM properties to use
this threshold. You must also set --max-heap and --initial-heap to the same
value.

0, if no
region is
configured
with heap
eviction

If
critical-

heap-

percentage

is set to a
non-zero
value, 5%
less than
that value.

80%, if
critical-

heap-

percentage

is not
configured.

--
eviction-
off-heap-
percenta
ge

The percentage of off-heap memory used at or above which the eviction should
begin on regions configured for off-heap and HeapLRU eviction. Changing this
value may cause eviction to begin immediately. Only one change to this attribute
or critical off-heap percentage will be allowed at any given time, and its effect will
be fully realized before the next change is allowed.

0, if no
region is
configured
with heap
eviction

If
critical-

off-heap-

percentage

is set to a
non-zero
value, 5%
less than
that value.

80%, if
critical-

off-heap-

percentage

is not
configured.

VMware GemFire 9.10 Documentation

VMware by Broadcom 945

Name Description Default Value

--
hostname
-for-
clients

Sets the IP address or host name that a locator will provide to clients. Clients use
the address to connect to a server. Set this value when clients use a different
address to connect with the server than the bind-address, as those clients might
with servers in a private cloud or multi-homed environment. Not specifying this
option or setting this option to the empty string ("") causes the bind-address to
be given to clients.

--max-
connecti
ons

Sets the maximum number of client connections allowed. When the maximum is
reached the cache server will stop accepting connections.

--
message-
time-to-
live

Sets the time (in seconds) after which a message in the client queue will expire.

--max-
message-
count

Sets maximum number of messages that can be enqueued in a client-queue.

--max-
threads

Sets the maximum number of threads allowed in this cache server to service client
requests. The default of 0 causes the cache server to dedicate a thread for every
client connection. When client-server TLS/SSL is configured, values other than the
default are not supported.

--socket-
buffer-
size

Sets the buffer size in bytes of the socket connection for this CacheServer. The
default is 32768 bytes.

--lock-
memory

(Linux only) When true, the member’s heap and off-heap memory are locked in
RAM, preventing them from being paged to disk. You must increase the related
ulimit operating system resource to allow the OS to lock memory chunks of
sufficient size.

false

--off-
heap-
memory-
size

The integer quantity of off-heap memory to be used for storing region values.
Specified in Gigabytes with a ‘g’ suffix, or Megabytes with an ‘m’ suffix. For
example, allocate a 2 Gigabyte off-heap space with --off-heap-memory-size=2g.
The default value of 0 does not use any off-heap memory.

0

--start-
rest-api

When true, starts the REST API service. false

--
redirect-
output

When true, redirect standard output and standard error to the server log file. If
specified without a value, the value is set to true.

false

--http-
service-
port

Specifies the HTTP service port. 7070

--http-
service-
bind-
address

Specifies the IP address to which the HTTP service will be bound. the local host
machine’s address

--user The user name of the credential to use in authenticating to the cluster. When
specified, if the --password option is not also specified, then gfsh will prompt for
the password.

VMware GemFire 9.10 Documentation

VMware by Broadcom 946

Name Description Default Value

--
password

The password portion of the credential to use in authenticating to the cluster.

Examples

gfsh>start server --name=server1

gfsh>start server --name=server2 --server-port=40405

start vsd

Launch GemFire Visual Statistics Display (VSD) in a separate process.

You can specify a comma delimited list of directories and specific GemFire statistics archive files
(.gfs) to load into VSD upon start. A directory locations will be searched recursively for statistics
archive (.gfs) files.

Availability: Online or offline.

Syntax:

start vsd [--file=value(nullvalue)*]

Parameters, start vsd

Name Description

–file File or directory from which to read the statistics archive(s).

Example Commands:

gfsh> start vsd /export/gemfire/node1,/export/gemfire/node2/statArchive.gfs,../../gemf

ire/nodeN;

Running GemFire Visual Statistics Display (VSD)

gfsh> start vsd;

Running GemFire Visual Statistics Display (VSD)

Sample Output:

VMware GemFire 9.10 Documentation

VMware by Broadcom 947

status

Check the status of the cluster configuration service and VMware GemFire member processes,
including locators, gateway receivers, gateway senders, and servers.

status cluster-config-service

Displays the status of the cluster configuration service.

status gateway-receiver

Display the status of the specified gateway receiver.

status gateway-sender

Display the status of the specified gateway sender.

status locator

Displays the status of the specified locator.

status server

Display the status of the specified VMware GemFire cache server.

status cluster-config-service

Displays the status of the cluster configuration service.

Displays the status of cluster configuration service on all the locators where enable-cluster-
configuration is set to true.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

VMware GemFire 9.10 Documentation

VMware by Broadcom 948

status cluster-config-service

Example Commands:

status cluster-config-service

Sample Output:

gfsh>status cluster-config-service

Status of shared configuration on locators

 Name | Status

-------- | -------

locator8 | RUNNING

status gateway-receiver
Display the status of the specified gateway receiver.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

status gateway-receiver [--groups=value(,value)*] [--members=value(,value)*]

Name Description

‑‑groups Group(s) of Gateway Receivers for which to display status.

‑‑members Name or ID of the Gateway Receiver(s) for which to display status.

Table 1. Status Gateway-Receiver Parameters

Example Commands:

status gateway-receiver --groups=LN-Group1

status gateway-receiver --members=server1

Sample Output:

gfsh>status gateway-receiver

Member | Port | Status

---------------------| ------| -------

pc13(8151)<v2>:26518 | 26837 | Running

pc13(8175)<v4>:53787 | 23753 | Running

pc13(8164)<v3>:24081 | 25457 | Running

Member | Error

-----------------------------| ---

pc13(Manager:8124)<v1>:52410 | GatewayReceiver is not available or already stopped

pc13(8130):8180 | GatewayReceiver is not available or already stopped

gfsh>status gateway-receiver --members=pc13(8151)<v2>:50130

VMware GemFire 9.10 Documentation

VMware by Broadcom 949

Member | Port | Status

-------------------- | ----- | --------

pc13(8151)<v2>:50130 | 28592 | Running

gfsh>status gateway-receiver --group=RG1

Member | Port | Status

-----------------------| ------| -------

pc13(8151)<v2>:19450 | 27815 | Running

pc13(8175)<v4>:14139 | 27066 | Running

pc13(8164)<v3>:45150 | 29897 | Running

status gateway-sender

Display the status of the specified gateway sender.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

status gateway-sender --id=value [--groups=value(,value)*]

[--members=value(,value)*]

Name Description

‑‑id Required. ID of the Gateway Sender.

‑‑groups Group(s) of Gateway Senders for which to display status. Comma separated list for multiple member
groups.

‑‑member
s

Name/ID of the Gateway Sender(s) for which to display status.

Table 2. Status Gateway-Sender Parameters

Example Commands:

status gateway-receiver receiver1-LN --groups=LN-Group1;

Sample Output:

gfsh>status gateway-sender --id=ln_Serial

Member | Type | Runtime Policy | Status

-----------------------| -------| -------------- | -----------

 pc13(8175)<v4>:21449 | Serial | Secondary | Not Running

 pc13(8151)<v2>:40761 | Serial | Secondary | Not Running

 pc13(8164)<v3>:33476 | Serial | Secondary | Not Running

Member | Error

------------------------------ | ------------------------------

 pc13(8130):2365 | GatewaySender is not available

 pc13(Manager:8124)<v1>:43821 | GatewaySender is not available

gfsh>status gateway-sender --id=ln_Serial --members=pc13(8151)<v2>:7411

Member | Type | Runtime Policy | Status

------------------- | ------ | -------------- | -----------

 pc13(8151)<v2>:7411 | Serial | Secondary | Not Running

VMware GemFire 9.10 Documentation

VMware by Broadcom 950

gfsh>status gateway-sender --id=ln_Serial --members=pc13(8151)<v2>:7411

Member | Type | Runtime Policy | Status

------------------- -| ------ | -------------- | -------

 pc13(8151)<v2>:7411 | Serial | Primary | Running

gfsh>status gateway-sender --id=ln_Serial --groups=Serial_Sender

==>

Member | Type | Runtime Policy | Status

---------------------- | -------| -------------- | -----------

 pc13(8151)<v2>:44396 | Serial | Secondary | Not Running

 pc13(8164)<v3>:29475 | Serial | Secondary | Not Running

Member | Error

---------------------- | ------------------------------

 pc13(8186)<v5>:45840 | GatewaySender is not available

status locator

Displays the status of the specified locator.

The status will be one of the following:

started

online

offline

not responding

Availability: Online or offline. If you want to obtain the status of a locator while you are offline, use
the --dir option.

Syntax:

status locator [--name=value] [--host=value] [--port=value] [--dir=value] [--security-

properties-file=value]

Name Description
Default
Value

‑‑name Name/ID of the locator for which to display status. You must be connected to the JMX
Manager to use this option. Can be used to obtain status of remote locators. See Using
gfsh to Manage a Remote Cluster Over HTTP or HTTPS.

‑‑host Hostname or IP address on which the Locator is running.

‑‑port Port on which the locator is listening. 10334

‑‑dir Directory in which the locator was started. current
directory

‑‑security‑pr
operties‑file

The properties file for configuring SSL to connect to the SSL-enabled Locator. The file’s
path can be absolute or relative to the gfsh directory.

current
directory

Table 3. Status Locator Parameters

Example Commands:

VMware GemFire 9.10 Documentation

VMware by Broadcom 951

status locator

status locator --name=locator1

status server

Display the status of the specified VMware GemFire cache server.

Availability: Online or offline. If you want to obtain the status of a server while you are offline, use
the --dir option.

Syntax:

status server [--name=value] [--dir=value]

Name Description
Default
Value

‑‑nam
e

Name or ID of the Cache Server for which to display status. You must be connected to the JMX
Manager to use this option. Can be used to obtain status of remote servers. See Using gfsh to
Manage a Remote Cluster Over HTTP or HTTPS.

‑‑dir Directory in which the VMware GemFire Cache Server was started. current
directory

Table 4. Status Server Parameters

Example Commands:

status server

status server --name=server1

stop
Stop gateway receivers, gateway senders, locators and servers.

stop gateway-receiver

Stop the gateway receiver on a member or members.

stop gateway-sender

Stop a gateway sender with a given id on a specified member or members of a specified
member group.

stop locator

Stop a locator.

stop server

Stop a VMware GemFire cache server.

stop gateway-receiver
Stop the gateway receiver on a member or members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 952

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

stop gateway-receiver [--groups=value(,value)*] [--members=value(,value)*]

Name Description

‑‑groups Group(s) of members on which to stop the Gateway Receiver. Use a comma-separated list for multiple
member groups.

‑‑member
s

Name/Id of the member(s) on which to stop the Gateway Receiver.

Table 1. Stop Gateway-Receiver Parameters

Example Commands:

stop gateway-receiver --members=receiver1-LN

stop gateway-receiver --groups=LN-Group1

Sample Output:

gfsh>stop gateway-receiver

 Member | Result | Message

--------------------------- | -------| ---

pc13(2266)<v6>:56852 | OK | GatewayReceiver is stopped on member pc13(2266)

<v6>:56852

pc13(Manager:2242)<v5>:57631| Error | GatewayReceiver is not available on member pc13

(Manager:2242)<v5>:57631

pc13(2275)<v7>:47480 | OK | GatewayReceiver is stopped on member pc13(2275)

<v7>:47480

pc13(2293)<v8>:55472 | OK | GatewayReceiver is stopped on member pc13(2293)

<v8>:55472

gfsh>stop gateway-receiver --members=pc13(2266)<v14>:36579

GatewayReceiver is stopped on member pc13(2266)<v14>:36579

gfsh>stop gateway-receiver --groups=RG1

 Member | Result | Message

-------------------- | -------| --

pc13(2275)<v23>:27484| OK | GatewayReceiver is stopped on member pc13(2275)<v23>:2

7484

pc13(2293)<v24>:55810| OK | GatewayReceiver is stopped on member pc13(2293)<v24>:5

5810

pc13(2266)<v22>:4522 | OK | GatewayReceiver is stopped on member pc13(2266)<v22>:4

522

stop gateway-sender

Stop a gateway sender with a given id on a specified member or members of a specified member
group.

VMware GemFire 9.10 Documentation

VMware by Broadcom 953

CAUTION: Use caution with the stop gateway-sender command (or equivalent
GatewaySender.stop() API) on parallel gateway senders. Instead of stopping an individual parallel
gateway sender on a member, we recommend shutting down the entire member to ensure that
proper failover of partition region events to other gateway sender members. Using this command
on an individual parallel gateway sender can occur in event loss. See Stopping Gateway Senders for
more details.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

stop gateway-sender --id=value [--groups=value(,value)*] [--members=value(,value)*]

Name Description

‑‑id Required. ID of the Gateway Sender.

‑‑groups Group(s) of members on which to stop the Gateway Sender.

‑‑members Name/Id of the member(s) on which to stop the Gateway Sender.

Table 2. Stop Gateway-Sender Parameters

Example Commands:

stop gateway-sender --id=ln --members=server1

Sample Output:

gfsh>stop gateway-sender --id=ln

Member | Result | Message

---------------------------- | ------ | --

pc13(5184)<v7>:41914 | OK | GatewaySender ln is stopped on member pc13(518

4)<v7>:41914

pc13(5192)<v8>:25704 | OK | GatewaySender ln is stopped on member pc13(519

2)<v8>:25704

pc13(5174)<v6>:53996 | OK | GatewaySender ln is stopped on member pc13(517

4)<v6>:53996

pc13(Manager:5148)<v5>:64040 | Error | GatewaySender ln is not available on member pc

13(Manager:5148)<v5>:64040

gfsh>stop gateway-sender --id=ln --members=pc13(5174)<v14>:17819

GatewaySender ln is stopped on member pc13(5174)<v14>:17819

gfsh>stop gateway-sender --id=ln --groups=SenderGroup1

Member | Result | Message

--------------------- | ------ | ---

pc13(5174)<v18>:63332 | OK | GatewaySender ln is stopped on member pc13(5174)<v18

>:63332

pc13(5184)<v19>:20055 | OK | GatewaySender ln is stopped on member pc13(5184)<v19

>:20055

pc13(5192)<v20>:14622 | OK | GatewaySender ln is stopped on member pc13(5192)<v20

>:14622

VMware GemFire 9.10 Documentation

VMware by Broadcom 954

stop locator

Stop a locator.

Note: One of the command line options --name or --dir must be specified to identify the locator to
be stopped.

Availability: Online or offline. If you want to stop a locator while you are offline, use the --dir
option.

Syntax:

stop locator --name=value | --dir=value

Name Description
Default
Value

‑‑nam
e

The VMware GemFire member name of the locator to stop. You must be connected to the JMX
Manager to use this option. Can be used to stop remote locators. See Using gfsh to Manage a
Remote Cluster Over HTTP or HTTPS.

‑‑dir Directory in which the locator was started. current
directory

Table 3. Stop Locator Parameters

Example Commands:

stop locator --name=locator3

Sample Output:

gfsh>stop locator --name=locator3

Stopping Locator running in /Users/test/locator3 on 192.0.2.0[10334] as locator3...

Process ID: 71531

Log File: /Users/test/locator3/locator3.log

...

No longer connected to 192.0.2.0[1099].

gfsh>stop locator --dir=loc2

Stopping Locator running in /Users/test/loc2 on 192.0.2.0[10334] as loc2...

Process ID: 71714

Log File: /Users/test/loc2/loc2.log

...

No longer connected to 192.0.2.0[1099].

stop server
Stop a VMware GemFire cache server.

Availability: Online or offline. If you want to stop a cache server while you are offline, use the --
dir option.

Syntax:

VMware GemFire 9.10 Documentation

VMware by Broadcom 955

stop server [--name=value] [--dir=value]

Name Description
Default
Value

‑‑nam
e

Name/Id of the VMware GemFire Cache Server to stop. You must be connected to the JMX
Manager to use this option. Can be used to stop remote servers. See Using gfsh to Manage a
Remote Cluster Over HTTP or HTTPS.

‑‑dir Directory in which the VMware GemFire Cache Server was started. current
directory

Table 4. Stop Server Parameters

Example Commands:

stop server --name=server1

stop server --dir=server1

undeploy

Undeploy the JAR files that were deployed on members or groups using deploy command.

If --jars is not specified, the command will undeploy all deployed JARs. If --groups is not specified,
the command applies to the entire cluster. Note that this command can’t unload the classes that
were loaded during deployment. Member(s) should be restarted for that.

Availability: Online. You must be connected in gfsh to a JMX Manager member to use this
command.

Syntax:

undeploy [--jars=value(,value)*] [--groups=value(,value)*]

Name Description Default Value

‑‑groups Group(s) from which the specified JAR(s) will be undeployed. undeploy will occur on all members

‑‑jars JAR or JARs to be undeployed. All JARs will be undeployed

Table 1. Undeploy Parameters

Example Commands:

undeploy --jars=domain-objects.jar

undeploy --groups=Group1

Sample Output:

gfsh>undeploy --jars=domain-objects.jar

 Member | Un-Deployed JAR | Un-Deployed From JAR Location

---------- | ------------------ | ---

datanode10 | domain-objects.jar | /usr/local/gemfire/deploy/GF#domain-objects#1

datanode11 | domain-objects.jar | /usr/local/gemfire/deploy/GF#domain-objects#1

VMware GemFire 9.10 Documentation

VMware by Broadcom 956

gfsh> undeploy --groups=Group1

 Member | Un-Deployed JAR | Un-Deployed From JAR Location

--------- | ----------------------- | --

datanode1 | group1_functions.jar | /usr/local/gemfire/deploy/GF#group1_functions.ja

r#1

datanode1 | group1_dependencies.jar | /usr/local/gemfire/deploy/GF#group1_dependencie

s.jar#1

datanode2 | group1_functions.jar | /usr/local/gemfire/deploy/GF#group1_functions.ja

r#1

datanode2 | group1_dependencies.jar | /usr/local/gemfire/deploy/GF#group1_dependencie

s.jar#1

Error Messages:

No JAR Files Found

validate offline-disk-store

Validate offline disk stores.

Availability: Offline.

Syntax:

validate offline-disk-store --name=value --disk-dirs=value(,value)*

Name Description

‑‑name Required. Name of the disk store to be validated.

‑‑disk-dirs Required. Directories where data for the disk store was previously written.

Table 1. Validate Offline-Disk-Store Parameters

Example Commands:

validate offline-disk-store --name=DiskStore2 --disk-dirs=data/dir3,data/dir4

version

Display product version information.

Availability: Online or offline.

Syntax:

version [--full]

Name Description Defalut Value

‑‑full Show the full version information. false

Table 1. Version Parameters

VMware GemFire 9.10 Documentation

VMware by Broadcom 957

Example Commands:

version

version --full

Sample Output:

gfsh>version

v8.0.0

gfsh>version --full

Java version: 8.0.0 build 48319 07/31/2014 17:26:09 PDT javac 1.8.0_1

Native version: native code unavailable

Source revision: 48319

Source repository: gemfire/branches/cedar_dev_Oct12

Running on: /192.0.2.0, 1 cpu(s), amd64 Linux 2.6.32-38-generic

Creating and Running gfsh Command Scripts
gfsh offers several ways to run commands in a scripting environment.

Running gfsh Scripts
You can create and run scripts that contain gfsh commands that you wish to execute. To execute
the script, use the gfsh run command. For example:

gfsh run --file=mycommands.gfsh

Note: When you run a gfsh script, interactive parameters are ignored. You can also set the script to
run in quiet mode to prevent output and instruct the script to skip any errors it encounters.

Your command history file can be helpful when you write a gfsh script. A history of commands that
have been executed successfully is logged in the .gfsh.history file in the home directory of the
user running gfsh. You can also export a history file with the history --file=your_file_name
command.

When a user runs start server or start locator from gfsh without specifying the member name,
gfsh will automatically pick a random member name. This is useful for automation.

Running gfsh Commands on the OS Command Line

You can run some gfsh commands directly from your operating system’s prompt by preceding the
command with gfsh. This can be useful for Unix shell or Windows batch scripting. For example:

$ gfsh start locator --name=locator2 --port=10335

To see which gfsh commands are available directly on the prompt:

$ gfsh help

VMware GemFire 9.10 Documentation

VMware by Broadcom 958

Running Multiple gfsh Commands on the OS Command
Line

To run multiple commands directly on the command line, use the -e option followed by the gfsh
command within quote marks. For example:

prompt>gfsh -e "start locator --name=locator1" -e "start server --name=server1"

prompt>gfsh -e "start jconsole"

prompt>gfsh -e "connect --locator=remotehost[10334]" -e "rebalance" -e "gc"

Mapping cache.xml Elements to gfsh Configuration
Commands

You can configure a VMware GemFire cluster using either cache.xml files, or you can use gfsh and
the cluster configuration service to configure a cluster. This table maps cache.xml elements to the
gfsh commands that configure and manage a cluster.

cache.xml Element gfsh Command

<cache>, <cache-server> start server

status server

stop server

alter runtime

<async-event-queue> alter async-event-queue

create async-event-queue

destroy async-event-queue

list async-event-queues

resume async-event-queue-dispatching

<pdx> configure pdx

<region> create region

alter region

destroy region

describe region

list regions

rebalance

<index> create index

destroy index

list indexes

VMware GemFire 9.10 Documentation

VMware by Broadcom 959

cache.xml Element gfsh Command

<disk-store> create disk-store

alter disk-store

backup disk-store

compact disk-store

compact offline-disk-store

describe disk-store

describe offline-disk-store

destroy disk-store

list disk-stores

revoke missing-disk-store

show missing-disk-stores

validate offline-disk-store

<query-config-service> alter query-service

Table 1. Migrating cache.xml elements to gfsh commands

Gemcached
Gemcached is a VMware GemFire adapter that allows Memcached clients to communicate with a
VMware GemFire server cluster, as if the servers were memcached servers. Memcached is an
open-source caching solution that uses a distributed, in-memory hash map to store key-value pairs
of string or object data.

For information about Memcached, see http://www.memcached.org.

How Gemcached Works

Applications use memcached clients to access data stored in embedded Gemcached
servers.

Deploying and Configuring a Gemcached Server

You can configure and deploy Gemcached servers in a Java class or by using the gfsh
command-line interface.

Advantages of Gemcached over Memcached

The standard memcached architecture has inherent architectural challenges that make
memcached applications difficult to write, maintain, and scale. Using Gemcached with
VMware GemFire addresses these challenges.

How Gemcached Works
Applications use memcached clients to access data stored in embedded Gemcached servers.

Applications can use memcached clients that are written in Python, C#, Ruby, PHP, and other
programming languages. Each memcached server in a cluster stores data as key/value pairs. A

VMware GemFire 9.10 Documentation

VMware by Broadcom 960

http://www.memcached.org/

memcached client maintains a list of these servers, determines which server has the required data,
and accesses the data directly on that server.

To integrate memcached with VMware GemFire, you embed a Gemcached server within a
VMware GemFire cache server. These Gemcached servers take the place of memcached servers.
The memcached client uses its normal wire protocol to communicate with the Gemcached servers,
which appear to the client as memcached servers. No code changes in the clients are needed.
VMware GemFire manages the distribution and access to data among the embedded Gemcached
servers.

As shown in Gemcached Architecture, memcached clients, which ordinarily maintain a list of
memcached servers, now maintain a list of embedded Gemcached servers. If more embedded
Gemcached servers are added to the cluster, the new servers automatically become part of the
cluster. The memcached clients can continue to communicate with the servers on the list, without
having to update their list of servers.

Figure: Gemcached Architecture

Memcached clients use the memcached API to read and write data that is stored in memcached
servers; therefore, client-side VMware GemFire features are not available to these clients.
Gemcached servers, however, can use VMware GemFire’s server-side features and API. These
features include the following. (For more detail, see Advantages of Gemcached over Memcached.)

Data consistency and scalability.

High availability.

Read-through, write through, and write behind to a database, implemented from within the
distributed VMware GemFire cache.

Storage keys and values of any type and size.

For applications, a choice among partitioned and replicated region configurations.

Automatic overflow of data to disk in low-memory scenarios.

Efficient persistence of data to disk.

Configurable expiration of cached data.

VMware GemFire 9.10 Documentation

VMware by Broadcom 961

Configurable eviction of cached data.

Deploying and Configuring a Gemcached Server

You can configure and deploy Gemcached servers in a Java class or by using the gfsh command-
line interface.

The following sections describe how to configure and deploy an embedded Gemcached server.
You can configure and start a GemCached server either by invoking a Java class that calls the cache
server’s start() method, or by starting the cache server using the gfsh command line.

Embedding a Gemcached server in a VMware GemFire
Java Application
The org.apache.geode.memcached package contains a single class, GemFireMemcachedServer (see the
VMware GemFire Javadocs.) Use this class to configure and embed a Gemcached server in a
VMware GemFire cache server. For example, the following statement creates and starts an
embedded Gemcached server on port number 5555 using the binary protocol:

GemFireMemcachedServer server =

 new GemFireMemcachedServer(5555, Protocol.BINARY);server.start();

Note: By default, Gemcached servers use the ASCII protocol.

When you start a Gemcached server, by default, it creates a RegionShortcut.PARTITION region
named gemcached where data used by memcached clients is stored. You can alter these defaults by
configuring the region using the cache.xml or gemfire.properties files. See Distributed System and
Cache Configuration.

Starting a Gemcached Server Using a gfsh Command

You can also start a Gemcached server with the gfsh command-line interface. Use the following
syntax:

gfsh>start server

 --name=<server_name>

 --server-port=<port_number>

 --memcached-port=<port_number>

 --memcached-protocol=BINARY|ASCII

Note: You can also set the memcached port number and protocol in the gemfire.properties file.

If the memcached-port property is not specified, the embedded Gemcached server is not started.

Configuring a Gemcached Server with the
gemfire.properties File

You can set the following properties in the gemfire.properties file that are used when starting
Gemcached servers:

VMware GemFire 9.10 Documentation

VMware by Broadcom 962

Table 1. Gemcached Properties

Property Description

memcached-port
The port number where the Gemcached server listens for
connections from memcached clients.

If the port number is set to 0 or the memcached-port
parameter is omitted, the Gemcached server does not
start.

memcached-protocol
Memcached supports both ASCII and binary
communication protocols. (See Memcached protocol By
default, Gemcached uses the ASCII protocol.

Set one of the following values:

ASCII (default)

BINARY

Table 1. Gemcached Properties

Advantages of Gemcached over Memcached

The standard memcached architecture has inherent architectural challenges that make memcached
applications difficult to write, maintain, and scale. Using Gemcached with VMware GemFire
addresses these challenges.

Data consistency. Memcached clients must maintain a list of servers where the distributed data is
stored. Each client must maintain an identical list, with each list ordered in the same way. It is the
responsibility of the application logic to maintain and propagate this list. If some clients do not have
the correct list, the client can retrieve stale data. In VMware GemFire clusters, all members
communicate with each other to maintain data consistency, which eliminates the need to code
these behaviors in the memcached clients.

High availability. When a memcached server becomes unavailable, memcached clusters are
subject to failures or degraded performance because clients must directly query the backend
database. Memcached-based applications must be coded to handle these failures, while VMware
GemFire clusters handle such failures natively.

Faster cluster startup time. When a memcached cluster fails and a restart is required, the data
must be reloaded and distributed to the cluster members while simultaneously processing requests
for data. These startup activities can be time-consuming. When a VMware GemFire cluster
restarts, data can be reloaded from other in-memory, redundant copies of the data or from disk,
without having to query the back end database.

Better handling of network segmentation. Large deployments of memcached can use hundreds
of servers to manage data. If, due to network segmentation, some clients cannot connect to all
nodes of a partition, the clients will have to fetch the data from the backend database to avoid
hosting stale data. VMware GemFire clusters handle network segmentation to ensure that client
responses are consistent.

Automatic scalability. If you need to add capacity to a memcached cluster, you must propagate a
new server list to all clients. As new clients come on line with the new list, older clients may not

VMware GemFire 9.10 Documentation

VMware by Broadcom 963

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

have a consistent view of the data in the cluster, which can result in inconsistent data in the
servers. Because new VMware GemFire cache server members automatically discover each other,
memcached clients do not need to maintain a complete server list. You can add capacity simply by
adding servers.

Scalable client connections. A memcached client may need to access multiple pieces of data
stored on multiple servers, which can result in clients having a TCP connection open to every
server. When a memcached client accesses a Gemcached server, only a single connection to a
Gemcached server instance is required. The Gemcached server manages the distribution of data
using VMware GemFire’s standard features.

HTTP Session Management Modules

The VMware GemFire HTTP Session Management modules provide fast, scalable, and reliable
session replication for HTTP servers without requiring application changes.

VMware GemFire offers HTTP session management modules for tc Server, Tomcat, and
AppServers.

These modules are included with the VMware GemFire product distribution, and installation .zip
files can be found in the tools/Modules directory of your product installation.

HTTP Session Management Quick Start

In this section you download, install, and set up the HTTP Session Management modules.

Advantages of Using VMware GemFire for Session Management

The HTTP Session Management Module enables you to customize how you manage your
session data.

Common Topologies for HTTP Session Management

Decide which topology is best for your usage. The module configuration process is slightly
different for each topology.

General Information on HTTP Session Management

This section provides information on sticky load balancers, session expiration, additional
VMware GemFire property changes, serialization and more.

Session State Log Files

Several log files are written by the various parts of the session management code.

Configuring Non-Sticky Sessions

This section describes the configuration of non-sticky sessions.

HTTP Session Management Module for Pivotal tc Server

This section describes how to set up and use the HTTP session management module with
tc Server templates.

HTTP Session Management Module for Tomcat

You set up and use the module by modifying the Tomcat’s server.xml and context.xml
files.

VMware GemFire 9.10 Documentation

VMware by Broadcom 964

HTTP Session Management Module for AppServers

You implement session caching with the HTTP Session Management Module for
AppServers with a special filter, defined in the web.xml, which is configured to intercept and
wrap all requests.

HTTP Session Management Quick Start

In this section you download, install, and set up the HTTP Session Management modules.

Following the Apache Tomcat convention, this page assumes the CATALINA_HOME environment
variable is set to the root directory of the “binary” Tomcat distribution. For example, if Apache
Tomcat is installed in /usr/bin/apache-tomcat-9.0.50 then

CATALINA_HOME=/usr/bin/apache-tomcat-9.0.50

Quick Start Instructions

1. Download and install one of the application servers.

Supported Application Server Version Download Location

tc Server 3.2 https://network.pivotal.io/products/pivotal-tcserver

Tomcat 8.5 Tomcat 8 Software Downloads

Tomcat 9.0 Tomcat 9 Software Downloads

The generic HTTP Session Management Module for AppServers is implemented as a servlet
filter and should work on any application server platform that supports the Java Servlet 3.1
specification.

2. The HTTP Session Management Modules installation .zip files are located in the
tools/Modules directory of the product installation directory. Locate the .zip file for the
HTTP Session Management Module that you wish to install. Unzip the appropriate HTTP
Session Management Module into the specified directory for your application server:

Supported Application
Server

Version Module
Target Location for
Module

tc Server 2.9 Apache_Geode_Modules-SERVER-
VERSION-tcServer.zip

<tc Server root

dir>/templates

tc Server 3.2 Apache_Geode_Modules-SERVER-
VERSION-tcServer30.zip

<tc Server root

dir>/templates

Tomcat 8.5, 9.0 Apache_Geode_Modules-SERVER-
VERSION-Tomcat.zip

$CATALINA_HOME

3. Complete the appropriate set up instructions for your application server described in the
following sections:

Additional Quick Start Instructions for tc Server Module

Additional Quick Start Instructions for Tomcat Module

VMware GemFire 9.10 Documentation

VMware by Broadcom 965

https://network.pivotal.io/products/pivotal-tcserver
https://tomcat.apache.org/download-80.cgi
https://tomcat.apache.org/download-90.cgi

Additional Instructions for AppServers Module

Additional Quick Start Instructions for tc Server Module

These steps provide a basic starting point for using the tc Server module. For more configuration
options, see HTTP Session Management Module for Pivotal tc Server. As a prerequisite, module set
up requires a JAVA_HOME environment variable set to the java installation.

1. Navigate to the root directory of tc Server.

2. Create a VMware GemFire instance using one of the provided templates and start the
instance after starting up a locator. For example:

$ gfsh start locator --name=locator1

$./tcruntime-instance.sh create my_instance_name --template geode-p2p

$./tcruntime-ctl.sh my_instance_name start

This will create and run a VMware GemFire instance using the peer-to-peer topology and
default configuration values. Another VMware GemFire instance on another system can be
created and started in the same way.

If you need to pin your tc Server instance to a specific tc Server runtime version, use the --
version option when creating the instance.

Additional Quick Start Instructions for Tomcat Module

These steps provide a basic starting point for using the Tomcat module. For more configuration
options, see HTTP Session Management Module for Tomcat.

1. Modify Tomcat’s server.xml and context.xml files. Configuration is slightly different
depending on the topology you are setting up and the version of Tomcat you are using.

For example, in a peer-to-peer configuration using Tomcat 9, you would add the following
entry within the <server> element of server.xml:

<Listener className="org.apache.geode.modules.session.catalina.PeerToPeerCacheL

ifecycleListener"

 locator="localhost[10334]" />

and the following entry within the <context> tag in the context.xml file:

<Manager className="org.apache.geode.modules.session.catalina.Tomcat9DeltaSessi

onManager"/>

See Setting Up the HTTP Module for Tomcat for additional instructions.

2. Start the Tomcat application server.

$CATALINA_HOME/bin/startup.sh

3. Confirm that Tomcat is running by opening a browser and navigating to localhost:8080. If
you see the Tomcat home page, your installation was successful.

VMware GemFire 9.10 Documentation

VMware by Broadcom 966

Additional Instructions for AppServers Module
These steps provide a basic starting point for using the AppServers module with WebLogic,
WebSphere or JBoss. For more configuration options, see HTTP Session Management Module for
AppServers.

Note:

The modify_war script relies upon a GEODE environment variable. Set the GEODE
environment variable to the VMware GemFire product directory; this is the parent directory
of bin.

The modify_war script, described below, relies on files within the distribution tree and
should not be run outside of a complete distribution.

The modify_war script is a bash script and does not run on Windows.

To set up the AppServers module, perform the following steps:

1. Run the modify_war script against an existing .war or .ear file to integrate the necessary
components. The example below will create a configuration suitable for a peer-to-peer
VMware GemFire system, placing the necessary libraries into WEB-INF/lib for wars and lib
for ears and modifying any web.xml files:

$ bin/modify_war -w my-app.war -p gemfire.property.locators=localhost[10334] \

 -t peer-to-peer

2. A new war file will be created called session-my-app.war. This file can now be deployed to
the server.

Advantages of Using VMware GemFire for Session
Management
The HTTP Session Management Module enables you to customize how you manage your session
data.

Depending on your usage model, the HTTP Session Management Module enables you to
accomplish the following tasks:

VMware GemFire 9.10 Documentation

VMware by Broadcom 967

Replicate session data across multiple peers.

Partition data across multiple servers.

Manage your session data in many other customizable ways.

Using VMware GemFire for session management has many advantages:

tc Server integration
The VMware GemFire module offers clean integration into the tc Server environment with
minimal configuration changes necessary.

Scalability
Applications with a small number of frequently-accessed sessions can **replicate** session
information on all members in the system. However, when the number of concurrent
sessions being managed is large, data can be **partitioned** across any number of servers
(either embedded within your application server process or managed by VMware GemFire
cache servers), which allows for **linear scaling**. Additionally, capacity can be **dynamically
added or removed** in a running system and VMware GemFire re-executes a non-blocking,
rebalancing logic to migrate data from existing members to the newly added members.
When the session state memory requirements exceed available memory, each partition host
can **overflow to disk**.

Server-managed session state
Session state can be managed independent of the application server cluster. This allows
applications or servers to come and go without impacting session lifetimes.

Shared nothing cluster-wide persistence
Session state can be persisted (and recovered) - invaluable for scenarios where sessions
manage critical application state or have long lifetimes. VMware GemFire uses a shared
nothing persistence model where each member can continuously append to rolling log files
without ever needing to seek on disk, providing very high disk throughput. When data is
partitioned, the total disk throughput can come close to the aggregate disk transfer rates
across each of the members storing data on disk.

Session deltas
When session attributes are updated, only the updated state that is sent over the wire (to
cache servers and to replicas). This provides fast updates even for large sessions. Session
state is always managed in a serialized state on the servers, avoiding the need for the cache
servers to be aware of the application classes.

Tiered caching
Applications can configure a local or near cache for in-process caching of the most frequently
used session state. This local cache delegates to a farm of cache servers where the entire
session state is partitioned across any number of peer cache servers. The local cache can be
configured to consume a certain percentage of the total heap available before least-recently
used (LRU) eviction. This is a simpler and more effective way to manage LRU caches as
opposed to alternate strategies based on count or memory size, which increase the risk of
getting an "OutOfMemoryException".

Application server sizing
Another aspect of tiered-caching functionality is that session replication can be configured so
that session objects are stored external to the application server process. This allows the
heap settings on the application server to be much smaller than they would otherwise need
to be.

VMware GemFire 9.10 Documentation

VMware by Broadcom 968

**High availability (HA), disk-based overflow, synchronization to backend data store, other VMware
GemFire features**

All the popular VMware GemFire features are available. For example: more than one
synchronous copy of the session state can be maintained providing high availability (HA); the
session cache can overflow to disk if the memory capacity in the cache server farm becomes
insufficient; state information can be written to a backend database in a synchronous or
asynchronous manner.

Common Topologies for HTTP Session Management

Decide which topology is best for your usage. The module configuration process is slightly different
for each topology.

By default, a peer-to-peer configuration creates a replicated region across all servers. By default, a
client/server configuration creates a partitioned region across all servers.

Peer-to-Peer Configuration

Application Server Instance

Cache

Application Server Instance

Cache

Application Server Instance

Cache

app server requests app server requests app server requests

Replicated

Session Data

Replicated

Session Data

Replicated

Session Data

Locator

provides discovery and load balancing services

In a peer-to-peer configuration, each instance within an application server contains its own cache.
Each instance communicates with the locator and with other instances as peers. By default, data is
replicated. A peer-to-peer configuration is useful when multiple systems want fast access to all
session data. This configuration is also the simplest one to set up and does not require any external
processes.

Client/Server Configuration

VMware GemFire 9.10 Documentation

VMware by Broadcom 969

Partitioned

Session Data

Partitioned

Session Data

Server Server

Partitioned

Session Data

Application Server Instance

Client

app server requests

Local Cache

connection pool

Locator

provides discovery and load balancing services

Partitioned

Session Data

In a client/server configuration, the Tomcat or tc Server instance operates as a VMware GemFire
client, which must communicate with one or more VMware GemFire servers to acquire session
data. The client maintains its own local cache and will communicate with the server to satisfy cache
misses. A client/server configuration is useful when you want to separate the application server
instance from the cached session data. In this configuration, you can reduce the memory
consumption of the application server since session data is stored in separate VMware GemFire
server processes.

General Information on HTTP Session Management

This section provides information on sticky load balancers, session expiration, additional VMware
GemFire property changes, serialization and more.

Sticky Load Balancers

Typically, session replication will be used in conjunction with a load balancer enabled for sticky
sessions. Sessions should be unique across application servers. With Tomcat, this can be
accomplished by setting a JVM route (JVMRoute=value).

Session Expiration

To set the session expiration value, you must change the session-timeout value specified in your
application server’s WEB-INF/web.xml file. This value will override the VMware GemFire inactive
interval, which is specified in Tomcat, for example, by maxInactiveInterval within context.xml.

When a session expires, it gets removed from the application server and from all VMware GemFire
servers when running in client-server mode.

Making Additional VMware GemFire Property Changes

VMware GemFire 9.10 Documentation

VMware by Broadcom 970

If you want to change additional VMware GemFire property values, refer to instructions on
manually changing property values as specified in the VMware GemFire module documentation for
Tomcat (Changing the Default VMware GemFire Configuration in the Tomcat Module) and
Application Servers (Changing the Default VMware GemFire Configuration in the AppServers
Module).

Module Version Information

To acquire VMware GemFire module version information, look in the web server’s log file for a
message similar to:

INFO: Initializing VMware GemFire Modules

Java version: 1.0.0 user1 041216 2016-11-12 11:18:37 -0700

 javac 1..0_272

Native version: native code unavailable

Source revision: 857bb75916640a066eb832b43b3c805f0dd7ed0b

Source repository: develop

Running on: /192.0.2.0, 8 cpu(s), x86_64 Mac OS X 10.11.4

Object Serialization

Objects managed by the HTTP Session Management Module must be serializable since the
session’s objects are serialized before being stored in the region.

Session State Log Files

Several log files are written by the various parts of the session management code.

catalina.log. Log file written by the tc server

cacheserver.log. Log file written by the VMware GemFire server process.

gemfire_modules.log. Log file written by the VMware GemFire cache client.

Adding FINE Debug Logging to catalina.log

To add VMware GemFire-specific FINE logging to the catalina.log file, add the following lines to
your <instance>/conf/logging.properties file:

org.apache.geode.modules.session.catalina.DeltaSessionManager.level = FINE

org.apache.geode.modules.session.catalina.DeltaSession.level = FINE

These configurations will add FINE logging to the catalina.DATE.log file. The following is an
example of FINE logging:

06-Sep-2011 15:59:47.250 FINE org.apache.geode.modules.session.catalina.DeltaSessionMa

nager.start

DeltaSessionManager[container=StandardEngine[Catalina].StandardHost[localhost].Standar

dContext[/manager];

regionName=gemfire_modules_sessions; regionAttributesId=PARTITION_REDUNDANT]: Starting

06-Sep-2011 15:59:47.254 FINE org.apache.geode.modules.session.catalina.DeltaSessionMa

VMware GemFire 9.10 Documentation

VMware by Broadcom 971

nager.registerJvmRouteBinderValve

DeltaSessionManager[container=StandardEngine[Catalina].StandardHost[localhost].Standar

dContext[/manager];

regionName=gemfire_modules_sessions; regionAttributesId=PARTITION_REDUNDANT]: Register

ing JVM route binder valve

06-Sep-2011 15:59:47.351 FINE org.apache.geode.modules.session.catalina.ClientServerSe

ssionCache.createOrRetrieveRegion

Created session region: org.apache.geode.internal.cache.LocalRegion[path='/gemfire_mod

ules_sessions';

scope=LOCAL';dataPolicy=EMPTY; gatewayEnabled=false]

Add Session State Logging to the VMware GemFire Server
Log
To add session-state-specific logging to the VMware GemFire server log file, add the following
property to the catalina.properties file for the tc Server instance:

geode-cs.enable.debug.listener=true

Adding this configuration will print logging in the server log such as the following:

[info 2011/09/06 15:18:27.749 PDT <ServerConnection on port 40404 Thread 3> tid=0x32]

DebugCacheListener: Received

CREATE for key=5782ED83A3D9F101BBF8D851CE4E798E; value=DeltaSession[id=5782ED83A3D9F10

1BBF8D851CE4E798E;

sessionRegionName=gemfire_modules_sessions; operatingRegionName=unset]

[info 2011/09/06 15:18:27.769 PDT <ServerConnection on port 40404 Thread 3> tid=0x32]

DebugCacheListener: Received UPDATE

for key=5782ED83A3D9F101BBF8D851CE4E798E; value=DeltaSession[id=5782ED83A3D9F101BBF8D8

51CE4E798E;

sessionRegionName=gemfire_modules_sessions; operatingRegionName=unset]

[info 2011/09/06 15:19:36.729 PDT <Timer-2> tid=0x24] DebugCacheListener: Received EX

PIRE_DESTROY for

key=5782ED83A3D9F101BBF8D851CE4E798E

Adding Additional Debug Logging to the VMware GemFire
Server Log

To add fine-level logging to the VMware GemFire cache server, add the ‘log-level’ property to the
server process. For example:

gfsh> start server --name=server1 --cache-xml-file=../conf/cache-server.xml

 --log-level=fine

This will add fine-level logging to the server.log file.

Note: This will help debug VMware GemFire server issues, but it adds a lot of logging to the file.

Add Debug Logging to gemfire_modules.log

VMware GemFire 9.10 Documentation

VMware by Broadcom 972

To add fine-level logging to the VMware GemFire Cache Client, add the ‘log-level’ property to the
Listener element in the tc Server or Tomcat server.xml file. For example:

<Listener log-level="fine"

cache-xml-file="${geode-cs.cache.configuration.file}"

className="org.apache.geode.modules.session.catalina.ClientServerCacheLifecycleListene

r"

criticalHeapPercentage="${geode-cs.critical.heap.percentage}"

evictionHeapPercentage="${geode-cs.eviction.heap.percentage}"

log-file="${geode-cs.log.file}"

statistic-archive-file="${geode-cs.statistic.archive.file}"

statistic-sampling-enabled="${geode-cs.statistic.sampling.enabled}"/>

This will add fine-level logging to the file defined by the ${geode-cs.log.file} property. The
default log file name is gemfire_modules.log.

Note: This will help debug VMware GemFire client issues, but it adds a lot of logging to the file.

HTTP Session Management Module for Pivotal tc Server

This section describes how to set up and use the HTTP session management module with tc Server
templates.

If you would prefer to manually change the server.xml and context.xml files rather than use tc
Server templates, refer to HTTP Session Management Module for Tomcat.

Installing the HTTP Module for tc Server

This topic describes how to install the HTTP session management module with tc Server
templates.

Setting Up the HTTP Module for tc Server

To set up the HTTP Module for tc Server, start a tc Server instance with the appropriate tc
Server template based on your preferred topology.

Changing the Default VMware GemFire Configuration in the tc Server Module

By default, the tc Server HTTP module will run VMware GemFire automatically with pre-
configured settings. You can change these VMware GemFire settings.

Installing the HTTP Module for tc Server

This topic describes how to install the HTTP session management module with tc Server templates.

1. If you do not already have tc Server, download and install the product from the Pivotal tc
Server download page. These instructions require tc Server 2.9 or later.

2. The HTTP Session Management Module for tc Server is included in the VMware GemFire
installation package. After you install VMware GemFire, you will find the module in the
tools/Modules directory of the installation with a name of the form Apache_Geode_Modules-
SERVER-VERSION-tcServer30.zip or Apache_Geode_Modules-SERVER-VERSION-tcServer.zip.
In these names,

SERVER-VERSION is the VMware GemFire version number.

VMware GemFire 9.10 Documentation

VMware by Broadcom 973

https://network.pivotal.io/products/pivotal-tcserver

tcServer30 supports tcServer version 3.x.

tcserver supports tcServer version 2.9.

3. Unzip the appropriate module into the Pivotal tc Server $CATALINA_HOME/templates
directory so that it creates geode-p2p and geode-cs subdirectories within the tc Server
templates directory.

Setting Up the HTTP Module for tc Server

To set up the HTTP Module for tc Server, start a tc Server instance with the appropriate tc Server
template based on your preferred topology.

Note: In the procedures that follow, you may be required to log in as root or use sudo to run the
commands in Unix, especially if you installed Pivotal tc Server from RPM using yum.

Setup and Start

Edit the configuration in the appropriate file for the topology to set the locator host and port. For
peer-to-peer topology, edit geode-p2p/conf/catalina.properties to set the geode-p2p.locators
property. For client/server topology, edit geode-cs/conf/cache-client.xml.

Create a tc Server instance using one of these commands, choosing the appropriate template for
the topology. Add the --version option if you need to pin your tc Server instance to a specific
version of the tc Runtime:

In Unix, for a peer-to-peer topology:

 $./tcruntime-instance.sh create my_instance_name --template geode-p2p

In Unix, for a peer-to-peer topology, with a pinned tc Server instance:

 $./tcruntime-instance.sh create --version 6.0.32.A.RELEASE \

 my_instance_name --template geode-p2p

In Unix, for a client/server topology:

 $./tcruntime-instance.sh create my_instance_name --template geode-cs

In Unix, for a client/server topology, with a pinned tc Server instance:

 $./tcruntime-instance.sh create --version 6.0.32.A.RELEASE \

 my_instance_name --template geode-cs

In Windows, for a peer-to-peer topology:

 $ tcruntime-instance.bat create my_instance_name --template geode-p2p

In Windows, for a peer-to-peer topology, with a pinned tc Server instance:

 $ tcruntime-instance.bat create --version 6.0.32.A.RELEASE ^

 my_instance_name --template geode-p2p

In Windows, for a client/server topology:

 $ tcruntime-instance.bat create my_instance_name --template geode-cs

In Windows, for a client/server topology, with a pinned tc Server instance:

 $ tcruntime-instance.bat create --version 6.0.32.A.RELEASE ^

 my_instance_name --template geode-cs

To run, first start the locator, which will listen on its default of port number 10334:

VMware GemFire 9.10 Documentation

VMware by Broadcom 974

$ gfsh start locator --name=locator1

With a similar environment to this example that is for a client/server set up,

TC_VER=tomcat-8.0.30.C.RELEASE

INSTANCE=geode-cs

CLASSPATH=$PWD/$INSTANCE/lib/geode-modules-1.0.0.jar:\

$PWD/$INSTANCE/lib/geode-modules-tomcat8-1.0.0.jar:\

$PWD/$TC_VER/lib/servlet-api.jar:\

$PWD/$TC_VER/lib/catalina.jar:\

$PWD/$TC_VER/lib/tomcat-util.jar:\

$PWD/$TC_VER/bin/tomcat-juli.jar

Start the server using gfsh:

$ gfsh start server --name=server1 --locators=localhost[10334] \

 --server-port=0 --classpath=$CLASSPATH

Starting the Application Server
Once you’ve created a tc Server instance, you are ready to start the instance.

In Unix:

 $./tcruntime-ctl.sh my_instance_name start

In Windows:

 $./tcruntime-ctl.bat my_instance_name start

Refer to the tc Server documentation for more information. Once started, VMware GemFire will
automatically launch within the application server process.

Note: VMware GemFire session state management provides its own clustering functionality. If you
are using VMware GemFire, you should NOT turn on Tomcat clustering as well.

To verify that the system is running, check the log file for a message similar to:

Mar 29, 2016 8:38:31 AM org.apache.geode.modules.session.bootstrap.AbstractCache

lifecycleEvent

INFO: Initializing VMware GemFire Modules

Modules version: 1.0.0

Java version: 1.0.0 user1 032916 2016-11-29 07:49:26 -0700

javac 1..0_272

Native version: native code unavailable

Source revision: c36591b73243c7ee3a0186710338453d12efe364

Source repository: develop

Running on: /192.0.2.0, 8 cpu(s), x86_64 Mac OS X 10.11.4

Information is also logged within the VMware GemFire log file, which by default is named
gemfire_modules.log.

Changing the Default VMware GemFire Configuration in the
tc Server Module

VMware GemFire 9.10 Documentation

VMware by Broadcom 975

http://www.vmware.com/products/vfabric-tcserver

By default, the tc Server HTTP module will run VMware GemFire automatically with pre-configured
settings. You can change these VMware GemFire settings.

Here are the default VMware GemFire settings:

VMware GemFire peer-to-peer members use locators for discovery.

The region name is set to gemfire_modules_sessions.

The cache region is replicated for peer-to-peer configurations and partitioned (with
redundancy turned on) for client/server configurations.

VMware GemFire clients have local caching turned on and when the local cache needs to
evict data, it will evict least-recently-used (LRU) data first.

Note: On the application server side, the default inactive interval for session expiration is set to 30
minutes. To change this value, refer to Session Expiration.

To change this default configuration, use the --interactive command line argument when
creating the tc Server instance. Choose the appropriate command for the chosen topology and
platform.

In Unix, for a peer-to-peer topology:

 $./tcruntime-instance.sh create my_instance_name --template gemfire-p2p \

 --interactive

In Unix, for a client/server topology:

 $./tcruntime-instance.sh create my_instance_name --template gemfire-cs \

 --interactive

In Windows, for a peer-to-peer topology:

 $ tcruntime-instance.bat create my_instance_name --template gemfire-p2p ^

 --interactive

In Windows, for a client/server topology:

 $ tcruntime-instance.bat create my_instance_name --template gemfire-cs ^

 --interactive

In interactive mode, you will be prompted to specify a series of property values. Hit <return> for
any property that should use the default value.

After responding to approximately 20 prompts, you should see the following line:

Instance created.

Note: You cannot override region attributes on the cache server when using the HTTP Session
Management Module. You must place all region attribute definitions in the region attributes
template that you customize in tc Server. See Overriding Region Attributes for more information.

For information on setting up your instance for the most common types of configurations, refer to
the sections below. For more information about each interactive prompt, refer to Interactive Mode
Reference.

Using a Different Locator Port

VMware GemFire 9.10 Documentation

VMware by Broadcom 976

For a VMware GemFire peer-to-peer member to communicate on a different port than the default
(10334), answer the following question in the tc Server HTTP module’s interactive mode:

Please enter the list of locators used by GemFire members to discover each other.

The format is a comma-separated list of host[port]. Default 'localhost[10334]': localh

ost[10335]

This example changes the locator port to 10335 on localhost.

Overriding Region Attributes

When using the HTTP Session Management Module, you cannot override region attributes directly
on the cache server. You must place all region attribute definitions in the region attributes template
that you customize within tc Server. For example, to specify a different name for the region’s disk
store, you could add the new disk-store-name specification to the region attributes template and
then reference the template on the cache server.

<region-attributes id="MY_SESSIONS" refid="PARTITION_REDUNDANT_PERSISTENT_OVERFLOW"

disk-store-name="mystore">

 ...

</region-attributes>

Then on the cache server side, reference the modified region attributes template to allow the
region to use the disk-store-name attribute:

<region name="gemfire_modules_sessions" refid="MY_SESSIONS"/>

Interactive Configuration Reference for the tc Server Module

This section describes each prompt when entering into interactive configuration mode of
the VMware GemFire HTTP Session Management Module for tc Server.

Interactive Configuration Reference for the tc Server
Module
This section describes each prompt when entering into interactive configuration mode of the
VMware GemFire HTTP Session Management Module for tc Server.

 Please enter a value for 'geode-cs.maximum.vm.heap.size.mb'. Default '512':

 Please enter a value for 'geode-cs.initial.vm.heap.size.mb'. Default '512':

 Please enter a value for 'geode-cs.cms.initiating.heap.percentage'. Default '50':

The above properties allow you to fine-tune your JVM heap and garbage collector. For more
information, refer to Managing Heap and Off-heap Memory.

 Please specify whether to enable a VMware GemFire listener that logs session create,

 update, destroy and expiration events. Default 'false':

The above property determines whether a debug cache listener is added to the session region.
When true, info-level messages are logged to the VMware GemFire log when sessions are created,
updated, invalidated, or expired.

VMware GemFire 9.10 Documentation

VMware by Broadcom 977

With the geode-p2p template:

 Please specify whether to maintain a local VMware GemFire cache. Default 'false':

With the geode-cs template:

 Please specify whether to maintain a local VMware GemFire cache. Default 'true':

The above property determines whether a local cache is enabled; if this parameter is set to true,
the app server load balancer should be configured for sticky session mode.

With the geode-p2p template:

 Please enter the id of the attributes of the VMware GemFire region used to cache

 sessions.

 Default 'REPLICATE':

With the geode-cs template:

 Please enter the id of the attributes of the VMware GemFire region used to cache

 sessions.

 Default 'PARTITION_REDUNDANT':

The above property determines the ID of the attributes for the cache region; possible values
include PARTITION, PARTITION_REDUNDANT, PARTITION_PERSISTENT, REPLICATE,
REPLICATE_PERSISTENT, and any other region shortcut that can be found in Region Shortcuts
and Custom Named Region Attributes. When using a partitioned region attribute, it is
recommended that you use PARTITION_REDUNDANT (rather than PARTITION) to ensure that
the failure of a server does not result in lost session data.

 Please enter the name of the VMware GemFire region used to cache sessions.

 Default 'gemfire_modules_sessions':

The above property determines the VMware GemFire region name.

 Please enter the port that Tomcat Shutdown should listen on. Default '-1':

 Please enter the port that the JMX socket listener should listen on.

 Default '6969':

The above properties are application server properties.

 Please enter a value for 'bio.http.port'. Default '8080':

 Please enter a value for 'bio.https.port'. Default '8443':

tc Server requires information about connector ports. bio.http.port is the http port for tc Server
and bio.https.port is the secure http port for tc Server.

With the geode-p2p template:

 Please enter the name of the VMware GemFire cache configuration file.

 Default 'cache-peer.xml':

With the geode-cs template:

 Please enter the name of the VMware GemFire cache configuration file.

 Default 'cache-client.xml':

You can change the name of the cache configuration file with the above property. If you do change
this value, be sure to include an xml file by that name in the conf subdirectory.

VMware GemFire 9.10 Documentation

VMware by Broadcom 978

 Please enter the percentage of heap at which updates to the cache are refused.

 0.0 means disabled. Default '0.0':

 Please enter the percentage of heap at which sessions will be evicted from the

 local cache. Default '80.0':

The above properties allow you to control the critical and eviction watermarks for the heap. By
default, the critical watermark is disabled (set to 0.0) and the eviction watermark is set to 80%.

Please enter the list of locators used by VMware GemFire members to discover each othe

r.

The format is a comma-separated list of host[port]. Default ' ':

The above property specifies the list of locators.

 Please enter the name of the file used to log VMware GemFire messages.

 Default 'gemfire_modules.log':

The above property determines the file name for the VMware GemFire log file.

Applicable to the geode-p2p template ONLY:

 Please specify whether to rebalance the VMware GemFire cache at startup.

 Default 'false':

This property allows you to rebalance a partitioned VMware GemFire cache when a new VMware
GemFire peer starts up.

 Please enter the name of the file used to store VMware GemFire statistics.

 Default 'gemfire_modules.gfs':

The above property determines the filename for the VMware GemFire statistics file.

 Please specify whether VMware GemFire statistic sampling should be enabled.

 Default 'false':

The above property determines whether statistics sampling should occur. See Statistics for more
information.

HTTP Session Management Module for Tomcat
You set up and use the module by modifying the Tomcat’s server.xml and context.xml files.

For instructions specific to SpringSource tc Server templates, refer to HTTP Session Management
Module for Pivotal tc Server.

Installing the HTTP Module for Tomcat

This topic describes how to install the HTTP session management module for Tomcat.

Setting Up the HTTP Module for Tomcat

To use the VMware GemFire HTTP module with Tomcat application servers, you will need
to modify Tomcat’s server.xml and context.xml files.

Changing the Default VMware GemFire Configuration in the Tomcat Module

VMware GemFire 9.10 Documentation

VMware by Broadcom 979

By default, the Tomcat module will run VMware GemFire automatically with pre-configured
settings. You can change these VMware GemFire settings.

Installing the HTTP Module for Tomcat

This topic describes how to install the HTTP session management module for Tomcat.

1. If you have not already installed Tomcat, download the desired version from the Apache
Website and install it.

2. Following the Apache Tomcat convention, this page assumes the CATALINA_HOME
environment variable is set to the root directory of the “binary” Tomcat distribution. For
example, if Apache Tomcat is installed in /usr/bin/apache-tomcat-9.0.62 then

CATALINA_HOME=/usr/bin/apache-tomcat-9.0.62

Define $CATALINA_HOME if it is not already defined.

3. For development purposes, you may find it helpful to establish manager-level access to
Tomcat. To do so, edit the file $CATALINA_HOME/conf/tomcat-users.xml. Uncomment the
following line, and replace the <must-be-changed> placeholder with a password of your own
choosing:

 <user username="admin" password="<must-be-changed>" roles="manager-gui"/>

This creates an admin/password credential you can use to view system information when
following links from the Tomcat home page.

4. The HTTP Session Management Module for Tomcat is included in the VMware GemFire
installation package. After you install VMware GemFire, you will find the module in the
tools/Modules directory of the installation with a name of the form Apache_Geode_Modules-
SERVER-VERSION-Tomcat.zip, where SERVER-VERSION is the VMware GemFire version
number.

5. Set your current working directory to the $CATALINA_HOME directory (or wherever you
installed the application server) and unzip the HTTP Session Management Module. This adds
jar files to the lib subdirectory and XML files to the conf subdirectory.

cd $CATALINA_HOME

unzip $GEODE_HOME/tools/Modules/Apache_Geode_Modules-SERVER-VERSION-Tomcat.zip

6. Copy all of the jar files from the VMware GemFire lib subdirectory to the lib subdirectory
of your Tomcat server ($CATALINA_HOME/lib):

cd $CATALINA_HOME/lib

cp $GEODE_HOME/lib/*.jar .

Proceed to Setting Up the HTTP Module for Tomcat to complete your Tomcat configuration.

Setting Up the HTTP Module for Tomcat

VMware GemFire 9.10 Documentation

VMware by Broadcom 980

http://tomcat.apache.org/

To use the VMware GemFire HTTP module with Tomcat application servers, you will need to
modify Tomcat’s server.xml and context.xml files.

Configuration is slightly different depending on the topology you are setting up: peer-to-peer or
client/server. Refer to Common Topologies for HTTP Session Management for more information.

Peer-to-Peer Setup

Application Server Instance

Cache

Application Server Instance

Cache

Application Server Instance

Cache

app server requests app server requests app server requests

Replicated

Session Data

Replicated

Session Data

Replicated

Session Data

Locator

provides discovery and load balancing services

To run VMware GemFire in a peer-to-peer configuration, add the following line to Tomcat’s
$CATALINA_HOME$/conf/server.xml within the <Server> tag:

<Listener className="org.apache.geode.modules.session.catalina.PeerToPeerCacheLifecycl

eListener"

 locators="localhost[10334]" />

Depending on the version of Tomcat you are using, add one of the following lines to
$CATALINA_HOME$/conf/context.xml within the <Context> tag:

For Tomcat 7.0:

<Manager className="org.apache.geode.modules.session.Tomcat7DeltaSessionManager"/>

For Tomcat 8.0 and 8.5:

<Manager className="org.apache.geode.modules.session.catalina.Tomcat8DeltaSessionManag

er"/>

For Tomcat 9.0:

<Manager className="org.apache.geode.modules.session.catalina.Tomcat9DeltaSessionManag

er"/>

Client/Server Setup

VMware GemFire 9.10 Documentation

VMware by Broadcom 981

Partitioned

Session Data

Partitioned

Session Data

Server Server

Partitioned

Session Data

Application Server Instance

Client

app server requests

Local Cache

connection pool

Locator

provides discovery and load balancing services

Partitioned

Session Data

To run VMware GemFire in a client/server configuration, the application server will operate as a
VMware GemFire client. To do this, add the following line to $CATALINA_HOME$/conf/server.xml
within the <Server> tag:

<Listener className="org.apache.geode.modules.session.catalina.ClientServerCacheLifecy

cleListener"/>

Depending on the version of Tomcat you are using, add one of the following lines to
$CATALINA_HOME$/conf/context.xml within the <Context> tag:

For Tomcat 7.0:

<Manager className="org.apache.geode.modules.session.catalina.Tomcat7DeltaSessionManag

er"/>

For Tomcat 8.0 and 8.5:

<Manager className="org.apache.geode.modules.session.catalina.Tomcat8DeltaSessionManag

er"/>

For Tomcat 9.0:

<Manager className="org.apache.geode.modules.session.catalina.Tomcat9DeltaSessionManag

er"/>

The application server operates as a VMware GemFire client in this configuration.

Set the CLASSPATH environment variable. For a client/server set up using Apache Tomcat v9 and
Geode v1.13, the CLASSPATH setting should be similar to the following. Adjust filenames and
version numbers as needed for your implementation.

VMware GemFire 9.10 Documentation

VMware by Broadcom 982

CLASSPATH="$CATALINA_HOME/lib/geode-modules-1.13.3.jar:\

$CATALINA_HOME/lib/geode-modules-tomcat9-1.13.3.jar:\

$CATALINA_HOME/lib/servlet-api.jar:\

$CATALINA_HOME/lib/catalina.jar:\

$CATALINA_HOME/lib/tomcat-util.jar:\

$CATALINA_HOME/bin/tomcat-juli.jar"

Start the locator and server using gfsh:

$ gfsh start locator --name=locator1 --classpath=$CLASSPATH

$ gfsh start server --name=server1 --locators=localhost[10334] --server-port=0 \

 --classpath=$CLASSPATH

Starting the Application Server

Once you’ve updated the configuration, you are now ready to start your tc Server or Tomcat
instance. Refer to your application server documentation for starting the application server. Once
started, VMware GemFire will automatically launch within the application server process.

Note: VMware GemFire session state management provides its own clustering functionality. If you
are using VMware GemFire, you should NOT turn on Tomcat clustering as well.

Verifying that VMware GemFire Started

You can verify that VMware GemFire has successfully started by inspecting the Tomcat log file. For
example:

15-Jul-2021 10:25:11.483 INFO [main] org.apache.catalina.startup.HostConfig.deployDire

ctory Deployment of web application directory [/Users/user/workspace/apache-tomcat-9.

0.50/webapps/host-manager] has finished in [1,688] ms

15-Jul-2021 10:25:11.486 INFO [main] org.apache.coyote.AbstractProtocol.start Starting

ProtocolHandler ["http-nio-8080"]

15-Jul-2021 10:25:11.493 INFO [main] org.apache.catalina.startup.Catalina.start Server

startup in [11682] milliseconds

Changing the Default GemFire Configuration in the Tomcat
Module

By default, the Tomcat module will run VMware GemFire automatically with pre-configured
settings. You can change these VMware GemFire settings.

Here are the default settings:

Locators are used for member discovery.

The region name is set to gemfire_modules_sessions.

The cache region is replicated for peer-to-peer configurations and partitioned (with
redundancy turned on) for client/server configurations.

VMware GemFire clients have local caching turned on and when the local cache needs to
evict data, it will evict least-recently-used (LRU) data first.

VMware GemFire 9.10 Documentation

VMware by Broadcom 983

Changing VMware GemFire Distributed System Properties

VMware GemFire system properties must be set by adding properties to Tomcat’s server.xml file.
When setting properties, use the following syntax:

<Listener

 className="org.apache.geode.modules.session.catalina.xxxLifecycleListener"

 property-name="property-value"

 property-name="property-value"

 ...

/>

Where:

property-name is the name of a property.

property-value is value of that property.

If the xxxLifecycleListener is a PeerToPeerCacheLifecycleListener, then a minimal addition to the
server.xml file is the following:

<Listener

 className="org.apache.geode.modules.session.catalina.

 PeerToPeerCacheLifecycleListener"

 cache-xml-file="cache-peer.xml"

 locators="localhost[10334]"

 />

The list of Tomcat’s configurable server.xml system properties includes any of the properties that
can be specified in VMware GemFire’s gemfire.properties file. The following list contains some of
the properties that can be configured.

Property Description Default

cache-xml-file Name of the cache configuration file cache-peer.xml for peer-
to-peer, cache-client.xml
for client/server

locators (only for
peer-to-peer
topology)

Required: A list of locators in (host\[port\]) format used by
VMware GemFire members. If a single locator listens on its
default port, set this value to "localhost[10334]"

Empty string

log-file Name of the VMware GemFire log file gemfire_modules.log

statistic-archive-
file

Name of the VMware GemFire statistics file gemfire_modules.gfs

statistic-sampling-
enabled

Whether VMware GemFire statistics sampling is enabled false

For more information about these properties, along with the full list of properties, see VMware
GemFire Reference.

Note: On the application server side, the default inactive interval for session
expiration is set to 30 minutes. For information about changing this value, see
Session Expiration in General Information on HTTP Session Management.

VMware GemFire 9.10 Documentation

VMware by Broadcom 984

In addition to the standard VMware GemFire system properties, the following cache-specific
properties can also be configured with the LifecycleListener.

Property Description Default

criticalHeapPercenta
ge

Percentage of heap at which updates to the cache are refused 0
(Deactivated)

evictionHeapPercent
age

Percentage of heap at which session eviction begins 80.0

rebalance Whether a rebalance of the cache should be done when the application server
instance is started

false

Although these properties are not part of the standard VMware GemFire system properties, they
apply to the entire JVM instance and are therefore also handled by the LifecycleListener. For
more information about managing the heap, see Controlling Heap Use with the Resource Manager
in Managing Heap Memory.

Changing Cache Configuration Properties

To edit VMware GemFire cache properties such as the name and the characteristics of the cache
region, add these properties to Tomcat’s context.xml file. When adding properties, unless
otherwise specified, use the following syntax:

<Manager

 className="org.apache.geode.modules.session.catalina.Tomcat9DeltaSessionManager"

 property-name="property-value"

 property-name="property-value"

 ...

/>

Where:

property-name is the name of a property.

property-value is the value of that property.

For example, this entry creates a partitioned region with the name my_region.

<Manager className="org.apache.geode.modules.session.catalina.

 Tomcat9DeltaSessionManager"

 regionAttributesId="PARTITION_REDUNDANT"

 regionName="my_region"

/>

The following parameters are the cache configuration parameters that can be added to Tomcat’s
context.xml file.

CommitSessionValve
Whether to wait until the end of the HTTP request to save all session attribute changes to
the VMware GemFire cache. If the configuration line is present in the application's
context.xml file, then only one put will be performed into the cache for the session per
HTTP request. If the configuration line is not included, then the session is saved each time
the setAttribute or removeAttribute method is invoked. As a consequence, multiple puts

VMware GemFire 9.10 Documentation

VMware by Broadcom 985

are performed into the cache during a single session. This configuration setting is
recommended for any applications that modify the session frequently during a single HTTP
request.

Default: Set

To deactivate this configuration, remove or comment out the following line from Tomcat’s
context.xml file.

<Valve className="org.apache.geode.modules.session.catalina.CommitSessionValve"/>

enableDebugListener
Whether to enable a debug listener in the session region. If this parameter is set to true,
info-level messages are logged to the GemFire log when sessions are created, updated,
invalidated or expired.

Default: false

The VMware GemFire API equivalent to setting this parameter:

// Create factory

AttributesFactory factory = ...; <or> RegionFactory factory = ...;

// Add cache listener

factory.addCacheListener(new DebugCacheListener());

enableLocalCache
Whether a local cache is enabled. If this parameter is set to true, the app server load
balancer should be configured for sticky session mode.

Default: true for client/server. enableLocalCache is only useful with a client/server topology.

The VMware GemFire API equivalent to setting this parameter:

ClientCache.createClientRegionFactory(CACHING_PROXY_HEAP_LRU);

regionAttributesId
Specifies the region shortcut. For more information, see Region Shortcuts and Custom
Named Region Attributes. When using a partitioned region attribute, VMware recommends
that you use PARTITION_REDUNDANT instead of PARTITION to ensure that the failure of a server
does not result in lost session data.

Default: REPLICATE for peer-to-peer, PARTITION_REDUNDANT for client/server

The VMware GemFire API equivalent to setting this parameter:

// Creates a region factory for the specified region shortcut

Cache.createRegionFactory(regionAttributesId);

regionName
Name of the region.

Default: gemfire_modules_sessions

The VMware GemFire API equivalent to setting this parameter:

VMware GemFire 9.10 Documentation

VMware by Broadcom 986

// Creates a region with the specified name

RegionFactory.create(regionName);

HTTP Session Management Module for AppServers

You implement session caching with the HTTP Session Management Module for AppServers with a
special filter, defined in the web.xml, which is configured to intercept and wrap all requests.

You can use this HTTP module with a variety of application servers. Wrapping each request allows
the interception of getSession() calls to be handled by VMware GemFire instead of the native
container. This approach is a generic solution, which is supported by any container that implements
the Servlet 3.1 specification.

Setting Up the HTTP Module for AppServers

To use the module, you need to modify your application’s web.xml files. Configuration is
slightly different depending on the topology you are setting up.

Changing the Default VMware GemFire Configuration in the AppServers Module

By default, the AppServers module will run VMware GemFire automatically with
preconfigured settings. You can change these VMware GemFire settings.

Setting Up the HTTP Module for AppServers

To use the module, you need to modify your application’s web.xml files. Configuration is slightly
different depending on the topology you are setting up.

Refer to Common Topologies for HTTP Session Management for more information. Modifying the
war file can be done manually or with the modify_war script. To see the command line options for
the modify_war script, invoke:

$ modify_war -h

Manual Configuration

To modify your war or ear file manually, make the following updates:

web.xml needs a filter added as follows. If you have your own filters, the VMware GemFire
Module filter must be the first one.

<filter>

 <filter-name>gemfire-session-filter</filter-name>

 <filter-class>

 org.apache.geode.modules.session.filter.SessionCachingFilter

 </filter-class>

 <init-param>

 <param-name>cache-type</param-name>

 <param-value>peer-to-peer</param-value>

 </init-param>

 <init-param>

 <param-name>gemfire.property.locators</param-name>

 <param-value>localhost[10334]</param-value>

 </init-param>

VMware GemFire 9.10 Documentation

VMware by Broadcom 987

</filter>

<filter-mapping>

 <filter-name>gemfire-session-filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Add the following jar files from the AppServer.zip to the WEB-INF/lib directory of the war:

geode-modules jar

geode-modules-session-internal jar

geode-modules-session jar

slf4j-api jar

slf4j-jdk14 jar

Add the following jar files from the $GEODE/lib directory to the WEB-INF/lib directory of the
war, where $GEODE is set to the VMware GemFire product installation:

antlr jar

commons-io jar

commons-lang jar

commons-validator jar

fastutil jar

geode-common jar

geode-core jar

geode-deployment-legacy jar

geode-json jar

geode-management jar

geode-logging jar

geode-serialization jar

javax.transaction-api jar

jgroups jar

log4j-api jar

log4j-core jar

log4j-jul jar

micrometer-core jar

shiro-core jar

If you are deploying an ear file:

Copy all the dependent files, given above, to the lib directory of the ear.

Modify each embedded war file’s manifest by adding a Class-Path entry which references
the shared jars added in the previous step. For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 988

Manifest-Version: 1.0

Built-By: joe

Build-Jdk: 1.8.0_77

Created-By: Apache Maven

Archiver-Version: Plexus Archiver

Class-Path: lib/geode-modules-1.0.0.jar

lib/geode-modules-session-internal-1.0.0.jar

lib/geode-modules-session-1.0.0.jar

lib/slf4j-api-1.7.7.jar

lib/slf4j-jdk14-1.7.7.jar

lib/antlr-2.7.7.jar

lib/fastutil-7.0.2.jar

lib/geode-core-1.0.0.jar

lib/geode-common.1.0.0.jar

lib/geode-management.1.0.0.jar

lib/geode-logging.1.0.0.jar

lib/geode-serialization.1.0.0.jar

lib/javax.transaction-api-1.3.jar

lib/jgroups-3.6.8.Final.jar

lib/log4j-api-2.5.jar

lib/log4j-core-2.5.jar

lib/log4j-jul-2.5.jar

Peer-to-Peer Setup

Application Server Instance

Cache

Application Server Instance

Cache

Application Server Instance

Cache

app server requests app server requests app server requests

Replicated

Session Data

Replicated

Session Data

Replicated

Session Data

Locator

provides discovery and load balancing services

To run VMware GemFire in a peer-to-peer configuration, use the modify_war script with options -t
peer-to-peer, -p gemfire.property.locators=localhost[10334], and -p gemfire.propery.cache-
xml-file=<moduleDir>/conf/cache-peer.xml to result in the following web.xml content:

<filter>

 <filter-name>gemfire-session-filter</filter-name>

 <filter-class>

 org.apache.geode.modules.session.filter.SessionCachingFilter

 </filter-class>

 <init-param>

 <param-name>cache-type</param-name>

 <param-value>peer-to-peer</param-value>

 </init-param>

 <init-param>

 <param-name>gemfire.property.locators</param-name>

 <param-value>localhost[10334]</param-value>

VMware GemFire 9.10 Documentation

VMware by Broadcom 989

 </init-param>

</filter>

Client/Server Setup

Partitioned

Session Data

Partitioned

Session Data

Server Server

Partitioned

Session Data

Application Server Instance

Client

app server requests

Local Cache

connection pool

Locator

provides discovery and load balancing services

Partitioned

Session Data

To run VMware GemFire in a client/server configuration, you make the application server operate
as a VMware GemFire client. Use the -t client-server option to the modify_war script. This adds
the following filter to application server’s web.xml file:

To run VMware GemFire in a client/server configuration, you make the application server operate
as a VMware GemFire client. Use the modify_war script with options -t client-server and -p
gemfire.property.cache-xml-file=<module dir>/conf/cache-client.xml to result in the following
web.xml content:

<filter>

 <filter-name>gemfire-session-filter</filter-name>

 <filter-class>

 org.apache.geode.modules.session.filter.SessionCachingFileter

 </filter-class>

 <init-param>

 <param-name>cache-type</param-name>

 <param-value>client-server</param-value>

 </init-param>

 <init-param>

 <param-name>gemfire.property.cache-xml-file</param-name>

 <param-value>module dir/conf/cache-client.xml</param-value>

 </init-param>

</filter>

The cache-client.xml file contains a <pool> element pointing at the locator. Its default value is
localhost[10334].

VMware GemFire 9.10 Documentation

VMware by Broadcom 990

Starting the Application Server

After you update the configuration, you are now ready to start your application server instance.
Instantiate the locator first:

$ gfsh start locator --name=locator1

Then start the server:

$ gfsh start server \

 --name=server1 \

 --server-port=0 \

 --locators=localhost[10334] \

 --classpath=<moduleDir>/lib/geode-modules-1.0.0.jar:\

<moduleDir>/lib/geode-modules-session-internal-1.0.0.jar

Once the application server is started, the VMware GemFire client will automatically launch within
the application server process.

Verifying that VMware GemFire Started

You can verify that VMware GemFire has successfully started by inspecting the application server
log file. For example:

info 2016/04/18 10:04:18.685 PDT <localhost-startStop-2> tid=0x1a]

Initializing VMware GemFire Modules

Java version: 1.0.0 user1 041816 2016-11-18 08:46:17 -0700

javac 1..0_272

Native version: native code unavailable

Source revision: 19dd8eb1907e0beb2aa3e0a17d5f12c6cbec6968

Source repository: develop

Running on: /192.0.2.0, 8 cpu(s), x86_64 Mac OS X 10.11.4

Information is also logged within the VMware GemFire log file, which by default is named
gemfire_modules.<date>.log.

Changing the Default VMware GemFire Configuration in the
AppServers Module

By default, the AppServers module will run VMware GemFire automatically with preconfigured
settings. You can change these VMware GemFire settings.

Here are the default settings:

VMware GemFire peer-to-peer members are discovered using locators.

The region name is set to gemfire_modules_sessions.

The cache region is replicated for peer-to-peer configurations and partitioned (with
redundancy turned on) for client/server configurations.

VMware GemFire clients have local caching turned on and when the local cache needs to
evict data, it will evict least-recently-used (LRU) data first.

VMware GemFire 9.10 Documentation

VMware by Broadcom 991

Note: On the application server side, the default inactive interval for session expiration is set to 30
minutes. To change this value, refer to Session Expiration.

However, you may want to change this default configuration. For example, you might want to
change the region from replicated to partitioned. This section describes how to change these
configuration values.

Note: You cannot override region attributes on the cache server when using the HTTP Session
Management Module. You must place all region attribute definitions in the region attributes
template that you customize in your application server. See Overriding Region Attributes for more
information.

Changing VMware GemFire Distributed System Properties

To edit VMware GemFire system properties, you must add properties to VMware GemFire Session
Filter definition in the application’s web.xml file. As mentioned previously, this can be done by
using the -p option to the modify_war script. All VMware GemFire system properties should be
prefixed with the string gemfire.property. For example:

-p gemfire.property.locators=hostname[10334]

-p gemfire.property.cache-xml-file=/u01/weblogic/conf/cache.xml.

<filter>

 <filter-name>gemfire-session-filter</filter-name>

 <filter-class>

 org.apache.geode.modules.session.filter.SessionCachingFilter

 </filter-class>

 <init-param>

 <param-name>cache-type</param-name>

 <param-value>client-server</param-value>

 </init-param>

 <init-param>

 <param-name>gemfire.property.locators</param-name>

 <param-value>hostname[10334]</param-value>

 </init-param>

 <init-param>

 <param-name>gemfire.property.cache-xml-file</param-name>

 <param-value>/u01/weblogic/conf/cache.xml</param-value>

 </init-param>

</filter>

This example specifies that the file name for VMware GemFire’s cache XML configuration is cache-
peer.xml.

The list of configurable server.xml system properties include any of the properties that can be
specified in VMware GemFire’s gemfire.properties file. The following list contains some of the
more common parameters that can be configured.

Parameter Description Default

cache-xml-file Name of the cache configuration file. cache-peer.xml for peer-to-
peer, cache-client.xml for
client/server

VMware GemFire 9.10 Documentation

VMware by Broadcom 992

Parameter Description Default

locators (only for
peer-to-peer
config)

(required) list of locators (host[port]) used by VMware GemFire
members; if a single locator listens on its default port, then set
this value to "localhost[10334]"

Empty string

log-file Name of the VMware GemFire log file. gemfire_modules.log

statistic-archive-file Name of the VMware GemFire statistics file. gemfire_modules.gfs

statistic-sampling-
enabled

Whether VMware GemFire statistics sampling is enabled. false

In addition to the standard VMware GemFire system properties, the following cache-specific
properties can also be configured.

Parameter Description Default

criticalHeapPercenta
ge

Percentage of heap at which updates to the cache are refused. 0
(disabled)

evictionHeapPercent
age

Percentage of heap at which session eviction begins. 80.0

rebalance Whether a rebalance of the cache should be done when the application server
instance is started.

false

Although these properties are not part of the standard VMware GemFire system properties, they
apply to the entire JVM instance. For more information about managing the heap, refer to
Managing Heap and Off-heap Memory.

Note: It is important to note that the VMware GemFire cluster is a singleton within the entire
application server JVM. As such it is important to ensure that different web applications, within the
same container, set (or expect) the same cache configuration. When the application server starts,
the first web application to start that uses VMware GemFire Session Caching will determine the
overall configuration of the cluster, since it will trigger the creation of the cluster.

Changing Cache Configuration Properties

To edit VMware GemFire cache properties (such as the name and the characteristics of the cache
region), you must configure these using a filter initialization parameter prefix of gemfire.cache with
the modify_war script. For example:

-p gemfire.cache.region_name=custom_sessions

<filter>

 <filter-name>gemfire-session-filter</filter-name>

 <filter-class>

 org.apache.geode.modules.session.filter.SessionCachingFilter

 </filter-class>

 <init-param>

 <param-name>cache-type</param-name>

 <param-value>peer-to-peer</param-value>

 </init-param>

 <init-param>

 <param-name>gemfire.cache.region_name</param-name>

 <param-value>custom_sessions</param-value>

VMware GemFire 9.10 Documentation

VMware by Broadcom 993

 </init-param>

</filter>

The following parameters are the cache configuration parameters that can be added to the filter
definition as initialization parameters.

enable_debug_listener
Whether to enable a debug listener in the session region; if this parameter is set to true,
info-level messages are logged to the VMware GemFire log when sessions are created,
updated, invalidated or expired.

Default: false

The VMware GemFire API equivalent to setting this parameter:

// Create factory

AttributesFactory factory = ...;

<or> RegionFactory factory = ...;

// Add cache listener

factory.addCacheListener(new DebugCacheListener());

enable_local_cache
Whether a local cache is enabled; if this parameter is set to true, the app server load
balancer should be configured for sticky session mode.

Default: false for peer-to-peer, true for client/server

The VMware GemFire API equivalent to setting this parameter:

// For peer-to-peer members:

Cache.createRegionFactory(REPLICATE_PROXY)

// For client members:

ClientCache.createClientRegionFactory(CACHING_PROXY_HEAP_LRU)

region_attributes_id
Specifies the region shortcut; for more information refer to [Region Shortcuts and Custom
Named Region Attributes](../../basic_config/data_regions/region_shortcuts.html); when
using a partitioned region attribute, it is recommended that you use
PARTITION_REDUNDANT (rather than PARTITION) to ensure that the failure of a server
does not result in lost session data.

Default: REPLICATE for peer-to-peer, PARTITION_REDUNDANT for client/server

The VMware GemFire API equivalent to setting this parameter:

// Creates a region factory for the specified region shortcut

Cache.createRegionFactory(regionAttributesId);

region_name
Name of the region.

Default: gemfire_modules_sessions

The VMware GemFire API equivalent to setting this parameter:

// Creates a region with the specified name

VMware GemFire 9.10 Documentation

VMware by Broadcom 994

RegionFactory.create(regionName);

session_delta_policy
Replication policy for session attributes.

Default: delta_queued

Delta replication can be configured to occur immediately when HttpSession.setAttribute() is called
(delta_immediate) or when the HTTP request has completed processing (delta_queued). If the
latter mode is configured, all attribute updates for a particular request are ‘batched’ and multiple
updates to the same attribute are collapsed. Depending on the number of attributes updates within
a given request, delta_queued may provide a significant performance gain. For complete session
attribute integrity across the cache, delta_immediate is recommended. Note that this option is
specific to this module and there is no equivalent VMware GemFire API to enable it.

Common VMware GemFire Configuration Changes for AppServers

Common VMware GemFire Configuration Changes for
AppServers

Overriding Region Attributes

When using the HTTP Session Management Module, you cannot override region attributes directly
on the cache server. You must place all region attribute definitions in the region attributes template
that you customize within the application server. For example, to specify a different name for the
region’s disk store, you could add the new disk-store-name specification to the region attributes
template and then reference the template on the cache server.

<region-attributes id="MY_SESSIONS" refid="PARTITION_REDUNDANT_PERSISTENT_OVERFLOW"

disk-store-name="mystore">

 ...

</region-attributes>

Then on the cache server side, reference the modified region attributes template to allow the
region to use the disk-store-name attribute:

<region name="gemfire_modules_sessions" refid="MY_SESSIONS"/>

Next, you must specify the region attributes ID as a value for the region_attributes_id parameter
in web.xml. For example, if you want to enable the region-attributes in the above example for a
specific Web application, you would configure the Web application’s web.xml in the following
manner:

<filter>

 ...

 <init-param>

 <param-name>gemfire.cache.region_attributes_id</param-name>

 <param-value>MY_SESSIONS</param-value>

 </init-param>

 ...

</filter>

VMware GemFire 9.10 Documentation

VMware by Broadcom 995

Apache Lucene® Integration

Apache Lucene® is a widely used Java full-text search engine. This section describes how VMware
GemFire integrates with Apache Lucene. We assume that the reader is familiar with Apache
Lucene’s indexing and search functionalities.

The Apache Lucene integration:

Enables users to create Lucene indexes on data stored in VMware GemFire

Provides high availability of indexes using VMware GemFire’s HA capabilities to store the
indexes in memory

Colocates indexes with data

For persistent regions, persists Lucene indexes to disk

Updates the indexes asynchronously to minimize impacting write latency

Provides scalability by partitioning index data

For more details, see Javadocs for the classes and interfaces that implement Apache Lucene
indexes and searches, including LuceneService, LuceneSerializer, LuceneIndexFactory,
LuceneQuery, LuceneQueryFactory, LuceneQueryProvider, and LuceneResultStruct.

Using the Apache Lucene Integration

You can interact with Apache Lucene indexes through a Java API, through the gfsh command-line
utility, or by means of the cache.xml configuration file.

Key Points

Apache Lucene indexes are supported only on partitioned regions. Replicated region types
are not supported.

Lucene indexes reside on servers. You cannot create a Lucene index on a client.

A Lucene index applies to only one region. Multiple indexes can be defined for a single
region.

Heterogeneous objects in a single region are supported.

Creating a Lucene Index

When you create a Lucene index, you must provide three pieces of information:

1. The name of the index you wish to create

2. The name of the region to be indexed and searched

3. The names of the fields you wish to index

You must specify at least one field to be indexed.

Note: Create the Lucene index before creating the region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 996

If the object value for the entries in the region comprises a primitive type value without a field
name, then use __REGION_VALUE_FIELD to specify the field to be indexed. __REGION_VALUE_FIELD
serves as the field name for entry values of all primitive types, including String, Long, Integer,
Float, and Double.

Each field has a corresponding analyzer to extract terms from text. When no analyzer is specified,
the org.apache.lucene.analysis.standard.StandardAnalyzer is used.

The index has an associated serializer that renders the indexed object as a Lucene document
comprised of searchable fields. The default serializer is a simple one that handles top-level fields,
but does not render collections or nested objects.

VMware GemFire supplies a built-in serializer, FlatFormatSerializer(), that handles collections
and nested objects. See Using FlatFormatSerializer to Index Fields within Nested Objects for more
information regarding Lucene indexes for nested objects.

As a third alternative, you can create your own serializer, which must implement the
LuceneSerializer interface.

Creating a Lucene Index: Java API Example

The following example uses the Java API to create a Lucene index with two fields. No analyzers are
specified, so the default analyzer handles both fields. No serializer is specified, so the default
serializer is used.

// Get LuceneService

LuceneService luceneService = LuceneServiceProvider.get(cache);

// Create the index on fields with default analyzer

// prior to creating the region

luceneService.createIndexFactory()

 .addField("name")

 .addField("zipcode")

 .create(indexName, regionName);

Region region = cache.createRegionFactory(RegionShortcut.PARTITION)

 .create(regionName);

Creating a Lucene Index: Gfsh Example

In gfsh, use the create lucene index command to create Lucene indexes.

The following example creates an index with two fields. The default analyzer handles both fields,
and the default serializer is used.

gfsh>create lucene index --name=indexName --region=/orders --field=customer,tags

The next example creates an index, specifying a custom analyzer for the second field. “DEFAULT”
in the first analyzer position specifies that the default analyzer will be used for the first field.

gfsh>create lucene index --name=indexName --region=/orders

 --field=customer,tags --analyzer=DEFAULT,org.apache.lucene.analysis.bg.BulgarianAnal

yzer

VMware GemFire 9.10 Documentation

VMware by Broadcom 997

Creating a Lucene Index: XML Example

This XML configuration file specifies a Lucene index with three fields and three analyzers:

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:lucene="http://geode.apache.org/schema/lucene"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache

 http://geode.apache.org/schema/cache/cache-1.0.xsd

 http://geode.apache.org/schema/lucene

 http://geode.apache.org/schema/lucene/lucene-1.0.xsd"

 version="1.0">

 <region name="region" refid="PARTITION">

 <lucene:index name="myIndex">

 <lucene:field name="a"

 analyzer="org.apache.lucene.analysis.core.KeywordAnalyzer"/>

 <lucene:field name="b"

 analyzer="org.apache.lucene.analysis.core.SimpleAnalyzer"/>

 <lucene:field name="c"

 analyzer="org.apache.lucene.analysis.standard.ClassicAnalyze

r"/>

 <lucene:field name="d" />

 </lucene:index>

 </region>

</cache>

Using FlatFormatSerializer to Index Fields within Nested
Objects

VMware GemFire supplies a built-in serializer,
org.apache.geode.cache.lucene.FlatFormatSerializer that renders collections and nested objects
as searchable fields, which you can access using the syntax fieldnameAtLevel1.fieldnameAtLevel2
for both indexing and querying.

For example, in the following data model, the Customer object contains both a Person object and a
collection of Page objects. The Person object also contains a Page object.

public class Customer implements Serializable {

 private String name;

 private Collection<String> phoneNumbers;

 private Collection<Person> contacts;

 private Page[] myHomePages;

}

public class Person implements Serializable {

 private String name;

 private String email;

 private int revenue;

 private String address;

 private String[] phoneNumbers;

 private Page homepage;

}

public class Page implements Serializable {

VMware GemFire 9.10 Documentation

VMware by Broadcom 998

 private int id; // search integer in int format

 private String title;

 private String content;

}

The FlatFormatSerializer creates one document for each parent object, adding an indexed field
for each data field in a nested object, identified by its qualified name. Similarly, collections are
flattened and treated as tokens in a single field. For example, the FlatFormatSerializer could
convert a Customer object, with the structure described above, into a document containing fields
such as name, contacts.name, and contacts.homepage.title based on the indexed fields specified at
index creation. Each segment is a field name, not a field type, because a class (such as Customer)
could have more than one field of the same type (such as Person).

The serializer creates and indexes the fields you specify when you request index creation. The
example below demonstrates how to index the name field and the nested fields contacts.name,
contacts.email, contacts.address, contacts.homepage.title.

// Get LuceneService

LuceneService luceneService = LuceneServiceProvider.get(cache);

// Create Index on fields, some are fields in nested objects:

luceneService.createIndexFactory().setLuceneSerializer(new FlatFormatSerializer())

 .addField("name")

 .addField("contacts.name")

 .addField("contacts.email")

 .addField("contacts.address")

 .addField("contacts.homepage.title")

 .create("customerIndex", "Customer");

// Create region

Region CustomerRegion = ((Cache)cache).createRegionFactory(shortcut).create("Custome

r");

The gfsh equivalent of the above Java code uses the create lucene index command, with options
specifying the index name, region name, field names, and the FlatFormatSerializer, specified
using its fully qualified name,org.apache.geode.cache.lucene.FlatFormatSerializer:

gfsh>create lucene index --name=customerIndex --region=Customer

 --field=name,contacts.name,contacts.email,contacts.address,contacts.homepage.title

 --serializer=org.apache.geode.cache.lucene.FlatFormatSerializer

The syntax for querying a nested field is the same as for a top level field, but with the additional
qualifying parent field name, such as contacts.name:Jones77*. This distinguishes which “name” field
is intended when there can be more than one “name” field at different hierarchical levels in the
object.

Java query:

LuceneQuery query = luceneService.createLuceneQueryFactory()

 .create("customerIndex", "Customer", "contacts.name:Jones77*", "name");

PageableLuceneQueryResults<K,Object> results = query.findPages();

gfsh query:

VMware GemFire 9.10 Documentation

VMware by Broadcom 999

gfsh>search lucene --name=customerIndex --region=Customer

 --queryString="contacts.name:Jones77*"

 --defaultField=name

Queries

Querying a Lucene Index: Gfsh Example

For details, see the gfsh search lucene command reference page.

gfsh>search lucene --name=indexName --region=/orders --queryString="Jones*"

 --defaultField=customer

Querying a Lucene Index: Java API Example

LuceneQuery<String, Person> query = luceneService.createLuceneQueryFactory()

 .create(indexName, regionName, "name:John AND zipcode:97006", defaultField);

Collection<Person> results = query.findValues();

Destroying an Index

Since a region-destroy operation does not cause the destruction of any Lucene indexes, destroy
any Lucene indexes prior to destroying the associated region.

Destroying a Lucene Index: Java API Example

luceneService.destroyIndex(indexName, regionName);

An attempt to destroy a region with a Lucene index will result in an IllegalStateException, issuing
an error message similar to:

java.lang.IllegalStateException: The parent region [/orders] in colocation chain

 cannot be destroyed, unless all its children [[/indexName#_orders.files]] are

 destroyed

...

Destroying a Lucene Index: Gfsh Example

For details, see the gfsh destroy lucene index command reference page.

The error message that results from an attempt to destroy a region prior to destroying its
associated Lucene index will be similar to:

Region /orders cannot be destroyed because it defines Lucene index(es)

 [/ordersIndex]. Destroy all Lucene indexes before destroying the region.

Changing an Index

VMware GemFire 9.10 Documentation

VMware by Broadcom 1000

Changing an index requires rebuilding it. Implement these steps to change an index:

1. Export all region data.

2. Destroy the Lucene index.

3. Destroy the region.

4. Create a new index.

5. Create a new region without the user-defined business logic callbacks.

6. Import the region data with the option to turn on callbacks. The callbacks will be to invoke a
Lucene async event listener to index the data. The gfsh import data command will be of
the form:

gfsh>import data --region=myReg --member=M3 --file=myReg.gfd --invoke-callbacks

=true

If the API is used to import data, the code to set the option to invoke callbacks will be similar to this
code fragment:

``` pre

Region region = ...;

File snapshotFile = ...;

RegionSnapshotService service = region.getSnapshotService();

SnapshotOptions options = service.createOptions();

options.invokeCallbacks(true);

service.load(snapshotFile, SnapshotFormat.GEMFIRE, options);

```

1. Alter the region to add the user-defined business logic callbacks.

Additional Gfsh Commands
See the gfsh describe lucene index command reference page for the command that prints details
about a specific index.

See the gfsh list lucene index command reference page for the command that prints details about
the Lucene indexes created for all members.

Requirements and Caveats
Join queries between regions are not supported.

Lucene indexes are stored in on-heap memory only.

Lucene queries from within transactions are not supported. On an attempt to query from
within a transaction, a LuceneQueryException is thrown, issuing an error message on the
client (accessor) similar to:

Exception in thread "main" org.apache.geode.cache.lucene.LuceneQueryException:

 Lucene Query cannot be executed within a transaction

...

VMware GemFire 9.10 Documentation

VMware by Broadcom 1001

Lucene indexes must be created prior to creating the region. If an attempt is made to
create a Lucene index after creating the region, the error message is similar to:

 Member | Status

---------------------------- | --

192.0.2.0(s2:97639)<v2>:1026 | Failed: The lucene index must be created before region

192.0.2.0(s3:97652)<v3>:1027 | Failed: The lucene index must be created before region

192.0.2.0(s1:97626)<v1>:1025 | Failed: The lucene index must be created before region

The order of server creation with respect to index and region creation is important. The
cluster configuration service cannot work if servers are created after index creation, but
before region creation, as Lucene indexes are propagated to the cluster configuration after
region creation. To start servers at multiple points within the start-up process, use this
ordering:

1. start server(s)

2. create Lucene index

3. create region

4. start additional server(s)

An invalidate operation on a region entry does not invalidate a corresponding Lucene index
entry. A query on a Lucene index that contains values that have been invalidated can
return results that no longer exist. Therefore, do not combine entry invalidation with
queries on Lucene indexes.

Lucene indexes are not supported for regions that have eviction configured with a local
destroy. Eviction can be configured with overflow to disk, but only the region data is
overflowed to disk, not the Lucene index. On an attempt to create a region with eviction
configured to do local destroy (with a Lucene index), an UnsupportedOperationException is
thrown, issuing an error message similar to:

[error 2017/05/02 16:12:32.461 PDT <main> tid=0x1]

 java.lang.UnsupportedOperationException:

Exception in thread "main" java.lang.UnsupportedOperationException:

 Lucene indexes on regions with eviction and action local destroy are not supported

...

Be aware that using the same field name in different objects where the field has different
data types may have unexpected consequences. For example, if an index on the field SSN
has the following entries

Object_1 object_1 has String SSN = “1111”

Object_2 object_2 has Integer SSN = 1111

Object_3 object_3 has Float SSN = 1111.0

Integers and floats will not be converted into strings. They remain as IntPoint and
FloatPoint within Lucene. The standard analyzer will not try to tokenize these values. The
standard analyzer will only try to break up string values. So, a string search for “SSN: 1111”
will return object_1. An IntRangeQuery for upper limit : 1112 and lower limit : 1110 will
return object_2, and a FloatRangeQuery with upper limit : 1111.5 and lower limit :
1111.0 will return object_3.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1002

Backups should only be made for regions with Lucene indexes when there are no puts,
updates, or deletes in progress. A backup might cause an inconsistency between region
data and a Lucene index. Both the region operation and the associated index operation
cause disk operations, yet those disk operations are not done atomically. Therefore, if a
backup were taken between the persisted write to a region and the resulting persisted
write to the Lucene index, then the backup represents inconsistent data in the region and
Lucene index.

Tanzu Observability by Wavefront

The VMware GemFire metrics module provides out-of-the-box integration with Tanzu
Observability by Wavefront. The metrics module, provided as a collection of JAR files in your
product release, adds a metrics endpoint to a specified VMware GemFire member. By default, this
Prometheus-style endpoint hosts approximately 200 GemFire metrics at an update interval of 1
minute. These metrics can be scraped by a metrics collection agent (such as Telegraf) and
forwarded to a metrics monitoring platform (such as Wavefront) for further analysis and alerting.

Delivering GemFire Metrics via Telegraf and Wavefront Proxy to Tanzu Observability by
Wavefront

To enable Wavefront-viewable metrics across your VMware GemFire cluster:

1. If you wish to modify the default settings for number of emitted metrics or their refresh
rate, do so by setting a system-wide environment variable.

2. For each member you wish to monitor, enable Wavefront-viewable Prometheus-style
metrics when you create the member.

Configure GemFire Metrics
By default, each metrics endpoint hosts approximately 200 metrics at an update interval of one
minute.

You can optionally configure the emission dataset and its update interval using the GEMFIRE_METRICS
environment variable, which defines the emission and interval parameters using JSON syntax.

Setting GEMFIRE_METRICS is optional, but if you choose to do it, the configuration must be in place
before you start the member to which it applies.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1003

The emission parameter specifies the quantity of data to export:

Syntax Value Example

"emission" : "value" Default: Emit approximately 200 metrics
All: Emit all GemFire metrics
None: No metrics will be available on the endpoint

"emission" : "All"

The interval property is used in computing certain windowed statistics. To get the most out of
windowed statistics, align this interval to be close to your scrape interval. When set, this value
overrides the default interval of one minute. An accepted value is a positive integer followed by a
unit specifier:

s for seconds

m for minutes

h for hours

d for days

w for weeks

For example, 4m is four minutes, and 90s is 90 seconds.

Note: When emission is set to All, the default for interval becomes 2s, unless you specify
otherwise.

Syntax Value Units Examples

"interval" : "value" positive integer followed by a unit s seconds
m minutes
d days
w weeks

"interval" : "4m"
"interval" : "90s"

Sample usage:

export GEMFIRE_METRICS='{"emission": "All", "interval":"90s"}'

Enable Wavefront-Viewable Metrics

To enable Wavefront-viewable Prometheus-style metrics for a member (a VMware GemFire
locator or server), you must provide the following information when you create the member:

Metrics JAR files: Add the metrics JAR files to the classpath. The JAR files, located in the
gemfire-prometheus-metrics directory, are included in your VMware GemFire distribution’s
tools/Modules directory. For example, if your product distribution is located in /gemfire,
use the option --classpath=/gemfire/tools/Modules/gemfire-prometheus-metrics/* in the
gfsh start locator or start server command.

Metrics port: Specify a unique metrics port mapping for metrics collection. The metrics port
is specified by Java command-line parameter gemfire.prometheus.metrics.port. In your
gfsh start command, use the --J=-D<param>=<value> option to specify the parameter and
its value. For example, --J=-Dgemfire.prometheus.metrics.port=7001.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1004

1. To enable Wavefront-viewable metrics for a locator by adding the metrics JAR files to the
classpath and specifying a metrics port, run the following gfsh command. If the
GEMFIRE_METRICS environment variable is set, the metrics endpoint incorporates it into the
member configuration.

gfsh -e "start locator --classpath=/gemfire/tools/Modules/gemfire-prometheus-me

trics/* \

--J=-Dgemfire.prometheus.metrics.port=7001"

2. After the member has started, locate and record the IP address of the member in the
output of the start command. For example, in the sample output below, the IP address is
192.168.50.245:

gfsh>start locator --classpath=/gemfire/tools/Modules/gemfire-prometheus-metric

s/*

 --J=-Dgemfire.prometheus.metrics.port=7001

Starting a VMware GemFire Locator in /Users/username/my_gemfire/locator1...

.................

Locator in /Users/username/my_gemfire/locator1 on 192.168.50.245[10334] as loca

tor1 is currently

online.

Process ID: 4580

Uptime: 10 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/my_gemfire/locator1/locator1.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true

-Dgemfire.load-cluster-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path:

/Users/username/vmware-gemfire-9.10.17/lib/geode-core-1.15.0.jar:/gemfire/tool

s/Modules/gemfire-prometheus-metrics/gson-2.8.6.jar:/gemfire/tools/Modules/gemf

ire-prometheus-metrics/gemfire-prometheus-metrics-0.1.0-build.86.jar:/gemfire/t

ools/Modules/gemfire-prometheus-metrics/micrometer-registry-prometheus-1.6.3.ja

r:/gemfire/tools/Modules/gemfire-prometheus-metrics/simpleclient_common-0.9.0.j

ar:/gemfire/tools/Modules/gemfire-prometheus-metrics/simpleclient-0.9.0.jar:/Us

ers/username/vmware-gemfire-9.10.17/lib/geode-server-all-1.15.0.jar

Successfully connected to: JMX Manager [host=192.168.50.245, port=1099]

Cluster configuration service is up and running.

3. Verify that the metrics module is properly configured by visiting the following URL:

http://HOSTNAME:PORT/metrics

Where:

HOSTNAME is the IP address of the member that you recorded in a previous step.

PORT is the metrics port that you specified with the command-line parameter
gemfire.prometheus.metrics.port in a previous step.

Using the example information above, this would be: http://192.168.50.245:7001/metrics.

The output should resemble the following:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1005

HELP gemfire_replyWaitTime

TYPE gemfire_replyWaitTime gauge

gemfire_replyWaitTime{category="DistributionStats",instance="distributionStat

s",member="192.168.

129.137(locator1:76435:locator)<ec><v0>:41000",} 0.0

HELP gemfire_loadsCompleted

TYPE gemfire_loadsCompleted gauge

gemfire_loadsCompleted{category="CachePerfStats",instance="RegionStats-manageme

ntRegionStats",member="192.168.129.137(locator1:76435:locator)<ec><v0>:41000",}

0.0

gemfire_loadsCompleted{category="CachePerfStats",instance="cachePerfStats",memb

er="192.168.129.137(locator1:76435:locator)<ec><v0>:41000",} 0.0

...

Example

The following example enables Wavefront-viewable metrics on a single GemFire locator, then
shows how to scrape metrics using Telegraf and view the results using Wavefront. The example
uses the MacOS-specific brew command. You may need to adapt it for use on other platforms.

The example configuration contains two main parts:

GemFire setup

Telegraf and Wavefront Proxy setup (metrics collection agent and forwarder)

GemFire Setup

The example requires that some GemFire metrics be enabled from a gemfire.properties file.

1. Create a file named gemfire.properties with the following content:

statistic-sampling-enabled=true

statistic-archive-file=stats.gfs

enable-time-statistics=true

2. To simplify command lines, set two environment variables to the paths for use in the code
snippets below. Paths shown here are placeholders. Substitute the paths that match your
system.

METRICS_PATH="~/gemfire/tools/Modules/gemfire-prometheus-metrics/*"

GEMFIRE_PROPERTIES_FILE_PATH="./gemfire.properties"

With these configuration parameters in place, you can start GemFire using gfsh or Launcher, as
shown below.

Example GemFire Startup Using gfsh

gfsh -e "start locator --name=locator1 --port=10334 \

 --classpath=$METRICS_PATH \

 --properties-file=$GEMFIRE_PROPERTIES_FILE_PATH \

 --J=-Dgemfire.prometheus.metrics.port=7001"

Example GemFire Startup Using Launcher

VMware GemFire 9.10 Documentation

VMware by Broadcom 1006

Launcher startup requires an explicit path to the gemfire-dependencies.jar file. Substitute the
path that matches your system.

java -classpath \

"$METRICS_PATH:/gemfire/lib/geode-dependencies.jar" \

-DgemfirePropertyFile="$GEMFIRE_PROPERTIES_FILE_PATH" \

-Dgemfire.prometheus.metrics.port=7001 \

org.apache.geode.distributed.LocatorLauncher start locator --port=10334 &

Telegraf and Wavefront Proxy Setup

This example uses Telegraf as the agent to pull Wavefront-viewable Prometheus-style metrics from
the GemFire cluster. It sends them to a local Wavefront proxy, which forwards them to the
Wavefront service.

Install Telegraf and the Wavefront Proxy, as described on the Wavefront website:

Linux (tip: on Linux, the wave cli can install both)

Mac

Windows

Acquire an API token that will allow Tanzu Observability to authenticate communication from the
Wavefront Proxy. Follow the directions at Generating an API Token.

Configuring Telegraf

Once installed, add a config file with the specified tags and the urls to indicate to Telegraf to scrape
metrics from GemFire’s prometheus-style endpoints. Here, the configuration file is named “tanzu-
gemfire.conf”:

Telegraf config to scrape GemFire metrics

[agent]

 interval = "10s"

[[inputs.prometheus]]

 urls = ["http://localhost:7001/metrics","http://localhost:8001/metrics"]

 # These tags are used in the Wavefront-GemFire integration. Set them to uniquely ide

ntify your GemFire cluster.

 [inputs.prometheus.tags]

 "label.gemfire-environment" = "milky-way"

 "label.gemfire-cluster" = "my-cluster"

[[outputs.wavefront]]

 host = "localhost"

 port = 2878

 metric_separator = "."

 source_override = ["hostname", "agent_host", "node_host"]

 convert_paths = true

 use_regex = false

Set an environment variable so telegraf can find the configuration file:

export TELEGRAF_CONFIG_PATH=<path-to-config-file>/tanzu-gemfire.conf

Restart the wavefront proxy:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1007

https://docs.wavefront.com/linux.html
https://docs.wavefront.com/mac.html
https://docs.wavefront.com/windows.html
https://docs.wavefront.com/wavefront_api.html#generating-an-api-token

brew services restart wfproxy

Start telegraf:

brew services restart telegraf

In a browser, navigate to your GemFire dashboard on Wavefront. You should see live metrics. To
find your Wavefront dashboard, see VMware Tanzu Observability.

As an alternative, you can view the logfile in a shell window:

tail -f /usr/local/var/log/wavefront/wavefront.log

Output should resemble:

2021-06-02 11:59:20,210 INFO [proxy:checkin] Checking in: https://vmware.wavefront.co

m/api

2021-06-02 11:59:20,210 INFO [proxy:checkin] Checking in: https://vmware.wavefront.co

m/api

2021-06-02 11:59:29,915 INFO [AbstractReportableEntityHandler:printStats] [2878] Poin

ts received rate: 302 pps (1 min), 296 pps (5 min), 1588 pps (current).

2021-06-02 11:59:29,915 INFO [AbstractReportableEntityHandler:printStats] [2878] Poin

ts received rate: 302 pps (1 min), 296 pps (5 min), 1588 pps (current).

2021-06-02 11:59:29,915 INFO [AbstractReportableEntityHandler:printStats] [2878] Poin

ts delivered rate: 295 pps (1 min), 294 pps (5 min)

2021-06-02 11:59:29,915 INFO [AbstractReportableEntityHandler:printStats] [2878] Poin

ts delivered rate: 295 pps (1 min), 294 pps (5 min)

Verification and Troubleshooting suggestions

If everything is working properly, your cluster should be listed within the Tanzu GemFire integration
in Wavefront.

If everything is not working properly, try these suggestions:

GemFire

Verify the metrics endpoint is hosting metrics by curling one of the metrics
endpoints or viewing it in your browser, e.g. curl localhost:7001/metrics.

View the member’s log and verify the metrics module is loaded.

Telegraf

Try viewing its logs or starting it in console mode (for example, .\telegraf --
console install in Windows) to catch any suppressed errors.

Ensure the scraped urls contain the correct metrics ports.

Wavefront Proxy

Verify that the Wavefront Proxy logs are actively receiving datapoints.

Check that Wavefront Proxy has the correct subdomain (<your-
subdomain>.wavefront.com) and a valid API key.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1008

https://demo.wavefront.com/integration/gemfire/overview

Default Dashboard Metrics

These tables list the metrics available in the default Wavefront dashboard.

Tanzu GemFire Cluster Metrics

Metric Description

Uptime Maximum uptime of all members in this cluster

Server Count Count of members that are servers and serve up data in this cluster

Locator Count Count of locators in this cluster. The locator is a Tanzu GemFire process that tells new, connecting
members where running members are located and provides load balancing for server use.

Region Count Count of regions in this Tanzu GemFire cluster. Regions hold entries (key/value pairs) in buckets.

CPU Count The current count of CPUs recognized by Tanzu GemFire

Cluster Entries This metric represents the last value registered for the total entry count across all regions and data in
the specified Tanzu GemFire cluster.

For partitioned data, we take a raw sum of the region entries.

For replicate data, we only count the primary copy and only use the result from one server.

Server Old Gen
Utilization

For each server in this cluster, this chart shows the amount of memory, in bytes, being used by each
server and the overall % of that member’s available memory usage on the right axis.

Disk Utilization Disk utilization by member in the cluster. The percentage remaining is computed by using the
statistics gathered by Tanzu GemFire from the underlying system. Some operating systems (like
macOS) do not emit these metrics and will cause this graph to be empty.

CPU Utilization
% by Member

The current utilization percentage of this cluster’s CPUs

Current Client
Connects by
Member

This chart displays a line for each server in the cluster and represents the number of external clients
connected to that member.

Sampler Delay
Duration

Delay duration measures the actual time (in ms) the Tanzu GemFire statistics sampler slept. It
calculates the difference between when it went to sleep and when it woke up to sample. Sample time
shows how long it took to collect the sample after it woke up.

Cluster
Communication
Delays

Tanzu GemFire uses ‘replyWaitsInProgress’ as a means to measure intra-cluster communication and
determine a stalled or failing member.

IO Waits The time spent waiting to read or write

Abandoned
Reads/Second

Tanzu GemFire monitors the AbandonedReadRequests from the cache server.

CPU Steal Time Steal time is the percentage of time a virtual CPU waits for a real CPU while the hypervisor is
servicing another virtual processor. Your virtual machine (VM) shares resources with other instances
on a single host in a virtualized environment. One of the resources it shares is CPU Cycles.

Tanzu GemFire Features Metrics

VMware GemFire 9.10 Documentation

VMware by Broadcom 1009

Metric Description

Gets
Throughput

This chart displays the throughput of all ‘Get’ operations performed across the entire cache.

RIGHT Axis (RED): The ‘Get’ operation requests by the remote Client applications.

LEFT Axis (BLUE): The ‘Get’ operation requests by the remote Client applications and distributed get
operations.

Average Get
Latency

Average Get Latency presents the total time taken by all ‘Get’ operations performed across the
cluster divided by the number of all ‘Get’ operations performed across the cluster to get an average
time taken per ‘Get’ operation in the system.

Cache Hits Per
Second

The rate of Get operations across the entire cluster that resulted in a matched key per second.

Cache Misses
Per Second

This chart represents the rate of Get operations that resulted in a miss, where the key that was
requested was not in the cache per second.

Puts
Throughput

This chart displays the throughput of all ‘Put’ operations performed across the entire cache.

RIGHT Axis (RED): The ‘Put’ operation requests by the remote Client applications.

LEFT Axis (BLUE): The ‘Put’ operation requests by the remote Client applications and distributed
‘Put’ operations

Average Put
Latency

Average Put Latency presents the total time taken by all ‘Put’ operations performed across the
cluster divided by the number of all ‘Put’ operations performed across the cluster to get an average
time taken per ‘Put’ operation in the system.

Cache Hit Ratio The Cache hit ratio is currently based on system ‘Get’ operations and any ‘Get’ operation across the
cluster. It represents the percentage of those ‘Get’ operations that return a value based on the
specified key.

Function
Execution
Details

RED (RIGHT AXIS): Function Execution Queue size.

BLUE (LEFT AXIS): A calculated rate based on functionExecutionCalls minus
functionExecutionsCompleted, which provides the output of FAILED function execution calls per
second.

Client Put
Request By
Server

For each server member, this chart represents the rate of requests of ‘Put’ operations received per
second on a specific member.

Persistent
Region
Overcapacity

For persistent regions that hold data in memory and on disk, we provide this chart to show whether
the capacity of system is sufficient to accommodate the stored data.

Message Queue
Size

Size of the Tanzu GemFire message queue in number of operations (such as ‘Get’, ‘Put’, and
‘Destroy’) that it contains

Client Query
Rate

The number of queries received per second from GemFire clients

Average Query
Time

The average query time is computed by taking the total time of all query requests
(processQueryTime) and dividing it by the number of requests (queryRequests), to get an average
time spent per query.

Region Details This table shows the type, name, and entry count for each region in the cache.

For convenience, we have summarized the Partitioned regions with the Partition Total rows.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1010

WAN Gateway Metrics

Metric Description

WAN Receiver
Throughput

This chart shows all of the Gateway Receivers for this cluster and the rate of bytes/second that
are sent (red) or received (blue).

WAN Sender Queue This graph displays the rate (messages/second) at which a Gateway Sender is able to send
events to a WAN connected cluster.

VMware GemFire Pulse

VMware GemFire Pulse is a Web Application that provides a graphical dashboard for monitoring
vital, real-time health and performance of VMware GemFire clusters, members, and regions.

Use Pulse to examine total memory, CPU, and disk space used by members, uptime statistics,
client connections, WAN connections, and critical notifications. Pulse communicates with a
VMware GemFire JMX manager to provide a complete view of your VMware GemFire deployment.
You can drill down from a high-level cluster view to examine individual members and even regions
within a member, to filter the type of information and level of detail.

By default, VMware GemFire Pulse runs in an embedded container within a VMware GemFire JMX
manager node. You can optionally deploy Pulse to a Web application server of your choice, so that
the tool runs independently of your VMware GemFire clusters. Hosting Pulse on an application
server also enables you to use SSL for accessing the application.

Pulse System Requirements

Verify that your system meets the installation and runtime requirements for GemFire Pulse.

Running Pulse in Embedded Mode (Quick Start)

Use Pulse in embedded mode to monitor a VMware GemFire deployment directly from a
VMware GemFire JMX Manager. By default, the embedded Pulse application connects to
the local JMX Manager that hosts the Pulse application. Optionally, configure Pulse to
connect to a VMware GemFire system of your choice.

Hosting Pulse on a Web Application Server

Host Pulse on a dedicated Web application server to make the Pulse application available at
a consistent address, or to use SSL for accessing the Pulse application. When you host
Pulse in this way, you also configure Pulse to connect to a specific locator or JMX Manager
node for monitoring.

Configuring Pulse Authentication

Pulse requires all users to authenticate themselves before they can use the Pulse Web
application. If you have configured JMX authentication on the VMware GemFire JMX
Manager node, the Pulse Web application itself may also need to authenticate itself to the
VMware GemFire JMX Manager node on startup.

Using Pulse Views

Pulse provides a variety of different views to help you monitor VMware GemFire clusters,
members, and regions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1011

Pulse System Requirements

Verify that your system meets the installation and runtime requirements for Pulse.

The Pulse Web application has been tested for compatibility with the following Web browsers:

Internet Explorer 9.0.8112.16421

Safari 5.1.7 for Windows

Google Chrome 22.0.1229.79 m

Mozilla Firefox 16.0.1

Pulse has been tested for standalone deployment on Tomcat and Jetty. Pulse may work with other
operating systems and browsers upon which it has not been tested.

Running Pulse in Embedded Mode (Quick Start)

Use Pulse in embedded mode to monitor a VMware GemFire deployment directly from a VMware
GemFire JMX Manager. By default, the embedded Pulse application connects to the local JMX
Manager that hosts the Pulse application. Optionally, configure Pulse to connect to a VMware
GemFire system of your choice.

To run Pulse in embedded mode:

1. Configure a VMware GemFire member to run as a JMX Manager node, specifying the HTTP
port on which you will access the Pulse Web application (port 7070 by default). For
example, the following command starts a VMware GemFire locator as a JMX Manager
node, using the default HTTP port 7070 for the Pulse application:

gfsh

gfsh> start locator --name=loc1

Note: VMware GemFire locators become JMX Manager nodes by default. To start a non-
locator member as a JMX Manager node, include the --J=-Dgemfire.jmx-manager=true
option. To specify a non-default port number for the HTTP service that hosts the Pulse
application, include the --J=-Dgemfire.http-service-port=port_number option when
starting the JMX Manager node.

When the JMX Manager node boots, it starts an embedded Jetty instance and deploys the
Pulse Web application at the specified or default HTTP port or 7070 by default.

gfsh automatically connects to the manager when you start it in this way. If you already
started a manager process earlier, use the connect command in gfsh to connect to that
process.

2. Access the embedded Pulse application from a Web browser. If you are connected to the
VMware GemFire cluster using gfsh, use the start pulse command to load the correct
URL in your browser:

gfsh> start pulse

Or, enter the URL http://address:http-service-port/pulse directly in your Web browser,
substituting the address and HTTP port of the manager. For example, you access Pulse on

VMware GemFire 9.10 Documentation

VMware by Broadcom 1012

the local locator machine from Step 1 at the URL http://localhost:7070/pulse.

3. If you have configured authentication for the Pulse application, enter the username and
password of a valid Pulse account in the login screen. Otherwise, enter the default “admin”
in both fields. Click Sign In to continue.

See Configuring Pulse Authentication.

4. After you log in, Pulse displays the main cluster view for the local cluster. See Using Pulse
Views.

Note: When running in embedded mode, the Pulse application connects only to the JMX Manager
running in the locator or member that hosts Pulse. This enables you to monitor all members of that
cluster. You can also view (but not monitor) connected WAN clusters, and can view gateway
senders and receivers that are configured in the local cluster.

Hosting Pulse on a Web Application Server

Host Pulse on a dedicated Web application server to make the Pulse application available at a
consistent address, or to use SSL for accessing the Pulse application. When you host Pulse in this
way, you also configure Pulse to connect to a specific locator or JMX Manager node for monitoring.

To host Pulse on a Web application server:

1. Set the http-service-port property to zero (-Dgemfire.http-service-port=0) when you
start your VMware GemFire JMX Manager nodes. Setting this property to zero disables the
embedded Web server for hosting the Pulse application.

2. Deploy the Pulse Web application to your application server. VMware GemFire installs the
geode-pulse-n.n.n.war file (where n.n.n is a version number) in the tools/Pulse
subdirectory of your VMware GemFire installation directory. Depending on your application
server, you may need to copy the pulse.war file to a deployment directory or use a
configuration tool to deploy the file.

3. Stop the Web application server and locate the Pulse configuration in the WEB-INF/classes
subdirectory.

4. Edit pulse.properties, defining or redefining any of the following configuration properties
as needed for your application:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1013

Property Description

pulse.useLocator Specify "true" to configure Pulse to connect to a
VMware GemFire Locator member, or "false" to
connect directly to a JMX Manager.

When Pulse connects to a VMware GemFire locator,
the locator provides the address and port of an
available JMX Manager to use for monitoring the
cluster. In most production deployments, you should
connect Pulse to a locator instance; this allows Pulse
to provide monitoring services using any available
JMX Manager.

If you specify "false," Pulse connects directly to a
specific JMX Manager. If this manager is not available,
the Pulse connection fails, even if another JMX
Manager is available in the cluster.

pulse.host Specify the DNS name or IP address of the VMware
GemFire locator or JMX Manager machine to which
Pulse should connect. You specify either a locator or
JMX Manager address depending on how you
configured the pulse.useLocator property.

pulse.port Specify the port number of the VMware GemFire
locator or the HTTP port number of the JMX Manager
to which Pulse should connect. You specify either a
locator or JMX Manager port depending on how you
configured the pulse.useLocator property.

If you configured pulse.useLocator=false, then
pulse.port must correspond to the http-service-
port setting of the JMX Manager.

For example, with the default pulse.properties configuration, Pulse connects to the
locator at port 10334 and accesses any available JMX Manager:

pulse.useLocator=true

pulse.host=localhost

pulse.port=10334

With this modified configuration, Pulse accesses only the JMX Manager instance at port
8080:

pulse.useLocator=false

pulse.host=jmxsrv.mycluster.com

pulse.port=8080

5. If a JMX manager or locator is configured to use SSL, you can configure Pulse to connect to
these processes. Edit pulsesecurity.properties to un-comment the standard Java SSL
properties:

javax.net.ssl.keyStore={KeyStorePath}

javax.net.ssl.keyStorePassword={KeyStorePassword}

VMware GemFire 9.10 Documentation

VMware by Broadcom 1014

javax.net.ssl.trustStore={TrustStorePath}

javax.net.ssl.trustStorePassword={TrustStorePassword}

Substitute the appropriate paths and passwords for the bracketed placeholders.

6. To change Pulse logging behavior, edit log4j2.xml in the same directory. The default
configuration sets the logging level to INFO and specifies a message pattern that includes
the date, name of the reporting logger, error level, name of the reporting thread, and the
error message. Refer to the Apache Log4j documentation for details on how to specify
log4j2.xml content and syntax.

7. Restart the Web application server.

8. Access the Pulse application using the address, port, and application URL that you
configured in your Web application server. For example, with Tomcat the default URL is
http://*address*:8080/pulse. Your application server provides options for configuring the
address, port, and application name; substitute the correct items to access the deployed
Pulse application.

Pulse connects to the locator or JMX Manager that you configured in the pulse.properties
file, authenticating using the credentials that you configured in the file.

9. If you have configured authentication for the Pulse application, enter the username and
password of a valid Pulse account in the login screen. Otherwise, enter the default “admin”
in both fields. Click Sign In to continue.

See Configuring Pulse Authentication.

10. After you log in, Pulse displays the main cluster view for the distributed system to which it
has connected. See Using Pulse Views.

Configuring Pulse Authentication

Pulse requires all users to authenticate themselves before they can use the Pulse Web application.

If you run Pulse in embedded mode, the Pulse application runs on the JMX Manager node and no
JMX authentication is required. You do not need to specify valid JMX credentials to start an
embedded Pulse application.

If you host Pulse on a web application server (non-embedded mode) and you configure JMX
authentication on the VMware GemFire manager node, then the Pulse Web application must
authenticate itself with the manager node when it starts. Specify the credentials of a valid JMX user
account in the pulse.properties file, as described in Hosting Pulse on a Web Application Server.

Note: The credentials that you specify must have both read and write privileges in the JMX
Manager node. See Configuring a JMX Manager.

Configuring Pulse to use HTTPS

You can configure Pulse to use HTTPS in either embedded or non-embedded mode.

Embedded Mode

In embedded mode, VMware GemFire uses an embedded Jetty server to host the Pulse Web
application. To make the embedded server use HTTPS, you must enable the http SSL component

VMware GemFire 9.10 Documentation

VMware by Broadcom 1015

https://logging.apache.org/log4j/2.x/manual/configuration.html#XML

in gemfire.properties or gfsecurity.properties. See SSL for details on configuring these
parameters.

These SSL parameters apply to all HTTP services hosted on the JMX Manager, which includes the
following:

Developer REST API service

Management REST API service (for remote cluster management)

Pulse monitoring tool

When the http SSL component is enabled, all HTTP services become SSL-enabled and you must
configure your client applications accordingly. For SSL-enabled Pulse, you will need to configure
your browsers with proper certificates.

Non-Embedded (Standalone Web Server) Mode

In non-embedded mode where you are running Pulse on a standalone web application server, such
as Tomcat, you must use the web server’s SSL configuration to make the HTTP requests secure.

Configuring Pulse to use Security Manager

You can configure Pulse to use the VMware GemFire Security Manager in either embedded or
non-embedded mode.

Embedded Mode

To use Security Manager with Pulse running in embedded mode, you do not need to specify
additional credentials. Pulse will automatically be configured by VMware GemFire to send the
credentials entered in the Pulse login page to the Security Manager for authentication and
authorization.

Non-Embedded (Standalone Web Server) Mode

When running Pulse on a standalone web application server, such as Tomcat, you need to
configure the Pulse Web app to use a VMware GemFire-specific security profile. Activate the
VMware GemFire profile at startup with the system property:

-Dspring.profiles.active=pulse.authentication.gemfire

Configuring Pulse to use a Custom Security Profile

You can use a custom security profile only if you are NOT using a Security Manager in your cluster.
A custom security profile only controls who can access the Pulse Web page. You will need to
create an XML file named pulse-authentication-custom.xml that defines the credentials and roles
of the users of Pulse.

Example pulse-authentication-custom.xml for Spring simple in-memory User Details Service

<beans:beans >

 <authentication-manager>

 <authentication-provider>

 <user-service id="userDetailsService">

 <user name="john" password="johnspassword" authorities="ROLE_CLUSTER:READ" />

 <user name="bob" password="bobspassword" authorities="ROLE_CLUSTER:READ" />

VMware GemFire 9.10 Documentation

VMware by Broadcom 1016

 </user-service>

 </authentication-provider>

 </authentication-manager>

</beans:beans>

Embedded Mode

Put pulse-authentication-custom.xml in the locator’s working directory. When you start VMware
GemFire members, specify the custom authentication profile using the -
Dspring.profiles.active=pulse.authentication.custom system property. For example:

gfsh> start locator --name=locator --J=-Dspring.profiles.active=pulse.authentication.c

ustom

Start Pulse and log in using credentials that are authorized in the custom configuration.

Non-Embedded (Standalone Web Server) Mode

Put pulse-authentication-custom.xml in the Pulse Web app’s classpath, and start the app with the
system property:

-Dspring.profiles.active=pulse.authentication.custom

Start Pulse and log in using credentials that are authorized in the custom configuration.

Configuring Pulse to use an OAuth Authentication Provider
You can configure Pulse to use any Authentication Provider that supports OpenID and custom
scopes. You will need to:

Register with the authentication provider, obtaining a valid client ID and client secret for
Pulse.

Configure the scopes with CLUSTER:READ, CLUSTER:WRITE, DATA:READ or DATA:WRITE.

Pulse Properties for OAuth Configuration

After you set up the authentication provider properly, create a properties file named
pulse.properties (or edit it, if it already exists) to define the following required properties:

pulse.oauth.providerId

An ID for Pulse to use internally to identify your OAuth provider.

pulse.oauth.providerName

A name for Pulse to display on the login page to link to your OAuth provider.

pulse.oauth.clientId

The ID with which Pulse is registered with your OAuth provider.

pulse.oauth.clientSecret

The secret with which Pulse is registered with your OAuth provider.

pulse.oauth.authorizationUri

The URI for your OAuth provider’s authorization endpoint.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1017

pulse.oauth.tokenUri

The URI for your OAuth provider’s token endpoint.

pulse.oauth.userInfoUri

The URI for your OAuth provider’s user info endpoint.

pulse.oauth.jwkSetUri

The URI for your OAuth provider’s JSON Web Key (JWK) Set endpoint.

pulse.oauth.endSessionEndpoint

The URI for your OAuth provider’s endpoint to request that the end user be logged out.
See the end_session_endpoint parameter of the OpenID Provider Discovery Metadata
standard proposal.

pulse.oauth.userNameAttributeName

The attribute name used to access the user’s name from your OAuth provider’s user info
response.

Example pulse.properties for OAuth Configuration

pulse.oauth.providerId=uaa

pulse.oauth.providerName=UAA

pulse.oauth.clientId=pulse

pulse.oauth.clientSecret=example-pulse-client-secret

pulse.oauth.authorizationUri=http://example.com/uaa/oauth/authorize

pulse.oauth.tokenUri=http://example.com/uaa/oauth/token

pulse.oauth.userInfoUri=http://example.com/uaa/userinfo

pulse.oauth.jwkSetUri=http://example.com/uaa/token_keys

pulse.oauth.endSessionEndpoint=http://example.com/uaa/profile

pulse.oauth.userNameAttributeName=user_name

Embedded Mode

1. Create the above pulse.properties file and put it in the member’s working directory.

2. Start up the member with a VMware GemFire property (either specify it in
gemfire.properties file or pass it in at startup) security-auth-token-enabled-
components=pulse or security-auth-token-enabled-components=all.

gfsh> start locator --name=locator --J=-Dgemfire.security-auth-token-enabled-component

s=pulse

Start pulse and you will see login page being redirected to the configured authentication provider.

Non-Embedded (Standalone Web Server) Mode

1. Edit the existing pulse.properties file and add the above content, make sure the file is in
the web app’s classpath

2. Start the app with the system property:

-Dspring.profiles.active=pulse.authentication.oauth

Start Pulse and you will see login page being redirected to the configured authentication provider.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1018

Using Pulse Views

Pulse provides a variety of different views to help you monitor VMware GemFire clusters,
members, and regions.

The following sections provide an overview of the main Pulse views:

Cluster View

Member View

Region View

Data Browser

Alerts Widget

Cluster View

The cluster view is a high-level overview of the cluster. It is displayed immediately after you log into
Pulse. Information displays around the perimeter of the cluster view show statistics such as memory
usage, JVM pauses, and throughput. You can use the cluster view to drill down into details for
individual members and regions in the cluster.

Use these basic controls while in Cluster view:

1. Click Members or Data to display information about VMware GemFire members or data
regions in the cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1019

2. Click the display icons to display the VMware GemFire members using icon view, block
view, or table view. Note that icon view is available only when displaying Members.

For example, the following shows VMware GemFire Members displayed in table view:

While in block view or table view, click the name of a VMware GemFire member to
display additional information in the Member View.

Click Topology, Server Groups, or Redundancy Zones to filter the view based on all
members in the topology, configured server groups, or configured redundancy
zones.

The following shows VMware GemFire Regions displayed in table view:

While in block view or table view, click the name of a VMware GemFire region to
display additional information in the Region View.

3. While in icon view, click a host machine icon to display the VMware GemFire members on
that machine.

4. In the Alerts pane, click the severity tabs to filter the message display by the level of
severity.

Cluster View Screen Components

The following table describes the data pieces displayed on the Cluster View screen.

Screen Component Description

Cluster Status Overall status of the cluster being monitored. Possible
statuses include Normal, Warning, or Severe.

Total Heap Total amount of memory (in GB) allocated to the Java
heap across all members.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1020

Screen Component Description

Members Total number of members in the cluster.

Servers Total number of servers in the cluster.

Clients Total number of clients in the cluster.

Locators Total number of locators in the cluster.

Regions Total number of regions in the cluster.

Functions Total number of functions registered in the cluster.

Unique CQs Total number of unique CQs. Corresponds to the UNIQUE
_CQ_QUERY statistic.

Subscriptions Total number of client event subscriptions.

Cluster Members Graphical, block, or table view of the members in the
cluster.

Topology Organizes cluster members by DistributedMember Id.

Server Groups Organizes cluster members by server group membership.
If no server groups are configured, all members appear
under the "Default" server group.

Redundancy Zones Organizes cluster members by redundancy zones. If no
redundancy zones are configured, all members appear
under the "Default" zone.

Host Machine When you mouse over a machine icon in Topology View,
a pop-up appears with the following machine statistics:

CPU Usage. Percentage of CPU being used by
VMware GemFire processes on the machine.

Memory Usage. Amount of memory (in MB)
being used by VMware GemFire processes.

Load Avg. Average number of threads on the
host machine that are in the run queue or are
waiting for disk I/O over the last minutes.
Corresponds to the Linux System statistic
loadAverage1. If the load average is not
available, a negative value is shown.

Sockets. Number of sockets currently open on
the machine.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1021

Screen Component Description

Member When you mouse over a member icon in Graphical View, a
pop-up appears with the following member statistics:

CPU Usage. Percentage of CPU being used by
the VMware GemFire member process.

Threads. Number of threads running on the
member.

JVM Pauses. Number of times the JVM used by
the member process has paused due to garbage
collection or excessive CPU usage.

Regions. Number of regions hosted on the
member process.

Clients. Number of client currently connected to
the member process.

Gateway Sender. Number of gateway senders
configured on the member.

Port. Server port of the cache server member
where clients can connect and perform cache
operations.

GemFire Version. The version of the VMware
GemFire member.

Member In List View, the following data fields are displayed for
each member:

ID. DistributedMember Id of the member.

Name. Name of the member.

Host. Hostname or IP address where the member
is running.

Heap Usage. Amount of JVM heap memory
being used by the member process.

CPU Usage. Percentage of CPU being used by
the VMware GemFire member process.

Uptime. How long the member has been up and
running.

Clients. Number of clients currently connected to
the member. It will have a value only if the
member acts as a CacheServer.

Key Statistics Displays a few key performance measurements of the
cluster (over the last 15 minutes).

Write/Sec Number of write operations per second that have
occurred across the cluster. Each put/putAll operation
counts as a write; for example, a putAll of 50 entries is
counted as one write.

Read/Sec Number of read operations per second that have occurred
across the cluster.

Queries/Sec Number of queries per second that have been executed
across the cluster.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1022

Screen Component Description

No. of JVM Pauses Number of times the JVM has paused during the last five
minutes to perform garbage collection.

WAN Information If you have configured gateway senders or receivers for a
multi-site (WAN) deployment, this box displays whether
the remote cluster is reachable (working connectivity
represented by a green triangle).

Disk Throughput Total disk throughput for all disks in cluster.

Alerts View Displays alerts for the cluster.

Member View

When you select an individual VMware GemFire member in Cluster View, Pulse displays the
regions available on that member, as well as member-specific information such as the configured
listen ports.

Use these basic controls while in Member View:

1. Click the display icons to display regions using block view or table view.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1023

2. Use the drop down menu to select a specific member or search for specific members by
name.

3. Click Cluster View to return to Cluster View. See Cluster View.

4. Click Data Browser to query region data. See Data Browser.

Member View Screen Components

The following table describes the data elements displayed on the Member View screen.

Screen Component Description

Member Status Overall status of the member being monitored. Possible
statuses include Normal, Warning, or Severe.

Regions Total number of regions hosted on the member.

Threads Total number of threads being executed on the member.

Sockets Total number of sockets currently open on the member.

Load Avg. Average number of threads on the member that are in the
run queue or are waiting for disk I/O over the last minute.
Corresponds to the Linux System statistic loadAverage1. If
the load average is not available, a negative value is
shown.

Clients Current number of client connections to the member.

Member Regions Block or table view of the regions hosted on the member.

Regions When you mouse over a region in block view, a pop-up
appears with the following data fields:

Name. Region name.

Type. For example, REPLICATE, PARTITION.

EntryCount. Number of entries in the region.

EntrySize. The aggregate entry size (in bytes) of
all entries. For replicated regions this field
provides a value only if the eviction algorithm is
set to EvictionAlgorithm#LRU_ MEMORY. All
partition regions can report entry size, but note
that the value includes redundant entries and
also counts the size of all the secondary entries
on the node.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1024

Screen Component Description

Regions In table view, the following fields are listed for each
region:

Name. Region name.

Type. For example, REPLICATE, PARTITION.

EntryCount. Number of entries in the region.

EntrySize. The aggregate entry size (in bytes) of
all entries. For replicated regions this field
provides a value only if the eviction algorithm is
set to EvictionAlgorithm#LRU_ MEMORY. All
partition regions can report entry size, but note
that the value includes redundant entries and
also counts the size of all the secondary entries
on the node.

Scope. Scope configured for the region.

Disk Store Name. Name of disk stores (if any)
associated with the region.

Disk Synchronous. True if writes to disk are set to
synchronous and false if not. This field reflects the
configured disk-synchronous region attribute.

Gateway Enabled. Whether gateway sender and
receiver configurations have been defined on
members hosting this region.

Member Clients In table view, the following fields are listed for each client:

Id. DistributedMember ID of the client process.

Name. Name of the client process.

Host. Hostname or IP address of the client
process.

Connected. Whether the client process is
currently connected to the member.

Queue Size. The size of the queue used by server
to send events in case of a subscription enabled
client or a client that has continuous queries
running on the server.

CPU Usage. Percentage of CPU being used by
the client process.

Uptime. Amount of time the client process has
been running.

Threads. Threads being used by the member
clients

Gets. Total number of successful get requests
completed.

Puts. Total number of successful put requests
completed.

Key Statistics Displays a few key performance measurements for the
member (over the last 15 minutes).

VMware GemFire 9.10 Documentation

VMware by Broadcom 1025

Screen Component Description

% CPU Usage Percentage of CPU used by the member.

Read/Sec Number of read operations per second that have occurred
on the member.

Write/Sec Number of write operations per second that have
occurred on the member. Each put/putAll operation
counts as a write; for example, a putAll of 50 entries is
counted as one write.

Memory Usage Total memory used on the member in MB.

No. of JVM Pauses Number of times the JVM has paused during the last five
minutes due to garbage collection or excessive CPU
usage.

WAN Information Displays cluster information. This dialog box only appears
if you have configured WAN functionality (gateway
senders and gateway receivers).

Disk Throughput Rate of disk writes on the member.

Region View

The Pulse Region View provides a comprehensive overview of all regions in the cluster:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1026

Use these basic controls while in Region View:

1. Click the display icons to display all members that host the region using block view or table
view. Click the name of a member to change to that member’s Member View.

2. Search for specific members that host the current region.

3. Hover over a member name to display information such as the region entry count, entry
size, and throughput on that member.

4. Click Cluster View or Data Browser to open those screens.

Region View Screen Components

The following table describes the data elements displayed on the Region View screen.

Screen Component Description

Region Members Lists information about VMware GemFire members that
host the region, either in block view or table view.

Region Member (Detail View) When you hover over a region member in block view, a
pop-up appears with the following data fields:

Member Name. The name of the VMware
GemFire member hosting the region.

EntryCount. Number of entries for the region on
that member.

EntrySize. The aggregate entry size (in bytes) of
all entries. For replicated regions this field
provides a value only if the eviction algorithm is
set to EvictionAlgorithm#LRU_ MEMORY. All
partition regions can report entry size, but note
that the value includes redundant entries and
also counts the size of all the secondary entries
on the node.

Accessor. Indicates whether the member is an
accessor member.

Reads/Writes. Summary of reads and writes
served from memory and from disk stores over
the last 15 minutes.

Region Member (Table View) In table view, the following fields are listed for each region
member:

ID. The unique member ID.

Name. Region name.

Host. Member hostname.

Heap Usage. The total amount of heap used on
the member in MB.

CPU Usage. CPU usage as a percent of available
CPU.

Uptime. The amount of time elapsed since the
member started.

Accessor. Indicates whether the member is an
accessor member.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1027

Screen Component Description

Region Detail When you have selected a region, the right hand pane
displays the following information about the region:

Name. Name of the region.

Region Path. Path for the region.

Type. For example, REPLICATE, PARTITION

Members. Number of members that are hosting
the region.

Empty Nodes. Nodes where the region
DataPolicy is defined as EMPTY or where
LocalMaxMemory is set to 0.

Entry Count. Total number of entries in the
region.

Disk Usage. Persistent data usage.

Persistence. Indicates whether the region's data
is persisted to disk.

Memory Usage. The amount of memory used and
total available memory (also shown as a
percentage).

Reads/Writes. Summary of reads and writes
served from memory and from disk stores over
the last 15 minutes.

Data Browser

The Pulse Data Browser enables you to query region data. Two key attributes are available on
DistributedSystemMXBean. See List of VMware GemFire JMX MBeans that you can use to
configure limits for the result sets displayed in Data Browser:

QueryResultSetLimit limits the number of rows that Data Browser queries return. 1000
rows are displayed by default.

QueryCollectionsDepth limits the number of elements of a collection that Data Browser
queries return. This attribute applies to query results contain collections such as Map, List,
and so forth. The default value is 100 elements.

See the org.apache.geode.management.DistributedSystemMXBean JavaDocs for information on
available MBean methods and attributes.

The following shows an example Data Browser view:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1028

Use these basic controls while in Data Browser view:

1. Search for the name of a specific region.

2. Select one or more regions to display the VMware GemFire members that host those
regions. The hosting VMware GemFire members appear in the Region Members section.

3. Select one or more members from the Region Members section to restrict query results to
those members.

4. Type in the text of a query to execute. See Querying.

5. Display a list of previously-executed queries. Double-click on a query from the history list to
copy it to the Query Editor, or delete the query from your history.

6. Execute your query or clear the contents of the Query Editor.

7. View the current query results.

8. Export the query results to a text file.

9. Return to Cluster View.

Alerts Widget

VMware GemFire 9.10 Documentation

VMware by Broadcom 1029

The Alerts Widget appears in the right portion of the screen and displays a list of alerts.

The alerts displayed for the cluster appear based on the alertLevel field set in the
DistributedSystemMXBean. By default, log messages with the level of SEVERE are shown as alerts.
You can modify the level by using the DistributedMXBean.changeAlertLevel method. See System
Alert Notifications for more information.

Use these basic controls in the Alerts Widget:

1. Select an alert level to view only alerts with a specific severity.

2. Enter text in the search box to filter the list of alerts.

3. Select an alert and click Clear to remove it from the alert list.

4. Click Clear All to remove all alerts from the widget.

5. Double-click an alert to open a pop-up window that displays the full text of the alert
message.

6. Click the check mark in an alert pop-up window to acknowledge the alert. Acknowledged
alerts display a check mark in the list of alerts.

7. Triple-click the alert in the pop-up or in the alert list to select the message text. You can
then copy and paste the text into another application.

8. Click the X to close the pop-up alert window.

Visual Statistics Display

VMware GemFire 9.10 Documentation

VMware by Broadcom 1030

The Visual Statistics Display (VSD) utility reads VMware GemFire statistics and produces graphical
displays for analysis. VSD is available for download from the VMware Tanzu Network VMware
GemFire download page.

VSD Overview

VSD helps you monitor the performance of VMware GemFire and diagnose performance
problems.

Installing and Running VSD

Start the VSD tool, load statistics files, and maintain the view you want on your statistics.

Viewing Statistics in VSD

Select statistics and view them using chart templates and customized charts.

Quick Guide to Useful Statistics

A large number of statistics are intended only for product support and engineering. This
topic describes the most important categories and the useful statistics they contain.

VSD System Requirements

VSD works on Linux, macOS, and Windows platforms.

64-Bit Platform Support

VSD is a 32-bit application. If you are running VSD on a 64-bit operating system, you may need to
install 32-bit OS libraries to run the application if they are not already installed. On Linux, to find out
which libraries are missing you can try running the following:

ldd <product_dir>/tools/vsd/bin/vsdwishLinux

For 64-bit Windows, you can modify the scripts and executables as described in the note below.

Windows 7 and Later Support

To use VSD on Windows 7, perform the following steps:

1. Start Windows Explorer and navigate to the GEMFIREPRODUCTDIR\tools\vsd\bin\ directory,
where GEMFIREPRODUCTDIR corresponds to the location where you installed GemFire.

2. Right click and select properties for vsd.bat.

3. Select the Compatibility tab.

4. Click “Run this program in compatibility mode for” and then select Windows XP SP3.

5. Repeat steps for all the other executables in the bin directory.

VSD Overview

VSD helps you monitor the performance of Pivotal GemFire and diagnose performance problems.

For specific information on the statistics produced by Pivotal GemFire, see Statistics.

Your GemFire product creates a statistical archive file named filename.gfs. The file logs useful
statistics — counters and gauges that describe the state of the system at a particular moment in

VMware GemFire 9.10 Documentation

VMware by Broadcom 1031

https://network.tanzu.vmware.com/products/pivotal-gemfire

time. The file collects statistics at specific sampling intervals, which you can set at various levels to
monitor different types of behavior.

The VSD tool reads the sampled statistics and produces graphical displays for analysis. Typically, the
points on a line of a VSD graph represent the values for a particular statistic over time. VSD’s online
help offers more complete reference information about the tool.

The following screenshots of the VSD tool display statistics and a graph analysis of selected
statistics.

:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1032

Installing and Running VSD
Start the VSD tool, load statistics files, and maintain the view you want on your statistics.

Install VSD
VSD is a free analysis tool and is provided as-is. See VSD System Requirements to view a list of
platforms that are known to work with VSD.

VSD is available for download from the Pivotal GemFire download page. It can be installed
anywhere, but if GemFire is installed in product-dir, you may wish to install VSD in product-
dir/tools/vsd so it can be conveniently launched from gfsh using the start vsd command.

Download the VSD archive, usually named something like pivotal-gemfire-vsd.zip, and unpack it
in a directory of your choosing. For this example, assume and VSD was downloaded, unzipped, and
installed in product-dir/tools/vsd.

Note: VSD is a 32-bit application. If you are running VSD on a 64-bit machine, you may need to
install 32-bit OS libraries to run the application if they are not already installed. On Linux, to find out
which libraries are missing, run the following ldd command:

ldd <product_dir>/tools/vsd/bin/vsdwishLinux

The VSD tool installation has two subdirectories, bin and lib:

bin. Contains scripts and binaries that can be used to run VSD on a variety of operating
systems, including:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1033

https://network.tanzu.vmware.com/products/pivotal-gemfire

vsd - script for Solaris, Linux, and Mac

vsd.bat - script for Windows

vsdwishSunOS - binary for Solaris

vsdwishLinux - binary for Linux

vsdwishDarwin - binary for Mac

vsdwishWindows_NT.exe - binary for Windows

lib. The jars and binary libraries needed to run VSD.

Configure Statistics Sampling in GemFire

Before you use VSD, you must enable the collection of GemFire statistics at runtime. Set the
following configurations in gemfire.properties:

statistic-sampling-enabled=true

statistic-archive-file=myStats.gfs

Since collecting statistics at the default sampling rate of once every second does not affect
performance, we recommend that sampling should always be enabled; including during
development, testing, and in production.

There is a special category of statistics called time-based statistics that can be very useful in
troubleshooting and assessing the performance of some GemFire operations, but they should be
used with caution because their collection can affect performance. These statistics can be enabled
using the following gemfire.properties configuration:

enable-time-statistics=true

When the distributed system is up and running, every GemFire instance generates a statistics file.
To simplify browsing these statistics in VSD, you may want to copy all the statistics files from all
members into one directory so that you can easily load the files into VSD.

Start VSD
To start VSD, you can either execute the scripts directly or start it through the gfsh interface. To
start VSD using the provided scripts, change directories to product-dir/tools/vsd/bin and the
enter the following command at the prompt:

Windows:

prompt>vsd.bat

Note: To run VSD on Windows 7 or later, go to the product-dir/tools/vsd/bin directory.
Right-click on vsd.bat and select Properties. Click Compatibility and set it to Windows XP.
Repeat this step for all other executables in the bin directory.

Linux/Unix, MacOS or Other OS:

$ vsd

VMware GemFire 9.10 Documentation

VMware by Broadcom 1034

To start VSD using gfsh, start a gfsh prompt and enter the following command:

gfsh>start vsd

Load a Statistics File into VSD

You have several options for loading a statistics file into VSD:

Include the name of one or more statistics files on the VSD command line. Example:

vsd <filename.gfs> ...

Browse for an existing statistics file through Main > Load Data File.

Type the full path in the File entry box, then press Enter.

Switch to a statistics file that you’ve already loaded by clicking the down-arrow next to the
File entry.

After you load the data file, the VSD main window displays a list of entities for which statistics are
available. VSD uses color to distinguish between entities that are still running (shown in green) and
those that have stopped (shown in black).

Maintain a Current View of the Data File
If you select the menu item File > Auto Update, VSD automatically updates your display, and any
associated charts, whenever the data file changes. Alternatively, you can choose File > Update
periodically to update the display manually.

About Statistics
Some statistics are cumulative from when the GemFire system was started. Other statistics are
instantaneous values that may change in any way between sample collection.

Cumulative statistics are best charted per second or per sample, so that the VSD chart is readable.
Absolute values are best charted as No Filter.

.gfs Time Zone Information for Matching Statistics to Log
Files

When opening a .gfs file, statistics are shown in the time zone used on the local computer where
VSD is launched. This can made it harder to relate log files to statistics if the logs are from another
time zone.

To open a VSD file with the time zone used when generating it, first you need to know in which
time zone the .gfs file is created. To obtain this information, use the following command:

strings file.gfs | head

For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1035

$ strings ObjLoader?-31-03.gfs | head

Hongkong

hklp162p.oocl.com

:GemFire? x.x.x

14:46:33 PST

Linux x.x.x

After you obtain the time zone, modify your local computer to use the time zone used when
obtaining statistics in the .gfs file. For example, on a Mac computer, you can first list available time
zones:

sudo systemsetup -listtimezones

And then export the specific timezone to your environment:

export TZ=<timezone>

For example, for Hong Kong:

export TZ=Asia/Hong_Kong

Then use VSD to open the .gfs file that will now display timestamps from the original time zone.

Viewing Statistics in VSD

Select statistics and view them using chart templates and customized charts.

Statistic Levels

Each statistic has a characteristic called a level that reflects the amount of background knowledge
that you would need to use the statistic with understanding. You can set up VSD to list (in its main
window and in associated charts) only those statistics that are at, or below, a certain level of
complexity — common, advanced, or wizard.

To establish the levels of statistics that you want to display in VSD, choose the menu item Main >
Statistic Level in the main VSD window.

Select Statistics for Viewing

1. In the VSD list, click the left mouse button to select the entity or entities you want to view.

Search for a specific session name or process ID. To find a specific entity, click the
mouse in the process list, then press Ctrl-S. When the dialog box appears, enter the
PID or name of the entity that you’re looking for. VSD highlights the first entity with
that PID or name. To find the next match, press Ctrl-S again. To select the
highlighted item, click on it. When you’re done, press Return.

Select all entities or by statistic or by type. Statistics are available for various entities,
which are listed under the heading Type in the process list.

Note: You can use the right mouse button to perform these functions:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1036

Combine multiple entities into a single line. This can be quite helpful. For example, if
you want to measure page reads per second for several hundred entities, you could
select all the entities, then combine them into a single line in the chart, thus
rendering the data much more readable.

Combine multiple entities from different files into a single line.

Eliminate flatlines — entities whose values are always zero.

Select Single File mode so only one loaded file can be enabled at a time.

Select for created lines to have absolute timestamps, which is useful when merging
files.

2. Select a statistic for viewing from the statistics list just below the process list.

3. With the selecting statistic, do one of the following:

To display the statistic in a new chart, type the name of the chart in the Chart entry
box, then click New Chart. (Note: If you don’t explicitly specify a chart name, VSD
will assign one for you.)

To display the statistic in an existing chart, select the chart name in the Chart entry
box. Then click on Add Line.

4. To add another statistic to the chart, repeat steps 1 through 3.

Using VSD Chart Templates

VSD templates let you quickly add a set of lines to a chart. Templates are helpful if you find yourself
performing the same task frequently in VSD — for example, monitoring the same five or six
statistics. By creating a template for the statistics that you want to monitor most frequently, you
can automate the task of building charts.

In your template, you can assign a filter for each statistic, to determine how much information is
displayed for that statistic. You can also restrict the template to look for extreme conditions (for
example, processes that are consuming 90% or more of the CPU).

VSD is shipped with a set of predefined templates, which are maintained in the .vsdtemplates file in
your home directory.

Task Procedure

Create a new chart
from a template

In the VSD main window, choose the menu item Template > New Template Chart. This is a good
way to display some of the more useful system statistics.

Apply a template to
the chart you are
viewing

In the Chart window, choose the menu item Chart > Add From Template. (Note: If you have
zoomed in on a chart, the template filter is only applied to values within the zoomed range.)

Reread the
.vsdtemplates

template file into
VSD after you’ve
edited it

In the VSD main window, choose the menu item Template > Reload Template File.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1037

Task Procedure

Save the current
chart as a template

In the Chart window, configure the chart as you desire, then choose the menu item Chart > Save
Template. The template is saved to the .vsdtemplates file. If you save the current chart as a
template, you may still need to edit the .vsdtemplates file so that you can give it a more useful
name and make the information and patterns it captures more general.

Chart Menu (Chart Window)

To customize the way VSD displays statistics in your chart, you can choose items from the Chart
window’s Chart menu.

Chart Menu Item Effect

Add from Template Expand template and add resulting lines to chart.

Save Template Save all lines on chart as a template.

Paste Paste last item on clipboard.

Print Print chart.

Snapshot Write this chart as a graphic to snapshot.gif.

Help … Open Help window.

Zoom In Zoom in to improve your view of the chart. After you choose this menu item, click to select one
corner of the area that you want to zoom. Move the mouse pointer to the opposite corner of
the zoom area, then click again. If you have a middle mouse button, you can quickly zoom in on
an area by clicking the middle mouse button over it.

Zoom Out Zoom out by using the menu button or by right-clicking in the chart window.

Compare Two Points Log information by comparing two points.

Compute Scale All,
Unscale All

Adjust the scale of the chart. This helps you view multiple statistics on the same axis.

Show Legend Display the legend for this chart.

Time Format Change the format of the time displayed along the X axis.

Show Time Axis Title,
Show Left Axis Title,
Show Right Axis Title

Display the title alongside the respective axes.

Show Current Values Display the current X and Y values for the selected line at the top of the chart

Show Min and Max Display the minimum and maximum values for the selected line at the top of the chart.

Show Line Stats Display these statistics for the selected line: the number of data samples, the min, max, mean,
and standard deviation. The statistics are calculated from all of the data points on the selected
line in the region defined by the graph’s current X axis. (To change the region, select Zoom In or
Zoom Out from the Chart menu.)

Show CrossHairs Draw cross hairs on graph of item.

Show Grid Lines Draw grid line on graph of item.

Close Close chart window.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1038

For additional information about the Chart window, choose Help from the Chart menu.

Line Menu (Chart Window)

Customize your VSD chart display using items from the Line menu (in the Chart window). Line
menu commands operate on the currently selected line. To select a line, click on it or on its entry in
the chart legend. VSD highlights the selected line.

Line
Menu
Item

Effect

Log Info Display a log file showing the line statistics for all data samples in the region defined by the graph’s current
X axis.

Log
Delta

Measure the difference between two values on the selected line. Select the line before choosing this menu
item then click on the two points whose difference you want to compute. VSD responds by displaying a log
file showing the difference in time and value between the two points; the number of data samples in the
selected line segment; and the min, max, mean, and standard deviation of those samples.

Comput
e Scale

Compute a scale value for the selected line that will make it visible on the current chart. You can also use the
Scale entry box to manually change the scale. The default scale value is 1.

Unscale Reverse the effect of Compute Scale.

Graph
on Left
Axis

Display the Y axis for the selected line to the left of the chart. Otherwise, the Y axis is displayed to the right.
You can use this to view multiple lines on the same chart, by graphing large values on one axis and small
values on the opposite axis.

Symbol Select a new symbol.

Style Select a line style for connecting points: linear (default), step, natural, quadratic.

Update Update files used by current line.

Add
Lines

Add a line to the current line.

Diff Lines Remove a line from the current line.

Divide
Lines

Divide current line by another line.

Normali
ze

Normalize current line.

Trim
Left,
Right

Trim line to left or right of a data point.

Untrim
Left,
Right

Undo any trim line operations.

Copy Copy current line to clipboard.

Cut Cut current line to clipboard.

Delete Remove the selected line from this chart.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1039

Customizing Your VSD Chart

You can customize and manipulate a VSD chart in many ways:

To select a line in the chart, click on it or on its entry in the chart legend.

To delete a line from the chart, click the middle mouse button (if available) on its entry in
the chart legend. Alternatively, select the line’s entry in the chart legend and choose Line >
Delete.

To find out about a specific point in a chart, hold the mouse pointer over it.

View Statistic Information

To view a description of the most recently selected statistic, along with information about its type,
level, and default filter, go to the VSD main window, then choose the menu item Main > Show
Statistic Info.

In the Statistic Information window, you can redefine the level and default filter for any VSD
statistic.

The statistic’s level — common, advanced, or wizard — allows you to determine whether
the statistic is displayed in the VSD statistic list.

Whenever you add a line to a chart, the filter determines how information is displayed for
the selected statistic.

Default
Filter

Effect

Default No Filter if the statistic represents a snapshot of a value. PerSecond if the statistic represents a value that
always increases.

No Filter Display the raw values for the statistic with no filtering.

PerSample Display the difference between two consecutive samples of the statistic.

PerSecond Display the difference between two consecutive samples of the statistic, divided by the number of
elapsed seconds between the two samples.

Aggregate Display a running total of per-sample deltas for the statistic. Reset to zero when the delta is zero or
changes direction.

Once you have added the line to a chart, you can override its default filter by specifying a new filter
from the drop-down menu at the top of the Chart window.

If you leave the Statistic Information window up as you work, it changes to reflect the current
statistic. In this way, you can get a quick explanation of any statistic that you’re currently
examining.

Quick Guide to Useful Statistics

A large number of statistics are intended only for product support and engineering. This topic
describes the most important categories and the useful statistics they contain.

For a reference on GemFire statistics, see GemFire Statistics List.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1040

Runtime Configuration

As the name implies, these statistics can help with verifying the runtime configuration of a GemFire
system:

The number of peer nodes (i.e. servers or peer accessors) in the system:
DistributionStats:nodes. This value should be the same for every node in the system.

The number of clients and client connections for each server: CacheServerStats:
currentClients, and currentClientConnections

The number of data entries:

CachePerfStats:entries. Each region has its own CachePerfStats instance per JVM
named RegionStats-REGION-NAME, or RegionStats-partition-REGION-NAME for
partitioned regions. Its entries statistic is the number of entries for that region in the
JVM.

DiskRegionStatistics (a per region disk statistic category about the region’s disk use):
entriesInVM, and entriesOnlyOnDisk show the number of entries in the JVM (which
can also be on disk too), and the number of entries that are only on disk,
respectively.

Partitioned Region Configuration: One of the main parameters of Partitioned Region (PR)
configuration is the primary bucket distribution. To make sure that primary buckets for a PR
are evenly distributed, check the PartitionedRegionStats.primaryBucketCount statistic for
each partition. This statistic shows the number of primary buckets in a partition.

Resources
The resources that are vital for normal operation and performance are memory, file descriptors
(most importantly sockets, then files), CPU, network, and disk (when disk operations, such as
overflow and persistence, are involved). The following stats cover all those:

Memory: There are several stats categories that show memory usage, for different types
and granularity of memory.

Heap: VMMemoryUsageStats:vmHeapMemoryStats are all about heap usage, as are
the memory stats under VMStats:vmStats: freeMemory, totalMemory, and
maxMemory.

Non-heap memory: VMMemoryUsageStats:vmNonHeapMemoryStats.

System-wide memory stats as reported by the OS: The OS statistic category
(e.g. LinuxSystemStats on Linux) includes various system level memory statistics,
such as freeMemory, which shows the free memory on the host (as opposed to
related to the JVM process), physicalMemory (total physical memory on the host),
paging related statistics (pagesSwappedIn, pagesSwappedOut, unallocatedSwap).

Client and gateway queue sizes: while not actual resources, these queues may be
responsible for increased memory usage, so it’s good to keep them in mind when
investigating memory issues. The client queue stats are in ClientSubscriptionStats
category: eventsQueued, and eventsRemoved. The difference between the two is
the current queue size. The gateway queue stats are in GatewaySenderStatistics
category: eventQueueSize is the size of the queue.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1041

File Descriptors: file descriptor related statistics are captured in the category VMStats:
fdsOpen and fdLimit show the number of open file descriptors, and the limit on file
descriptors for the host, respectively.

CPU: The CPU usage is captured in OS statistic category, e.g. LinuxSystemStats. The
statistic cpuActive shows the percentage of the total available CPU time that has been used
in a non-idle state.

System load: OS statistic category (e.g. LinuxSystemStats) includes the loadAverage1,
loadAverage5, loadAverage15 statistics, which show the average system load for 1, 5, and 15
minutes.

Network: OS stats also include network related stats for received (recv) and transmitted
traffic (recvBytes, xmitBytes, recvErrors, xmitErrors).

Disk: DiskDirStatistics:diskSpace shows the amount of disk space used for GemFire disk
storage on a given disk. Above mentioned entriesOnlyOnDisk, and entriesInVM from
DiskRegionStatistics are useful for determining the distribution of data between memory
and disk, for regions that use disk overflow/persistence.

The following chart is an example of examining the vmHeapMemoryStats in relation to the
entriesInVM statistic.

Throughput for Different Operations

There are several stat categories that capture the throughput for GemFire operations:
CachePerfStats (non-PR, and PR specific), andCacheServerStats, which capture throughput

VMware GemFire 9.10 Documentation

VMware by Broadcom 1042

statistics with respect to clients. Note that the PR specific instances of CachePerfStats cover only
the specific partitioned regions, while the CachePerfStats instance includes aggregate stats for all
non-PR regions.

CachePerfStats category includes the following stats (all measured in the number of
operations per second):

gets: the number of successful gets

puts: the number of times an entry has been added or replaced as a result of a local
operation (put, create, or get which results in a load, netsearch, or netload of a
value)

updates: the number of updates originating remotely

putalls: the number of putAll operations

destroys: the number of destroys

Function execution: FunctionService

Queries: queryExecutions: the number of query executions

Transactions: txCommits, txFailures, txRollbacks: the number of successful, failed,
and rolled back transactions, respectively

CacheServerStats category includes the following throughput stats for client operations on
the cache server:

getRequests, getResponses

getAllRequests, getAllResponses

putRequests, putResponses

putAllRequests, putAllResponses

queryRequests, queryResponses

Disk operations: If any disk related statistic categories are present in VSD, it means that
there is disk activity (some entries are on disk). Presence of disk operations may explain a
drop in throughput, as disk use slows things down.

DiskRegionStatistics (statistics about a region disk use): writes, writeTime,
writtenBytes, reads, readTime, readBytes

DiskStoreStatistics are statistics about a specific disk store’s use of disk. In addition
to write/read as those in DiskRegionStatistics, this category includes queueSize
statistic, which shows the current number of entries in the asynchronous queue
waiting to be flushed to disk.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1043

VMware GemFire Reference

Reference documents VMware GemFire properties, region attributes, the cache.xml file, cache
memory requirements, and statistics.

gemfire.properties and gfsecurity.properties (VMware GemFire Properties)

You use the gemfire.properties settings to join a cluster and configure cluster member
behavior. Cluster members include applications, the cache server, the locator, and other
VMware GemFire processes.

cache.xml

Use the cache.xml file to set up general cache facilities and behavior and to create and
initialize cached data regions. These sections document cache.xml requirements; provide
hierarchical diagrams of <cache> and <client-cache>elements; and describe the function of
each element.

Region Shortcuts

This topic describes the various region shortcuts you can use to configure VMware GemFire
regions.

Exceptions and System Failures

Your application needs to catch certain classes to handle all the exceptions and system
failures thrown by VMware GemFire.

Memory Requirements for Cached Data

VMware GemFire solutions architects need to estimate resource requirements for meeting
application performance, scalability and availability goals.

VMware GemFire Statistics List

This section describes the primary statistics gathered by VMware GemFire when statistics
are enabled.

gemfire.properties and gfsecurity.properties: VMware
GemFire Properties

You use the gemfire.properties settings to join a cluster and configure system member behavior.
Cluster members include applications, the cache server, the locator, and other VMware GemFire
processes.

You can place any security-related (properties that begin with security-*) configuration properties
in gemfire.properties into a separate gfsecurity.properties file. Placing these configuration
settings in a separate file allows you to restrict access to security configuration data. This way, you
can still allow read or write access for your gemfire.properties file.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1044

You can also define provider-specific properties (“ssl” properties) in gfsecurity.properties instead
of defining them at the command-line or in your environment.

You can specify non-ASCII text in your properties files by using Unicode escape sequences. See
Using Non-ASCII Strings in VMware GemFire Property Files for more details.

Note: Unless otherwise indicated, these settings only affect activities within this cluster - not
activities between clients and servers or between a gateway sender and gateway receiver in a
multi-site installation.

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

ack-severe-alert-threshold Number of seconds the cluster will wait after the
ack-wait-threshold for a message to be
acknowledged before it issues an alert at severe
level. A value of zero disables this feature.

S, L 0

ack-wait-threshold Number of seconds a distributed message can wait
for acknowledgment before it sends an alert to
signal that something might be wrong with the
system member that is unresponsive.

The waiter continues to wait. The alerts are logged
in the system member’s log as warnings.

Valid values are in the range 0...2147483647

S, L 15

archive-disk-space-limit Maximum size (in megabytes) of all inactive statistic
archive files combined. If this limit is exceeded,
inactive archive files are deleted, oldest first, until
the total size is within the limit. If set to zero, disk
space use is unlimited.

S, L 0

archive-file-size-limit The maximum size (in megabytes) of a single
statistic archive file. Once this limit is exceeded, a
new statistic archive file is created, and the current
archive file becomes inactive. If set to zero, file size
is unlimited.

S, L 0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1045

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

async-distribution-timeout The number of milliseconds a process that is
publishing to this process should attempt to
distribute a cache operation before switching over
to asynchronous messaging for this process. The
switch to asynchronous messaging lasts until this
process catches up, departs, or some specified limit
is reached, such as async-queue-timeout or async-
max-queue-size.

To enable asynchronous messaging, the value must
be set above zero. Valid values are in the range
0...60000.

S 0

async-max-queue-size Affects non-conflated asynchronous queues for
members that publish to this member. This is the
maximum size the queue can reach (in megabytes)
before the publisher asks this member to leave the
cluster.

Valid values are in the range 0..1024.

S 8

async-queue-timeout Affects asynchronous queues for members that
publish to this member. This is the maximum
milliseconds the publisher should wait with no
distribution to this member before it asks this
member to leave the cluster. Used for handling slow
receivers.

S, L 60000

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1046

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

bind-address Relevant only for multi-homed hosts - machines
with multiple network interface cards. Specifies the
adapter card the cache binds to for peer-to-peer
communication. Also specifies the default location
for VMware GemFire servers to listen on, which is
used unless overridden by the server-bind-
address. An empty string causes the member to
listen on the default card for the machine. This is a
machine-wide attribute used for system member
and client/server communication. It has no effect on
locator location, unless the locator is embedded in
a member process.

Specify the IP address, not the hostname, because
each network card may not have a unique
hostname. An empty string (the default) causes the
member to listen on the default card for the
machine.

S, L not set

cache-xml-file Declarative initialization file for the member's cache. S cache.xm
l

cluster-configuration-dir This property specifies the directory in which the
cluster configuration related disk-store and artifacts
are stored. This property is only applicable to
dedicated locators that have "enable-cluster-
configuration" set to true.

L not set

conflate-events Used only by clients in a client/server installation.
This is a client-side property that is passed to the
server. Affects subscription queue conflation in this
client's servers. Specifies whether to conflate (true
setting), not conflate (false), or to use the server's
conflation setting (server).

S server

conserve-sockets Specifies whether sockets are shared by the system
member’s threads. If true, threads share, and a
minimum number of sockets are used to connect to
the cluster. If false, every application thread has its
own sockets for distribution purposes. You can
override this setting for individual threads inside
your application. WAN deployments increase the
messaging demands on a VMware GemFire system.
To avoid hangs related to WAN messaging, always
use the default setting of conserve-sockets=false
for VMware GemFire members that participate in a
WAN deployment.

S, L false

delta-propagation Specifies whether to distribute the deltas for entry
updates, instead of the full values, between clients
and servers and between peers.

S true

VMware GemFire 9.10 Documentation

VMware by Broadcom 1047

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

deploy-working-dir Working directory used when deploying JAR
application files to cluster members. This directory
can be local and unique to the member or a shared
resource. See Deploying Application JARs to
VMware GemFire Members for more information.

S . (current
directory
)

disable-auto-reconnect By default, a VMware GemFire member (both
locators and servers) will attempt to reconnect and
reinitialize the cache after it has been forced out of
the cluster by a network partition event or has
otherwise been shunned by other members. Use this
property to turn off the autoreconnect behavior. See
Handling Forced Cache Disconnection Using
Autoreconnect for more details.

S, L false

disable-jmx By default, VMware GemFire automatically creates
JMX MBeans. This boolean, when true, prevents the
creation of JMX MBeans. Both gfsh and Pulse require
JMX MBeans.

S, L false

disable-tcp Boolean indicating whether to disable the use of
TCP/IP sockets for inter-cache point-to-point
messaging. If disabled, the cache uses datagram
(UDP) sockets.

S, L false

distributed-system-id Identifier used to distinguish messages from
different clusters. This is required for Portable Data
eXchange (PDX) data serialization. Set
distributed-system-id to different values for
different systems in a multi-site (WAN)
configuration, and to different values for production
vs. development environments. This setting must be
the same for every member of a given cluster and
unique to each cluster within a WAN installation.
Valid values are integers in the range -1...255. -1
means no setting.

S, L -1

durable-client-id Used only for clients in a client/server installation. If
set, this indicates that the client is durable and
identifies the client. The ID is used by servers to
reestablish any messaging that was interrupted by
client downtime.

C not set

durable-client-timeout Used only for clients in a client/server installation.
Number of seconds this client can remain
disconnected from its server and have the server
continue to accumulate durable events for it.

C 300

VMware GemFire 9.10 Documentation

VMware by Broadcom 1048

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

enable-network-partition-detection Boolean instructing the system to detect and handle
splits in the cluster, typically caused by a
partitioning of the network (split brain) where the
cluster is running. You must set this property to the
same value across all your cluster members. In
addition, this property must be set to true if you are
using persistent regions and configure your regions
to use DISTRIBUTED_ACK or GLOBAL scope to
avoid potential data conflicts.

S, L true

enable-cluster-configuration A value of "true" causes the creation of cluster
configuration on dedicated locators. The cluster
configuration service on dedicated locator(s) with
this property set to "true" would serve the
configuration to new members joining the cluster
and also save the configuration changes caused by
the gfsh commands. This property is only
applicable to dedicated locators..

L true

enable-time-statistics Boolean instructing the system to track time-based
statistics for the cluster and caching. Disabled by
default for performance reasons and not
recommended for production environments. You
must also configure statistic-sampling-enabled
to true and specify a statistic-archive-file.

S, L false

enforce-unique-host Whether partitioned regions will put redundant
copies of the same data in different members
running on the same physical machine. By default,
VMware GemFire tries to put redundant copies on
different machines, but it will put them on the same
machine if no other machines are available. Setting
this property to true prevents this and requires
different machines for redundant copies.

S false

geode.disallow-internal-messages-
without-credentials

A boolean that enables internal message validation
when true. Set this system property to true on the
gfsh start server command line when restarting
servers to work with upgraded clients.

S false

groups Defines the list of groups that this member belongs
to. Use commas to separate group names. Note
that anything defined by the roles gemfire property
will also be considered a group. See Using Member
Groups for more information.

S not set

http-service-bind-address If set, then the VMware GemFire member binds the
embedded HTTP service to the specified address. If
this property is not set but the HTTP service is
enabled using http-service-port, then VMware
GemFire binds the HTTP service to the member's
local address. Used by the VMware GemFire Pulse
Web application and the developer REST API
service.

S not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1049

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

http-service-port If non-zero, then VMware GemFire starts an
embedded HTTP service that listens on this port.
The HTTP service is used to host the VMware
GemFire Pulse Web application and the
development REST API service. If you are hosting
the Pulse web app on your own Web server and are
not using the development REST API service, then
disable this embedded HTTP service by setting this
property to zero. Ignored if jmx-manager and
start-dev-rest-api are both set to false.

S 7070

jmx-manager If true then this member is willing to be a JMX
Manager. All the other JMX Manager properties will
be used when it does become a manager. If this
property is false then all other jmx-manager-*
properties are ignored.

S, L false
(except
on
locators)

jmx-manager-bind-address By default the jmx-manager (when configured with a
port) will listen on all the local host's addresses. You
can use this property to configure what IP address
or host name the JMX Manager will listen on for
non-HTTP connections. Ignored if JMX Manager is
false or jmx-manager-port is zero.

S, L not set

jmx-manager-hostname-for-clients Lets you control what hostname will be given to
clients that ask the locator for the location of a JMX
Manager. By default the IP address that the jmx-
manager reports is used. But for clients on a
different network this property allows you to
configure a different hostname that will be given to
clients. Ignored if jmx-manager is false or jmx-
manager-port is zero.

S, L not set

jmx-manager-http-port Deprecated. Use http-service-port instead. S, L 7070

jmx-manager-port The port this JMX Manager will listen to for client
connections. If this property is set to zero then
VMware GemFire will not allow remote client
connections but you can alternatively use the
standard system properties supported by the JVM
for configuring access from remote JMX clients.
Ignored if jmx-manager is false.

S, L 1099

jmx-manager-start If true then this member will start a jmx manager
when it creates a cache. Management tools like gfsh
can be configured to connect to the jmx-manager.
In most cases you should not set this because a jmx
manager will automatically be started when needed
on a member that sets "jmx-manager" to true.
Ignored if jmx-manager is false.

S, L false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1050

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

jmx-manager-update-rate The rate, in milliseconds, at which this member will
push updates to any JMX Managers. Currently this
value should be greater than or equal to the
statistic-sample-rate. Setting this value too high will
cause stale values to be seen by gfsh and VMware
GemFire Pulse.

S, L 2000

load-cluster-configuration-from-dir Setting this property to "true" causes loading of
cluster configuration from "cluster_config"
directory in the locator. This property is only
applicable to dedicated locators that have "enable-
cluster-configuration" set to true.

L false

locator-wait-time The number of seconds that a member should wait
for a locator to start if a locator is not available
when attempting to join the cluster. Use this setting
when you are starting locators and peers all at once.
This timeout allows peers to wait for the locators to
finish starting up before attempting to join the
cluster.

S 0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1051

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

locators
The list of locators used by system members. The
list must be configured consistently for every
member of the cluster. If the list is empty, locators
are not used.

For each locator, provide a host name and/or
address (separated by ‘@’, if you use both),
followed by a port number in brackets. Examples:

locators=addr1[port1],addr2[port2]

locators=host1@addr1[port1]

locators=host1[port1],host2[port2]

If you have values specified for the locators
property, the mcast-port property defaults to 0.

S, L not set

lock-memory When true, locks heap and off-heap memory into
RAM to prevent the operating system from paging
the memory out to disk.

S, L false

log-disk-space-limit Maximum size in megabytes of all inactive log files
combined. If this limit is exceeded, inactive log files
are deleted, oldest first, until the total size is within
the limit. If set to zero, disk space use is unlimited.

S, L 0

Note:

On multi-homed hosts, this last
notation will use the default
address. If you use bind
addresses for your locators,
explicitly specify the addresses in
the locators list—do not use just
the hostname.

Note:

If you specify invalid DNS
hostnames in this property, any
locators or servers started with
gfsh will not produce log files.
Make sure you provide valid DNS
hostnames before starting the
locator or server with gfsh.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1052

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

log-file File to which a running system member writes log
messages. If set to null, the default is used.

Each member type has its own default output:

application: standard out

locator: <locator_name>.log

server: <server_name>.log

S, L null

log-file-size-limit Maximum size in megabytes of a log file before it is
closed and logging rolls on to a new (child) log file.
If set to 0, log rolling is disabled.

S, L 0

log-level Level of detail of the messages written to the system
member’s log. Setting log-level to one of the
ordered levels causes all messages of that level and
greater severity to be printed.

Valid values from lowest to highest are fine, config,
info, warning, error, severe, and none.

S, L config

max-wait-time-reconnect Maximum number of milliseconds to wait for the
cluster to reconnect on each reconnect attempt.

S, L 60000

mcast-address Address used to discover other members of the
cluster. Only used if mcast-port is non-zero. This
attribute must be consistent across the cluster.
Select different multicast addresses and different
ports for different clusters. Do not just use different
addresses. Some operating systems may not keep
communication separate between systems that use
unique addresses but the same port number.

This default multicast address was assigned by
IANA (multicast-addresses). Consult the IANA chart
when selecting another multicast address to use
with VMware GemFire.

S, L
239.192.8
1.1 for
IPv4 (the
default IP
version)

FF38::123
4 for IPv6

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication. If
multicast is enabled, distributed
regions use it for most
communication. Partitioned
regions only use multicast for a
few purposes, and mainly use
either TCP or UDP unicast.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1053

http://www.iana.org/assignments/multicast-addresses

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

mcast-flow-control Tuning property for flow-of-control protocol for
unicast and multicast no-ack UDP messaging.
Compound property made up of three settings
separated by commas: byteAllowance,
rechargeThreshold, and rechargeBlockMs.

Valid values range from these minimums:
10000,0.1,500
to these maximums:
no_maximum ,0.5,60000.

S, L 1048576,
0.25,
5000

mcast-port Port used, along with the mcast-address, for
multicast communication with other members of the
cluster. If zero, multicast is disabled. Valid values
are in the range 0..65535.

S, L 0

Note:

This setting controls only peer-
to-peer communication,
generally between distributed
regions.

Note:

Select different multicast
addresses and ports for different
clusters. Do not just use different
addresses. Some operating
systems may not keep
communication separate
between systems that use unique
addresses but the same port
number.

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1054

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

mcast-recv-buffer-size Size of the socket buffer used for incoming multicast
transmissions. You should set this high if there will
be high volumes of messages.

Valid values are in the range 2048.. OS_maximum.

S, L 1048576

mcast-send-buffer-size The size of the socket buffer used for outgoing
multicast transmissions.

Valid values are in the range 2048.. OS_maximum.

S, L 65535

mcast-ttl How far multicast messaging goes in your network.
Lower settings may improve system performance. A
setting of 0 constrains multicast messaging to the
machine.

S, L 32

Note:

The default setting is higher than
the default OS maximum buffer
size on Unix, which should be
increased to at least 1 megabyte
to provide high-volume
messaging on Unix systems.

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

Note:

This setting controls only peer-
to-peer communication and
does not apply to client/server
or multi-site communication.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1055

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

member-timeout VMware GemFire uses the member-timeout server
configuration, specified in milliseconds, to detect
unresponsive members. VMware GemFire members
use a combination of UDP heartbeat messages and
TCP sockets to monitor the health of other
members. If a member is suspected to be
unreachable, two active checks of the member are
performed. Each of those checks waits a maximum
of one member-timeout. If those health checks
receive a connection failure or no response within
the timeout, the member is considered dead and is
removed from the list of members. This setting also
controls how frequently heartbeat messages are
sent. They are sent at a frequency of half the member-
timeout. The total time it takes to remove a
member that is not responding to any network
traffic is therefore 2 to 3 times the member-timeout.
This is not the minimum time it takes to remove a
member from the list of members in the cluster. If
the Java process has crashed, but the operating
system can still return a connection failure response
to the health checks, the crashed member may be
removed from the membership list immediately.

Valid values are in the range 1000..600000.

S, L 5000

membership-port-range The range of ports available for unicast UDP
messaging and for TCP failure detection. This is
specified as two integers separated by a hyphen.
Different members can use different ranges.

VMware GemFire randomly chooses at least two
unique integers from this range for the member, one
for UDP unicast messaging and the other for TCP
failure detection messaging. If tcp-port is
configured to 0, it will also randomly select a port
from this range for TCP sockets used for peer-to-
peer communication only.

Therefore, the specified range must include at least
three available port numbers (UDP, FD_SOCK, and
TCP DirectChannel).

The system uniquely identifies the member using the
combined host IP address and UDP port number.

You may want to restrict the range of ports that
VMware GemFire uses so the product can run in an
environment where routers only allow traffic on
certain ports.

S, L 41000-
61000

memcached-port If specified and is non-zero, sets the port number for
an embedded Gemcached server and starts the
Gemcached server.

S 0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1056

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

memcached-protocol Sets the protocol used by an embedded
Gemcached server. Valid values are BINARY and
ASCII. If you omit this property, the ASCII protocol
is used.

S ASCII

name Symbolic name used to identify this system
member.

S, L not set

off-heap-memory-size Specifies the size of off-heap memory in megabytes
(m) or gigabytes (g). For example:

off-heap-memory-size=4096m

off-heap-memory-size=120g

S not set

redundancy-zone Defines this member's redundancy zone. Used to
separate member's into different groups for
satisfying partitioned region redundancy. If this
property is set, VMware GemFire will not put
redundant copies of data in members with the same
redundancy zone setting. See Configure High
Availability for a Partitioned Region for more
details.

S not set

remote-locators Used to configure the locators that a cluster will use
in order to connect to a remote site in a multi-site
(WAN) configuration. To use locators in a WAN
configuration, you must specify a unique distributed
system ID (distributed-system-id) for the local
cluster and remote locator(s) for the remote clusters
to which you will connect.

For each remote locator, provide a host name
and/or address (separated by ‘@’, if you use both),
followed by a port number in brackets. Examples:

remote-locators=addr1[port1],addr2

[port2]

remote-locators=host1@addr1[port1]

remote-locators=host1[port1],host2

[port2]

L not set

remove-unresponsive-client When this property is set to true, the primary server
drops unresponsive clients from all secondaries and
itself. Clients are deemed unresponsive when their
messaging queues become full on the server. While
a client's queue is full, puts that would add to the
queue block on the server.

S false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1057

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

security-* Any security-related (properties that begin with
security-) configuration properties that are
normally configured in gemfire.properties can be
moved to a separate gfsecurity.properties file.
Placing these configuration settings in a separate file
allows you to restrict access to security
configuration data. This way, you can still allow read
or write access for your gemfire.properties file.

S, L not set

security-client-accessor Deprecated. Used for authorization. Static creation
method returning an AccessControl object, which
determines authorization of client-server cache
operations. This specifies the callback that should
be invoked in the pre-operation phase, which is
when the request for the operation is received from
the client.

S, L not set

security-client-accessor-pp Deprecated. Used for authorization. The callback
that should be invoked in the post-operation phase,
which is when the operation has completed on the
server but before the result is sent to the client. The
post-operation callback is also invoked for the
updates that are sent from server to client through
the notification channel.

S, L not set

security-client-auth-init Used for authentication. Defines the fully-qualified
static method that instantiates and returns the
AuthInitialize object. AuthInitialize is
responsible for producing the necessary credentials
for client authentication.

S, L not set

security-client-authenticator Deprecated. Used for authentication. Static creation
method returning an Authenticator object, which is
used by a peer to verify the credentials of the
connecting peer.

S, L not set

security-client-dhalgo Deprecated. Use ssl-enabled-components instead.
Used for authentication. For secure transmission of
sensitive credentials like passwords, you can
encrypt the credentials using the Diffie-Hellman key-
exchange algorithm. Do this by setting the security-
client-dhalgo system property on the clients to the
name of a valid, symmetric key cipher supported by
the JDK.

S, L not set

security-log-file Used with authentication. The log file for security
log messages. If not specified, the member's regular
log file is used.

S, L not set

security-log-level Used with authentication. Logging level detail for
security log messages.

Valid values from lowest to highest are fine, config,
info, warning, error, severe, and none.

S, L config

VMware GemFire 9.10 Documentation

VMware by Broadcom 1058

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

security-manager Specifies the implementation of the
SecurityManager interface that implements the
callbacks that do authentication and authorization.

S, L not set

security-peer-auth-init Used for authentication. Defines the fully-qualified
static method that instantiates and returns the
AuthInitialize object. AuthInitialize is
responsible for producing the necessary credentials
for peer authentication.

S, L not set

security-peer-authenticator Deprecated. Used with authentication. Static
creation method returning an Authenticator
object, which is used by a peer to verify the
credentials of the connecting peer.

S, L not set

security-peer-verifymember-timeout Used with authentication. Timeout in milliseconds
used by a peer to verify membership of an unknown
authenticated peer requesting a secure connection.

S, L 1000

security-post-processor Specifies the implementation of the PostProcessor
interface that implements user-defined callbacks
that can change the returned results of region get
operations.

S, L not set

security-udp-dhalgo Specifies a string that defines the name of a valid,
symmetric key cipher supported by the JDK. When
defined, the named cipher will be used for server-
to-server UDP communications.

S not set

serializable-object-filter A semicolon-separated list of items that become full
class names of objects that the system will serialize
when the property validate-serializable-objects is
set to true. The list is expanded using the patterns
specified in the createFilter method at
ObjectInputFilter.Config.html.

S, C "!*"

VMware GemFire 9.10 Documentation

VMware by Broadcom 1059

https://docs.oracle.com/javase/9/docs/api/java/io/ObjectInputFilter.Config.html

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

server-bind-address Relevant only for multi-homed hosts - machines
with multiple network interface cards. Network
adapter card a VMware GemFire server binds to for
client/server communication. You can use this to
separate the server’s client/server communication
from its peer-to-peer communication, spreading the
traffic load.

This is a machine-wide attribute used for
communication with clients in client/server and
multi-site installations. This setting has no effect on
locator configuration.

Specify the IP address, not the hostname, because
each network card may not have a unique
hostname.

An empty string causes the servers to listen on the
same card used for peer-to-peer communication.
This is either the bind-address or, if that is not set,
the machine’s default card.

S not set

socket-buffer-size Receive buffer sizes in bytes of the TCP/IP
connections used for data transmission. To minimize
the buffer size allocation needed for distributing
large, serializable messages, the messages are sent
in chunks. This setting determines the size of the
chunks. Larger buffers can handle large messages
more quickly, but take up more memory.

S, L 32768

socket-lease-time Time, in milliseconds, a thread can have exclusive
access to a socket it is not actively using. A value of
zero causes socket leases to never expire. This
property is ignored if conserve-sockets is true.

Valid values are in the range 0..600000.

S, L 60000

ssl-enabled-components Components for which to enable SSL. Comma-
separated list of one or more of (cluster, gateway,
jmx, locator, server, web) or "all". When defining
this property, also set security-udp-dhalgo to
secure UDP cluster communications.

C, S, L all

ssl-endpoint-identification-enabled Boolean. When set to true, causes clients to validate
the server's hostname using the server's certificate.

C, S, L false

ssl-use-default-context Boolean. When set to true, allows VMware GemFire
to use the default SSL context. When enabled, also
sets ssl-endpoint-identification-enabled to true.

C, S, L false

ssl-require-authentication Boolean. Require two-way authentication for SSL-
enabled components. Applies to all components
except web.

S, L true

VMware GemFire 9.10 Documentation

VMware by Broadcom 1060

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

ssl-http-require-authentication Boolean. Require two-way authentication for web
component.

S, L false

ssl-default-alias String. Default certificate name. If empty, use first
certificate in key store.

S, L

ssl-component-alias String. Certificate name for specified component,
which is one of: cluster, gateway, jmx, locator,
server, or web.

S, L

ssl-ciphers Comma-separated list of SSL ciphers or "any" S, L any

ssl-parameter-extension Specifies the implementation of the
SSLParameterExtension interface that implements
the SSL parameter extensions.

S, L not set

ssl-protocols Comma-separated list of SSL protocols or "any" S, L any

ssl-keystore, ssl-keystore-password Strings. Path to key store, key store password. S, L

ssl-truststore, ssl-truststore-password Strings. Path to trust store, trust store password. S, L

ssl-keystore-type, ssl-truststore-type Strings. Type of key store or trust store. "JKS"
indicates Java. One common alternative is "pkcs12".

S, L JKS

start-dev-rest-api If set to true, then the developer REST API service
will be started when cache is created. REST service
can be configured using http-service-port and
http-service-bind-address properties.

S false

start-locator If set, automatically starts a locator in the current
process when the member connects to the cluster
and stops the locator when the member
disconnects.

To use, specify the locator with an optional address
or host specification and a required port number, in
one of these formats:

start-locator=address[port1]

start-locator=port1

If you only specify the port, the address assigned to
the member is used for the locator.

If not already there, this locator is automatically
added to the list of locators in this set of gemfire
properties.

S not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1061

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

statistic-archive-file The file to which the running system member writes
statistic samples. For example:
"StatisticsArchiveFile.gfs". An empty string disables
archiving. Adding .gz suffix to the file name causes it
to be compressed.

S, L not set

statistic-sample-rate How often to sample statistics, in milliseconds.

Valid values are in the range 100..60000.

S, L 1000

statistic-sampling-enabled Whether to collect and archive statistics on the
member.

Statistics sampling provides valuable information
for ongoing system tuning and troubleshooting
purposes. Sampling statistics at the default sample
rate does not impact system performance. We
recommend enabling statistics sampling in
production environments.

S, L false

tcp-port The TCP port to listen on for cache communications.
If set to zero, the operating system selects an
available port. Each process on a machine must
have its own TCP port. Note that some operating
systems restrict the range of ports usable by non-
privileged users, and using restricted port numbers
can cause runtime errors in VMware GemFire
startup.

Valid values are in the range 0..65535.

S, L 0

thread-monitor-enabled
Boolean. When true, enables monitoring of VMware
GemFire-created operational threads. Informational
messages are written to the log file.

S true

thread-monitor-interval-ms
The time interval (in milliseconds) with which thread
monitoring is scheduled to run.

S 60000

thread-monitor-time-limit-ms
The time period (in milliseconds) after which the
monitored thread is considered to be stuck.

S 30000

Note:

This setting does not apply to
partitioned regions, where
statistics are always enabled.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1062

Setting Definition

Applies
to
(Server
Locator,
Client)

Default

tombstone-gc-threshold The number of tombstones that can accumulate
before the VMware GemFire member triggers
garbage collection for tombstones. See How
Destroy and Clear Operations Are Resolved.

S 100000

udp-fragment-size Maximum fragment size, in bytes, for transmission
over UDP unicast or multicast sockets. Smaller
messages are combined, if possible, for
transmission up to the fragment size setting.

Valid values are in the range 1000..60000.

S, L 60000

udp-recv-buffer-size The size of the socket buffer used for incoming UDP
point-to-point transmissions. If disable-tcp is false,
a reduced buffer size of 65535 is used by default.

The default setting of 1048576 is higher than the
default OS maximum buffer size on Unix, which
should be increased to at least 1 megabyte to
provide high-volume messaging on Unix systems.

Valid values are in the range 2048.. OS_maximum.

S, L 1048576

udp-send-buffer-size The size of the socket buffer used for outgoing UDP
point-to-point transmissions.

Valid values are in the range 2048..OS_maximum.

S, L 65535

use-cluster-configuration This property is only applicable for data members
(non-client and non-locator). A value of "true"
causes a member to request and use the
configuration from cluster configuration services
running on dedicated locators. Setting this property
to "false" causes a member to not request the
configuration from the configuration services
running on the locator(s).

S true

user-command-packages A comma separated list of Java packages that
contain classes implementing the CommandMarker
interface. Matching classes will be loaded when the
VM starts and will be available in the GFSH
command-line utility.

S not set

validate-serializable-objects A boolean that defaults to false. When true,
instances of classes that are not internal to VMware
GemFire and whose class name is not allowed by
the list defined in the serializable-object-filter
property will not be permitted to be deserialized.
An IncompatibleClassException is thrown for
objects not listed. JDK 8 build 121 or a later build
must be installed to use this property. Servers and
clients that do not meet this requirement will throw
an exception upon startup.

S, C false

Using Non-ASCII Strings in VMware GemFire Property Files

VMware GemFire 9.10 Documentation

VMware by Broadcom 1063

You can specify Unicode (non-ASCII) characters in VMware GemFire property files by using
a \uXXXX escape sequence.

Using Non-ASCII Strings in VMware GemFire Property
Files
You can specify Unicode (non-ASCII) characters in VMware GemFire property files by using a
\uXXXX escape sequence.

For a supplementary character, you need two escape sequences, one for each of the two UTF-16
code units. The XXXX denotes the 4 hexadecimal digits for the value of the UTF-16 code unit. For
example, a properties file might have the following entries:

s1=hello there

s2=\u3053\u3093\u306b\u3061\u306f

For example, in gemfire.properties, you might write:

log-file=my\u00df.log

to indicate the desired propery definition of log-file=myß.log.

If you have edited and saved the file in a non-ASCII encoding, you can convert it to ASCII with the
native2ascii tool included in your Oracle Java distribution. For example, you might want to do this
when editing a properties file in Shift_JIS, a popular Japanese encoding.

For more information on internationalization in Java, see
http://www.oracle.com/technetwork/java/javase/tech/intl-139810.html.

cache.xml

Use the cache.xml file to set up general cache facilities and behavior and to create and initialize
cached data regions. These sections document cache.xml requirements; provide hierarchical
diagrams of <cache> and <client-cache>elements; and describe the function of each element.

Note: You can configure most elements of the cache.xml file and apply it to your entire cluster by
using the gfsh and cluster configuration service. See gfsh Limitations for a list of items you cannot
configure in gfsh and must still configure in cache.xml.

cache.xml Quick Reference

This section documents cache.xml file requirements and variables. It also points you to
specific element sections for server, client, and WAN configuration.

<cache> Element Hierarchy

This section shows the hierarchy of <cache> element sub-elements that you use to
configure VMware GemFire caches and servers.

<cache> Element Reference

This section documents the cache.xml sub-elements used for VMware GemFire server
configuration. All elements are sub-elements of the <cache> element.

<client-cache> Element Hierarchy

VMware GemFire 9.10 Documentation

VMware by Broadcom 1064

http://www.oracle.com/technetwork/java/javase/tech/intl-139810.html

This section shows the hierarchy of <client-cache> element sub-elements that you use to
configure VMware GemFire caches and clients.

<client-cache> Element Reference

This section documents all cache.xml elements that you use to configure VMware GemFire
clients. All elements are sub-elements of the <client-cache> element.

cache.xml Quick Reference

This section documents cache.xml file requirements and variables. It also points you to specific
element sections for server, client, and WAN configuration.

Cache XML Requirements

Variables in cache.xml

Configuration Quick Reference

Cache XML Requirements

The cache.xml file has these requirements:

The contents must conform to the XML schema definition provided in cache-1.0.xsd. The
schema definition file is available at http://geode.apache.org/schema/cache/cache-1.0.xsd.

The file must include a <cache> schema declaration of one of the following forms:

Server or peer cache:

<?xml version="1.0" encoding="UTF-8"?>

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geod

e.apache.org/schema/cache/cache-1.0.xsd"

 version="1.0">

...

</cache>

Client cache:

<?xml version="1.0" encoding="UTF-8"?>

<client-cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geod

e.apache.org/schema/cache/cache-1.0.xsd"

 version="1.0">

...

</client-cache>

Any class name specified in the file must have a public zero-argument constructor and
must implement the org.apache.geode.cache.Declarable interface. Parameters declared in
the XML for the class are passed to the class init method.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1065

http://geode.apache.org/schema/cache/cache-1.0.xsd

Variables in cache.xml

You can use variables in the cache.xml to customize your settings without modifying the XML file.

Set your variables in Java system properties when you start your cache server or application
process.

Example cache.xml with variables and the gfsh start server command that sets the variables:

<?xml version="1.0" encoding="UTF-8"?>

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

 version="1.0">

 <cache-server port="${PORT}" max-connections="${MAXCNXS}"/>

 <region name="root">

 <region-attributes refid="REPLICATE"/>

 </region>

</cache>

gfsh>start server --name=server2 --cache-xml-file=cache.xml --J=-DPORT=30333 --J=-DMAX

CNXS=77

Configuration Quick Reference

To configure cache servers, clients, and WAN topologies, see the following sections:

Server Configuration

<cache> Element Reference

<cache-server>

<region>

<region-attributes>

You can set the same server configuration properties using the
org.apache.geode.cache.server.CacheServer and org.apache.geode.cache.Cache
interfaces. For detailed information, see the online Java API documentation.

Client Configuration

<client-cache> Element Reference

<pool>

<region>

You can set the same client configuration properties using the
org.apache.geode.cache.clientClientCache and Pool interfaces. For detailed information,
see the online Java API documentation.

Multi-site (WAN) Configuration and Asynchronous Event Queue Configuration

<gateway-sender>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1066

<gateway-receiver>

<async-event-queue>

The gateway sender and receiver APIs in org.apache.geode.cache.util provide
corresponding getter and setter methods for these attributes.

<cache> Element Hierarchy

This section shows the hierarchy of <cache> element sub-elements that you use to configure
VMware GemFire caches and servers.

For details, see <cache> Element Reference.

<cache>

 <cache-transaction-manager>

 <transaction-listeners>

 <transaction-writer>

 <gateway-hub>

 <gateway>

 <gateway-endpoint>

 <gateway-listener>

 <gateway-queue>

 <gateway-sender>

 <gateway-event-filter>

 <gateway-transport-filter>

 <gateway-receiver>

 <gateway-transport-filter>

 <gateway-conflict-resolver>

 <async-event-queue>

 <async-event-listener>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <cache-server>

 <group>

 <client-subscription>

 <custom-load-probe>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <pool>

 <locator>

 <server>

 <disk-store>

 <disk-dirs>

 <disk-dir>

 <pdx>

 <pdx-serializer>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <region-attributes>

 <key-constraint>

 <value-constraint>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1067

 <region-time-to-live>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <region-idle-time>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <entry-time-to-live>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <entry-idle-time>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <partition-attributes>

 <partition-resolver>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <partition-listener>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <fixed-partition=attributes>

 <membership-attributes>

 <required-role>

 <subscription-attributes>

 <cache-loader>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <cache-writer>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <cache-listener>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <compressor>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1068

 <class-name>

 <parameter>

 <string>

 <declarable>

 <eviction-attributes>

 <lru-entry-count>

 <lru-heap-percentage>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <lru-memory-size>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <jndi-bindings>

 <jndi-binding>

 <config-property>

 <config-property-name>

 <config-property-type>

 <config-property-value>

 <region>

 <region-attributes>

 <index>

 <lucene:index>

 <field>

 <entry>

 <key>

 <string>

 <declarable>

 <value>

 <string>

 <declarable>

 <vm-root-region>

 <function-service>

 <function>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <resource-manager>

 <serialization-registration>

 <serializer>

 <class-name>

 <instantiator>

 <class-name>

 <backup>

 <initializer><initializer>

 <class-name>

 <parameter>

 <string>

 <declarable>

</cache>

<cache> Element Reference

VMware GemFire 9.10 Documentation

VMware by Broadcom 1069

This section documents the cache.xml sub-elements used for VMware GemFire server
configuration. All elements are sub-elements of the <cache> element.

For VMware GemFire client configuration, see <client-cache> Element Reference.

API:org.apache.geode.cache.CacheFactory

<cache> Attributes

Attribute Description Default

copy-on-read
Boolean indicating whether entry value retrieval methods
return direct references to the entry value objects in the
cache (false) or copies of the objects (true).

False

is-server
Boolean indicating whether this member is a cache server.

False

lock-timeout
The timeout, in seconds, for implicit object lock requests.
This setting affects automatic locking only, and does not
apply to manual locking. If a lock request does not return
before the specified timeout period, it is cancelled and
returns with a failure.

60

lock-lease
The timeout, in seconds, for implicit and explicit object
lock leases. This affects both automatic locking and
manual locking. Once a lock is obtained, it can remain in
force for the lock lease time period before being
automatically cleared by the system.

120

message-sync-interval
Used for client subscription queue synchronization when
this member acts as a server to clients and server
redundancy is used. Sets the frequency (in seconds) at
which the primary server sends messages to its secondary
servers to remove queued events that have already been
processed by the clients.

1

search-timeout
How many seconds a netSearch operation can wait for
data before timing out. You may want to change this
based on your knowledge of the network load or other
factors.

300

Example:

<cache>

 <cache-server port="40404" />

 <region name="root">

 <region-attributes refid="REPLICATE"/>

 <region name="cs_region" refid="REPLICATE">

 <region-attributes>

 <cache-loader>

 <class-name>cacheRunner.StringLoader</class-name>

 </cache-loader>

 <cache-listener>

 <class-name>cacheRunner.LoggingCacheListener</class-name>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1070

 </cache-listener>

 </region-attributes>

 </region>

 </region>

</cache>

<cache-transaction-manager>

Specifies a transaction listener.

API: CacheTransactionManager

Example:

<cache search-timeout="60">

 <cache-transaction-manager>

 <transaction-listener>

 <class-name>com.company.data.MyTransactionListener</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

 </transaction-listener>

 <transaction-listener>... </transaction-listener>

 <transaction-writer>

 <class-name>com.company.data.MyTransactionWriter</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

 <parameter>

 </transaction-writer>

 </cache-transaction-manager> .. .

</cache>

<transaction-listener>

When a transaction ends, its thread calls the TransactionListener to perform the appropriate follow-
up for successful commits, failed commits, or voluntary rollbacks.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<transaction-writer>

When you commit a transaction, a TransactionWriter can perform additional tasks, including
cancelling the transaction.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<dynamic-region-factory>

The <dynamic-region-factory> element configures a dynamic region factory for this cache. You
can use this element to dynamically create regions in your application code. Use the

VMware GemFire 9.10 Documentation

VMware by Broadcom 1071

createDynamicRegion() method of the org.apache.geode.cache.DynamicRegionFactory class in
your Java code to dynamically create regions.

Note: You cannot use this element to dynamically create partitioned regions.

Note: Use of the DynamicRegionFactory class and the <dynamic-region-factory> element are
deprecated in favor of the org.apache.geode.cache.execute.FunctionService class and the
<function-service> element.

We recommend that you use functions to dynamically create regions. See Creating Regions
Dynamically.

The optional <disk-dir> sub-element specifies the directory to store the persistent files that are
used for dynamic region bookkeeping. It defaults to the current directory.

Set the pool-name attribute to set the name of the connection pool used by client applications in a
client/server cache configuration. Do not specify the pool-name attribute in servers or peers.

API: org.apache.geode.cache.DynamicRegionFactory

<dynamic-region-factory> Attributes

Attribute Description Default

disable-persist-
backup

When set to false, the factory is persisted on disk. false

disable-register-
interest

When set to false, client regions created by the factory register interest in all keys in a
corresponding server cache region.

false

pool-name The name of a connection pool used by the client factory to communicate with the
server-side factory.

none

Example:

<dynamic-region-factory

 pool-name=myPool>

 <disk-dir>/home/gemfire/myDiskdir</disk-dir>

</dynamic-region-factory>

<disk-dir>

Specifies a region or disk store’s disk directory.

<disk-dir> Attributes

Attribute Description Default

dir-size Maximum amount of space to use for the disk store, in megabytes. 214748364 (2 petabytes)

Example:

<disk-dir

 dir-size="20480">/host3/users/gf/memberA_DStore</disk-dir>

<gateway-sender>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1072

Configures a gateway sender to distribute region events to another VMware GemFire site. See
Configuring a Multi-site (WAN) System.

API: GatewaySender

<gateway-sender> Attributes

Attribute Description Default

parallel Value of "true" or "false" that specifies the type of
gateway sender that VMware GemFire creates.

false

dispatcher-threads Number of dispatcher threads that are used to process
region events from a gateway sender queue or
asynchronous event queue.

5

order-policy When the dispatcher-threads attribute is greater than 1,
order-policy configures the way in which multiple
dispatcher threads process region events from a serial
gateway queue or serial asynchronous event queue. This
attribute can have one of the following values:

key. When distributing region events from the
local queue, multiple dispatcher threads
preserve the order of key updates.

thread. When distributing region events from the
local queue, multiple dispatcher threads
preserve the order in which a given thread added
region events to the queue.

partition. This option is valid for parallel event
queues. When distributing region events from the
local queue, multiple dispatcher threads
preserve the order in which region events were
added to the local queue. For a partitioned
region, this means that all region events
delivered to a specific partition are delivered in
the same order to the remote VMware GemFire
site. For a distributed region, this means that all
key updates delivered to the local queue are
distributed to the remote site in the same order.

You cannot configure the order-policy for a parallel
event queue, because parallel queues cannot preserve
event ordering for regions. Only the ordering of events for
a given partition (or in a given queue of a distributed
region) can be preserved.

key

id Unique identifier for the gateway sender, usually an
identifier associated with a physical location. This
attribute is required.

null

remote-distributed-system-id Integer that uniquely identifies the remote VMware
GemFire cluster to which this gateway sender will send
region events. This value corresponds to the
distributed-system-id property specified in locators for
the remote cluster. This attribute is required.

null

VMware GemFire 9.10 Documentation

VMware by Broadcom 1073

Attribute Description Default

manual-start Deprecated. Boolean value that specifies whether you
need to manually start the gateway sender. If you supply a
null value, the default value of false is used, and the
gateway sender attempts to start automatically. A manual
start is likely to cause data loss, so manual start should
never be used in a production system.

false

socket-buffer-size Size of the socket buffer that sends messages to remote
sites. This size should match the size of the socket-
buffer-size attribute of remote gateway receivers that
process region events.

32768

socket-read-timeout Amount of time in milliseconds that the gateway sender
will wait to receive an acknowledgment from a remote
site. By default this is set to 0, which means there is no
timeout. If you do set this timeout, you must set it to a
minimum of 30000 (milliseconds). Setting it to a lower
number will generate an error message and reset the value
to the default of 0.

0

enable-batch-conflation Boolean value that determines whether VMware GemFire
should conflate messages.

false

batch-size Maximum number of messages that a batch can contain. 100

batch-time-interval Maximum number of milliseconds that can elapse between
sending batches.

1000

enable-persistence Boolean value that determines whether VMware GemFire
persists the gateway queue.

false

disk-store-name Named disk store to use for storing the queue overflow, or
for persisting the queue. If you specify a value, the named
disk store must exist. If you specify a null value, VMware
GemFire uses the default disk store for overflow and
queue persistence.

disk-synchronous For regions that write to disk, boolean that specifies
whether disk writes are done synchronously for the region.

true

maximum-queue-memory Maximum amount of memory in megabytes that the queue
can consume before overflowing to disk.

100 MB

alert-threshold Maximum number of milliseconds that a region event can
remain in the gateway sender queue before VMware
GemFire logs an alert.

0

group-transaction-events Boolean value to ensure that all the events of a transaction
are sent in the same batch, i.e., they are never spread
across different batches.

Only allowed to be set on gateway senders with the
parallel attribute set to false and dispatcher-threads
attribute equal to 1, or on gateway senders with the
parallel attribute set to true.

Note: In order to work for a transaction, the regions to
which the transaction events belong must be replicated by
the same set of senders with this flag enabled.

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1074

Example:

<cache>

 <gateway-sender

 id="remoteA"

 parallel="true"

 remote-distributed-system-id="1">

 <gateway-event-filter>

 <class-name>org.apache.geode.util.SampleEventFilter</class-name>

 <parameter

 name="param1">

 <string>"value1"</string>

 </parameter>

 </gateway-event-filter>

 <gateway-transport-filter>

 <class-name>org.apache.geode.util.SampleTransportFilter</class-name>

 <parameter

 name="param1">

 <string>"value1"</string>

 </parameter>

 </gateway-transport-filter>

 </gateway-sender>

 ...

</cache>

<gateway-event-filter>

A GatewayEventFilter implementation determines whether a region event is placed in a gateway
sender queue and/or whether an event in a gateway queue is distributed to a remote site. You can
optionally add one or more GatewayEventFilter implementations to a gateway sender, either in the
cache.xml configuration file or using the Java API.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Example:

<gateway-event-filter>

 <class-name>org.apache.geode.util.SampleEventFilter</class-name>

 <parameter name="param1">

 <string>"value1"</string>

 </parameter>

</gateway-event-filter>

<gateway-event-substitution-filter>
A GatewayEventSubstitutionFilter provides a way to specify a substitute value to be stored in the
GatewayQueueEvent and enqueued in the RegionQueue. You can optionally add one
GatewayEventSubstitutionFilter implementation to a gateway sender.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1075

<gateway-event-substitution-filter>

 <class-name>org.apache.geode.util.SampleEventSubstitutionFilter</class-name>

 <parameter name="param1">

 <string>"value1"</string>

 </parameter>

</gateway-event-substitution-filter>

<gateway-transport-filter>

Use a GatewayTransportFilter implementation to process the TCP stream that sends a batch of
events that is distributed from one VMware GemFire cluster to another over a WAN. A
GatewayTransportFilter is typically used to perform encryption or compression on the data that
distributed. You install the same GatewayTransportFilter implementation on both a gateway sender
and gateway receiver.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Example:

<gateway-transport-filter>

 <class-name>org.apache.geode.util.SampleTransportFilter</class-name>

 <parameter

 name="param1">

 <string>"value1"</string>

 </parameter>

</gateway-transport-filter>

<gateway-receiver>

Configures a gateway receiver to receive and apply region events that were distributed from
another VMware GemFire site. You can only specify one gateway receiver on a member. See
Configuring a Multi-site (WAN) System.

API: GatewayReceiverFactory, GatewayTransportFilter

<gateway-receiver> Attributes

Attribute Description Default

start-port
Starting port number to use when specifying the range of
possible port numbers this gateway receiver will use to
connects to gateway senders in other sites. VMware
GemFire chooses an unused port number in the specified
port number range to start the receiver. If no port numbers
in the range are available, an exception is thrown.

The STARTPORT value is inclusive while the ENDPORT value is
exclusive. For example, if you specify STARTPORT="50510"
and ENDPOINT="50520", VMware GemFire chooses a port
value from 50510 to 50519.

5000

VMware GemFire 9.10 Documentation

VMware by Broadcom 1076

Attribute Description Default

end-port
Defines the upper bound port number to use when
specifying the range of possible port numbers this
gateway receiver will use to for connections from gateway
senders in other sites. VMware GemFire chooses an
unused port number in the specified port number range to
start the receiver. If no port numbers in the range are
available, an exception is thrown.

The ENDPORT value is exclusive while the STARTPORT value
is inclusive. For example, if you specify
STARTPORT="50510" and ENDPOINT="50520", VMware
GemFire chooses a port value from 50510 to 50519.

5500

bind-address Network address for connections from gateway senders in
other sites. Specify the address as a literal string value.

hostname-for-senders Attribute where you can specify an IP address or
hostname for gateway sender connections. If you
configure hostname-for-senders, locators will use the
provided hostname or IP address when instructing
gateway senders on how to connect to gateway receivers.
If you provide "" or null as the value, by default the
gateway receiver's bind-address will be sent to clients.

manual-start When set to false, the gateway receiver will automatically
start when the receiver is created. If set to true, you must
manually start the receiver.

true

maximum-time-between-pings Integer value that specifies the time interval (in
milliseconds) to use between pings to connected WAN
sites. This value determines the maximum amount of time
that can elapse before a remote WAN site is considered
offline.

60000

socket-buffer-size An integer value that sets the buffer size (in bytes) of the
socket connection for this gateway receiver. This value
should match the socket-buffer-size setting of gateway
senders that connect to this receiver.

32768

Example:

<cache>

 <gateway-receiver start-port="1530" end-port="1551">

 <gateway-transport-filter>>

 <class-name>org.apache.geode.util.SampleTransportFilter</class-name>

 <parameter

 name="param1">

 <string>"value1"</string>

 </parameter>

 </gateway-transport-filter>

 </gateway-receiver>

</cache>

<gateway-transport-filter>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1077

Use a GatewayTransportFilter implementation to process the TCP stream that sends a batch of
events that is distributed from one VMware GemFire cluster to another over a WAN. A
GatewayTransportFilter is typically used to perform encryption or compression on the data that
distributed. You install the same GatewayTransportFilter implementation on both a gateway sender
and gateway receiver.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Example:

<gateway-transport-filter>

 <class-name>org.apache.geode.util.SampleTransportFilter</class-name>

 <parameter

 name="param1">

 <string>"value1"</string>

 </parameter>

</gateway-transport-filter>

<gateway-conflict-resolver>

An event-handler plug-in that is called in order to determine whether a potentially conflicting WAN
update should be applied to the local cache. A GatewayConflictResolver is invoked if the current
value in a cache entry was established by a different cluster (with a different distributed-system-id)
than an event that is attempting to modify the entry. It is not invoked if the event has the same
distributed system ID as the event that last changed the entry. See Resolving Conflicting Events

Specify the Java class for the gateway conflict resolver plug-in and its initialization parameters with
the <class-name> and <parameter> sub-elements. See <class-name> and <parameter>.

API: org.apache.geode.cache.util.GatewayConflictResolver

Example:

<gateway-conflict-resolver>

 <class-name>

 myPackage.MyConflictResolver

 </class-name>

 </gateway-conflict-resolver>

<async-event-queue>
Configures a queue for sending region events to an AsyncEventListener implementation (for
example, for write-behind event handling).

API: org.apache.geode.cache.asyncqueue.AsyncEventQueue

<async-event-queue> Attributes

Attribute Description Default

id Unique identifier for the queue. This attribute is required. null

parallel Value of "true" or "false" that specifies the type of queue
that VMware GemFire creates.

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1078

Attribute Description Default

batch-size Maximum number of messages that a batch can contain. 100

batch-time-interval Maximum number of milliseconds that can elapse between
sending batches.

5

enable-batch-conflation Boolean value that determines whether VMware GemFire
should conflate messages.

false

disk-store-name Named disk store to use for storing queue overflow, or for
persisting the queue. If you specify a value, the named disk
store must exist. If you specify a null value, VMware
GemFire uses the default disk store for overflow and
queue persistence.

null specifies the
default disk store

disk-synchronous For regions that write to disk, boolean that specifies
whether disk writes are done synchronously for the region.

true

dispatcher-threads Number of dispatcher threads that are used to process
region events from the queue.

5

forward-expiration-destroy When true, forwards expiration destroy operations to
AsyncEventListener.

false

maximum-queue-memory Maximum amount of memory in megabytes that the queue
can consume before overflowing to disk.

100 mb

order-policy When the dispatcher-threads attribute is greater than 1,
order-policy configures the way in which multiple
dispatcher threads process region events from the queue.
This attribute can have one of the following values:

key. When distributing region events from the
local queue, multiple dispatcher threads
preserve the order of key updates.

thread. When distributing region events from the
local queue, multiple dispatcher threads
preserve the order in which a given thread added
region events to the queue.

partition. This option is valid for parallel event
queues. When distributing region events from the
local queue, multiple dispatcher threads
preserve the order in which region events were
added to the local queue. For a partitioned
region, this means that all region events
delivered to a specific partition are delivered in
the same order to the remote VMware GemFire
site. For a distributed region, this means that all
key updates delivered to the local queue are
distributed to the remote site in the same order.

You cannot configure the order-policy for a parallel
event queue, because parallel queues cannot preserve
event ordering for regions. Only the ordering of events for
a given partition (or in a given queue of a distributed
region) can be preserved.

key

VMware GemFire 9.10 Documentation

VMware by Broadcom 1079

Attribute Description Default

pause-event-processing When true, event dispatching from the queue to the
listener(s) will be paused when the AsyncEventQueue is
started.

false

persistent Boolean value that determines whether VMware GemFire
persists this queue.

False

Example:

<cache>

 <async-event-queue

 id="sampleQueue"

 persistent="true"

 disk-store-name="exampleStore"

 parallel="false">

 <async-event-listener>

 <class-name>MyAsyncEventListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

 </parameter>

 </async-event-listener>

 </async-event-queue>

 ...

</cache>

<async-event-listener>

An AsyncEventListener receives callbacks for events that change region data. You can use an
AsyncEventListener implementation as a write-behind cache event handler to synchronize region
updates with a database.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

API: org.apache.geode.cache.asyncqueue.AsyncEventListener

Example:

...

 <async-event-listener>

 <class-name>MyAsyncEventListener</class-name>

 <parameter name="url">

 <string>jdbc:db2:SAMPLE</string>

 </parameter>

 <parameter name="username">

 <string>gfeadmin</string>

 </parameter>

 <parameter name="password">

 <string>admin1</string>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1080

 </parameter>

 </async-event-listener>

...

<cache-server>

Configures the cache to serve region data to clients in a client/server caching system. This element
indicates the port the server listens on for client communication.

The cacheserver process uses only cache.xml configuration. For application servers, you can set
the same configuration properties using the org.apache.geode.cache.server.CacheServer and
org.apache.geode.cache.Cache interfaces. For detailed information, see the online Java API
documentation.

API: org.apache.geode.cache.server.CacheServer

<cache-server> Attributes

Attribute Description Default Value

bind-address Hostname or IP address that the server is to listen on for
client connections. If null, the server listens on the
machine’s default address.

null

hostname-for-clients Hostname or IP address to pass to the client as the
location where the server is listening. When the server
connects to the locator it tells the locator the host and
port where it is listening for client connections. If the host
the server uses by default is one that the client can’t
translate into an IP address, the client will have no route to
the server’s host and won’t be able to find the server. For
this situation, you must supply the server’s alternate
hostname for the locator to pass to the client. If null, the
server’s bind-address setting is used.

null

load-poll-interval Frequency, in milliseconds, to poll the load probe for load
information on the server.

5000

(5 seconds)

max-connections Maximum number of client connections for the server.
When the maximum is reached, the server refuses
additional client connections.

Note: Set this at least as high as max-threads.

800

max-threads Maximum number of threads allowed in this server to
service client connections. When the limit is reached,
server threads begin servicing multiple connections. A
zero setting causes the server to use a thread for every
client connection.

Note: Set this no higher than max-connections.

0

maximum-message-count Maximum number of messages allowed in a subscription
queue. When the queue reaches this limit, messages block.

Note: Used only if client-subscription is not
configured.

230000

VMware GemFire 9.10 Documentation

VMware by Broadcom 1081

Attribute Description Default Value

maximum-time-between-pings Maximum time, in milliseconds, the server allows to pass
between messages or pings indicating a client is healthy.

Note: A setting of 0 or a negative number turns off client
health monitoring. Be careful not to do this accidentally.

60000

(1 minute)

message-time-to-live Setting used for highly available subscription queues. The
expiration time, in seconds, for non-durable messages in
the secondary server’s client subscription queue. The
system removes non-durable messages that have been in
the queue beyond this time. If set to 0 (zero), the
messages are never removed.

Note: Set this high enough to avoid removing messages
that are still valid, to aovid losing messages during server
failover.

180

(3 minutes)

port Port that the server listens on for client communication. 40404

socket-buffer-size Size for socket buffers used for server-to-client
communication.

32768

tcp-no-delay When set to true, enables TCP_NODELAY for VMware
GemFire server connections to clients.

false

Example:

<cache>

 <cache-server

 port="40404"

 />

 ...

</cache>

<client-subscription>

Overflow specification for client subscription queues. Sets a capacity limit on the in-memory queue
and specifies where to overflow when capacity is reached. By default no overflow is used. Specified
in three parts:

Default: no overflow

API: org.apache.geode.cache.server.ClientSubscriptionConfig

<client-subscription> Attributes

Attribute Description Default

eviction-
policy

How the capacity is calculated. The options are mem for memory use, entry for message
count, and null for no overflow.

null

capacity Used if eviction-policy is not null. Specified in megabytes for mem and as a positive
integer for entry.

1

disk-store-
name

Used if eviction-policy is not null. Default: default disk store. If specified, the disk-store-
name must specify a disk store that is already defined in the cache.

default disk
store

VMware GemFire 9.10 Documentation

VMware by Broadcom 1082

Example:

<cache>

 <cache-server port=4444>

 <client-subscription eviction-policy="entry | mem" capacity=35 overflow-directory

="OverflowDir"></client-subscription>

 ...

 </cache-server>

</cache>

<custom-load-probe>

Application plug-in used to provide current and predicted server load information to the server
locators.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Default: If this is not defined, the default VMware GemFire load probe is used.

API: org.apache.geode.cache.server.setLoadProbe

Example:

<custom-load-probe>

 <class-name>

 myPackage.MyLoadProbe

 </class-name>

</custom-load-probe>

<pool>
Use for client caches. Defines a client’s server pool used to communicate with servers running in a
different cluster.

API: org.apache.geode.cache.client.PoolFactory

<pool> Attributes

Attribute Description Default

free-connection-timeout Amount of time a thread will wait to get a pool
connection before timing out with an exception. This
timeout keeps threads from waiting indefinitely when the
pool’s max-connections has been reached and all
connections in the pool are in use by other threads.

10000

idle-timeout Maximum time, in milliseconds, a pool connection can
stay open without being used when there are more than
min-connections in the pool. Pings over the connection
do not count as connection use. If set to -1, there is no idle
timeout.

5000

load-conditioning-interval Amount of time, in milliseconds, a pool connection can
remain open before being eligible for silent replacement
to a less-loaded server.

300000

(5 minutes)

VMware GemFire 9.10 Documentation

VMware by Broadcom 1083

Attribute Description Default

max-connections Maximum number of pool connections the pool can
create. If the maximum connections are in use, an
operation requiring a client-to-server connection blocks
until a connection becomes available or the free-
connection-timeout is reached. If set to -1, there is no
maximum. The setting must indicate a cap greater than
min-connections.

Note: If you need to use this to cap your pool
connections, you should disable the pool attribute pr-
single-hop-enabled. Leaving single hop enabled can
increase thrashing and lower performance.

-1

min-connections Minimum number of pool connections to keep available at
all times. Used to establish the initial connection pool. If
set to 0 (zero), no connection is created until an operation
requires it. This number is the starting point, with more
connections added later as needed, up to the max-
connection setting. The setting must be an integer greater
than or equal to 0.

1

multiuser-authentication Used for installations with security where you want to
accommodate multiple users within a single client. If set
to true, the pool provides authorization for multiple user
instances in the same client application, and each user
accesses the cache through its own RegionService
instance. If false, the client either uses no authorization or
just provides credentials for the single client process.

false

name Name of this pool. Used in the client region pool-name to
assign this pool to a region in the client cache.

Note: This is a required property with no default setting.

none

ping-interval How often to communicate with the server to show the
client is alive, set in milliseconds. Pings are only sent when
the ping-interval elapses between normal client messages.

Note: Set this lower than the server’s maximum-time-
between-pings.

10000

pr-single-hop-enabled Setting used to improve access to partitioned region data
in the servers. Indicates whether to use metadata about
the partitioned region data storage locations to decide
where to send some data requests. This allows a client to
send a data operation directly to the server hosting the
key. Without this, the client contacts any available server
and that server contacts the data store. This is used only
for operations that can be carried out on a server-by-
server basis, like put, get, and destroy.

true

read-timeout Maximum time, in milliseconds, for the client to wait for a
response from a server.

10000

VMware GemFire 9.10 Documentation

VMware by Broadcom 1084

Attribute Description Default

retry-attempts Number of times to retry a client request before giving up.
If one server fails, the pool moves to the next, and so on
until it is successful or it hits this limit. If the available
servers are fewer than this setting, the pool will retry
servers that have already failed until it reaches the limit. If
this is set to -1, the pool tries every available server once.

-1

server-group Logical named server group to use from the pool. A null
value uses the global server group to which all servers
belong.

Note: This is only used when the locator list is defined.

null

socket-buffer-size Size for socket buffers from the client to the server.
Default: 32768.

32768

statistic-interval Interval, in milliseconds, at which to send client statistics
to the server. If set to -1, statistics are not sent.

-1

subscription-ack-interval Time, in milliseconds, between messages to the primary
server to acknowledge event receipt.

Note: Used only when subscription-redundancy is not
‘0’ (zero).

100

subscription-enabled Boolean indicating whether the server should connect
back to the client and automatically sends server-side
cache update information. Any bind address information
for the client is automatically passed to the server for use
in the callbacks.

false

subscription-message-

tracking-timeout

Time-to-live, in milliseconds, for entries in the client’s
message tracking list.

900000

(15 minutes)

subscription-redundancy Number of servers to use as backup to the primary for
highly available subscription queue management. If set to
0, none are used. If set to -1, all available servers are used.

0

Example:

<pool

 name="publisher"

 subscription-enabled="true">

 <locator

 host="myLocatorAddress1"

 port="12345"/>

 <locator

 host="myLocatorAddress2"

 port="45678"/>

</pool>

<locator>

Addresses and ports of the locators to connect to. You can define multiple locators for the pool.

Note: Provide a locator list or server list, but not both.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1085

API: org.apache.geode.distributed.LocatorLauncher

<locator> Attributes

Attribute Description Default

host Hostname of the locator

port Port number of the locator

Example:

<pool ...>

 <locator

 host="myLocatorHost"

 port="12345"/>

<server>

Addresses and ports of the servers to connect to.

Note: Provide a server list or locator list, but not both.

Default:

API: org.apache.geode.distributed.ServerLauncher

<server> Attributes

Attribute Description Default

host Hostname of the server

port Port number of the server

Example:

<pool ...>

 <server

 host="myServerHost"

 port="123456"/>

</pool>

<disk-store>
Defines a pool of one or more disk stores, which can be used by regions, and client subscription
queues.

Default: The cache default disk store, named “DEFAULT”, is used when disk is used but no disk
store is named.

API: org.apache.geode.cache.DiskStore

<disk-store> Attributes

Table 10. <disk-store> Attributes

Attribute Description Default

VMware GemFire 9.10 Documentation

VMware by Broadcom 1086

Attribute Description Default

name The name of the Disk Store.

auto-compact Set to true to automatically compact the disk files.

compaction-threshold The threshold at which an oplog will become
compactable. Until it reaches this threshold the oplog will
not be compacted.

The threshold is a percentage in the range 0 to 100.

allow-force-compaction Set to true to allow disk compaction to be forced on this
disk store.

max-oplog-size The maximum size, in megabytes, of an oplog (operation
log) file.

time-interval The number of milliseconds that can elapse before
unwritten data is written to disk.

write-buffer-size The size of the write buffer that this disk store uses when
writing data to disk. Larger values may increase
performance but use more memory. The disk store
allocates one direct memory buffer of this size.

queue-size Maximum number of operations that can be
asynchronously queued to be written to disk.

disk-usage-warning-percentage Disk usage above this threshold generates a warning
message. For example, if the threshold is set to 90%, then
on a 1 TB drive falling under 100 GB of free disk space
generates the warning.

Set to "0" (zero) to disable.

90

disk-usage-critical-percentage Disk usage above this threshold generates an error
message and shuts down the member's cache. For
example, if the threshold is set to 99%, then falling under
10 GB of free disk space on a 1 TB drive generates the error
and shuts down the cache.

Set to "0" (zero) to disable.

99

Example:

<disk-store

 name="DEFAULT"

 allow-force-compaction="true">

 <disk-dirs>

 <disk-dir>/export/thor/customerData</disk-dir>

 <disk-dir>/export/odin/customerData</disk-dir>

 <disk-dir>/export/embla/customerData</disk-dir>

 </disk-dirs>

</disk-store>

<disk-dirs>

An element of a disk store that defines a set of <disk-dir> elements.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1087

<disk-dir>

Specifies a region or disk store’s disk directory.

<disk-dir> Attributes

Attribute Description Default

dir-size Maximum amount of space to use for the disk store, in
megabytes.

214748364

(2 petabytes)

Example:

<disk-dir

 dir-size="20480">/host3/users/gf/memberA_DStore</disk-dir>

<pdx>
Specifies the configuration for the Portable Data eXchange (PDX) method of serialization.

API: org.apache.geode.cache.CacheFactory.setPdxReadSerialized, setPdxDiskStore,
setPdxPersistent, setPdxIgnoreUnreadFields and
org.apache.geode.cache.ClientCacheFactory.setPdxReadSerialized, setPdxDiskStore,
setPdxPersistent, setPdxIgnoreUnreadFields

<pdx> Attributes

Attribute Description Default

read-
serialized

Set it to true if you want PDX deserialization to produce a PdxInstance instead of an instance
of the domain class.

ignore-
unread-fields

Set it to true if you do not want unread PDX fields to be preserved during deserialization.
You can use this option to save memory. Set to true only in members that are only reading
data from the cache.

persistent Set to true if you are using persistent regions. This causes the PDX type information to be
written to disk.

disk-store-
name

If using persistence, this attribute allows you to configure the disk store that the PDX type
data will be stored in. By default, the default disk store is used.

Example:

<cache>

 <pdx persistent="true" disk-store-name="myDiskStore">

 <pdx-serializer>

 <class-name>

 org.apache.geode.pdx.ReflectionBasedAutoSerializer

 </class-name>

 <parameter name="classes">

 <string>com.company.domain.DomainObject</string>>

 </parameter>

 </pdx-serializer>

 </pdx>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1088

 ...

</cache>

<pdx-serializer>

Allows you to configure the PdxSerializer for this VMware GemFire member.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Default:

API: org.apache.geode.cache.CacheFactory.setPdxSerializer

Example:

<cache>

 <pdx>

 <pdx-serializer>

 <class-name>com.company.ExamplePdxSerializer</class-name>

 </pdx-serializer>

 </pdx>

 ...

</cache>

<region-attributes>

Specifies a region attributes template that can be named (by id) and referenced (by refid) later in
the cache.xml and through the API.

API: org.apache.geode.cache.RegionFactory or org.apache.geode.cache.ClientRegionFactory

<region-attributes> Attributes

Attribute Description Default

concurrency-level Gives an estimate of the maximum number of application threads that
will concurrently access a region entry at one time. This attribute does
not apply to partitioned regions. This attribute helps VMware GemFire
optimize the use of system resources and reduce thread contention.
This sets an initial parameter on the underlying
java.util.ConcurrentHashMap used for storing region entries.

Note: Before you modify this, read the concurrency level description,
then see the Java API documentation for
java.util.ConcurrentHashMap.

API: setConcurrencyLevel

Example:

<region-attributes

 concurrency-level="10">

</region-attributes>

16 (threads)

VMware GemFire 9.10 Documentation

VMware by Broadcom 1089

Attribute Description Default

data-policy
Specifies how the local cache handles data for a region. This setting
controls behavior such as local data storage and region initialization.

Note: Configure the most common options using the region shortcuts,
RegionShortcut and ClientRegionShortcut. The default data-policy
of normal specifies local cache storage. The empty policy specifies no
local storage. In the region shortcuts, empty corresponds to the
settings with the string PROXY. You can use an empty region for event
delivery to and from the local cache without the memory overhead of
data storage.

You can specify the following data policies:

emp
ty

No data storage in the local cache. The region always
appears empty. Use this for event delivery to and from the
local cache without the memory overhead of data storage -
zero-footprint producers that only distribute data to others
and zero-footprint consumers that only see events. To
receive events with this, set the region's subscription-
attributes interest-policy to all.

nor
mal

Data used locally (accessed with get, stored with put, etc.)
is stored in the local cache. This policy allows the contents in
the cache to differ from other caches.

part
ition

Data is partitioned across local and remote caches using the
automatic data distribution behavior of partitioned regions.
Additional configuration is done in the partition-
attributes.

repli
cate

The region is initialized with the data from other caches.
After initialization, all events for the distributed region are
automatically copied into the local region, maintaining a
replica of the entire distributed region in the local cache.
Operations that would cause the contents to differ with other
caches are not allowed. This is compatible with local scope,
behaving the same as for normal.

pers
iste
nt-
part
ition

Behaves the same as partition and also persists data to
disk.

pers
iste
nt-
repli
cate

Behaves the same as replicate and also persists data to
disk.

prel
oad
ed

Initializes like a replicated region, then, once initialized,
behaves like a normal region.

API: setDataPolicy

Example:

<region-attributes

 data-policy="replicate">

normal

VMware GemFire 9.10 Documentation

VMware by Broadcom 1090

Attribute Description Default

</region-attributes>

This is similar to using a region shortcut withrefid, however when you
use the REPLICATE region shortcut, it automatically sets the region's
scope to distributed-ack.

<region-attributes

 refid="REPLICATE">

</region-attributes>

If you use data-policy, you must set the scope explicitly.

enable-async-
conflation

For TCP/IP distributions between peers, specifies whether to allow
aggregation of asynchronous messages sent by the producer member
for the region. This is a special-purpose Boolean attribute that applies
only when asynchronous queues are used for slow consumers. A false
value disables conflation so that all asynchronous messages are sent
individually. This special-purpose attribute gives you extra control
over peer-to-peer communication between distributed regions using
TCP/IP. This attribute does not apply to client/server communication
or to communication using the UDP unicast or IP multicast protocols.

Note: To use this attribute, the multicast-enabled region attribute
disable-tcp in gemfire.properties must be false (the default for
both). In addition, asynchronous queues must be enabled for slow
consumers, specified with the async* gemfire properties.

API: setEnableAsyncConflation

Example:

<region-attributes

 enable-async-conflation="false">

</region-attributes>

true

enable-subscription-
conflation

Boolean for server regions that specifies whether the server can
conflate its messages to the client. A true value enables conflation.

Note:

The client can override this setting with the conflate-events property
in its gemfire.properties.

API: setEnableSubscriptionConflation

Example:

<region-attributes

 enable-subscription-conflation="true">

 </region-attributes>

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1091

Attribute Description Default

gateway-sender-ids
Specifies one or more gateway sender IDs to use for distributing
region events to remote VMware GemFire sites. Specify multiple IDs
as a comma-separated list.

API: addGatewaySenderId

Example:

<region-attributes

 gateway-sender-ids="nwsender,swsender">

</region-attributes>

not set

async-event-queue-
ids

Specifies one or more asynchronous event queues to use for
distributing region events an AsyncEventListener implementation (for
example, for write-behind cache event handling). Specify multiple IDs
as a comma-separated list.

API: addAsyncEventQueueId

Example:

<region-attributes

 async-event-queue-ids="customerqueue,ordersqueu

e">

</region-attributes>

not set

hub-id
If the enable-gateway attribute is set to true, a comma-separated list
of gateway hub IDs that receive events from the region.

Used only with GemFire version 6.x gateway configurations. For
GemFire 7.0 configuration, see the gateway-sender-id attribute of the
<region-attributes> element.

null

id
Stores the region attribute settings in the cache with this identifier.
Once stored, the attributes can be retrieved using the region attribute
refid.

API: setId

Example:

<region-attributes

 id="persistent-replicated">

</region-attributes>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1092

Attribute Description Default

ignore-jta
Boolean that determines whether operations on this region participate
in active JTA transactions or ignore them and operate outside of the
transactions. This is primarily used in cache loaders, writers, and
listeners that need to perform non-transactional operations on a
region, such as caching a result set.

API: setIgnoreJTA

Example:

<region-attributes

 ignore-jta="true">

</region-attributes>

false

index-update-type
Specifies whether region indexes are maintained synchronously with
region modifications, or asynchronously in a background thread. In the
cache.xml file, this is set as a value, asynchronous or synchronous,
assigned to the index-update-type region attribute. Set this through
the API by passing a boolean to the
setIndexMaintenanceSynchronous method.

API: setIndexMaintenanceSynchronous

Example:

<region-attributes

 index-update-type="asynchronous">

</region-attributes>

synchronous updates

initial-capacity
Together with the load-factor region attribute, sets the initial
parameters on the underlying java.util.ConcurrentHashMap used for
storing region entries.

API: setInitialCapacity

Example:

<region-attributes

 initial-capacity="20">

</region-attributes>

16

VMware GemFire 9.10 Documentation

VMware by Broadcom 1093

Attribute Description Default

is-lock-grantor
Determines whether this member defines itself as the lock grantor for
the region at region creation time. This only specifies whether the
member becomes lock grantor at creation and does not reflect the
current state of the member’s lock grantor status. The member’s lock
grantor status may change if another member subsequently defines the
region with is-lock-grantor set to true. This attribute is only relevant
for regions with global scope, as only they allow locking. It affects
implicit and explicit locking.

API: setLockGrantor

Example:

<region-attributes

 is-lock-grantor="true">

</region-attributes>

false

load-factor
Together with the initial-capacity region attribute, sets the initial
parameters on the underlying java.util.ConcurrentHashMap used for
storing region entries. This must be a floating point number between 0
and 1, inclusive.

Note:

Before you set this attribute, read the discussion of initial capacity and
load factor, then see the Java API documentation for
java.util.ConcurrentHashMap.

API: setLoadFactor

Example:

<region-attributes

 load-factor="0.85">

</region-attributes>

.75

mirror-type Deprecated

multicast-enabled
Boolean that specifies whether distributed operations on a region
should use multicasting. To enable this, multicast must be enabled for
the cluster with the mcast-port gemfire.properties setting.

API: setMulticastEnabled

Example:

<region-attributes

 multicast-enabled="true">

</region-attributes>

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1094

Attribute Description Default

pool-name
Identifies the region as a client region and specifies the server pool the
region is to use. The named pool must be defined in the client cache
before the region is created. If this is not set, the region does not
connect to the servers as a client region.

API: setPoolName

Examples:

This declaration creates the region as a client region with a server pool
named DatabasePool. This pool-name specification is required, as
there are multiple pools in the client cache:

<client-cache>

 <pool name="DatabasePool"

 subscription-enabled="true">

 ...

 </pool>

 <pool >

 name="OtherPool"

 subscription-enabled="true">

 ...

 </pool>

 <region ...

 <region-attributes

 pool-name="DatabasePool">

 </region-attributes>

 ...

This declaration creates the region as a client region assigned the
single pool that is defined for the client cache. Here the pool-name
specification is implied to be the only pool that exists in the cache:

<client-cache>

 <pool

 name="publisher"

 subscription-enabled="true">

 ...

 </pool>

 <region

 name="myRegion"

 refid="CACHING_PROXY">

 </region>

</client-cache>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1095

Attribute Description Default

disk-store-name
Assigns the region to the disk store with this name from the disk stores
defined for the cache. Persist region data to disk by defining the region
as persistent using the Shortcut Attribute Options or data-policy
settings. Overflow data to disk by implementing LRU eviction-
attributes with an action of overflow to disk. Each disk store defines
the file system directories to use, how data is written to disk, and other
disk storage maintenance properties. In addition, the disk-
synchronous region attribute specifies whether writes are done
synchronously or asynchronously.

API: setDiskStoreName

Example:

<region-attributes

 disk-store-name="myStoreA" >

</region-attributes>

null

disk-synchronous
For regions that write to disk, boolean that specifies whether disk
writes are done synchronously for the region.

API: setDiskSynchronous

Example:

<region-attributes

 disk-store-name="myStoreA"

 disk-synchronous="true">

</region-attributes>

true

refid
Retrieves region shortcuts and user-defined named region attributes
for attributes initialization

API: setRefId

Example:

<region-attributes

 refid="persistent-replicated">

 <!-- Override any stored

 attribute settings that you

 need to ... -->

</region-attributes>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1096

Attribute Description Default

scope
Definition: Determines how updates to region entries are distributed to
the other caches in the cluster where the region and entry are defined.
Scope also determines whether to allow remote invocation of some of
the region’s event handlers, and whether to use region entry versions
to provide consistent updates across replicated regions.

Note:

You can configure the most common of these options with VMware
GemFire region shortcuts in RegionShortcut and
ClientRegionShortcut.

Note:

Server regions that are not partitioned must be replicated with
distributed-ack or global scope. The region shortcuts that specify
REPLICATE have distributed-ack scope.

Set one of the following scope values:

local No distribution. The region is visible only to threads
running inside the member.

distrib
uted-
no-ack

Events are distributed to remote caches with no
acknowledgement required.

distrib
uted-
ack

Events are distributed to remote caches with receipt
acknowledgement required. Region entry versions are
used to provide consistent updates across members of
the cluster.

global Events are distributed to remote caches with global
locking to ensure distributed cache consistency.

API: setScope

Example:

<region-attributes

 scope="distributed-ack">

</region-attributes>

distributed-no-ack

VMware GemFire 9.10 Documentation

VMware by Broadcom 1097

Attribute Description Default

statistics-enabled Boolean specifying whether to gather statistics on the region. Must be
true to use expiration on the region. VMware GemFire provides a
standard set of statistics for cached regions and region entries, which
give you information for fine-tuning your cluster. Unlike other VMware
GemFire statistics, statistics for local and distributed regions are not
archived and cannot be charted. They are kept in instances of
org.apache.geode.cache.CacheStatistics and made available
through the region and its entries through the Region.getStatistics
and Region.Entry.getStatistics methods.

API: setStatisticsEnabled

Example:

<region-attributes

 statistics-enabled="true">

</region-attributes>

false

cloning-enabled
Determines how fromDelta applies deltas to the local cache for delta
propagation. When true, the updates are applied to a clone of the
value and then the clone is saved to the cache. When false, the value is
modified in place in the cache.

API: setCloningEnabled

Example:

<region-attributes

 cloning-enabled="true">

</region-attributes>

false

concurrency-checks-
enabled

Determines whether members perform checks to provide consistent
handling for concurrent or out-of-order updates to distributed regions.
See Consistency for Region Updates.

Note: Applications that use a client-cache may want to disable
concurrency checking in order to see all events for a region. VMware
GemFire server members can continue using concurrency checks for
the region, but they will pass all events to the client cache. This
configuration ensures that the client sees all events, but it does not
prevent the client cache from becoming out-of-sync with the server
cache.

API: setConcurrencyChecksEnabled

Example:

<region-attributes

 concurrency-checks-enabled="true">

</region-attributes>

true

VMware GemFire 9.10 Documentation

VMware by Broadcom 1098

Attribute Description Default

off-heap
Specifies that the region uses off-heap memory to store entry values,
including values for region entries and queue entries. The region will
still use heap memory for everything else, such as entry keys and the
ConcurrentHashMap.

API: setOffHeap

Example:

<region-attributes

 off-heap="true">

</region-attributes>

false

<key-constraint>

Defines the type of object to be allowed for the region entry keys. This must be a fully-qualified
class name. The attribute ensures that the keys for the region entries are all of the same class. If
key-constraint is not used, the region’s keys can be of any class. This attribute, along with value-
constraint, is useful for querying and indexing because it provides object type information to the
query engine.

Note: Set the constraint in every cache where you create or update the region entries. For
client/server installations, match constraints between client and server and between clusters. The
constraint is only checked in the cache that does the entry put or create operation. To avoid
deserializing the object, the constraint is not checked when the entry is distributed to other caches.

Default: not set

API: org.apache.geode.cache.RegionFactory.setKeyConstraint

Example:

<region-attributes>

 <key-constraint>

 java.lang.String

 </key-constraint>

</region-attributes>

<value-constraint>
Defines the type of object to be allowed for the region entry values. This must be a fully-qualified
class name. If value constraint isn’t used, the region’s value can be of any class. This attribute, along
with key-constraint, is useful for querying and indexing because it provides object type
information to the query engine.

Note: Set the constraint in every cache where you create or update the region entries. For
client/server installations, match constraints between client and server and between clusters. The
constraint is only checked in the cache that does the entry put or create operation. To avoid
deserializing the object, the constraint is not checked when the entry is distributed to other caches.

Default: not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1099

API: org.apache.geode.cache.RegionFactory.setValueConstraint

Example:

<region-attributes>

 <value-constraint>

 cacheRunner.Portfolio

 </value-constraint>

</region-attributes>

<region-time-to-live>

Expiration setting that specifies how long the region can remain in the cache without anyone
accessing or updating it.

Default: not set - no expiration of this type

API: org.apache.geode.cache.RegionFactory.setRegionTimeToLive

Example:

<region-attributes

 statistics-enabled="true">

 <region-time-to-live>

 <expiration-attributes

 timeout="3600"

 action="local-destroy"/>

 </region-time-to-live>

</region-attributes>

<expiration-attributes>
Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If timeout is
not specified, it defaults to zero (which means no expiration).

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1100

Attribute Description Default

action Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <region-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </region-time-to-live>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 <custom-expiry>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1101

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<region-idle-time>

Expiration setting that specifies how long the region can remain in the cache without anyone
accessing it.

Note: To ensure reliable read behavior across the partitioned region, use region-time-to-live for
region expiration instead of this setting.

Default: not set - no expiration of this type

API: org.apache.geode.cache.RegionFactory.setRegionIdleTimeout

Example:

<region-attributes statistics-enabled="true">

 <region-idle-time>

 <expiration-attributes

 timeout="3600"

 action="local-destroy"/>

 </region-idle-time>

</region-attributes>

<expiration-attributes>

Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If timeout is
not specified, it defaults to zero (which means no expiration).

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1102

Attribute Description Default

action Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <region-idle-time>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </region-idle-time>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 <custom-expiry>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1103

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<entry-time-to-live>

Expiration setting that specifies how long the region’s entries can remain in the cache without
anyone accessing or updating them. See <expiration-attributes> for details.

Default: not set - no expiration of this type.

API: org.apache.geode.cache.RegionFactory.setEntryTimeToLive

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<expiration-attributes>

Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If timeout is
not specified, it defaults to zero (which means no expiration).

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1104

Attribute Description Default

action Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy">

 <custom-expiry>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1105

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<entry-idle-time>

Expiration setting that specifies how long the region’s entries can remain in the cache without
anyone accessing them. See <expiration-attributes> for details.

Note: To ensure reliable read behavior across the partitioned region, use entry-time-to-live for
entry expiration instead of this setting.

API: org.apache.geode.cache.RegionFactory.setEntryIdleTimeout

Example:

<region-attributes

 statistics-enabled="true">

 <entry-idle-time>

 <expiration-attributes

 timeout="60"

 action="local-invalidate"/>

 </expiration-attributes>

 </entry-idle-time>

</region-attributes>

<expiration-attributes>

Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If timeout is
not specified, it defaults to zero (which means no expiration).

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1106

Attribute Description Default

action Action that should take place when a region or an entry expires.
Select one of the following expiration actions:

loca
l-
dest
roy

Removes the region or entry from the local cache, but does
not distribute the removal operation to remote members.
You cannot use this action on partitioned region entries.

dest
roy

Removes the region or entry completely from the cache.
Destroy actions are distributed according to the region's
distribution settings. Use this option when the region or
entry is no longer needed for any application in the cluster.

inval
idat
e

Default expiration action. Marks an entry or all entries in the
region as invalid. Distributes the invalidation according to
the region's scope. This is the proper choice when the region
or the entry is no longer valid for any application in the
cluster.

loca
l-
inval
idat
e

Marks an entry or all entries in the region as invalid but does
not distribute the operation. You cannot use this action on
partitioned region entries. Local region invalidation is only
supported for regions that are not configured as replicated
regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <entry-idle-time>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-idle-time>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy">

 <custom-expiry>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1107

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<partition-attributes>

Defines the region as partitioned and controls partitioning behavior. This is set during the region
creation in the first data store for the partitioned region.

Note: With the exception of local-max-memory, all members defining a partitioned region must use
the same partition attribute settings.

API: org.apache.geode.cache.RegionFactory.setPartitionAttributes

<partition-attributes> Attributes

Attribute Description Default

colocated
-with

The full name of a region to colocate with this region. The named region must exist before this
region is created.

null

local-
max-
memory

Maximum megabytes of memory set aside for this region in the local member. This is all
memory used for this partitioned region - for primary buckets and any redundant copies. This
value must be smaller than the Java settings for the initial or maximum JVM heap. When the
memory use goes above this value, VMware GemFire issues a warning, but operation
continues. Besides setting the maximum memory to use for the member, this setting also tells
VMware GemFire how to balance the load between members where the region is defined. For
example, if one member sets this value to twice the value of another member’s setting, VMware
GemFire works to keep the ratio between the first and the second at two-to-one, regardless of
how little memory the region consumes. This is a local parameter that applies only to the local
member. A value of 0 disables local data caching.

90% (of
local
heap)

recovery-
delay

Applies when redundant-copies is greater than zero. The number of milliseconds to wait after
a member crashes before reestablishing redundancy for the region. A setting of -1 disables
automatic recovery of redundancy after member failure.

-1

redundant
-copies

Number of extra copies that the partitioned region must maintain for each entry. Range: 0-3. If
you specify 1, this partitioned region maintains the original and one backup, for a total of two
copies. A value of 0 disables redundancy.

0

startup-
recovery-
delay

Applies when redundant-copies is greater than zero. The number of milliseconds a newly
started member should wait before trying to satisfy redundancy of region data stored on other
members. A setting of -1 disables automatic recovery of redundancy after new members join.

0

total-
max-
memory

Maximum combined megabytes of memory to be used by all processes hosting this region for
all copies, primary and redundant.

 Intege

r.MAX_V

ALUE

total-
num-
buckets

Total number of buckets or data storage areas allotted for the entire partitioned region in the
distributed cache. As data moves from one member to another, the entries in a bucket move as
one unit. This value should be a prime number at least four times the number of data stores.
More buckets increases overhead, however, especially when redundant-copies = 2 or 3 .

113

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1108

<region-attributes>

 <partition-attributes

 redundant-copies="1"

 total-num-buckets= "613"/>

</region-attributes>

<partition-resolver>

Describes a custom PartitionResolver for a region.

API: org.apache.geode.cache.PartitionAttributesFactory.setPartitionResolver

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<partition-resolver> Attributes

Attribute Description Default

name The name of this custom PartitionResolver.

Example:

<region name="trades">

 <region-attributes>

 <partition-attributes>

 <partition-resolver name="TradesPartitionResolver">

 <class-name>myPackage.TradesPartitionResolver

 </class-name>

 </partition-resolver>

 </partition-attributes>

 </region-attributes>

</region>

<partition-listener>

Defines a custom PartitionListener for a partitioned region.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

API: org.apache.geode.cache.PartitionAttributesFactory.PartitionListener

Example:

<partition-attributes redundant-copies="1">

 <partition-listener>

 <class-name>com.myCompany.ColocatingPartitionListener</class-name.

 <parameter name="viewRegions">

 <string>/customer/ViewA,/customer/ViewB</string>

 </parameter>

 </partition-listener>

 </partition-attributes>

<fixed-partition-attributes>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1109

Describes a partition in a Fixed Partitioned Region.

API: org.apache.geode.cache.PartitionAttributesFactory.addFixedPartitionAttributes

<fixed-partition-attributes> Attributes

Attribute Description Default

partition-name The name of this fixed partition.

is-primary Set to true if this partition is the primary partition. false

num-buckets The number of buckets assigned to this partition.

Example:

<cache>

 <region name="Trades">

 <region-attributes>

 <partition-attributes

 redundant-copies="1">

 <partition-resolver name="QuarterFixedPartitionResolver">

 <fixed-partition-attributes

 partition-name="Q1"

 is-primary="true"/>

 <fixed-partition-attributes

 partition-name="Q3"

 is-primary="false"

 num-buckets="6"/>

 </partition-attributes>

 </region-attributes>

 </region>

</cache>

<membership-attributes>

Establishes reliability requirements and behavior for a region. Use this to configure the region to
require one or more membership roles to be running in the system for reliable access to the region.
You can set up your own roles, such as producer or backup, specifying each role as a string.
Membership attributes have no effect unless one or more required roles are specified.

API: org.apache.geode.cache.RegionFactory.setMembershipAttributes

<membership-attributes> Attributes

VMware GemFire 9.10 Documentation

VMware by Broadcom 1110

Attribute Description Default

loss-action
Set one of the following values to specify how access to the region is
affected when one or more required roles are lost.

full-access Access to the region is unaffected when required roles
are missing.

limited-
access

Only local access to the region is allowed when
required roles are missing.

no-access The region is unavailable when required roles are
missing.

reconnect Loss of required roles causes the entire cache to be
closed.

no_access

resumption-action Specifies how the region is affected by resumption of reliability when
one or more missing required roles return to the distributed
membership. Set one of the following values:

non
e

No special action takes place when reliability resumes.

reini
tializ
e

Resumption of reliability causes the region to be cleared of
all data and replicated regions will do a new getInitialImage
operation to repopulate the region.

reinitialize

Example:

<!-- If there is no "producer" member

 running, do not allow access to the region -->

<region-attributes>

 <membership-attributes

 loss-action="no-access"

 resumption-action="none">

 <required-role

 name="producer">

 </required-role>

 </membership-attributes>

</region-attributes>

<required-role>

Specifies a role that is required for reliable access to the region.

API: org.apache.geode.cache.MembershipAttributes

<required-role> Attributes

Attribute Description Default

name The name of the required role.

Example:

<membership-attributes

 loss-action="no-access"

VMware GemFire 9.10 Documentation

VMware by Broadcom 1111

 resumption-action="none">

 <required-role name="producer"/>

</membership-attributes>

<subscription-attributes>

Specifies subscriber requirements and behavior for the region. There is one subscription attribute,
interest-policy, that defines which distributed entry events are delivered to the local region.

Note: The interest policy determines which events are delivered, but the data-policy determines
how the events are applied to the cache.

API: org.apache.geode.cache.RegionFactory.setSubscriptionAttributes

<subscription-attributes> Attributes

Attribute Description Default

interest-policy The two interest-policy options are:

cach
e-
cont
ent

The default, registers interest in events only for entries that
are already in the local region. For partitioned regions, the
local member must hold the primary copy of the entry’s
data.

all Registers interest in events for all entries that are anywhere
in the distributed or partitioned region, regardless of
whether they are already present in the local cache.

cache-content

Example:

<region-attributes>

 <subscription-attributes

 interest-policy="all"/>

</region-attributes>

<cache-loader>

An event-handler plug-in that allows you to program for cache misses. At most, one cache loader
can be defined in each member for the region. For distributed regions, a cache loader may be
invoked remotely from other members that have the region defined. When an entry get results in a
cache miss in a region with a cache loader defined, the loader’s load method is called. This method
is usually programmed to retrieve data from an outside data source, but it can do anything required
by your application.

For partitioned regions, if you want to have a cache loader, install an instance of the cache loader in
every data store. Partitioned regions support partitioned loading, where each cache loader loads
only the data entries in the local member. If data redundancy is configured, data is loaded only if
the local member holds the primary copy.

API: org.apache.geode.cache.RegionFactory.setCacheLoader

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1112

<region-attributes>

 <cache-loader>

 <class-name>quickstart.SimpleCacheLoader</class-name>

 </cache-loader>

</region-attributes>

<cache-writer>

An event-handler plug-in that allows you to receive before-event notification for changes to the
region and its entries. It also has the ability to cancel events. At most, one cache writer can be
defined in each member for the region. A cache writer may be invoked remotely from other
members that have the region defined.

API: org.apache.geode.cache.RegionFactory.setCacheWriter

Example:

<region-attributes>

 <cache-writer>

 <class-name>quickstart.SimpleCacheWriter</class-name>

 </cache-writer>

</region-attributes>

<cache-listener>

An event-handler plug-in that receives after-event notification of changes to the region and its
entries. Any number of cache listeners can be defined for a region in any member. VMware
GemFire offers several listener types with callbacks to handle data and process events. Depending
on the data-policy and the interest-policy subscription attributes, a cache listener may receive
only events that originate in the local cache, or it may receive those events along with events that
originate remotely.

Specify the Java class for the cache listener and its initialization parameters with the <class-name>
and <parameter> sub-elements. See <class-name> and <parameter>.

API: org.apache.geode.cache.RegionFactory.addCacheListener

Example:

<region-attributes>

 <cache-listener>

 <class-name>

 quickstart.SimpleCacheListener

 </class-name>

 </cache-listener>

</region-attributes>

<compressor>
A compressor registers a custom class that extends Compressor to support compression on a
region.

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1113

 ...

<compressor>

<class-name>

 <parameter>

 <string>

 <declarable>

</compressor>

...

<eviction-attributes>

Specifies whether and how to control a region’s size. Size is controlled by removing least recently
used (LRU) entries to make space for new ones. This may be done through destroy or overflow
actions. You can configure your region for lru-heap-percentage with an eviction action of local-
destroy using stored region attributes.

Default: Uses the lru-entry-count algorithm.

API: org.apache.geode.cache.RegionFactory.setEvictionAttributes

Example:

<region-attributes>

 <eviction-attributes>

 <lru-entry-count

 maximum="1000"

 action="overflow-to-disk"/>

 </eviction-attributes>

</region-attributes

<lru-entry-count>

Using the maximum attribute, specifies maximum region capacity based on entry count.

<lru-entry-count> Attributes

Attribute Description Default

action Set one of the following eviction actions:

loc
al-
des
tro
y

Removes the entry from the local cache, but does not
distribute the removal operation to remote members. This
action can be applied to an entry in a partitioned region, but
is not recommended if redundancy is enabled (redundant-
copies > 0), as it introduces inconsistencies between the
redundant buckets. When applied to an entry in a replicated
region, VMware GemFire silently changes the region type to
"preloaded" to accommodate the local modification.

ove
rflo
w-
to-
dis
k

The entry's value is overflowed to disk and set to null in
memory. The entry's key is retained in the cache.

local-destroy

VMware GemFire 9.10 Documentation

VMware by Broadcom 1114

Attribute Description Default

maximum The maximum number of entries allowed in a region.

<lru-heap-percentage>

Runs evictions when the VMware GemFire resource manager says to. The manager orders
evictions when the total cache size is over the heap or off-heap percentage limit specified in the
resource manager configuration. You can declare a Java class that implements the ObjectSizer
interface to measure the size of objects in the Region.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<lru-heap-percentage> Attributes

Attribute Description Default

action Set one of the following eviction actions:

loc
al-
des
tro
y

Removes the entry from the local cache, but does not
distribute the removal operation to remote members. This
action can be applied to an entry in a partitioned region, but
is not recommended if redundancy is enabled (redundant-
copies > 0), as it introduces inconsistencies between the
redundant buckets. When applied to an entry in a replicated
region, VMware GemFire silently changes the region type to
"preloaded" to accommodate the local modification.

ove
rflo
w-
to-
dis
k

The entry's value is overflowed to disk and set to null in
memory. The entry's key is retained in the cache.

local-destroy

<lru-memory-size>

Using the maximum attribute, specifies maximum region capacity based on the amount of memory
used, in megabytes. You can declare a Java class that implements the ObjectSizer interface to
measure the size of objects in the Region.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<lru-memory-size> Attributes

VMware GemFire 9.10 Documentation

VMware by Broadcom 1115

Attribute Description Default

action Set one of the following eviction actions:

loc
al-
des
tro
y

Removes the entry from the local cache, but does not
distribute the removal operation to remote members. This
action can be applied to an entry in a partitioned region, but
is not recommended if redundancy is enabled (redundant-
copies > 0), as it introduces inconsistencies between the
redundant buckets. When applied to an entry in a replicated
region, VMware GemFire silently changes the region type to
"preloaded" to accommodate the local modification.

ove
rflo
w-
to-
dis
k

The entry's value is overflowed to disk and set to null in
memory. The entry's key is retained in the cache.

local-destroy

maximum The maximum amount of memory used in the region, in megabytes.

<jndi-bindings>

Specifies the binding for a data-source used in transaction management. See Configuring Database
Connections Using JNDI.

Example:

<jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 jndi-name="newDB2trans"

 init-pool-size="20"

 max-pool-size="100"

 idle-timeout-seconds="20"

 blocking-timeout-seconds="5"

 login-timeout-seconds="10"

 xa-datasource-class="org.apache.derby.jdbc.EmbeddedXADataSource"

 user-name="mitul"

 password="encrypted(83f0069202c571faf1ae6c42b4ad46030e4e31c17409e19a)">

 <config-property>

 <config-property-name>Description</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>pooled_transact</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>CreateDatabase</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>create</config-property-value>

 </config-property>

 . . .

 </jndi-binding>

 </jndi-bindings>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1116

<jndi-binding>

For every datasource that is bound to the JNDI tree, there should be one <jndi-binding> element.
This element describes the property and the configuration of the datasource. VMware GemFire
uses the attributes of the <jndi-binding> element for configuration. Use the <config-property>
element to configure properties for the datasource.

We recommend that you set the username and password with the user-name and password jndi-
binding attributes rather than using the <config-property> element.

<jndi-binding> Attributes

Attribute Description Default

blocking-timeout-seconds The number of seconds that a
connection remains associated with a
transaction. If this value is exceeded,
the connection is disassociated from
the transaction.

120

conn-pooled-datasource-class Java class used for the
PooledDataSource type.

connection-url URL for connecting to the datasource.

Note:

If you are connecting to a JCA data
source driver that implements XA
transactions (where the jndi-binding
type is XAPooledDataSource), do not
use this attribute. Instead, define
configuration properties for your
database. See <config-property> for
an example.

idle-timeout-seconds The maximum number of seconds that
a connection can remain idle in a
pool. When this threshold is reached,
the connection is removed.

600

init-pool-size The initial pool size of a
PooledConnection (an XAConnection
or a non-XAConnection).

10

jdbc-driver-class Java class used for the
SimpleDataSource type.

jndi-name The jndi-name attribute is the key
binding parameter. If the value of
jndi-name is a DataSource, it is bound
as java:/myDatabase, where
myDatabase is the name you assign
to your data source. If the data source
cannot be bound to JNDI at runtime,
VMware GemFire logs a warning.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1117

Attribute Description Default

login-timeout-seconds
The maximum number of seconds for
which a thread seeking a connection
from a connection pool may be
blocked. If the thread is unable to
obtain connection in the stipulated
time, a PoolException is thrown

If a connection is available the thread
returns immediately.

If an existing connection is not
available and the maximum number of
connections in the pool has not been
reached, a new connection is created
and the thread returns immediately
with the connection.

If a connection is not available, the
thread blocks for the specified time
while waiting for an available
connection.

30

managed-conn-factory-class If the Resource Adapter is of type
ManagedDataSource, this class
becomes the source of the
PooledConnection. (This class
interface complies with the J2CA Java
2 Connector Architecture.)

max-pool-size The maximum size of the
PooledConnection.

30

password Password to access the datasource.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1118

Attribute Description Default

transaction-type When the type attribute is set to
ManagedDataSource, specifies the
type of transaction. Set one of the
following transaction-types:

XA
Tra
nsa
cti
on

Select this option when you
want to use
aManagedConnection
interface with a Java
Transaction Manager to
define transaction
boundaries. This option
allows a
ManagedDataSource to
participate in a transaction
with a VMware GemFire
cache.

No
Tra
nsa
cti
on

No transactional behavior is
used.

Lo
cal
Tra
nsa
cti
on

Select this option when using
a ManagedDataSource that is
not managed by the Java
Transaction manager.

none

VMware GemFire 9.10 Documentation

VMware by Broadcom 1119

Attribute Description Default

type Set one of the following types:

XAP
ool
edD
ata
Sou
rce

Pooled SQL connections.
For this type, you must also
set the xa-datasource-
class attribute.

Man
age
dDa
taS
our
ce

JNDI binding type for the
J2EE Connector
Architecture (JCA).
ManagedConnectionFactory
. For information about the
ManagedConnection
interface, see Interface
ManagedConnection in the
Oracle documentation.

Poo
led
Dat
aSo
urce

Pooled SQL connections.
For this type, you must also
set the conn-pooled-
datasource-class

attribute.

Sim
ple
Dat
aSo
urce

Single SQL connection. No
pooling of SQL connections
is done. Connections are
generated on the fly and
cannot be reused. For this
type, you must also set the
jdbc-driver-class

attribute.

none

user-name User name to access to the
datasource.

xa-datasource-class Java class used for the
XAPooledDataSource type.

<config-property>

A configuration property of the datasource. Use the sub-elements to identify the name, datatype,
and value of the property.

Default:

Example:

<config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

</config-property>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1120

https://docs.oracle.com/javaee/6/api/javax/resource/spi/ManagedConnection.html

Configuration properties vary depending on the database vendor. See Configuring Database
Connections Using JNDI for examples of different configuration property configurations.

<config-property-name>

The name of this datasource property.

<config-property-type>

The data type of this datasource property.

<config-property-value>

The value of this datasource property.

<region>

Defines a region in the cache. See <region-attributes> for more details on configuring regions. You
can specify zero or more subregions within a region. See Create and Access Data Subregions for
restrictions on creating subregions. For example, you cannot create a partitioned subregion.

Default:

API: org.apache.geode.cache.RegionFactory or org.apache.geode.cache.ClientRegionFactory

<region> Attributes

Attribute Description Default

name Specify the name for the region. See Region Management for details.

refid Used to apply predefined attributes to the region being defined. If the nested “region-attributes”
element has its own “refid”, then it will cause the “refid” on the region to be ignored. The “refid”
region attribute can be set to the name of a RegionShortcut or a ClientRegionShortcut. For more
information, see Region Shortcuts and Custom Named Region Attributes and Storing and
Retrieving Region Shortcuts and Custom Named Region Attributes.

Example:

<!--Using region shortcut-->

<region

 name="PartitionedRegion"

 refid="PARTITION_REDUNDANT">

...

</region>

<!-- Retrieving and storing attributes -->

<region-attributes

 id="myPartition"

 refid="PARTITION_REDUNDANT">

 <partition-attributes

 local-max-memory="512"/>

</region-attributes>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1121

<!-- Attributes are retrieved and applied in the first region -->

<region name="PartitionedRegion1" refid="myPartition"/>

See <region-attributes> for a complete listing of region attributes.

<index>

Describes an index to be created on a region. The index node, if any, should all come immediately
after the “region-attributes” node. The “name” attribute is a required field which identifies the
name of the index. See Working with Indexes for more information on indexes.

Default:

API: org.apache.geode.cache.query.QueryService.createIndex, createKeyIndex,
createHashIndex

<index> Attributes

Attribute Description Default

name Required. Name of the index.

from-
clause

Specifies the collection(s) of objects that the index ranges over. The from-clause must only
contain one and only one region path.

expressio
n

Specifies the lookup value of the index.

imports String containing the imports used to create the index. String should be specified in the query
language syntax with each import statement separated by a semicolon. The imports statement
provides packages and classes used in variable typing in the indexed and FROM expressions.

key-index True or false. Whether the index should be a key index. If true, the region key specified in the
indexed expression is used to evaluate queries

type Possible values are “hash” or “range”. range

Example:

<region name=exampleRegion>

 <region-attributes . . . >

 </region-attributes>

 <index

 name="myIndex"

 from-clause="/exampleRegion"

 expression="status"/>

 <index

 name="myKeyIndex"

 from-clause="/exampleRegion"

 expression="id" key-index="true"/>

 <index

 name="myHashIndex"

 from-clause="/exampleRegion p"

 expression="p.mktValue" type="hash"/>

 ...

</region>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1122

<lucene:index>

Describes a Lucene index to be created on a region. The lucene namespace and the scoping
operator (:) must be specified, as the VMware GemFire cache namespace also defines an index
element (for OQL indexes).

API: org.apache.geode.cache.lucene package

<lucene:index> Attributes | Attribute | Description | Default | |————-|
——
———|
———| | name | Required. Name of the Lucene index. | |

Example:

<cache

 xmlns="http://geode.apache.org/schema/cache"

 xmlns:lucene="http://geode.apache.org/schema/lucene"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache

 http://geode.apache.org/schema/cache/cache-1.0.xsd

 http://geode.apache.org/schema/lucene

 http://geode.apache.org/schema/lucene/lucene-1.0.xsd"

 version="1.0">

 <region name="regionA" refid="PARTITION">

 <lucene:index name="myIndex">

 <lucene:field name="x" />

 <lucene:field name="y" />

 </lucene:index>

 </region>

</cache>

<lucene:field>
Describes a field to be included in a Lucene index. Including the lucene namespace and the
scoping operator (:) clarifies, but is not required.

API: org.apache.geode.cache.lucene package

<lucene:field> Attributes | Attribute | Description | Default | |————-|————-|———| | name
| Required. A string that defines the name of the field. If a single field is defined by the value
"__REGION_VALUE_FIELD", then the entire value is used as a single field. | | | analyzer | A string that
provides the path to the analyzer to use for this field. A value of "null" uses the default analyzer. |
"null" |

Example:

<region name="dataregion" refid="PARTITION_REDUNDANT">

 <lucene:index name="full_value_index">

 <lucene:field name="__REGION_VALUE_FIELD"/>

 </lucene:index>

</region>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1123

<entry>

An “entry” element describes an entry to be added to a region. Note that if an entry with the given
key already exists in the region, it will be replaced.

Default:

API: org.apache.geode.cache.Region.create, put, get, putAll, getAll

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

 </entry>

</region>

<key>
Required. Describes the key in a region entry. A key can contain either a <string> or a <declarable>
sub-element.

<string>
Specifies a String to be placed in a Region entry.

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

 </entry>

</region>

<declarable>

Specifies a Declarable object to be placed in a Region entry.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: Declarable

Example:

<parameter name="cacheserver">

 <declarable>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1124

 <class-name>org.apache.geode.addon.cache.CacheServerInitializer</class-name>

 <parameter name="system.property.prefix">

 <string>cacheserver</string>

 </parameter>

 </declarable>

</parameter>

<value>

Required. Describes the value of a region entry. A <value> can contain either a <string> or a
<declarable> sub-element.

<string>

Specifies a String to be placed in a Region entry.

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

 </entry>

</region>

<declarable>

Specifies a Declarable object to be placed in a Region entry.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: Declarable

Example:

<parameter name="cacheserver">

 <declarable>

 <class-name>org.apache.geode.addon.cache.CacheServerInitializer</class-name>

 <parameter name="system.property.prefix">

 <string>cacheserver</string>

 </parameter>

 </declarable>

</parameter>

<region>
When nested within a <region> element, defines a subregion. See Create and Access Data
Subregions for restrictions on creating subregions. For example, you cannot create a partitioned
subregion.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1125

See <region>

<function-service>

Configures the behavior of the function execution service.

Example:

<cache>

 ...

 </region>

<function-service>

 <function>

 <class-name>com.myCompany.tradeService.cache.func.TradeCalc</class-name>

 </function>

</function-service>

<function>

Defines a function for registration in the function service

Specify the Java class for the function and its initialization parameters with the <class-name> and
<parameter> sub-elements. See <class-name> and <parameter>.

Default:

API: org.apache.geode.cache.execute.FunctionService

Example:

<function>

 <class-name>

 com.myCompany.tradeService.cache.func.TradeCalc

 </class-name>

</function>

<resource-manager>
A memory monitor that tracks cache size as a percentage of total heap or off-heap memory and
controls size by restricting access to the cache and prompting eviction of old entries from the
cache. For tenured heap, used in conjunction with settings for JVM memory and Java garbage
collection. For off-heap memory, used with the off-heap memory manager.

API: org.apache.geode.cache.control.ResourceManager

<resource-manager> Attributes

VMware GemFire 9.10 Documentation

VMware by Broadcom 1126

Attribute Description Default

critical-heap-
percentage

Percentage of heap at or above which the cache is considered in
danger of becoming inoperable due to garbage collection pauses or
out of memory exceptions.

Only one change to this attribute or critical heap percentage will be
allowed at any given time and its effect will be fully realized before the
next change is allowed. This feature requires additional VM flags to
perform properly. See setCriticalHeapPercentage() for details.

0

eviction-heap-
percentage

Set the percentage of heap at or above which the eviction should
begin on regions configured for HeapLRU eviction.

Changing this value may cause eviction to begin immediately.

The default is 0, if no region is configured with heap eviction

If critical-heap-percentage is set to a non-zero value, 5%
less than that value.

80%, if critical-heap-percentage is not configured.

0

critical-off-heap-
percentage

Percentage of off-heap memory at or above which the cache is
considered in danger of becoming inoperable due to garbage
collection pauses or out of memory exceptions.

0

eviction-off-heap-
percentage

Set the percentage of off-heap memory at or above which the eviction
should begin on Regions configured for HeapLRU eviction.

The default is 0, if no region is configured with heap eviction

If critical-off-heap-percentage is set to a non-zero value,
5% less than that value.

80%, if critical-off-heap-percentage is not configured.

0

Example:

<cache>

...

 <resource-manager

 critical-heap-percentage="99.9"

 eviction-heap-percentage="85"/>

...

</cache>

<serialization-registration>
Set of serializer or instantiator tags to register customer DataSerializer extensions or
DataSerializable implementations respectively.

Example:

<serialization-registration>

 <instantiator id="30">

 <class-name>com.package.MyClass</class-name>

 </instantiator>

</serialization-registration>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1127

<serializer>

Allows you to configure the DataSerializer for this VMware GemFire member. It registers a custom
class which extends DataSerializer to support custom serialization of non-modifiable object types
inside VMware GemFire.

Specify the Java class for the DataSerializer and its initialization parameters with the <class-name>
sub-element.

API: You can also register a DataSerializer by using the
org.apache.geode.DataSerializer.register API. Use the org.apache.geode.Instantiator API to
register a DataSerializable implementation.

<instantiator>

An Instantiator registers a custom class which implements the DataSerializable interface to
support custom object serialization inside VMware GemFire.

Specify the Java class and its initialization parameters with the <class-name> sub-element.

API: DataSerializable

You can also directly specify <instantiator> as a sub-element of <cache>. Use the
org.apache.geode.Instantiator API to register a DataSerializable implementation as the
serialization framework for the cache. The following table lists the attribute that can be specified for
an <instantiator>.

<instantiator> Attributes

Attribute Description Default

id Required. ID that the Instantiator should associate with the DataSerializable type.

<backup>

Defines additional files or directories that should be backed up when the system wide backup
command is invoked. Disk stores with persistent data are automatically backed up and do not need
to be listed with this element.

Example:

<backup>./systemConfig/gf.jar</backup>

<backup>/users/jpearson/gfSystemInfo/myCustomerConfig.doc</backup>

<initializer>
Used to specify a callback class (and optionally its parameters) that will be run after the cache is
initialized. This element can be specified for both server and client caches.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Default:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1128

API: Declarable

Example:

<initializer>

 <class-name>MyInitializer</class-name>

 <parameter name="members">

 <string>2</string>

 </parameter>

</initializer>

<declarable>

Specifies a Declarable object to be placed in a Region entry.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: Declarable

Example:

<parameter name="cacheserver">

 <declarable>

 <class-name>org.apache.geode.addon.cache.CacheServerInitializer</class-name>

 <parameter name="system.property.prefix">

 <string>cacheserver</string>

 </parameter>

 </declarable>

</parameter>

<class-name> and <parameter>
Specify the name of a Java class with the <class-name> sub-element.

Specify initialization parameters for the class using the <parameter> sub-element. Use the name
attribute to specify the name of the parameter and specify its value in the content of the <string>
sub-element or by specifying a Java class with the <declarable> sub-element.

Example:

The following transaction writer configuration example specifies a Java class named
com.company.data.MyTransactionWritet. The class is initialized with a parameter named URL whose
value is jdbc:cloudscape:rmi:MyData.

<transaction-writer>

 <class-name>com.company.data.MyTransactionWriter</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

</transaction-writer>

<declarable>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1129

Specifies a Declarable object to be placed in a Region entry.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: Declarable

Example:

<parameter name="cacheserver">

 <declarable>

 <class-name>org.apache.geode.addon.cache.CacheServerInitializer</class-name>

 <parameter name="system.property.prefix">

 <string>cacheserver</string>

 </parameter>

 </declarable>

</parameter>

<string>

Specifies a String to be placed in a Region entry.

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

 </entry>

</region>

<client-cache> Element Hierarchy
This section shows the hierarchy of <client-cache> element sub-elements that you use to
configure VMware GemFire caches and clients.

For details, see <client-cache> Element Reference.

<client-cache>

 <cache-transaction-manager>

 <transaction-listener>

 <transaction-writer>

 <pool>

 <locator>

 <server>

 <disk-store>

 <disk-dirs>

 <disk-dir>

 <pdx>

 <pdx-serializer>

 <class-name>

 <parameter>

 <string>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1130

 <declarable>

 <region-attributes>

 <key-constraint>

 <value-constraint>

 <region-time-to-live>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <region-idle-time>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <entry-time-to-live>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <entry-idle-time>

 <expiration-attributes>

 <custom-expiry>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <cache-loader>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <cache-writer>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <cache-listener>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <eviction-attributes>

 <lru-entry-count>

 <lru-heap-percentage>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <lru-memory-size>

 <class-name>

 <parameter>

 <string>

 <declarable>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1131

 <jndi-bindings>

 <jndi-binding>

 <config-property>

 <config-property-name>

 <config-property-type>

 <config-property-value>

 <region>

 <region-attributes>

 <index>

 <entry>

 <key>

 <string>

 <declarable>

 <value>

 <string>

 <declarable>

 <region>

 <function-service>

 <function>

 <class-name>

 <parameter>

 <string>

 <declarable>

 <resource-manager>

 <serialization-registration>

 <serializer>

 <class-name>

 <instantiator>

 <class-name>

 <initializer>

 <class-name>

 <parameter>

 <string>

 <declarable>

</client-cache>

<client-cache> Element Reference

This section documents all cache.xml elements that you use to configure VMware GemFire clients.
All elements are sub-elements of the <client-cache> element.

For VMware GemFire server configuration, see <cache> Element Reference.

API: org.apache.geode.cache.client.ClientCacheFactory and PoolFactory interfaces.

<client-cache> Attributes

Attribute Definition Default

copy-on-read
Boolean indicating whether entry value retrieval methods
return direct references to the entry value objects in the
cache (false) or copies of the objects (true).

False

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1132

<client-cache>

 <pool

 name="client"

 subscription-enabled="true">

 <locator host="localhost" port="41111"/>

 </pool>

 <region-attributes

 id="clientAttributes"

 pool-name="client"

 refid="CACHING_PROXY"/>

 <region name="root">

 <region-attributes scope="local"/>

 <region name="cs_region">

 <region-attributes refid="clientAttributes"/>

 </region>

 </region>

</client-cache>

<cache-transaction-manager>

Specifies a transaction listener.

API: CacheTransactionManager

Example:

<client-cache search-timeout="60">

 <cache-transaction-manager>

 <transaction-listener>

 <class-name>com.company.data.MyTransactionListener</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

 </transaction-listener>

 <transaction-listener>... </transaction-listener>

 <transaction-writer>

 <class-name>com.company.data.MyTransactionWriter</class-name>

 <parameter name="URL">

 <string>jdbc:cloudscape:rmi:MyData</string>

 </parameter>

 <parameter>

 </transaction-writer>

 </cache-transaction-manager> .. .

</client-cache>

<transaction-listener>

When a transaction ends, its thread calls the TransactionListener to perform the appropriate follow-
up for successful commits, failed commits, or voluntary rollbacks.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<transaction-writer>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1133

When you commit a transaction, a TransactionWriter can perform additional tasks, including
cancelling the transaction.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<pool>

Use for client caches. Defines a client’s server pool used to communicate with servers running in a
different cluster.

API: org.apache.geode.cache.client.PoolFactory

<pool> Attributes

Attribute Description Default

free-connection-timeout Amount of time a thread will wait to get a pool
connection before timing out with an exception. This
timeout keeps threads from waiting indefinitely when the
pool’s max-connections has been reached and all
connections in the pool are in use by other threads.

10000

idle-timeout Maximum time, in milliseconds, a pool connection can
stay open without being used when there are more than
min-connections in the pool. Pings over the connection
do not count as connection use. If set to -1, there is no idle
timeout.

5000

load-conditioning-interval Amount of time, in milliseconds, a pool connection can
remain open before being eligible for silent replacement
to a less-loaded server.

300000

(5 minutes)

max-connections Maximum number of pool connections the pool can
create. If the maximum connections are in use, an
operation requiring a client-to-server connection blocks
until a connection becomes available or the free-
connection-timeout is reached. If set to -1, there is no
maximum. The setting must indicate a cap greater than
min-connections.

-1

min-connections Minimum number of pool connections to keep available at
all times. Used to establish the initial connection pool. If
set to 0 (zero), no connection is created until an operation
requires it. This number is the starting point, with more
connections added later as needed, up to the max-
connection setting. The setting must be an integer greater
than or equal to 0.

1

Note: If you need to use this to cap
your pool connections, you should
disable the pool attribute pr-single-
hop-enabled. Leaving single hop
enabled can increase thrashing and
lower performance.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1134

Attribute Description Default

multiuser-authentication Used for installations with security where you want to
accommodate multiple users within a single client. If set
to true, the pool provides authorization for multiple user
instances in the same client application, and each user
accesses the cache through its own RegionService
instance. If false, the client either uses no authorization or
just provides credentials for the single client process.

false

name Name of this pool. Used in the client region pool-name to
assign this pool to a region in the client cache.

none

ping-interval How often to communicate with the server to show the
client is alive, set in milliseconds. Pings are only sent when
the ping-interval elapses between normal client messages.

10000

pr-single-hop-enabled Setting used to improve access to partitioned region data
in the servers. Indicates whether to use metadata about
the partitioned region data storage locations to decide
where to send some data requests. This allows a client to
send a data operation directly to the server hosting the
key. Without this, the client contacts any available server
and that server contacts the data store. This is used only
for operations that can be carried out on a server-by-
server basis, like put, get, and destroy.

true

read-timeout Maximum time, in milliseconds, for the client to wait for a
response from a server.

10000

retry-attempts Number of times to retry a client request before giving up.
If one server fails, the pool moves to the next, and so on
until it is successful or it hits this limit. If the available
servers are fewer than this setting, the pool will retry
servers that have already failed until it reaches the limit. If
this is set to -1, the pool tries every available server once.

-1

server-group Logical named server group to use from the pool. A null
value uses the global server group to which all servers
belong.

null

socket-buffer-size Size for socket buffers from the client to the server.
Default: 32768.

32768

Note: This is a required property with
no default setting.

Note: Set this lower than the server’s
maximum-time-between-pings.

Note: This is only used when the
locator list is defined.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1135

Attribute Description Default

socket-connect-timeout The number of milliseconds to wait before timing out on
the client socket connect to a server or locator. A value of
zero is interpreted as an infinite timeout. If zero, the
connection will block until established or an error occurs.

59000

statistic-interval Interval, in milliseconds, at which to send client statistics
to the server. If set to -1, statistics are not sent.

-1

subscription-ack-interval Time, in milliseconds, between messages to the primary
server to acknowledge event receipt.

100

subscription-enabled Boolean indicating whether the server should connect
back to the client and automatically sends server-side
cache update information. Any bind address information
for the client is automatically passed to the server for use
in the callbacks.

false

subscription-message-

tracking-timeout

Time-to-live, in milliseconds, for entries in the client’s
message tracking list.

900000

(15 minutes)

subscription-redundancy Number of servers to use as backup to the primary for
highly available subscription queue management. If set to
0, none are used. If set to -1, all available servers are used.

0

subscription-timeout-multiplier Number of missing server pings that trigger timeout of a
subscription feed. A value of zero (the default) disables
timeouts. A value of one or more times out the server
connection after the specified number of ping intervals
have elapsed. A value of one is not recommended.

0

Example:

<pool

 name="publisher"

 subscription-enabled="true">

 <locator

 host="myLocatorAddress1"

 port="12345"/>

 <locator

 host="myLocatorAddress2"

 port="45678"/>

</pool>

<locator>

Addresses and ports of the locators to connect to. You can define multiple locators for the pool.

Note: Provide a locator list or server list, but not both.

API: org.apache.geode.distributed.LocatorLauncher

Note: Used only when subscription-
redundancy is not ‘0’ (zero).

VMware GemFire 9.10 Documentation

VMware by Broadcom 1136

<locator> Attributes

Attribute Description Default

host Hostname of the locator

port Port number of the locator

Example:

<pool ...>

<locator

 host="myLocatorHost"

 port="12345"/>

<server>

Addresses and ports of the servers to connect to.

Note: Provide a server list or locator list, but not both.

Default:

API: org.apache.geode.distributed.ServerLauncher

<server> Attributes

Attribute Description Default

host Hostname of the server

port Port number of the server

Example:

<pool ...>

 <server

 host="myServerHost"

 port="123456"/>

</pool>

<disk-store>
Defines a pool of one or more disk stores, which can be used by regions, and client subscription
queues.

Default: The cache default disk store, named “DEFAULT”, is used when disk is used but no disk
store is named.

API: org.apache.geode.cache.DiskStore

<disk-store> Attributes

Attribute Description Default

name The name of the Disk Store.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1137

Attribute Description Default

auto-compact Set to true to automatically compact the disk files.

compaction-threshold The threshold at which an oplog will become
compactable. Until it reaches this threshold the oplog will
not be compacted.

The threshold is a percentage in the range 0 to 100.

allow-force-compaction Set to true to allow disk compaction to be forced on this
disk store.

max-oplog-size The maximum size, in megabytes, of an oplog (operation
log) file.

time-interval The number of milliseconds that can elapse before
unwritten data is written to disk.

write-buffer-size The size of the write buffer that this disk store uses when
writing data to disk. Larger values may increase
performance but use more memory. The disk store
allocates one direct memory buffer of this size.

queue-size Maximum number of operations that can be
asynchronously queued to be written to disk.

disk-usage-warning-percentage Disk usage above this threshold generates a warning
message. For example, if the threshold is set to 90%, then
on a 1 TB drive falling under 100 GB of free disk space
generates the warning.

Set to "0" (zero) to disable.

90

disk-usage-critical-percentage Disk usage above this threshold generates an error
message and shuts down the member's cache. For
example, if the threshold is set to 99%, then falling under
10 GB of free disk space on a 1 TB drive generates the error
and shuts down the cache.

Set to "0" (zero) to disable.

99

Example:

<disk-store

 name="DEFAULT"

 allow-force-compaction="true">

 <disk-dirs>

 <disk-dir>/export/thor/customerData</disk-dir>

 <disk-dir>/export/odin/customerData</disk-dir>

 <disk-dir>/export/embla/customerData</disk-dir>

 </disk-dirs>

</disk-store>

<disk-dirs>

An element of a disk store that defines a set of <disk-dir> elements.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1138

<disk-dir>

Specifies a region or disk store’s disk directory.

<disk-dir> Attributes

Attribute Description Default

dir-size Maximum amount of space to use for the disk store, in
megabytes.

214748364

(2 petabytes)

Example:

<disk-dir

 dir-size="20480">/host3/users/gf/memberA_DStore</disk-dir>

<pdx>
Specifies the configuration for the Portable Data eXchange (PDX) method of serialization.

API: org.apache.geode.cache.CacheFactory.setPdxReadSerialized, setPdxDiskStore,
setPdxPersistent, setPdxIgnoreUnreadFields and
org.apache.geode.cache.ClientCacheFactory.setPdxReadSerialized, setPdxDiskStore,
setPdxPersistent, setPdxIgnoreUnreadFields

Attribute Description Default

read-
serialized

Set it to true if you want PDX deserialization to produce a PdxInstance instead of an instance
of the domain class.

ignore-
unread-fields

Set it to true if you do not want unread PDX fields to be preserved during deserialization.
You can use this option to save memory. Set to true only in members that are only reading
data from the cache.

persistent Set to true if you are using persistent regions. This causes the PDX type information to be
written to disk.

disk-store-
name

If using persistence, this attribute allows you to configure the disk store that the PDX type
data will be stored in. By default, the default disk store is used.

Example:

<client-cache>

 <pdx persistent="true" disk-store-name="myDiskStore">

 <pdx-serializer>

 <class-name>

 org.apache.geode.pdx.ReflectionBasedAutoSerializer

 </class-name>

 <parameter name="classes">

 <string>com.company.domain.DomainObject</string>>

 </parameter>

 </pdx-serializer>

 </pdx>

 ...

</client-cache>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1139

<pdx-serializer>

Allows you to configure the PdxSerializer for this VMware GemFire member.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Default:

API: org.apache.geode.cache.CacheFactory.setPdxSerializer

Example:

<client-cache>

 <pdx>

 <pdx-serializer>

 <class-name>com.company.ExamplePdxSerializer</class-name>

 </pdx-serializer>

 </pdx>

 ...

</client-cache>

<region-attributes>
Specifies a region attributes template that can be named (by id) and referenced (by refid) later in
the cache.xml and through the API.

API: org.apache.geode.cache.RegionFactory or org.apache.geode.cache.ClientRegionFactory

<region-attributes> Attributes

Attribute Description Default

concurrency-level Gives an estimate of the maximum number of application
threads that will concurrently access a region entry at one
time. This attribute does not apply to partitioned regions.
This attribute helps VMware GemFire optimize the use of
system resources and reduce thread contention. This sets
an initial parameter on the underlying
java.util.ConcurrentHashMap used for storing region
entries.

API: setConcurrencyLevel

Example:

<region-attributes

 concurrency-level="10">

</region-attributes>

16 (threads)

Note: Before you modify this, read the
concurrency level description, then see
the Java API documentation for
java.util.ConcurrentHashMap.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1140

Attribute Description Default

data-policy
Specifies how the local cache handles data for a region.
This setting controls behavior such as local data storage
and region initialization.

You can specify the following data policies:

em
pty

No data storage in the local cache. The region
always appears empty. Use this for event
delivery to and from the local cache without the
memory overhead of data storage - zero-
footprint producers that only distribute data to
others and zero-footprint consumers that only
see events. To receive events with this, set the
region's subscription-attributes interest-
policy to all.

nor
mal

Data used locally (accessed with gets, stored
with puts, etc.) is stored in the local cache. This
policy allows the contents in the cache to differ
from other caches.

part
itio
n

Data is partitioned across local and remote
caches using the automatic data distribution
behavior of partitioned regions. Additional
configuration is done in the partition-
attributes.

repl
icat
e

The region is initialized with the data from other
caches. After initialization, all events for the
distributed region are automatically copied into
the local region, maintaining a replica of the
entire distributed region in the local cache.
Operations that would cause the contents to
differ with other caches are not allowed. This is
compatible with local scope, behaving the same
as for normal.

per
sist
ent-
part
itio
n

Behaves the same as partition and also persists
data to disk.

normal

Note: Configure the most common
options using the region shortcuts,
RegionShortcut and
ClientRegionShortcut. The default
data-policy of normal specifies local
cache storage. The empty policy
specifies no local storage. In the region
shortcuts, empty corresponds to the
settings with the string PROXY. You can
use an empty region for event delivery
to and from the local cache without the
memory overhead of data storage.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1141

Attribute Description Default

per
sist
ent-
repl
icat
e

Behaves the same as replicate and also persists
data to disk.

prel
oad
ed

Initializes like a replicated region, then, once
initialized, behaves like a normal region.

API: setDataPolicy

Example:

<region-attributes

 data-policy="replicate">

</region-attributes>

This is similar to using a region shortcut withrefid,
however when you use the REPLICATE region shortcut, it
automatically sets the region's scope to distributed-
ack.

<region-attributes

 refid="REPLICATE">

</region-attributes>

If you use data-policy, you must set the scope explicitly.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1142

Attribute Description Default

enable-async-conflation
For TCP/IP distributions between peers, specifies whether
to allow aggregation of asynchronous messages sent by
the producer member for the region. This is a special-
purpose Boolean attribute that applies only when
asynchronous queues are used for slow consumers. A false
value disables conflation so that all asynchronous
messages are sent individually. This special-purpose
attribute gives you extra control over peer-to-peer
communication between distributed regions using TCP/IP.
This attribute does not apply to client/server
communication or to communication using the UDP
unicast or IP multicast protocols.

API: setEnableAsyncConflation

Example:

<region-attributes

 enable-async-conflation="false">

</region-attributes>

true

enable-gateway
Determines whether the gateway is enabled for the region.
When set to true, events in the region are sent to the
defined gateway hubs.

Used only with GemFire version 6.x gateway
configurations. For GemFire 7.0 configuration, see the
gateway-sender-id attribute of the <region-attributes>
element.

false

enable-subscription-conflation
Boolean for server regions that specifies whether the
server can conflate its messages to the client. A true value
enables conflation.

API: setEnableSubscriptionConflation

Example:

<region-attributes

 enable-subscription-conflation="true">

 </region-attributes>

false

Note: To use this attribute, the
multicast-enabled region attribute
disable-tcp in gemfire.properties
must be false (the default for both). In
addition, asynchronous queues must be
enabled for slow consumers, specified
with the async* gemfire properties.

Note: The client can override this
setting with the conflate-events
property in its gemfire.properties.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1143

Attribute Description Default

gateway-sender-ids
Specifies one or more gateway sender IDs to use for
distributing region events to remote VMware GemFire
sites. Specify multiple IDs as a comma-separated list.

API: addGatewaySenderId

Example:

<region-attributes

 gateway-sender-ids="nwsender,swsende

r">

</region-attributes>

not set

async-event-queue-ids Specifies one or more asynchronous event queues to use
for distributing region events an AsyncEventListener
implementation (for example, for write-behind cache
event handling). Specify multiple IDs as a comma-
separated list.

API: addAsyncEventQueueId

Example:

<region-attributes

 async-event-queue-ids="customerqueue,o

rdersqueue">

</region-attributes>

not set

hub-id
If the enable-gateway attribute is set to true, a comma-
separated list of gateway hub IDs that receive events from
the region.

Used only with GemFire version 6.x gateway
configurations. For GemFire 7.0 configuration, see the
gateway-sender-id attribute of the <region-attributes>
element.

null

id
Stores the region attribute settings in the cache with this
identifier. Once stored, the attributes can be retrieved
using the region attribute refid.

API: setId

Example:

<region-attributes

 id="persistent-replicated">

</region-attributes>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1144

Attribute Description Default

ignore-jta
Boolean that determines whether operations on this
region participate in active JTA transactions or ignore
them and operate outside of the transactions. This is
primarily used in cache loaders, writers, and listeners that
need to perform non-transactional operations on a region,
such as caching a result set.

API: setIgnoreJTA

Example:

<region-attributes

 ignore-jta="true">

</region-attributes>

false

index-update-type
Specifies whether region indexes are maintained
synchronously with region modifications, or
asynchronously in a background thread. In the cache.xml
file, this is set as a value, asynchronous or synchronous,
assigned to the index-update-type region attribute. Set
this through the API by passing a boolean to the
setIndexMaintenanceSynchronous method.

API: setIndexMaintenanceSynchronous

Example:

<region-attributes

 index-update-type="asynchronous">

</region-attributes>

synchronous updates

initial-capacity
Together with the load-factor region attribute, sets the
initial parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries.

API: setInitialCapacity

Example:

<region-attributes

 initial-capacity="20">

</region-attributes>

16

VMware GemFire 9.10 Documentation

VMware by Broadcom 1145

Attribute Description Default

is-lock-grantor
Determines whether this member defines itself as the lock
grantor for the region at region creation time. This only
specifies whether the member becomes lock grantor at
creation and does not reflect the current state of the
member’s lock grantor status. The member’s lock grantor
status may change if another member subsequently
defines the region with is-lock-grantor set to true. This
attribute is only relevant for regions with global scope, as
only they allow locking. It affects implicit and explicit
locking.

API: setLockGrantor

Example:

<region-attributes

 is-lock-grantor="true">

</region-attributes>

false

load-factor
Together with the initial-capacity region attribute, sets the
initial parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries. This must be a floating point number between 0
and 1, inclusive.

API: setLoadFactor

Example:

<region-attributes

 load-factor="0.85">

</region-attributes>

.75

mirror-type Deprecated

multicast-enabled
Boolean that specifies whether distributed operations on a
region should use multicasting. To enable this, multicast
must be enabled for the cluster with the mcast-port
gemfire.properties setting.

API: setMulticastEnabled

Example:

<region-attributes

 multicast-enabled="true">

</region-attributes>

false

Note: Before you set this attribute, read
the discussion of initial capacity and
load factor, then see the Java API
documentation for
java.util.ConcurrentHashMap.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1146

Attribute Description Default

pool-name
Identifies the region as a client region and specifies the
server pool the region is to use. The named pool must be
defined in the client cache before the region is created. If
this is not set, the region does not connect to the servers
as a client region.

API: setPoolName

Examples:

This declaration creates the region as a client region with
a server pool named DatabasePool. This pool-name
specification is required, as there are multiple pools in the
client cache:

<client-cache>

 <pool name="DatabasePool"

 subscription-enabled="true">

 ...

 </pool>

 <pool >

 name="OtherPool"

 subscription-enabled="true">

 ...

 </pool>

 <region ...

 <region-attributes

 pool-name="DatabasePool">

 </region-attributes>

 ...

This declaration creates the region as a client region
assigned the single pool that is defined for the client
cache. Here the pool-name specification is implied to be
the only pool that exists in the cache:

<client-cache>

 <pool

 name="publisher"

 subscription-enabled="true">

 ...

 </pool>

 <region

 name="myRegion"

 refid="CACHING_PROXY">

 </region>

</client-cache>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1147

Attribute Description Default

disk-store-name
Assigns the region to the disk store with this name from
the disk stores defined for the cache. Persist region data
to disk by defining the region as persistent using the
Shortcut Attribute Options or data-policy settings.
Overflow data to disk by implementing LRU eviction-
attributes with an action of overflow to disk. Each disk
store defines the file system directories to use, how data is
written to disk, and other disk storage maintenance
properties. In addition, the disk-synchronous region
attribute specifies whether writes are done synchronously
or asynchronously.

API: setDiskStoreName

Example:

<region-attributes

 disk-store-name="myStoreA" >

</region-attributes>

null

disk-synchronous
For regions that write to disk, boolean that specifies
whether disk writes are done synchronously for the region.

API: setDiskSynchronous

Example:

<region-attributes

 disk-store-name="myStoreA"

 disk-synchronous="true">

</region-attributes>

true

refid
Retrieves region shortcuts and user-defined named region
attributes for attributes initialization

API: setRefId

Example:

<region-attributes

 refid="persistent-replicated">

 <!-- Override any stored

 attribute settings that you

 need to ... -->

</region-attributes>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1148

Attribute Description Default

scope
Definition: Determines how updates to region entries are
distributed to the other caches in the cluster where the
region and entry are defined. Scope also determines
whether to allow remote invocation of some of the
region’s event handlers, and whether to use region entry
versions to provide consistent updates across replicated
regions.

Set one of the following scope values:

local No distribution. The region is visible only to
threads running inside the member.

distri
buted
-no-
ack

Events are distributed to remote caches with
no acknowledgement required.

distri
buted
-ack

Events are distributed to remote caches with
receipt acknowledgement required. Region
entry versions are used to provide consistent
updates across members of the cluster.

globa
l

Events are distributed to remote caches with
global locking to ensure distributed cache
consistency.

API: setScope

Example:

<region-attributes

 scope="distributed-ack">

</region-attributes>

distributed-no-ack

Note: You can configure the most
common of these options with VMware
GemFire region shortcuts in
RegionShortcut and
ClientRegionShortcut.

Note: Server regions that are not
partitioned must be replicated with
distributed-ack or global scope. The
region shortcuts that specify REPLICATE
have distributed-ack scope.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1149

Attribute Description Default

statistics-enabled Boolean specifying whether to gather statistics on the
region. Must be true to use expiration on the region.
VMware GemFire provides a standard set of statistics for
cached regions and region entries, which give you
information for fine-tuning your cluster. Unlike other
VMware GemFire statistics, statistics for local and
distributed regions are not archived and cannot be
charted. They are kept in instances of
org.apache.geode.cache.CacheStatistics and made
available through the region and its entries through the
Region.getStatistics and
Region.Entry.getStatistics methods.

API: setStatisticsEnabled

Example:

<region-attributes

 statistics-enabled="true">

</region-attributes>

false

cloning-enabled
Determines how fromDelta applies deltas to the local
cache for delta propagation. When true, the updates are
applied to a clone of the value and then the clone is saved
to the cache. When false, the value is modified in place in
the cache.

API: setCloningEnabled

Example:

<region-attributes

 cloning-enabled="true">

</region-attributes>

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1150

Attribute Description Default

concurrency-checks-enabled
Determines whether members perform checks to provide
consistent handling for concurrent or out-of-order
updates to distributed regions. See Consistency for
Region Updates.

API: setConcurrencyChecksEnabled

Example:

<region-attributes

 concurrency-checks-enabled="true">

</region-attributes>

true

off-heap
Specifies that the region uses off-heap memory to store
entry values, including values for region entries and queue
entries. The region will still use heap memory for
everything else, such as entry keys and the
ConcurrentHashMap.

API: setOffHeap

Example:

<region-attributes

 off-heap="true">

</region-attributes>

false

<key-constraint>

Defines the type of object to be allowed for the region entry keys. This must be a fully-qualified
class name. The attribute ensures that the keys for the region entries are all of the same class. If
key-constraint is not used, the region’s keys can be of any class. This attribute, along with value-
constraint, is useful for querying and indexing because it provides object type information to the
query engine.

Note: Set the constraint in every cache where you create or update the region entries. For
client/server installations, match constraints between client and server and between clusters. The
constraint is only checked in the cache that does the entry put or create operation. To avoid
deserializing the object, the constraint is not checked when the entry is distributed to other caches.

Note: Applications that use a client-
cache may want to disable
concurrency checking in order to see
all events for a region. VMware
GemFire server members can continue
using concurrency checks for the
region, but they will pass all events to
the client cache. This configuration
ensures that the client sees all events,
but it does not prevent the client cache
from becoming out-of-sync with the
server cache.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1151

Default: not set

API: org.apache.geode.cache.RegionFactory.setKeyConstraint

Example:

<region-attributes>

 <key-constraint>

 java.lang.String

 </key-constraint>

</region-attributes>

<value-constraint>

Defines the type of object to be allowed for the region entry values. This must be a fully-qualified
class name. If value constraint isn’t used, the region’s value can be of any class. This attribute, along
with key-constraint, is useful for querying and indexing because it provides object type
information to the query engine.

Note: Set the constraint in every cache where you create or update the region entries. For
client/server installations, match constraints between client and server and between clusters. The
constraint is only checked in the cache that does the entry put or create operation. To avoid
deserializing the object, the constraint is not checked when the entry is distributed to other caches.

Default: not set

API: org.apache.geode.cache.RegionFactory.setValueConstraint

Example:

<region-attributes>

 <value-constraint>

 cacheRunner.Portfolio

 </value-constraint>

</region-attributes>

<region-time-to-live>
Expiration setting that specifies how long the region can remain in the cache without anyone
accessing or updating it.

Default: not set - no expiration of this type

API: org.apache.geode.cache.RegionFactory.setRegionTimeToLive

Example:

<region-attributes

 statistics-enabled="true">

 <region-time-to-live>

 <expiration-attributes

 timeout="3600"

 action="local-destroy"/>

 </region-time-to-live>

</region-attributes>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1152

<expiration-attributes>

Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If
timeout is not specified, it defaults to zero (which means
no expiration).

0

action Action that should take place when a region or an entry
expires.
Select one of the following expiration actions:

loc
al-
des
troy

Removes the region or entry from the local
cache, but does not distribute the removal
operation to remote members. You cannot use
this action on partitioned region entries.

des
troy

Removes the region or entry completely from
the cache. Destroy actions are distributed
according to the region's distribution settings.
Use this option when the region or entry is no
longer needed for any application in the cluster.

inva
lida
te

Default expiration action. Marks an entry or all
entries in the region as invalid. Distributes the
invalidation according to the region's scope.
This is the proper choice when the region or the
entry is no longer valid for any application in the
cluster.

loc
al-
inva
lida
te

Marks an entry or all entries in the region as
invalid but does not distribute the operation.
You cannot use this action on partitioned region
entries. Local region invalidation is only
supported for regions that are not configured as
replicated regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<custom-expiry>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1153

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy">

 <custom-expiry>

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<region-idle-time>

Expiration setting that specifies how long the region can remain in the cache without anyone
accessing it.

Note: To ensure reliable read behavior across the partitioned region, use region-time-to-live for
region expiration instead of this setting.

Default: not set - no expiration of this type

API: org.apache.geode.cache.RegionFactory.setRegionIdleTimeout

Example:

<region-attributes statistics-enabled="true">

 <region-idle-time>

 <expiration-attributes

 timeout="3600"

 action="local-destroy"/>

 </region-idle-time>

</region-attributes>

<expiration-attributes>
Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1154

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If
timeout is not specified, it defaults to zero (which means
no expiration).

0

action Action that should take place when a region or an entry
expires.
Select one of the following expiration actions:

loc
al-
des
troy

Removes the region or entry from the local
cache, but does not distribute the removal
operation to remote members. You cannot use
this action on partitioned region entries.

des
troy

Removes the region or entry completely from
the cache. Destroy actions are distributed
according to the region's distribution settings.
Use this option when the region or entry is no
longer needed for any application in the cluster.

inva
lida
te

Default expiration action. Marks an entry or all
entries in the region as invalid. Distributes the
invalidation according to the region's scope.
This is the proper choice when the region or the
entry is no longer valid for any application in the
cluster.

loc
al-
inva
lida
te

Marks an entry or all entries in the region as
invalid but does not distribute the operation.
You cannot use this action on partitioned region
entries. Local region invalidation is only
supported for regions that are not configured as
replicated regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1155

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy">

 <custom-expiry>

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<entry-time-to-live>

Expiration setting that specifies how long the region’s entries can remain in the cache without
anyone accessing or updating them. See <expiration-attributes> for details.

Default: not set - no expiration of this type.

API: org.apache.geode.cache.RegionFactory.setEntryTimeToLive

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<expiration-attributes>
Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If
timeout is not specified, it defaults to zero (which means
no expiration).

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1156

Attribute Description Default

action Action that should take place when a region or an entry
expires.
Select one of the following expiration actions:

loc
al-
des
troy

Removes the region or entry from the local
cache, but does not distribute the removal
operation to remote members. You cannot use
this action on partitioned region entries.

des
troy

Removes the region or entry completely from
the cache. Destroy actions are distributed
according to the region's distribution settings.
Use this option when the region or entry is no
longer needed for any application in the cluster.

inva
lida
te

Default expiration action. Marks an entry or all
entries in the region as invalid. Distributes the
invalidation according to the region's scope.
This is the proper choice when the region or the
entry is no longer valid for any application in the
cluster.

loc
al-
inva
lida
te

Marks an entry or all entries in the region as
invalid but does not distribute the operation.
You cannot use this action on partitioned region
entries. Local region invalidation is only
supported for regions that are not configured as
replicated regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1157

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy">

 <custom-expiry>

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<entry-idle-time>

Expiration setting that specifies how long the region’s entries can remain in the cache without
anyone accessing them. See <expiration-attributes> for details.

Note: To ensure reliable read behavior across the partitioned region, use entry-time-to-live for
entry expiration instead of this setting.

API: org.apache.geode.cache.RegionFactory.setEntryIdleTimeout

Example:

<region-attributes

 statistics-enabled="true">

 <entry-idle-time>

 <expiration-attributes

 timeout="60"

 action="local-invalidate"/>

 </expiration-attributes>

 </entry-idle-time>

</region-attributes>

<expiration-attributes>

Within the entry-time-to-live or entry-idle-time element, this element specifies the expiration
rules for removing old region entries that you are not using. You can destroy or invalidate entries,
either locally or across the cluster. Within the region-time-to-live or region-idle-time element,
this element specifies the expiration rules for the entire region.

API: See APIs for entry-time-to-live, entry-idle-time, region-time-to-live, region-idle-time

<expiration-attributes> Attributes

Attribute Description Default

timeout Number of seconds before a region or an entry expires. If
timeout is not specified, it defaults to zero (which means
no expiration).

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1158

Attribute Description Default

action Action that should take place when a region or an entry
expires.
Select one of the following expiration actions:

loc
al-
des
troy

Removes the region or entry from the local
cache, but does not distribute the removal
operation to remote members. You cannot use
this action on partitioned region entries.

des
troy

Removes the region or entry completely from
the cache. Destroy actions are distributed
according to the region's distribution settings.
Use this option when the region or entry is no
longer needed for any application in the cluster.

inva
lida
te

Default expiration action. Marks an entry or all
entries in the region as invalid. Distributes the
invalidation according to the region's scope.
This is the proper choice when the region or the
entry is no longer valid for any application in the
cluster.

loc
al-
inva
lida
te

Marks an entry or all entries in the region as
invalid but does not distribute the operation.
You cannot use this action on partitioned region
entries. Local region invalidation is only
supported for regions that are not configured as
replicated regions.

invalidate

Example:

<region-attributes

 statistics-enabled="true">

 <entry-time-to-live>

 <expiration-attributes

 timeout="60"

 action="local-destroy"/>

 </entry-time-to-live>

</region-attributes>

<custom-expiry>

Specifies the custom class that implements org.apache.geode.cache.CustomExpiry. You define this
class in order to override the region-wide settings for specific entries. See Configure Data
Expiration for an example.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: org.apache.geode.cache.RegionFactory.setCustomEntryIdleTimeout,
setCustomeEntryTimeToLive

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1159

<region-attributes>

 <expiration-attributes

 timeout="60"

 action="local-destroy">

 <custom-expiry>

 <class-name>

 com.megaconglomerate.mypackage.MyClass

 </class-name>

 </custom-expiry>

</region-attributes>

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

<cache-loader>

An event-handler plug-in that allows you to program for cache misses. At most, one cache loader
can be defined in each member for the region. For distributed regions, a cache loader may be
invoked remotely from other members that have the region defined. When an entry get results in a
cache miss in a region with a cache loader defined, the loader’s load method is called. This method
is usually programmed to retrieve data from an outside data source, but it can do anything required
by your application.

For partitioned regions, if you want to have a cache loader, install an instance of the cache loader in
every data store. Partitioned regions support partitioned loading, where each cache loader loads
only the data entries in the local member. If data redundancy is configured, data is loaded only if
the local member holds the primary copy.

API: org.apache.geode.cache.RegionFactory.setCacheLoader

Example:

<region-attributes>

 <cache-loader>

 <class-name>quickstart.SimpleCacheLoader</class-name>

 </cache-loader>

</region-attributes>

<cache-writer>

An event-handler plug-in that allows you to receive before-event notification for changes to the
region and its entries. It also has the ability to cancel events. At most, one cache writer can be
defined in each member for the region. A cache writer may be invoked remotely from other
members that have the region defined.

API: org.apache.geode.cache.RegionFactory.setCacheWriter

Example:

<region-attributes>

 <cache-writer>

 <class-name>quickstart.SimpleCacheWriter</class-name>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1160

 </cache-writer>

</region-attributes>

<cache-listener>

An event-handler plug-in that receives after-event notification of changes to the region and its
entries. Any number of cache listeners can be defined for a region in any member. VMware
GemFire offers several listener types with callbacks to handle data and process events. Depending
on the data-policy and the interest-policy subscription attributes, a cache listener may receive
only events that originate in the local cache, or it may receive those events along with events that
originate remotely.

Specify the Java class for the cache listener and its initialization parameters with the <class-name>
and <parameter> sub-elements. See <class-name> and <parameter>.

API: org.apache.geode.cache.RegionFactory.addCacheListener

Example:

<region-attributes>

 <cache-listener>

 <class-name>

 quickstart.SimpleCacheListener

 </class-name>

 </cache-listener>

</region-attributes>

<eviction-attributes>

Specifies whether and how to control a region’s size. Size is controlled by removing least recently
used (LRU) entries to make space for new ones. This may be done through destroy or overflow
actions. You can configure your region for lru-heap-percentage with an eviction action of local-
destroy using stored region attributes.

Default: Uses the lru-entry-count algorithm.

API: org.apache.geode.cache.RegionFactory.setEvictionAttributes

Example:

<region-attributes>

 <eviction-attributes>

 <lru-entry-count

 maximum="1000"

 action="overflow-to-disk"/>

 </eviction-attributes>

</region-attributes>

<lru-entry-count>
Using the maximum attribute, specifies maximum region capacity based on entry count.

<lru-entry-count> Attributes

VMware GemFire 9.10 Documentation

VMware by Broadcom 1161

Attribute Description Default

action Set one of the following eviction actions:

local-
destr
oy

Entry is destroyed locally. Not available for
replicated regions.

overfl
ow-
to-
disk

Entry is overflowed to disk and the value set to
null in memory. For partitioned regions, this
provides the most reliable read behavior
across the region.

local-destroy

maximum The maximum number of entries allowed in a region.

<lru-heap-percentage>

Runs evictions when the VMware GemFire resource manager says to. The manager orders
evictions when the total cache size is over the heap percentage limit specified in the manager
configuration. You can declare a Java class that implements the ObjectSizer interface to measure
the size of objects in the Region.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<lru-heap-percentage> Attributes

Attribute Description Default

action Set one of the following eviction actions:

local-
destr
oy

Entry is destroyed locally. Not available for
replicated regions.

overfl
ow-
to-
disk

Entry is overflowed to disk and the value set to
null in memory. For partitioned regions, this
provides the most reliable read behavior
across the region.

local-destroy

<lru-memory-size>

Using the maximum attribute, specifies maximum region capacity based on the amount of memory
used, in megabytes. You can declare a Java class that implements the ObjectSizer interface to
measure the size of objects in the Region.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

<lru-memory-size> Attributes

VMware GemFire 9.10 Documentation

VMware by Broadcom 1162

Attribute Description Default

action Set one of the following eviction actions:

local-
destr
oy

Entry is destroyed locally. Not available for
replicated regions.

overfl
ow-
to-
disk

Entry is overflowed to disk and the value set to
null in memory. For partitioned regions, this
provides the most reliable read behavior
across the region.

local-destroy

maximum The maximum amount of memory used in the region, in
megabytes.

<jndi-bindings>

Specifies the binding for a data-source used in transaction management. See Configuring Database
Connections Using JNDI.

Example:

<jndi-bindings>

 <jndi-binding type="XAPooledDataSource"

 jndi-name="newDB2trans"

 init-pool-size="20"

 max-pool-size="100"

 idle-timeout-seconds="20"

 blocking-timeout-seconds="5"

 login-timeout-seconds="10"

 xa-datasource-class="org.apache.derby.jdbc.EmbeddedXADataSource"

 user-name="mitul"

 password="encrypted(83f0069202c571faf1ae6c42b4ad46030e4e31c17409e19a)">

 <config-property>

 <config-property-name>Description</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>pooled_transact</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>CreateDatabase</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>create</config-property-value>

 </config-property>

 . . .

 </jndi-binding>

 </jndi-bindings>

<jndi-binding>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1163

For every datasource that is bound to the JNDI tree, there should be one <jndi-binding> element.
This element describes the property and the configuration of the datasource. VMware GemFire
uses the attributes of the <jndi-binding> element for configuration. Use the <config-property>
element to configure properties for the datasource.

We recommend that you set the username and password with the user-name and password jndi-
binding attributes rather than using the <config-property> element.

<jndi-binding> Attributes

Attribute Description Default

blocking-timeout-seconds The number of seconds that a connection remains
associated with a transaction. If this value is exceeded, the
connection is disassociated from the transaction.

120

conn-pooled-datasource-class Java class used for the PooledDataSource type.

connection-url URL for connecting to the datasource.

idle-timeout-seconds The maximum number of seconds that a connection can
remain idle in a pool. When this threshold is reached, the
connection is removed.

600

init-pool-size The initial pool size of a PooledConnection (an
XAConnection or a non-XAConnection).

10

jdbc-driver-class Java class used for the SimpleDataSource type.

jndi-name The jndi-name attribute is the key binding parameter. If
the value of jndi-name is a DataSource, it is bound as
java:/myDatabase, where myDatabase is the name you
assign to your data source. If the data source cannot be
bound to JNDI at runtime, VMware GemFire logs a
warning.

Note:

If you are connecting to a JCA data
source driver that implements XA
transactions (where the jndi-binding
type is XAPooledDataSource), do not
use this attribute. Instead, define
configuration properties for your
database. See <config-property> for an
example.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1164

Attribute Description Default

login-timeout-seconds
The maximum number of seconds for which a thread
seeking a connection from a connection pool may be
blocked. If the thread is unable to obtain connection in the
stipulated time, a PoolException is thrown

If a connection is available the thread returns immediately.

If an existing connection is not available and the maximum
number of connections in the pool has not been reached, a
new connection is created and the thread returns
immediately with the connection.

If a connection is not available, the thread blocks for the
specified time while waiting for an available connection.

30

managed-conn-factory-class If the Resource Adapter is of type ManagedDataSource,
this class becomes the source of the PooledConnection.
(This class interface complies with the J2CA Java 2
Connector Architecture.)

max-pool-size The maximum size of the PooledConnection. 30

password Password to access the datasource.

transaction-type When the type attribute is set to ManagedDataSource,
specifies the type of transaction. Set one of the following
transaction-types:

XAT
rans
acti
on

Select this option when you want to use
aManagedConnection interface with a Java
Transaction Manager to define transaction
boundaries. This option allows a
ManagedDataSource to participate in a
transaction with a VMware GemFire cache.

NoT
rans
acti
on

No transactional behavior is used.

Loc
alTr
ansa
ctio
n

Select this option when using a
ManagedDataSource that is not managed by the
Java Transaction manager.

none

VMware GemFire 9.10 Documentation

VMware by Broadcom 1165

Attribute Description Default

type Set one of the following types:

XAPo
oledD
ataSo
urce

Pooled SQL connections. For this type, you
must also set the xa-datasource-class
attribute.

Mana
gedD
ataSo
urce

JNDI binding type for the J2EE Connector
Architecture (JCA).
ManagedConnectionFactory. For information
about the ManagedConnection interface, see
Interface ManagedConnection in the Oracle
documentation.

Poole
dData
Sourc
e

Pooled SQL connections. For this type, you
must also set the conn-pooled-datasource-
class attribute.

Simpl
eData
Sourc
e

Single SQL connection. No pooling of SQL
connections is done. Connections are
generated on the fly and cannot be reused. For
this type, you must also set the jdbc-driver-
class attribute.

none

user-name User name to access to the datasource.

xa-datasource-class Java class used for the XAPooledDataSource type.

<config-property>

A configuration property of the datasource. Use the sub-elements to identify the name, datatype,
and value of the property.

Default:

API: ``

Example:

<config-property>

 <config-property-name>DatabaseName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>newDB</config-property-value>

</config-property>

Configuration properties vary depending on the database vendor. See Configuring Database
Connections Using JNDI for examples of different configuration property configurations.

<config-property-name>

The name of this datasource property.

<config-property-type>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1166

https://docs.oracle.com/javaee/6/api/javax/resource/spi/ManagedConnection.html

The data type of this datasource property.

<config-property-value>

The value of this datasource property.

<region>

Defines a region in the cache. See <region-attributes> for more details on configuring regions. You
can specify zero or more subregions within a region. See Create and Access Data Subregions for
restrictions on creating subregions. For example, you cannot create a partitioned subregion.

Default:

API: org.apache.geode.cache.RegionFactory or org.apache.geode.cache.ClientRegionFactory

<region> Attributes

Attribute Description Default

name Specify the name for the region. See Region Management for details.

refid Used to apply predefined attributes to the region being defined. If the nested “region-attributes”
element has its own “refid”, then it will cause the “refid” on the region to be ignored. The “refid”
region attribute can be set to the name of a RegionShortcut or a ClientRegionShortcut. For more
information, see Region Shortcuts and Custom Named Region Attributes and Storing and
Retrieving Region Shortcuts and Custom Named Region Attributes.

Example:

<!--Using region shortcut-->

<region

 name="PartitionedRegion"

 refid="PARTITION_REDUNDANT">

...

</region>

<!-- Retrieving and storing attributes -->

<region-attributes

 id="myPartition"

 refid="PARTITION_REDUNDANT">

 <partition-attributes

 local-max-memory="512"/>

</region-attributes>

<!-- Attributes are retrieved and applied in the first region -->

<region name="PartitionedRegion1" refid="myPartition"/>

See<region-attributes> for a complete listing of region attributes.

<region-attributes>

Specifies a region attributes template that can be named (by id) and referenced (by refid) later in
the cache.xml and through the API.

API: org.apache.geode.cache.RegionFactory or org.apache.geode.cache.ClientRegionFactory

VMware GemFire 9.10 Documentation

VMware by Broadcom 1167

<region-attributes> Attributes

Attribute Description Default

concurrency-level Gives an estimate of the maximum number of application
threads that will concurrently access a region entry at one
time. This attribute does not apply to partitioned regions.
This attribute helps VMware GemFire optimize the use of
system resources and reduce thread contention. This sets
an initial parameter on the underlying
java.util.ConcurrentHashMap used for storing region
entries.

API: setConcurrencyLevel

Example:

<region-attributes

 concurrency-level="10">

</region-attributes>

16 (threads)

Note: Before you modify this, read the
concurrency level description, then see
the Java API documentation for
java.util.ConcurrentHashMap.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1168

Attribute Description Default

data-policy
Specifies how the local cache handles data for a region.
This setting controls behavior such as local data storage
and region initialization.

You can specify the following data policies:

em
pty

No data storage in the local cache. The region
always appears empty. Use this for event
delivery to and from the local cache without the
memory overhead of data storage - zero-
footprint producers that only distribute data to
others and zero-footprint consumers that only
see events. To receive events with this, set the
region's subscription-attributes interest-
policy to all.

nor
mal

Data used locally (accessed with gets, stored
with puts, etc.) is stored in the local cache. This
policy allows the contents in the cache to differ
from other caches.

part
itio
n

Data is partitioned across local and remote
caches using the automatic data distribution
behavior of partitioned regions. Additional
configuration is done in the partition-
attributes.

repl
icat
e

The region is initialized with the data from other
caches. After initialization, all events for the
distributed region are automatically copied into
the local region, maintaining a replica of the
entire distributed region in the local cache.
Operations that would cause the contents to
differ with other caches are not allowed. This is
compatible with local scope, behaving the same
as for normal.

per
sist
ent-
part
itio
n

Behaves the same as partition and also persists
data to disk.

normal

Note: Configure the most common
options using the region shortcuts,
RegionShortcut and
ClientRegionShortcut. The default
data-policy of normal specifies local
cache storage. The empty policy
specifies no local storage. In the region
shortcuts, empty corresponds to the
settings with the string PROXY. You can
use an empty region for event delivery
to and from the local cache without the
memory overhead of data storage.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1169

Attribute Description Default

per
sist
ent-
repl
icat
e

Behaves the same as replicate and also persists
data to disk.

prel
oad
ed

Initializes like a replicated region, then, once
initialized, behaves like a normal region.

API: setDataPolicy

Example:

<region-attributes

 data-policy="replicate">

</region-attributes>

This is similar to using a region shortcut withrefid,
however when you use the REPLICATE region shortcut, it
automatically sets the region's scope to distributed-
ack.

<region-attributes

 refid="REPLICATE">

</region-attributes>

If you use data-policy, you must set the scope explicitly.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1170

Attribute Description Default

enable-async-conflation
For TCP/IP distributions between peers, specifies whether
to allow aggregation of asynchronous messages sent by
the producer member for the region. This is a special-
purpose Boolean attribute that applies only when
asynchronous queues are used for slow consumers. A false
value disables conflation so that all asynchronous
messages are sent individually. This special-purpose
attribute gives you extra control over peer-to-peer
communication between distributed regions using TCP/IP.
This attribute does not apply to client/server
communication or to communication using the UDP
unicast or IP multicast protocols.

API: setEnableAsyncConflation

Example:

<region-attributes

 enable-async-conflation="false">

</region-attributes>

true

enable-gateway
Determines whether the gateway is enabled for the region.
When set to true, events in the region are sent to the
defined gateway hubs.

Used only with GemFire version 6.x gateway
configurations. For GemFire 7.0 configuration, see the
gateway-sender-id attribute of the <region-attributes>
element.

false

enable-subscription-conflation
Boolean for server regions that specifies whether the
server can conflate its messages to the client. A true value
enables conflation.

API: setEnableSubscriptionConflation

Example:

<region-attributes

 enable-subscription-conflation="true">

 </region-attributes>

false

Note: To use this attribute, the
multicast-enabled region attribute
disable-tcp in gemfire.properties
must be false (the default for both). In
addition, asynchronous queues must be
enabled for slow consumers, specified
with the async* gemfire properties.

Note: The client can override this
setting with the conflate-events
property in its gemfire.properties.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1171

Attribute Description Default

gateway-sender-ids
Specifies one or more gateway sender IDs to use for
distributing region events to remote VMware GemFire
sites. Specify multiple IDs as a comma-separated list.

API: addGatewaySenderId

Example:

<region-attributes

 gateway-sender-ids="nwsender,swsende

r">

</region-attributes>

not set

async-event-queue-ids Specifies one or more asynchronous event queues to use
for distributing region events an AsyncEventListener
implementation (for example, for write-behind cache
event handling). Specify multiple IDs as a comma-
separated list.

API: addAsyncEventQueueId

Example:

<region-attributes

 async-event-queue-ids="customerqueue,o

rdersqueue">

</region-attributes>

not set

hub-id
If the enable-gateway attribute is set to true, a comma-
separated list of gateway hub IDs that receive events from
the region.

Used only with GemFire version 6.x gateway
configurations. For GemFire 7.0 configuration, see the
gateway-sender-id attribute of the <region-attributes>
element.

null

id
Stores the region attribute settings in the cache with this
identifier. Once stored, the attributes can be retrieved
using the region attribute refid.

API: setId

Example:

<region-attributes

 id="persistent-replicated">

</region-attributes>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1172

Attribute Description Default

ignore-jta
Boolean that determines whether operations on this
region participate in active JTA transactions or ignore
them and operate outside of the transactions. This is
primarily used in cache loaders, writers, and listeners that
need to perform non-transactional operations on a region,
such as caching a result set.

API: setIgnoreJTA

Example:

<region-attributes

 ignore-jta="true">

</region-attributes>

false

index-update-type
Specifies whether region indexes are maintained
synchronously with region modifications, or
asynchronously in a background thread. In the cache.xml
file, this is set as a value, asynchronous or synchronous,
assigned to the index-update-type region attribute. Set
this through the API by passing a boolean to the
setIndexMaintenanceSynchronous method.

API: setIndexMaintenanceSynchronous

Example:

<region-attributes

 index-update-type="asynchronous">

</region-attributes>

synchronous updates

initial-capacity
Together with the load-factor region attribute, sets the
initial parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries.

API: setInitialCapacity

Example:

<region-attributes

 initial-capacity="20">

</region-attributes>

16

VMware GemFire 9.10 Documentation

VMware by Broadcom 1173

Attribute Description Default

is-lock-grantor
Determines whether this member defines itself as the lock
grantor for the region at region creation time. This only
specifies whether the member becomes lock grantor at
creation and does not reflect the current state of the
member’s lock grantor status. The member’s lock grantor
status may change if another member subsequently
defines the region with is-lock-grantor set to true. This
attribute is only relevant for regions with global scope, as
only they allow locking. It affects implicit and explicit
locking.

API: setLockGrantor

Example:

<region-attributes

 is-lock-grantor="true">

</region-attributes>

false

load-factor
Together with the initial-capacity region attribute, sets the
initial parameters on the underlying
java.util.ConcurrentHashMap used for storing region
entries. This must be a floating point number between 0
and 1, inclusive.

API: setLoadFactor

Example:

<region-attributes

 load-factor="0.85">

</region-attributes>

.75

mirror-type Deprecated

multicast-enabled
Boolean that specifies whether distributed operations on a
region should use multicasting. To enable this, multicast
must be enabled for the cluster with the mcast-port
gemfire.properties setting.

API: setMulticastEnabled

Example:

<region-attributes

 multicast-enabled="true">

</region-attributes>

false

Note: Before you set this attribute, read
the discussion of initial capacity and
load factor, then see the Java API
documentation for
java.util.ConcurrentHashMap.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1174

Attribute Description Default

pool-name
Identifies the region as a client region and specifies the
server pool the region is to use. The named pool must be
defined in the client cache before the region is created. If
this is not set, the region does not connect to the servers
as a client region.

API: setPoolName

Examples:

This declaration creates the region as a client region with
a server pool named DatabasePool. This pool-name
specification is required, as there are multiple pools in the
client cache:

<client-cache>

 <pool name="DatabasePool"

 subscription-enabled="true">

 ...

 </pool>

 <pool >

 name="OtherPool"

 subscription-enabled="true">

 ...

 </pool>

 <region ...

 <region-attributes

 pool-name="DatabasePool">

 </region-attributes>

 ...

This declaration creates the region as a client region
assigned the single pool that is defined for the client
cache. Here the pool-name specification is implied to be
the only pool that exists in the cache:

<client-cache>

 <pool

 name="publisher"

 subscription-enabled="true">

 ...

 </pool>

 <region

 name="myRegion"

 refid="CACHING_PROXY">

 </region>

</client-cache>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1175

Attribute Description Default

disk-store-name
Assigns the region to the disk store with this name from
the disk stores defined for the cache. Persist region data
to disk by defining the region as persistent using the
Shortcut Attribute Options or data-policy settings.
Overflow data to disk by implementing LRU eviction-
attributes with an action of overflow to disk. Each disk
store defines the file system directories to use, how data is
written to disk, and other disk storage maintenance
properties. In addition, the disk-synchronous region
attribute specifies whether writes are done synchronously
or asynchronously.

API: setDiskStoreName

Example:

<region-attributes

 disk-store-name="myStoreA" >

</region-attributes>

null

disk-synchronous
For regions that write to disk, boolean that specifies
whether disk writes are done synchronously for the region.

API: setDiskSynchronous

Example:

<region-attributes

 disk-store-name="myStoreA"

 disk-synchronous="true">

</region-attributes>

true

refid
Retrieves region shortcuts and user-defined named region
attributes for attributes initialization

API: setRefId

Example:

<region-attributes

 refid="persistent-replicated">

 <!-- Override any stored

 attribute settings that you

 need to ... -->

</region-attributes>

not set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1176

Attribute Description Default

scope
Definition: Determines how updates to region entries are
distributed to the other caches in the cluster where the
region and entry are defined. Scope also determines
whether to allow remote invocation of some of the
region’s event handlers, and whether to use region entry
versions to provide consistent updates across replicated
regions.

Set one of the following scope values:

local No distribution. The region is visible only to
threads running inside the member.

distri
buted
-no-
ack

Events are distributed to remote caches with
no acknowledgement required.

distri
buted
-ack

Events are distributed to remote caches with
receipt acknowledgement required. Region
entry versions are used to provide consistent
updates across members of the cluster.

globa
l

Events are distributed to remote caches with
global locking to ensure distributed cache
consistency.

API: setScope

Example:

<region-attributes

 scope="distributed-ack">

</region-attributes>

distributed-no-ack

Note: You can configure the most
common of these options with region
shortcuts in RegionShortcut and
ClientRegionShortcut.

Note: Server regions that are not
partitioned must be replicated with
distributed-ack or global scope. The
region shortcuts that specify REPLICATE
have distributed-ack scope.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1177

Attribute Description Default

statistics-enabled Boolean specifying whether to gather statistics on the
region. Must be true to use expiration on the region.
VMware GemFire provides a standard set of statistics for
cached regions and region entries, which give you
information for fine-tuning your cluster. Unlike other
VMware GemFire statistics, statistics for local and
distributed regions are not archived and cannot be
charted. They are kept in instances of
org.apache.geode.cache.CacheStatistics and made
available through the region and its entries through the
Region.getStatistics and
Region.Entry.getStatistics methods.

API: setStatisticsEnabled

Example:

<region-attributes

 statistics-enabled="true">

</region-attributes>

false

cloning-enabled
Determines how fromDelta applies deltas to the local
cache for delta propagation. When true, the updates are
applied to a clone of the value and then the clone is saved
to the cache. When false, the value is modified in place in
the cache.

API: setCloningEnabled

Example:

<region-attributes

 cloning-enabled="true">

</region-attributes>

false

VMware GemFire 9.10 Documentation

VMware by Broadcom 1178

Attribute Description Default

concurrency-checks-enabled
Determines whether members perform checks to provide
consistent handling for concurrent or out-of-order
updates to distributed regions. See Consistency for
Region Updates.

API: setConcurrencyChecksEnabled

Example:

<region-attributes

 concurrency-checks-enabled="true">

</region-attributes>

true

off-heap
Specifies that the region uses off-heap memory to store
entry values, including values for region entries and queue
entries. The region will still use heap memory for
everything else, such as entry keys and the
ConcurrentHashMap.

API: setOffHeap

Example:

<region-attributes

 off-heap="true">

</region-attributes>

false

<index>

Describes an index to be created on a region. The index node, if any, should all come immediately
after the “region-attributes” node. The “name” attribute is a required field which identifies the
name of the index. See Working with Indexes for more information on indexes.

Default:

API: org.apache.geode.cache.query.QueryService.createIndex, createKeyIndex,
createHashIndex

<index> Attributes

Note: Applications that use a client-
cache may want to disable
concurrency checking in order to see
all events for a region. VMware
GemFire server members can continue
using concurrency checks for the
region, but they will pass all events to
the client cache. This configuration
ensures that the client sees all events,
but it does not prevent the client cache
from becoming out-of-sync with the
server cache.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1179

Attribute Description Default

name Required. Name of the index.

from-
clause

Specifies the collection(s) of objects that the index ranges over. The from-clause must only
contain one and only one region path.

expressio
n

Specifies the lookup value of the index.

imports String containing the imports used to create the index. String should be specified in the query
language syntax with each import statement separated by a semicolon. The imports statement
provides packages and classes used in variable typing in the indexed and FROM expressions.

key-index True or false. Whether the index should be a key index. If true, the region key specified in the
indexed expression is used to evaluate queries

type Possible values are “hash” or “range”. range

Example:

<region name=exampleRegion>

 <region-attributes . . . >

 </region-attributes>

 <index

 name="myIndex"

 from-clause="/exampleRegion"

 expression="status"/>

 <index

 name="myKeyIndex"

 from-clause="/exampleRegion"

 expression="id" key-index="true"/>

 <index

 name="myHashIndex"

 from-clause="/exampleRegion p"

 expression="p.mktValue" type="hash"/>

 ...

</region>

<entry>

An “entry” element describes an entry to be added to a region. Note that if an entry with the given
key already exists in the region, it will be replaced.

Default:

API: org.apache.geode.cache.Region.create, put, get, putAll, getAll

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1180

 </entry>

</region>

<key>

Required. Describes the key in a region entry. A key can contain either a <string> or a <declarable>
sub-element.

<string>

Specifies a String to be placed in a Region entry.

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

 </entry>

</region>

<declarable>

Specifies a Declarable object to be placed in a Region entry.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: Declarable

Example:

<parameter name="cacheserver">

 <declarable>

 <class-name>org.apache.geode.addon.cache.CacheServerInitializer</class-name>

 <parameter name="system.property.prefix">

 <string>cacheserver</string>

 </parameter>

 </declarable>

</parameter>

<value>
Required. Describes the value of a region entry. A <value> can contain either a <string> or a
<declarable> sub-element.

<string>
Specifies a String to be placed in a Region entry.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1181

Example:

<region ...>

 <region-attributes ...>

 ...

 </region-attributes>

 <entry>

 <key><string>MyKey</string></key>

 <value><string>MyValue</string></value>

 </entry>

</region>

<declarable>

Specifies a Declarable object to be placed in a Region entry.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements.

API: Declarable

Example:

<parameter name="cacheserver">

 <declarable>

 <class-name>org.apache.geode.addon.cache.CacheServerInitializer</class-name>

 <parameter name="system.property.prefix">

 <string>cacheserver</string>

 </parameter>

 </declarable>

</parameter>

<region>
Defines a region in the cache. See <region-attributes> for more details on configuring regions. You
can specify zero or more subregions within a region. See Create and Access Data Subregions for
restrictions on creating subregions. For example, you cannot create a partitioned subregion.

Default:

API: org.apache.geode.cache.RegionFactory or org.apache.geode.cache.ClientRegionFactory

<region> Attributes

Attribute Description Default

name Specify the name for the region. See Region Management for details.

refid Used to apply predefined attributes to the region being defined. If the nested “region-attributes”
element has its own “refid”, then it will cause the “refid” on the region to be ignored. The “refid”
region attribute can be set to the name of a RegionShortcut or a ClientRegionShortcut. For more
information, see Region Shortcuts and Custom Named Region Attributes and Storing and
Retrieving Region Shortcuts and Custom Named Region Attributes.

Example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1182

<!--Using region shortcut-->

<region

 name="PartitionedRegion"

 refid="PARTITION_REDUNDANT">

...

</region>

<!-- Retrieving and storing attributes -->

<region-attributes

 id="myPartition"

 refid="PARTITION_REDUNDANT">

 <partition-attributes

 local-max-memory="512"/>

</region-attributes>

<!-- Attributes are retrieved and applied in the first region -->

<region name="PartitionedRegion1" refid="myPartition"/>

See<region-attributes> for a complete listing of region attributes.

<function-service>

Configures the behavior of the function execution service.

Example:

<client-cache>

 ...

 </region>

 <function-service>

 <function>

 <class-name>com.myCompany.tradeService.cache.func.TradeCalc</class-name>

 </function>

 </function-service>

 ...

</client-cache>

<function>

Defines a function for registration in the function service

Specify the Java class for the function and its initialization parameters with the <class-name> and
<parameter> sub-elements. See <class-name> and <parameter>.

Default:

API: org.apache.geode.cache.execute.FunctionService

Example:

<function>

 <class-name>

 com.myCompany.tradeService.cache.func.TradeCalc

 </class-name>

</function>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1183

<resource-manager>

A memory monitor that tracks cache size as a percentage of total heap or off-heap memory and
controls size by restricting access to the cache and prompting eviction of old entries from the
cache. For tenured heap, used in conjunction with settings for JVM memory and Java garbage
collection. For off-heap memory, used with the off-heap memory manager.

API: org.apache.geode.cache.control.ResourceManager

<resource-manager> Attributes

Attribute Description Default

critical-heap-percentage Percentage of heap at or above which the cache is
considered in danger of becoming inoperable due to
garbage collection pauses or out of memory exceptions.

Only one change to this attribute or critical heap
percentage will be allowed at any given time and its effect
will be fully realized before the next change is allowed.
This feature requires additional VM flags to perform
properly. See setCriticalHeapPercentage() for details.

0

eviction-heap-percentage
Set the percentage of heap at or above which the eviction
should begin on Regions configured for HeapLRU eviction.

Changing this value may cause eviction to begin
immediately.

0, If no
region is
configured
with heap
eviction

If critical-
heap-

percentage

is set to a
non-zero
value, 5%
less than
that value.

80%, if
critical-

heap-

percentage

is not
configured.

critical-off-heap-percentage Percentage of off-heap memory at or above which the
cache is considered in danger of becoming inoperable
due to garbage collection pauses or out of memory
exceptions.

0

VMware GemFire 9.10 Documentation

VMware by Broadcom 1184

Attribute Description Default

eviction-off-heap-percentage Set the percentage of off-heap memory at or above which
the eviction should begin on Regions configured for
HeapLRU eviction.

0, If no
region is
configured
with heap
eviction

If critical-
off-heap-

percentage

is set to a
non-zero
value, 5%
less than
that value.

80%, if
critical-

off-heap-

percentage

is not
configured.

Example:

<client-cache>

 ...

 <resource-manager

 critical-heap-percentage="99.9"

 eviction-heap-percentage="85"/>

 ...

</client-cache>

<serialization-registration>
Set of serializer or instantiator tags to register customer DataSerializer extensions or
DataSerializable implementations respectively.

Example:

<serialization-registration>

 <instantiator id="30">

 <class-name>com.package.MyClass</class-name>

 </instantiator>

</serialization-registration>

<serializer>

Allows you to configure the DataSerializer for this VMware GemFire member. It registers a custom
class which extends DataSerializer to support custom serialization of non-modifiable object types
inside VMware GemFire.

Specify the Java class for the DataSerializer and its initialization parameters with the <class-name>
sub-element.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1185

API: You can also register a DataSerializer by using the
org.apache.geode.DataSerializer.register API. Use the org.apache.geode.Instantiator API to
register a DataSerializable implementation.

<instantiator>

An Instantiator registers a custom class which implements the DataSerializable interface to
support custom object serialization inside VMware GemFire.

Specify the Java class and its initialization parameters with the <class-name> sub-element.

API: DataSerializable

You can also directly specify <instantiator> as a sub-element of <client-cache>. Use the
org.apache.geode.Instantiator API to register a DataSerializable implementation as the
serialization framework for the cache. The following table lists the attribute that can be specified for
an <instantiator>.

<instantiator> Attributes

Attribute Description Default

id Required. ID that the Instantiator should associate with the DataSerializable type.

<initializer>

Used to specify a callback class (and optionally its parameters) that will be run after the cache is
initialized. This element can be specified for both server and client caches.

Specify the Java class and its initialization parameters with the <class-name> and <parameter> sub-
elements. See <class-name> and <parameter>.

Default:

API: Declarable

Example:

<initializer>

 <class-name>MyInitializer</class-name>

 <parameter name="members">

 <string>2</string>

 </parameter>

</initializer>

Region Shortcuts

This topic describes the various region shortcuts you can use to configure VMware GemFire
regions.

Region shortcuts are groupings of pre-configured attributes that define the characteristics of a
region. You can use a region shortcut as a starting point when configuring regions and you can add
additional configurations to customize your application. To reference a region shortcut in a VMware
GemFire cache.xml file, use the refid attribute of the <region> element. For example:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1186

<region name="myRegion" refid="PARTITION_REDUNDANT"/>

You can override the default values and add additional configurations within a <region-attributes>
element of the cache.xml file. For example, the following configuration overrides the local-max-
memory setting and adds the recovery-delay attribute:

<region name="myRegion" refid="PARTITION_REDUNDANT">

 <region-attributes>

 <partition-attributes

 local-max-memory="512"

 recovery-delay=-1/>

 </region-attributes>

</region>

You can also create your own, named region shortcuts for common custom configurations. See
Region Shortcuts and Custom Named Region Attributes.

To configure a region using the gfsh command-line tool, specify the shortcut name with the --type
argument. For example:

gfsh>create region --name=myRegion --type=PARTITION_REDUNDANT

Note: If you change the cache.xml file that defines a region, you must restart the member before
the changes take effect.

For more information about configuring regions, see Region Management.

For more information about using the various types of VMware GemFire regions and when to use
them, see Region Types.

For a quick reference listing all region shortcuts, see Region Shortcuts Quick Reference.

Region Shortcuts Quick Reference
This section provides a quick reference for all region shortcuts.

Region Shortcuts Default Configurations summarizes the default configurations for each region
shortcut. See the cross reference for additional information about each shortcut.

Table 1. Region Shortcuts Default Configurations

Region Shortcut
Region
Attributes

Other Attributes

LOCAL scope: local
data-policy:
NORMAL

LOCAL_HEAP_LR
U

scope: local
data-policy:
NORMAL

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: local-destroy

VMware GemFire 9.10 Documentation

VMware by Broadcom 1187

Region Shortcut
Region
Attributes

Other Attributes

LOCAL_OVERFLO
W

scope: local
data-policy:
NORMAL

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

LOCAL_PERSISTE
NT

scope: local
data-policy:
PERSISTENT_R
EPLICATE

LOCAL_PERSISTE
NT_OVERFLOW

scope: local
data-policy:
PERSISTENT_R
EPLICATE

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

PARTITION data-policy:
PARTITION

PARTITION_HEAP
_LRU

data-policy:
PARTITION

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: local-destroy

PARTITION_OVER
FLOW

data-policy:
PARTITION

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

PARTITION_PERSI
STENT

data-policy:
PERSISTENT_P
ARTITION

PARTITION_PERSI
STENT_OVERFLO
W

data-policy:
PERSISTENT_P
ARTITION

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

PARTITION_PROX
Y

data-policy:
PARTITION

Partition Attributes

local-max-memory: 0

PARTITION_PROX
Y_REDUNDANT

data-policy:
PARTITION

Partition Attributes

local-max-memory: 0

redundant-copies: 1

PARTITION_REDU
NDANT

data-policy:
PARTITION

Partition Attributes

redundant-copies: 1

VMware GemFire 9.10 Documentation

VMware by Broadcom 1188

Region Shortcut
Region
Attributes

Other Attributes

PARTITION_REDU
NDANT_HEAP_LR
U

data-policy:
PARTITION

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: local-destroy

Partition Attributes

redundant-copies: 1

PARTITION_REDU
NDANT_OVERFLO
W

data-policy:
PARTITION

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

Partition Attributes

redundant-copies: 1

PARTITION_REDU
NDANT_PERSISTE
NT

data-policy:
PERSISTENT_P
ARTITION

Partition Attributes

redundant-copies: 1

PARTITION_REDU
NDANT_PERSISTE
NT_OVERFLOW

data-policy:
PERSISTENT_P
ARTITION

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

Partition Attributes

redundant-copies: 1

REPLICATE data-policy:
REPLICATE
scope:
distributed-ack

REPLICATE_HEAP
_LRU

data-policy:
PRELOADED
scope:
distributed-ack

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: local-destroy

Note: Normally, you cannot have a local-destroy eviction policy on
replicated regions. However, the REPLICATE_HEAP_LRU region is not the
same as other replicated regions. This region is preloaded and remains in
synch by registering interest in the keys of its peer’s replicated regions.

Subscription Attributes

interest-policy: all

REPLICATE_OVER
FLOW

data-policy:
REPLICATE
scope:
distributed-ack

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

VMware GemFire 9.10 Documentation

VMware by Broadcom 1189

Region Shortcut
Region
Attributes

Other Attributes

REPLICATE_PERSI
STENT

data-policy:
PERSISTENT_R
EPLICATE
scope:
distributed-ack

REPLICATE_PERSI
STENT_OVERFLO
W

data-policy:
PERSISTENT_R
EPLICATE
scope:
distributed-ack

Eviction Attributes

eviction-algorithm: lru-heap-percentage

eviction-action: overflow-to-disk

REPLICATE_PROX
Y

data-policy:
EMPTY
scope:
distributed-ack

Exceptions and System Failures

Your application needs to catch certain classes to handle all the exceptions and system failures
thrown by VMware GemFire.

GemFireCheckedException. This class is the abstract superclass of exceptions that are thrown
and declared. Wherever possible, GemFire exceptions are checked exceptions.
GemFireCheckedException is a VMware GemFire version of java.lang.Exception.

GemFireException. This class is the abstract superclass of unchecked exceptions that are
thrown to indicate conditions for which the developer should not normally need to check.
You can look at the subclasses of GemFireException to see all the runtime exceptions in the
GemFire system; see the class hierarchy in the online Java API documentation.
GemFireException is a VMware GemFire version of java.lang.RuntimeException. You can
also look at the method details in the Region API javadocs for VMware GemFire exceptions
you may want to catch.

SystemFailure. In addition to exception management, VMware GemFire provides a class to
help you manage catastrophic failure in your cluster, particularly in your application. The
Javadocs for this class provide extensive guidance for managing failures in your system and
your application. See SystemFailure in the org.apache.geode package.

To see the exceptions thrown by a specific method, refer to the method’s online Java
documentation.

A VMware GemFire system member can also throw exceptions generated by third-party software
such as JGroups or java.lang classes. For assistance in handling these exceptions, see the vendor
documentation.

Memory Requirements for Cached Data

VMware GemFire solutions architects need to estimate resource requirements for meeting
application performance, scalability and availability goals.

These requirements include estimates for the following resources:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1190

memory

number of machines

network bandwidth

The information here is only a guideline, and assumes a basic understanding of VMware GemFire.
While no two applications or use cases are exactly alike, the information here should be a solid
starting point, based on real-world experience. Much like with physical database design, ultimately
the right configuration and physical topology for deployment is based on the performance
requirements, application data access characteristics, and resource constraints (i.e., memory, CPU,
and network bandwidth) of the operating environment.

Core Guidelines for VMware GemFire Data Region Design

The following guidelines apply to region design:

For 32-bit JVMs: If you have a small data set (< 2GB) and a read-heavy requirement, you
should be using replicated regions.

For 64-bit JVMs: If you have a data set that is larger than 50-60% of the JVM heap space
you can use replicated regions. For read heavy applications this can be a performance win.
For write heavy applications you should use partitioned caches.

If you have a large data set and you are concerned about scalability you should be using
partitioned regions.

If you have a large data set and can tolerate an on-disk subset of data, you should be using
either replicated regions or partitioned regions with overflow to disk.

If you have different data sets that meet the above conditions, then you might want to
consider a hybrid solution mixing replicated and partition regions. Do not exceed 50 to 75%
of the JVM heap size depending on how write intensive your application is.

Memory Usage Overview

The following guidelines should provide a rough estimate of the amount of memory consumed by
your system.

Memory calculation about keys and entries (objects) and region overhead for them can be divided
by the number of members of the cluster for data placed in partitioned regions only. For other
regions, the calculation is for each member that hosts the region. Memory used by sockets,
threads, and the small amount of application overhead for VMware GemFire is per member.

For each entry added to a region, the VMware GemFire cache API consumes a certain amount of
memory to store and manage the data. This overhead is required even when an entry is overflowed
or persisted to disk. Thus objects on disk take up some JVM memory, even when they are paged
to disk. The Java cache overhead introduced by a region, using a 32-bit JVM, can be approximated
as listed below.

Actual memory use varies based on a number of factors, including the JVM you are using and the
platform you are running on. For 64-bit JVMs, the usage will usually be larger than with 32-bit
JVMs. As much as 80% more memory may be required for 64-bit JVMs, due to object references
and headers using more memory.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1191

There are several additional considerations for calculating your memory requirements:

Size of your stored data. To estimate the size of your stored data, determine first whether
you are storing the data in serialized or non-serialized form. In general, the non-serialized
form will be the larger of the two. See Determining Object Serialization Overhead

Objects in VMware GemFire are serialized for storage into partitioned regions and for all
distribution activities, including moving data to disk for overflow and persistence. For
optimum performance, VMware GemFire tries to reduce the number of times an object is
serialized and deserialized, so your objects may be stored in serialized or non-serialized form
in the cache.

Application object overhead for your data. When calculating application overhead, make
sure to count the key as well as the value, and to count every object if the key and/or value
is a composite object.

The following section “Calculating Application Object Overhead” provides details on how to
estimate the memory overhead of the keys and values stored in the cache.

Calculating Application Object Overhead

To compute the memory overhead of a Java object, perform the following steps:

1. Determine the object header size. Each Java object has an object header. For a 32-bit
JVM, it is 8 bytes. For a 64-bit JVM with a heap less than or equal to 32GB, it is 12 bytes.
For a 64-bit JVM with a heap greater than 32GB, it is 16 bytes.

2. Determine the memory overhead of the fields of the object. For every instance field
(including fields from super classes), add in the field’s size. For primitive fields the sizes are:

8 for long and double

4 for int and float

2 for char and short

1 for byte and boolean

For object reference fields, the size is 8 bytes for 64-bit JVM with a heap greater than
32GB. For all other JVMs, use 4 bytes.

3. Add up the numbers from Step 1 and 2 and round it up to the next multiple of 8. The
result is the memory overhead of that Java object.

Java arrays. To compute the memory overhead of a Java array, you would add the object header
(since the array is an object) and a primitive int field that contains its size. Treat each element of the
array as if it was an instance field. For example, a byte array of the size 100 bytes would have one
object header, one int field, and 100 byte fields. Use the three step process described above to do
the computation.

Serialized objects. When computing the memory overhead of a serialized value, remember that
the serialized form is stored in a byte array. Therefore, to figure out how many bytes the serialized
form contains, compute the memory overhead of a Java byte array of that size and then add in the
size of the serialized value wrapper.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1192

When a value is initially stored in the cache in serialized form, a wrapper around the value is
introduced that is kept in memory for the life of that value even if the value is later deserialized.
Although this wrapper is only used internally, it does add to the memory footprint. The wrapper is
an object with one int field and one object reference.

If you are using partitioned regions, every value is initially stored in serialized form. For other region
types only values that come from a remote member (peers or clients) are initially stored in serialized
form. (This is the most common case.) However, if a local operation stores the value in the local
JVM’s cache, then the value will be stored in object form. A large number of operations can cause
a value stored in serialized form to be deserialized. Any operation that needs the object form of the
value to be local can cause this deserialization. If such operations are performed, then that value
will be stored in object form (with the additional serialized wrapper) and the serialized form
becomes garbage.

Note: An exception to this is if the serialized from is encoded with PDX, then setting read-
serialized to true will keep the serialized form in the cache.

See Determining Object Serialization Overhead for additional information on how to calculate
memory usage requirements for storing serialized objects.

Using Key Storage Optimization

Keys are stored in object form except for certain classes where the storage of keys is optimized.
Key storage is optimized by replacing the entry’s object reference to the key with one or two
primitive fields on the entry that store the key’s data “inline”. The following rules apply to
determine whether a key is stored “inline”:

If the key’s class is java.lang.Integer, java.lang.Long, or java.util.UUID, then the key is
always stored inline. The memory overhead for an inlined Integer or Long key is 0 (zero).
The memory overhead for an inlined UUID is 8.

If the key’s class is java.lang.String, then the key will be inlined if the string’s length is
small enough.

For ASCII strings whose length is less than 8, the inline memory overhead is 0
(zero).

For ASCII strings whose length is less than 16, the inline memory overhead is 8.

For non-ASCII strings whose length is less then 4, the inline memory overhead is 0
(zero).

For non-ASCII strings whose length is less then 8 the inline memory overhead is 8.

All other strings are not inlined.

When to disable inline key storage. In some cases, storing keys inline may introduce extra
memory or CPU usage. If all of your keys are also referenced from some other object, then it is
better to not inline the key. If you frequently ask for the key from the region, then you may want to
keep the object form stored in the cache so that you do not need to recreate the object form
constantly. Note that the basic operation of checking whether a key is in a region does not require
the object form but uses the inline primitive data.

The key inlining feature can be disabled by specifying the following VMware GemFire property
upon member startup:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1193

-Dgemfire.DISABLE_INLINE_REGION_KEYS=true

Measuring Cache Overhead

This table gives estimates for the cache overhead in a 32-bit JVM. The overhead is required even
when an entry is overflowed or persisted to disk. Actual memory use varies based on a number of
factors, including the JVM type and the platform you run on. For 64-bit JVMs, the usage will
usually be larger than with 32-bit JVMs and may be as much as 80% more.

When calculating cache overhead... You should ...

For each region add 64 bytes per entry

And concurrency checking is disabled (it is enabled by
default)

subtract 16 bytes per entry

(See Overhead for Consistency Checks.)

And statistics are enabled for the region add 16 bytes per entry

And the region is persisted add 52 bytes per entry

And the region is overflow only add 44 bytes per entry

And the region has an LRU eviction controller add 16 bytes per entry

And the region has global scope add 110 bytes per entry

And the region has entry expiration configured add 112 bytes per entry

For each optional user attribute add 40 bytes per entry plus the memory overhead of the
user attribute object

For indexes used in querying, the overhead varies greatly depending on the type of data you are
storing and the type of index you create. You can roughly estimate the overhead for some types of
indexes as follows:

If the index has a single value per region entry for the indexed expression, the index
introduces at most 243 bytes per region entry. An example of this type of index is:
fromClause="/portfolios", indexedExpression="id". The maximum of 243 bytes per
region entry is reached if each entry has a unique value for the indexed expression. The
overhead is reduced if the entries do not have unique index values.

If each region entry has more than one value for the indexed expression, but no two region
entries have the same value for it, then the index introduces at most 236 C + 75 bytes per
region entry, where C is the average number of values per region entry for the expression.

Note:

Memory consumption for object
headers and object references can vary
for 64-bit JVMs, different JVM
implementations, and different JDK
versions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1194

Lucene indexes add approximately 737 bytes per entry. The other index overhead
estimates listed here also apply to Lucene indexes.

Estimating Management and Monitoring Overhead

The VMware GemFire JMX management and monitoring system contributes to memory overhead
and should be accounted for when establishing the memory requirements for your deployment.
Specifically, the memory footprint of any processes (such as locators) that are running as JMX
managers can increase.

For each resource in the cluster that is being managed and monitored by the JMX Manager (for
example, each MXBean such as MemberMXBean, RegionMXBean, DiskStoreMXBean,
LockServiceMXBean and so on), you should add 10 KB of required memory to the JMX Manager
node.

Determining Object Serialization Overhead

VMware GemFire PDX serialization can provide significant space savings over Java Serializable in
addition to better performance. In some cases we have seen savings of up to 65%, but the savings
will vary depending on the domain objects. PDX serialization is most likely to provide the most
space savings of all available options. DataSerializable is more compact, but it requires that objects
are deserialized on access, so that should be taken into account. On the other hand, PDX
serializable does not require deserialization for most operations, and because of that, it may provide
greater space savings.

In any case, the kinds and volumes of operations that would be done on the server side should be
considered in the context of data serialization, as VMware GemFire has to deserialize data for some
types of operations (access). For example, if a function invokes a get operation on the server side,
the value returned from the get operation will be deserialized in most cases (the only time it will not
be deserialized is when PDX serialization is used and the read-serialized attribute is set). The only
way to find out the actual overhead is by running tests, and examining the memory usage.

Some additional serialization guidelines and tips:

If you are using compound objects, do not mix using standard Java serialization with with
VMware GemFire serialization (either DataSerializable or PDX). Standard Java serialization
functions correctly when mixed with VMware GemFire serialization, but it can end up
producing many more serialized bytes.

To determine if you are using standard Java serialization, specify the -
DDataSerializer.DUMP_SERIALIZED=true upon process execution. Then check your log for
messages of this form:

DataSerializer Serializing an instance of <className>

Any classes list are being serialized with standard Java serialization. You can optimize your
serialization by handling those classes in a PdxSerializer or a DataSerializer or changing
the class to be PdxSerializable or DataSerializable.

A simple way to determine the serialized size of an object is to create an instance of that
object and then call DataSerializer.writeObject(obj dataOutput) where “dataOutput”

VMware GemFire 9.10 Documentation

VMware by Broadcom 1195

wraps a ByteArrayOutputStream. You can then ask the stream for its size, and it will return
the serialized size. Make sure you have configured your PdxSerializer and/or
DataSerializer(s) configured before you calling writeObject.

If you do want to estimate memory usage for PDX serialized data, the following table provides
estimated sizes for various types when using PDX serialization:

Type Memory Usage

boolean 1 byte

byte 1 byte

char 2 bytes

short 2 bytes

int 4 bytes

long 8 bytes

float 8 bytes

String String.length + 3 bytes

Domain
Object

9 bytes (for PDX header) + object serialization length (total all member fields) + 1 to 4 extra bytes
(depends on the total size of Domain object)

A note of caution: If the domain object contains many domain objects as member fields, then the
memory overhead of PDX serialization can be considerably more than other types of serialization.

Calculating Socket Memory Requirements

Servers always maintain two outgoing connections to each of their peers. So for each peer a server
has, there are four total connections: two going out to the peer and two coming in from the peer.

The server threads that service client requests also communicate with peers to distribute events
and forward client requests. If the server’s VMware GemFire connection property conserve-
sockets is set to true, these threads use the already-established peer connections for this
communication.

If conserve-sockets is false (the default), each thread that services clients establishes two of its own
individual connections to its server peers, one to send, and one to receive. Each socket uses a file
descriptor, so the number of available sockets is governed by two operating system settings:

maximum open files allowed on the system as a whole

maximum open files allowed for each session

In servers with many threads servicing clients, if conserve-sockets is set to false, the demand for
connections can easily overrun the number of available sockets. Even with conserve-sockets set to
false, you can cap the number of these connections by setting the server’s max-threads parameter.

Since each client connection takes one server socket on a thread to handle the connection, and
since that server acts as a proxy on partitioned regions to get results, or execute the function
service on behalf of the client, for partitioned regions, if conserve-sockets is set to false, this also
results in a new socket on the server being opened to each peer. Thus N sockets are opened,
where N is the number of peers. Large number of clients simultaneously connecting to a large set

VMware GemFire 9.10 Documentation

VMware by Broadcom 1196

of peers with a partitioned region with conserve sockets set to false can cause a large amount of
memory to be consumed by sockets.

Note: There is also JVM overhead for the thread stack for each client connection being processed,
set at 256KB or 512KB for most JVMs . On some JVMs you can reduce it to 128KB. You can use
the VMware GemFire max-threads property or the VMware GemFire max-connections property to
limit the number of client threads and thus both thread overhead and socket overhead.

The following table lists the memory requirements based on connections.

Connections Memory requirements

Per socket
32,768 /socket (configurable)

Default value per socket should be set to a number > 100 +
sizeof (largest object in region) + sizeof (largest key)

If server (for example if there are clients that connect to it) = (lesser of max-threads property on server or max-
connections)* (socket buffer size +thread overhead for the
JVM)

Per member of the cluster if conserve-sockets is set to
true

4* number of peers

Per member, if conserve-sockets is set to false 4 * number of peers hosting that region* number of
threads

If member hosts a Partitioned Region, If conserve-sockets
set to false and it is a Server (this is cumulative with the
above)

=< max-threads * 2 * number of peers

Subscription Queues

Per Server, depending on whether you limit the queue
size. If you do, you can specify the number of megabytes
or the number of entries until the queue overflows to disk.
When possible, entries on the queue are references to
minimize memory impact. The queue consumes memory
not only for the key and the entry but also for the client
ID/or thread ID as well as for the operation type. Since
you can limit the queue to 1 MB, this number is completely
configurable and thus there is no simple formula.

1 MB +

VMware GemFire classes and JVM overhead Roughly 50MB

Thread overhead

Each concurrent client connection into the a server results
in a thread being spawned up to max-threads setting.
After that a thread services multiple clients up to max-
clients setting.

There is a thread stack overhead per connection (at a
minimum 256KB to 512 KB, you can set it to smaller to
128KB on many JVMs.)

Note:

it is = 2* current number of clients
connected * number of peers. Each
connection spawns a thread.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1197

VMware GemFire Statistics List

This section describes the primary statistics gathered by VMware GemFire when statistics are
enabled.

All statistics gathering requires the gemfire.properties statistic-sampling-enabled in
gemfire.properties file to be true. Statistics that use time require the gemfire.properties enable-
time-statistics to be true.

Performance statistics are collected for each Java application or cache server that connects to a
cluster.

Cache Performance (CachePerfStats)

Cache Server (CacheServerStats)

Client-Side Notifications (CacheClientUpdaterStats)

Client-to-Server Messaging Performance (ClientStats)

Client Connection Pool (PoolStats)

Continuous Querying (CqQueryStats)

Delta Propagation (DeltaPropagationStatistics)

Disk Space Usage (DiskDirStatistics)

Disk Store Statistics (DiskStoreStatistics)

Disk Usage and Performance (DiskRegionStatistics)

Distributed System Messaging (DistributionStats)

Distributed Lock Services (DLockStats)

Function Execution (FunctionServiceStatistics)

Gateway Queue (GatewaySenderStatistics)

Indexes (IndexStats)

JVM Performance

Locator (LocatorStats)

Lucene Indexes (LuceneIndexStats)

Off-Heap (OffHeapMemoryStats)

Operating System Statistics - Linux

Partitioned Regions (PartitionedRegion<partitioned_region_name>Statistics)

Region Entry Eviction – Count-Based (LRUStatistics)

Region Entry Eviction - Heap-based eviction (HeapLRUStatistics)

Region Entry Eviction – Size-based (MemLRUStatistics)

Server Notifications for All Clients (CacheClientNotifierStatistics)

Server Notifications for Single Client (CacheClientProxyStatistics)

Server-to-Client Messaging Performance (ClientSubscriptionStats)

VMware GemFire 9.10 Documentation

VMware by Broadcom 1198

Statistics Collection (StatSampler)

Cache Performance (CachePerfStats)

Statistics for the VMware GemFire cache. These can be used to determine the type and number of
cache operations being performed and how much time they consume.

Regarding VMware GemFire cache transactions, transaction-related statistics are compiled and
stored as properties in the CachePerfStats statistic resource. Because the transaction’s data scope
is the cache, these statistics are collected on a per-cache basis.

The primary statistics are:

Statistic Description

cacheListe

nerCallsCo

mpleted

Total number of times a cache listener call has completed.

cacheListe

nerCallsIn

Progress

Current number of threads doing a cache listener call.

cacheListe

nerCallTim

e

Total time spent doing cache listener calls.

cacheWrite

rCallsComp

leted

Total number of times a cache writer call has completed.

cacheWrite

rCallsInPr

ogress

Current number of threads doing a cache writer call.

cacheWrite

rCallTime

Total time spent doing cache writer calls.

compressio

ns

Total number of compression operations.

compressTi

me

Total time, in nanoseconds, spent compressing data.

conflatedE

vents

The number of events that were conflated, and not delivered to event listeners or gateway senders on
this member. Events are typically conflated because a later event was already applied to the cache, or
because a concurrent event was ignored to ensure cache consistency. Note that some members may
discard an update while other members apply the update, depending on the order in which each
member receives the update. For this reason, the conflatedEvents statistic will differ for each VMware
GemFire member. See Consistency for Region Updates.

creates The total number of times an entry is added to this cache.

decompress

ions

Total number of decompression operations.

decompress

Time

Total time, in nanoseconds, spent decompressing data.

destroys The total number of times a cache object entry has been destroyed in this cache.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1199

Statistic Description

diskTasksW

aiting

The current number of disk tasks, such as oplog compactions and asynchronous recoveries, that are
waiting for a thread to run the operation.

eventQueue

Size

The number of cache events waiting to be processed.

eventQueue

ThrottleCo

unt

The total number of times a thread was delayed in adding an event to the event queue.

eventQueue

ThrottleTi

me

The total amount of time, in nanoseconds, spent delayed by the event queue throttle.

eventThrea

ds

The number of threads currently processing events.

getInitial

ImageKeysR

eceived

Total number of keys received while doing getInitialImage operations.

getInitial

ImagesComp

leted

Total number of times getInitialImages initiated by this cache have completed.

getInitial

ImagesInPr

ogressDesc

Current number of getInitialImage operations currently in progress.

getInitial

ImageTime

Total time spent doing getInitialImages for region creation.

getsDesc The total number of times a successful get has been done on this cache.

getTime Total time spent doing get operations from this cache (including netsearch and netload).

invalidate

s

The total number of times an existing cache object entry value in this cache has been invalidated.

loadsCompl

eted

Total number of times a load on this cache has completed as a result of either a local get() or a remote
netload.

loadsInPro

gress

Current number of threads in this cache doing a cache load.

loadTime Total time spent invoking loaders on this cache.

misses Total number of times a get on the cache did not find a value already in local memory. The number of
hits (that is, gets that did not miss) can be calculated by subtracting misses from gets.

netloadsCo

mpleted

Total number of times a network load initiated on this cache has completed.

netloadsIn

Progress

Current number of threads doing a network load initiated by a get() in this cache.

netloadTim

e

Total time spent doing network loads on this cache.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1200

Statistic Description

netsearche

sCompleted

Total number of times network searches initiated by this cache have completed.

netsearche

sInProgres

s

Current number of threads doing a network search initiated by a get() in this cache.

netsearchT

imeDesc

Total time spent doing network searches for cache values.

nonReplica

tedTombsto

nesSize

The approximate number of bytes that are currently consumed by tombstones in non-replicated regions.
See Consistency for Region Updates.

partitione

dRegions

The current number of partitioned regions in the cache.

postCompre

ssedBytes

Total number of bytes after compressing.

preCompres

sedBytes

Total number of bytes before compressing.

putAlls The total number of times a map is added or replaced in this cache as a result of a local operation. Note,
this only counts putAlls done explicitly on this cache; it does not count updates pushed from other
caches.

putallTime Total time spent replacing a map in this cache as a result of a local operation. This includes
synchronizing on the map, invoking cache callbacks, sending messages to other caches and waiting for
responses (if required).

puts The total number of times an entry is added or replaced in this cache as a result of a local operation
(put(), create(), or get() which results in load, netsearch, or netloading a value). Note, this only counts
puts done explicitly on this cache; it does not count updates pushed from other caches.

putTime Total time spent adding or replacing an entry in this cache as a result of a local operation. This includes
synchronizing on the map, invoking cache callbacks, sending messages to other caches, and waiting for
responses (if required).

queryExecu

tions

Total number of times some query has been executed.

queryExecu

tionTime

Total time spent executing queries.

regions The current number of regions in the cache.

replicated

Tombstones

Size

The approximate number of bytes that are currently consumed by tombstones in replicated or
partitioned regions. See Consistency for Region Updates.

tombstoneC

ount

The total number of tombstone entries created for performing concurrency checks. See Consistency for
Region Updates.

tombstoneG

CCount

The total number of tombstone garbage collection cycles that a member has performed. See
Consistency for Region Updates.

txCommitCh

anges

Total number of changes made by committed transactions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1201

Statistic Description

txCommits Total number of times a transaction commit has succeeded.

txCommitTi

me

The total amount of time, in nanoseconds, spent doing successful transaction commits.

txConflict

CheckTime

The total amount of time, in nanoseconds, spent doing conflict checks during transaction commit.

txFailedLi

feTime

The total amount of time, in nanoseconds, spent in a transaction before a failed commit. The time
measured starts at transaction begin and ends when commit is called.

txFailureC

hanges

Total number of changes lost by failed transactions.

txFailures Total number of times a transaction commit has failed.

txFailureT

ime

The total amount of time, in nanoseconds, spent doing failed transaction commits.

txRollback

Changes

Total number of changes lost by explicit transaction rollbacks.

txRollback

LifeTime

The total amount of time, in nanoseconds, spent in a transaction before an explicit rollback. The time
measured starts at transaction begin and ends when rollback is called.

txRollback

s

Total number of times a transaction has been explicitly rolled back.

txRollback

Time

The total amount of time, in nanoseconds, spent doing explicit transaction rollbacks.

txSuccessL

ifeTime

The total amount of time, in nanoseconds, spent in a transaction before a successful commit. The time
measured starts at transaction begin and ends when commit is called.

updates The total number of updates originating remotely that have been applied to this cache.

updateTime Total time spent performing an update.

Cache Server (CacheServerStats)

Statistics used for cache servers and for gateway receivers are recorded in CacheServerStats in a
cache server. The primary statistics are:

Statistic Description

abandonedReadRequests Number of read operations (requests) abandoned by clients.

abandonedWriteRequests Number of write operations (requests) abandoned by clients.

acceptsInProgress Current number of server accepts that are attempting to do the initial handshake with
the client.

acceptThreadStarts Total number of threads created (starts) to deal with an accepted socket. Note, this is
not the current number of threads.

batchSize The size (in bytes) of the batches received.

clearRegionRequests Number of cache client operations clearRegion requests.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1202

Statistic Description

clearRegionResponses Number of clearRegion responses written to the cache client.

clientNotificationRequest

s

Number of cache client operations notification requests.

clientReadyRequests Number of cache client ready requests.

clientReadyResponses Number of client ready responses written to the cache client.

closeConnectionRequests Number of cache client close connection operations requests.

connectionLoad The load from client to server connections as reported by the load probe installed in
this server.

connectionsTimedOut Total number of connections that have been timed out by the server because of client
inactivity.

connectionThreads Current number of threads dealing with a client connection.

connectionThreadStarts Total number of threads created (starts) to deal with a client connection. Note, this is
not the current number of threads.

containsKeyRequests Number of cache client operations containsKey requests.

containsKeyResponses Number of containsKey responses written to the cache client.

currentClientConnections Number of sockets accepted.

currentClients Number of client virtual machines (clients) connected.

destroyRegionRequests Number of cache client operations destroyRegion requests.

destroyRegionResponses Number of destroyRegion responses written to the cache client.

destroyRequests Number of cache client operations destroy requests.

destroyResponses Number of destroy responses written to the cache client.

failedConnectionAttempts Number of failed connection attempts.

getRequests Number of cache client operations get requests.

getResponses Number of getResponses written to the cache client.

loadPerConnection The estimate of how much load is added for each new connection as reported by the
load probe installed in this server.

loadPerQueue The estimate of how much load would be added for each new subscription connection
as reported by the load probe installed in this server.

messageBytesBeingReceived Current number of bytes consumed by messages being received or processed.

messagesBeingReceived Current number of messages being received off the network or being processed after
reception.

outOfOrderGatewayBatchIds Number of Out of Order batch IDs (batches).

processBatchRequests Number of cache client operations processBatch requests.

processBatchResponses Number of processBatch responses written to the cache client.

processBatchTime Total time, in nanoseconds, spent in processing a cache client processBatch request.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1203

Statistic Description

processClearRegionTime Total time, in nanoseconds, spent in processing a cache client clearRegion request,
including the time to clear the region from the cache.

processClientNotification

Time

Total time, in nanoseconds, spent in processing a cache client notification request.

processClientReadyTime Total time, in nanoseconds, spent in processing a cache client ready request, including
the time to destroy an object from the cache.

processCloseConnectionTim

e

Total time, in nanoseconds, spent in processing a cache client close connection
request.

processContainsKeyTime Total time spent, in nanoseconds, processing a containsKey request.

processDestroyRegionTime Total time, in nanoseconds, spent in processing a cache client destroyRegion request,
including the time to destroy the region from the cache.

processDestroyTime Total time, in nanoseconds, spent in processing a cache client destroy request,
including the time to destroy an object from the cache.

processGetTime Total time, in nanoseconds, spent in processing a cache client get request, including
the time to get an object from the cache.

processPutAllTime Total time, in nanoseconds, spent in processing a cache client putAll request, including
the time to put all objects into the cache.

processPutTime Total time, in nanoseconds, spent in processing a cache client put request, including
the time to put an object into the cache.

processQueryTime Total time, in nanoseconds, spent in processing a cache client query request, including
the time to destroy an object from the cache.

processUpdateClientNotifi

cationTime

Total time, in nanoseconds, spent in processing a client notification update request.

putAllRequests Number of cache client operations putAll requests.

putAllResponses Number of putAllResponses written to the cache client.

putRequests Number of cache client operations put requests.

putResponses Number of putResponses written to the cache client.

queryRequests Number of cache client operations query requests.

queryResponses Number of query responses written to the cache client.

queueLoad The load from subscription queues as reported by the load probe installed in this
server

readClearRegionRequestTim

e

Total time, in nanoseconds, spent in reading clearRegion requests.

readClientNotificationReq

uestTime

Total time, in nanoseconds, spent in reading client notification requests.

readClientReadyRequestTim

e

Total time, in nanoseconds, spent in reading cache client ready requests.

readCloseConnectionReques

tTime

Total time, in nanoseconds, spent in reading close connection requests.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1204

Statistic Description

readContainsKeyRequestTim

e

Total time, in nanoseconds, spent reading containsKey requests.

readDestroyRegionRequestT

ime

Total time, in nanoseconds, spent in reading destroyRegion requests.

readDestroyRequestTime Total time, in nanoseconds, spent in reading destroy requests.

readGetRequestTime Total time, in nanoseconds, spent in reading get requests.

readProcessBatchRequestTi

me

Total time, in nanoseconds, spent in reading processBatch requests.

readPutAllRequestTime Total time, in nanoseconds, spent in reading putAll requests.

readPutRequestTime Total time, in nanoseconds, spent in reading put requests.

readQueryRequestTime Total time, in nanoseconds, spent in reading query requests.

readUpdateClientNotificat

ionRequestTime

Total time, in nanoseconds, spent in reading client notification update requests.

receivedBytes Total number of bytes received from clients.

sentBytes Total number of bytes sent to clients.

threadQueueSize Current number of connections waiting for a thread to start processing their message.

updateClientNotificationR

equests

Number of cache client notification update requests.

writeClearRegionResponseT

ime

Total time, in nanoseconds, spent in writing clearRegion responses.

writeClientReadyResponseT

ime

Total time, in nanoseconds, spent in writing client ready responses.

writeContainsKeyResponseT

ime

Total time, in nanoseconds, spent writing containsKey responses.

writeDestroyRegionRespons

eTime

Total time, in nanoseconds, spent in writing destroyRegion responses.

writeDestroyResponseTime Total time, in nanoseconds, spent in writing destroy responses.

writeGetResponseTime Total time, in nanoseconds, spent in writing get responses.

writeProcessBatchResponse

Time

Total time, in nanoseconds, spent in writing processBatch responses.

writePutAllResponseTime Total time, in nanoseconds, spent in writing putAll responses.

writePutResponseTime Total time, in nanoseconds, spent in writing put responses.

writeQueryResponseTime Total time, in nanoseconds, spent in writing query responses.

Client-Side Notifications (CacheClientUpdaterStats)

Statistics in a client that pertain to server-to-client data pushed from the server over a queue to
the client (they are the client side of the server’s CacheClientNotifierStatistics) :

VMware GemFire 9.10 Documentation

VMware by Broadcom 1205

Statistic Description

receivedBytes Total number of bytes received from the server.

messagesBeingReceived Current number of message being received off the network or being processed after
reception.

messageBytesBeingReceiv

ed

Current number of bytes consumed by messages being received or processed.

Client-to-Server Messaging Performance (ClientStats &
ClientSendStats)
These statistics are in a client and they describe all the messages sent from the client to a specific
server. The primary statistics of ClientStats are:

Statistic Description

clearFailures Total number of clear attempts that have failed.

clears Total number of clears completed successfully.

clearsInProgress Current number of clears being executed.

clearTime Total amount of time, in nanoseconds, spent doing clears.

clearTimeouts Total number of clear attempts that have timed out.

closeConFailures Total number of closeCon attempts that have failed.

closeCons Total number of closeCons that have completed successfully.

closeConsInProgress Current number of closeCons being executed.

closeConTime Total amount of time, in nanoseconds, spent doing closeCons.

closeConTimeouts Total number of closeCon attempts that have timed out.

connections Current number of connections.

connects Total number of times a connection has been created.

containsKeyFailures Total number of containsKey attempts that have failed.

containsKeys Total number of containsKeys that completed successfully.

containsKeysInProgress Current number of containsKeys being executed.

containsKeyTime Total amount of time, in nanoseconds, spent doing containsKeys.

containsKeyTimeouts Total number of containsKey attempts that have timed out.

destroyFailures Total number of destroy attempts that have failed.

destroyRegionFailures Total number of destroyRegion attempts that have failed.

destroyRegions Total number of destroyRegions that have completed successfully.

destroyRegionsInProgress Current number of destroyRegions being executed.

destroyRegionTime Total amount of time, in nanoseconds, spent doing destroyRegions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1206

Statistic Description

destroyRegionTimeouts Total number of destroyRegion attempts that have timed out.

destroys Total number of destroys that have completed successfully.

destroysInProgress Current number of destroys being executed.

destroyTime Total amount of time, in nanoseconds, spent doing destroys.

destroyTimeouts Total number of destroy attempts that have timed out.

disconnects Total number of times a connection has been destroyed.

gatewayBatchFailures Total number of gatewayBatch attempts that have failed.

gatewayBatchs Total number of gatewayBatchs completed successfully.

gatewayBatchsInProgress Current number of gatewayBatchs being executed.

gatewayBatchTime Total amount of time, in nanoseconds, spent doing gatewayBatchs.

gatewayBatchTimeouts Total number of gatewayBatch attempts that have timed out.

getAllFailures Total number of getAll attempts that have failed.

getAlls Total number of getAlls that have completed successfully.

getAllsInProgress Current number of getAlls being executed.

getAllTime Total amount of time, in nanoseconds, spent doing getAlls.

getAllTimeouts Total number of getAll attempts that have timed out.

getFailures Total number of get attempts that have failed.

gets Total number of gets that have completed successfully.

getsInProgress Current number of gets being executed.

getTime Total amount of time, in nanoseconds, spent doing gets.

getTimeouts Total number of get attempts that have timed out.

keySetFailures Total number of keySet attempts that have failed.

keySets Total number of keySets that have completed successfully.

keySetsInProgress Current number of keySets being executed.

keySetTime Total amount of time, in nanoseconds, spent doing keySets.

keySetTimeouts Total number of keySet attempts that have timed out.

makePrimaryFailures Total number of makePrimary attempts that have failed.

makePrimarys Total number of makePrimarys that have completed successfully.

makePrimarysInProgress Current number of makePrimarys being executed.

makePrimaryTime Total amount of time, in nanoseconds, spent doing makePrimarys.

makePrimaryTimeouts Total number of makePrimary attempts that have timed out.

messageBytesBeingReceived Current number of bytes consumed by messages being received or processed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1207

Statistic Description

messagesBeingReceived Current number of messages being received off the network or being processed
after reception.

opFailures Total number of op attempts that have failed.

ops Total number of ops that have completed successfully.

opsInProgress Current number of ops being executed.

opTime Total amount of time, in nanoseconds, spent doing ops.

opTimeouts Total number of op attempts that have timed out.

pingFailures Total number of ping attempts that have failed.

pings Total number of pings that have completed successfully.

pingsInProgress Current number of pings being executed.

pingTime Total amount of time, in nanoseconds, spent doing pings.

pingTimeouts Total number of ping attempts that have timed out.

primaryAckFailures Total number of primaryAck attempts that have failed.

primaryAcks Total number of primaryAcks that have completed successfully.

primaryAckTime Total amount of time, in nanoseconds, spent doing primaryAcks.

primaryAckTimeouts Total number of primaryAck attempts that have timed out.

putAllFailures Total number of putAll attempts that have failed.

putAlls Total number of putAlls that have completed successfully.

putAllsInProgress Current number of putAlls being executed.

putAllTime Total amount of time, in nanoseconds, spent doing putAlls.

putAllTimeouts Total number of putAll attempts that have timed out.

putFailures Total number of put attempts that have failed.

puts Total number of puts that have completed successfully.

putsInProgress Current number of puts being executed.

putTime Total amount of time, in nanoseconds, spent doing puts.

putTimeouts Total number of put attempts that have timed out.

queryFailures Total number of query attempts that have failed.

querys Total number of querys completed successfully.

querysInProgress Current number of querys being executed.

queryTime Total amount of time, in nanoseconds. spent doing querys.

queryTimeouts Total number of query attempts that have timed out.

readyForEvents Total number of readyForEventss that have completed successfully.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1208

Statistic Description

readyForEventsFailures Total number of readyForEvents attempts that have failed.

readyForEventsInProgress Current number of readyForEventss being executed

readyForEventsTime Total amount of time, in nanoseconds, spent doing readyForEvents.

readyForEventsTimeouts Total number of readyForEvents attempts that have timed out.

receivedBytes Total number of bytes received from the server.

registerInstantiators Total number of registerInstantiators completed successfully

registerInstantiatorsFailure

s

Total number of registerInstantiators attempts that have failed.

registerInstantiatorssInProg

ress

Current number of registerInstantiators being executed

registerInstantiatorsTime Total amount of time, in nanoseconds, spent doing registerInstantiators.

registerInstantiatorsTimeout

s

Total number of registerInstantiators attempts that have timed out.

registerInterestFailures Total number of registerInterest attempts that have failed.

registerInterests Total number of registerInterests that have completed successfully.

registerInterestsInProgress Current number of registerInterests being executed.

registerInterestTime Total amount of time, in nanoseconds, spent doing registerInterests.

registerInterestTimeouts Total number of registerInterest attempts that have timed out.

sentBytes Total number of bytes sent to the server.

unregisterInterestFailures Total number of unregisterInterest attempts that have failed.

unregisterInterests Total number of unregisterInterests that have completed successfully

unregisterInterestsInProgres

s

Current number of unregisterInterests being executed.

unregisterInterestTime Total amount of time, in nanoseconds, spent doing unregisterInterests.

unregisterInterestTimeouts Total number of unregisterInterest attempts that have timed out.

The primary statistics of ClientSendStats are:

Statistic Description

addPdxTypeSendFailures Total number of addPdxType operation’s request messages not sent successfully from
the client to server.

addPdxTypeSendsSuccessful Total number of addPdxType operation’s request messages sent successfully from the
client to server.

addPdxTypeSendsInProgress Current number of addPdxType operation’s request messages being send from the
client to server.

addPdxTypeSendTime Total amount of time, in nanoseconds spent sending addPdxType operation’s request
messages successfully/unsuccessfully from the client to server.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1209

Statistic Description

clearSendFailures Total number of clearSends that have failed.

clearSends Total number of clearSends that have completed successfully.

clearSendsInProgress Current number of clearSends being executed.

clearSendTime Total amount of time, in nanoseconds, spent doing clearSends.

closeConSendFailures Total number of closeConSends that have failed.

closeConSends Total number of closeConSends that have completed successfully.

closeConSendsInProgress Current number of closeConSends being executed.

closeConSendTime Total amount of time, in nanoseconds, spent doing closeConSends.

closeCQSendFailures Total number of closeCQ sends that have failed.

closeCQSends Total number of closeCQ sends that have completed successfully.

closeCQSendsInProgress Current number of closeCQ sends being executed.

closeCQSendTime Total amount of time, in nanoseconds spent doing closeCQ sends.

createCQSendFailures Total number of createCQ sends that have failed.

createCQSends Total number of createCQ sends that have completed successfully.

createCQSendsInProgress Current number of createCQ sends being executed.

createCQSendTime Total amount of time, in nanoseconds spent doing createCQ sends.

commitSendFailures Total number of commit sends that have failed.

commitSends Total number of commit sends that have completed successfully.

commitSendsInProgress Current number of commit sends being executed.

commitSendTime Total amount of time, in nanoseconds spent doing commits.

containsKeySendFailures Total number of containsKeySends that have failed.

containsKeySends Total number of containsKeySends that have completed successfully.

containsKeySendsInProgres

s

Current number of containsKeySends being executed.

containsKeySendTime Total amount of time, in nanoseconds, spent doing containsKeyends.

destroyRegionSendFailures Total number of destroyRegionSends that have failed.

destroyRegionSends Total number of destroyRegionSends that have completed successfully.

destroyRegionSendsInProgr

ess

Current number of destroyRegionSends being executed.

destroyRegionSendTime Total amount of time, in nanoseconds, spent doing destroyRegionSends.

destroySendFailures Total number of destroySends that have failed.

destroySends Total number of destroySends that have completed successfully.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1210

Statistic Description

destroySendsInProgress Current number of destroySends being executed.

destroySendTime Total amount of time, in nanoseconds, spent doing destroySends.

executeFunctionSendFailur

es

Total number of Function sends that have failed.

executeFunctionSends Total number of Function sends that have completed successfully.

executeFunctionSendsInPro

gress

Current number of Function sends being executed.

executeFunctionSendTime Total amount of time, in nanoseconds spent doing Function sends.

gatewayBatchSendFailures Total number of gatewayBatchSends that have failed.

gatewayBatchSends Total number of gatewayBatchSends that have completed successfully.

gatewayBatchSendsInProgre

ss

Current number of gatewayBatchSends being executed.

gatewayBatchSendTime Total amount of time, in nanoseconds, spent doing gatewayBatchSends.

getAllSendFailures Total number of getAllSends that have failed.

getAllSends Total number of getAllSends that have completed successfully.

getAllSendsInProgress Current number of getAllSends being executed.

getAllSendTime Total amount of time, in nanoseconds, spent doing getAllSends.

getClientPartitionAttribu

tesSendFailures

Total number of getClientPartitionAttributes operation’s request messages not sent
successfully from the client to server.

getClientPartitionAttribu

tesSendsInProgress

Current number of getClientPartitionAttributes operation’s request messages being
send from the client to server.

getClientPartitionAttribu

tesSendsSuccessful

Total number of getClientPartitionAttributes operation’s request messages sent
successfully from the client to server.

getClientPartitionAttribu

tesSendTime

Total amount of time, in nanoseconds spent sending getClientPartitionAttributes
operation’s request messages successfully/unsuccessfully from the client to server.

getClientPRMetadataSendFa

ilures

Total number of getClientPRMetadata operation’s request messages not sent
successfully from the client to server.

getClientPRMetadataSendsI

nProgress

Current number of getClientPRMetadata operation’s request messages being send from
the client to server.

getClientPRMetadataSendsS

uccessful

Total number of getClientPRMetadata operation’s request messages sent successfully
from the client to server.

getClientPRMetadataSendTi

me

Total amount of time, in nanoseconds spent sending getClientPRMetadata operation’s
request messages successfully/unsuccessfully from the client to server.

getPDXIdForTypeSendFailur

es

Total number of getPDXIdForType operation’s request messages not sent successfully
from the client to server.

getPDXIdForTypeSendsInPro

gress

Current number of getPDXIdForType operation’s request messages being send from the
client to server.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1211

Statistic Description

getPDXIdForTypeSendsSucce

ssful

Total number of getPDXIdForType operation’s request messages sent successfully from
the client to server.

getPDXIdForTypeSendTime Total amount of time, in nanoseconds spent sending getPDXIdForType operation’s
request messages successfully/unsuccessfully from the client to server.

getPDXTypeByIdSendFailure

s

Total number of getPDXTypeById operation’s request messages not sent successfully
from the client to server.

getPDXTypeByIdSendsInProg

ress

Current number of getPDXTypeById operation’s request messages being send from the
client to server.

getPDXTypeByIdSendsSucces

sful

Total number of getPDXTypeById operation’s request messages sent successfully from
the client to server.

getPDXTypeByIdSendTime Total amount of time, in nanoseconds spent sending getPDXTypeById operation’s
request messages successfully/unsuccessfully from the client to server.

getEntrySendFailures Total number of getEntry sends that have failed.

getEntrySends Total number of getEntry sends that have completed successfully.

getEntrySendsInProgress Current number of getEntry sends being executed.

getEntrySendTime Total amount of time, in nanoseconds spent sending getEntry messages.

getDurableCQsSendFailures Total number of getDurableCQs sends that have failed.

getDurableCQsSends Total number of getDurableCQs sends that have completed successfully.

getDurableCQsSendsInProgr

ess

Current number of getDurableCQs sends being executed.

getDurableCQsSendTime Total amount of time, in nanoseconds spent doing getDurableCQs sends.

getSendFailures Total number of getSends that have failed.

getSends Total number of getSends that have completed successfully.

getSendsInProgress Current number of getSends being executed.

getSendTime Total amount of time, in nanoseconds, spent doing getSends.

invalidateSendFailures Total number of invalidate sends that have failed.

invalidateSends Total number of invalidate sends that have completed successfully.

invalidateSendsInProgress Current number of invalidate sends being executed.

invalidateSendTime Total amount of time, in nanoseconds spent doing invalidates.

jtaSynchronizationSendFai

lures

Total number of jtaSynchronization sends that have failed.

jtaSynchronizationSends Total number of jtaSynchronization sends that have completed successfully.

jtaSynchronizationSendsIn

Progress

Current number of jtaSynchronization sends being executed.

jtaSynchronizationSendTim

e

Total amount of time, in nanoseconds spent doing jtaSynchronizations.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1212

Statistic Description

keySetSendFailures Total number of keySetSends that have failed.

keySetSends Total number of keySetSends that have completed successfully.

keySetSendsInProgress Current number of keySetSends being executed.

keySetSendTime Total amount of time, in nanoseconds, spent doing keySetSends.

makePrimarySendFailures Total number of makePrimarySends that have failed.

makePrimarySends Total number of makePrimarySends that have completed successfully.

makePrimarySendsInProgres

s

Current number of makePrimarySends being executed.

makePrimarySendTime Total amount of time, in nanoseconds, spent doing makePrimarySends.

pingSendFailures Total number of pingSends that have failed.

pingSends Total number of pingSends that have completed successfully.

pingSendsInProgress Current number of pingSends being executed.

pingSendTime Total amount of time, in nanoseconds, spent doing pingSends.

primaryAckSendFailures Total number of primaryAckSends that have failed.

primaryAckSends Total number of primaryAckSends that have completed successfully.

primaryAckSendTime Total amount of time, in nanoseconds, spent doing primaryAckSends.

primaryAcksInProgress Current number of primaryAcks being executed.

putAllSendFailures Total number of putAllSends that have failed.

putAllSends Total number of putAllSends that have completed successfully.

putAllSendsInProgress Current number of putAllSends being executed.

putAllSendTime Total amount of time, in nanoseconds, spent doing putAllSends.

putSendFailures Total number of putSends that have failed.

putSends Total number of putSends that have completed successfully.

putSendsInProgress Current number of putSends being executed.

putSendTime Total amount of time, in nanoseconds, spent doing putSends.

querySendFailures Total number of querySends that have failed.

querySends Total number of querySends that have completed successfully.

querySendsInProgress Current number of querySends being executed.

querySendTime Total amount of time, in nanoseconds, spent doing querySends.

readyForEventsSendFailure

s

Total number of readyForEventsSends that have failed.

readyForEventsSends Total number of readyForEventsSends that have completed successfully.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1213

Statistic Description

readyForEventsSendsInProg

ress

Current number of readyForEventsSends being executed.

readyForEventsSendTime Total amount of time, in nanoseconds, spent doing readyForEventsSends.

registerDataSerializersSe

ndFailures

Total number of registerDataSerializers sends that have failed.

registerDataSerializersSe

nds

Total number of registerDataSerializers sends that have completed successfully.

registerDataSerializersSe

ndInProgress

Current number of registerDataSerializers sends being executed.

registerDataSerializersSe

ndTime

Total amount of time, in nanoseconds spent doing registerDataSerializers sends.

registerInstantiatorsSend

Failures

Total number of registerInstantiators sends that have failed

registerInstantiatorsSend

s

Total number of registerInstantiators sends that have completed successfully

registerInstantiatorsSend

sInProgress

Current number of registerInstantiators sends being executed

registerInstantiatorsSend

Time

Total amount of time, in nanoseconds, spent doing registerInstantiatorsSends.

registerInterestSendFailu

res

Total number of registerInterestSends that have failed.

registerInterestSends Total number of registerInterestSends that have completed successfully.

registerInterestSendsInPr

ogress

Current number of registerInterestSends being executed.

registerInterestSendTime Total amount of time, in nanoseconds, spent doing registerInterestSends.

removeAllSendFailures Total number of removeAll sends that have failed.

removeAllSends Total number of removeAll sends that have completed successfully.

removeAllSendsInProgress Current number of removeAll sends being executed.

removeAllSendTime Total amount of time, in nanoseconds spent doing removeAll sends.

rollbackSendFailures Total number of rollback sends that have failed.

rollbackSends Total number of rollback sends that have completed successfully.

rollbackSendsInProgress Current number of rollback sends being executed.

rollbackSendTime Total amount of time, in nanoseconds spent doing rollbacks.

sizeSendFailures Total number of size sends that have failed.

sizeSends Total number of size sends that have completed successfully.

sizeSendsInProgress Current number of size sends being executed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1214

Statistic Description

sizeSendTime Total amount of time, in nanoseconds spent doing sizes.

stopCQSendFailures Total number of stopCQ sends that have failed.

stopCQSends Total number of stopCQ sends that have completed successfully.

stopCQSendsInProgress Current number of stopCQ sends being executed.

stopCQSendTime Total amount of time, in nanoseconds spent doing stopCQ sends.

txFailoverSendFailures Total number of txFailover sends that have failed.

txFailoverSends Total number of txFailover sends that have completed successfully.

txFailoverSendsInProgress Current number of txFailover sends being executed.

txFailoverSendTime Total amount of time, in nanoseconds spent doing txFailovers.

unregisterInterestSendFai

lures

Total number of unregisterInterestSends that have failed.

unregisterInterestSends Total number of unregisterInterestSends that have completed successfully.

unregisterInterestSendsIn

Progress

Current number of unregisterInterestSends being executed.

unregisterInterestSendTim

e

Total amount of time, in nanoseconds, spent doing unregisterInterestSends.

Client Connection Pool (PoolStats)

These statistics are in a client and they describe one of the client’s connection pools. The primary
statistics are:

Statistic Description

connections Current number of connections.

connectionWaits Total number of times a thread completed waiting for a connection (either by timing out or
by getting a connection).

connectionWaitsInPro

gress

Current number of threads waiting for a connection.

connectionWaitTime Total time, in nanoseconds, spent waiting for a connection.

connects Total number of times a connection has been created.

disconnects Total number of times a connection has been destroyed.

ENDPOINTS_KNOWN Current number of servers discovered.

idleChecks Total number of checks done for idle expiration.

idleDisconnects Total number of disconnects done due to idle expiration.

INITIAL_CONTACTS Number of contacts initially made the user.

KNOWN_LOCATORS Current number of locators discovered.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1215

Statistic Description

lifetimeChecks Total number of checks done for lifetime expiration.

lifetimeConnects Total number of connects done due to lifetime expiration.

lifetimeDisconnects Total number of disconnects done due to lifetime expiration.

lifetimeExtensions Total number of times a connection’s lifetime has been extended because the servers are still
balanced.

minPoolSizeConnects Total number of connects done to maintain minimum pool size.

QUEUE_SERVERS Number of servers hosting this client.s subscription queue.

REQUESTS_TO_LOCATOR Number of requests from this connection pool to a locator.

RESPONSES_FROM_LOCAT

OR

Number of responses from the locator to this connection pool.

Continuous Querying (CqQueryStats)

These statistics are for continuous querying information. The statistics are:

Statistic Description

CQS_CREATED Number of CQ operations created.

CQS_ACTIVE Number of CQ operations actively executing.

CQS_STOPPED Number of CQ operations stopped.

CQS_CLOSED Number of CQ operations closed.

CQS_ON_CLIENT Number of CQ operations on the client.

CLIENTS_WITH_CQS Number of Clients with CQ operations.

CQ_QUERY_EXECUTION_TIME Time taken, in nanoseconds, for CQ query execution.

CQ_QUERY_EXECUTIONS_COMP

LETED

Number of CQ query executions operations.

CQ_QUERY_EXECUTION_IN_PR

OGRESS

CQ Query execution operations in progress.

UNIQUE_CQ_QUERY Number of unique CQ queries.

closeCQFailures Total number of closeCQ attempts that have failed. For client-to-server messaging
performance.

closeCQs Total number of closeCQs that have completed successfully. For client-to-server
messaging performance.

closeCQSendFailures Total number of closeCQSends that have failed. For client-to-server messaging
performance.

closeCQSends Total number of closeCQSends that have completed successfully. For client-to-server
messaging performance.

closeCQSendsInProgress Current number of closeCQSends being executed. For client-to-server messaging
performance.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1216

Statistic Description

closeCQSendTime Total amount of time, in nanoseconds, spent doing closeCQSends. For client-to-server
messaging performance.

closeCQsInProgress Current number of closeCQs being executed. For client-to-server messaging
performance.

closeCQTime Total amount of time, in nanoseconds, spent doing closeCQs. For client-to-server
messaging performance.

closeCQTimeouts Total number of closeCQ attempts that have timed out. For client-to-server messaging
performance.

createCQFailures Total number of createCQ attempts that have failed. For client-to-server messaging
performance.

createCQs Total number of createCQs that have completed successfully. For client-to-server
messaging performance.

createCQSendFailures Total number of createCQSends that have failed. For client-to-server messaging
performance.

createCQSends Total number of createCQSends that have completed successfully. For client-to-server
messaging performance.

createCQSendsInProgress Current number of createCQSends being executed. For client-to-server messaging
performance.

createCQSendTime Total amount of time, in nanoseconds, spent doing createCQSends. For client-to-server
messaging performance.

createCQsInProgress Current number of createCQs being executed. For client-to-server messaging
performance.

createCQTime Total amount of time, in nanoseconds, spent doing createCQs. For client-to-server
messaging performance.

createCQTimeouts Total number of createCQ attempts that have timed out. For client-to-server messaging
performance.

stopCQFailures Total number of stopCQ attempts that have failed. For client-to-server messaging
performance.

stopCQs Total number of stopCQs that have completed successfully. For client-to-server
messaging performance.

stopCQSendFailures Total number of stopCQSends that have failed. For client-to-server messaging
performance.

stopCQSends Total number of stopCQSends that have completed successfully. For client-to-server
messaging performance.

stopCQSendsInProgress Current number of stopCQSends being executed. For client-to-server messaging
performance.

stopCQSendTime Total amount of time, in nanoseconds, spent doing stopCQSends. For client-to-server
messaging performance.

stopCQsInProgress Current number of stopCQs being executed. For client-to-server messaging
performance.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1217

Statistic Description

stopCQTime Total amount of time, in nanoseconds, spent doing stopCQs. For client-to-server
messaging performance.

stopCQTimeouts Total number of stopCQ attempts that have timed out. For client-to-server messaging
performance.

cqCount Number of CQs operations on the client. For server notification to a single client.

cqProcessingTime Total time, in nanoseconds, spent by the cache client notifier processing CQs. For server
notification to all clients.

Delta Propagation (DeltaPropagationStatistics)

These statistics are for delta propagation between members. The primary statistics are:

Statistic Description

deltaFullValuePuts Total number of full value puts processed successfully in response to failed delta puts.

deltaFullValueRequests Number of full value requests received from a client after failing to apply delta and
processed successfully by this server.

deltaMessageFailures The number of distribution messages containing delta that could not be processed at
receiving side.

deltaMessageFailures Current number of delta messages received but could not be processed after
reception.

deltaPutFailures Number of failures encountered while processing delta received from a client on this
server.

deltaPuts Total number of puts containing delta.

deltaPutsTime Total amount of time, in nanoseconds, spent constructing delta part of puts.

fullDeltaMessages Current number of full value delta messages received off network and processed after
reception.

fullDeltaRequests Number of full value requests made by this server to the sender client after failing to
apply delta.

fullValueDeltaMessagesRequ

ested

The number of distribution messages containing full value requested by this VMware
GemFire system after failing to apply received delta.

fullValueDeltaMessagesSent The number of distribution messages sent in response to full value requests by a
remote VMware GemFire System as a result of failure in applying delta.

partitionMessagesWithDelta

Failures

Number of failures while processing PartitionMessages containing delta.

partitionMessagesWithDelta

Processed

Number of PartitionMessages containing delta processed.

partitionMessagesWithDelta

ProcessedTime

Total time spent applying deltas.

partitionMessagesWithDelta

Sent

Number of PartitionMessages containing delta sent.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1218

Statistic Description

partitionMessagesWithDelta

SentTime

Total time spent extractng deltas.

partitionMessagesWithFullV

alueDeltaRequested

Number of requests for PartitionMessages containing full delta value as a result of
failure in applying delta.

partitionMessagesWithFullV

alueDeltaSent

Number of PartitionMessages containing full delta value sent.

preparedDeltaMessages The number of distribution messages containing delta that this VMware GemFire
system has prepared for distribution.

preparedDeltaMessages Number of client messages being prepared for dispatch, which have delta part in
them.

preparedDeltaMessagesTime The total amount of time this distribution manager has spent preparing delta parts of
messages.

processedDeltaMessages The number of distribution messages containing delta that this VMware GemFire
system has processed.

processedDeltaMessages Current number of delta messages received off network and processed after
reception.

processedDeltaMessagesTime The amount of time this distribution manager has spent in applying delta on its
existing value.

processedDeltaMessagesTime Total time spent applying received delta parts on existing messages at clients.

processedDeltaPuts Number of cache client put requests containing delta received from a client and
processed successfuly.

processedDeltaPutsTime Total time spent in applying delta received from a client on existing value in this
server’s region.

Disk Space Usage (DiskDirStatistics)

These statistics pertain to the disk usage for a region’s disk directory. The primary statistics are:

Statistic Description

diskSpace The total number of bytes currently being used on disk in this directory for oplog files.

maximumSpace The configured maximum number of bytes allowed in this directory for oplog files. Note that some
product configurations allow this maximum to be exceeded.

volumeFreeSpace The total free space in bytes on the disk volume.

volumeFreeSpace

Checks

The total number of disk space checks.

volumeFreeSpace

Time

The total time, in nanseconds, spent checking disk usage.

volumeSize The total size in bytes of the disk volume.

Disk Store Statistics (DiskStoreStatistics)

VMware GemFire 9.10 Documentation

VMware by Broadcom 1219

Statistics about a Region’s use of the disk. The primary statistics are:

Statistic Description

backupsCompleted The number of backups of this disk store that have been taking while this VM was alive.

backupsInProgress The current number of backups in progress on this disk store.

compactableOplogs Current number of oplogs ready to be compacted.

compactDeletes Total number of times an oplog compact did a delete.

compactDeleteTime Total amount of time, in nanoseconds, spent doing deletes during a compact.

compactInserts Total number of times an oplog compact did a db insert.

compactInsertTime Total amount of time, in nanoseconds, spent doing inserts during a compact.

compacts Total number of completed oplog compacts.

compactsInProgress Current number of oplog compacts that are in progress.

compactTime Total amount of time, in nanoseconds, spent compacting oplogs.

compactUpdates Total number of times an oplog compact did an update.

compactUpdateTime Total amount of time, in nanoseconds, spent doing updates during a compact.

flushedBytes The total number of bytes written to disk by async queue flushes.

flushes The total number of times the an entry has been flushed from the async queue.

flushesInProgress Current number of oplog flushes that are in progress.

flushTime The total amount of time spent doing an async queue flush.

inactiveOplogs Current number of oplogs that are no longer being written but are not ready ready to
compact.

openOplogs Current number of oplogs this disk store has open.

oplogReads Total number of oplog reads.

oplogRecoveries The total number of oplogs recovered.

oplogRecoveryTime The total amount of time spent doing an oplog recovery.

oplogRecoveredBytes The total number of bytes that have been read from oplogs during a recovery.

oplogSeeks Total number of oplog seeks.

queueSize The current number of entries in the async queue waiting to be flushed to disk.

readBytes The total number of bytes that have been read from disk.

reads The total number of region entries that have been read from disk.

readTime The total amount of time spent reading from disk.

recoveriesInProgres

s

Current number of persistent regions being recovered from disk.

recoveredBytes The total number of bytes that have been read from disk during a recovery.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1220

Statistic Description

recoveredEntryCreat

es

The total number of entry create records processed while recovering oplog data.

recoveredEntryDestr

oys

The total number of entry destroy records processed while recovering oplog data.

recoveredEntryUpdat

es

The total number of entry update records processed while recovering oplog data.

recoveredValuesSkip

pedDueToLRU

The total number of entry values that did not need to be recovered due to the LRU.

recoveryRecordsSkip

ped

The total number of oplog records skipped during recovery.

recoveryTime The total amount of time spent doing a recovery.

removes The total number of region entries that have been removed from disk.

removeTime The total amount of time spent removing from disk.

uncreatedRecoveredR

egions

The current number of regions that have been recovered but have not yet been created.

writes The total number of region entries that have been written to disk. A write is done every time
an entry is created on disk or every time its value is modified on disk.

writesInProgress Current number of oplog writes that are in progress.

writeTime The total amount of time spent writing to disk.

writtenBytes The total number of bytes that have been written to disk.

Disk Usage and Performance (DiskRegionStatistics)

Statistics regarding operations performed on a disk region for persistence/overflow. The primary
statistics are:

Statistic Description

bufferSize Current number of bytes buffered to be written to the disk.

bytesOnlyOnD

isk

The current number of bytes on disk and not in memory. It includes overflowed entries and recovered
entries that have not yet been faulted in.

commits Total number of commits.

commitTime Total amount of time, in nanoseconds, spent doing commits.

entriesInVM Current number of entries whose value resides in the member. The value may also have been written to
the disk.

entriesOnlyO

nDisk

Current number of entries whose value is on the disk and is not in memory. This is true of overflowed
entries. It is also true of recovered entries that have not yet been faulted in.

flushedBytes Total number of bytes flushed out of the async write buffer to the disk.

flushes Total number of times the async write buffer has been flushed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1221

Statistic Description

flushTime Total amount of time, in nanoseconds, spent doing a buffer flush.

readBytes Total number of bytes that have been read from the disk.

reads Total number of region entries that have been read from the disk.

readTime Total amount of time, in nanoseconds, spent reading from the disk.

recoveredByt

es

Total number of bytes that have been read from disk during a recovery.

recoveryTime Total amount of time, in nanoseconds, spent doing a recovery.

removes Total number of region entries that have been removed from the disk.

removeTime Total amount of time, in nanoseconds, spent removing from the disk.

writes Total number of region entries that have been written to disk. A write is done every time an entry is
created on disk or every time its value is modified on the disk.

writeTime Total amount of time, in nanoseconds, spent writing to the disk.

writtenBytes Total number of bytes that have been written to the disk.

Distributed System Messaging (DistributionStats)

Statistics on the VMware GemFire distribution layer. These statistics can be used to tell how much
message traffic exists between this member and other cluster members.

The primary statistics are:

Statistic Description

asyncConflatedMsgs

Desc

The total number of queued conflated messages used for asynchronous queues.

asyncDequeuedMsgsD

esc

The total number of queued messages that have been removed from the queue and successfully
sent.

asyncDistributionT

imeoutExceededDesc

Total number of times the async-distribution-timeout has been exceeded during a socket write.

asyncQueueAddTime Total amount of time, in nanoseconds, spent in adding messages to async queue.

asyncQueuedMsgsDes

c

The total number of queued messages used for asynchronous queues.

asyncQueueFlushesC

ompletedDesc

Total number of asynchronous queue flushes completed.

asyncQueueFlushesI

nProgressDesc

Current number of asynchronous queues being flushed.

asyncQueueFlushTim

eDesc

Total time spent flushing asynchronous queues.

asyncQueueRemoveTi

me

Total amount of time, in nanoseconds, spent in removing messages from async queue.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1222

Statistic Description

asyncQueuesDesc Current number of queues for asynchronous messaging.

asyncQueueSizeDesc Current size in bytes used for asynchronous queues.

asyncQueueSizeExce

ededDesc

Total number of asynchronous queues that have exceeded the maximum size.

asyncQueueTimeoutE

xceededDesc

Total number of asynchronous queues that have timed out by being blocked for more than
async-queue-timeout milliseconds.

asyncSocketWriteBy

tes

Total number of bytes sent out on non-blocking sockets.

asyncSocketWriteRe

tries

Total number of retries needed to write a single block of data using non-blocking socket write
calls.

asyncSocketWrites Total number of non-blocking socket write calls completed.

asyncSocketWritesI

nProgress

Current number of non-blocking socket write calls in progress.

asyncSocketWriteTi

me

Total amount of time, in nanoseconds, spent in non-blocking socket write calls.

asyncThreadComplet

edDesc

Total number of iterations of work performed by asynchronous message queue threads.

asyncThreadInProgr

essDesc

Current iterations of work performed by asynchronous message queue threads.

asyncThreadsDesc Total number of asynchronous message queue threads.

asyncThreadTimeDes

c

Total time spent by asynchronous message queue threads performing iterations.

batchSendTime Total amount of time, in nanoseconds, spent queueing and flushing message batches.

batchWaitTime Reserved for future use

broadcastMessagesD

esc

The number of distribution messages that the VMware GemFire system has broadcast. A
broadcast message is one sent to every other manager in the group.

broadcastMessagesT

imeDesc

The total amount of time this distribution manager has spent broadcasting messages. A
broadcast message is one sent to every other manager in the group.

bufferAcquires Total number of times a buffer has been acquired.

bufferAcquiresInPr

ogress

Current number of threads waiting to acquire a buffer.

bufferAcquireTime Total amount of time, in nanoseconds, spent acquiring a socket.

commitWaitsDesc The number of transaction commits that had to wait for a response before they could complete.

deserializations Total number of object deserialization calls.

deserializationTim

e

Total amount of time, in nanoseconds, spent deserializing objects.

deserializedBytes Total number of bytes consumed by object deserialization.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1223

Statistic Description

failedAcceptsDesc Total number of times an accept (receiver creation) of a connect from some other member has
failed.

failedConnectsDesc Total number of times a connect (sender creation) to some other member has failed.

final String distributeMessageTimeDesc = The amount of time it takes to prepare a message and
send it on the network. This includes sentMessagesTime.

finalCheckRequests

Received

The number of final check requests that this member has received.

finalCheckRequests

Sent

The number of final check requests that this member has sent.

finalCheckResponse

sReceived

The number of final check responses that this member has received.

finalCheckResponse

sSent

The number of final check responses that this member has sent.

heartbeatRequestsS

ent

The number of heartbeat request messages that this member has sent.

heartbeatRequestsR

eceived

The number of heartbeat request messages that this member has received.

heartbeatsReceived The number of heartbeat messages that this member has received.

heartbeatsSent The number of heartbeat messages that this member has sent.

highPriorityQueueS

izeDesc

The number of high priority distribution messages currently waiting to be processed.

highPriorityQueueT

hrottleCounDesc

The total number of times a thread was delayed in adding a normal message to the high
priority queue.

highPriorityQueueT

hrottleTimeDesc

The total amount of time, in nanoseconds, spent delayed by the high priority queue throttle.

highPriorityThread

JobsDesc

The number of messages currently being processed by high priority processor threads.

highPriorityThread

sDesc

The number of threads currently processing high priority messages.

highPriorityThread

Starts

Total number of times a thread has been created for the pool handling high priority messages.

jgDirAckdownTime Time, in nanoseconds, spent in JGroups DirAck processing down events.

jgDirAcksReceived Number of DirAck acks received.

jgDirAckupTime Time, in nanoseconds, spent in JGroups DirAck processing up events.

jgDISCOVERYdownTim

e

Time, in nanoseconds, spent in JGroups DISCOVERY processing down events.

jgDISCOVERYupTime Time, in nanoseconds, spent in JGroups DISCOVERY processing up events.

jgFCdownTime Time, in nanoseconds, spent in JGroups FC processing down events.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1224

Statistic Description

jgFCupTime Time, in nanoseconds, spent in JGroups FC processing up events.

jgFDdownTime Time, in nanoseconds, spent in JGroups FD processing down events.

jgFDupTime Time, in nanoseconds, spent in JGroups FD processing up events.

jgFRAG2downTime Time, in nanoseconds, spent in JGroups FRAG2 processing down events.

jgFRAG2upTime Time, in nanoseconds, spent in JGroups FRAG2 processing up events.

jgFragmentationsPe

rformed

Number of message fragmentation operations performed.

jgFragmentsCreated Number of message fragments created.

jgGMSdownTime Time, in nanoseconds, spent in JGroups GMS processing down events.

jgGMSupTime Time, in nanoseconds, spent in JGroups GMS processing up events.

jgNAKACKdownTime Time, in nanoseconds, spent in JGroups NAKACK processing down events.

jgNAKACKupTime Time, in nanoseconds, spent in JGroups NAKACK processing up events.

jgSTABLEdownTime Time, in nanoseconds, spent in JGroups STABLE processing down events.

jgSTABLEupTime Time, in nanoseconds, spent in JGroups STABLE processing up events.

jgTCPGOSSIPdownTim

e

Time, in nanoseconds, spent in JGroups TCPGOSSIP processing down events.

jgTCPGOSSIPupTime Time, in nanoseconds, spent in JGroups TCPGOSSIP processing up events.

jgUDPdownTime Time, in nanoseconds, spent in JGroups UDP processing down events.

jgUDPupTime Time, in nanosecnds, spent in JGroups UDP processing up events.

jgUNICASTdownTime Time, in nanoseconds, spent in JGroups UNICAST processing down events.

jgUNICASTupTime Time, in nanoseconds, spent in JGroups UNICAST processing up events.

jgVIEWSYNCdownTime Time, in nanoseconds, spent in JGroups VIEWSYNC processing down events.

jgVIEWSYNCupTime Time, in nanoseconds, spent in JGroups VIEWSYNC processing up events.

lostConnectionLeas

eDesc

Total number of times an unshared sender socket has remained idle long enough that its lease
expired.

mcastReadBytes Total number of bytes received in multicast datagrams.

mcastReads Total number of multicast datagrams received.

mcastRetransmitReq

uests

Total number of multicast datagram socket retransmission requests sent to other processes.

mcastRetransmits Total number of multicast datagram socket retransmissions.

mcastWriteBytes Total number of bytes sent out on multicast datagram sockets.

mcastWrites Total number of multicast datagram socket write calls.

mcastWriteTime Total amount of time, in nanoseconds, spent in multicast datagram socket write calls.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1225

Statistic Description

messageBytesBeingR

eceived

Current number of bytes consumed by messages being received or processed.

messageChannelTime

Desc

The total amount of time received messages spent in the distribution channel.

messageProcessingS

cheduleTimeDesc

The amount of time this distribution manager has spent dispatching a message to processor
threads.

messagesBeingRecei

ved

Current number of messages being received off the network or being processed after reception.

msgDeserialization

Time

Total amount of time, in nanoseconds, spent deserializing messages.

msgSerializationTi

me

Total amount of time, in nanoseconds, spent serializing messages.

nodesDesc The current number of members in this cluster.

overflowQueueSizeD

esc

The number of normal distribution messages currently waiting to be processed.

overflowQueueThrot

tleCountDesc

The total number of times a thread was delayed in adding a normal message to the overflow
queue.

overflowQueueThrot

tleTimeDesc

The total amount of time, in nanoseconds, spent delayed by the overflow queue throttle.

partitionedRegionT

hreadJobsDesc

The number of messages currently being processed by partitioned region threads.

partitionedRegionT

hreadsDesc

The number of threads currently processing partitioned region messages.

partitionedRegionT

hreadStarts

Total number of times a thread has been created for the pool handling partitioned region
messages.

pdxDeserialization

s

Total number of PDX deserializations.

pdxDeserializedByt

es

Total number of bytes read by PDX deserialization.

pdxInstanceCreatio

ns

Total number of times a PdxInstance has been created by deserialization.

pdxInstanceDeseria

lizations

Total number of times getObject has been called on a PdxInstance.

pdxInstanceDeseria

lizationTime

Total amount of time, in nanoseconds, spent deserializing PdxInstances by calling getObject.

pdxSerializations Total number of PDX serializations.

pdxSerializedBytes Total number of bytes produced by PDX serialization.

processedMessagesD

esc

The number of distribution messages that the VMware GemFire system has processed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1226

Statistic Description

processedMessagesT

imeDesc

The amount of time this distribution manager has spent in message.process().

processingThreadJo

bsDesc

The number of messages currently being processed by pooled message processor threads.

processingThreadsD

esc

The number of threads currently processing normal messages.

processingThreadSt

arts

Total number of times a thread has been created for the pool processing normal messages.

receivedBytesDesc The number of distribution message bytes that the VMware GemFire system has received.

receivedMessagesDe

sc

The number of distribution messages that the VMware GemFire system has received.

receiverConnection

sDesc

Current number of sockets dedicated to receiving messages.

receiverDirectBuff

erSizeDesc

Current number of bytes allocated from direct memory as buffers for incoming messages.

receiverHeapBuffer

SizeDesc

Current number of bytes allocated from Java heap memory as buffers for incoming messages.S

reconnectAttemptsD

esc

Total number of times an established connection was lost and a reconnect was attempted.

replyHandoffTimeDe

sc

Total number of seconds to switch thread contexts from processing thread to application
thread.

replyMessageTimeDe

sc

The amount of time spent processing reply messages;

replyTimeoutsDesc Total number of message replies that have timed out.

replyWaitMaxTimeDe

sc

Maximum time spent transmitting and then waiting for a reply to a message. See
sentMessagesMaxTime for related information.

replyWaitsComplete

dDesc

Total number of times waits for a reply have completed.

replyWaitsInProgre

ssDesc

Current number of threads waiting for a reply.

replyWaitTimeDesc Total time spent waiting for a reply to a message.

senderDirectBuffer

SizeDesc

Current number of bytes allocated from direct memory as buffers for outgoing messages.

senderHeapBufferSi

zeDesc

Current number of bytes allocated from Java heap memory as buffers for outgoing messages.

sentBytesDesc The number of distribution message bytes that the VMware GemFire system has sent.

sentCommitMessages

Desc

The number of transaction commit messages that the VMware GemFire system has created to
be sent. Note, it is possible for a commit to only create one message even though it will end up
being sent to multiple recipients.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1227

Statistic Description

sentMessagesDesc The number of distribution messages that the VMware GemFire system has sent, which includes
broadcastMessages.

sentMessagesMaxTim

eDesc

The highest amount of time this distribution manager has spent distributing a single message to
the network.

sentMessagesTimeDe

sc

The total amount of time this distribution manager has spent sending messages, which includes
broadcastMessagesTime.

serializations Total number of object serialization calls.

serializationTime Total amount of time, in nanoseconds, spent serializing objects.

serializedBytes Total number of bytes produced by object serialization.

serialPooledThread

Desc

The number of threads created in the SerialQueuedExecutorPool.

serialPooledThread

JobsDesc

The number of messages currently being processed by pooled serial processor threads.

serialPooledThread

Starts

Total number of times a thread has been created for the serial pool(s).

serialQueueBytesDe

sc

The approximate number of bytes consumed by serial distribution messages currently waiting
to be processed.

serialQueueSizeDes

c

The number of serial distribution messages currently waiting to be processed.

serialQueueThrottl

eCountDesc

The total number of times a thread was delayed in adding a ordered message to the serial
queue.

serialQueueThrottl

eTimeDesc

The total amount of time, in nanoseconds, spent delayed by the serial queue throttle.

serialThreadJobsDe

sc

The number of messages currently being processed by serial threads.

serialThreadsDesc The number of threads currently processing serial/ordered messages.

serialThreadStarts Total number of times a thread has been created for the serial message executor.

sharedOrderedSende

rConnectionsDesc

Current number of shared sockets dedicated to sending ordered messages.

sharedUnorderedSen

derConnectionsDesc

Current number of shared sockets dedicated to sending unordered messages.

socketLocks Total number of times a socket has been locked.

socketLockTime Total amount of time, in nanoseconds, spent locking a socket.

suspectsReceived The number of suspect messages that this member has received.

suspectsSent The number of suspect messages that this member has sent.

syncSocketWriteByt

es

Total number of bytes sent out in synchronous/blocking mode on sockets.

syncSocketWrites Total number of completed synchronous/blocking socket write calls.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1228

Statistic Description

syncSocketWritesIn

Progress

Current number of synchronous/blocking socket write calls in progress.

syncSocketWriteTim

e

Total amount of time, in nanoseconds, spent in synchronous/blocking socket write calls.

tcpFinalCheckReque

stsReceived

The number of TCP final check requests that this member has received.

tcpFinalCheckReque

stsSent

The number of TCP final check requests that this member has sent.

tcpFinalCheckRespo

nsesReceived

The number of TCP final check responses that this member has received.

tcpFinalCheckRespo

nsesSent

The number of TCP final check responses that this member has sent.

threadOrderedSende

rConnectionsDesc

Current number of thread sockets dedicated to sending ordered messages.

threadUnorderedSen

derConnectionsDesc

Current number of thread sockets dedicated to sending unordered messages.

TOSentMsgs Total number of messages sent on thread owned senders.

ucastReadBytes Total number of bytes received in unicast datagrams.

ucastReads Total number of unicast datagrams received.

ucastRetransmits Total number of unicast datagram socket retransmissions.

ucastWriteBytes Total number of bytes sent out on unicast datagram sockets.

ucastWrites Total number of unicast datagram socket write calls.

ucastWriteTime Total amount of time, in nanoseconds, spent in unicast datagram socket write calls.

udpDispatchRequest

Time

The total amount of time, in nanoseconds, spent deserializing and dispatching UDP messages in
the message-reader thread.

udpFinalCheckReque

stsReceived

The number of UDP final check requests that this member has received.

udpFinalCheckReque

stsSent

The number of UDP final check requests that this member has sent.

udpFinalCheckRespo

nsesReceived

The number of UDP final check responses that this member has received.

udpFinalCheckRespo

nsesSent

The number of UDP final check responses that this member has sent.

udpMsgDecryptionTi

me

The total amount of time, in nanoseconds, spent decrypting UDP messages.

udpMsgEncryptionTi

me

The total amount of time, in nanoseconds, spent encrypting UDP messages.

viewThreadJobsDesc The number of messages currently being processed by view threads.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1229

Statistic Description

viewThreadsDesc The number of threads currently processing view messages.

viewThreadStarts Total number of times a thread has been created for the view message executor.

waitingQueueSizeDe

sc

The number of distribution messages currently waiting for some other resource before they can
be processed.

waitingThreadJobsD

esc

The number of messages currently being processed by waiting pooly processor threads.

waitingThreadsDesc The number of threads currently processing messages that had to wait for a resource.

waitingThreadStart

s

Total number of times a thread has been created for the waiting pool.

Distribution Statistics Related to Slow Receivers

The distribution statistics provide statistics pertaining to slow receivers. The primary statistics are:

Statistic Description

asyncDistributionT

imeoutExceeded

Incremented every time an asyncSocketWrite has exceeded async-distribution-timeout and an
async queue has been created.

asyncQueue* Provide information about queues the producer is managing for its consumers. There are no
statistics maintained for individual consumers. The following are the primary statistics of this
type.

asyncQueues Indicates the number of queues currently in the producer.

asyncQueueSizeExce

eded

Incremented every time a queue has exceeded async-max-queue-size and the receiver has
been sent a disconnect message.

asyncQueueTimeoutE

xceeded

Incremented every time a queue flushing has exceeded async-queue-timeout and the receiver
has been sent a disconnect message.

asyncSocketWrite* Used anytime a producer is distributing to one or more consumers with a non-zero distribution
timeout. These statistics also reflect the writes done by the threads that service asynchronous
queues.

Distributed Lock Services (DLockStats)

These statistics are for distributed lock services. The primary statistics are:

Statistic Description

becomeGrantorRequestsDesc Total number of times this member has explicitly requested to become lock
grantor.

createGrantorsCompletedDesc Total number of initial grantors created in this process.

createGrantorsInProgressDesc Current number of initial grantors being created in this process.

destroyReadsDesc The current number of DLockService destroy read locks held by this process.

destroyReadWaitFailedTimeDesc Total time spent waiting for a DLockService destroy read lock that was not
obtained.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1230

Statistic Description

destroyReadWaitsCompletedDesc Total number of times a DLockService destroy read lock wait has completed
successfully.

destroyReadWaitsFailedDesc Total number of times a DLockService destroy read lock wait has completed
unsuccessfully.

destroyReadWaitsInProgressDesc Current number of threads waiting for a DLockService destroy read lock.

destroyReadWaitTimeDesc Total time spent waiting for a DLockService destroy read lock that was
obtained.

destroyWritesDesc The current number of DLockService destroy write locks held by this process.

destroyWriteWaitFailedTimeDesc Total time spent waiting for a DLockService destroy write lock that was not
obtained.

destroyWriteWaitsCompletedDesc Total number of times a DLockService destroy write lock wait has completed
successfully.

destroyWriteWaitsFailedDesc Total number of times a DLockService destroy write lock wait has completed
unsuccessfully.

destroyWriteWaitsInProgressDesc Current number of writes waiting for a DLockService destroy write lock.

destroyWriteWaitTimeDesc Total time spent waiting for a DLockService destroy write lock that was
obtained.

grantorsDesc The current number of lock grantors hosted by this system member.

grantorThreadExpireAndGrantLock

sTimeDesc

Total time spent by grantor thread(s) performing expireAndGrantLocks tasks.

grantorThreadHandleRequestTimeo

utsTimeDesc

Total time spent by grantor thread(s) performing handleRequestTimeouts tasks.

grantorThreadRemoveUnusedTokens

TimeDesc

Total time spent by grantor thread(s) performing removeUnusedTokens tasks.

grantorThreadsCompletedDesc Total number of iterations of work performed by grantor thread(s).

grantorThreadsInProgressDesc Current iterations of work performed by grantor thread.

grantorThreadTimeDesc Total time spent by grantor thread(s) performing all grantor tasks.

grantorWaitFailedTimeDesc Total time spent waiting for the grantor latch which resulted in failure.

grantorWaitsCompletedDesc Total number of times waiting threads completed waiting for the grantor latch
to open.

grantorWaitsFailedDesc Total number of times waiting threads failed to finish waiting for the grantor
latch to open.

grantorWaitsInProgressDesc Current number of threads waiting for grantor latch to open.

grantorWaitTimeDesc Total time spent waiting for the grantor latch which resulted in success.

grantWaitDestroyedTimeDesc Total time spent granting of lock requests that failed because lock service was
destroyed.

grantWaitFailedTimeDesc Total time spent granting of lock requests that failed because try locks failed.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1231

Statistic Description

grantWaitNotGrantorTimeDesc Total time spent granting of lock requests that failed because not grantor.

grantWaitNotHolderTimeDesc Total time spent granting of lock requests that failed because reentrant was not
holder.

grantWaitsCompletedDesc Total number of times granting of a lock request has completed by successfully
granting the lock.

grantWaitsDestroyedDesc Total number of times granting of lock request failed because lock service was
destroyed.

grantWaitsFailedDesc Total number of times granting of lock request failed because try locks failed.

grantWaitsInProgressDesc Current number of distributed lock requests being granted.

grantWaitsNotGrantorDesc Total number of times granting of lock request failed because not grantor.

grantWaitsNotHolderDesc Total number of times granting of lock request failed because reentrant was not
holder.

grantWaitsSuspendedDesc Total number of times granting of lock request failed because lock service was
suspended.

grantWaitsTimeoutDesc Total number of times granting of lock request failed because of a timeout.

grantWaitSuspendedTimeDesc Total time spent granting of lock requests that failed because lock service was
suspended.

grantWaitTimeDesc Total time spent attempting to grant a distributed lock.

grantWaitTimeoutTimeDesc Total time spent granting of lock requests that failed because of a timeout.

lockReleasesCompletedDesc Total number of times distributed lock release has completed.

lockReleasesInProgressDesc Current number of threads releasing a distributed lock.

lockReleaseTimeDesc Total time spent releasing a distributed lock.

lockWaitFailedTimeDesc Total number of times distributed lock wait has completed by failing to obtain
the lock.

lockWaitsCompletedDesc Total number of times distributed lock wait has completed by successfully
obtaining the lock.

lockWaitsFailedDesc Total time spent waiting for a distributed lock that failed to be obtained.

lockWaitsInProgressDesc Current number of threads waiting for a distributed lock.

lockWaitTimeDesc Total time spent waiting for a distributed lock that was obtained.

pendingRequestsDesc The current number of pending lock requests queued by grantors in this
process.

requestQueuesDesc The current number of lock request queues used by this system member.

serialQueueSizeDesc The number of serial distribution messages currently waiting to be processed.

serialThreadsDesc The number of threads currently processing serial/ordered messages.

serviceCreateLatchTimeDesc Total time spent creating lock services before releasing create latches.

serviceCreatesCompletedDesc Total number of lock services created in this process.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1232

Statistic Description

serviceCreatesInProgressDesc Current number of lock services being created in this process.

serviceInitLatchTimeDesc Total time spent creating lock services before releasing init latches.

servicesDesc The current number of lock grantors hosted by this system member.

createGrantorTimeDesc Total time spent waiting create the initial grantor for lock services.

tokensDesc The current number of lock tokens used by this system member.

waitingQueueSizeDesc The number of distribution messages currently waiting for some other resource
before they can be processed.

waitingThreadsDesc The number of threads currently processing messages that had to wait for a
resource.

Function Execution (FunctionStatistics)

These are the statistics for each execution of the function. The primary statistics are:

Statistic Description

functionExecutionCalls Total number of FunctionService.execute() calls for given function.

functionExecutionsCompleted Total number of completed function.execute() calls for given function.

functionExecutionsCompletedProcessi

ngTime

Total time consumed for all completed invocations of the given function.

functionExecutionsExceptions Total number of Exceptions Occurred while executing function.

functionExecutionsHasResultComplete

dProcessingTime

Total time consumed for all completed given function.execute() calls where
hasResult() returns true.

functionExecutionsHasResultRunning A gauge indicating the number of currently active execute() calls for
functions where hasResult() returns true.

functionExecutionsRunning number of currently running invocations of the given function.

resultsReceived Total number of results received and passed to the ResultCollector.

resultsSentToResultCollector Total number of results sent to the ResultCollector.

Gateway Queue (GatewaySenderStatistics)

These statistics are for outgoing gateway queue and its connection. The primary statistics are:

Statistic Description

batchDistributionTime Total time, in nanoseconds, spent distributing batches of events to other gateways.

batchesDistributed Number of batches of events operations removed from the event queue and sent.

batchesRedistributed Number of batches of events operations removed from the event queue and resent.

batchesResized The number of batches resized due to a batch being too large.

eventQueueSize Size of the event operations queue.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1233

Statistic Description

eventQueueTime Total time, in nanoseconds, spent queueing events.

eventsDistributed Number of events operations removed from the event queue and sent.

eventsDroppedDueToPrimaryS

enderNotRunning

Number of events dropped because the primary gateway sender is not running.

eventsNotQueuedConflated Number of events operations received but not added to the event queue because the
queue already contains an event with the event’s key.

eventsProcessedByPQRM Total number of events processed by the parallel queue removal message (PQRM).

eventsQueued Number of events operations added to the event queue.

secondaryEventQueueSize Size of the secondary event queue.

unprocessedEventMapSize Current number of events entries in the secondary’s unprocessed event map.

unprocessedEventsAddedBySe

condary

Number of events added to the secondary’s unprocessed event map by the
secondary.

unprocessedEventsRemovedBy

Primary

Number of events removed through a listener from the secondary’s unprocessed
event map by the primary.

unprocessedEventsRemovedBy

Timeout

Number of events removed from the secondary’s unprocessed event map by a
timeout.

unprocessedTokenMapSize Current number of tokens entries in the secondary’s unprocessed token map.

unprocessedTokensAddedByPr

imary

Number of tokens added through a listener to the secondary’s unprocessed token
map by the primary.

unprocessedTokensRemovedBy

Secondary

Number of tokens removed from the secondary’s unprocessed token map by the
secondary.

unprocessedTokensRemovedBy

Timeout

Number of tokens removed from the secondary’s unprocessed token map by a
timeout.

Indexes (IndexStats)

Query-Independent Statistics on Indexes

Statistic Description

numKeys Number of keys currently stored in the Index.

numUpdates Number of updates applied and completed on the Index while inserting, modifying , or deleting
corresponding data in VMware GemFire.

numValues Number of values currently stored in the Index.

updatesInProgr

ess

Current number of updates in progress on the Index. Concurrent updates on an index are allowed.

updateTime Total time taken in applying and completing updates on the Index.

Query-Dependent Statistics on Indexes

VMware GemFire 9.10 Documentation

VMware by Broadcom 1234

Statistic Description

numUses Number of times the Index has been used for querying.

usesInProg

ress

Current number of uses of the index in progress or current number of concurrent threads accessing the
index for querying. Concurrent use of an index is allowed for different queries.

useTime Total time during the use of the Index for querying.

JVM Performance

VMware GemFire JVM Resource Manager
(ResourceManagerStats)

Statistics related to the VMware GemFire’s resource manager. Use these to help analyze and tune
your JVM memory settings and the VMware GemFire resource manager settings. The primary
statistics are:

Statistic Description

criticalThreshold The cache resource-manager setting critical-heap-percentage.

evictionStartEven

ts

Number of times eviction activities were started due to the heap use going over the eviction
threshold.

evictionStopEvent

s

Number of times eviction activities were stopped due to the heap use going below the eviction
threshold.

evictionThreshold The cache resource-manager setting eviction-heap-percentage.

heapCriticalEvent

s

Number of times incoming cache activities were blocked due to heap use going over the critical
threshold.

heapSafeEvents Number of times incoming cache activities were unblocked due to heap use going under the
critical threshold.

tenuredHeapUsed Percentage of tenured heap currently in use.

JVM Java Runtime (VMStats)

Show the JVM’s Java usage and can be used to detect possible problems with memory
consumption. These statistics are recorded from java.lang.Runtime under VMStats. The primary
statistics are:

Statistic Description

cpus Number of CPUs available to the member on its machine.

daemonThreads Current number of live daemon threads in this JVM.

fdLimit Maximum number of file descriptors.

fdsOpen Current number of open file descriptors.

freeMemory An approximation for the total amount of memory, measured in bytes, currently available for
future allocated objects.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1235

Statistic Description

loadedClasses Total number of classes loaded since the JVM started.

maxMemory The maximum amount of memory, measured in bytes, that the JVM will attempt to use.

peakThreads High water mark of live threads in this JVM.

pendingFinalizat

ion

Number of objects that are pending finalization in the JVM.

processCpuTime CPU time, measured in nanoseconds, used by the process.

threads Current number of live threads (both daemon and non-daemon) in this JVM.

threadStarts Total number of times a thread has been started since this JVM started.

totalMemory The total amount of memory, measure in bytes, currently available for current and future objects.

unloadedClasses Total number of classes unloaded since the JVM started.

JVM Garbage Collection (VMGCStats)

These statistics show how much time used by different JVM garbage collection. The primary
statistics are:

Statistic Description

collections Total number of collections this garbage collector has done.

collectionTime Approximate elapsed time spent doing collections by this garbage collector.

JVM Garbage Collector Memory Pools
(VMMemoryPoolStats)
These statistics describe memory usage in different garbage collector memory pools. The primary
statistics are:

Statistic Description

collectionUsageExce

eded

Total number of times the garbage collector detected that memory usage in this pool
exceeded the collectionUsageThreshold.

collectionUsageThre

shold

The collection usage threshold, measured in bytes, for this pool.

collectionUsedMemor

y

The estimated amount of used memory, measured in bytes, after that last garbage collection
of this pool.

currentCommittedMem

ory

The amount of committed memory, measured in bytes, for this pool.

currentInitMemory Initial memory the JVM requested from the operating system for this pool.

currentMaxMemory The maximum amount of memory, measured in bytes, this pool can have.

currentUsedMemory The estimated amount of used memory, measured in bytes, currently in use for this pool.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1236

Statistic Description

usageExceeded Total number of times that memory usage in this pool exceeded the usageThreshold.

usageThreshold The usage threshold, measured in bytes, for this pool.

JVM Heap Memory Usage (VMMemoryUsageStats)

Show details on how the Java heap memory is being used. The primary statistics are:

Statistic Description

committedMemory The amount of committed memory, measured in bytes, for this area.

initMemory Initial memory the JVM requested from the operating system for this area.

maxMemory The maximum amount of memory, measured in bytes, this area can have.

usedMemory The amount of used memory, measured in bytes, for this area.

JVM Thread stats (VMThreadStats)

Show details about the JVM thread. The primary statistics are:

| Statistic | Description | |—————|
——
—————————————| | | blocked | Total number of times this thread blocked to enter or
reenter a monitor. | | blockedTime | Total amount of elapsed time, approximately, that this thread
has spent blocked to enter or reenter a monitor. May need to be enabled by setting -
Dgemfire.enableContentionTime=true| | cpuTime | Total cpu time for this thread. May need to be
enabled by setting -Dgemfire.enableCpuTime=true. | | inNative | 1 if the thread is in native code. | |
lockOwner | The thread id that owns the lock that this thread is blocking on. | | suspended | 1 if the
thread is suspended. | | userTime | Total user time for this thread. May need to be enabled by
setting -Dgemfire.enableCpuTime=true. | | waited | Total number of times this thread waited for
notification. | | waitedTime | Total amount of elapsed time, approximately, that this thread has spent
waiting for notification. May need to be enabled by setting -Dgemfire.enableContentionTime=true |

Locator (LocatorStats)

These statistics are on the VMware GemFire locator. The primary statistics are:

Statistic Description

ENDPOINTS_KNOWN Number of servers this locator knows about.

KNOWN_LOCATORS Number of locators known to this locator.

REQUEST_TIME Time, measured in nanoseconds, spent processing server location requests.

REQUESTS_IN_PROGRESS The number of location requests currently being processed by the thread pool.

REQUESTS_TO_LOCATOR Number of requests this locator has received from clients.

RESPONSE_TIME Time, measured in nanoseconds, spent sending location responses to clients.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1237

Statistic Description

RESPONSES_FROM_LOCATOR Number of responses this locator has sent to clients.

SERVER_LOAD_UPDATES Total number of times a server load update has been received.

Lucene Indexes (LuceneIndexStats)

These statistics quantify the use of Lucene indexes. The primary statistics are:

Statistic Description

queryExecutions The number of Lucene queries executed on this member.

queryExecutionTime The amount of time in nanoseconds spent executing Lucene queries.

queryExecutionsInProgress The number of query executions currently in progress.

queryExecutionTotalHits The total number of documents returned by query executions.

repositoryQueryExecutions The number of Lucene repository queries executed on this member.

repositoryQueryExecutionTime The amount of time in nanoseconds spent executing Lucene repository queries.

repositoryQueryExecutionsInProg

ress

The number of repository query executions currently in progress.

repositoryQueryExecutionTotalHi

ts

The total number of documents returned by repository query executions.

updates The number of Lucene index documents added or removed on this member.

updateTime The amount of time in nanoseconds spent adding or removing documents from
the index.

updatesInProgress The number of index updates in progress.

commits The number of Lucene index commits on this member.

commitTime The amount of time in nanoseconds spent in Lucene index commits.

commitsInProgress The number of Lucene index commits in progress.

documents The number of documents in the index.

Off-Heap (OffHeapMemoryStats)

These statistics quantify the use of off-heap memory. The primary statistics are:

Statistic Description

defragment

ations

The total number of times the off-heap memory manager has invoked the defragmentation algorithm on
the off-heap memory space.

defragment

ationsInPr

ogress

The number of defragmentation operations currently in progress.

defragment

ationTime

The total number of nanoseconds spent running the defragmentation algorithm on off-heap memory
space fragments.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1238

Statistic Description

fragmentat

ion

This statistic gives an indication of the level of external fragmentation in the off-heap memory space by
providing a ratio of the current number of fragments of free space to the largest number of fragments
that could be formed from that free space. It is expressed as a percentage; the higher this value, the more
fragmented the free space currently is. This statistic is 0 if the memory manager has never run its
defragmentation algorithm on the off-heap space, and it is recalculated after each defragmentation.

fragments The current number of fragments of free off-heap memory. This statistic is 0 if no defragmentation has
ever been done, and it is updated after each defragmentation.

freeMemory The number of bytes of off-heap memory that are not currently allocated.

largestFra

gment

The number of bytes in the largest fragment of memory found by the last run of the defragmentation
algorithm. This statistic is updated after each defragmentation.

maxMemory The number of bytes of off-heap memory initially declared.

objects The number of objects currently stored in off-heap memory.

reads The total number of reads of objects that are stored in off-heap memory.

usedMemory The number of bytes of off-heap memory currently used for region values.

Operating System Statistics - Linux

Operating system statistics are available only for Linux operating systems.

Linux Process Performance (LinuxProcessStats)

Operating system statistics on the member’s process. The primary statistics are:

Statistic Description

imageSize Size, in megabytes, of the process’s image.

rssSize Size, in megabytes, of the process’s resident size.

Linux Operating System (LinuxSystemStats)

Operating system statistics on the member’s machine. These can be used to determine total cpu,
memory, and disk usage on the machine. The primary statistics are:

Statistic Description

allocated

Swap

Number of megabytes of swap space that have actually been written to. Swap space must be reserved
before it can be allocated.

bufferMem

ory

Number of megabytes of memory allocated to buffers.

contextSw

itches

Total number of context switches from one thread to another on the computer. Thread switches can occur
either inside of a single process or across processes. A thread switch may be caused either by one thread
asking another for information, or by a thread being preempted by another, higher priority thread
becoming ready to run.

cpuActive Percentage of the total available time that has been used in a non-idle state.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1239

Statistic Description

cpuIdle Percentage of the total available time that has been spent sleeping.

cpuNice Percentage of the total available time that has been used to execute user code in processes with low
priority.

cpus Number of online CPUs (items) on the local machine.

cpuSystem Percentage of the total available time that has been used to execute system (that is, kernel) code.

cpuUser Percentage of the total available time that has been used to execute user code.

freeMemor

y

Number of megabytes of unused memory on the machine.

loadAvera

ge1

Average number of threads in the run queue or waiting for disk I/O over the last minute.

loadAvera

ge15

Average number of threads in the run queue or waiting for disk I/O over the last fifteen minutes.

loadAvera

ge5

Average number of threads in the run queue or waiting for disk I/O over the last five minutes.

loopbackB

ytes

Number of network bytes sent (or received) on the loopback interface.

loopbackP

ackets

Number of network packets sent (or received) on the loopback interface.

pagesPage

dIn

Total number of pages that have been brought into memory from disk by the operating system’s memory
manager.

pagesPage

dOut

Total number of pages that have been flushed from memory to disk by the operating system’s memory
manager.

pagesSwap

pedIn

Total number of swap pages that have been read in from disk by the operating system’s memory
manager.

pagesSwap

pedOut

Total number of swap pages that have been written out to disk by the operating system’s memory
manager.

physicalM

emory

Actual amount of total physical memory on the machine.

processCr

eates

The total number of times a process (operation) has been created.

processes Number of processes in the computer at the time of data collection. Notice that this is an instantaneous
count, not an average over the time interval. Each process represents the running of a program.

recvBytes Total number of network bytes received (excluding loopback).

recvDrops Total number network receives (packets) dropped.

recvError

s

Total number of network receive errors.

recvPacke

ts

Total number of network packets received (excluding loopback).

VMware GemFire 9.10 Documentation

VMware by Broadcom 1240

Statistic Description

sharedMem

ory

Number of megabytes of shared memory on the machine.

unallocat

edSwap

Number of megabytes of swap space that have not been allocated.

xmitBytes Total number of network bytes transmitted (excluding loopback).

xmitColli

sions

Total number of network transmit collisions.

xmitDrops Total number of network transmits (packets) dropped.

xmitError

s

Total number of network transmit errors.

xmitPacke

ts

Total number of network packets transmitted (excluding loopback).

Partitioned Regions
(PartitionedRegion<partitioned_region_name>Statistics)
Partitioned Region Statistics on Region Operations

These statistics track the standard region operations executed in the member. Operations can
originate locally or in a request from a remote member.

Note: Unsuccessful operations are not counted in these statistics.

The primary statistics are:

Statistic Description

containsKeyComp

leted

Number of successful containsKey operations in this member.

containsKeyOpsR

etried

Number of containsKey or containsValueForKey operations retried due to failures. This stat counts
each retried operation only once, even if it requires multiple retries.

containsKeyRetr

ies

Total number of times containsKey or containsValueForKey operations were retried. If multiple
retries are required on a single operation, this stat counts them all.

containsKeyTime Total time, in nanoseconds, the member spent doing containsKey operations in this member.

containsValueFo

rKeyCompleted

Number of successful containsValueForKey operations in this member.

containsValueFo

rKeyTime

Total time, in nanoseconds, the member spent doing containsValueForKey operations in this
member.

createOpsRetrie

d

Number of create operations retried due to failures. This stat counts each retried operation only
once, even if it requires multiple retries.

createRetries Total number of times create operations were retried. If multiple retries are required on a single
operation, this stat counts them all.

createsComplete

d

Number of successful create operations in this member.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1241

Statistic Description

createTime Total time, in nanoseconds, the member spent doing create operations in this member.

destroyOpsRetri

ed

Number of destroy operations retried due to failures. This stat counts each retried operation only
once, even if it requires multiple retries.

destroyRetries Total number of times destroy operations were retried. If multiple retries are required on a single
operation, this stat counts them all.

destroysComplet

ed

Number of successful destroy operations in this member.

destroyTime Total time, in nanoseconds, the member spent doing destroy operations in this member.

getEntriesCompl

eted

Number of get entry operations completed.

getEntriesTime Total time, in nanoseconds, spent performing get entry operations.

getOpsRetried Number of get operations retried due to failures. This stat counts each retried operation only once,
even if it requires multiple retries.

getRetries Total number of times get operations were retried. If multiple retries are required on a single
operation, this stat counts them all.

getsCompleted Number of successful get operations in this member.

getTime Total time, in nanoseconds, the member spent doing get operations in this member.

invalidateOpsRe

tried

Number of invalidate operations retried due to failures. This stat counts each retried operation only
once, even if it requires multiple retries.

invalidateRetri

es

Total number of times invalidate operations were retried. If multiple retries are required on a single
operation, this stat counts them all.

invalidatesComp

leted

Number of successful invalidate operations in this member.

invalidateTime Total time, in nanoseconds, the member spent doing invalidate operations in this member.

putOpsRetried Number of put operations retried due to failures. This stat counts each retried operation only once,
even if it requires multiple retries.

putRetries Total number of times put operations were retried. If multiple retries are required on a single
operation, this stat counts them all.

putsCompleted Number of successful put operations in this member.

putTime Total time, in nanoseconds, the member spent doing put operations in this member.

replyWaitMaxTim

e

Longest amount of time, in milliseconds, taken to write a message and receive a reply before a
forced disconnect occurs. This stat is always active regardless of the setting of the enable-time-
statistics gemfire.properties setting.

sentMessageMaxT

ime

Longest amount of time, in milliseconds, taken to write a message to the network before a forced
disconnect occurs. This stat is always active regardless of the setting of the enable-time-statistics
gemfire.properties setting.

Partitioned Region Statistics on Partition Messages

VMware GemFire 9.10 Documentation

VMware by Broadcom 1242

Note: Unsuccessful operations and local operations—those that originated in this member—are not
counted in these statistics.

The primary statistics are:

Statistic Description

partitionMessagesProces

sed

Number of region operations executed in this member at the request of other data stores
for the region.

partitionMessagesProces

singTime

Total time, in nanoseconds, the member spent executing region operations in this
member at the request of remote members.

partitionMessagesReceiv

ed

Number of remote requests this member received for any region operation in this
member.

partitionMessagesSent Number of requests this member sent for any region operation on a remote member.

prMetaDataSentCount Number of times meta data refresh sent on client’s request. Used with pr-single-hop
functionality.

Partitioned Region Statistics on Data Entry Caching

These statistics track the pattern of data entry distribution among the buckets in this member. The
primary statistics are:

Statistic Description

avgBucketSize Average number of entries for each of the primary buckets in this member.

bucketCount Total number of buckets in this member.

bucketCreationsCompl

eted

Number of logical bucket creation operations requests completed after which the bucket
was created.

bucketCreationsDisco

veryCompleted

Number of bucket creation operations requests completed after which it was discovered
that the bucket was created by another member.

bucketCreationsDisco

veryTime

Total time, in nanoseconds, spent waiting for bucket creation requests to complete after
which it was discovered that the bucket was created by another member.

bucketCreationsTime Total time, in nanoseconds, spent waiting for bucket creation requests to complete after
which the bucket was created.

dataStoreBytesInUse The number of bytes stored in this cache for the named partitioned region.

dataStoreEntryCount Total number of entries in all the buckets in this member.

maxBucketSize Largest number of entries in the primary buckets in this member.

minBucketSize Smallest number of entries in the primary buckets in this member.

totalBucketSize Total number of entries in the primary buckets.

Partitioned Region Statistics on Redundancy

These statistics track status on partitioned region data copies. The primary statistics are:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1243

Statistic Description

actualRedundantCopies The least current redundant number of copies for any data
in this partitioned region (there may be some data that is
fully redundant, but some data will have only this number
of copies). This value may drop when a data store is lost
or rise when a data store is added. This value may drop
temporarily during partitioned region creation or
destruction and then rise again.

A healthy partitioned region will maintain a value equal to
configuredRedundantCopies. The user should add one or
more data stores if the value remains low. High-
availability may result in a brief fluctuation, but it should
return to a value equal to configuredRedundantCopies if
there are sufficient data stores present (that is, terminating
one data store will cause its data to fail over to another
data store).

configuredRedundantCopies This is equivalent to the
PartitionAttributes.getRedundantCopies configuration that
was used to create this partitioned region. This value
remains unchanged for a given partitioned region.

lowRedundancyBucketCount The number of buckets in this partitioned region that
currently have fewer copies than the
configuredRedundantCopies. This value may rise above
zero when a data store is lost and return to zero when one
or more data stores are added. This value may rise
temporarily during partitioned region creation or
destruction and then return to zero.

This value will be above zero whenever
actualRedundantCopies is less than
configuredRedundantCopies. A healthy partitioned region
will maintain a value of zero. The user should add one or
more datstores if this value remains above zero. High-
availability may result in a brief fluctuation, but it should
return to zero if there are sufficient data stores present
(that is, terminating one data store will cause its data to
fail over to another data store).

Region Entry Eviction – Count-Based (LRUStatistics)

Note:

If this value remains low, then
partitioned region data is at risk and
may be lost if another data store is lost.

Note:

If this value remains above zero, then
partitioned region data is at risk and
may be lost if another data store is lost.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1244

The entry-count least recently used (LRU) eviction mechanism records these LRUStatistics. The
primary statistics are:

Statistic Description

entriesAllowed Number of entries allowed in this region.

entryCount Number of entries in this region.

lruDestroys Number of entry destroys triggered by an LRU.

lruDestroysLimit Maximum number of entry destroys triggered by an LRU before a scan occurs.

lruEvaluations Number of entries evaluated during LRU operations

lruEvictions Number of total entry evictions triggered by an LRU.

lruGreedyReturns Number of non-LRU entries evicted during LRU operations.

Region Entry Eviction – Heap-based eviction
(HeapLRUStatistics)
The least recently used (LRU) mechanism that keeps the JVM heap size under a given set point
records these LRUStatistics. The primary statistics are:

Statistic Description

entryBites The amount of memory currently used by regions configured for eviction.

lruDestroys Number of entry destroys triggered by an LRU.

lruEvaluations Number of entries evaluated during LRU operations

lruEvictions Total number of entry evictions triggered by an LRU.

lruGreedyReturns Number of non-LRU entries evicted during LRU operations.

Region Entry Eviction – Size-based (MemLRUStatistics)
The least recently used (LRU) mechanism that keeps the size of a region under a given set point
records these MemLRUStatistics. The primary statistics are:

Statistic Description

byteCount Number of bytes in region

bytesAllowed Total number of bytes allowed in this region.

lruDestroys Number of entry destroys triggered by LRU.

lruEvaluations Number of entries evaluated during LRU operations.

lruEvictions Total number of entry evictions triggered by LRU.

lruGreedyReturns Number of non-LRU entries evicted during LRU operations.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1245

Server Notifications for All Clients
(CacheClientNotifierStatistics)

Statistics regarding cache server operations sent to all clients.

Statistic Description

clientHealthMonitorRegister Number of clients that register.

clientHealthMonitorUnRegister Number of clients that unregister.

clientRegistrations Number of clients (operations) that have registered for updates.

clientRegistrationTime Total time, in nanoseconds, spent doing client registrations.

durableReconnectionCount Number of times the same durable client connects to the server.

eventProcessingTime Total time, in nanoseconds, spent by the cache client notifier processing events.

events Number of events (operations) processed by the cache client notifier.

eventsEnqueuedWhileClientAwayCo

unt

Number of events enqueued for a durable client.

queueDroppedCount Number of times the client subscription queue for a particular durable client is
dropped.

Server Notifications for Single Client
(CacheClientProxyStatistics)
Statistics regarding cache server operations and cache server client notifications sent to a single
client.

Statistic Description

messageProcessingT

ime

Total time, in nanoseconds, spent sending messages to clients.

messageQueueSize Size of the operations subscription queue.

messagesFailedQueu

ed

Number of client operations messages attempted but failed to be added to the subscription
queue.

messagesNotQueuedC

onflated

Number of client operations messages received but not added to the subscription queue
because the queue already contains a message with the message’s key.

messagesNotQueuedN

otInterested

Number of client operations messages received but not added to the subscription queue
because the client represented by the receiving proxy was not interested in the message’s key.

messagesNotQueuedO

riginator

Number of client operations messages received but not added to the subscription queue,
because the receiving proxy represents the client originating the message.

messagesProcessed Number of client operations messages removed from the subscription queue and sent.

messagesQueued Number of client operations messages added to the subscription queue.

messagesReceived Number of client operations messages received.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1246

Server-to-Client Messaging Performance
(ClientSubscriptionStats)

Collected in the server, these statistics track event messages queued on the server to be sent to
the client. The statistics are gathered for each client subscription queue and are incremental for the
lifetime of the queue. The event messages are referred to as events in these statistics. The primary
statistics are:

Statistic Description

eventsConfla

ted

Number of events conflated. If this is high, the server’s dispatcher may be running slowly. This could be
caused by one or more slow client.s causing blocking in their subscription queues.

eventsExpire

d

Number of events that have expired while in the subscription queue. If this is high on a secondary
server, it might be that the MessageSyncInterval on the primary is set too high, causing the secondary
to fall behind in event cleanup.

eventsQueued Number of events placed in the subscription queue.

eventsRemove

d

Number of events removed from the subscription queue.

eventsRemove

dByQrm

Number of events removed based on a message sent from the primary. Only incremented while the
subscription queue is in a secondary server.

eventsTaken Number of events taken from the subscription queue.

numSequenceV

iolated

Number of events that had sequence ID less than or equal to the last sequence ID. The system assumes
these events are duplicates and does not add them to the subscription queue. A non-zero value may
indicate message loss.

numVoidRemov

als

Number of events which were supposed to be destroyed from the subscription queue through remove
but were removed by some other operation like conflation or expiration.

threadIdenti

fiers

Number of ThreadIdentifier objects (units) in the subscription queue.

Statistics Collection (StatSampler)

These statistics show how much time is spent collecting statistics. The primary statistics are:

Statistic Description

sampleCount Total number of samples taken by this sampler.

sampleTime Total amount of time spent taking samples.

Transaction Reference Material

This archival section on transactions exists as a reference for understanding how to work with JTA
transactions.

JTA Global Transactions with VMware GemFire

Use JTA global transactions to coordinate VMware GemFire transactions and JDBC
transactions.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1247

JTA Global Transactions with VMware GemFire

The Java Transaction API, JTA, is a standard Java interface you can use to coordinate VMware
GemFire transactions and JDBC transactions globally under one umbrella.

You can use JTA global transactions to coordinate VMware GemFire transactions and JDBC
transactions.

JTA provides direct coordination between the VMware GemFire cache and another transactional
resource, such as a database. The parties involved in a JTA transaction include:

The Java application, responsible for starting the global transaction

The JTA transaction manager, responsible for opening, committing, and rolling back
transactions

The transaction resource managers, including the VMware GemFire transaction manager
and the JDBC resource manager, responsible for managing operations in the VMware
GemFire cache and database, respectively

Using JTA, your application controls all transactions in the same standard way, whether the
transactions act on the VMware GemFire cache, a JDBC resource, or both together. When a JTA
global transaction is finished, the VMware GemFire transaction and the database transaction are
both complete.

When using JTA global transactions with VMware GemFire, you have two options:

Coordinate with an external JTA transaction manager in a container (such as WebLogic or
JBoss)

Set VMware GemFire as the “last resource” while using a container (such as WebLogic or
JBoss) as the JTA transaction manager

An application creates a global transaction by using javax.transaction.UserTransaction bound to
the JNDI context java:/UserTransaction to start and terminate transactions. During the
transaction, cache operations are done through VMware GemFire as usual.

Note: See the Java documentation for more information on topics such as JTA, javax.transaction,
committing and rolling back global transactions, and the related exceptions.

Coordinating with External JTA Transactions Managers

VMware GemFire can work with the JTA transaction managers of several containers like
JBoss, WebLogic, GlassFish, and so on.

Using VMware GemFire as the “Last Resource” in a Container-Managed JTA
Transaction

The “last resource” feature in certain third party containers such as WebLogic allow the use
one non-XAResource (such as VMware GemFire) in a transaction with multiple
XAResources while ensuring consistency.

Behavior of VMware GemFire Cache Writers and Loaders Under JTA

When VMware GemFire participates in a global transactions, you can still have VMware
GemFire cache writers and cache loaders operating in the usual way.

Turning Off JTA Transactions

VMware GemFire 9.10 Documentation

VMware by Broadcom 1248

You can configure regions to not participate in any JTA global transaction.

Coordinating with External JTA Transaction Managers

VMware GemFire can work with the JTA transaction managers of several containers such as JBoss,
WebLogic, GlassFish, and so on.

At startup VMware GemFire looks for a TransactionManager
(javax.transaction.TransactionManager) that has been bound to its JNDI context. When VMware
GemFire finds such an external transaction manager, all VMware GemFire region operations (such
as get and put) will participate in global transactions hosted by this external JTA transaction
manager.

This figure shows the high-level operation of a JTA global transaction whose resources include a
VMware GemFire cache and a database.

An externally coordinated JTA global transaction is run in the following manner:

1. Each region operation looks up for presence of a global transaction. If one is detected, then
a VMware GemFire transaction is started automatically, and we register a
javax.transaction.Synchronization callback with the external JTA transaction manager.

2. At transaction commit, VMware GemFire gets a beforeCommit() callback from the external
JTA transaction manager. VMware GemFire does all locking and conflict detection at this
time. If this fails, an exception is thrown back to JTA transaction manager, which then
cancels the transaction.

3. After a successful beforeCommit()callback, JTA transaction manager asks other data sources
to commit their transaction.

4. VMware GemFire then gets a afterCommit() callback in which changes are applied to the
cache and distributed to other members.

You can deactivate JTA in any region that should not participate in JTA transactions. See Turning
Off JTA Transactions.

How to Run a JTA Transaction Coordinated by an External
Transaction Manager

VMware GemFire 9.10 Documentation

VMware by Broadcom 1249

Use the following procedure to run a VMware GemFire global JTA transaction coordinated by an
external JTA transaction manager.

1. Configure the external data sources in the external container. Do not configure the data
sources in cache.xml . They are not guaranteed to get bound to the JNDI tree. 2.

Configure VMware GemFire for any necessary transactional behavior in the cache.xml file.
For example, enable copy-on-read and specify a transaction listener, as needed. See Copy
on Read Behavior.

2. Make sure that JTA transactions are enabled for the regions that will participate in the
transaction. See Turning Off JTA Transactions for details. 4.

Start the transaction through the external container.

3. Initialize the VMware GemFire cache. VMware GemFire will automatically join the
transaction. 6.

Execute operations in the cache and the database as usual.

4. Commit the transaction through the external container.

Using VMware GemFire as the “Last Resource” in a
Container-Managed JTA Transaction
The “last resource” feature in certain third party containers such as WebLogic allow the use of one
non-XAResource (such as VMware GemFire) in a transaction with multiple XAResources while
ensuring consistency.

In the previous two JTA transaction use cases, if the VMware GemFire member fails after the other
data sources commit but before VMware GemFire receives the afterCommit callback, VMware
GemFire and the other data sources may become inconsistent. To prevent this from occurring, you
can use the container’s “last resource optimization” feature, with VMware GemFire set as the “last
resource”. Using VMware GemFire as the last resource ensures that in the event of failure,
VMware GemFire remains consistent with the other XAResources involved in the transaction.

To accomplish this, the application server container must use a JCA Resource Adapter to
accomodate VMware GemFire as the transaction’s last resource. The transaction manager of the
container first issues a “prepare” message to the participating XAResources. If the XAResources all
accept the transaction, then the manager issues a “commit” instruction to the non-XAResource (in
this case, VMware GemFire). The non-XAResource (in this case, VMware GemFire) participates as
a local transaction resource. If the non-XAResource fails, then the transaction manager can rollback
the XAResources.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1250

How to Run JTA Transactions with VMware GemFire as a
“Last Resource”

1. Locate the version-specific geode-jca RAR file within the lib directory of your VMware
GemFire installation.

2. Add your container-specific XML file to the geode-jca RAR file.

1. Create a container-specific resource adapter XML file named <container>-ra.xml. For
example, an XML file for a WebLogic resource adapter XML file might look something like
this: ``` pre GFE JCA gfe/jca ```

2. Create a folder named `META-INF`, and place the container-specific XML file inside the
directory. For example, the folder structure would look like this: ``` pre META-
INF/weblogic-ra.xml ```

3. Navigate to the directory above the `META-INF` folder and execute the following
command, with appropriate substitutions for path and file names: ``` pre $ jar -uf
/path/to/lib/geode-jca-X-X-X.rar META-INF/weblogic-ra.xml ```

1. Make sure that the geode-dependencies.jar is accessible in the CLASSPATH of the JTA
transaction coordinator container.

2. Deploy the version-specific geode-jca RAR file on the JTA transaction coordinator
container. When deploying the file, you specify the JNDI name and so on.

3. Configure VMware GemFire for any necessary transactional behavior. Enable copy-on-read
and specify a transaction listener, if you need one. See Copy on Read Behavior.

4. Get an initial context through org.apache.geode.cache.GemFireCache.getJNDIContext. For
example:

Context ctx = cache.getJNDIContext();

VMware GemFire 9.10 Documentation

VMware by Broadcom 1251

This returns javax.naming.Context and gives you the JNDI associated with the cache. The
context contains the TransactionManager, UserTransaction, and any configured JDBC
resource manager.

5. Start and commit the global transaction using the UserTransaction object rather than with
VMware GemFire’s CacheTransactionManager.

UserTransaction txManager = (UserTransaction)ctx.lookup("java:/UserTransactio

n");

6. Obtain a VMware GemFire connection.

GFConnectionFactory cf = (GFConnectionFactory) ctx.lookup("gfe/jca");

//This step of obtaining connection is what begins the

//LocalTransaction.

//If this is absent, GFE operations will not be part of any

//transaction

GFConnection gemfireConn = (GFConnection)cf.getConnection();

Behavior of VMware GemFire Cache Writers and Loaders
Under JTA

When VMware GemFire participates in a global transactions, you can still have VMware GemFire
cache writers and cache loaders operating in the usual way.

For example, in addition to the transactional connection to the database, the region could also
have a cache writer and cache loader configured to exchange data with that same database. As
long as the data source is transactional, which means that it can detect the transaction manager,
the cache writer and cache loader participate in the transaction. If the JTA rolls back its transaction,
the changes made by the cache loader and the cache writer are rolled back. For more on
transactional data sources, see the discussion of XAPooledDataSource and ManagedDataSource in
Configuring Database Connections Using JNDI.

If you are using a VMware GemFire cache or transaction listener with global transactions, be aware
that the EntryEvent returned by a transaction has the VMware GemFire transaction ID, not the
JTA transaction ID.

Turning Off JTA Transactions

You can configure regions to not participate in any JTA global transaction.

The ignore-jta region attribute is a boolean that tells the cache to ignore any in-progress JTA
transactions when performing cache operations. It is primarily used for cache loaders, cache
writers, and cache listeners that need to perform non-transactional operations on a region, such as
caching a result set. It is set per region, so some regions can participate in JTA transactions, while
others avoid participating in them. This example sets the ignore-jta region attribute in the
cache.xml file.

cache.xml:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1252

<region name="bridge_region">

 <region-attributes scope="local" ignore-jta="true" statistics-enabled="true"/>

 <cache-writer> . . . </cache-writer>

 </region-attributes>

</region>

API:

Using the API, you can turn off JTA transactions using RegionFactory and its method
setIgnoreJTA(boolean). The current setting for a region can be fetched from a region’s
RegionAttributes by using the getIgnoreJTA method.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1253

Experimental Features

VMware GemFire includes these features to allow interested developers to experiment with their
use in their own development systems. Feedback will help drive development of these features,
and they may be supported in future versions of the product.

These features may change in or be removed from future versions of the product.

Cluster Management Service

The cluster management service enables you to change the configuration of the cluster (for
example, create/destroy regions, indexes, or gateway receivers/senders), and have these
changes replicated on all the applicable servers and persisted in the cluster configuration
service.

Redis Adapter

The Redis adapter allows Geode to function as a drop-in replacement for a Redis data store,
letting Redis applications take advantage of Geode’s scaling capabilities without changing
their client code. Redis clients connect to a Geode server in the same way they connect to
a Redis server, using an IP address and a port number.

Automated Rebalancing of Partitioned Region Data

The automated rebalance feature triggers a rebalance operation based on a time schedule.

Cluster Management Service

Note: This feature is experimental and is subject to change in future releases of VMware GemFire.

The cluster management service enables you to change the configuration of the cluster (for
example, create/destroy regions, indexes, or gateway receivers/senders), and have these changes
replicated on all the applicable servers and persisted in the cluster configuration service.

With the cluster management service, you can:

Create regions/indexes on the fly.

Persist the configuration and apply it to the cluster, so when a new node joins, it has the
configuration, and when the server restarts, it has the configuration.

Obtain a consistent view of the current configuration

Apply a change to all elements of the cluster in the same way

Be able to change the configuration in one place

Obtain this configuration without being on the cluster

Invoke the configuration service from the server or from a client

VMware GemFire 9.10 Documentation

VMware by Broadcom 1254

The cluster management service is documented in the Geode Wiki: Cluster Management Service.
The Wiki write-up offers separate choices for the cluster management service implementation on
each Geode version that supports it.

The cluster management service is available as a REST API and as a Java API.

Cluster Management Service REST API

The cluster management service REST API adheres to standard REST semantics, so users can use
POST, PATCH, DELETE, and GET to create, update, delete, and read, respectively.

This version of VMware GemFire uses the 1.12.0 Management REST API. As mentioned, the
feature is experimental and still undergoing revision.

For a definitive description of the cluster management service for your version of VMware
GemFire, you can use the Swagger™ framework. To use the Swagger UI to browse the cluster
management service API:

1. Using gfsh, start a locator using the default settings.

2. Open a browser and enter the following URL:

http://localhost:7070/management/docs

This produces a browsable description of the cluster management service API:

Cluster Management Service Java API

VMware GemFire 9.10 Documentation

VMware by Broadcom 1255

https://cwiki.apache.org/confluence/display/GEODE/Cluster+Management+Service
https://cwiki.apache.org/confluence/display/GEODE/1.12.0+Management+REST+API+-+v1

The cluster management service is available to Java clients via a Java API. To enable the cluster
management service Java API, include geode-management.jar in your client classpath. See the
Cluster Management Service Java Client topic on the Geode Wiki for more details.

VMware GemFire Micrometer

VMware GemFire uses Micrometer to provide an interface for emitting user-focused metrics,
instrumented in code, to a variety of consuming Application Performance Monitoring (APM) tools.
VMware GemFire has Micrometer instrumentation added to a subset of information available,
which can be easily emitted from a Meter Registry.

By default, Micrometer is enabled and can emit metrics to any meter registry. However, time-
based meters are available only when the time-statistics property is enabled.

The API is currently marked experimental. The MetricsSession and MetricsPublishingService
interfaces may change.

Micrometer configuration and publishing

Using Micrometer may require configuration. To emit Micrometer metrics to one of the
supported APM tools, or to a custom format or tool, you must use a Meter Registry and
accompanying publishing service.

Micrometer meters and tags

VMware GemFire contains a set of meters – instrumented statistics – that provide
information about each cluster member. Each member within a VMware GemFire cluster
can emit a set of meters of different types, timers, gauges, and counters specific to the
member. Each meter has a set of common tags, a name/value pair, that help users identify
where a meter is located in the cluster. Meter-specific tags also exist.

Configuration and Publishing

Meter configuration

Out of the box VMware GemFire is instrumented and can emit meters with a properly created
Meter Registry.

However, any meters that are timers based on the system clock time, similar to the time statistics,
they will obey the existing enable-time-statistics geode.properties setting, see Setting up
Statistics.

Publishing metrics using a meter registry

In order to emit metrics to an Application Performance Monitor (APM) or other such tool that can
store or display metrics, a meter registry is required. Micrometer implements many different meter
registries as project imports, a list can be found here: https://micrometer.io/docs.

As a simple example, below describes how you might create a publishing service utilizing the
MetricsSession and MetricsPublishingService interface in VMware GemFire.

Here is a example class that would enable Prometheus metrics to be emitted:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1256

https://cwiki.apache.org/confluence/display/GEODE/Cluster+Management+Service#ClusterManagementService-JavaClient
https://micrometer.io/

public class SimpleMetricsPublishingService implements MetricsPublishingService {

 private static final String PORT_PROPERTY = "prometheus.metrics.port";

 private static final int DEFAULT_PORT = 0; // If no port specified, use any port

 private static final String HOSTNAME = "localhost";

 private static final int PORT = getInteger(PORT_PROPERTY, DEFAULT_PORT);

 private static Logger LOG = getLogger(SimpleMetricsPublishingService.class);

 private final int port;

 private PrometheusMeterRegistry registry;

 private HttpServer server;

 public SimpleMetricsPublishingService() {

 this(PORT);

 }

 public SimpleMetricsPublishingService(int port) {

 this.port = port;

 }

 @Override

 public void start(MetricsSession session) {

 registry = new PrometheusMeterRegistry(DEFAULT);

 session.addSubregistry(registry);

 InetSocketAddress address = new InetSocketAddress(HOSTNAME, port);

 server = null;

 try {

 server = HttpServer.create(address, 0);

 } catch (IOException thrown) {

 LOG.error("Exception while starting " + getClass().getSimpleName(), thrown);

 }

 HttpContext context = server.createContext("/");

 context.setHandler(this::requestHandler);

 server.start();

 int boundPort = server.getAddress().getPort();

 LOG.info("Started {} http://{}:{}/", getClass().getSimpleName(), HOSTNAME, boundPo

rt);

 }

 private void requestHandler(HttpExchange httpExchange) throws IOException {

 final byte[] scrapeBytes = registry.scrape().getBytes();

 httpExchange.sendResponseHeaders(200, scrapeBytes.length);

 final OutputStream responseBody = httpExchange.getResponseBody();

 responseBody.write(scrapeBytes);

 responseBody.close();

 }

 @Override

 public void stop(MetricsSession session) {

 session.removeSubregistry(registry);

 registry = null;

 server.stop(0);

 }

}

VMware GemFire 9.10 Documentation

VMware by Broadcom 1257

To make your service discoverable, add the following provider-configuration file in the resource
directory of your publishing service jar file:

META-INF/services/org.apache.geode.metrics.MetricsPublishingService

Add a line inside the file indicating the fully qualified class name of your implementation:

my.domain.SimpleMetricsPublishingService

Add Your jar File to the classpath When You Start a Server or
Locator

To add your metrics publishing service to a server or locator, add your jar file to the classpath when
you start the server or locator via GFSH and specify the prometheus.metrics.port listed in
SimpleMetricsPublishingService:

gfsh>create locator --name my-locator --classpath=<path-to-my-jar-file>/my.jar --J=-Dp

rometheus.metrics.port=9914

gfsh>create server --name my-server --classpath=<path-to-my-jar-file>/my.jar --J=-Dpro

metheus.metrics.port=9915

Alternatively, you can add your jar file to the extensions directory in your Geode installation and
only specify the prometheus.metrics.port. Then GFSH will add your jar file to the classpath
whenever it creates a server or locator.

Micrometer Meters and Tags

Micrometer Meters

Micrometer meters are similar to VMware GemFire statistics in that they have different types.
VMware GemFire uses the three main meter types: counter, gauge, and timer.

A counter is a numerical value that only goes up.

A gauge is a numerical value that can go up or down.

A timer is a counter combined with an ever growing summary of the time each thing being
counted has taken to finish.

There are other types of meters available in Micrometer, but they are not currently being used in
VMware GemFire.

Every meter in Micrometer has the following attributes, but may also have more than these
depending on the meter type:

Name: a lowercase, ‘dot’ delimited name

Description: a short text description of the meter

Value: the value of the meter, always a number

Units: the unit of the value

Tags: key/value string pairs to define facts about the meter

VMware GemFire 9.10 Documentation

VMware by Broadcom 1258

Meters supplied by Micrometer

VMware GemFire has been instrumented with a set of Micrometer provided meters, called binders,
which contain one or many individual meters with pre-defined types and tags. The following are a
subset of the Micrometer binders that have been added to VMware GemFire:

JVM specific

JvmGcMetrics

JvmMemoryMetrics

JvmThreadMetrics

Operating System specific

ProcessorMetrics

UptimeMetrics

FileDescriptorMetrics

Meters specific to VMware GemFire

There are VMware GemFire specific meters that have been instrumented to allow developers to
monitor certain aspects of the VMware GemFire cluster. The namespace used for these metrics
includes the Apache Geode (e.g. geode.*) product name as a means to distinguish this meter from
others similar to it in downstream systems. The following meters have been added to VMware
GemFire:

Meter: geode.cache.entries

Type: Gauge

Description: The current count of entries in the cache for this member (locators will not have this metric)

Tag: region: The name of the region associated with the count of entries

Tag: data.policy: The data policy described for these regions, see RegionShortcuts for Peers and Servers

Meter: geode.function.executions

Type: Timer

Description: A total time and count for any execution that completed without errors of this function on this member.

Tag: Function: The name or class of the function

Tag: Succeeded: true/false

Meter: geode.gateway.receiver.events

Type: Counter

Description: The total number of events received by this GatewayReceiver

Meter: geode.cache.gets

Type: Timer

VMware GemFire 9.10 Documentation

VMware by Broadcom 1259

Meter: geode.cache.gets

Descript
ion:

A total time and count for any get operation performed against the cache server for this member. Get
operations that circumvent the cache server, such as REST calls, gfsh operations, and peer-to-peer
operations, are not counted. Locators will not have this metric.

Tag: region: The name of the region associated with the count of entries

Tag: result: hit/miss

Common tags

VMware GemFire meters all contain tags, also referred to as labels or dimensions, depending upon
which Application Performance Monitoring (APM) tool is being utilized. Micrometer offers a concept
of common tags that exist on every meter within a meter registry. In VMware GemFire, the following
common tags have been provided to add context to each meter:

cluster: The distributed system id associated with this member

host: The hostname the member exists on, could be the same as another if collocated

member: the member name provided at startup time

member.type: locator, server, locator-server

Please submit a pull request to Apache Geode if there are more metrics you would like to see
added to VMware GemFire.

Redis Adapter

Note: This feature is experimental and is subject to change in future releases of VMware GemFire.

The VMware GemFire Redis adapter allows VMware GemFire to function as a drop-in replacement
for a Redis data store, letting Redis applications take advantage of VMware GemFire’s scaling
capabilities without changing their client code. Redis clients connect to a VMware GemFire server
in the same way they connect to a Redis server, using an IP address and a port number.

Using the Redis Adapter

How the Redis Adapter Works

Advantages of VMware GemFire over a Redis Server

Using the Redis Adapter

To use the Redis Adapter, you will need three pieces of information:

1. The port number through which clients will communicate

2. The IP address of the host where the server is to reside

3. A choice of which attributes you will use for a VMware GemFire partitioned region

The IP address and port number should be the same ones coded in the Redis clients.

In order to take advantage of VMware GemFire’s scaling capabilities, you should specify the
VMware GemFire region as one of the types that use the PARTITION data policy. PARTITION is

VMware GemFire 9.10 Documentation

VMware by Broadcom 1260

the default. Other possibilities include PARTITION_REDUNDANT and PARTITION_PERSISTENT.
(See “Region Shortcuts Quick Reference” for a complete list.)

To implement a VMware GemFire instance using the Redis Adapter:

1. Install VMware GemFire on the system where the server is to reside.

2. Use gfsh to start a VMware GemFire server, specifying the three configuration options
described above:

Use --redis-port to specify the port. This parameter is required – the VMware
GemFire server will listen on this port for Redis commands.

Use --redis-bind-address to specify the IP address of the server host. This
parameter is optional. If not specified, the default is determined from the /etc/hosts
file.

Use --J=-Dgemfireredis.regiontype to specify the region type. This parameter is
optional. If not specified, regiontype is set to PARTITION.

For example:

gfsh> start server --name=server1 --redis-bind-address=localhost \

 --redis-port=11211 --J=-Dgemfireredis.regiontype=PARTITION_PERSISTENT

Redis clients can then connect to the server at localhost:11211.

How the Redis Adapter Works
The VMware GemFire Redis Adapter supports all Redis data structures, including

String

List

Hash

Set

SortedSet

HyperLogLog

In VMware GemFire these data structures are implemented using partitioned regions. In most
cases, VMware GemFire allocates one partitioned region for each data structure. For example,
each Sorted Set is allocated its own partitioned region, in which the key is the user data and the
value is the user-provided score, and entries are indexed by score. The two exceptions to this
design are data types String and HyperLogLog. All Strings are allocated to a single partitioned
region. Similarly, all HyperLogLogs are allocated to a single region. Regions use VMware GemFire’s
OQL and indexes.

The VMware GemFire Redis Adapter supports all Redis commands for each of the Redis data
structures. (See the Javadocs for the GemFireRedisServer class for a detailed list.) The VMware
GemFire server’s responses to Redis commands are identical to those of a Redis server with the
following exceptions, resulting from VMware GemFire’s more extensive partitioning model:

Any command that removes keys and returns a count of removed entries will return a
count of how many entries have been removed from the local vm, rather than a total count

VMware GemFire 9.10 Documentation

VMware by Broadcom 1261

of items removed across all members. However, all entries will be removed.

Any command that returns a count of newly set members has an unspecified return value.
The command will work just as the Redis protocol states, but the count will not necessarily
reflect the number set compared to the number overridden.

Transactions work just as they would on a Redis instance; they are local transactions.
Transactions cannot be executed on data that is not local to the executing server, that is on
a partitioned region in a different server instance, or that is on a persistent region that does
not have transactions enabled. Also, you cannot watch or unwatch keys, as all keys within a
VMware GemFire transaction are watched by default.

Advantages of VMware GemFire over a Redis Server

VMware GemFire’s primary advantage is its scalability. While the Redis server is single threaded,
VMware GemFire supports high concurrency. Many Redis clients can execute commands on the
VMware GemFire server simultaneously.

VMware GemFire supports stored procedures, which can execute on the server and report
results to the requesting client.

VMware GemFire architecture and management features help detect and resolve network
partitioning problems without explicit management on the part of the Redis client.

VMware GemFire WAN replication allows the data store to expand horizontally, across physically
distant sites, while maintaining data consistency.

Automated Rebalancing of Partitioned Region Data

Note: This feature is experimental and is subject to change in future releases of VMware GemFire.

Automated rebalance triggers a rebalance (see Rebalancing Partitioned Region Data) operation
based on a time schedule. At the scheduled intervals, the balance of the partitioned regions is
evaluated based on configured criteria. One criterion is a minimum threshhold for number of bytes
that would be transferred if the rebalance takes place. The other criterion uses the ratio of the
number of bytes that would be transferred to the total number of bytes in the regions. If the
evaluation indicates the system is out of balance, the rebalance transfer is initiated.

To enable automated rebalance, specify the rebalance manager in the <initializer> attribute
within the <cache> configuration of the cache.xml file:

<class-name> org.apache.geode.cache.util.AutoBalancer </class-name>

The time schedule that triggers an evaluation and possible rebalance uses a cron-based
specification in the <initializer> attribute within the <cache> configuration of the cache.xml file.
This scheduling specification is required. Specify the cron expression in the Spring format. This
example specification triggers each Saturday at 3am:

<parameter name="schedule"> 0 0 3 ? * SAT </parameter>

This example specification triggers once each day at 4am:

VMware GemFire 9.10 Documentation

VMware by Broadcom 1262

<parameter name="schedule"> 0 0 4 * * ?</parameter>

The automated rebalance specifications that specify criteria for triggering the rebalance are optional
and have reasonable default values.

One criterion is a minimum number of bytes that would be transferred if the rebalance were to take
place. The specification is in units of bytes; here is the specification for the default value of 100MB:

<parameter name="minimum-size"> 104857600</parameter>

Another criterion represents the ratio of bytes that would be transferred to the total number of
bytes in the partitioned regions, represented as an integer percentage. The default is 10 percent.
This example specificies 15 percent:

<parameter name="size-threshold-percent"> 15 </parameter>

VMware GemFire 9.10 Documentation

VMware by Broadcom 1263

Glossary

This glossary defines terms used in VMware GemFire documentation.

ACK wait threshold

A time-to-wait for message acknowledgment between system members.

administrative event

See event.

API

Application Programming Interface. VMware GemFire provides APIs to cached data for Java
applications.

application program

A program designed to perform a specific function directly for the user or, in some cases, for
another application program. VMware GemFire applications use the VMware GemFire application
programming interfaces (APIs) to modify cached data.

attribute

Querying: A named member of a data object. The public fields and methods of an object may be
accessed as attributes in the context of a query.

Region: See region attributes.

attribute path

A sequence of attributes separated by a dot (.), applied to objects where the value of each attribute
is used to apply the next attribute.

blocking

A behavior associated with synchronization functions. Blocking behavior is exhibited as waiting for a
signal to proceed, regardless of how long it takes. See also timeout.

cache

VMware GemFire 9.10 Documentation

VMware by Broadcom 1264

In-memory VMware GemFire data storage created by an application or cache server for data
storage, distribution, and management. This is the point of access for Java applications for all
caching features, and the only view of the cache that is available to the application. Cache creation
creates a connection to the cluster. See also local and remote.

cache-local

Residing or occurring in the local cache.

cache.xml

Common name for the XML file that declares the initial configuration of a cache. This file is used to
customize the behavior of the VMware GemFire cache server process and can be used by any Java
application. Applications can also configure the cache through the VMware GemFire Java APIs.
You can give this file any name.

cache event

See event.

cache listener

User-implemented plug-in for receiving and handling region entry events. A region’s cache listener
is called after an entry in the local cache is modified. See also cache writer.

cache loader

User-implemented plug-in for loading data into a region. A region’s cache loader is used to load
data that is requested of the region but is not available in the cluster. For a distributed region, the
loader that is used can be in a different cache from the one where the data-request operation
originated. See also netSearch and netLoad.cache misses, where a requested key is not present or
has a null value in the local cache.

cache miss

The situation where a key’s value is requested from a cache and the requested key is not present
or has a null value. VMware GemFire responds to cache misses in various ways, depending on the
region and system configuration. For example, a client region goes to its servers to satisfy cache
misses. A region with local scope uses its data loader to load the value from an outside data source,
if a loader is installed on the region.

cache server

A long-lived, configurable VMware GemFire cluster member process that can service client
connections.

cache transaction

VMware GemFire 9.10 Documentation

VMware by Broadcom 1265

A native VMware GemFire transaction, managed by VMware GemFire and not by JTA. This type of
transaction operates only on data available from the VMware GemFire cache in the local member.
See also JTA and global transaction.

cache writer

User-implemented plug-in intended for synchronizing the cache with an outside data source. A
region’s cache writer is a synchronous listener to cache data events. The cache writer has the
ability to cancel a data modification. See also cache listener and netWrite.

client

A VMware GemFire application that is configured as a standalone cluster member, with regions
configured as client regions. Client configuration uses the <client-cache> cache.xml element and
the ClientCache API.

client region

A VMware GemFire cache region that is configured to go to one or more VMware GemFire
servers, in a separate VMware GemFire cluster, for all data distribution activities. Among other
things, client regions go to servers to satisfy cache misses, distribute data modifications, and to run
single queries and continuous queries.

cluster configuration service

The cluster configuration service saves cluster configurations created by gfsh commands to the
locators in a cluster and distributes the configurations to members of the cluster.

collection

Used in the context of a query for a group of distinct objects of homogeneous type, referred to as
elements. Valid collections include the java.util.Collection as well as Set, Map, List, and arrays.
The elements in a collection can be iterated over. Iteration over a Map traverses its entries as
instances of Map.Entry. A region can also be treated as a collection of its values.

commit

A transactional operation that merges a transaction’s result into the cache. Changes are made in an
“all or none” fashion. Other changes from outside the current transaction are kept separate from
those being committed.

concurrency-level

Region attribute that specifies an estimate of the number of threads ever expected to concurrently
modify values in the region. The actual concurrency may vary; this value is used to optimize the
allocation of system resources.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1266

conflation

Combining entries in a message queue for better performance. When an event is added to queue,
if a similar event exists in the queue, there are two ways to conflate the events. One way is to
remove the existing entry from wherever it resides in the queue, and add the new entry to the end
of the queue. The other way is to replace the existing entry with the new entry, where it resides in
the queue, and add nothing to the end of the queue. In VMware GemFire, region entry update
events, server events going to clients, and gateway sender events going to remote clusters can all
be conflated.

connection

The connection used by an application to access a VMware GemFire system. A Java application
connects to its VMware GemFire cluster when it creates its cache. The application must connect to
a cluster to gain access to the VMware GemFire functionalities. A client connects to a running
VMware GemFire server to distribute data and events between itself and the server tier. These
client connections are managed by server connection pools within the client applications. Gateway
senders connect to a remote gateway receiver to distribute data events between sites.

consumer

VMware GemFire member process that receives data and/or events from other members. Peer
consumers are often configured with replicated regions, so all changes in the cluster arrive into the
local cache. Client consumers can register subscriptions with their servers so that updates are
automatically forwarded from the server tier. See producer.

coordinator

The member of the cluster that sends out membership views. This is typically the locator in
VMware GemFire.

data accessor

In the context of a region, a member configured to use a region, but not store any data for it in the
member’s local cache. Common use cases for data accessors are thin clients, and thin producer and
consumer applications. Accessors can put data into the region and receive events for the region
from remote members or servers, but they store no data in the application. See also data store.

data entry

See entry.

data fabric

Also referred to as an in-memory data grid or an enterprise data fabric. VMware GemFire is an
implementation of a data fabric. A data fabric is a distributed, memory-based data management
platform that uses cluster-wide resources – memory, CPU, network bandwidth, and optionally local
disk – to manage application data and application logic (behavior). The data fabric uses dynamic

VMware GemFire 9.10 Documentation

VMware by Broadcom 1267

replication and data partitioning techniques to offer continuous availability, very high performance,
and linear scalability for data intensive applications, all without compromising on data consistency
even when exposed to failure conditions.

data-policy

Region attribute used to determine what events the region receives from remote caches, whether
data is stored in the local cache, and whether the data is persisted to disk. For disk persistence,
writes are performed according to the cache disk-store configuration.

data region (region)

A logical grouping of data within a cache. Regions usually contain data entries (see entry). Each
region has a set of region attributes governing activities such as expiration, distribution, data
loading, events, and capacity control. In addition, a region can have an application-defined user
attribute.

data store

In the context of a region, a member configured to store data for the region. This is used mostly for
partitioned regions, where data is spread across the cluster among the data stores. See also data
accessor.

deadlock

A situation in which two or more processes are waiting indefinitely for events that will never occur.

destroy

Distributed: To remove a cached object across the distributed cache.

Local: To remove a cached object from the local cache only.

disk region

A persistent region.

disk-store

Cache element specifying location and write behavior for disk storage. Used for persistence and
overflow of data. The cache can have multiple disk stores, which are specified by name for region
attributes, client subscription queues (for servers), and WAN gateway sender queues.

distributed cache

A collection of caches spread across multiple machines and multiple locations that functions as a
single cache for the individual applications.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1268

distributed system

One or more VMware GemFire system members or clusters that have been configured to
communicate cache events with each other, forming a single, logical system.

distributed-ack scope

Data distribution setting that causes synchronous distribution operations, which wait for
acknowledgment from other caches before continuing. Operations from multiple caches can arrive
out of order. This scope is slower but more reliable than distributed-no-ack.

distributed-no-ack scope

Data distribution setting that causes asynchronous distribution operations, which return without
waiting for a response from other caches. This scope produces the best performance, but is prone
to race conditions.

entry

A data object in a region consisting of a key and a value. The value is either null (invalid) or a Java
object. A region entry knows what region it is in. An entry can have an application-defined user
attribute. See also region data, entry key, and entry value.

entry key

The unique identifier for an entry in a region.

entry value

The data contained in an entry.

event

An action recognized by the VMware GemFire system members, which can respond by executing
callback methods. The VMware GemFire API produces two types of events: cache events for
detail-level management of applications with data caches and administrative events for higher-level
management of the cluster and its components. An operation can produce administrative events,
cache events, or both.

eviction-attributes

Region attribute that causes the cache to limit the size of the region by removing old entries to
make space for new ones.

expiration

A cached object expires when its time-to-live or idle timeout counters are exhausted. A region has
one set of expiration attributes for itself and one set for all of its entries.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1269

expiration action

The action to be taken when a cached object expires. The expiration action specifies whether the
object is to be invalidated or destroyed and whether the action is to be performed only in the local
cache or throughout the cluster. A destroyed object is completely removed from the cache. A
region is invalidated by invalidating all entries contained in the region. An entry is invalidated by
having its value marked as invalid. Region.getEntry.getValue returns null for an invalid entry.

In VMware GemFire, expiration attributes are set at the region level for the region and at the entry
level for entries. See also idle timeout and time-to-live.

factory method

An interface for creating an object which at creation time can let its subclasses decide which class
to instantiate. The factory method helps instantiate the appropriate subclass by creating the correct
object from a group of related classes.

forced disconnect

Forcible removal of a member from membership without the member’s consent.

gateway receiver

A gateway receiver defines connection information for receiving region events that were
distributed from a gateway sender in a multi-site deployment.

gateway sender

A gateway sender defines a single remote cluster site and an associated queue for distributing
region events in a multi-site deployment.

gemfire.properties

Common name for the file used for cluster configuration, including system member connection and
communication behavior, logging and statistics files and settings, and security settings. Applications
can also configure the cluster through the VMware GemFire Java APIs. You can give this file any
name.

global scope

Data distribution setting that provides locking across the cluster for load, create, put, invalidate, and
destroy operations on the region and its entries. This scope is the slowest, but it guarantees
consistency across the cluster.

global transaction

A JTA-controlled transaction in which multiple resources, such as the VMware GemFire cache and
a JDBC database connection, participate. JTA coordinates the completion of the transaction with

VMware GemFire 9.10 Documentation

VMware by Broadcom 1270

each of the transaction’s resources. See also JTA and cache transaction.

HTTP

World Wide Web’s Hypertext Transfer Protocol. A standard protocol used to request and transmit
information over the Internet or other computer network.

idle timeout

The amount of time a region or region entry may remain in the cache without being accessed
before being expired. Access to an entry includes any get operation and any operation that resets
the entry’s time-to-live counter. Region access includes any operation that resets an entry idle
timeout and any operation that resets the region’s time-to-live.

Idle timeout attributes are set at the region level for the region and at the entry level for entries.
See also time-to-live and expiration action.

initial capacity

Region attribute. The initial capacity of the map used for storing region entries.

invalid

The state of an object when the cache holding it does not have the current value of the object.

invalidate

Distributed: To mark an object as being invalid across the distributed cache.

Local: To mark an object as being invalid in the local cache only.

JDBC

Java DataBase Connectivity. A programming interface that lets Java applications access a database
via the SQL language.

JMX

Java Management eXtensions. A set of specifications for dynamic application and network
management in the J2EE development and application environment.

JNDI

Java Naming and Directory Interface. An interface to naming and directory services for Java
applications. Applications can use JNDI to locate data sources, such as databases to use in global
transactions. VMware GemFire allows its JNDI to be configured in a cache.xml configuration file.

JTA

VMware GemFire 9.10 Documentation

VMware by Broadcom 1271

Java Transaction API. The local Java interfaces between a transaction manager (JTS) and the
parties involved in a global transaction. VMware GemFire can be a member of a JTA global
transaction. See also global transaction.

JVM

Java Virtual Machine. A virtual machine capable of handling Java bytecode.

key constraint

Enforcing a specific entry key type. The key-constraint region attribute, when set, constrains the
entries in the region to keys of the specified object type.

listener

An event handler. The listener registers its interest in one or more events, such as region entry
updates, and is notified when the events occur.

load factor

Region attribute. The load factor of the map used for storing entries.

local

Local cache: The part of the distributed cache that is resident in the current member’s memory.
This term is used to differentiate the cache where a specific operation is being performed from
other caches in the same cluster or in another cluster. See also remote.

Region with local scope: A region whose scope is set to local. This type of region does not
distribute anything with other members in the cluster.

Region shortcuts: In the RegionShortcut and settings, LOCAL means the scope is set to local. All
client regions have local scope. In the ClientRegionShortcut settings, LOCAL means the region
does not connect to the client’s servers.

local scope

Data distribution setting that keeps data private and visible only to threads running within the local
member. A region with local scope is completely contained in the local cache. Client regions are
automatically given local scope.

locator

VMware GemFire process that tracks system members and provides current membership
information to joining members so they can establish communication. For server systems, the
locator also tracks servers and server load and, when a client requests a server connection, the
locator sends the client to one of the least loaded servers. .

VMware GemFire 9.10 Documentation

VMware by Broadcom 1272

LRU

Least recently used. Used to refer to region entry or entries most eligible for eviction due to lack of
interest by client applications. VMware GemFire offers eviction controllers that use the LRU status
of a region’s entries to determine which to evict to free up space. Possible eviction actions are local
destroy and overflow. See also resource manager.

machine

Any VMware GemFire-supported physical machine or Virtual Machine.

member

A process that has defined a connection to a VMware GemFire cluster and created a VMware
GemFire cache. This can be a Java or Native Client application. This can also be a VMware GemFire
process such as a locator or cacheserver. The minimal VMware GemFire process configuration is a
single member that is connected to a cluster.

message queue

A first-in, first-out data structure in a VMware GemFire system member that stores messages for
distribution in the same order that the original operations happened in the local member. Each
thread has its own queue. Depending on the kind of queue, the messages could be going between
two members of a cluster, a client and server, or two members in different clusters. See also
conflation.

mirroring

See replicate.

multicast

A form of UDP communications where a datagram is sent to multiple processes in one network
operation.

named region attributes

Region attributes that are stored in the member memory and can be retrieved through their region
attributes refid setting. VMware GemFire provides standard predefined named region attributes,
that are stored using region shortcut refids. You can use any stored attributes that you wish,
setting an id when you create them and using the id setting in the refid you want to use to retrieve
them.

netLoad

The method used by VMware GemFire to load an entry value into a distributed region. The
netLoad operation invokes all remote cache loaders defined for the region until either the entry
value is successfully loaded or all loaders have been tried.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1273

netSearch

The method used by VMware GemFire to search remote caches for a data entry that is not found
in the member’s local cache region. This method operates only on distributed regions with a data-
policy of empty, normal and preloaded.

netWrite

The method used by VMware GemFire to invoke a cache writer for region and region entry events.
This method operates only on distributed regions. For each event, if any cache writer is defined for
the region, the netWrite operation invokes exactly one of them.

network partitioning

A situation that arises from a communications partition that causes processes to become unaware
of one another.

OQL

Object Query Language, SQL-92 extended for querying object data. VMware GemFire supports a
subset of OQL.

off-heap memory

Memory that is not on the standard Java heap and that is not managed by the JVM and its garbage
collector.

overflow

Eviction option for eviction controllers. This causes the values of LRU entries to be moved to disk
when the region reaches capacity. Writes are performed according to the cache disk-store
configuration.

oplog / operation log

The files in a disk-store used for the cache operations.

partition

The memory in each member that is reserved for a specific partitioned region’s use.

partitioned region

A region that manages large volumes of data by partitioning it into manageable chunks and
distributing it across multiple machines. Defining partition attributes or setting the region attribute
data-policy to partition makes the region a partitioned region.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1274

peer

A VMware GemFire member application that is not configured as a client. Peer configuration uses
the <cache> cache.xml element and the Cache API. Peers can also be configured as servers to
client applications and as gateway-receivers or gateway-senders to remote clusters.

persistent region

A region with the attribute data-policy set to persistent-replicate.

persistent-partition

A region attribute setting identifying a region as a partitioned region whose data is persisted to
disk. With persistence, all region entry keys and values are stored in an operation log on disk as well
as being stored in memory. Also referred to as disk region. Writes are performed according to the
cache disk-store configuration.

persistent-replicate

A region attribute setting identifying a region as a replicate whose data is persisted to disk. With
persistence, all region entry keys and values are stored in an operation log on disk as well as being
stored in memory. Also referred to as disk region. Writes are performed according to the cache
disk-store configuration.

producer

A VMware GemFire member process that puts data into the cache for consumption by other
members. Producers may be configured with empty regions, where the data they put into the
cache is not stored locally, but causes cache update events to be sent to other members. This is a
common configuration in peer members and for client processes. See consumer.

pull model

Data distribution model where each process receives updates only for the data in which the
process has explicitly expressed interest. In a VMware GemFire peer member, this is accomplished
using a distributed, non-replicated region and creating the data entries that are of interest in the
local region. When updates happen for the region in remote caches, the only updates that are
forwarded to the local cache are those for entries that are already defined in the local cache. In a
VMware GemFire client, you get pull behavior by specifically subscribing to the entries of interest.
See push model.

push model

Data distribution model where each process receives updates for everything in the data set. In a
VMware GemFire peer member, this is accomplished using a replicated region. All data
modifications, creations, and deletes in remote caches are pushed to the replicated region. In a
VMware GemFire client, you get push behavior by registering interest in all keys in the region. See
pull model.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1275

query string

A fully-formed SQL statement that can be passed to a query engine and executed against a data
set. A query string may or may not contain a SELECT statement.

race condition

Anomalous behavior caused by the unexpected dependence on the relative timing of events. Race
conditions often result from incorrect assumptions about possible ordering of events.

range-index

An XPath index optimized for range-queries with the added index maintenance expense of sorting
the set of values. A range index allows faster retrieval of the set of nodes with values in a certain
range. See also structure-index and value-index.

region

A logical grouping of data within a cache. Regions usually contain data entries (see entry). Each
region has a set of region attributes governing activities such as expiration, distribution, data
loading, events, and capacity control. In addition, a region can have an application-defined user
attribute.

region attributes

The class of attributes governing the creation, distribution, and management of a region and its
entries.

region data

All of the entries directly contained in the region.

region entry

See entry.

region shortcut

Enums RegionShortcut and ClientRegionShortcut defining the main region types in VMware
GemFire for peers/servers and clients, respectively. Region shortcuts are predefined named region
attributes.

remote

Resident or running in a cache other than the current member’s cache, but connected to the
current member’s cache through VMware GemFire. For example, if a member does not have a
data entry in the region in its local cache, it can do a netSearch in an attempt to retrieve the entry
from the region in a remote cache within the same cluster. Or, if the member is a client, it can send

VMware GemFire 9.10 Documentation

VMware by Broadcom 1276

a request to a server in an attempt to retrieve the entry from the region in a remote server cache
in the server’s cluster. In multi-site installations, a gateway sends events from the local cache to
remote caches in other clusters. See also local.

replicated region

A region with data-policy set to replicate or persistent-replicate.

replicate

Region data-policy specification indicating to copy all distributed region data into the local cache at
region creation time and to keep the local cache consistent with the distributed region data.

resource manager

VMware GemFire process that works with your JVM’s tenured garbage collection (GC) to control
heap use and protect your JVM from hangs and crashes due to memory overload. The manager
prevents the cache from consuming too much memory by evicting old data and, if the collector is
unable to keep up, by refusing additions to the cache until the collector has freed an adequate
amount of memory. Eviction is done for regions configured for LRU eviction based on heap
percentage. See also LRU and eviction-attributes.

rollback

A transactional operation that excludes a transaction’s changes from the cache, leaving the cache
undisturbed.

scope

Region attribute: In non-partitioned regions, a distribution property for data identifying whether it is
distributed and, if so, whether distribution acknowledgements are required and whether distributed
synchronization is required. A distributed region’s cache loader and cache writer (defined in the
local cache) can be invoked for operations originating in remote caches. A region that is not
distributed has a local scope. See also replicate.

Querying: The data context for the part of the query currently under evaluation. The expressions in
a SELECT statement’s FROM clause can add to the data that is in scope in the query.

SELECT statement

A statement of the form SELECT projection_list FROM expressions WHERE expressions that can
be passed to the query engine, parsed, and executed against data in the local cache.

serialization

The process of converting an object or object graph to a stream of bytes.

server

VMware GemFire 9.10 Documentation

VMware by Broadcom 1277

A VMware GemFire member application that is configured as a peer in its own system and as a
server to connecting VMware GemFire client applications.

server group

An optional logical grouping of servers in a server clusters. There is always the default server group
made up of all available server in the server clusters. Clients can specify the server group in their
server pool configuration. Then the pool only connects to those servers. If no group is specified,
the default is used.

server connection pool

The cache entity that manages client connections to servers.

socket

The application interface for TCP/IP communications. UDP provides unicast and multicast datagram
sockets, while TCP provides server and connection sockets. TCP server sockets are used by server
processes to create connection sockets between the server and a client.

SQL

Structured Query Language.

SSL

Secure Socket Layer. A protocol for secure communication between Java VMs.

standalone distributed system

A cluster configured for no communication with peers. Client applications are generally defined
with standalone clusters, so there is no peer communication and all event and data communication
is done between the client member and the server tier.

statistics enabled

Region attribute. Specifies whether to collect statistics for the region.

struct

A data type that has a fixed number of elements, each of which has a field name and can contain an
object value.

structure-index

An XPath index that is basically a pre-computed query. Any legal XPath expression can be used.
The index maintains lists of all nodes that match the expression used to create it. If a query is

VMware GemFire 9.10 Documentation

VMware by Broadcom 1278

performed that has the same expression as the index then the result is available without XPath
evaluation. See also range-index and value-index.

system member

See member.

TCP

The Transmission Control Protocol is a part of the internet protocol (IP) suite that provides unicast
communications with guaranteed delivery. The TCP protocol is connection-based, meaning that a
TCP socket can only be used to send messages between one pair of processes at a time. Compare
to UDP.

timeout

A behavior associated with synchronization functions. Timeout behavior is exhibited as refusal to
wait longer than a specified time for a signal to proceed. See also blocking.

time-to-live

The amount of time a region or region entry may remain in the cache without being modified
before being expired. Entry modification includes creation, update, and removal. Region
modification includes creation, update, or removal of the region or of any of its entries.

Time-to-live attributes are set at the region level for the region and at the entry level for entries.
See also idle timeout and expiration action.

transaction

See cache transaction and global transaction.

transaction listener

User-implemented plug-in for receiving and handling transaction events. A transaction listener is
called after a transaction commits. See also transaction writer.

transaction writer

User-implemented plug-in intended for synchronizing the cache with an outside data source. A
transaction writer is a synchronous listener to cache transactions. The transaction writer has the
ability to veto a transaction. See also transaction listener.

transactional view

The result of a history of transactional operations for a given open transaction.

transport layer

VMware GemFire 9.10 Documentation

VMware by Broadcom 1279

The network used to connect the VMware GemFire system members in a VMware GemFire
system.

TTL

See time-to-live.

UDP

The User Datagram Protocol is a part of the internet protocol (IP) suite that provides simple,
unreliable transmission of datagram messages from one process to another. Reliability must be
implemented by applications using UDP. The UDP protocol is connectionless, meaning that the
same UDP socket can be used to send or receive messages to or from more than one process.
Compare to TCP.

unicast

A message sent from one process to another process (point-to-point communications). Both UDP
and TCP provide unicast messaging.

URI

Uniform Resource Identifier. A unique identifier for abstract or physical resources on the World
Wide Web.

user attribute

An optional object associated with a region or a data entry where an application can store data
about the region or entry. The data is accessed by the application only. VMware GemFire does not
use these attributes. Compare to region attributes, which are used by VMware GemFire.

value constraint

Enforcing a specific entry value type. The value-constraint region attribute, when set, constrains
the entries in the region to values of the specified object type. Value constraints can be used to
provide object typing for region querying and indexing. The value-constraint is only checked in the
cache that does the entry put or create operation. When the entry is distributed to other caches,
the value constraint is not checked.

value-index

An XPath index that operates much as a structure-index does, but that separates the nodes that
match the XPath expression into sets mapped by each node’s value. This allows further filtering of
the nodes to be evaluated in a query by going directly to those with a specific value. See also
structure-index and range-index.

view

VMware GemFire 9.10 Documentation

VMware by Broadcom 1280

A collection of member identifiers that defines the membership group.

Virtual Machine

A completely isolated operating system installation within your normal operating system. This is
generally implemented by software emulation or hardware virtualization.

VMware virtual machine

Also referred to as a VMware VM. A VMware VM is a tightly isolated software container that can
run its own operating systems and applications as if it were a physical computer. A VMware VM
behaves exactly like a physical computer and contains it own virtual (ie, software-based) CPU, RAM
hard disk and network interface card (NIC). An operating system can’t tell the difference between a
VMware VM and a physical machine, nor can applications or other computers on a network. Even
the VMware VM thinks it is a “real” computer. Nevertheless, a VMware VM is composed entirely of
software and contains no hardware components whatsoever.

XML

EXtensible Markup Language. An open standard for describing data, XML is a markup language
similar to HTML. Both are designed to describe and transform data, but where HTML uses
predefined tags, XML allows tags to be defined inside the XML document itself. Thus, virtually any
data item can be identified. The XML programmer creates and implements data-appropriate tags
whose syntax is defined in a DTD file or an XSD (XML schema definition.)

XML schema definition

The definition of the structure, content, and semantics used in an XML document. The definition
can be used to verify that each item of content in a document adheres to the specification of the
element in which the content is placed. The XML schema is a superset of DTD. Unlike DTD, XML
schemas are written in XML syntax, which, although more verbose than DTD, are more descriptive
and can have stronger typing. Files containing XML schema definitions generally have the XSD
extension.

XPath

A language that describes a way to locate and process items in Extensible Markup Language (XML)
documents by using an addressing syntax based on a path through the document’s logical structure
or hierarchy.

XSD

See XML schema definition.

VMware GemFire 9.10 Documentation

VMware by Broadcom 1281

	Contents
	VMware GemFire® 9.10 Documentation
	VMware GemFire 9.10
	API Reference Documentation
	Documentation of Related Products

	VMware GemFire® 9.10 Documentation
	VMware GemFire 9.10
	API Reference Documentation
	Documentation of Related Products

	VMware GemFire 9.10 Release Notes
	What’s New in VMware GemFire 9.10.18
	What’s New in VMware GemFire 9.10.17
	What’s New in VMware GemFire 9.10.16
	What’s New in VMware GemFire 9.10.15
	What’s New in VMware GemFire 9.10.14
	What’s New in VMware GemFire 9.10.13
	What’s New in VMware GemFire 9.10.12
	What’s New in VMware GemFire 9.10.11
	What’s New in VMware GemFire 9.10.10
	What’s New in VMware GemFire 9.10.9
	What’s New in VMware GemFire 9.10.8
	What’s New in VMware GemFire 9.10.7
	What’s New in VMware GemFire 9.10
	Installing VMware GemFire 9.10
	Upgrading to VMware GemFire 9.10
	Upgrading to Version 9.10.6
	Upgrading from a Version prior to 9.1.1

	Resolved Issues
	Issues Resolved in VMware GemFire 9.10.18
	Issues Resolved in VMware GemFire 9.10.17
	Issues Resolved in VMware GemFire 9.10.16
	Issues Resolved in VMware GemFire 9.10.15
	Issues Resolved in VMware GemFire 9.10.14
	Issues Resolved in VMware GemFire 9.10.13
	Issues Resolved in VMware GemFire 9.10.12
	Issues Resolved in VMware GemFire 9.10.11
	Issues Resolved in VMware GemFire 9.10.10
	Issues Resolved in VMware GemFire 9.10.9
	Issues Resolved in VMware GemFire 9.10.8
	Issues Resolved in VMware GemFire 9.10.7
	Issues Resolved in VMware GemFire 9.10.6
	Issues Resolved in VMware GemFire 9.10.5
	Issues Resolved in VMware GemFire 9.10.4
	Issues Resolved in VMware GemFire 9.10.3
	Issues Resolved in VMware GemFire 9.10.2
	Issues Resolved in VMware GemFire 9.10.1
	Issues Resolved in VMware GemFire 9.10

	Support
	Obtaining and Installing Security Updates

	Supported Configurations and System Requirements
	Tanzu GemFire Supported Configurations
	Supported Platforms
	Java Support Notes
	File System Type for Linux Platforms

	Host Machine Requirements
	Getting Started with VMware GemFire
	About VMware GemFire
	Main Concepts and Components

	Main Features
	High Read-and-Write Throughput
	Low and Predictable Latency
	High Scalability
	Continuous Availability
	Reliable Event Notifications
	Parallelized Application Behavior on Data Stores
	Shared-Nothing Disk Persistence
	Reduced Cost of Ownership
	Single-Hop Capability for Client/Server
	Client/Server Security
	Multisite Data Distribution
	Continuous Querying
	Heterogeneous Data Sharing

	Installing VMware GemFire
	Obtaining and Installing Security Updates

	Windows/Unix/Linux—Install VMware Tanzu GemFire from a Compressed TAR File
	Prerequisites
	Procedure

	Obtaining Pivotal GemFire from a Maven Repository
	Setting Up the CLASSPATH
	Modifying the CLASSPATH in gfsh-Managed Processes
	Setting the CLASSPATH for Applications and Standalone Java Processes

	Uninstalling GemFire
	Upgrading VMware GemFire
	Upgrade Details

	Planning an Upgrade
	Guidelines for Upgrading
	Version Compatibilities
	Upgrade to the Latest Version 9 from an Earlier Version 9
	Upgrade to Version 9 from Version 8.2.3 or a More Recent 8.2 Version
	Upgrade to Version 9 from Version 8.2.2 or an Earlier Version
	Upgrade a Multi-Site System to Version 9 from Version 8.2.3 or Later
	Java Notes

	Rolling Upgrade
	Rolling Upgrade Limitations and Requirements
	Rolling Upgrade Guidelines
	Rolling Upgrade Procedure
	Upgrade Locators
	Upgrade Servers
	Upgrade Clients

	Offline Upgrade
	Offline Upgrade Guidelines
	Offline Upgrade Procedure

	Upgrading Clients
	Remove or Replace Obsolete Identifiers
	Rename Packages
	Reinstate Secure Client/Server Messaging After Upgrading

	Upgrade from Version 8.2 to Version 9
	General Upgrade Steps
	Java Notes
	RHEL/Centos: with previous installation via RPM
	Ubuntu: with previous installation via Debian packaging
	Package Renaming
	The Upgrade Procedure, Step by Step

	Multi-site Upgrade from Version 8.2 to Version 9
	Pivotal GemFire in 15 Minutes or Less
	Step 1. Install Pivotal GemFire
	Step 2. Use gfsh to start a locator
	Step 3. Start GemFire Pulse
	Step 4. Start a server
	Step 5. Create a replicated, persistent region
	Step 6. Manipulate data in the region and demonstrate persistence
	Step 7. Examine the effects of replication
	Step 8. Restart the cache servers in parallel
	Step 9. Shut down the system including your locators
	Step 10. What to do next…

	Configuring and Running a Cluster
	Overview of the Cluster Configuration Service
	Why Use the Cluster Configuration Service
	Using the Cluster Configuration Service
	How the Cluster Configuration Service Works
	gfsh Commands that Create Cluster Configurations
	gfsh Limitations
	Deactivating the Cluster Configuration Service

	Tutorial—Creating and Using a Cluster Configuration
	Deploying Application JARs to VMware GemFire Members
	Deployment Location for JAR Files
	About Deploying JAR Files and the Cluster Configuration Service
	Versioning of JAR Files
	Automatic Class Path Loading
	Automatic Function Registration

	Using Member Groups
	Exporting and Importing Cluster Configurations
	Exporting a Cluster Configuration
	Importing a Cluster Configuration

	Cluster Configuration Files and Troubleshooting
	Troubleshooting Tips

	Sizing a GemFire Cluster
	Overview
	Resource Considerations
	Experimentation and Testing
	Requirements and Assumptions
	Architectural and Design Considerations
	Serialization
	Per-entry Memory Overhead
	Partitioned Region Scalability
	Redundancy
	Relationship Between Horizontal and Vertical Scale
	NUMA Considerations

	GemFire Queues

	Sizing Process
	Step 1: Domain object sizing
	Step 2: Estimating total memory and system requirements
	Step 3: Vertical Sizing
	Locator Sizing
	Notes on GC

	Step 4: Scale-out Validation
	Step 5: Projection to Full Scale

	Sizing Quick Reference

	Using gfsh to Manage a Remote Cluster Over HTTP or HTTPS
	Deploying Configuration Files without the Cluster Configuration Service
	Main Steps to Deploying Configuration Files
	VMware GemFire Configuration Files

	Default File Specifications and Search Locations
	Changing the File Specifications
	Deploying Configuration Files in JAR Files
	Starting Up and Shutting Down Your System
	Starting Up Your System
	Starting Up After Losing Data on Disk
	Shutting Down the System
	Using the shutdown Command
	Shutting Down System Members Individually
	Option for System Member Shutdown Behavior

	Running VMware GemFire Locator Processes
	Locator Configuration and Log Files
	Locators and the Cluster Configuration Service
	Start the Locator
	Check Locator Status
	Stop the Locator
	Locators and Multi-Site (WAN) Deployments

	Running VMware GemFire Server Processes
	Default Server Configuration and Log Files
	Start the Server with gfsh
	Start the Server Programmatically
	Check Server Status
	Stop Server

	Managing System Output Files
	Firewall Considerations
	Firewalls and Connections
	Firewalls and Ports
	Limiting Ephemeral Ports for Peer-to-Peer Membership
	Properties for Firewall and Port Configuration
	Default Port Configurations
	Properties for Firewall and Port Configuration in Multi-Site (WAN) Configurations

	Basic Configuration and Programming
	Cluster and Cache Configuration
	Cluster Members
	Member Overview
	Membership and System Topologies
	Multi-site Installations

	Setting Properties
	Options for Configuring the Cache and Data Regions
	Local and Remote Membership and Caching
	Cache Management
	Introduction to Cache Management
	The Caching APIs
	The Cache XML
	Create and Close a Cache
	Export and Import a Cache Snapshot
	Cache Management with gfsh and the Cluster Configuration Service

	Managing a Peer or Server Cache
	Managing a Client Cache
	Managing a Cache in a Secure System
	Managing RegionServices for Multiple Secure Users
	Requirements and Caveats for RegionService

	Launching an Application after Initializing the Cache
	Data Regions
	Region Management
	Creating a Region
	Creating a Region with gfsh
	Creating a Region Through the cache.xml File
	cache.xml File Examples
	Creating a Region Through the API
	API Examples
	Create and Access Data Subregions
	Update the Configuration of Data Regions
	Invalidate a Region
	Clear a Region
	Destroy a Region
	Close a Region

	Region Naming
	Region Shortcuts and Custom Named Region Attributes
	Shortcut Attribute Options
	RegionShortcuts for Peers and Servers
	ClientRegionShortcuts for Clients

	Storing and Retrieving Region Shortcuts and Custom Named Region Attributes
	Examples

	Managing Region Attributes
	Define Region Attributes
	Modify Region Attributes

	Creating Custom Attributes for Regions and Entries
	Limitations and Alternatives

	Building a New Region with Existing Content
	Data Entries
	Managing Data Entries
	Keys
	Create and Update Entries
	The getAll Operation
	The putAll Operation
	The removeAll Operation
	Retrieving Region Entries from Proxy Members
	Using gfsh to get and put

	Copy on Read Behavior
	Requirements for Using Custom Classes in Data Caching
	CLASSPATH
	Data Serialization
	Classes Used as Keys

	Topologies and Communication
	Topology and Communication General Concepts
	Topology Types
	Peer-to-Peer Configuration
	Client/Server Configuration
	Multi-site Configuration

	Planning Topology and Communication
	Determine Protocols and Addresses
	Set Up Membership and Communication

	How Member Discovery Works
	Peer Member Discovery
	Standalone Member
	Client Discovery of Servers
	Multi-site Discovery

	How Communication Works
	TCP
	UDP Unicast and Multicast
	UDP Unicast
	UDP Multicast

	Using Bind Addresses
	Peer and Server Communication
	Gateway Receiver Communication
	Locator Communication

	Choosing Between IPv4 and IPv6
	Peer-to-Peer Configuration
	Configuring Peer-to-Peer Discovery
	Configuring Peer Communication
	Organizing Peers into Logical Member Groups
	Client/Server Configuration
	Standard Client/Server Deployment
	How Server Discovery Works
	Basic Configuration
	Using Member Groups

	How Client/Server Connections Work
	How the Pool Chooses a Server Connection
	How the Pool Connects to a Server
	How the Pool Manages Pool Connections
	How the Pool Manages Subscription Connections
	How the Pool Conditions Server Load

	Configuring a Client/Server System
	Organizing Servers Into Logical Member Groups
	Client/Server Example Configurations
	Examples of Standard Client/Server Configuration
	Example—Standalone Publisher Client, Client Pool, and Region
	Example—Standalone Subscriber Client
	Example of a Static Server List in Client/Server Configuration

	Fine-Tuning Your Client/Server Configuration
	How Server Load Conditioning Works

	Multi-site (WAN) Configuration
	How Multi-site (WAN) Systems Work
	Multi-site (WAN) Topologies
	Fully Connected Mesh Topology
	Ring Topology
	Hybrid Multi-site Topology
	Unsupported Topologies

	Configuring a Multi-site (WAN) System
	Prerequisites
	Main Steps
	Configure Gateway Senders
	Create Data Regions for Multi-site Communication
	Configure Gateway Receivers
	Configuring One IP Address and Port to Access All Gateway Receivers in a Site

	Filtering Events for Multi-Site (WAN) Distribution
	Configuring Multi-Site Event Filters

	Resolving Conflicting Events
	Implementing a GatewayConflictResolver

	Managing VMware GemFire
	VMware GemFire Management and Monitoring
	Management and Monitoring Features
	References

	Overview of VMware GemFire Management and Monitoring Tools
	gfsh Command-line tool
	Executing gfsh commands with the management API
	Member Configuration Management
	Java Management Extension (JMX) MBeans
	VMware GemFire Java API
	VMware GemFire Pulse
	JConsole

	Architecture and Components
	Architecture
	Managed Node
	JMX Manager Node
	JMX Integration
	Management APIs
	VMware GemFire Management and Monitoring Tools

	Starting a JMX Manager
	Configuring a JMX Manager
	Stopping a JMX Manager

	Federated MBean Architecture
	Federation of VMware GemFire MBeans and MBeanServers
	MBean Proxy Naming Conventions
	Use of MXBeans
	MBean Proxy Creation

	List of VMware GemFire JMX MBeans
	JMX Manager MBeans
	ManagerMXBean
	DistributedSystemMXBean
	DistributedRegionMXBean
	DistributedLockServiceMXBean
	Managed Node MBeans
	MemberMXBean
	CacheServerMXBean
	RegionMXBean
	LockServiceMXBean
	DiskStoreMXBean
	AsyncEventQueueMXBean
	LocatorMXBean
	LuceneServiceMXBean
	GatewaySenderMXBean
	GatewayReceiverMXBean

	Browsing VMware GemFire MBeans through JConsole
	VMware GemFire JMX MBean Notifications
	Notification Federation
	Attaching Listeners to MXBeans
	System Alert Notifications

	List of JMX MBean Notifications
	MemberMXBean Notifications
	MemberMXBean Gateway Notifications
	CacheServerMXBean Notifications
	DistributedSystemMXBean Notifications

	Configuring RMI Registry Ports and RMI Connectors
	Configuring JMX Manager Port and Bind Addresses
	Using Out-of-the-Box RMI Connectors

	Executing gfsh Commands through the Management API
	Managing Heap and Off-heap Memory
	Tuning the JVM’s Garbage Collection Parameters
	Using the VMware GemFire Resource Manager
	How Background Eviction Is Performed
	Controlling Heap Use with the Resource Manager
	Configure VMware GemFire for Heap LRU Management
	Set the JVM GC Tuning Parameters
	Monitor and Tune Heap LRU Configurations
	Resource Manager Example Configurations
	Use Case for the Example Code

	Managing Off-Heap Memory
	On-heap and Off-heap Objects
	Off-heap Recommendations
	Implementation Details
	Controlling Off-heap Use with the Resource Manager
	Specifying Off-heap Memory
	gfsh Off-heap Support
	ResourceManager API
	Tuning Off-heap Memory Usage

	Locking Memory (Linux Systems Only)
	Disk Storage
	How Disk Stores Work
	What VMware GemFire Writes to the Disk Store
	Disk Store State

	Disk Store File Names and Extensions
	File Names
	File Extensions

	Disk Store Operation Logs
	When Disk Store Oplogs Reach the Configured Disk Capacity

	Configuring Disk Stores
	Designing and Configuring Disk Stores
	Design Your Disk Stores
	Create and Configure Your Disk Stores
	Modifying Disk Stores
	Configuring Regions, Queues, and PDX Serialization to Use the Disk Stores
	Configuring Disk Stores on Gateway Senders

	Disk Store Configuration Parameters
	Disk Store Configuration Attributes and Elements
	disk-dirs Element

	Modifying the Default Disk Store
	Change the Behavior of the Default Disk Store

	Optimizing a System with Disk Stores
	Start Up and Shut Down with Disk Stores
	Start Up
	Start Up Procedure
	Example Startup to Illustrate Ordering
	Shutdown

	Disk Store Management
	Disk Store Management Commands and Operations
	Online Disk Store Operations
	Offline Disk Store Operations

	Validating a Disk Store
	Running Compaction on Disk Store Log Files
	Log File Compaction for the Online Disk Store
	Run Online Compaction
	Run Offline Compaction
	Performance Benefits of Manual Compaction
	Directory Size Limits
	Example Compaction Run

	Keeping a Disk Store Synchronized with the Cache
	Change Region Configuration
	Take a Region Out of Your Cache Configuration and Disk Store

	Configuring Disk Free Space Monitoring
	Handling Missing Disk Stores
	Show Missing Disk Stores
	Revoke Missing Disk Stores

	Altering When Buffers Are Flushed to Disk
	Modifying Disk Flushes for the Operating System
	Modifying VMware GemFire to Flush Buffers on Disk Writes

	Creating Backups for System Recovery and Operational Management
	Making a Backup While the System Is Online
	What a Full Online Backup Saves
	What an Incremental Online Backup Saves
	Disk Store Backup Directory Structure and Contents
	Offline Members—Manual Catch-Up to an Online Backup
	Restore Using a Backup Made While the System Was Online

	Cache and Region Snapshots
	Usage and Performance Notes
	Cache Consistency and Concurrent Operations
	Performance Considerations

	Exporting Cache and Region Snapshots
	Exporting Cache Snapshots
	Exporting a Region Snapshot
	Export Example with Options

	Importing Cache and Region Snapshots
	Import Requirements
	Import Limitations
	Importing Cache Snapshots
	Importing a Region Snapshot

	Filtering Entries During Import or Export
	Reading Snapshots Programmatically
	Region Compression
	What Gets Compressed
	Guidelines on Using Compression
	How to Enable Compression in a Region
	How to Check Whether Compression is Enabled
	Working with Compressors
	Changing the Compressor for an Already Compressed Region
	Comparing Performance of Compressed and Non-Compressed Regions
	Monitoring Compression Performance

	Network Partitioning
	How Network Partitioning Management Works
	Failure Detection and Membership Views
	Failure Detection
	Membership Views

	Membership Coordinators, Lead Members and Member Weighting
	Membership Coordinators and Lead Members
	Member Weighting System
	Sample Member Weight Calculations

	Network Partitioning Scenarios
	What the Losing Side Does
	What Isolated Members Do

	Configure VMware GemFire to Handle Network Partitioning
	Preventing Network Partitions
	Security
	Security Implementation Introduction and Overview
	Security Features
	Overview

	Security Detail Considerations
	External Interfaces, Ports, and Services
	Resources That Must Be Protected
	Log File Locations

	Where to Place Security Configuration Settings
	Enable Security with Property Definitions
	security-manager Property
	Apply security-manager to All Members
	Is Cluster Management Enabled?
	Apply security-manager to Non-participating Servers
	Callbacks

	security-post-processor Property

	Authentication
	Implementing Authentication
	How Authentication Works
	How a Server Sets Its Credential
	How a Client Cache Sets Its Credential
	How Other Components Set Their Credentials
	Implement SecurityManager Interface

	Authentication Example
	Authorization
	Implementing Authorization
	How Authorization Works
	Resource Permissions
	Implement Authorization
	Authorization of Function Execution
	Authorization of Methods Invoked from Queries

	Method Invocation Authorizers
	Overview
	VMware GemFire Authorizers
	RestrictedMethodAuthorizer
	UnrestrictedMethodAuthorizer
	JavaBeanAccessorMethodAuthorizer
	RegExMethodAuthorizer

	Custom Authorizers
	How Authorization Works
	Implementing a Method Authorizer

	Changing the Method Authorizer

	Authorization Example
	Disclaimer
	User Authorization Example
	Method Invocation Authorization Example

	Post Processing of Region Data
	Implement Post Processing

	SSL
	Configuring SSL
	SSL-Configurable Components
	SSL Configuration Properties
	Example: secure communications throughout
	Example: non-secure cluster communications, secure client/server

	SSL Property Reference Tables
	Procedure

	SSL Sample Implementation
	Provider-Specific Configuration File
	gemfire.properties File
	gfsecurity.properties File
	Locator Startup
	Other Member Startup
	Connecting to a Running Cluster

	Performance Tuning and Configuration
	Improving Performance on vSphere
	Operating System Guidelines
	NUMA, CPU, and BIOS Settings
	Physical and Virtual NIC Settings
	VMware vSphere vMotion and DRS Cluster Usage
	Placement and Organization of Virtual Machines
	Virtual Machine Memory Reservation
	vSphere High Availability and VMware GemFire
	Storage Guidelines
	Additional Resources

	Performance Controls
	Data Serialization
	Setting Cache Timeouts
	Controlling Socket Use
	Management of Slow Receivers
	Increasing the Ratio of Cache Hits
	System Member Performance
	Member Properties
	JVM Memory Settings and System Performance
	Garbage Collection and System Performance
	Slow Receivers with TCP/IP
	Preventing Slow Receivers
	Managing Slow Receivers
	Slow distributed-ack Messages
	Socket Communication
	Setting Socket Buffer Sizes
	Ephemeral TCP Port Limits
	Making Sure You Have Enough Sockets
	Socket Sharing
	Socket Lease Time
	Calculating Connection Requirements
	Peer-to-Peer Socket Requirements Per Member
	Server Socket Requirements Per Server
	Client Socket Requirements per Client

	TCP/IP KeepAlive Configuration
	TCP/IP Peer-to-Peer Handshake Timeouts
	Configuring Sockets in Multi-Site (WAN) Deployments
	Multi-site (WAN) Socket Requirements
	Member produces SocketTimeoutException

	UDP Communication
	UDP Datagram Size
	UDP Flow Control
	UDP Retransmission Statistics

	Multicast Communication
	Provisioning Bandwidth for Multicast
	Testing Multicast Speed Limits
	Configuring Multicast Speed Limits
	Run-time Considerations for Multicast
	Troubleshooting the Multicast Tuning Process
	Maintaining Cache Consistency
	General Guidelines
	Guidelines for Multi-Site Deployments

	Logging
	How VMware GemFire Logging Works
	Understanding Log Messages and Their Categories
	Structure of a Log Message
	Log File Name
	How the System Renames Logs
	Log Level

	Naming, Searching, and Creating Log Files
	Log File Naming Recommendation
	Searching the Log Files
	Creating Your Own Log Messages

	Set Up Logging
	Advanced Users—Configuring Log4j 2 for VMware GemFire
	Using Different Front-End Logging APIs to Log to Log4j2
	Customizing Your Own log4j2.xml File

	Statistics
	How Statistics Work
	Transient Region and Entry Statistics
	Application-Defined and Custom Statistics
	Configuring and Using Statistics
	Configure Cluster or Server Statistics
	Configure Transient Region and Entry Statistics
	Configure Custom Statistics
	Controlling the Size of Archive Files

	Viewing Archived Statistics
	Troubleshooting and System Recovery
	Producing Artifacts for Troubleshooting
	Diagnosing System Problems
	Locator does not start
	Application or cache server process does not start
	Application or cache server does not join the cluster
	Member process seems to hang
	Member process does not read settings from the gemfire.properties file
	Cache creation fails - must match schema definition root
	Cache is not configured properly
	Unexpected results for keySetOnServer and containsKeyOnServer
	Data operation returns PartitionOfflineException
	Entries are not being evicted or expired as expected
	Cannot find the log file
	OutOfMemoryError
	PartitionedRegionDistributionException
	PartitionedRegionStorageException
	Application crashes without producing an exception
	Timeout alert
	Member produces SocketTimeoutException
	Member logs ForcedDisconnectException, Cache and DistributedSystem forcibly closed
	Members cannot see each other
	One part of the cluster cannot see another part
	Data distribution has stopped, although member processes are running
	Distributed-ack operations take a very long time to complete
	Slow system performance
	Can’t get Windows performance data
	Java applications on 64-bit platforms hang or use 100% CPU

	System Failure and Recovery
	Planning for Data Recovery
	Network Partitioning, Slow Response, and Member Removal Alerts
	Network Partitioning Detected
	Member Taking Too Long to Respond
	No Locators Can Be Found
	Warning Notifications Before Removal
	Member Is Forced Out

	How Data is Recovered From Persistent Regions

	Handling Forced Cache Disconnection Using Autoreconnect
	How the Autoreconnection Process Works
	Managing the Autoreconnection Process
	Operator Intervention

	Recovering from Application and Cache Server Crashes
	Recovering from Crashes with a Peer-to-Peer Configuration
	Recovery for Partitioned Regions
	Recovery for Distributed Regions
	Recovery for Regions of Local Scope
	Recovering Data from Disk

	Recovering from Crashes with a Client/Server Configuration
	Recovering from Server Failure
	Recovering from Client Failure

	Recovering from Machine Crashes
	Recovery Procedure
	Data Recovery for Partitioned Regions
	Data Recovery for Distributed Regions
	Data Recovery in a Client/Server Configuration

	Recovering from ConfictingPersistentDataExceptions
	Independently Created Copies
	Starting New Members First
	A Network Failure Occurs and Network Partitioning Detection is Disabled
	Salvaging Data

	Preventing and Recovering from Disk Full Errors
	Recovering from Disk Full Errors

	Understanding and Recovering from Network Outages
	What Happens During a Network Outage
	Recovery Procedure
	Effect of Network Failure on Partitioned Regions
	Effect of Network Failure on Distributed Regions
	Effect of Network Failure on Persistent Regions
	Effect of Network Failure on Client/Server Installations

	Log Messages and Solutions
	above heap eviction threshold
	below heap eviction threshold
	above heap critical threshold
	Query execution canceled after exceeding max execution time
	Query execution canceled due to memory threshold crossed in system
	There are <n> stuck threads in this node
	Thread <n> is stuck
	Thread <n> that was executed at <time> has been stuck for <nn> seconds
	Disconnecting old DistributedSystem to prepare for a reconnect attempt
	Attempting to reconnect to the DistributedSystem. This is attempt #n
	Unable to form a TCP/IP connection in a reasonable amount of time
	Received Suspect Message
	<n> Seconds Have Elapsed
	Member isn’t responding to heartbeat requests
	Enabled-network-partition-detection is set to false
	Statistics sampling thread detected a wakeup delay
	Redundancy has dropped below <n> configured copies
	Rejected connection
	PCC service metrics component failing to connect to locator/server
	SSLHandshakeException: <version> is disabled
	Unable To Create New Native Thread
	Too Many Open Files
	CommitConflictException
	Initialization of Region <_B__RegionName_BucketNumber> Completed
	Unknown pdx Type error
	Error calculating expiration
	PdxType limitations for GFSH queries
	Apache.Geode.Client.AllConnectionsInUseException
	org.apache.geode.pdx.PdxInitializationException
	Format of the string <<cache xml file’s content>> used for parameterization is unresolvable
	RegionExistException
	Missing Diskstore Exception
	Could not create an instance of a class
	PartitionedRegion#cleanupFailedInitialization: Failed to clean the PartitionRegion allPartitionedRegions
	Could not find any server to create primary client queue on.
	Cluster configuration service not available
	The secondary map already contained an event from hub null so ignoring new event
	Create is present in more than one Oplog. This should not be possible. The Oplog Key ID for this entry is
	Detected conflicting PDX types during import
	A tenured heap garbage collection has occurred
	Allocating larger network read buffer
	Socket send buffer size is <m> instead of the requested <n>
	quorum has been lost
	possible loss of quorum due to the loss of <n> cache processes
	Membership service failure: Exiting due to possible network partition event due to loss of cache processes
	<member> had a weight of <n>
	An additional Function Execution Processor thread is being launched
	Sending new view
	Received new view
	Admitting member
	Member at <memberIP> unexpectedly left the distributed cache
	Cache server: failed accepting client connection
	Remote host closed connection during handshake
	SSL peer shut down incorrectly
	Function: <functionName> cannot be executed because the members [list of members] are running low on memory
	Region <regionName> bucket <n> has persistent data that is no longer online stored at these locations
	Region has potentially stale data. Buckets [list] are waiting for another offline member

	Developing with VMware GemFire
	Region Data Storage and Distribution
	Storage and Distribution Options
	Peer-to-Peer Region Storage and Distribution
	Storing Data in the Local Cache

	Region Types
	Partitioned Regions
	Replicated Regions
	Distributed, Non-Replicated Regions
	Local Regions

	Region Data Stores and Data Accessors
	Creating Regions Dynamically
	Partitioned Regions
	Understanding Partitioning
	Data Partitioning
	Partitioned Region Operation
	Additional Information About Partitioned Regions

	Configuring Partitioned Regions
	Configuring the Number of Buckets for a Partitioned Region
	Calculate the Total Number of Buckets for a Partitioned Region

	Custom-Partitioning and Colocating Data
	Understanding Custom Partitioning and Data Colocation
	Custom Partitioning
	Data Colocation Between Regions

	Standard Custom Partitioning
	Fixed Custom Partitioning
	Colocate Data from Different Partitioned Regions
	Configuring High Availability for Partitioned Regions
	Understanding High Availability for Partitioned Regions
	Controlling Where Your Primaries and Secondaries Reside
	Running Processes in Virtual Machines
	Reads and Writes in Highly-Available Partitioned Regions

	Configure High Availability for a Partitioned Region
	Set the Number of Redundant Copies
	Configure Redundancy Zones for Members
	Set Enforce Unique Host
	Configure Member Crash Redundancy Recovery for a Partitioned Region
	Configure Member Join Redundancy Recovery for a Partitioned Region
	Configuring Single-Hop Client Access to Server-Partitioned Regions
	Understanding Client Single-Hop Access to Server-Partitioned Regions
	Single Hop and the Pool max-connections Setting
	Balancing Single-Hop Server Connection Use

	Configure Client Single-Hop Access to Server-Partitioned Regions
	Rebalancing Partitioned Region Data
	How Partitioned Region Rebalancing Works
	When to Rebalance a Partitioned Region
	How to Simulate Region Rebalancing
	Automated Rebalancing

	Checking Redundancy in Partitioned Regions
	Moving Partitioned Region Data to Another Member
	Distributed and Replicated Regions
	How Distribution Works
	Options for Region Distribution
	How Replication and Preloading Work
	Initialization of Replicated and Preloaded Regions
	Behavior of Replicated and Preloaded Regions After Initialization

	Configure Distributed, Replicated, and Preloaded Regions
	Local Destroy and Invalidate in the Replicated Region

	Locking in Global Regions
	Lock Timeouts
	Optimize Locking Performance
	Examples

	Consistency for Region Updates
	Consistency Checking by Region Type
	Partitioned Region Consistency
	Replicated Region Consistency
	Non-Replicated Regions and Client Cache Consistency
	Configuring Consistency Checking
	Overhead for Consistency Checks
	How Consistency Checking Works for Replicated Regions
	How Destroy and Clear Operations Are Resolved
	About Region.clear() Operations
	Transactions with Consistent Regions

	How Consistency Is Achieved in WAN Deployments
	General Region Data Management
	Persistence and Overflow
	How Persistence and Overflow Work
	How Data Is Persisted and Overflowed
	Persistence
	Overflow
	Persistence and Overflow Together
	Persistence and Multi-Site Configurations

	Configure Region Persistence and Overflow
	Overflow Configuration Examples
	Eviction
	How Eviction Works
	Eviction Actions
	Eviction in Partitioned Regions

	Configure Data Eviction
	Expiration
	How Expiration Works
	Expiration Types
	Expiration Actions
	Entry Expiration in Replicated Regions and Partitioned Regions
	Interaction Between Expiration Settings and netSearch

	Configure Data Expiration
	Configuring the Number of Threads for Expiration

	Keeping the Cache in Sync with Outside Data Sources
	Overview of Outside Data Sources
	Configuring Database Connections Using JNDI
	Example DataSource Configurations in cache.xml
	XAPooledDataSource cache.xml Example (Derby)
	JNDI Binding Configuration Properties for Different XAPooledDataSource Connections
	ManagedDataSource Connection Example (Derby)
	PooledDataSource Example (Derby)
	SimpleDataSource Connection Example (Derby)

	How Data Loaders Work
	Data Loading in Partitioned Regions
	Data Loading in Distributed Regions
	Data Loading in Local Regions

	Implement a Data Loader
	Implement the CacheLoader Interface
	Configure and Deploy
	Implementing a Server or Peer with a Cache Loader

	Data Serialization
	Overview of Data Serialization
	Data Serialization Options
	Differences between VMware GemFire Serialization (PDX or Data Serializable) and Java Serialization

	VMware GemFire PDX Serialization
	VMware GemFire PDX Serialization Features
	Application Versioning of PDX Domain Objects
	Portability of PDX Serializable Objects
	Reduced Deserialization of Serialized Objects

	High Level Steps for Using PDX Serialization
	PDX and Multi-Site (WAN) Deployments

	Using Automatic Reflection-Based PDX Serialization
	Customizing Serialization with Class Pattern Strings
	Extending the ReflectionBasedAutoSerializer
	Reasons to Extend the ReflectionBasedAutoSerializer
	Overriding ReflectionBasedAutoSerializer Behavior
	Example of Optimizing Autoserialization of BigInteger and BigDecimal Types

	Serializing Your Domain Object with a PdxSerializer
	Implementing PdxSerializable in Your Domain Object
	Programming Your Application to Use PdxInstances
	Adding JSON Documents to the Tanzu GemFire Cache
	Sorting Behavior of Serialized JSON Fields
	Using PdxInstanceFactory to Create PdxInstances
	Enum Objects as PdxInstances

	Persisting PDX Metadata to Disk
	Using PDX Objects as Region Entry Keys
	VMware GemFire Data Serialization (DataSerializable and DataSerializer)
	Data Serialization with the DataSerializable Interface
	Serializing Your Domain Object with DataSerializer

	Standard Java Serialization
	Events and Event Handling
	How Events Work
	Events Features
	Types of Events
	Event Cycle
	Event Objects
	Event Distribution
	Event Handlers and Region Data Storage
	Multiple Listeners
	Event Ordering

	Peer-to-Peer Event Distribution
	Events in a Partitioned Region
	Events in a Distributed Region
	Managing Events in Multi-threaded Applications

	Client-to-Server Event Distribution
	Server-to-Client Event Distribution
	Server-to-Client Message Tracking
	Client Interest Registration on the Server
	Server Failover

	Multi-Site (WAN) Event Distribution
	Queuing Events for Distribution
	Operation Distribution from a Gateway Sender
	How a Gateway Sender Processes Its Queue
	How a Gateway Sender Handles Batch Processing Failure

	List of Event Handlers and Events
	Event Handlers
	Events

	Implementing VMware GemFire Event Handlers
	Implementing Cache Event Handlers
	Installing Multiple Listeners on a Region

	Implementing an AsyncEventListener for Write-Behind Cache Event Handling
	How an AsyncEventListener Works
	Operation Distribution from an AsyncEventQueue
	Guidelines for Using an AsyncEventListener
	Implementing an AsyncEventListener
	Processing AsyncEvents
	Configuring an AsyncEventListener

	How to Safely Modify the Cache from an Event Handler Callback
	Operations to Avoid in Event Handlers
	How to Perform Distributed Operations Based on Events

	Cache Event Handler Examples
	Declaring and Loading an Event Handler with Parameters
	Installing an Event Handler Through the API
	Installing Multiple Listeners on a Region
	Installing a Write-Behind Cache Listener

	Configuring Peer-to-Peer Event Messaging
	Configuring Client/Server Event Messaging
	Configuring Highly Available Servers
	Highly Available Client/Server Event Messaging
	Change Server Queue Synchronization Frequency
	Set Frequency of Orphan Removal from the Secondary Queues

	Implementing Durable Client/Server Messaging
	Configure the Client as Durable
	Configure Durable Subscriptions and Continuous Queries
	Program the Client to Manage Durable Messaging
	Initial Operation
	Disconnection
	Reconnection
	Durable Event Replay
	Application Operations During Interest Registration

	Tuning Client/Server Event Messaging
	Conflate the Server Subscription Queue
	Limit the Server's Subscription Queue Memory Use
	Tune the Client's Subscription Message Tracking Timeout
	Configuring Multi-Site (WAN) Event Queues
	Persisting an Event Queue
	Configuring Dispatcher Threads and Order Policy for Event Distribution
	Using Multiple Dispatcher Threads to Process a Queue
	Performance and Memory Considerations
	Configuring the Ordering Policy for Serial Queues
	Examples—Configuring Dispatcher Threads and Ordering Policy for a Serial Gateway Sender Queue

	Conflating Events in a Queue
	Examples—Configuring Conflation for a Gateway Sender Queue

	Delta Propagation
	How Delta Propagation Works
	General Characteristics of Delta Propagation
	Supported Topologies and Limitations

	When to Avoid Delta Propagation
	Delta Propagation Properties
	delta-propagation
	cloning-enabled

	Implementing Delta Propagation
	Errors In Delta Propagation
	Delta Propagation Example
	Querying
	Querying FAQ and Examples
	How do I write and execute a query against a VMware GemFire region?
	Can I see query string examples, listed by query type?
	Which APIs should I use to write my queries?
	How do I invoke an object’s method in a query?
	Can I invoke a static method on an object in a query?
	How do I write a reusable query?
	When should I create indexes to use in my queries?
	How do I create an index?
	Can I create indexes on overflow regions?
	Can I query a partitioned region? Can I perform a join query on a partitioned region?
	How can I improve the performance of a partitioned region query?
	Which query language elements are supported in VMware GemFire?
	How do I debug queries?
	Can I use implicit attributes or methods in my query?
	Can I instruct the query engine to use specific indexes with my queries?
	How do I perform a case-insensitive search on a field in OQL?

	Querying with OQL
	Advantages of OQL
	Writing and Executing a Query in VMware GemFire
	Querying a Local Cache
	Querying a Server Cache from a Client

	Building a Query String
	IMPORT Statement
	FROM Clause
	Path Expressions
	Aliases and Synonyms
	Object Typing

	WHERE Clause
	Implementing equals and hashCode Methods
	Querying Serialized Objects
	Attribute Visibility
	Joins
	LIKE
	Case Insensitive Fields
	Method Invocations
	Enum Objects
	IN and SET
	Double.NaN and Float.NaN Comparisons
	Arithmetic Operations

	SELECT Statement
	SELECT Statement Results
	DISTINCT
	LIMIT
	ORDER BY
	Preset Query Functions

	OQL Aggregate Functions
	GROUP BY
	MIN
	MAX
	COUNT
	SUM
	AVG

	OQL Syntax and Semantics
	Supported Character Sets
	Supported Keywords
	Case Sensitivity
	Comments in Query Strings
	Query Language Grammar
	Language Grammar
	Language Notes

	Operators
	Comparison Operators
	Logical Operators
	Unary Operators
	Arithmetic Operators
	Map and Index Operators
	Dot, Right Arrow, and Forward Slash Operators

	Reserved Words
	Reserved Words

	Supported Literals
	The Difference Between NULL and UNDEFINED
	Comparing Values With java.util.Date
	Type Conversion
	Binary Numeric Promotion
	Method Invocation Conversion
	Temporal Type Conversion
	Enum Conversion
	Query Evaulation of Float.NaN and Double.NaN

	Query Language Restrictions and Unsupported Features
	Advanced Querying
	Performance Considerations
	Monitoring Low Memory When Querying
	Partitioned Region Queries and Low Memory

	Timeouts for Long-Running Queries
	Using Query Bind Parameters
	Sample Code
	Using Query Bind Parameters in the Path Expression

	Querying Partitioned Regions
	Using ORDER BY on Partitioned Regions
	Querying a Partitioned Region on a Single Node
	Optimizing Queries on Data Partitioned by a Key or Field Value
	Performing an Equi-Join Query on Partitioned Regions
	Partitioned Region Query Restrictions
	Query Restrictions in Partitioned Regions

	Query Debugging
	Working with Indexes
	Tips and Guidelines on Using Indexes
	Tips for Writing Queries that Use Indexes

	Creating, Listing and Removing Indexes
	Creating Indexes
	Listing Indexes
	Removing Indexes

	Creating Key Indexes
	Examples of Creating a Key Index

	Creating Hash Indexes
	Hash Index Performance
	Performance Considerations
	Limitations
	Examples of Creating a Hash Index

	Creating Indexes on Map Fields ("Map Indexes")
	Creating Multiple Indexes at Once
	Maintaining Indexes (Synchronously or Asynchronously) and Index Storage
	Index Maintenance Behavior
	Internal Index Structure and Storage

	Using Query Index Hints
	Using Indexes on Single Region Queries
	Using Indexes with Equi-Join Queries
	Using Indexes with Overflow Regions
	Using Indexes on Equi-Join Queries using Multiple Regions
	Index Samples
	Continuous Querying
	How Continuous Querying Works
	Logical Architecture of Continuous Querying
	Data Flow with CQs
	CQ Events
	Region Type Restrictions for CQs

	Implementing Continuous Querying
	Continuous Query Implementation

	Managing Continuous Querying
	Using CQs from a RegionService Instance
	States of a CQ
	CQ Management Options
	Managing CQs and Durable Clients Using gfsh
	Retrieving an Initial Result Set of a CQ

	Transactions
	Adherence to ACID Promises
	Atomicity
	Consistency
	Isolation
	Durability

	Code Examples
	Transaction within an Application
	Transaction within a Function

	Design Considerations
	Colocate Partitioned Regions
	Region Operations Return References
	First Operation with Mixed Region Types
	Allowing Transactions to Work on Persistent Regions
	Mixing Transactions with Queries and Indexes
	Mixing Transactions with Eviction
	Mixing Transactions with Expiration
	Mixing Transactions with Non-transactional Operations
	Changing the Handling of Dirty Reads

	Function Execution
	How Function Execution Works
	Where Functions Are Executed
	How Functions Are Executed
	Highly Available Functions
	Function Execution Scenarios

	Executing a Function in VMware GemFire
	Write the Function Code
	Register the Function Automatically by Deploying a JAR
	Register the Function Programmatically
	Run the Function
	Write a Custom Results Collector
	Targeting Single Members of a Member Group or Entire Member Groups

	Developing REST Applications for VMware GemFire
	VMware GemFire REST API Overview
	Prerequisites and Limitations for Writing REST Applications
	Setup and Configuration
	REST API Libraries
	Enabling the REST API
	Enabling the REST API on Multiple Servers

	Starting the REST API Service
	Configure PDX for your cluster
	Start the REST API Service on One or More Servers
	Verify That The Service is Running

	Implementing Authentication
	Programmatic Startup
	Using the Swagger UI to Browse REST APIs
	Developing REST Applications
	Working with Regions
	Listing Available Regions
	Reading Region Data
	Adding or Modifying Region Data
	Deleting Region Data
	Working with Queries
	Listing Queries
	Creating a New Query
	Executing a Prepared Query
	Modifying a Prepared Query
	Deleting a Prepared Query
	Executing an Ad-Hoc Query
	Working with Functions
	Listing Functions
	Executing Functions

	Sample REST Applications
	#1. REST Java Client (RestClientApp.java)
	#1a. VMware GemFire Cache Java Client (MyJavaClient.java)
	#1b. REST Client Utilities (RestClientUtils.java)
	#1c. Date and Time Utilities (DateTimeUtils.java)
	#1d. Person Class (Person.java)
	#1e. Gender Class (Gender.java)
	#2. Ruby REST Client (restClient.rb)
	#3. Python REST Client (restClient.py)

	Troubleshooting and FAQ
	Checking if the REST API Service is Up and Running
	Key Types and JSON Support
	Unsupported JSON Example 1
	Unsupported JSON Example 2
	Unsupported JSON Example 3
	Unsupported JSON Example 4

	VMware GemFire REST API Reference
	Region Endpoints
	GET /geode/v1
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	GET /geode/v1/{region}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	GET /geode/v1/{region}/keys
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	GET /geode/v1/{region}/{key}
	Resource URL
	Parameters
	Example Request
	Example Responses
	Error Codes

	GET /geode/v1/{region}/{key1},{key2},...,{keyN}
	Resource URL
	Parameters
	Example Requests
	Example Success Responses
	Error Codes
	Example Error Response
	Implementation Notes

	HEAD /geode/v1/{region}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	POST /geode/v1/{region}?key=<key>
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes
	Example Error Response

	PUT /geode/v1/{region}/{key}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes
	Implementation Notes

	PUT /geode/v1/{region}/{key1},{key2},...{keyN}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	PUT /geode/v1/{region}/{key}?op=REPLACE
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	PUT /geode/v1/{region}/{key}?op=CAS
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes
	Example Error Response
	Implementation Notes

	DELETE /geode/v1/{region}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	DELETE /geode/v1/{region}/{key}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	DELETE /geode/v1/{region}/{key1},{key2},...{keyN}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	Query Endpoints
	GET /geode/v1/queries
	Resource URL
	Parameters
	Example Request
	Example Response
	Error Codes

	POST /geode/v1/queries?id=<queryId>&q=<OQL-statement>
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	POST /geode/v1/queries/{queryId}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	PUT /geode/v1/queries/{queryId}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes
	Implementation Notes

	DELETE /geode/v1/queries/{queryId}
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	GET /geode/v1/queries/adhoc?q=<OQL-statement>
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	Function Endpoints
	GET /geode/v1/functions
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	POST /geode/v1/functions/{functionId}
	Resource URL
	Parameters
	Example Requests
	Example Success Responses
	Error Codes

	Administrative Endpoints
	\[HEAD | GET\] /geode/v1/ping
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	GET /geode/v1/servers
	Resource URL
	Parameters
	Example Request
	Example Success Response
	Error Codes

	Tools and Modules
	gfsh
	What You Can Do with gfsh
	Starting gfsh
	Configuring the gfsh Environment
	JAR Libraries in CLASSPATH
	Machine Hostname
	Configuring gfsh Security
	Configuring gfsh Environment Variables
	Configuring gfsh Session Logging
	Member Log Files
	Viewing Standard Output and Standard Error
	Tab Completion
	Command History and gfsh.history
	JMX Manager Update Rate and System Monitoring
	Formatting of Results

	Useful gfsh Shell Variables
	Basic Shell Features and Command-Line Usage
	Tutorial—Performing Common Tasks with gfsh
	Quick Reference of gfsh Commands by Functional Area
	gfsh Command Help
	alter
	alter async-event-queue
	alter disk-store
	alter query-service
	alter region
	alter runtime

	backup disk-store
	change loglevel
	clear defined indexes
	close
	close durable-client
	close durable-cq

	compact
	compact disk-store
	compact offline-disk-store

	configure
	configure pdx

	connect
	create
	create async-event-queue
	create defined indexes
	create disk-store
	create gateway-receiver
	create gateway-sender
	create index
	create jndi-binding
	create lucene index
	create region

	debug
	define index
	deploy
	describe
	describe client
	describe config
	describe connection
	describe disk-store
	describe jndi-binding
	describe lucene index
	describe member
	describe offline-disk-store
	describe query-service
	describe region

	destroy
	destroy async-event-queue
	destroy disk-store
	destroy function
	destroy gateway-receiver
	destroy gateway-sender
	destroy index
	destroy jndi-binding
	destroy lucene index
	destroy region

	disconnect
	echo
	execute function
	execute function

	exit
	export
	export cluster-configuration
	export config
	export data
	export logs
	export offline-disk-store
	export stack-traces

	gc
	get
	help
	hint
	history
	import
	import cluster-configuration
	import data

	list
	list async-event-queues
	list clients
	list deployed
	list disk-stores
	list durable-cqs
	list functions
	list gateways
	list indexes
	list jndi-binding
	list lucene indexes
	list members
	list regions

	load-balance gateway-sender
	locate entry
	locate entry

	netstat
	pause gateway-sender
	pdx rename
	put
	query
	rebalance
	remove
	resume
	resume async-event-queue-dispatcher
	resume gateway-sender

	revoke missing-disk-store
	run
	search lucene
	search lucene

	set variable
	sh
	show
	show dead-locks
	show log
	show metrics
	show missing-disk-stores
	show subscription-queue-size

	shutdown
	sleep
	start
	start gateway-receiver
	start gateway-sender
	start jconsole
	start jvisualvm
	start locator
	start pulse
	start server
	Examples

	start vsd

	status
	status cluster-config-service
	status gateway-receiver
	status gateway-sender
	status locator
	status server

	stop
	stop gateway-receiver
	stop gateway-sender
	stop locator
	stop server

	undeploy
	validate offline-disk-store
	version
	Creating and Running gfsh Command Scripts
	Running gfsh Scripts

	Running gfsh Commands on the OS Command Line
	Running Multiple gfsh Commands on the OS Command Line

	Mapping cache.xml Elements to gfsh Configuration Commands
	Gemcached
	How Gemcached Works
	Deploying and Configuring a Gemcached Server
	Embedding a Gemcached server in a VMware GemFire Java Application
	Starting a Gemcached Server Using a gfsh Command
	Configuring a Gemcached Server with the gemfire.properties File

	Advantages of Gemcached over Memcached
	HTTP Session Management Modules
	HTTP Session Management Quick Start
	Quick Start Instructions
	Additional Quick Start Instructions for tc Server Module
	Additional Quick Start Instructions for Tomcat Module
	Additional Instructions for AppServers Module

	Advantages of Using VMware GemFire for Session Management
	Common Topologies for HTTP Session Management
	Peer-to-Peer Configuration
	Client/Server Configuration

	General Information on HTTP Session Management
	Sticky Load Balancers
	Session Expiration
	Making Additional VMware GemFire Property Changes
	Module Version Information
	Object Serialization

	Session State Log Files
	Adding FINE Debug Logging to catalina.log
	Add Session State Logging to the VMware GemFire Server Log
	Adding Additional Debug Logging to the VMware GemFire Server Log
	Add Debug Logging to gemfire_modules.log

	HTTP Session Management Module for Pivotal tc Server
	Installing the HTTP Module for tc Server
	Setting Up the HTTP Module for tc Server
	Setup and Start
	Starting the Application Server

	Changing the Default VMware GemFire Configuration in the tc Server Module
	Using a Different Locator Port
	Overriding Region Attributes

	Interactive Configuration Reference for the tc Server Module
	HTTP Session Management Module for Tomcat
	Installing the HTTP Module for Tomcat
	Setting Up the HTTP Module for Tomcat
	Peer-to-Peer Setup
	Client/Server Setup
	Starting the Application Server
	Verifying that VMware GemFire Started

	Changing the Default GemFire Configuration in the Tomcat Module
	Changing VMware GemFire Distributed System Properties
	Changing Cache Configuration Properties

	HTTP Session Management Module for AppServers
	Setting Up the HTTP Module for AppServers
	Manual Configuration
	Peer-to-Peer Setup
	Client/Server Setup
	Starting the Application Server
	Verifying that VMware GemFire Started

	Changing the Default VMware GemFire Configuration in the AppServers Module
	Changing VMware GemFire Distributed System Properties
	Changing Cache Configuration Properties

	Common VMware GemFire Configuration Changes for AppServers
	Overriding Region Attributes

	Apache Lucene® Integration
	Using the Apache Lucene Integration
	Key Points
	Creating a Lucene Index
	Creating a Lucene Index: Java API Example
	Creating a Lucene Index: Gfsh Example
	Creating a Lucene Index: XML Example

	Using FlatFormatSerializer to Index Fields within Nested Objects
	Queries
	Querying a Lucene Index: Gfsh Example
	Querying a Lucene Index: Java API Example

	Destroying an Index
	Destroying a Lucene Index: Java API Example
	Destroying a Lucene Index: Gfsh Example

	Changing an Index
	Additional Gfsh Commands

	Requirements and Caveats
	Tanzu Observability by Wavefront
	Configure GemFire Metrics
	Enable Wavefront-Viewable Metrics
	Example
	GemFire Setup
	Telegraf and Wavefront Proxy Setup

	Verification and Troubleshooting suggestions
	Default Dashboard Metrics
	Tanzu GemFire Cluster Metrics
	Tanzu GemFire Features Metrics
	WAN Gateway Metrics

	VMware GemFire Pulse
	Pulse System Requirements
	Running Pulse in Embedded Mode (Quick Start)
	Hosting Pulse on a Web Application Server
	Configuring Pulse Authentication
	Configuring Pulse to use HTTPS
	Configuring Pulse to use Security Manager
	Configuring Pulse to use a Custom Security Profile
	Configuring Pulse to use an OAuth Authentication Provider

	Using Pulse Views
	Cluster View
	Member View
	Region View
	Data Browser
	Alerts Widget

	Visual Statistics Display
	VSD System Requirements
	VSD Overview
	Installing and Running VSD
	Install VSD
	Configure Statistics Sampling in GemFire
	Start VSD
	Load a Statistics File into VSD
	Maintain a Current View of the Data File
	About Statistics
	.gfs Time Zone Information for Matching Statistics to Log Files

	Viewing Statistics in VSD
	Statistic Levels
	Select Statistics for Viewing
	Using VSD Chart Templates
	Chart Menu (Chart Window)
	Line Menu (Chart Window)
	Customizing Your VSD Chart
	View Statistic Information

	Quick Guide to Useful Statistics
	Runtime Configuration
	Resources
	Throughput for Different Operations

	VMware GemFire Reference
	gemfire.properties and gfsecurity.properties: VMware GemFire Properties
	Using Non-ASCII Strings in VMware GemFire Property Files
	cache.xml
	cache.xml Quick Reference
	Cache XML Requirements
	Variables in cache.xml
	Configuration Quick Reference

	<cache> Element Hierarchy
	<cache> Element Reference
	<cache-transaction-manager>
	<transaction-listener>
	<transaction-writer>
	<dynamic-region-factory>
	<disk-dir>
	<gateway-sender>
	<gateway-event-filter>
	<gateway-event-substitution-filter>
	<gateway-transport-filter>
	<gateway-receiver>
	<gateway-transport-filter>
	<gateway-conflict-resolver>
	<async-event-queue>
	<async-event-listener>
	<cache-server>
	<client-subscription>
	<custom-load-probe>
	<pool>
	<locator>
	<server>
	<disk-store>
	<disk-dirs>
	<disk-dir>
	<pdx>
	<pdx-serializer>
	<region-attributes>
	<key-constraint>
	<value-constraint>
	<region-time-to-live>
	<expiration-attributes>
	<custom-expiry>
	<region-idle-time>
	<expiration-attributes>
	<custom-expiry>
	<entry-time-to-live>
	<expiration-attributes>
	<custom-expiry>
	<entry-idle-time>
	<expiration-attributes>
	<custom-expiry>
	<partition-attributes>
	<partition-resolver>
	<partition-listener>
	<fixed-partition-attributes>
	<membership-attributes>
	<required-role>
	<subscription-attributes>
	<cache-loader>
	<cache-writer>
	<cache-listener>
	<compressor>
	<eviction-attributes>
	<lru-entry-count>
	<lru-heap-percentage>
	<lru-memory-size>
	<jndi-bindings>
	<jndi-binding>
	<config-property>
	<config-property-name>
	<config-property-type>
	<config-property-value>
	<region>
	<index>
	<lucene:index>
	<lucene:field>
	<entry>
	<key>
	<string>
	<declarable>
	<value>
	<string>
	<declarable>
	<region>
	<function-service>
	<function>
	<resource-manager>
	<serialization-registration>
	<serializer>
	<instantiator>
	<backup>
	<initializer>
	<declarable>
	<class-name> and <parameter>
	<declarable>
	<string>

	<client-cache> Element Hierarchy
	<client-cache> Element Reference
	<cache-transaction-manager>
	<transaction-listener>
	<transaction-writer>
	<pool>
	<locator>
	<server>
	<disk-store>
	<disk-dirs>
	<disk-dir>
	<pdx>
	<pdx-serializer>
	<region-attributes>
	<key-constraint>
	<value-constraint>
	<region-time-to-live>
	<expiration-attributes>
	<custom-expiry>
	<region-idle-time>
	<expiration-attributes>
	<custom-expiry>
	<entry-time-to-live>
	<expiration-attributes>
	<custom-expiry>
	<entry-idle-time>
	<expiration-attributes>
	<custom-expiry>
	<cache-loader>
	<cache-writer>
	<cache-listener>
	<eviction-attributes>
	<lru-entry-count>
	<lru-heap-percentage>
	<lru-memory-size>
	<jndi-bindings>
	<jndi-binding>
	<config-property>
	<config-property-name>
	<config-property-type>
	<config-property-value>
	<region>
	<region-attributes>
	<index>
	<entry>
	<key>
	<string>
	<declarable>
	<value>
	<string>
	<declarable>
	<region>
	<function-service>
	<function>
	<resource-manager>
	<serialization-registration>
	<serializer>
	<instantiator>
	<initializer>

	Region Shortcuts
	Region Shortcuts Quick Reference
	Exceptions and System Failures
	Memory Requirements for Cached Data
	Core Guidelines for VMware GemFire Data Region Design
	Memory Usage Overview
	Calculating Application Object Overhead
	Using Key Storage Optimization
	Measuring Cache Overhead
	Estimating Management and Monitoring Overhead
	Determining Object Serialization Overhead
	Calculating Socket Memory Requirements

	VMware GemFire Statistics List
	Cache Performance (CachePerfStats)
	Cache Server (CacheServerStats)
	Client-Side Notifications (CacheClientUpdaterStats)
	Client-to-Server Messaging Performance (ClientStats & ClientSendStats)
	Client Connection Pool (PoolStats)
	Continuous Querying (CqQueryStats)
	Delta Propagation (DeltaPropagationStatistics)
	Disk Space Usage (DiskDirStatistics)
	Disk Store Statistics (DiskStoreStatistics)
	Disk Usage and Performance (DiskRegionStatistics)
	Distributed System Messaging (DistributionStats)
	Distribution Statistics Related to Slow Receivers
	Distributed Lock Services (DLockStats)
	Function Execution (FunctionStatistics)
	Gateway Queue (GatewaySenderStatistics)
	Indexes (IndexStats)
	Query-Independent Statistics on Indexes
	Query-Dependent Statistics on Indexes
	JVM Performance
	VMware GemFire JVM Resource Manager (ResourceManagerStats)
	JVM Java Runtime (VMStats)
	JVM Garbage Collection (VMGCStats)
	JVM Garbage Collector Memory Pools (VMMemoryPoolStats)
	JVM Heap Memory Usage (VMMemoryUsageStats)
	JVM Thread stats (VMThreadStats)
	Locator (LocatorStats)
	Lucene Indexes (LuceneIndexStats)
	Off-Heap (OffHeapMemoryStats)
	Operating System Statistics - Linux
	Linux Process Performance (LinuxProcessStats)
	Linux Operating System (LinuxSystemStats)

	Partitioned Regions (PartitionedRegion<partitioned_region_name>Statistics)
	Partitioned Region Statistics on Partition Messages
	Partitioned Region Statistics on Data Entry Caching
	Partitioned Region Statistics on Redundancy
	Region Entry Eviction – Count-Based (LRUStatistics)
	Region Entry Eviction – Heap-based eviction (HeapLRUStatistics)
	Region Entry Eviction – Size-based (MemLRUStatistics)
	Server Notifications for All Clients (CacheClientNotifierStatistics)
	Server Notifications for Single Client (CacheClientProxyStatistics)
	Server-to-Client Messaging Performance (ClientSubscriptionStats)
	Statistics Collection (StatSampler)

	Transaction Reference Material
	JTA Global Transactions with VMware GemFire
	Coordinating with External JTA Transaction Managers
	How to Run a JTA Transaction Coordinated by an External Transaction Manager

	Using VMware GemFire as the “Last Resource” in a Container-Managed JTA Transaction
	How to Run JTA Transactions with VMware GemFire as a “Last Resource”

	Behavior of VMware GemFire Cache Writers and Loaders Under JTA
	Turning Off JTA Transactions
	Experimental Features
	Cluster Management Service
	Cluster Management Service REST API
	Cluster Management Service Java API

	VMware GemFire Micrometer
	Configuration and Publishing
	Meter configuration
	Publishing metrics using a meter registry
	Add Your jar File to the classpath When You Start a Server or Locator

	Micrometer Meters and Tags
	Micrometer Meters
	Meters supplied by Micrometer
	Meters specific to VMware GemFire

	Common tags

	Redis Adapter
	Using the Redis Adapter
	How the Redis Adapter Works
	Advantages of VMware GemFire over a Redis Server

	Automated Rebalancing of Partitioned Region Data
	Glossary
	ACK wait threshold
	administrative event
	API
	application program
	attribute
	attribute path
	blocking
	cache
	cache-local
	cache.xml
	cache event
	cache listener
	cache loader
	cache miss
	cache server
	cache transaction
	cache writer
	client
	client region
	cluster configuration service
	collection
	commit
	concurrency-level
	conflation
	connection
	consumer
	coordinator
	data accessor
	data entry
	data fabric
	data-policy
	data region (region)
	data store
	deadlock
	destroy
	disk region
	disk-store
	distributed cache
	distributed system
	distributed-ack scope
	distributed-no-ack scope
	entry
	entry key
	entry value
	event
	eviction-attributes
	expiration
	expiration action
	factory method
	forced disconnect
	gateway receiver
	gateway sender
	gemfire.properties
	global scope
	global transaction
	HTTP
	idle timeout
	initial capacity
	invalid
	invalidate
	JDBC
	JMX
	JNDI
	JTA
	JVM
	key constraint
	listener
	load factor
	local
	local scope
	locator
	LRU
	machine
	member
	message queue
	mirroring
	multicast
	named region attributes
	netLoad
	netSearch
	netWrite
	network partitioning
	OQL
	off-heap memory
	overflow
	oplog / operation log
	partition
	partitioned region
	peer
	persistent region
	persistent-partition
	persistent-replicate
	producer
	pull model
	push model
	query string
	race condition
	range-index
	region
	region attributes
	region data
	region entry
	region shortcut
	remote
	replicated region
	replicate
	resource manager
	rollback
	scope
	SELECT statement
	serialization
	server
	server group
	server connection pool
	socket
	SQL
	SSL
	standalone distributed system
	statistics enabled
	struct
	structure-index
	system member
	TCP
	timeout
	time-to-live
	transaction
	transaction listener
	transaction writer
	transactional view
	transport layer
	TTL
	UDP
	unicast
	URI
	user attribute
	value constraint
	value-index
	view
	Virtual Machine
	VMware virtual machine
	XML
	XML schema definition
	XPath
	XSD

