VMware GemFire 9.10
Documentation

VMware GemFire 9.10

VMware GemFire 9.10 Documentation

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.

Palo Alto, CA 94304
WWW.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its
subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service
marks, and logos referenced herein belong to their respective companies. Copyright and trademark
information.

VMware by Broadcom

https://docs.vmware.com/copyright-trademark.html

VMware GemFire 9.10 Documentation

Contents

VMware GemFire® 9.10 Documentation

VMware GemFire 9.10
API| Reference Documentation

Documentation of Related Products

VMware GemFire® 9.10 Documentation

VMware GemFire 9.10
API| Reference Documentation

Documentation of Related Products

VMware GemFire 9.10 Release Notes
What’s New in VMware GemFire 9.10.18
What’s New in VMware GemFire 9.10.17
What’s New in VMware GemFire 9.10.16
What’s New in VMware GemFire 9.10.15
What’s New in VMware GemFire 9.10.14
What’s New in VMware GemFire 9.10.13
What’s New in VMware GemFire 9.10.12
What’s New in VMware GemFire 9.10.11
What’s New in VMware GemFire 9.10.10
What’s New in VMware GemFire 9.10.9
What’s New in VMware GemFire 9.10.8
What’s New in VMware GemFire 9.10.7
What’s New in VMware GemFire 9.10
Installing VMware GemFire 9.10
Upgrading to VMware GemFire 9.10

Upgrading to Version 9.10.6

Upgrading from a Version prior to 9.1.1
Resolved Issues

Issues Resolved in VMware GemFire 9.10.18

Issues Resolved in VMware GemFire 9.10.17

Issues Resolved in VMware GemFire 9.10.16

Issues Resolved in VMware GemFire 9.10.15

VMware by Broadcom

68

68
68
68

69

69
69
69

70

70
70

71

71
72
72
72
72
72
72
73
73
73
74
74
74
74
75
75
75
75
76

VMware GemFire 9.10 Documentation

Issues Resolved in VMware GemFire 9.10.14
Issues Resolved in VMware GemFire 9.10.13
Issues Resolved in VMware GemFire 9.10.12
Issues Resolved in VMware GemFire 9.10.11
Issues Resolved in VMware GemFire 9.10.10
Issues Resolved in VMware GemFire 9.10.9
Issues Resolved in VMware GemFire 9.10.8
Issues Resolved in VMware GemFire 9.10.7
Issues Resolved in VMware GemFire 9.10.6
Issues Resolved in VMware GemFire 9.10.5
Issues Resolved in VMware GemFire 9.10.4
Issues Resolved in VMware GemFire 9.10.3
Issues Resolved in VMware GemFire 9.10.2
Issues Resolved in VMware GemFire 9.10.1
Issues Resolved in VMware GemFire 9.10
Support

Obtaining and Installing Security Updates
Supported Configurations and System Requirements

Tanzu GemFire Supported Configurations
Supported Platforms
Java Support Notes

File System Type for Linux Platforms
Host Machine Requirements
Getting Started with VMware GemFire

About VMware GemFire

Main Concepts and Components

Main Features
High Read-and-Write Throughput
Low and Predictable Latency
High Scalability
Continuous Availability
Reliable Event Notifications
Parallelized Application Behavior on Data Stores

Shared-Nothing Disk Persistence

VMware by Broadcom

76
77
77
77
77
78
78
78
79
80
81
81

81
82
82
83

84

85

85
85
86
86

86

88

88
88

89
89
89
90
90
90

91
91

VMware GemFire 9.10 Documentation

Reduced Cost of Ownership 91
Single-Hop Capability for Client/Server 91
Client/Server Security 91
Multisite Data Distribution 92
Continuous Querying 92
Heterogeneous Data Sharing 92
Installing VMware GemFire 92
Obtaining and Installing Security Updates 93

Windows/Unix/Linux—Install VMware Tanzu GemFire from a

. 93

Compressed TAR File
Prerequisites 93
Procedure 93
Obtaining Pivotal GemFire from a Maven Repository 95
Setting Up the CLASSPATH 96
Modifying the CLASSPATH in gfsh-Managed Processes 97
Setting the CLASSPATH for Applications and Standalone Java Processes 97
Uninstalling GemFire 98
Upgrading VMware GemFire 98
Upgrade Details 99
Planning an Upgrade 99
Guidelines for Upgrading 100
Version Compatibilities 100
Upgrade to the Latest Version 9 from an Earlier Version 9 100
Upgrade to Version 9 from Version 8.2.3 or a More Recent 8.2 Version 101
Upgrade to Version 9 from Version 8.2.2 or an Earlier Version 101
Upgrade a Multi-Site System to Version 9 from Version 8.2.3 or Later 101
Java Notes 101
Rolling Upgrade 102
Rolling Upgrade Limitations and Requirements 102
Rolling Upgrade Guidelines 102
Rolling Upgrade Procedure 103
Upgrade Locators 103
Upgrade Servers 105

VMware by Broadcom

VMware GemFire 9.10 Documentation

Upgrade Clients 106
Offline Upgrade 106
Offline Upgrade Guidelines 106
Offline Upgrade Procedure 106
Upgrading Clients 108
Remove or Replace Obsolete Identifiers 108
Rename Packages 108
Reinstate Secure Client/Server Messaging After Upgrading 109
Upgrade from Version 8.2 to Version 9 109
General Upgrade Steps 109
Java Notes 110
RHEL/Centos: with previous installation via RPM 10
Ubuntu: with previous installation via Debian packaging 10
Package Renaming 10
The Upgrade Procedure, Step by Step m
Multi-site Upgrade from Version 8.2 to Version 9 12
Pivotal GemFire in 15 Minutes or Less 15
Step 1. Install Pivotal GemFire 15
Step 2. Use gfsh to start a locator 15
Step 3. Start GemFire Pulse 16
Step 4. Start a server 17
Step 5. Create a replicated, persistent region 17
Step 6. Manipulate data in the region and demonstrate persistence 18
Step 7. Examine the effects of replication 120
Step 8. Restart the cache servers in parallel 121
Step 9. Shut down the system including your locators 124
Step 10. What to do next... 124
Configuring and Running a Cluster 125
Overview of the Cluster Configuration Service 126
Why Use the Cluster Configuration Service 126
Using the Cluster Configuration Service 127
How the Cluster Configuration Service Works 127
gfsh Commands that Create Cluster Configurations 128

VMware by Broadcom

VMware GemFire 9.10 Documentation

gfsh Limitations

Deactivating the Cluster Configuration Service
Tutorial—Creating and Using a Cluster Configuration

Deploying Application JARs to VMware GemFire Members
Deployment Location for JAR Files
About Deploying JAR Files and the Cluster Configuration Service
Versioning of JAR Files
Automatic Class Path Loading

Automatic Function Registration
Using Member Groups

Exporting and Importing Cluster Configurations
Exporting a Cluster Configuration

Importing a Cluster Configuration

Cluster Configuration Files and Troubleshooting
Troubleshooting Tips

Sizing a GemFire Cluster
Overview
Resource Considerations
Experimentation and Testing
Requirements and Assumptions
Architectural and Design Considerations
Serialization
Per-entry Memory Overhead
Partitioned Region Scalability
Redundancy
Relationship Between Horizontal and Vertical Scale
NUMA Considerations
GemFire Queues
Sizing Process
Step 1: Domain object sizing
Step 2: Estimating total memory and system requirements
Step 3: Vertical Sizing
Locator Sizing

Notes on GC

VMware by Broadcom

129
130

130

136
137
138
138
138
139

139

140
140
140

141
141

142
142
142
142
143
143
143
144
144
145
145
145
145
146
146
146
147
148

148

VMware GemFire 9.10 Documentation

Step 4: Scale-out Validation
Step 5: Projection to Full Scale

Sizing Quick Reference

Using gfsh to Manage a Remote Cluster Over HTTP or HTTPS
Deploying Configuration Files without the Cluster Configuration Service

Main Steps to Deploying Configuration Files

VMware GemFire Configuration Files
Default File Specifications and Search Locations
Changing the File Specifications
Deploying Configuration Files in JAR Files

Starting Up and Shutting Down Your System
Starting Up Your System
Starting Up After Losing Data on Disk
Shutting Down the System
Using the shutdown Command
Shutting Down System Members Individually

Option for System Member Shutdown Behavior

Running VMware GemFire Locator Processes
Locator Configuration and Log Files
Locators and the Cluster Configuration Service
Start the Locator
Check Locator Status
Stop the Locator

Locators and Multi-Site (WAN) Deployments

Running VMware GemFire Server Processes
Default Server Configuration and Log Files
Start the Server with gfsh
Start the Server Programmatically
Check Server Status

Stop Server

Managing System Output Files

VMware by Broadcom

149
149
149

150

151

151
152

152

153

153

154
154
155
155
155
156

157

157
157
158
159
161
161
162

162
162
163
164
165

165

165

VMware GemFire 9.10 Documentation

Firewall Considerations

Firewalls and Connections

Firewalls and Ports
Limiting Ephemeral Ports for Peer-to-Peer Membership
Properties for Firewall and Port Configuration

Default Port Configurations

Properties for Firewall and Port Configuration in Multi-Site (WAN) Configurations

Basic Configuration and Programming
Cluster and Cache Configuration

Cluster Members
Member Overview
Membership and System Topologies

Multi-site Installations

Setting Properties

Options for Configuring the Cache and Data Regions
Local and Remote Membership and Caching

Cache Management

Introduction to Cache Management
The Caching APIs
The Cache XML
Create and Close a Cache
Export and Import a Cache Snapshot

Cache Management with gfsh and the Cluster Configuration Service
Managing a Peer or Server Cache
Managing a Client Cache
Managing a Cache in a Secure System

Managing RegionServices for Multiple Secure Users

Requirements and Caveats for RegionService

VMware by Broadcom

166

166

167
167
167
168

169

170

170

17
171
171

172

172

173

174

174

175
175
176
176
177

177

177

178

180

180
181

VMware GemFire 9.10 Documentation

Launching an Application after Initializing the Cache
Data Regions
Region Management

Creating a Region
Creating a Region with gfsh
Creating a Region Through the cache.xml File
cache.xml File Examples
Creating a Region Through the API
APl Examples
Create and Access Data Subregions
Update the Configuration of Data Regions
Invalidate a Region
Clear a Region
Destroy a Region

Close a Region
Region Naming

Region Shortcuts and Custom Named Region Attributes
Shortcut Attribute Options
RegionShortcuts for Peers and Servers

ClientRegionShortcuts for Clients

Storing and Retrieving Region Shortcuts and Custom Named Region
Attributes

Examples

Managing Region Attributes
Define Region Attributes

Modify Region Attributes

Creating Custom Attributes for Regions and Entries

Limitations and Alternatives
Building a New Region with Existing Content
Data Entries

Managing Data Entries

VMware by Broadcom

181

182

183

183
183
183
184
184
185
186
187
187
188
188
189

189

189
190
191

191

192

192

193
193
194

195
195

196

196

196

VMware GemFire 9.10 Documentation

Keys

Create and Update Entries

The getAll Operation

The putAll Operation

The removeAll Operation

Retrieving Region Entries from Proxy Members

Using gfsh to get and put

Copy on Read Behavior

Requirements for Using Custom Classes in Data Caching

CLASSPATH
Data Serialization

Classes Used as Keys
Topologies and Communication
Topology and Communication General Concepts

Topology Types
Peer-to-Peer Configuration
Client/Server Configuration

Multi-site Configuration

Planning Topology and Communication
Determine Protocols and Addresses

Set Up Membership and Communication

How Member Discovery Works
Peer Member Discovery
Standalone Member
Client Discovery of Servers

Multi-site Discovery

How Communication Works
TCP
UDP Unicast and Multicast
UDP Unicast

UDP Multicast

Using Bind Addresses

VMware by Broadcom

196
197
197
197
198
198

198

199

200
200
200
200

202

202

203
203
203
204

204
205
205

205
205
206
206
207

207
208
208
208
208

209

VMware GemFire 9.10 Documentation

Peer and Server Communication
Gateway Receiver Communication

Locator Communication

Choosing Between IPv4 and IPv6
Peer-to-Peer Configuration

Configuring Peer-to-Peer Discovery
Configuring Peer Communication

Organizing Peers into Logical Member Groups
Client/Server Configuration

Standard Client/Server Deployment

How Server Discovery Works
Basic Configuration

Using Member Groups

How Client/Server Connections Work
How the Pool Chooses a Server Connection
How the Pool Connects to a Server
How the Pool Manages Pool Connections
How the Pool Manages Subscription Connections

How the Pool Conditions Server Load
Configuring a Client/Server System
Organizing Servers Into Logical Member Groups

Client/Server Example Configurations
Examples of Standard Client/Server Configuration
Example—Standalone Publisher Client, Client Pool, and Region
Example—Standalone Subscriber Client

Example of a Static Server List in Client/Server Configuration

Fine-Tuning Your Client/Server Configuration

How Server Load Conditioning Works

Multi-site (WAN) Configuration

VMware by Broadcom

209
210
2N

n

212

212

213

213

214

215

216
216
217

218
219
220
220
221
221

221

223

223
224
225
225
226

226
226

227

VMware GemFire 9.10 Documentation

How Multi-site (WAN) Systems Work

Multi-site (WAN) Topologies
Fully Connected Mesh Topology
Ring Topology
Hybrid Multi-site Topology

Unsupported Topologies

Configuring a Multi-site (WAN) System
Prerequisites
Main Steps
Configure Gateway Senders
Create Data Regions for Multi-site Communication
Configure Gateway Receivers

Configuring One IP Address and Port to Access All Gateway Receivers in a Site

Filtering Events for Multi-Site (WAN) Distribution

Configuring Multi-Site Event Filters

Resolving Conflicting Events

Implementing a GatewayConflictResolver
Managing VMware GemFire
VMware GemFire Management and Monitoring

Management and Monitoring Features

References

Overview of VMware GemFire Management and Monitoring Tools
gfsh Command-line tool
Executing gfsh commands with the management API
Member Configuration Management
Java Management Extension (JMX) MBeans
VMware GemFire Java API
VMware GemFire Pulse

JConsole

Architecture and Components
Architecture

Managed Node

VMware by Broadcom

228

228
229
229
229
230

230
230
231
231
234
236
239

240
241

243

243

245

246

246
247

247
248
248
249
249
249
249
249

249
250
250

VMware GemFire 9.10 Documentation

JMX Manager Node 250
JMX Integration 251
Management APIs 252
VMware GemFire Management and Monitoring Tools 252
Starting a JMX Manager 253
Configuring a JMX Manager 254
Stopping a JMX Manager 257
Federated MBean Architecture 257
Federation of VMware GemFire MBeans and MBeanServers 258
MBean Proxy Naming Conventions 258
Use of MXBeans 258
MBean Proxy Creation 258
List of VMware GemFire JMX MBeans 258
JMX Manager MBeans 259
ManagerMXBean 260
DistributedSystemMXBean 260
DistributedRegionMXBean 260
DistributedLockServiceMXBean 261
Managed Node MBeans 261
MemberMXBean 262
CacheServerMXBean 262
RegionMXBean 262
LockServiceMXBean 263
DiskStoreMXBean 263
AsyncEventQueueMXBean 263
LocatorMXBean 264
LuceneServiceMXBean 264
GatewaySenderMXBean 264
GatewayReceiverMXBean 265
Browsing VMware GemFire MBeans through JConsole 265
VMware GemFire JMX MBean Notifications 266
Notification Federation 266
Attaching Listeners to MXBeans 267

VMware by Broadcom

VMware GemFire 9.10 Documentation

System Alert Notifications

List of JMX MBean Notifications

MemberMXBean Notifications
MemberMXBean Gateway Notifications
CacheServerMXBean Notifications

DistributedSystemMXBean Notifications

Configuring RMI Registry Ports and RMI Connectors
Configuring JMX Manager Port and Bind Addresses

Using Out-of-the-Box RMI Connectors
Executing gfsh Commands through the Management API

Managing Heap and Off-heap Memory
Tuning the JVM’s Garbage Collection Parameters
Using the VMware GemFire Resource Manager
How Background Eviction |Is Performed
Controlling Heap Use with the Resource Manager
Configure VMware GemFire for Heap LRU Management
Set the JVM GC Tuning Parameters
Monitor and Tune Heap LRU Configurations
Resource Manager Example Configurations

Use Case for the Example Code

Managing Off-Heap Memory
On-heap and Off-heap Objects
Off-heap Recommendations
Implementation Details
Controlling Off-heap Use with the Resource Manager
Specifying Off-heap Memory
gfsh Off-heap Support
ResourceManager API

Tuning Off-heap Memory Usage
Locking Memory (Linux Systems Only)
Disk Storage

How Disk Stores Work

VMware by Broadcom

267

268
268

268
269
269

269
269
270

270

27

271
272
273
273
274
275
275
277

278

278
278
279
279
279
280
281
281
282

283

283

284

VMware GemFire 9.10 Documentation

What VMware GemFire Writes to the Disk Store

Disk Store State

Disk Store File Names and Extensions
File Names

File Extensions

Disk Store Operation Logs

When Disk Store Oplogs Reach the Configured Disk Capacity
Configuring Disk Stores

Designing and Configuring Disk Stores
Design Your Disk Stores
Create and Configure Your Disk Stores
Modifying Disk Stores
Configuring Regions, Queues, and PDX Serialization to Use the Disk Stores

Configuring Disk Stores on Gateway Senders

Disk Store Configuration Parameters

Disk Store Configuration Attributes and Elements

disk-dirs Element

Modifying the Default Disk Store
Change the Behavior of the Default Disk Store

Optimizing a System with Disk Stores

Start Up and Shut Down with Disk Stores
Start Up
Start Up Procedure
Example Startup to lllustrate Ordering

Shutdown
Disk Store Management

Disk Store Management Commands and Operations
Online Disk Store Operations

Offline Disk Store Operations

Validating a Disk Store

VMware by Broadcom

285
285

286
286
286

287
288

288

289
289
290
292
292

293

293
294

295

295
296

296

297
297
298
299
299

300

300
301
301

301

VMware GemFire 9.10 Documentation

Running Compaction on Disk Store Log Files
Log File Compaction for the Online Disk Store
Run Online Compaction
Run Offline Compaction
Performance Benefits of Manual Compaction
Directory Size Limits

Example Compaction Run

Keeping a Disk Store Synchronized with the Cache
Change Region Configuration

Take a Region Out of Your Cache Configuration and Disk Store
Configuring Disk Free Space Monitoring

Handling Missing Disk Stores
Show Missing Disk Stores

Revoke Missing Disk Stores

Altering When Buffers Are Flushed to Disk
Modifying Disk Flushes for the Operating System

Modifying VMware GemFire to Flush Buffers on Disk Writes

Creating Backups for System Recovery and Operational Management
Making a Backup While the System Is Online
What a Full Online Backup Saves
What an Incremental Online Backup Saves
Disk Store Backup Directory Structure and Contents
Offline Members—Manual Catch-Up to an Online Backup

Restore Using a Backup Made While the System Was Online
Cache and Region Snapshots

Usage and Performance Notes
Cache Consistency and Concurrent Operations

Performance Considerations

Exporting Cache and Region Snapshots
Exporting Cache Snapshots
Exporting a Region Snapshot

Export Example with Options

VMware by Broadcom

302
302
303
303
304
304

304

305
305
306

306

307
307

308

308
308

309

309
309
311
312
312
313
313

313

314
314
315

315
315
315
316

VMware GemFire 9.10 Documentation

Importing Cache and Region Snapshots
Import Requirements
Import Limitations
Importing Cache Snapshots

Importing a Region Snapshot
Filtering Entries During Import or Export
Reading Snapshots Programmatically

Region Compression
What Gets Compressed
Guidelines on Using Compression
How to Enable Compression in a Region
How to Check Whether Compression is Enabled
Working with Compressors
Changing the Compressor for an Already Compressed Region
Comparing Performance of Compressed and Non-Compressed Regions

Monitoring Compression Performance
Network Partitioning
How Network Partitioning Management Works

Failure Detection and Membership Views
Failure Detection

Membership Views

Membership Coordinators, Lead Members and Member Weighting

Membership Coordinators and Lead Members
Member Weighting System

Sample Member Weight Calculations

Network Partitioning Scenarios
What the Losing Side Does

What Isolated Members Do

Configure VMware GemFire to Handle Network Partitioning

Preventing Network Partitions

VMware by Broadcom

316
317
317
317
317

318

318

319
319
319
321
321
322
323
323
323

324

324

326
326
327

328
328
328
328

329
330
331

331

332

VMware GemFire 9.10 Documentation

Security

Security Implementation Introduction and Overview

Security Features

Overview
Security Detail Considerations

External Interfaces, Ports, and Services
Resources That Must Be Protected

Log File Locations

Where to Place Security Configuration Settings

Enable Security with Property Definitions
security-manager Property
Apply security-manager to All Members
Is Cluster Management Enabled?
Apply security-manager to Non-participating Servers
Callbacks

security-post-processor Property
Authentication

Implementing Authentication
How Authentication Works
How a Server Sets Its Credential
How a Client Cache Sets Its Credential
How Other Components Set Their Credentials

Implement SecurityManager Interface
Authentication Example
Authorization

Implementing Authorization
How Authorization Works
Resource Permissions
Implement Authorization
Authorization of Function Execution

Authorization of Methods Invoked from Queries

VMware by Broadcom

333

333
333

333

334

334
335
335

336

336
336
336
336
337
337
337

337

338
338
338
339
340

340

340

341

341
341
341
348
348
348

VMware GemFire 9.10 Documentation

Method Invocation Authorizers

Overview

VMware GemFire Authorizers
RestrictedMethod Authorizer
UnrestrictedMethodAuthorizer
JavaBeanAccessorMethod Authorizer
RegExMethodAuthorizer

Custom Authorizers
How Authorization Works
Implementing a Method Authorizer

Changing the Method Authorizer

Authorization Example

Disclaimer
User Authorization Example

Method Invocation Authorization Example

Post Processing of Region Data

Implement Post Processing

SSL

Configuring SSL
SSL-Configurable Components
SSL Configuration Properties
Example: secure communications throughout
Example: non-secure cluster communications, secure client/server
SSL Property Reference Tables

Procedure

SSL Sample Implementation
Provider-Specific Configuration File
gemfire.properties File
gfsecurity.properties File
Locator Startup
Other Member Startup

Connecting to a Running Cluster

Performance Tuning and Configuration

VMware by Broadcom

348
348
349
350

351
351
352
352
352
352

353

353
353
354

354

355
355

355

356
356
357
358
358
359
360

361
361
361
361
362
362
362

362

20

VMware GemFire 9.10 Documentation

Improving Performance on vSphere
Operating System Guidelines
NUMA, CPU, and BIOS Settings
Physical and Virtual NIC Settings
VMware vSphere vMotion and DRS Cluster Usage
Placement and Organization of Virtual Machines
Virtual Machine Memory Reservation
vSphere High Availability and VMware GemFire
Storage Guidelines

Additional Resources
Performance Controls

Data Serialization

Setting Cache Timeouts

Controlling Socket Use

Management of Slow Receivers

Increasing the Ratio of Cache Hits

System Member Performance

Member Properties

JVM Memory Settings and System Performance
Garbage Collection and System Performance
Slow Receivers with TCP/IP

Preventing Slow Receivers

Managing Slow Receivers

Slow distributed-ack Messages

Socket Communication

Setting Socket Buffer Sizes

Ephemeral TCP Port Limits

VMware by Broadcom

363
363
364
364
365
365
366
366
366
366

367

367

367

368

369

37

372

372

372

374

375

375

376

380

380

381

383

21

VMware GemFire 9.10 Documentation

Making Sure You Have Enough Sockets
Socket Sharing
Socket Lease Time
Calculating Connection Requirements
Peer-to-Peer Socket Requirements Per Member
Server Socket Requirements Per Server

Client Socket Requirements per Client
TCP/IP KeepAlive Configuration

TCP/IP Peer-to-Peer Handshake Timeouts

Configuring Sockets in Multi-Site (WAN) Deployments

Multi-site (WAN) Socket Requirements

Member produces SocketTimeoutException

UDP Communication
UDP Datagram Size
UDP Flow Control

UDP Retransmission Statistics
Multicast Communication

Provisioning Bandwidth for Multicast

Testing Multicast Speed Limits

Configuring Multicast Speed Limits

Run-time Considerations for Multicast
Troubleshooting the Multicast Tuning Process

Maintaining Cache Consistency
General Guidelines

Guidelines for Multi-Site Deployments
Logging
How VMware GemFire Logging Works

Understanding Log Messages and Their Categories

Structure of a Log Message

VMware by Broadcom

384
384
384
384
385
386

387

387

387

388
388
389

389
389
390
390

390

391

392

394

395

396

396
396
397

398

398

399
399

22

VMware GemFire 9.10 Documentation

Log File Name
How the System Renames Logs

Log Level

Naming, Searching, and Creating Log Files
Log File Naming Recommendation
Searching the Log Files

Creating Your Own Log Messages

Set Up Logging

Advanced Users—Configuring Log4j 2 for VMware GemFire

Using Different Front-End Logging APIs to Log to Log4j2

Customizing Your Own log4j2.xml File
Statistics

How Statistics Work

Transient Region and Entry Statistics
Application-Defined and Custom Statistics

Configuring and Using Statistics
Configure Cluster or Server Statistics
Configure Transient Region and Entry Statistics
Configure Custom Statistics

Controlling the Size of Archive Files
Viewing Archived Statistics
Troubleshooting and System Recovery
Producing Artifacts for Troubleshooting

Diagnosing System Problems
Locator does not start
Application or cache server process does not start
Application or cache server does not join the cluster

Member process seems to hang

Member process does not read settings from the gemfire.properties file

Cache creation fails - must match schema definition root

VMware by Broadcom

400
401
401

404
404
404

405

405

407
407

407

408

409

409

410

412
412
413
414

414

415

415

416

417
418
419
419

420

420

421

23

VMware GemFire 9.10 Documentation

Cache is not configured properly 421
Unexpected results for keySetOnServer and containsKeyOnServer 422
Data operation returns PartitionOfflineException 423
Entries are not being evicted or expired as expected 423
Cannot find the log file 423
OutOfMemoryError 423
PartitionedRegionDistributionException 424
PartitionedRegionStorageException 424
Application crashes without producing an exception 425
Timeout alert 425
Member produces SocketTimeoutException 425
Member logs ForcedDisconnectException, Cache and DistributedSystem forcibly closed 425
Members cannot see each other 426
One part of the cluster cannot see another part 426
Data distribution has stopped, although member processes are running 426
Distributed-ack operations take a very long time to complete 427
Slow system performance 427
Can’t get Windows performance data 427
Java applications on 64-bit platforms hang or use 100% CPU 428
System Failure and Recovery 428
Planning for Data Recovery 428
Network Partitioning, Slow Response, and Member Removal Alerts 429
Network Partitioning Detected 429
Member Taking Too Long to Respond 430

No Locators Can Be Found 431
Warning Notifications Before Removal 432
Member Is Forced Out 433

How Data is Recovered From Persistent Regions 433
Handling Forced Cache Disconnection Using Autoreconnect 434
How the Autoreconnection Process Works 434
Managing the Autoreconnection Process 435
Operator Intervention 436
Recovering from Application and Cache Server Crashes 436
Recovering from Crashes with a Peer-to-Peer Configuration 436
Recovery for Partitioned Regions 437

VMware by Broadcom

VMware GemFire 9.10 Documentation

Recovery for Distributed Regions 439
Recovery for Regions of Local Scope 439
Recovering Data from Disk 439
Recovering from Crashes with a Client/Server Configuration 441
Recovering from Server Failure 441
Recovering from Client Failure 442
Recovering from Machine Crashes 442
Recovery Procedure 443
Data Recovery for Partitioned Regions 443
Data Recovery for Distributed Regions 443
Data Recovery in a Client/Server Configuration 444
Recovering from ConfictingPersistentDataExceptions 444
Independently Created Copies 444
Starting New Members First 444
A Network Failure Occurs and Network Partitioning Detection is Disabled 445
Salvaging Data 445
Preventing and Recovering from Disk Full Errors 445
Recovering from Disk Full Errors 446
Understanding and Recovering from Network Outages 446
What Happens During a Network Outage 446
Recovery Procedure 447
Effect of Network Failure on Partitioned Regions 447
Effect of Network Failure on Distributed Regions 447
Effect of Network Failure on Persistent Regions 448
Effect of Network Failure on Client/Server Installations 448
Log Messages and Solutions 448
above heap eviction threshold 448
below heap eviction threshold 449
above heap critical threshold 449
Query execution canceled after exceeding max execution time 450
Query execution canceled due to memory threshold crossed in system 450
There are <n> stuck threads in this node 451
Thread <n> is stuck 451
Thread <n> that was executed at <time> has been stuck for <nn> seconds 451

VMware by Broadcom

VMware GemFire 9.10 Documentation

Disconnecting old DistributedSystem to prepare for a reconnect attempt 452
Attempting to reconnect to the DistributedSystem. This is attempt #n 452
Unable to form a TCP/IP connection in a reasonable amount of time 453
Received Suspect Message 453
<n> Seconds Have Elapsed 454
Member isn’t responding to heartbeat requests 455
Enabled-network-partition-detection is set to false 455
Statistics sampling thread detected a wakeup delay 456
Redundancy has dropped below <n> configured copies 457
Rejected connection 457
PCC service metrics component failing to connect to locator/server 458
SSLHandshakeException: <version> is disabled 459
Unable To Create New Native Thread 459
Too Many Open Files 460
CommitConflictException 461
Initialization of Region <_B_ _RegionName_BucketNumber> Completed 461
Unknown pdx Type error 462
Error calculating expiration 463
PdxType limitations for GFSH queries 464
Apache.Geode.Client. AllConnectionsInUseException 466
org.apache.geode.pdx.PdxlnitializationException 466
Format of the string <<cache xml file’s content>> used for parameterization is unresolvable 467
RegionExistException 468
Missing Diskstore Exception 468
Could not create an instance of a class 469
PartitionedRegion#cleanupFailedInitialization: Failed to clean the PartitionRegion 469
allPartitionedRegions

Could not find any server to create primary client queue on. 470
Cluster configuration service not available 470
The secondary map already contained an event from hub null so ignoring new event 471
Create is present in more than one Oplog. This should not be possible. The Oplog Key ID for a7
this entry is

Detected conflicting PDX types during import 472
A tenured heap garbage collection has occurred 472
Allocating larger network read buffer 473
Socket send buffer size is <m> instead of the requested <n> 473
quorum has been lost 473
possible loss of quorum due to the loss of <n> cache processes 474

VMware by Broadcom

VMware GemFire 9.10 Documentation

Membership service failure: Exiting due to possible network partition event due to loss of
cache processes

<member> had a weight of <n>

An additional Function Execution Processor thread is being launched
Sending new view

Received new view

Admitting member

Member at <member|P> unexpectedly left the distributed cache
Cache server: failed accepting client connection

Remote host closed connection during handshake

SSL peer shut down incorrectly

Function: <functionName> cannot be executed because the members [list of members] are
running low on memory

Region <regionName> bucket <n> has persistent data that is no longer online stored at these
locations

Region has potentially stale data. Buckets [list] are waiting for another offline member
Developing with VMware GemFire
Region Data Storage and Distribution

Storage and Distribution Options
Peer-to-Peer Region Storage and Distribution

Storing Data in the Local Cache

Region Types
Partitioned Regions
Replicated Regions
Distributed, Non-Replicated Regions

Local Regions

Region Data Stores and Data Accessors
Creating Regions Dynamically
Partitioned Regions

Understanding Partitioning
Data Partitioning
Partitioned Region Operation

Additional Information About Partitioned Regions

VMware by Broadcom

474

475
475
476
476
476
477
477
477
477

478

479

479

481

482

482
482
483

483
484
485
486

486

486

487

489

490
492
493

493

27

VMware GemFire 9.10 Documentation

Configuring Partitioned Regions 493
Configuring the Number of Buckets for a Partitioned Region 494
Calculate the Total Number of Buckets for a Partitioned Region 495
Custom-Partitioning and Colocating Data 497
Understanding Custom Partitioning and Data Colocation 498
Custom Partitioning 498
Data Colocation Between Regions 498
Standard Custom Partitioning 499
Fixed Custom Partitioning 502
Colocate Data from Different Partitioned Regions 505
Configuring High Availability for Partitioned Regions 507
Understanding High Availability for Partitioned Regions 507
Controlling Where Your Primaries and Secondaries Reside 508
Running Processes in Virtual Machines 508
Reads and Writes in Highly-Available Partitioned Regions 509
Configure High Availability for a Partitioned Region 510
Set the Number of Redundant Copies 51
Configure Redundancy Zones for Members 5N
Set Enforce Unigue Host 512
Configure Member Crash Redundancy Recovery for a Partitioned Region 512
Configure Member Join Redundancy Recovery for a Partitioned Region 513
Configuring Single-Hop Client Access to Server-Partitioned Regions 514
Understanding Client Single-Hop Access to Server-Partitioned Regions 514
Single Hop and the Pool max-connections Setting 514
Balancing Single-Hop Server Connection Use 515
Configure Client Single-Hop Access to Server-Partitioned Regions 515

VMware by Broadcom

VMware GemFire 9.10 Documentation

Rebalancing Partitioned Region Data
How Partitioned Region Rebalancing Works
When to Rebalance a Partitioned Region
How to Simulate Region Rebalancing

Automated Rebalancing
Checking Redundancy in Partitioned Regions
Moving Partitioned Region Data to Another Member
Distributed and Replicated Regions

How Distribution Works

Options for Region Distribution

How Replication and Preloading Work
Initialization of Replicated and Preloaded Regions

Behavior of Replicated and Preloaded Regions After Initialization

Configure Distributed, Replicated, and Preloaded Regions

Local Destroy and Invalidate in the Replicated Region

Locking in Global Regions
Lock Timeouts
Optimize Locking Performance

Examples
Consistency for Region Updates

Consistency Checking by Region Type
Partitioned Region Consistency
Replicated Region Consistency
Non-Replicated Regions and Client Cache Consistency
Configuring Consistency Checking
Overhead for Consistency Checks
How Consistency Checking Works for Replicated Regions
How Destroy and Clear Operations Are Resolved
About Region.clear() Operations

Transactions with Consistent Regions

VMware by Broadcom

515
516
517
517
518

518

518

520

520

522

522
522
523

524
524

525
525
526
526

527

528
528
528
528
529
529
529

531
532

532

29

VMware GemFire 9.10 Documentation

How Consistency Is Achieved in WAN Deployments
General Region Data Management
Persistence and Overflow

How Persistence and Overflow Work
How Data Is Persisted and Overflowed
Persistence
Overflow
Persistence and Overflow Together

Persistence and Multi-Site Configurations
Configure Region Persistence and Overflow
Overflow Configuration Examples
Eviction

How Eviction Works
Eviction Actions

Eviction in Partitioned Regions
Configure Data Eviction
Expiration

How Expiration Works
Expiration Types
Expiration Actions
Entry Expiration in Replicated Regions and Partitioned Regions

Interaction Between Expiration Settings and netSearch

Configure Data Expiration

Configuring the Number of Threads for Expiration
Keeping the Cache in Sync with Outside Data Sources
Overview of Outside Data Sources

Configuring Database Connections Using JNDI
Example DataSource Configurations in cache.xml

XAPooledDataSource cache.xml Example (Derby)

VMware by Broadcom

532

533

534

534
535
535
535
536
536

536

537

538

538
539
539

539

540

540
541
541

542
542

542
544

544

545

545
546
546

30

VMware GemFire 9.10 Documentation

JNDI Binding Configuration Properties for Different XAPooledDataSource Connections

ManagedDataSource Connection Example (Derby)
PooledDataSource Example (Derby)

SimpleDataSource Connection Example (Derby)

How Data Loaders Work
Data Loading in Partitioned Regions
Data Loading in Distributed Regions

Data Loading in Local Regions

Implement a Data Loader

Implement the CachelLoader Interface

Configure and Deploy

Implementing a Server or Peer with a Cache Loader
Data Serialization

Overview of Data Serialization

Data Serialization Options

Differences between VMware GemFire Serialization (PDX or Data Serializable) and Java

Serialization
VMware GemFire PDX Serialization

VMware GemFire PDX Serialization Features

Application Versioning of PDX Domain Objects
Portability of PDX Serializable Objects

Reduced Deserialization of Serialized Objects

High Level Steps for Using PDX Serialization

PDX and Multi-Site (WAN) Deployments
Using Automatic Reflection-Based PDX Serialization
Customizing Serialization with Class Pattern Strings

Extending the ReflectionBasedAutoSerializer
Reasons to Extend the ReflectionBased AutoSerializer
Overriding ReflectionBasedAutoSerializer Behavior

Example of Optimizing Autoserialization of Biglnteger and BigDecimal Types

Serializing Your Domain Object with a PdxSerializer

VMware by Broadcom

547
548
549

550

551

551
552
552

552
553
553
555

555

555
556

557

557

558
558

558
559

559
560

560

562

563
563
564
564

566

31

VMware GemFire 9.10 Documentation

Implementing PdxSerializable in Your Domain Object
Programming Your Application to Use PdxInstances
Adding JSON Documents to the Tanzu GemFire Cache
Sorting Behavior of Serialized JSON Fields

Using PdxlnstanceFactory to Create Pdxlnstances

Enum Objects as PdxInstances

Persisting PDX Metadata to Disk
Using PDX Objects as Region Entry Keys

VMware GemFire Data Serialization (DataSerializable and DataSerializer)

Data Serialization with the DataSerializable Interface

Serializing Your Domain Object with DataSerializer
Standard Java Serialization
Events and Event Handling

How Events Work
Events Features
Types of Events
Event Cycle
Event Objects
Event Distribution
Event Handlers and Region Data Storage
Multiple Listeners

Event Ordering

Peer-to-Peer Event Distribution
Events in a Partitioned Region
Events in a Distributed Region

Managing Events in Multi-threaded Applications

Client-to-Server Event Distribution
Server-to-Client Event Distribution
Server-to-Client Message Tracking

Client Interest Registration on the Server

VMware by Broadcom

568

570

572

573

573
574

574

575

575
575

576

576

576

577
577
577
577
578
578
578
579
579

579
579
580

581

581
583
583

584

32

VMware GemFire 9.10 Documentation

Server Failover

Multi-Site (WAN) Event Distribution
Queuing Events for Distribution
Operation Distribution from a Gateway Sender
How a Gateway Sender Processes Its Queue

How a Gateway Sender Handles Batch Processing Failure

List of Event Handlers and Events
Event Handlers

Events
Implementing VMware GemFire Event Handlers

Implementing Cache Event Handlers

Installing Multiple Listeners on a Region

Implementing an AsyncEventListener for Write-Behind Cache Event
Handling

How an AsyncEventListener Works

Operation Distribution from an AsyncEventQueue
Guidelines for Using an AsyncEventListener
Implementing an AsyncEventListener

Processing AsyncEvents

Configuring an AsyncEventListener

How to Safely Modify the Cache from an Event Handler Callback
Operations to Avoid in Event Handlers

How to Perform Distributed Operations Based on Events

Cache Event Handler Examples
Declaring and Loading an Event Handler with Parameters
Installing an Event Handler Through the API
Installing Multiple Listeners on a Region

Installing a Write-Behind Cache Listener
Configuring Peer-to-Peer Event Messaging
Configuring Client/Server Event Messaging

Configuring Highly Available Servers

VMware by Broadcom

585

586
586

586
587
587

588
588
590

591

591
593

594

594
595
595
596
596
597

599
599
600

600
600
601
602

602

603

603

605

33

VMware GemFire 9.10 Documentation

Highly Available Client/Server Event Messaging
Change Server Queue Synchronization Frequency

Set Frequency of Orphan Removal from the Secondary Queues

Implementing Durable Client/Server Messaging
Configure the Client as Durable
Configure Durable Subscriptions and Continuous Queries
Program the Client to Manage Durable Messaging
Initial Operation
Disconnection
Reconnection
Durable Event Replay

Application Operations During Interest Registration
Tuning Client/Server Event Messaging
Conflate the Server Subscription Queue
Limit the Server's Subscription Queue Memory Use
Tune the Client's Subscription Message Tracking Timeout
Configuring Multi-Site (WAN) Event Queues
Persisting an Event Queue

Configuring Dispatcher Threads and Order Policy for Event Distribution
Using Multiple Dispatcher Threads to Process a Queue
Performance and Memory Considerations
Configuring the Ordering Policy for Serial Queues

Examples—Configuring Dispatcher Threads and Ordering Policy for a Serial Gateway Sender

Queue

Conflating Events in a Queue

Examples—Configuring Conflation for a Gateway Sender Queue
Delta Propagation

How Delta Propagation Works
General Characteristics of Delta Propagation

Supported Topologies and Limitations

VMware by Broadcom

605
606
607

608
608
609
609

611
611
611
612
613

613

614

615

616

617

618

619
620
621
621

622

623
624

626

626
627
628

34

VMware GemFire 9.10 Documentation

When to Avoid Delta Propagation

Delta Propagation Properties
delta-propagation

cloning-enabled
Implementing Delta Propagation
Errors In Delta Propagation
Delta Propagation Example
Querying

Querying FAQ and Examples
How do | write and execute a query against a VMware GemFire region?
Can | see query string examples, listed by query type?
Which APIs should | use to write my queries?
How do | invoke an object’s method in a query?
Can | invoke a static method on an object in a query?
How do | write a reusable query?
When should | create indexes to use in my queries?
How do | create an index?
Can | create indexes on overflow regions?
Can | query a partitioned region? Can | perform a join query on a partitioned region?
How can | improve the performance of a partitioned region query?
Which query language elements are supported in VMware GemFire?
How do | debug queries?
Can | use implicit attributes or methods in my query?
Can | instruct the query engine to use specific indexes with my queries?

How do | perform a case-insensitive search on a field in OQL?
Querying with OQL
Advantages of OQL

Writing and Executing a Query in VMware GemFire
Querying a Local Cache

Querying a Server Cache from a Client

Building a Query String

VMware by Broadcom

629

629
629

630

631

632

633

635

636
636
637
646
646
646
646
647
647
647
647
648
648
648
649
649
649

650

650

651
651

651

652

35

VMware GemFire 9.10 Documentation

IMPORT Statement 653
FROM Clause 653
Path Expressions 653
Aliases and Synonyms 654
Object Typing 654
WHERE Clause 655
Implementing equals and hashCode Methods 655
Querying Serialized Objects 656
Attribute Visibility 656
Joins 657
LIKE 657
Case Insensitive Fields 658
Method Invocations 658
Enum Objects 659
IN and SET 660
Double.NaN and Float.NaN Comparisons 661
Arithmetic Operations 662
SELECT Statement 662
SELECT Statement Results 663
DISTINCT 663
LIMIT 663
ORDER BY 664
Preset Query Functions 664
OQL Aggregate Functions 665
GROUP BY 665
MIN 666
MAX 666
COUNT 667
SUM 668
AVG 669
OQL Syntax and Semantics 670
Supported Character Sets 671
Supported Keywords 671

VMware by Broadcom

VMware GemFire 9.10 Documentation

Case Sensitivity
Comments in Query Strings

Query Language Grammar
Language Grammar

Language Notes

Operators
Comparison Operators
Logical Operators
Unary Operators
Arithmetic Operators

Map and Index Operators

Dot, Right Arrow, and Forward Slash Operators

Reserved Words

Reserved Words

Supported Literals

The Difference Between NULL and UNDEFINED

Comparing Values With java.util.Date
Type Conversion

Binary Numeric Promotion

Method Invocation Conversion
Temporal Type Conversion

Enum Conversion

Query Evaulation of Float.NaN and Double.NaN

Query Language Restrictions and Unsupported Features

Advanced Querying

Performance Considerations

Monitoring Low Memory When Querying

Partitioned Region Queries and Low Memory

Timeouts for Long-Running Queries

Using Query Bind Parameters

VMware by Broadcom

672

673

673
673
675

676
676
676
676
677
677
677

677
678

678
679
679
680
680
680
680
680

681

681

681

682

682
683

683

683

37

VMware GemFire 9.10 Documentation

Sample Code

Using Query Bind Parameters in the Path Expression

Querying Partitioned Regions

Using ORDER BY on Partitioned Regions
Querying a Partitioned Region on a Single Node
Optimizing Queries on Data Partitioned by a Key or Field Value

Performing an Equi-Join Query on Partitioned Regions

Partitioned Region Query Restrictions

Query Restrictions in Partitioned Regions
Query Debugging
Working with Indexes

Tips and Guidelines on Using Indexes

Tips for Writing Queries that Use Indexes

Creating, Listing and Removing Indexes
Creating Indexes
Listing Indexes

Removing Indexes

Creating Key Indexes

Examples of Creating a Key Index

Creating Hash Indexes
Hash Index Performance
Performance Considerations
Limitations

Examples of Creating a Hash Index

Creating Indexes on Map Fields ("Map Indexes")

Creating Multiple Indexes at Once

Maintaining Indexes (Synchronously or Asynchronously) and Index

Storage

VMware by Broadcom

684
684

684

685

685

688

689

691
691

692

693

695
695

695
696
696

697

697
698

698
698
698
699
699

699

700

701

38

VMware GemFire 9.10 Documentation

Index Maintenance Behavior

Internal Index Structure and Storage
Using Query Index Hints
Using Indexes on Single Region Queries
Using Indexes with Equi-Join Queries
Using Indexes with Overflow Regions
Using Indexes on Equi-Join Queries using Multiple Regions
Index Samples
Continuous Querying

How Continuous Querying Works
Logical Architecture of Continuous Querying
Data Flow with CQs
CQ Events

Region Type Restrictions for CQs

Implementing Continuous Querying

Continuous Query Implementation

Managing Continuous Querying
Using CQs from a RegionService Instance
States of a CQ
CQ Management Options
Managing CQs and Durable Clients Using gfsh

Retrieving an Initial Result Set of a CQ

Transactions

Adherence to ACID Promises
Atomicity
Consistency
Isolation

Durability

Code Examples

VMware by Broadcom

701
701

702

703

703

704

705

706

707

707
708
708
709

710

710
713

714
714
714
715
715
715

716

716
716
717
717
717

717

39

VMware GemFire 9.10 Documentation

Transaction within an Application 717
Transaction within a Function 719
Design Considerations 721
Colocate Partitioned Regions 721
Region Operations Return References 721
First Operation with Mixed Region Types 722
Allowing Transactions to Work on Persistent Regions 722
Mixing Transactions with Queries and Indexes 722
Mixing Transactions with Eviction 722
Mixing Transactions with Expiration 722
Mixing Transactions with Non-transactional Operations 723
Changing the Handling of Dirty Reads 723
Function Execution 723
How Function Execution Works 724
Where Functions Are Executed 724
How Functions Are Executed 724
Highly Available Functions 725
Function Execution Scenarios 725
Executing a Function in VMware GemFire 730
Write the Function Code 730
Register the Function Automatically by Deploying a JAR 732
Register the Function Programmatically 733
Run the Function 733
Write a Custom Results Collector 735
Targeting Single Members of a Member Group or Entire Member Groups 735
Developing REST Applications for VMware GemFire 736
VMware GemFire REST APl Overview 737
Prerequisites and Limitations for Writing REST Applications 737
Setup and Configuration 738
REST API Libraries 738
Enabling the REST API 738

VMware by Broadcom

VMware GemFire 9.10 Documentation

Enabling the REST API on Multiple Servers

Starting the REST API Service

Configure PDX for your cluster
Start the REST API Service on One or More Servers

Verify That The Service is Running

Implementing Authentication
Programmatic Startup

Using the Swagger Ul to Browse REST APIs

Developing REST Applications
Working with Regions
Listing Available Regions
Reading Region Data
Adding or Modifying Region Data
Deleting Region Data
Working with Queries
Listing Queries
Creating a New Query
Executing a Prepared Query
Modifying a Prepared Query
Deleting a Prepared Query
Executing an Ad-Hoc Query
Working with Functions
Listing Functions

Executing Functions

Sample REST Applications
#1. REST Java Client (RestClientApp.java)
#1a. VMware GemFire Cache Java Client (MyJavacClient.java)
#1b. REST Client Utilities (RestClientUtils.java)
#1c. Date and Time Utilities (DateTimeUltils.java)
#1d. Person Class (Person.java)
#1e. Gender Class (Gender.java)
#2. Ruby REST Client (restClient.rb)

#3. Python REST Client (restClient.py)

VMware by Broadcom

738

739
739

740

740

741

742

742

747
747
747
748
750
753
754
754
754
754
756
757
757
757
757
757

758
759
760
762
763
764
767
767

769

41

VMware GemFire 9.10 Documentation

Troubleshooting and FAQ 771
Checking if the REST API Service is Up and Running 771
Key Types and JSON Support 771
Unsupported JSON Example 1 771
Unsupported JSON Example 2 772
Unsupported JSON Example 3 772
Unsupported JSON Example 4 772

VMware GemFire REST API Reference 773

Region Endpoints 774

GET /geode/V1 775
Resource URL 775
Parameters 775
Example Request 775
Example Success Response 775
Error Codes 776

GET /geode/Vv1/{region} 776
Resource URL 776
Parameters 776
Example Request 777
Example Success Response 777
Error Codes 778

GET /geode/Vv1/{region}/keys 778
Resource URL 778
Parameters 778
Example Request 778
Example Success Response 778
Error Codes 779

GET /geode/Vvl/{region}/{key} 779
Resource URL 779
Parameters 779
Example Request 779
Example Responses 779
Error Codes 780

VMware by Broadcom

VMware GemFire 9.10 Documentation

GET /geode/vi/{region}/{key1},{key2},...,{keyN} 780
Resource URL 780
Parameters 780
Example Requests 781
Example Success Responses 781
Error Codes 783
Example Error Response 783
Implementation Notes 784

HEAD /geode/vi/{region} 784
Resource URL 784
Parameters 784
Example Request 784
Example Success Response 784
Error Codes 785

POST /geode/vl/{region}?key=<key> 785
Resource URL 785
Parameters 785
Example Request 785
Example Success Response 786
Error Codes 786
Example Error Response 786

PUT /geode/Vvl/{region}/{key} 787
Resource URL 787
Parameters 787
Example Request 787
Example Success Response 787
Error Codes 788
Implementation Notes 788

PUT /geode/Vvl/{region}/{key1},{key2},.. {keyN} 788
Resource URL 788
Parameters 788
Example Request 788
Example Success Response 789
Error Codes 789

VMware by Broadcom

VMware GemFire 9.10 Documentation

PUT /geode/Vv1/{region}/{key}?op=REPLACE 790
Resource URL 790
Parameters 790
Example Request 790
Example Success Response 790
Error Codes 791

PUT /geode/Vvi/{region}/{key}?op=CAS 791
Resource URL 791
Parameters 791
Example Request 793
Example Success Response 794
Error Codes 794
Example Error Response 794
Implementation Notes 795

DELETE /geode/Vvi/{region} 795
Resource URL 795
Parameters 795
Example Request 796
Example Success Response 796
Error Codes 796

DELETE /geode/vi/{region}/{key} 796
Resource URL 796
Parameters 796
Example Request 796
Example Success Response 796
Error Codes 796

DELETE /geode/Vv1/{region}/{key1},{key2},.. {keyN} 797
Resource URL 797
Parameters 797
Example Request 797
Example Success Response 797
Error Codes 797

Query Endpoints 797

GET /geode/vl/queries 798

VMware by Broadcom

VMware GemFire 9.10 Documentation

Resource URL
Parameters
Example Request
Example Response

Error Codes

POST /geode/vl/queries?id=<queryld>&qg=<OQL-statement>

Resource URL

Parameters

Example Request

Example Success Response

Error Codes

POST /geode/vl/queries/{queryld}
Resource URL
Parameters
Example Request
Example Success Response

Error Codes

PUT /geode/vl/queries/{queryld}
Resource URL
Parameters
Example Request
Example Success Response
Error Codes

Implementation Notes

DELETE /geode/vil/queries/{queryld}
Resource URL
Parameters
Example Request
Example Success Response

Error Codes

GET /geode/vl/queries/adhoc?q=<OQL-statement>

Resource URL
Parameters

Example Request

VMware by Broadcom

798
798
798
798
799

799
799
799
799
800
800

800
800
800

801
801

802

803
803
803
803
804
804
804

804
804
804
804
805

805

805
805

805
806

45

VMware GemFire 9.10 Documentation

Example Success Response 806
Error Codes 806
Function Endpoints 807
GET /geode/v1/functions 807
Resource URL 807
Parameters 807
Example Request 808
Example Success Response 808
Error Codes 808
POST /geode/vi/functions/{functionld} 808
Resource URL 808
Parameters 808
Example Requests 810
Example Success Responses 8M
Error Codes 8M
Administrative Endpoints 811
\[HEAD | GET\] /geode/Vv1/ping 812
Resource URL 812
Parameters 812
Example Request 812
Example Success Response 812
Error Codes 812
GET /geode/vl/servers 812
Resource URL 812
Parameters 812
Example Request 813
Example Success Response 813
Error Codes 813
Tools and Modules 814
gfsh 814
What You Can Do with gfsh 815

VMware by Broadcom

VMware GemFire 9.10 Documentation

Starting gfsh

Configuring the gfsh Environment
JAR Libraries in CLASSPATH
Machine Hostname
Configuring gfsh Security
Configuring gfsh Environment Variables
Configuring gfsh Session Logging
Member Log Files
Viewing Standard Output and Standard Error
Tab Completion
Command History and gfsh.history
JMX Manager Update Rate and System Monitoring

Formatting of Results
Useful gfsh Shell Variables

Basic Shell Features and Command-Line Usage
Tutorial—Performing Common Tasks with gfsh

Quick Reference of gfsh Commands by Functional Area
gfsh Command Help

alter
alter async-event-queue
alter disk-store
alter query-service
alter region

alter runtime
backup disk-store
change loglevel
clear defined indexes

close

close durable-client

close durable-cq

VMware by Broadcom

816

817
817
817
817
818
818
818
819
819
819

820

820

820

821

824

831

832

835
835
836
838
839
843

845

845

846

847
847

848

47

VMware GemFire 9.10 Documentation

compact
compact disk-store

compact offline-disk-store

configure

configure pdx
connect

Create
create async-event-queue
create defined indexes
create disk-store
create gateway-receiver
create gateway-sender
Create index
create jndi-binding
create lucene index

create region

debug
define index
deploy

describe

describe client

describe config

describe connection
describe disk-store
describe jndi-binding
describe lucene index
describe member
describe offline-disk-store
describe query-service

describe region

destroy

destroy async-event-queue

VMware by Broadcom

849
849
850

850
850

852

854
855
857
858
859
861
864
865
867
868

873

874

875

876
876
877
878
878
879
880
880
881
883
883

884
885

48

VMware GemFire 9.10 Documentation

destroy disk-store 885
destroy function 886
destroy gateway-receiver 886
destroy gateway-sender 887
destroy index 888
destroy jndi-binding 888
destroy lucene index 889
destroy region 889
disconnect 890
echo 890
execute function 891
execute function 891
exit 892
export 892
export cluster-configuration 893
export config 893
export data 894
export logs 895
export offline-disk-store 897
export stack-traces 897
gac 898
get 898
help 899
hint 900
history 901
import 902
import cluster-configuration 902
import data 903
list 904
list async-event-queues 905

VMware by Broadcom

VMware GemFire 9.10 Documentation

list clients

list deployed

list disk-stores
list durable-cqgs
list functions

list gateways

list indexes

list jndi-binding
list lucene indexes
list members

list regions
load-balance gateway-sender

locate entry

locate entry
netstat
pause gateway-sender
pdx rename
put
query
rebalance
remove

resume
resume async-event-queue-dispatcher

resume gateway-sender
revoke missing-disk-store
run

search lucene

search lucene

set variable

VMware by Broadcom

905
906
906
907
908
909
910
1l
912
912

913

914

914
915

915

917

918

919

920

921

922

923
923
923

924

925

926
926

927

50

VMware GemFire 9.10 Documentation

sh 927
show 928
show dead-locks 928
show log 929
show metrics 930
show missing-disk-stores 931
show subscription-queue-size 932
shutdown 932
sleep 933
start 934
start gateway-receiver 934
start gateway-sender 935

start jconsole 936

start jvisualvm 938
start locator 939
start pulse 941
start server 942
Examples 947

start vsd 947
status 948
status cluster-config-service 948
status gateway-receiver 949
status gateway-sender 950
status locator 951
status server 952
stop 952
stop gateway-receiver 952
stop gateway-sender 953
stop locator 955
stop server 955
undeploy 956
validate offline-disk-store 957

VMware by Broadcom

VMware GemFire 9.10 Documentation

version

Creating and Running gfsh Command Scripts
Running gfsh Scripts

Running gfsh Commands on the OS Command Line

Running Multiple gfsh Commands on the OS Command Line
Mapping cache.xml Elements to gfsh Configuration Commands
Gemcached
How Gemcached Works

Deploying and Configuring a Gemcached Server
Embedding a Gemcached server ina VMware GemFire Java Application
Starting a Gemcached Server Using a gfsh Command

Configuring a Gemcached Server with the gemfire.properties File
Advantages of Gemcached over Memcached
HTTP Session Management Modules

HTTP Session Management Quick Start
Quick Start Instructions
Additional Quick Start Instructions for tc Server Module
Additional Quick Start Instructions for Tomcat Module

Additional Instructions for AppServers Module

Advantages of Using VMware GemFire for Session Management

Common Topologies for HTTP Session Management

Peer-to-Peer Configuration

Client/Server Configuration

General Information on HTTP Session Management
Sticky Load Balancers
Session Expiration
Making Additional VMware GemFire Property Changes
Module Version Information

Object Serialization

VMware by Broadcom

957

958
958

958
959

959

960

960

962
962
962
962

963

964

965
965
966
966
967

967

969
969

969

970
970
970
970

971
971

52

VMware GemFire 9.10 Documentation

Session State Log Files 971
Adding FINE Debug Logging to catalina.log 971
Add Session State Logging to the VMware GemFire Server Log 972
Adding Additional Debug Logging to the VMware GemFire Server Log 972
Add Debug Logging to gemfire_modules.log 972

HTTP Session Management Module for Pivotal tc Server 973

Installing the HTTP Module for tc Server 973

Setting Up the HTTP Module for tc Server 974
Setup and Start 974
Starting the Application Server 975

Changing the Default VMware GemFire Configuration in the tc Server

975

Module
Using a Different Locator Port 976
Overriding Region Attributes 977
Interactive Configuration Reference for the tc Server Module 977
HTTP Session Management Module for Tomcat 979
Installing the HTTP Module for Tomcat 980
Setting Up the HTTP Module for Tomcat 980
Peer-to-Peer Setup 981
Client/Server Setup 981
Starting the Application Server 983
Verifying that VMware GemFire Started 983
Changing the Default GemFire Configuration in the Tomcat Module 983
Changing VMware GemFire Distributed System Properties 984
Changing Cache Configuration Properties 985
HTTP Session Management Module for AppServers 987
Setting Up the HTTP Module for AppServers 987
Manual Configuration 987
Peer-to-Peer Setup 989
Client/Server Setup 990
Starting the Application Server 991

VMware by Broadcom

VMware GemFire 9.10 Documentation

Verifying that VMware GemFire Started

Changing the Default VMware GemFire Configuration in the AppServers
Module

Changing VMware GemFire Distributed System Properties

Changing Cache Configuration Properties

Common VMware GemFire Configuration Changes for AppServers
Overriding Region Attributes

Apache Lucene® |ntegration

Using the Apache Lucene Integration
Key Points
Creating a Lucene Index
Creating a Lucene Index: Java APl Example
Creating a Lucene Index: Gfsh Example
Creating a Lucene Index: XML Example
Using FlatFormatSerializer to Index Fields within Nested Objects
Queries
Querying a Lucene Index: Gfsh Example
Querying a Lucene Index: Java APl Example
Destroying an Index
Destroying a Lucene Index: Java APl Example
Destroying a Lucene Index: Gfsh Example
Changing an Index

Additional Gfsh Commands
Requirements and Caveats

Tanzu Observability by Wavefront

Configure GemFire Metrics
Enable Wavefront-Viewable Metrics
Example

GemFire Setup

Telegraf and Wavefront Proxy Setup
Verification and Troubleshooting suggestions
Default Dashboard Metrics

Tanzu GemFire Cluster Metrics

Tanzu GemFire Features Metrics

VMware by Broadcom

991

991

992

993

995
995

996

996
996
996
997
997
998
998

1000

1000

1000

1000

1000

1000

1000

1001

1001

1003
1003
1004
1006
1006
1007
1008
1009
1009

1009

54

VMware GemFire 9.10 Documentation

WAN Gateway Metrics

VMware GemFire Pulse

Pulse System Requirements

Running Pulse in Embedded Mode (Quick Start)
Hosting Pulse on a Web Application Server

Configuring Pulse Authentication
Configuring Pulse to use HTTPS
Configuring Pulse to use Security Manager
Configuring Pulse to use a Custom Security Profile

Configuring Pulse to use an OAuth Authentication Provider

Using Pulse Views
Cluster View
Member View
Region View
Data Browser

Alerts Widget

Visual Statistics Display
VSD System Requirements
VSD Overview

Installing and Running VSD
Install VSD
Configure Statistics Sampling in GemFire
Start VSD
Load a Statistics File into VSD
Maintain a Current View of the Data File

About Statistics

.gfs Time Zone Information for Matching Statistics to Log Files

Viewing Statistics in VSD

Statistic Levels

Select Statistics for Viewing

VMware by Broadcom

on

1011

1012

1012

1013

1015
1015
1016
1016

1017

1019
1019
1023
1026
1028
1029

1030

1031

1031

1033
1033
1034
1034
1035
1035
1035

1035

1036
1036

1036

55

VMware GemFire 9.10 Documentation

Using VSD Chart Templates
Chart Menu (Chart Window)
Line Menu (Chart Window)

Customizing Your VSD Chart

View Statistic Information

Quick Guide to Useful Statistics

Runtime Configuration

Resources

Throughput for Different Operations

VMware GemFire Reference

gemfire.properties and gfsecurity.properties: VMware GemFire

Properties

Using Non-ASCII Strings in VMware GemFire Property Files

cache.xml

cache.xml Quick Reference
Cache XML Requirements
Variables in cache.xml

Configuration Quick Reference
<cache> Element Hierarchy

<cache> Element Reference
<cache-transaction-manager>
<transaction-listener>
<transaction-writer>
<dynamic-region-factory>
<disk-dir>
<gateway-sender>

<gateway-event-filter>

<gateway-event-substitution-filter>

<gateway-transport-filter>
<gateway-receiver>
<gateway-transport-filter>
<gateway-conflict-resolver>

<async-event-queue>

VMware by Broadcom

1037
1038
1039
1040
1040

1040
1041
1041
1042

1044

1044

1064

1064

1065
1065
1066

1066

1067

1069
1071
1071
1071
1071

1072
1072
1075
1075
1076
1076
1077
1078
1078

56

VMware GemFire 9.10 Documentation

<async-event-listener> 1080
<cache-server> 1081
<client-subscription> 1082
<custom-load-probe> 1083
<pool> 1083
<locator> 1085
<server> 1086
<disk-store> 1086
<disk-dirs> 1087
<disk-dir> 1088
<pdx> 1088
<pdx-serializer> 1089
<region-attributes> 1089
<key-constraint> 1099
<value-constraint> 1099
<region-time-to-live> 1100
<expiration-attributes> 100
<custom-expiry> 101
<region-idle-time> 102
<expiration-attributes> 102
<custom-expiry> 103
<entry-time-to-live> 104
<expiration-attributes> 104
<custom-expiry> 1105
<entry-idle-time> 1106
<expiration-attributes> 1106
<custom-expiry> 107
<partition-attributes> 1108
<partition-resolver> 1109
<partition-listener> 1109
<fixed-partition-attributes> 1109
<membership-attributes> 1110
<required-role> nn
<subscription-attributes> m2
<cache-loader> m2
<cache-writer> m3
<cache-listener> m3

VMware by Broadcom

VMware GemFire 9.10 Documentation

<compressor> m3
<eviction-attributes> ma
<lru-entry-count> 114
<lru-heap-percentage> ms
<lru-memory-size> m5
<jndi-bindings> S
<jndi-binding> m7
<config-property> 1120
<config-property-name> 121
<config-property-type> 121
<config-property-value> 121
<region> n21
<index> 122
<lucene:index> 123
<lucene:field> 123
<entry> 124
<key> 124
<string> 124
<declarable> 124
<value> 125
<string> 125
<declarable> 125
<region> 125
<function-service> 126
<function> 126
<resource-manager> 126
<serialization-registration> 127
<serializer> 128
<instantiator> 128
<backup> 128
<initializer> 128
<declarable> 129
<class-name> and <parameter> 129
<declarable> 129
<string> 130
<client-cache> Element Hierarchy 1130

VMware by Broadcom

VMware GemFire 9.10 Documentation

<client-cache> Element Reference 1132
<cache-transaction-manager> 133
<transaction-listener> 133
<transaction-writer> 133
<pool> 134
<locator> 136
<server> 137
<disk-store> 137
<disk-dirs> 138
<disk-dir> 139
<pdx> 139
<pdx-serializer> 140
<region-attributes> 140
<key-constraint> 151
<value-constraint> 152
<region-time-to-live> 152
<expiration-attributes> 153
<custom-expiry> 153
<region-idle-time> 154
<expiration-attributes> 154
<custom-expiry> 155
<entry-time-to-live> 156
<expiration-attributes> 156
<custom-expiry> 157
<entry-idle-time> 158
<expiration-attributes> 158
<custom-expiry> 159
<cache-loader> 1160
<cache-writer> 1160
<cache-listener> 1161
<eviction-attributes> 1161
<lIru-entry-count> 1161
<lru-heap-percentage> 162
<lru-memory-size> 162
<jndi-bindings> 163
<jndi-binding> 163
<config-property> 1166

VMware by Broadcom

VMware GemFire 9.10 Documentation

<config-property-name>
<config-property-type>
<config-property-value>
<region>
<region-attributes>
<index>

<entry>

<key>

<string>

<declarable>

<value>

<string>

<declarable>

<region>
<function-service>
<function>
<resource-manager>
<serialization-registration>
<serializer>
<instantiator>

<initializer>
Region Shortcuts

Region Shortcuts Quick Reference
Exceptions and System Failures
Memory Requirements for Cached Data

Core Guidelines for VMware GemFire Data Region Design
Memory Usage Overview
Calculating Application Object Overhead
Using Key Storage Optimization
Measuring Cache Overhead
Estimating Management and Monitoring Overhead
Determining Object Serialization Overhead

Calculating Socket Memory Requirements

VMware GemFire Statistics List

VMware by Broadcom

1166
1166
167
167
167
179
1180

181
181
181

181

181
182
182
183
183
184
185
185
186
186

1186

187

1190

190

1191
191
192
193
194
195
195

1196

1198

60

VMware GemFire 9.10 Documentation

Cache Performance (CachePerfStats) 199
Cache Server (CacheServerStats) 1202
Client-Side Notifications (CacheClientUpdaterStats) 1205
Client-to-Server Messaging Performance (ClientStats & ClientSendStats) 1206
Client Connection Pool (PoolStats) 1215
Continuous Querying (CqQueryStats) 1216
Delta Propagation (DeltaPropagationStatistics) 1218
Disk Space Usage (DiskDirStatistics) 1219
Disk Store Statistics (DiskStoreStatistics) 1219
Disk Usage and Performance (DiskRegionStatistics) 1221
Distributed System Messaging (DistributionStats) 1222
Distribution Statistics Related to Slow Receivers 1230
Distributed Lock Services (DLockStats) 1230
Function Execution (FunctionStatistics) 1233
Gateway Queue (GatewaySenderStatistics) 1233
Indexes (IndexStats) 1234
Query-Independent Statistics on Indexes 1234
Query-Dependent Statistics on Indexes 1234
JVM Performance 1235
VMware GemFire JVM Resource Manager (ResourceManagerStats) 1235
JVM Java Runtime (VMStats) 1235
JVM Garbage Collection (VMGCStats) 1236
JVM Garbage Collector Memory Pools (VMMemoryPoolStats) 1236
JVM Heap Memory Usage (VMMemoryUsageStats) 1237
JVM Thread stats (VMThreadStats) 1237
Locator (LocatorStats) 1237
Lucene Indexes (LucenelndexStats) 1238
Off-Heap (OffHeapMemoryStats) 1238
Operating System Statistics - Linux 1239
Linux Process Performance (LinuxProcessStats) 1239
Linux Operating System (LinuxSystemStats) 1239

Partitioned Regions

(PartitionedRegion<partitioned_region_name>Statistics) 1241
Partitioned Region Statistics on Partition Messages 1242
Partitioned Region Statistics on Data Entry Caching 1243
Partitioned Region Statistics on Redundancy 1243
Region Entry Eviction - Count-Based (LRUStatistics) 1244

VMware by Broadcom

VMware GemFire 9.10 Documentation

Region Entry Eviction - Heap-based eviction (HeapLRUStatistics)
Region Entry Eviction - Size-based (MemLRUStatistics)

Server Notifications for All Clients (CacheClientNotifierStatistics)
Server Notifications for Single Client (CacheClientProxyStatistics)
Server-to-Client Messaging Performance (ClientSubscriptionStats)

Statistics Collection (StatSampler)
Transaction Reference Material
JTA Global Transactions with VMware GemFire

Coordinating with External JTA Transaction Managers

How to Run a JTA Transaction Coordinated by an External Transaction Manager

Using VMware GemFire as the “Last Resource” in a Container-Managed

JTA Transaction

How to Run JTA Transactions with VMware GemFire as a “Last Resource”

Behavior of VMware GemFire Cache Writers and Loaders Under JTA

Turning Off JTA Transactions
Experimental Features

Cluster Management Service
Cluster Management Service REST API

Cluster Management Service Java API
VMware GemFire Micrometer

Configuration and Publishing
Meter configuration
Publishing metrics using a meter registry

Add Your jar File to the classpath When You Start a Server or Locator

Micrometer Meters and Tags
Micrometer Meters
Meters supplied by Micrometer
Meters specific to VMware GemFire

Common tags

Redis Adapter

VMware by Broadcom

1245
1245
1246
1246
1247
1247

1247

1248

1249
1249

1250

1251

1252

1252

1254

1254
1255

1255

1256

1256
1256
1256

1258

1258
1258
1259
1259
1260

1260

62

VMware GemFire 9.10 Documentation

Using the Redis Adapter 1260
How the Redis Adapter Works 1261
Advantages of VMware GemFire over a Redis Server 1262
Automated Rebalancing of Partitioned Region Data 1262
Glossary 1264
ACK wait threshold 1264
administrative event 1264
API 1264
application program 1264
attribute 1264
attribute path 1264
blocking 1264
cache 1264
cache-local 1265
cache.xml 1265
cache event 1265
cache listener 1265
cache loader 1265
cache miss 1265
cache server 1265
cache transaction 1265
cache writer 1266
client 1266
client region 1266
cluster configuration service 1266
collection 1266
commit 1266
concurrency-level 1266
conflation 1267
connection 1267
consumer 1267
coordinator 1267
data accessor 1267
data entry 1267
data fabric 1267
data-policy 1268

VMware by Broadcom

VMware GemFire 9.10 Documentation

data region (region) 1268
data store 1268
deadlock 1268
destroy 1268
disk region 1268
disk-store 1268
distributed cache 1268
distributed system 1269
distributed-ack scope 1269
distributed-no-ack scope 1269
entry 1269
entry key 1269
entry value 1269
event 1269
eviction-attributes 1269
expiration 1269
expiration action 1270
factory method 1270
forced disconnect 1270
gateway receiver 1270
gateway sender 1270
gemfire.properties 1270
global scope 1270
global transaction 1270
HTTP 1271
idle timeout 1271
initial capacity 127
invalid 1271
invalidate 1271
JDBC 1271
JMX 1271
JNDI 127
JTA 127
JVM 1272
key constraint 1272
listener 1272
load factor 1272

VMware by Broadcom

VMware GemFire 9.10 Documentation

local 1272
local scope 1272
locator 1272
LRU 1273
machine 1273
member 1273
message queue 1273
mirroring 1273
multicast 1273
named region attributes 1273
netLoad 1273
netSearch 1274
netWrite 1274
network partitioning 1274
oQL 1274
off-heap memory 1274
overflow 1274
oplog / operation log 1274
partition 1274
partitioned region 1274
peer 1275
persistent region 1275
persistent-partition 1275
persistent-replicate 1275
producer 1275
pull model 1275
push model 1275
query string 1276
race condition 1276
range-index 1276
region 1276
region attributes 1276
region data 1276
region entry 1276
region shortcut 1276
remote 1276
replicated region 1277

VMware by Broadcom

VMware GemFire 9.10 Documentation

replicate 1277
resource manager 1277
rollback 1277
scope 1277
SELECT statement 1277
serialization 1277
server 1277
server group 1278
server connection pool 1278
socket 1278
SQL 1278
SSL 1278
standalone distributed system 1278
statistics enabled 1278
struct 1278
structure-index 1278
system member 1279
TCP 1279
timeout 1279
time-to-live 1279
transaction 1279
transaction listener 1279
transaction writer 1279
transactional view 1279
transport layer 1279
TTL 1280
UDP 1280
unicast 1280
URI 1280
user attribute 1280
value constraint 1280
value-index 1280
view 1280
Virtual Machine 1281
VMware virtual machine 1281
XML 1281
XML schema definition 1281

VMware by Broadcom

VMware GemFire 9.10 Documentation

XPath
XSD

VMware by Broadcom

1281
1281

67

VMware GemFire 9.10 Documentation

VMware GemFire® 9.10 Documentation

This documentation describes product concepts and provides complete setup instructions for

VMware GemFire.

VMware GemFire shares a code base and documentation with Apache Geode. In this
documentation, “VMware GemFire” and “Apache Geode” are equivalent terms.

VMware GemFire 9.10

VMware GemFire 9.10 Release Notes
Supported Configurations and System Requirements
Getting Started
o VMware GemFire in 15 Minutes or Less
o Installing VMware GemFire
o Upgrading VMware GemFire
Configuring and Running a Cluster
Basic Configuration and Programming
Topologies and Communication
Managing VMware GemFire
Developing with VMware GemFire
Developing REST Applications for VMware GemFire
Tools and Modules
Reference

Experimental Features

Reference Documentation

VMware GemFire 9.10 Java API

VMware GemFire Developer REST API

Documentation of Related Products

Native Client for VMware GemFire

Node.js Client for VMware GemFire

VMware by Broadcom

68

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference
https://docs.vmware.com/en/Native-Client-for-VMware-GemFire/index.html
https://docs.vmware.com/en/Node.js-Client-for-VMware-GemFire/2.0/gf-nodeclient/about-client-users-guide.html

VMware GemFire 9.10 Documentation

VMware GemFire® 9.10 Documentation

This documentation describes product concepts and provides complete setup instructions for

VMware GemFire.

VMware GempFire shares a code base and documentation with Apache Geode. In this
documentation, “VMware GemFire” and “Apache Geode” are equivalent terms.

VMware GemFire 9.10

VMware GemFire 9.10 Release Notes
Supported Configurations and System Requirements
Getting Started
o VMware GemFire in 15 Minutes or Less
o Installing VMware GemFire
o Upgrading VMware GemFire
Configuring and Running a Cluster
Basic Configuration and Programming
Topologies and Communication
Managing VMware GemFire
Developing with VMware GemFire
Developing REST Applications for VMware GemFire
Tools and Modules
Reference

Experimental Features

Reference Documentation

VMware GemFire 9.10 Java API

VMware GemFire Developer REST API

Documentation of Related Products

Native Client for VMware GemFire

Node.js Client for VMware GemFire

VMware by Broadcom

69

https://developer.vmware.com/apis/1659/vmware-gemfire-java-reference
https://docs.vmware.com/en/Native-Client-for-VMware-GemFire/index.html
https://docs.vmware.com/en/Node.js-Client-for-VMware-GemFire/2.0/gf-nodeclient/about-client-users-guide.html

VMware GemFire 9.10 Documentation

VMware GemFire 9.10 Release Notes

VMware GemFire is based on Apache Geode, and they share a common set of documentation.
Therefore, references to both VMware GemFire and Apache Geode appear throughout this
documentation; consider them equivalents.

NOTE: Version 9.10.14 of VMware GemFire incorporates the fix for a security issue
in the log4j component. We recommend that all customers running versions prior to
9.10.14 update to the latest maintenance release. For more information on these
vulnerabilities and their impact on VMware products please see VMSA-2021-0028.

ﬁ Note: VMware GemFire version 9.10 requires Java 8 release 272 or a more recent
version 8 update.

What’s New in VMware GemFire 9.10.18

Released: June 13, 2023

VMware GemFire 9.10.18 is a maintenance release, which includes fixes for the following security
issues:

o CVE-2022-1471

o CVE-2022-41881
o CVE-2022-45688
e CVE-2023-20860
o CVE-2023-22602
o CVE-2023-24998

See Issues Resolved in VMware GemFire 9.10.18 for details.

What’s New in VMware GemFire 9.10.17

Released: November 3, 2022

VMware GemFire 9.10.17 is a maintenance release, which includes fixes for the following security
issues:

o CVE-2022-3171
o CVE-2022-40664
e CVE-2022-42003

VMware by Broadcom

https://www.vmware.com/security/advisories/VMSA-2021-0028.html

VMware GemFire 9.10 Documentation

o CVE-2022-42889

See Issues Resolved in VMware GemFire 9.10.17 for details.

What’s New in VMware GemFire 9.10.16

VMware GemFire 9.10.16 is a maintenance release, which includes fixes for the following security
issues:

e CVE-2022-32532

o CVE-2022-25647

o CVE-2022-22978

o CVE-2022-22968

o CVE-2020-36518

o CVE-2019-17495

« CVE-2016-1000027

See Issues Resolved in VMware GemFire 9.10.16 for details.

What’s New in VMware GemFire 9.10.15

VMware GemFire 9.10.15 is based on Apache Geode 1.12.9.
VMware GemFire 9.10.15 includes a fix for the following security issues:
e CVE-2022-23207
e CVE-2022-34870
The VMware GemFire 9.10.15 release includes the following improvement:

GEM-3518: Prometheus metrics, formerly a single JAR file (prometheus-metrics.jar), are now
distributed as a directory containing multiple JARS (gemfire-prometheus-metrics/*.jar). If you load
the Prometheus JAR explicitly, in a gfsh command for example, you must change the syntax of the
path to load the JARs from the directory.

For example, if your product distribution is located in /gemfire, replace the single-JAR specification
/gemfire/tools/Modules/prometheus-metrics.jar

with
/gemfire/tools/Modules/gemfire-prometheus-metrics/*.jar

In the gfsh start locator Or start server command, this would appear as:

--classpath=/gemfire/tools/Modules/gemfire-prometheus-metrics/*.jar

See Issues Resolved in VMware GemFire 9.10.15 for details regarding issues addressed in this
release.

VMware by Broadcom

VMware GemFire 9.10 Documentation

What’s New in VMware GemFire 9.10.14

VMware GemFire 9.10.14 is based on Apache Geode 1.12.8.

VMware GemFire 9.10.14 is a maintenance release. See Issues Resolved in VMware GemFire
9.10.14 for details regarding issues addressed in this release.

GEODE-9905, GEM-3490: Upgraded log4j to v2.17.1 to address CVE-2021-44832 and CVE-2021-
45105.

What’s New in VMware GemFire 9.10.13

VMware GemFire 9.10.13 is based on Apache Geode 1.12.7.
VMware GemFire 9.10.13 is a maintenance release.

GEODE-9898, GEM-3486: Upgraded log4j to v2.16.0 to address CVE-2021-45046.

What’s New in VMware GemFire 9.10.12

VMware GemFire 9.10.12 is based on Apache Geode 1.12.6.
VMware GemFire 9.10.12 is a maintenance release.

GEODE-9888, GEM-3478: Upgraded log4j to v2.15.0 to address CVE-2021-44228.

What’s New in VMware GemFire 9.10.11

VMware GemFire 9.10.11 is based on Apache Geode 1.12.5.

VMware GemFire 9.10.11 is a maintenance release. See Issues Resolved in VMware GemFire 9.10.11
for details regarding issues addressed in this release.

New in this release:

« VMware GemFire no longer supports Homebrew installation.

What’s New in VMware GemFire 9.10.10

VMware GemFire 9.10.10 is based on Apache Geode 1.12.5.

VMware GemFire 9.10.10 is a maintenance release. See Issues Resolved in VMware GemFire
9.10.10 for details regarding issues addressed in this release.

What’s New in VMware GemFire 9.10.9

VMware GemFire 9.10.9 is based on Apache Geode 1.12.4.
VMware GemFire 9.10.9 includes the following new features and improvements:

« VMware GemFire 9.10.9 provides a new option enabling automatic retries in response to
PdxSerializationException. To apply this mode, the client application must set the system
property gemfire.enableQueryRetryOnPdxSerializationException=true.

For example:

VMware by Broadcom

72

VMware GemFire 9.10 Documentation

client.invoke (() -> {

System.setProperty (

GeodeGlossary.GEMFIRE PREFIX + "enableQueryRetryOnPdxSerializationExceptio

n", "true");

QueryService remoteQueryService = (PoolManager.find(poolName)) .getQueryServic
e();

Query query = remoteQueryService.newQuery ("SELECT DISTINCT id FROM pdxTest");

SelectResults<TestObjectThrowsPdxSerializationException> selectResults = (Sel
ectResults) query.execute () ;
b

What’s New in VMware GemFire 9.10.8

VMware GemFire 9.10.8 is based on Apache Geode 1.12.3.
VMware GemFire 9.10.8 includes the following new features and improvements:

¢ VMware GemFire version 9.10.8 introduces a VMware GemFire metrics module that
provides out-of-the-box integration with Tanzu Observability by Wavefront. Metrics can be
forwarded to Wavefront for analysis and alerting. For more information, see Tanzu
Observability by Wavefront.

« Documentation was added for VMware GemFire Micrometer, an interface for emitting
user-focused metrics to a variety of different consuming Application Performance
Monitoring (APM) tools. This feature was released in Apache Geode v1.11, and so was
included in the Tanzu Gemfire 9.10 release, but it was not previously documented in the
VMware GemFire User Guide.

e« Addressed an issue with deserialization of configuration information from old locators during
rolling upgrades (GEODE-9289, GEM-3253).

¢ A new default setting for a JMX property affecting users of the Java 11 JDK (GEODE-9064,
GEM-3185).

What’s New in VMware GemFire 9.10.7

VMware GemFire 9.10.7 is based on Apache Geode 1.12.2.

VMware GempFire versions 9.10.1 through 9.10.7 are maintenance releases that resolve a variety of
issues—see Resolved Issues for more information.

What’s New in VMware GemFire 9.10

VMware GemFire 9.10 includes the following improvements:

¢ VMware GemFire 9.10 is based on Apache Geode version 1.12, so it also includes features
and bug fixes from Apache Geode version 1.11.

« JMX now exposes the free disk space percentage as a statistic.

e« Asynchronous event queues may now be created in a paused state. This allows better
control of event dispatch, as the dispatch may be delayed until the application is ready for
event consumption.

VMware by Broadcom

73

VMware GemFire 9.10 Documentation

¢ The new pluggable OQL security framework restrict which classes and methods can be
called from queries. A system administrator can change the security posture at runtime.
Provided implementations cover several use cases, as described in Method Invocation
Authorizers.

e There are new endpoints in the REST API for Management, including create and delete
index, list deployed jars, show PDX configuration, and show the supported REST API
versions.

ﬂ Note: VMware GemFire version 9.10 requires Java 8 release 272 or a more recent
version 8 update.

Installing VMware GemFire 9.10

You can download VMware GemFire 9.10 from the VMware GemFire product download page.

For details on how to install VMware GemFire 9.10, see Installing VMware GemFire.

Upgrading to VMware GemFire 9.10

To upgrade from an earlier version of VMware GemFire to the current version, see Upgrading
VMware GemFire. Version-specific upgrade details follow.

Upgrading to Version 9.10.6

The fix for issues GEODE-8799 and GEM-3041: addressed a performance issue by increasing the
defaults for maximum number of pooled message processor threads and maximum partitioned
region message processor threads. NOTE: Users should be aware that if their system had been
hitting the old, lower default maximumes, then upgrading may cause increased use of system
resources as the system is no longer constrained to the old values. If your system depends on
constraining system resources to the old default values, you can set these properties explicitly
using DistributionManager. MAX_THREADS and DistributionManager. MAX_PR_THREADS,
respectively.

The following table shows the old and new maximum values.

System Resource Old Default Value New Default Value
DistributionManager. MAX_THREADS 100 1000
DistributionManager. MAX_PR_THREADS The greater of (CPUs * 4) or 16 The greater of (CPUs * 32) or 200

Upgrading from a Version prior to 9.1.1

When servers are upgraded to this VMware GemFire version from a version prior to version 9.1.1,
their authentication of client messages is deactivated to facilitate rolling upgrades. If your clients are
configured to send authenticated messages, the servers will honor those messages, but will not
enforce authentication until you reinstate authentication on each of the upgraded servers.

To reinstate secure client/server messaging, restart each server with the geode.disallow-
internal-messages-without-credentials System property set to true. For example:

VMware by Broadcom

https://network.tanzu.vmware.com/products/pivotal-gemfire

VMware GemFire 9.10 Documentation

gfsh>start server --name=server name --dir=server config dir \

--J=-Dgeode.disallow-internal-messages-without-credentials=true

Resolved Issues

The VMware GemFire 9.10 release is based on the Apache Geode 1.12 release, which also includes
bug fixes from the Apache Geode 1.11 release. This section describes issue resolutions that
significantly affect VMware GemFire applications. For a list of all issues resolved in Apache Geode
1.12, see the [Geode 1.12 Release Notes]
(https://cwiki.apache.org/confluence/display/GEODE/Release+Notes#ReleaseNotes-1.12.0). For a
list of all issues resolved in Apache Geode 1.11, see the [Geode 1.11 Release Notes]
(https://cwiki.apache.org/confluence/display/GEODE/Release+Notes#ReleaseNotes-1.11.0). Ticket
numbers of the form GEODE-NNNN can be inspected at the Apache Software Foundation site for
Geode issues.

Issues Resolved in VMware GemFire 9.10.18

GEM-4717: Fixed an issue with session MaxlnactiveTime. Setting a new session inactive time now
supersedes the old value as expected.

GEM-4864: Allow an older gfsh client to connect to a newer cluster across major versions.
GEM-5053: Updated netty-transport to 4.1.86 to address CVE-2022-41881.

GEM-5144: Updated shiro-core to 1.11.0 to address CVE-2023-22602.

GEM-5253: Updated commons-fileupload to 1.5 address CVE-2023-24998.

GEM-5318: Updated snakeyaml to 2.0 to address CVE-2022-1471.

GEM-5335: Updated spring_framework to 5.3.26 to address CVE-2023-20860.
GEM-4096: In Pulse, fixed StatRate to correctly calculate the rate per specified period.

GEM-4915: Improved tombstone expiration time calculations to consider large clock jumps.

Issues Resolved in VMware GemFire 9.10.17

GEM-2230: Fixed a hang that occurred during initialization in fixed partitioning when the
configured primary bucket is still being initialized.

GEM-3103: Fixed a hang that could occur when rebalancing a partioned region.
GEM-3168, GEM-3729: Fixed an issue that prevented recovery following a network partition.
GEM-4331: Implemented wider protections against cross-site scripting (XSS) attacks.

GEM-4647. Updated FasterXML Jackson Databind to version 2.13.4.2. This addresses CVE-2022-
42003.

GEM-4746: Updated protobuf-java to version 3.21.8. This addresses CVE-2022-3171.
GEM-4703: Updated Apache Shiro to version 1.10.0. This addresses CVE-2022-40664.

GEM-4710: Updated Apache commons-text to version 1.10.0. This addresses CVE-2022-42889.

Issues Resolved in VMware GemFire 9.10.16

VMware by Broadcom

75

https://issues.apache.org/jira/browse/GEODE

VMware GemFire 9.10 Documentation

GEM-3036, GEM-3507, GEM-3691: Fixed a performance issue caused by a memberld leak in non-
persistent regions.

GEM-3214: Introduce a performance improvement by increasing the default
BridgeServer. HANDSHAKE _POOL _SIZE from 4 to 50.

GEM-3342: Fixed a problem with stuck function threads in long-running TSL 1.3 sessions.
GEM-3433: Restored the visibility of processCpuTime statistics hidden by Java 11.

GEM-3549: Removed an unnecessary restriction on subregion rebalancing. The -include-region
option is no longer mandatory.

GEM-3567: Upgraded jackson to v2.13.2.2 to address CVE-2020-36518.

GEM-3580, GEM-3627: Upgraded spring to v5.3.20 to address CVE-2016-1000027 and CVE-
2022-22968.

GEM-3581: Upgraded springdoc to v2.2.0 and classgraph to v4.8.146 to address CVE-2019-17495.
GEM-3647: Upgraded gson to v2.8.9 to address CVE-2022-25647.

GEM-3677: Upgraded spring-security to v5.5.8, commons-lang3 to v3.12.0, and slf4j to v1.7.32 to
address CVE-2022-22978.

GEM-3684: Removed Server: header from all HTTP responses to mitigate a potential security risk in
the REST API.

GEM-3722: Corrected a cross-site scripting (XSS) vulnerability in Pulse.
GEM-3749: Each GemfireHttpSession is now sized, instead of only the first instance being sized.

GEM-3750: To improve size estimation, modified the ObjectSizer to not size Thread and
ThreadGroup instances by default.

GEM-3761: Fixed ExtendedNumericComparator to properly handle NULL and UNDEFINED
comparison.

GEM-3766: Fixed a case in which findDistributedMembers() throws an unsupported operation
exception.

GEM-3773: Upgraded shiro to v1.9.1 to address CVE-2022-32532.

GEODE-9910: Fixed a problem in which nodes with embedded locators failed to auto-reconnect
following a network partition.

Issues Resolved in VMware GemFire 9.10.15

GEODE-9819: Repaired a server socket leak. The leak happened only when using durable clients. If
a durable client failed to connect with ServerRefusedConnectionException, then a socket was
leaked on the server.

GEODE-9372: Added createSenderTime and createSenderinProgress stats to DistributionStats to
help diagnose data replication spikes.

GEODE-10093, GEM-3541: Fixed an issue in which the DeltaSession getAttribute method logs an
NPE and returns an unserialized value when called on an attribute with a null value.

Issues Resolved in VMware GemFire 9.10.14

VMware by Broadcom 76

VMware GemFire 9.10 Documentation

GEODE-9060, GEM-3488 Cleaned up replicates list for the Gll (Get Initial Image) provider to
improve restarts.

GEODE-9905, GEM-3490: Upgraded log4j to v2.17.1 to address CVE-2021-44832 and CVE-2021-
45105.

Issues Resolved in VMware GemFire 9.10.13

GEODE-9898, GEM-3486: Upgraded log4j to v2.16.0 to address CVE-2021-45046.

Issues Resolved in VMware GemFire 9.10.12

GEODE-9888, GEM-3478: Upgraded log4j to address CVE-2021-44228.

Issues Resolved in VMware GemFire 9.10.11

GEODE-7920, GEM-2863: Improved responsiveness of membership messaging by disallowing the
processing of cache operations directly on the limited pool of membership messaging threads.

GEODE-8542: Limited the size of message chunks to the maximum message size allowed by

org.apache.geode.internal.tcp.Connection.

GEODE-9714, GEODE-9486: Fixed a problem in which some serialized classes failed to deserialize
when validate-serializable-objects is enabled.

GEODE-9767, GEM-3423: Upgraded netty to address CVE-2021-37136 and CVE-2021-37137.
GEODE-9783, GEM-3422: Removed unnecessary .jar files from pulse.war.

GEODE-9825, GEM-3444: Fixed network buffer handling problem (when TLS was deactivated, and
cluster members used disparate socket-buffer-size settings) that could result in hangs.

GEODE-9838, GEM-3445: Improved index maintenance and reliability by adding key details to
debug-level index update logs when an operation fails.

Issues Resolved in VMware GemFire 9.10.10

GEODE-9486: Fixed a case in which serialized classes failed to deserialize when validate-
serializable-objects was enabled.

GEODE-9515: Fixed a situation in which JMX manager failed to start because initialization of an
MBeanServer object was attempted twice.

GEODE-9554, GEM-3345: Fixed a case in which rebalancing a region with multiple redundancy
zones could fail due to the deletion of a bucket in the wrong redundancy zone.

GEODE-9578, GEM-3362: Upgraded spring-security to address CVE-2021-22119.

GEODE-9596, GEM-3326: Fixed an issue in which continuous query events could be lost due to an
HAContainer’s eviction policy.

GEODE-9640, GEM-3373: Fixed a case in which cluster restart issued duplicate event IDs, causing
new operations to be lost on the client.

GEODE-9655, GEM-3245: Updated the Shiro component to take advantage of its improved
parsing behavior.

VMware by Broadcom

VMware GemFire 9.10 Documentation

Issues Resolved in VMware GemFire 9.10.9

GEODE-9141, GEM-3219: Fixed a corrupted DestroyRegionMessage that could cause a cache
server to hang during shutdown.

GEODE-9180: Improved diagnostic logging by adding a warning when a heartbeat generation
thread oversleeps.

GEODE-9295, GEM-3310: Corrected an issue with entry idle expiration that could deactivate all
expiration, resulting in symptoms such as a drastic increase in session state region entry counts
following an upgrade.

GEODE-9346, GEM-2816: Introduced an option allowing a client application to enable automatic
retries in response to PdxSerializationException by setting the system property

gemfire.enableQueryRetryOnPdxSerializationException=true.

GEODE-9380, GEM-3301: Addressed a significant performance degradation in peer-to-peer TLS
handshake times by replacing sleep() calls with thread yields.

Issues Resolved in VMware GemFire 9.10.8
GEODE-9064, GEM-3185: Serialization filtering for JMX/RMI is configured by default on Java 11.

GEODE-9146, GEM-3223: Entry idle expiration on regions with eviction policy set to “destroy” will
now expire entries consistently across the cluster.

GEODE-9289, GEM-3253: Addressed an issue with deserialization of configuration information
from old locators during rolling upgrades.

GEODE-9307, GEM-3293: Corrected increased heap consumption following auto-reconnection
caused by region references that should have been destroyed following a forced disconnect.

GEODE-9331, GEM-3300: Improved the efficiency of creating peer-to-peer connections when
conserve-sockets=false by eliminating a redundant list of weak references.

GEODE-9339, GEM-3302: Upgraded json-smart to address CVE-2021-27568.

GEODE-9363, GEM-3306: Upgraded spring-core to address CVE-2021-22118.

Issues Resolved in VMware GemFire 9.10.7

GEODE-8217, GEM-2909: Fixed a problem with session state serialization and deserialization.
GEODE-8221, GEM-2908: Fixed a failure to update session state.

GEODE-8513, GEM-3030: Cleaned up inefficiencies and spurious errors when storing and
retrieving session state information.

GEODE-8558, GEM-3077: Fixed syntax issue in the syntax for commented Pulse queries.

GEODE-8623, GEM-3088: Corrected a timing issue between DNS and Geode startup that could
result in permanent unknown host exceptions.

GEODE-8671, GEM-3095: Fixed a serialization data corruption issue that arose when two threads
simultaneously accessed a single PdxInstance.

GEODE-8684, GEM-3254: Ensured that the maxInactiveInterval setting is honored when the
commit valve is deactivated.

VMware by Broadcom

78

VMware GemFire 9.10 Documentation

GEODE-8781, GEM- 3252: Fixed a problem with upgrades when attempting to restart from API-
configured regions.

GEODE-8815, GEM-3128: Fixed a case in which cache closure due to an uncaught exception
during member startup was incorrectly treated as a graceful shutdown.

GEODE-8926, GEM-3184: Fixed a problem with missed Continuous Query events when they
occurred at the same time a post-CQ function was executing.

GEODE-8958, GEM-3027: Improved tombstone expiration logic with regard to the handling of
future timestamps.

GEODE-8974, GEM-3205: Fixed vulnerability CVE-2020-13956 in apache-httpclient.
GEODE-8989, GEM-3211: Fixed vulnerability CVE-2021-22112 in spring-security.

GEODE-8996, GEM-3158: Re-established backward compatibility for rebalance and restore
redundancy commands.

GEODE-9010, GEM-3218: Fixed vulnerability CVE-2020-27223 in jetty.

GEODE-9016, GEM-3212: Fixed a null-pointer exception that could occur when a continuous query
generated a local-destroy event.

GEODE-9030, GEM-3221: Fixed a spurious Region Destroyed exception that could occur when a
query was initiated on a partitioned region immediately following a startup or rebalance operation.

GEODE-9040, GEM-3215: Improved the handling of missing colocated regions, so that the
SingleThreadColocationLogger NOW stops, as it should.

GEODE-9051: Added a feature to measure tenured heap consumption and record the information
in the logs after garbage collection.

GEODE-9126, GEM-3251: Fixed vulnerability CVE-2021-28165 and CVE-2021-28164 in jetty.

Issues Resolved in VMware GemFire 9.10.6

GEODE-2644, GEM-3138: Restored member name to log entries.

GEODE-5922, GEM-3155: Fixed a performance issue in the event queues of WAN-connected
clusters.

GEODE-7884, GEM-1535: Fixed a condition in which a server would hang during a cache close
operation with an lllegalStateException error, due to a timer being set on an already-completed
operation.

GEODE-8261, GEM-2975, GEM-3130: Fixed a null-pointer error that could occur when a client
attempts to register interest after server shutdown has been initiated.

GEODE-8419, GEM-3079: SSL/TLS protocol, cipher suite configurations and per-component TLS
properties were being ignored in some cases; these settings are now respected.

GEODE-8447, GEM-3019: The output of localized dates in log timestamps and Pulse query results
now always include seconds. A previous fix for GEODE-8447 revised Pulse to display dates using
the local time zone.

GEODE-8536, GEM-2872, GEM-2961, GEM-2997: Fixed a stack overflow that could occur when
Lucene IndexWriter was unable to be created.

VMware by Broadcom

VMware GemFire 9.10 Documentation

GEODE-8685, GEM-3174: Fixed export feature to no longer deserialize region values and classes.

GEODE-8686, GEM-1681: Dispensed with a rarely-called tombstone removal optimization that
could occasionally cause a deadlock that prevented the completion of region creation.

GEODE-8721, GEM-3110: Fixed a condition under which the losing side of a network partition failed
to shut down.

GEODE-8734, GEM-3104: Implemented a more robust approach for generating Geode statistics
that accommodates a variety of /proc/net/netstat formats produced by different versions of Linux.

GEODE-8764, GEM-3148: Fixed an authentication problem that erroneously blocked the execution
of Lucene queries requiring region-level permissions.

GEODE-8779, GEM-3143: Eliminated a case in which session management messages were sent
unnecessarily to clients whose local caches were not enabled.

GEODE-8782: Added the ability to retrieve the Principal from the FunctionContext when a
SecurityManager is enabled.

GEODE-8795, GEM-3111: Lucene queries now utilize security post-processing, if enabled.

GEODE-8799, GEM-3041: Addressed a performance issue by increasing the defaults for maximum
number of pooled message processor threads and maximum partitioned region message processor
threads. If your system depends on constraining system resources to the old default values, you
can set these properties explicitly using DistributionManager. MAX_THREADS and
DistributionManager. MAX_PR_THREADS, respectively.

The following table shows the old and new maximum values.

System Resource Old Default Value New Default Value
DistributionManager. MAX_THREADS 100 1000
DistributionManager.MAX_PR_THREADS The greater of (CPUs * 4) or 16 The greater of (CPUs * 32) or 200

GEODE-8895, GEM-3170: Handle an unexpected socket closure with more grace by implementing
retries internally, such that the client no longer needs to deal with an InternalGemFireException.

GEODE-8930, GEM-2677: Fixed a race condition that caused a deadlock when executing a create
operation within a transaction with conserve-sockets set to true. With this fix, the deadlock no
longer occurs, but best practice is to set conserve-sockets to false when using transactions.

Issues Resolved in VMware GemFire 9.10.5

GEODE-8238, GEM-2901: Improved connection close behavior to ensure final delivery of cluster
messages during shutdown and avoid potential hangs.

GEODE-8432, GEM-2778, GEM-3026, GEM-3029: Fixed a hang that occurred with asynchronous
event queues during rebalance operations.

GEODE-8475, GEM-1589: Resolved a deadlock in ParallelGatewaySenderQueue.

GEODE-8520, GEM-3056: GarbageCollectionCount metric no longer shows negative values.
GCStatsMonitor now sums up all the GC stats to get the total GC count and GC time.

GEODE-8557, GEM-3066, GEM-3067: Reclassified “java.lang.lllegalStateException: NioSsIEngine
has been closed” to IOException, which allows retries of server connection failures.

VMware by Broadcom

VMware GemFire 9.10 Documentation

GEODE-8564, GEM-3081: Fixed an exception thrown by an attempt to remove a managed
connection that has already been invalidated. Corrected functionality to avoid unnecessary
intermediary collection creations.

GEODE-8584, GEM-3092: Corrected a peer-to-peer messaging failure with TLS when attempting
to replicate data while a connection is being closed.

GEODE-8651, GEM-3109: Corrected a problem that caused TLS-encrypted messaging to hang
when conserve-sockets is set to false.

GEODE-8652, GEM-3099: Corrected a synchronization issue that caused TLS-encrypted message
transmission to hang during shutdown.

Issues Resolved in VMware GemFire 9.10.4

GEODE-8385, GEM-2936: Fixed a problem with cluster shutdown which caused a hang on restart,
due to ambiguity as to which node had the most up-to-date disk store. This could occur if nodes
(locators or servers) were simultaneously shut down.

GEODE-8463, GEODE-8506, GEM-3020: Refined the behavior of BufferPool to always return a
buffer that has exactly the requested capacity. In the past, BufferPool could return a buffer larger
than the size requested, which could lead to decryption errors and lost messages when using
TLS(SSL) protocol TLSv1.3.

GEODE-8478, GEM-3069: Fixed an issue that caused a gateway sender to shut down if (1) its alert-
threshold was configured, (2) an event was on the queue longer than that specified threshold, (3)
the logger was attempting to record an alert for that message, and (4) a field in the event object
threw an exception while undergoing toString conversion.

GEODE-8489, GEM-3043: Restored the behavior of Pulse queries for consistency with earlier
versions. For example, the result of a select * query once again includes attributes without values.

Issues Resolved in VMware GemFire 9.10.3

GEODE-6564, GEM-3001: Fixed a memory leak that occurred when a replicated region,
configured with entry expiration, was cleared.

GEODE-8331: Fixed an issue that prevented gfsh v1.12 (GemFire 9.10) from connecting to a Geode
Vv1.10 (GemFire 9.9) server. Now, if a Geode v1.10 (GemFire 9.9) command is incompatible with a
command issued by the newer version of gfsh, it will fail with a detailed error message.

GEODE-8394, GEM-2989: Fixed an issue in which putAll operations or put operations with large
objects could result in data corruption if invoked without having a sufficiently large read-timeout.
Subsequent get operations or queries could experience failures due to this corruption.

GEODE-8447, GEM-3019: Pulse displays dates using the local time zone.

GEODE-8483, GEM-3004: Introduced a correction to JCA transaction logic that restores the ability
of the system to detect commit conflict exceptions in concurrent access situations.

Issues Resolved in VMware GemFire 9.10.2

GEODE-8174, GEM-2884: Fixed an issue that caused an incorrect
ConcurrentModificationException to be thrown when using JTA transactions.

VMware by Broadcom

VMware GemFire 9.10 Documentation

« GEODE-8029, GEM-2919: Unused disk store backups (.drf files) are now deleted to
prevent the proliferation of unused records and files, which could cause members to fail
during startup while recovering disk stores.

GEODE-8131, GEM-2938: Eliminated a point of contention in the alert logging system that could
occasionally block cache operations.

GEODE-8195: Improved WAN retry logic.

GEODE-8240: After a rolling upgrade, even though all locators were upgraded, the membership
view indicated some were running the old version. This would have been evident in the gfsh list
members command and in logs. The correct version number is now reported.

GEODE-8259, GEM-2943: When a client performs a single-hop getall () operation and
encounters a serialization error, the operation is now re-tried.

GEODE-8287, GEM-2897, GEM-2950: Ironed out a recently-introduced problem that caused a
degradation in performance for join queries or queries that use multiple indexes. Performance in
such cases has been restored to v8.2 levels.

Issues Resolved in VMware GemFire 9.10.1

GEODE-7851: Pulse logging has been restored.

GEODE-7940: Fixed a problem in which a parallel gateway sender stopped sending events if
another gateway sender attached to the same region was destroyed.

GEODE-8055, GEM-2890: Indexes can now be created on subregions.

GEODE-8071, GEM-2896: Fixed the gfsh rebalance command to prevent locators from hanging
during shutdown.

GEODE-8091, GEM-2898: Locators failed to start after upgrade to v9.10 if a deprecated gfsh start
locator option, ——-load-cluster-configuration-from-dir, was in use. Support for the deprecated

option has been restored to allow startup to proceed. Beginning with GemFire 9.5 and Geode 1.6,

the gfsh command import cluster-configuration supersedes start locator --load-cluster-—

configuration-from-dir.

Issues Resolved in VMware GemFire 9.10

GEODE-7465, GEM-2773: Fixed an issue that threw RegionDestroyedException when an
asynchronous event queue was stopped and then restarted.

GEODE-7473, GEM-2774: Fixed a memory leak in the accumulation of entry event objects that
could occur when a gateway receiver existed for the same region as a gateway sender.

GEODE-7593, GEM-2795: Fixed a memory leak that caused a higher than expected heap size
when eviction was enabled. The issue was due to indexes that retained references to serialized
values when the indexed key was a PDX string.

GEODE-7374, GEM-2748: VMware GemFire no longer throws a ClassCastException when using
the deprecated MemberCommandService.

GEODE-7373, GEM-2746: Enforce JMX credentials to be either a string or an array of strings.

GEODE-7036, GEM-2723: Fixed a bug that could result in a NullpointerException when restarting
members and a locator rejoins the cluster to form a quorum.

VMware by Broadcom

VMware GemFire 9.10 Documentation

GEODE-7264, GEM-2706: Updated the Jackson dependency to version 2.10.0.

GEODE-7334, GEM-2705: VMware GemFire no longer throws a ClassCastException when the
developer REST API is enabled and JodaModule is in the classpath.

GEODE-7208, GEM-2698: Fixed Lucene index creation when there are non-primitive fields in a
child class, and the fields are defined in the parent class.

GEODE-7268, GEM-2692: A gfsh alter region NO longer causes a soft hang when many gateway
senders exist, by making the gfsh command implementation work more like the equivalent Java
API.

GEODE-7535, GEM-2654: Fixed a race condition that could improperly result in an
EntryDestroyedException during a getaAll operation, if a client proxy region exists and there are no
transactions.

GEODE-7085, GEM-2647: Eliminated an IndexOutOfBoundsException While recovering values from
disk when the region version value overflowed.

GEODE-7015, GEM-2604: Fixed a bug that could result in a hung server if a move bucket
operation failed during rebalance due to a forced disconnect with recreated persistent partitioned
regions.

GEODE-7042: The server launcher now waits until all of the server’s startup tasks have completed
before updating the server’s status to “online”. The serverLauncher.start () method now blocks
until redundancy recovery and recovery of values from disk have completed. This change has the
effect of making the gfsh start server command wait for all server startup tasks to complete
before returning.

GEODE-4993: GatewaySender connection statistics are now stored after being captured.
GEODE-6973: Improved creation time performance when there are a large number of PDX types.

GEODE-7628, GEM-2747: Block JMX MBean creation when no securityManager interface is
implemented.

GEODE-7755, GEM-2614: Fixed a bug that resulted in locator processes continuing to run even
when the logs show them shut down.

GEODE-7728, GEM-2819: Fixed an exception thrown when executing an equi-join query and both
fields are indexed.

GEODE-7294: Moved to Spring 5 and updated other third-party libraries to their latest security
patch versions.

GEODE-7310: Fixed an issue in which taking a backup was not properly aborted if a member of the
distributed system was lost during the backup process.

GEODE-7750, GEODE-7760, GEODE-7796, GEM-2821, GEM-2823: Fixed an issue which could
cause a locator to fail to restart properly, and also corrupted the cluster configuration.

GEODE-7763: Reduced the performance degradation caused when a client has multiple threads,
and each client thread does operations on the same region key.

Support

VMware by Broadcom 83

VMware GemFire 9.10 Documentation

General support includes security vulnerability resolutions and critical bug fixes in all supported
minor versions, while other maintenance is applied only to the latest supported minor release.

Obtaining and Installing Security Updates

New versions of VMware GemFire often include important security fixes, so VMware recommends
you keep up to date with the latest releases.

For details about any security fixes in a particular release, see the Application Security Team page.

VMware by Broadcom

84

http://www.pivotal.io/security

VMware GemFire 9.10 Documentation

Supported Configurations and System
Requirements

The sections that follow document supported operating system platforms and describe additional
system requirements for VMware GemFire.

« VMware GemFire Supported Configurations
VMware GempFire is supported on a variety of platforms.
« Host Machine Requirements
Each machine must meet a set of system requirements.
e« Supported Platforms and System Requirements for Tools:
Tools, including Pulse and VSD, are supported on a variety of platforms.
o Pulse System Requirements
Verify that your system meets the installation and runtime requirements for Pulse.
o VSD System Requirements

View a list of platforms that are known to work with VSD.

Tanzu GemFire Supported Configurations

VMware GemFire is supported on a variety of platforms.

Note: Running VMware GemFire clusters with a mix of different platforms has not been tested. We
recommend that you use a consistent platform on all machines in your cluster.

Supported Platforms

All platforms listed as deprecated may be removed in a future release of the product.
These VMware GemFire 9.10 platforms provide support for production systems:

e CentOS 7 for the x86-64 processor

e RHEL 8 for the x86-64 processor

e RHEL 7 for the x86-64 processor

¢ RHEL 6 for the x86-64 processor (Deprecated)

o Ubuntu 14.04 for the x86-64 processor

o« Ubuntu 16.04 for the x86-64 processor

e SUSE Linux Enterprise Server 11 for the x86-64 processor

VMware by Broadcom

85

VMware GemFire 9.10 Documentation

e Solaris 11 for the x86-64 processor

e Solaris 11 for a 64-bit SPARC processor

e Windows 2012 Server R2 for the x86-64 processor

« Windows 2012 Server for the x86-64 processor (Deprecated)

o AIX 7 with IBM SDK, Java Technology Edition, Version 8*. This platform is only supported
for GemFire application clients. The GemFire cluster must be configured on one of the
other supported platforms.

These cloud platforms are supported for VMware GemFire 9.10:
e Linux platforms under AWS
e Linux platforms under Microsoft Azure

These VMware GemFire 9.10 platforms provide support for development systems:
¢ MacOS 10.12 (Sierra) for the x86-64 processor

¢ Windows 10 for the x86-64 processor

Java Support Notes

This version of VMware GemFire requires Java 8 release 272 or a more recent version 8 update.
The same versions are supported with OpenJDK (HotSpot).

VMware GempFire is compatible with Open JDK 11.

The VMware GemFire product download does not include Java. Download and install a supported
JRE or JDK on each system running GemFire. VMware recommends the installation of a full JDK
(and not just a JRE) to obtain better performance with gfsh status and gfsh stop commands.

The IBM SDK, Java Technology Edition, Version 8 is supported for application clients only. Some
client region eviction configurations such as HEAP LRU are known to not function properly in this
release.

File System Type for Linux Platforms

For optimal disk-store performance, VMware recommends avoiding the use of ext3 file systems
when operating on Linux platforms.

Host Machine Requirements

Each machine that will run VMware GemFire must meet the following requirements:

« Java SE Development Kit 8 with update 272 or a more recent version 8 update. The same
versions are supported with OpenJDK. VMware GemFire is compatible with Open JDK 11
(HotSpot).

e« An adequate per-user limit on the number of file descriptors; for Unix/Linux, the
recommended soft limit is 8192, and the hard limit is 81920.

« An adequate per-user limit on the number of processes (nproc); for Unix/Linux, the
recommended soft limit is 501408, with an unlimited hard limit.

VMware by Broadcom 86

VMware GemFire 9.10 Documentation

« TCP/IP.

e A system clock set to the correct time and a time synchronization service such as Network
Time Protocol (NTP). Correct time stamps permit the following activities:

o Logs that are useful for troubleshooting. Synchronized time stamps ensure that log
messages from different hosts can be merged to reproduce an accurate
chronological history of a distributed run.

o Aggregate product-level and application-level time statistics.

o Accurate monitoring of the Geode system with scripts and other tools that read the
system statistics and log files.

« The host name and host files are properly configured for the machine. The host name and
host file configuration can affect gfsh and Pulse functionality.

o Deactivate TCP SYN cookies. Most default Linux installations use SYN cookies to protect
the system against malicious attacks that flood TCP SYN packets, but this feature is not
compatible with stable and busy VMware GemFire clusters. Security implementations
should instead seek to prevent attacks by placing VMware GemFire server clusters behind
advanced firewall protection.

To deactivate SYN cookies permanently: 1. Edit the /etc/sysctl.conf file to include the
following line:

° pre

net.ipvé4.tcp syncookies = 0

Setting this value to zero deactivates SYN cookies.

1. Reload sysctl.conf:

sysctl -p

VMware by Broadcom

87

VMware GemFire 9.10 Documentation

Getting Started with VMware GemFire

A tutorial demonstrates features, and a main features section describes key functionality.
« About VMware GemFire

VMware GemFire is a data management platform that provides real-time, consistent access
to data-intensive applications throughout widely distributed cloud architectures.

e Main Features
This section summarizes the main features and key functionality.
¢ Installing VMware GemFire
¢ Upgrading VMware GemFire
¢ VMware GemFire in 15 Minutes or Less

Take this brief tour to try out basic features and functionality.

About VMware GemFire

VMware GemFire is a data management platform that provides real-time, consistent access to
data-intensive applications throughout widely distributed cloud architectures.

VMware GemFire pools memory, CPU, network resources, and optionally local disk across multiple
processes to manage application objects and behavior. It uses dynamic replication and data
partitioning techniques to implement high availability, improved performance, scalability, and fault
tolerance. In addition to being a distributed data container, VMware GemFire is an in-memory data
management system that provides reliable asynchronous event notifications and guaranteed
message delivery.

Main Concepts and Components

Caches are an abstraction that describe a node in a VMware GemFire distributed system.
Application architects can arrange these nodes in peer-to-peer or client/server topologies.

Within each cache, you define data regions. Data regions are analogous to tables in a relational
database and manage data in a distributed fashion as name/value pairs. A replicated region stores
identical copies of the data on each cache member of a distributed system. A partitioned region
spreads the data among cache members. After the system is configured, client applications can
access the distributed data in regions without knowledge of the underlying system architecture.
You can define listeners to create notifications about when data has changed, and you can define
expiration criteria to delete obsolete data from a region.

VMware GemFire locators provide both member discovery and load-balancing services. You
configure clients with a list of locator services and the locators maintain a dynamic list of member

VMware by Broadcom

88

VMware GemFire 9.10 Documentation

servers.

VMware GemFire uses continuous querying to enable event-driven architectures. VMware
GemFire ties events and data together so that when an event is processed, the data required to
process the event is available without additional queries to a disk-based database. Clients can
subscribe to change notifications so that they can execute tasks when a specific piece of data
changes.

In addition to peer-to-peer and client/server topologies, VMware GemFire supports multi-site
configurations that allow you to scale horizontally between disparate, loosely-coupled distributed
systems over a wide geographically separated network. A wide-area network (WAN) is the main
use case for the multi-site topology.

Main Features

This section summarizes main features and key functionality.
« High Read-and-Write Throughput
« Low and Predictable Latency
e High Scalability
o« Continuous Availability
o Reliable Event Notifications
o Parallelized Application Behavior on Data Stores
« Shared-Nothing Disk Persistence
¢ Reduced Cost of Ownership
o Single-Hop Capability for Client/Server
o Client/Server Security
o Multisite Data Distribution
¢ Continuous Querying

¢ Heterogeneous Data Sharing

High Read-and-Write Throughput

Read-and-write throughput is provided by concurrent main-memory data structures and a highly
optimized distribution infrastructure. Applications can make copies of data dynamically in memory
through synchronous or asynchronous replication for high read throughput or partition the data
across many system members to achieve high read-and-write throughput. Data partitioning
doubles the aggregate throughput if the data access is fairly balanced across the entire data set.
Linear increase in throughput is limited only by the backbone network capacity.

Low and Predictable Latency

The optimized caching layer minimizes context switches between threads and processes. It
manages data in highly concurrent structures to minimize contention points. Communication to

VMware by Broadcom

89

VMware GemFire 9.10 Documentation

peer members is synchronous if the receivers can keep up, which keeps the latency for data
distribution to a minimum. Servers manage object graphs in serialized form to reduce the strain on
the garbage collector.

Subscription management (interest registration and continuous queries) is partitioned across server
data stores, ensuring that a subscription is processed only once for all interested clients. The
resulting improvements in CPU use and bandwidth utilization improve throughput and reduce
latency for client subscriptions.

High Scalability

Scalability is achieved through dynamic partitioning of data across many members and spreading
the data load uniformly across the servers. For “hot” data, you can configure the system to expand
dynamically to create more copies of the data. You can also provision application behavior to run in
a distributed manner in close proximity to the data it needs.

If you need to support high and unpredictable bursts of concurrent client load, you can increase the
number of servers managing the data and distribute the data and behavior across them to provide
uniform and predictable response times. Clients are continuously load balanced to the server farm
based on continuous feedback from the servers on their load conditions. With data partitioned and
replicated across servers, clients can dynamically move to different servers to uniformly load the
servers and deliver the best response times.

You can also improve scalability by implementing asynchronous “write behind” of data changes to
external data stores, like a database. This avoids a bottleneck by queuing all updates in order and
redundantly. You can also conflate updates and propagate them in batch to the database.

Continuous Availability

In addition to guaranteed consistent copies of data in memory, applications can persist data to disk
on one or more members synchronously or asynchronously by using a “shared nothing disk
architecture.” All asynchronous events (store-forward events) are redundantly managed in at least
two members such that if one server fails, the redundant one takes over. All clients connect to
logical servers, and the client fails over automatically to alternate servers in a group during failures
or when servers become unresponsive.

Reliable Event Notifications

Publish/subscribe systems offer a data-distribution service where new events are published into the
system and routed to all interested subscribers in a reliable manner. Traditional messaging platforms
focus on message delivery, but often the receiving applications need access to related data before
they can process the event. This requires them to access a standard database when the event is
delivered, limiting the subscriber by the speed of the database.

Data and events are offered through a single system. Data is managed as objects in one or more
distributed data regions, similar to tables in a database. Applications simply insert, update, or delete
objects in data regions, and the platform delivers the object changes to the subscribers. The
subscriber receiving the event has direct access to the related data in local memory or can fetch
the data from one of the other members through a single hop.

VMware by Broadcom

VMware GemFire 9.10 Documentation

Parallelized Application Behavior on Data Stores

You can execute application business logic in parallel on members. The data-aware function-
execution service permits execution of arbitrary, data-dependent application functions on the
members where the data is partitioned for locality of reference and scale.

By colocating the relevant data and parallelizing the calculation, you increase overall throughput.
The calculation latency is inversely proportional to the number of members on which it can be
parallelized.

The fundamental premise is to route the function transparently to the application that carries the
data subset required by the function and to avoid moving data around on the network. Application
function can be executed on only one member, in parallel on a subset of members, or in parallel
across all members. This programming model is similar to the popular Map-Reduce model from
Google. Data-aware function routing is most appropriate for applications that require iteration over
multiple data items (such as a query or custom aggregation function).

Shared-Nothing Disk Persistence

Each cluster member manages data on disk files independent of other members. Failures in disks or
cache failures in one member do not affect the ability of another cache instance to operate safely
on its disk files. This “shared nothing” persistence architecture allows applications to be configured
such that different classes of data are persisted on different members across the system,
dramatically increasing the overall throughput of the application even when disk persistence is
configured for application objects.

Unlike a traditional database system, separate files are not used to manage data and transaction
logs. All data updates are appended to files that are similar to transactional logs of traditional
databases. You can avoid disk-seek times if the disk is not concurrently used by other processes,
and the only cost incurred is the rotational latency.

Reduced Cost of Ownership

You can configure caching in tiers. The client application process can host a cache locally (in
memory and overflow to disk) and delegate to a cache server farm on misses. Even a 30 percent
hit ratio on the local cache translates to significant savings in costs. The total cost associated with
every single transaction comes from the CPU cycles spent, the network cost, the access to the
database, and intangible costs associated with database maintenance. By managing the data as
application objects, you avoid the additional cost (CPU cycles) associated with mapping SQL rows to
objects.

Single-Hop Capability for Client/Server

Clients can send individual data requests directly to the server holding the data key, avoiding
multiple hops to locate data that is partitioned. Metadata in the client identifies the correct server.
This feature improves performance and client access to partitioned regions in the server tier.

Client/Server Security

VMware by Broadcom 91

VMware GemFire 9.10 Documentation

There may be multiple, distinct users in client applications. This feature accommodates installations
in which clients are embedded in application servers and each application server supports data
requests from many users. Each user may be authorized to access a small subset of data on the
servers, as in a customer application where each customer can access only their own orders and
shipments. Each user in the client connects to the server with its own set of credentials and has its
own access authorization to the server cache.

Multisite Data Distribution

Scalability problems can result from data sites being spread out geographically across a wide-area
network (WAN). Models address these topologies, ranging from a single peer-to-peer cluster to
reliable communications between data centers across the WAN. This model allows clusters to scale
out in an unbounded and loosely coupled fashion without loss of performance, reliability or data
consistency.

At the core of this architecture is the gateway sender configuration used for distributing region
events to a remote site. You can deploy gateway sender instances in parallel, which enables an
increase in throughput for distributing region events across the WAN. You can also configure
gateway sender queues for persistence and high availability to avoid data loss in the case of a
member failure.

Continuous Querying

In messaging systems like Java Message Service, clients subscribe to topics and queues. Any
message delivered to a topic is sent to the subscriber. VMware GemFire allows continuous
querying by having applications express complex interest using Object Query Language.

Heterogeneous Data Sharing

C#, C++ and Java applications can share application business objects without going through a
transformation layer such as SOAP or XML. The server side behavior, though implemented in Java,
provides a unique native cache for C++ and .NET applications. Application objects can be managed
in the C++ process heap and distributed to other processes using a common “on-the-wire”
representation for objects. A C++ serialized object can be directly deserialized as an equivalent Java
or C# object. A change to a business object in one language can trigger reliable notifications in
applications written in the other supported languages.

Installing VMware GemFire

This section describes how to install VMware GemFire.

When you install a new version of VMware GemFire software on an existing VMware GemFire
system, keep the previous version available until the system upgrade has been completed and
verified.

¢ Install VMware GemFire from a Compressed TAR File

Use the compressed TAR file distribution to install and configure VMware GemFire on every
physical and virtual machine where you will run VMware GemFire.

VMware by Broadcom

92

VMware GemFire 9.10 Documentation

Obtaining VMware GemFire from a Maven Repository

You can use Maven to add VMware GemFire to your Java project build.
Setting Up the CLASSPATH

This topic describes how VMware GemFire processes set their CLASSPATH.
Uninstalling VMware GemFire

This section describes how to remove VMware GemFire.

Obtaining and Installing Security Updates

New versions of VMware GemFire often include important security fixes, so Pivotal recommends
you keep up to date with the latest releases.

For details about any security fixes in a particular release, see the Pivotal security page.

Windows/Unix/Linux—Install VMware Tanzu GemFire from
a Compressed TAR File

Use the compressed TAR file distribution to install and configure VMware Tanzu GemFire on every
physical and virtual machine where you will run VMware Tanzu GemFire.

Prerequisites

Before you install GemFire, you must complete the following prerequisites:

Confirm that your system meets the hardware and software requirements described in
Supported Configurations and System Requirements.

From the VMware Tanzu GemFire product page on the VMware Tanzu Network, select the
version of GemFire to download, then click the box marked VMware Tanzu GemFire to
download the compressed TAR distribution of GemFire.

Know how to configure environment variables for your system. If you have not done so
already, set the JAVA_HOME environment variable to point to a Java runtime installation
supported by GemFire. (You should find a bin directory under JAVA_HOME.)

Procedure

Use the following procedure to install VMware Tanzu GemFire:

1.

Navigate to the directory where you downloaded the GemFire software, and expand the
compressed TAR file after creating the path_to_ product directory.

$ tar -xzvf pivotal-gemfire-N.N.N.tgz -C path to product

path_to_ product corresponds to the location where you want to install GemFire, and
N.N.N is the version number.

Configure the JAVA_HOME environment variable.

VMware by Broadcom

93

http://www.pivotal.io/security
https://network.tanzu.vmware.com/products/pivotal-gemfire/

VMware GemFire 9.10 Documentation

If you will be using the gfsh command-line utility or managing servers and locators with the
ServerLauncher and LocatorLauncher APIs, then you must set JAVA_HOME to a JDK
installation. For example: - UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

° pre
JAVA_HOME=/usr/java/jdk1.8.0_272
export JAVA HOME

o Windows

set JAVA HOME="C:\Program Files\Java\jdk1l.8.0_ 272"

3. This step only applies to environments where you are running GemFire processes or
GemFire client applications outside of gfsh. The gfsh script sets these environment variables
for you. If you are running GemFire processes or applications outside of gfsh, then
configure the following environment variables for GemFire.

o Set the GEMFIRE environment variable to point to your GemFire installation top-
level directory. (You should see bin, 1ib, dtd, and other directories under
GEMFIRE.) The following variables definitions are examples; your installation path
will vary, depending on where you install GemFire and the version (N.N.N) you are
installing.

= UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

GEMFIRE=/opt/pivotal/pivotal-gemfire-N.N.N
export GEMFIRE

= Windows

set GEMFIRE=C:\pivotallgemfire\pivotal-gemfire-N.N.N

o Configure your GF_JAVA environment variables as shown in these examples.
GF _JAVA must point to the java executable file under your JAVA_HOME. (If you
have not done so already, you should also set your JAVA_HOME variable to a
supported Java installation.)

= UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

GF_JAVA=$JAVA HOME/bin/java
export GF_JAVA

= Windows
set GF_JAVA=%JAVA HOME%$\bin\java.exe

4. Add GemFire scripts to your the PATH environment variable. For example:

o UNIX and Linux (Bourne and Korn shells - sh, ksh, bash)

PATH=$PATH: SJAVA HOME/bin:/opt/pivotal/pivotal-gemfire-N.N.N/bin
export PATH

VMware by Broadcom

94

VMware GemFire 9.10 Documentation

o Windows

set PATH=%PATH%;%JAVA HOME%\bin;$GEMFIRE%\bin

Type gfsh version at the command line and verify that the output lists the version of
VMware Tanzu GemFire that you wish to install. For example:

$ gfsh version
v9.0.0

If you want more detailed version information such as the date of the build, build number
and JDK version being used, type gfsh version --full.

Repeat this procedure for every virtual or physical machine on which you will run VMware
Tanzu GemFire.

Obtaining Pivotal GemFire from a Maven Repository

You can use Maven to add Pivotal GemFire to your Java project build.

1.

Access to the Pivotal Commercial Maven Repository requires a one-time registration step
to obtain an account. The URL for both registration and subsequent logins after registration
is https://commercial-repo.pivotal.io/login/auth. Click on the Create Account link to
register. You will receive a confirmation email; follow the directions in this email to activate
your account.

After account activation, log in at https://commercial-repo.pivotal.io/login/auth to access
the configuration information in the Pivotal GemFire Release Repository.

To add GemFire to your Java project, you need to modify your project’s pom.xml file. Add
the following repository definition to your pom.xm1 file:

<repository>
<id>gemfire-release-repo</id>
<name>Pivotal GemFire Release Repository</name>
<url>https://commercial-repo.pivotal.io/data3/gemfire-release-repo/gemfi
re</url>

</repository>

4. Add the following dependencies to your pom.xml file:

<dependencies>

<dependency>
<groupId>io.pivotal.gemfire</groupId>
<artifactId>geode-core</artifactId>
<version>VERSION-ID</version>

</dependency>

<dependency>
<groupIld>io.pivotal.gemfire</groupId>
<artifactId>geode-wan</artifactId>
<version>VERSION-ID</version>

</dependency>

<dependency>
<groupId>io.pivotal.gemfire</groupId>
<artifactId>geode-cg</artifactId>

VMware by Broadcom

https://commercial-repo.pivotal.io/login/auth
https://commercial-repo.pivotal.io/login/auth

VMware GemFire 9.10 Documentation

<version>VERSION-ID</version>
</dependency>

</dependencies>

where VERSION-ID is the version identifier of GemFire that you wish to install. For
example, 9.0.0.

5. To access these artifacts, you must add an entry to your .m2/settings.xml file:

<settings>
<servers>
<server>
<id>gemfire-release-repo</id>
<username>MY-USERNAME@example.com</username>
<password>MY-DECRYPTED-PASSWORD</password>
</server>
</servers>
</settings>

where you provide the values for MY-USERNAME@example.com and MY-DECRYPTED-PASSWORD. As Of
Maven version 2.1.0, encrypted passwords are supported in this settings.xml file. See
https://maven.apache.org/guides/mini/guide-encryption.html for details on the encryption.

Setting Up the CLASSPATH

This topic describes how VMware GemFire processes set their CLASSPATH.

To simplify CLASSPATH environment settings, VMware GemFire has organized all application
libraries required by VMware GemFire processes into *-dependencies.jar files. All dependency
JAR files are located in the path to product/lib directory.

When starting a server or locator process using gfsh, application JAR files are automatically loaded
into the process’s CLASSPATH from two directories:

e path to product/lib/
e path to product/extensions/

Note: To embed VMware GemFire in your application, add path to product/lib/geode-
dependencies.jar to your CLASSPATH.

The following table lists the dependency JAR files associated with various VMware GemFire
processes:

VMware GemFire Process Associated JAR Files
gfsh gfsh-dependencies.jar
server and locator geode-dependencies.jar

ﬁ Note:

Use this library for all standalone or
embedded VMware GemFire processes
(including Java clients) that host cache
data.

VMware by Broadcom 96

https://maven.apache.org/guides/mini/guide-encryption.html

VMware GemFire 9.10 Documentation

Modifying the CLASSPATH in gfsh-Managed Processes

There are two options for updating the CLASSPATH of VMware GemFire server and locator
processes that are started on the gfsh command line.

Option 1: Specify the --classpath parameter upon process startup. For example, to modify the

CLASSPATH of a locator:

gfsh> start locator --name=locatorl --classpath=/path/to/applications/classes.jar

And to modify the CLASSPATH of a server:

gfsh> start server --name=serverl --classpath=/path/to/applications/classes.jar

Application classes supplied as arguments to the --classpath option are prepended to the server
or locator’s CLASSPATH, beginning in second position. The first entry in the CLASSPATH is
reserved for the core VMware GemFire jar file, for security reasons.

Option 2: Define the CLASSPATH environment variable in your OS environment. Then, specify the
--include-system-classpath parameter upon process startup. For example:

gfsh> start locator --name=locatorl --include-system-classpath=true

The same can also be done for server processes:

gfsh> start server --name=serverl --include-system-classpath=true

This option appends the contents of the system CLASSPATH environment variable to the locator or
server’'s CLASSPATH upon startup. Specifying this option without a value sets it to true.

Setting the CLASSPATH for Applications and Standalone
Java Processes

If you are starting a VMware GemFire process programmatically (standalone or embedded), we
recommend that you specify the CLASSPATH upon program execution using the java -classpath
or java -cp command-line option. This method is preferred to setting the CLASSPATH as an
environment variable since it allows you to set the value individually for each application without
affecting other applications and without other applications modifying its value.

For example, to start up a VMware GemFire locator process using the LocatorLauncher API, you
can execute the following on the command line:

prompt# java -cp "path to product/lib/geode-dependencies.jar"
org.apache.geode.distributed.LocatorLauncher start locatorl

<locator-launcher-options>

To start up a VMware GemFire server process using the ServerLauncher API:

prompt# java -cp "path to product/lib/geode-dependencies.jar:/path/to/your/application
s/classes.jar"
org.apache.geode.distributed.ServerLauncher start serverl

<server-launcher-options>

VMware by Broadcom

97

VMware GemFire 9.10 Documentation

Note that in addition to the *-dependencies.jar file associated with the process, you must also
specify any custom application JARs that you wish to access in your VMware GemFire process. For
example, if you are planning on using a customized compressor on your regions, you should specify
the application JAR that contains the compressor application you wish to use.

To start up an application with an embedded cache:
java -cp "path to product/lib/geode-dependencies.jar:/path/to/your/applications/classe

s.jar"

com.mycompany.package.ApplicationWithEmbeddedCache

Note: Another method for updating the CLASSPATH of a server process with your own
applications is to use the gfsh deploy command. Deploying application JAR files will automatically
update the CLASSPATH of all members that are targeted for deployment. See Deploying
Application JARs to VMware GemFire Members for more details.

For systems running an embedded HTTP or HTTPS service, setting a GEODE HOME environment
variable with a path to the VMware GemFire installation directory allows a server launcher to find
the WAR file without any changes to the CLASSPATH.

Uninstalling GemFire

This section describes how to remove GemFire from your system.

If you installed Pivotal GemFire from a ZIP file, shut down any running GemFire processes and
then simply delete the product tree to uninstall the product. No additional registry entries or
system modifications are needed.

If the old version of GemFire was installed with an RPM, uninstall using
rpm -e Pivotal GemFire XXX

where xxx is replaced by the GemFire version number and also corresponds to the name of the
product installation directory. As an example, the command for removing the GemFire 8.2.5
release would be

rpm -e Pivotal GemFire 825
If the old version of GemFire was installed with DEBs, uninstall using
dpkg --remove pivotal-gemfire

If you installed Pivotal GemFire by using macOS brew packages, issue the following command:

brew uninstall gemfire

Upgrading VMware GemFire

To upgrade an existing installation to a new version of VMware GemFire, follow these general
steps:

1. Back up your current system.

VMware by Broadcom

VMware GemFire 9.10 Documentation

2. Install the new version of the software.
3. Stop your distributed system using the current software.
4. Restart the system using the new software.

In many cases, components running under the current version can be stopped selectively, then
restarted under the new version so that the distributed system as a whole remains functional
during the upgrade process; this is known as a “rolling upgrade.”

In other cases, the entire system must be stopped in order to accomplish the upgrade, as when
upgrading from one major version to another (for example, from GemFire 8.2 to 9.0), which will
require some downtime for your system.

See Planning an Upgrade to choose the upgrade scenario that best suits your implementation and
to understand the resources you will need to accomplish the upgrade. Then select the appropriate
upgrade procedure for more detailed instructions that fit your specific needs.

Upgrade Details

« Planning an Upgrade

This section discusses the upgrade paths for various VMware GemFire versions, and it lists
information you need to know before you begin the upgrade process.

+« Rolling Upgrade

A rolling upgrade allows you to keep your existing distributed system running while you
upgrade your members gradually.

« Offline Upgrade

An offline upgrade can handle the widest variety of software versions and cluster
configurations, but requires shutting down the entire system for at least a short time.

+« Upgrading Clients
« Upgrade from Version 8.2 to Version 9

Details on how to upgrade GemFire from version 8.2.3 or a more recent 8.2 version to
version 9.

e Multi-site Upgrade from Version 8.2 to Version 9

A special procedure allows some multi-site systems to upgrade to version 9 on a site-by-
site basis, eliminating the need for system-wide down time.

Planning an Upgrade

Before you upgrade your system, back it up. Make backup copies of all existing disk-stores, server-
side code, configuration files, and data across the entire cluster. To get a backup of the data that
includes the most recent changes may require that traffic across the cluster is stopped before the
backup is made. The discussion at Creating Backups for System Recovery and Operational
Management explains the process, and the backup disk-store command reference page describes
how to use the gfsh backup disk-store command to make a backup.

VMware by Broadcom

99

VMware GemFire 9.10 Documentation

Guidelines for Upgrading

Schedule your upgrade during a period of low user activity for your system and network.

Important: After all locators have been upgraded, do not start or restart any processes that
use the older version of the software. The older process will either not be allowed to join
the distributed system or, if allowed to join, can potentially cause a deadlock.

Verify that all members that you wish to upgrade are members of the same distributed
system cluster. A list of cluster members will be output with the gfsh command:

gfsh>list members

Locate a copy of your system’s startup script, if your site has one (most do). The startup
script can be a handy reference for restarting upgraded locators and servers with the same
gfsh command lines that were used in your current installation.

Identify how your current cluster configuration was specified. The way in which your cluster
configuration was created determines which commands you use to save and restore that
cluster configuration during the upgrade procedure. There are two possibilites:

o With gfsh commands, relying on the underlying cluster configuration service to
record the configuration: see Exporting and Importing Cluster Configurations.

o With XML properties specified through the Java API or configuration files: see
Deploying Configuration Files without the Cluster Configuration Service.

Do not modify region attributes or data, either via gfsh or cache.xml configuration, during
the upgrade process.

Version Compatibilities

Your choice of upgrade procedure depends, in part, on the versions of VMware GemFire involved.

Version Compatibility Between Peers and Cache Servers

For best reliability and performance, all server components of a VMware GemFire system
should run the same version of the software. For the purposes of a rolling upgrade, you can
have peers or cache servers running different minor versions of VMware GemFire at the
same time, as long as the major version is the same. For example, some components can
continue to run under version 9.0 while you are in the process of upgrading to version 9.1.

Version Compatibility Between Clients and Servers

VMware GemFire clients can run version 8.2.3 or a more recent 8.2 version of VMware
GemFire and still connect to VMware GemFire servers running version 9.x. Version 9.x
clients, however, cannot connect to servers running older versions of VMware GemFire.

Version Compatibility Between Sites in Multi-Site (WAN) Deployments

In multi-site (WAN) deployments, one site can be running VMware GemFire 8.2.3 or a
more recent VMware GemFire 8.2 version, and another site can be running VMware
GemFire 9.x. The sites should still be able to communicate with one another.

Upgrade to the Latest Version 9 from an Earlier Version 9

VMware by Broadcom

100

VMware GemFire 9.10 Documentation

If possible, follow the Rolling Upgrade procedure. A multi-site installation can also do rolling
upgrades within each site. If a rolling upgrade is not possible, follow the Off-Line Upgrade
procedure. A rolling upgrade is not possible for a cluster that has partitioned regions without
redundancy. Without the redundancy, region entries will be lost when individual servers are taken
out of the cluster during a rolling upgrade.

Upgrade to Version 9 from Version 8.2.3 or a More Recent
8.2 Version

To upgrade all servers from version 8.2.3 or a more recent version of 8.2 to this version of Pivotal
VMware GemFire 9, follow the Upgrade from Version 8.2 to Version 9 procedure.

Upgrade to Version 9 from Version 8.2.2 or an Earlier
Version

All upgrades to this VMware GemFire version 9 from VMware GemFire versions earlier than
version 8.2.3 follow a two-step process:

1. Upgrade all servers to the most recent version of VMware GemFire version 8.2 (which must
be 8.2.3 or later). If possible, follow the Rolling Upgrade procedure. If a rolling upgrade is
not possible, follow the Off-Line Upgrade procedure.

A rolling upgrade is not possible for a cluster that has partitioned regions without
redundancy. Without the redundancy, region entries will be lost when individual servers are
taken out of the cluster during a rolling upgrade.

2. Upgrade all servers from the most recent version of 8.2 to this version of VMware GemFire
9. Follow the Upgrade from Version 8.2 to Version 9 procedure.

Upgrade a Multi-Site System to Version 9 from Version
8.2.3 or Later

Multi-site systems that have both persistent disk stores and use bidirectional WAN gateways to
replicate data among sites may be able to avoid taking the entire system down to upgrade to
version 9. This Multi-site Upgrade from Version 8.2 to Version 9 procedure requires multiple
reconfigurations during the upgrade as one site at a time is upgraded.

Java Notes

e To check your current Java version, type java -version at a command-line prompt.

¢ VMware GemFire 9.x requires Java SE 8, version 92 or a more recent version. VMware
GemFire 8.0 was the last VMware GemFire release to support Java SE 6, and Java SE 7 is
in End-of-Life status.

¢ The VMware GemFire product download does not include Java. You must download and
install a supported JRE or JDK on each system running VMware GemFire. To obtain best
performance with commands such as gfsh status and gfsh stop, install a full JDK (not just
a JRE).

VMware by Broadcom

101

VMware GemFire 9.10 Documentation

Rolling Upgrade

A rolling upgrade eliminates system downtime by keeping your existing distributed system running
while you upgrade one member at a time. Each upgraded member can communicate with other
members that are still running the earlier version of GemFire, so servers can respond to client
requests even as the upgrade is underway. Interdependent data members can be stopped and
started without mutually blocking, a problem that can occur when multiple data members are
stopped at the same time.

Rolling Upgrade Limitations and Requirements

Versions

Rolling upgrade requires that the older and newer versions of VMware GemFire are mutually
compatible, which usually means that they share the same major version number. Therefore, you
can perform a rolling upgrade to upgrade from:

o Earlier versions of 9.x up to the most recent version of 9.10.

o Earlier versions of 8.x up to the most recent version of 8.2.
See Version Compatibilities for more details on how different versions of GemFire can interoperate.
Components

Rolling upgrades apply to the peer members or cache servers within a distributed system. Under
some circumstances, rolling upgrades can also be applied within individual sites of multi-site (WAN)
deployments.

Redundancy

All partitioned regions in your system must have full redundancy. Check the redundancy state of all
your regions before you begin the rolling upgrade and before stopping any members. See Checking
Redundancy in Partitioned Regions for details.

If a rolling update is not possible for your system, follow the Off-Line Upgrade procedure.

Rolling Upgrade Guidelines

Do not create or destroy regions

When you perform a rolling upgrade, your online cluster will have a mix of members running
different versions of GemFire. During this time period, do not execute region operations such as
region creation or region destruction.

Region rebalancing affects the restart process

If you have startup-recovery-delay deactivated (set to -1) for your partitioned region, you must
perform a rebalance on your region after you restart each member. If rebalance occurs
automatically, as it will if startup-recovery-delay is enabled (set to a value other than -1), make
sure that the rebalance completes before you stop the next server. If you have startup-recovery-
delay enabled and set to a high number, you may need to wait extra time until the region has
recovered redundancy, because rebalance must complete before new servers are restarted. The
partitioned region attribute startup-recovery-delay is described in Configure Member Join
Redundancy Recovery for a Partitioned Region.

VMware by Broadcom 102

VMware GemFire 9.10 Documentation

Checking component versions while upgrading

During a rolling upgrade, you can check the current GemFire version of all members in the cluster
by looking at the server or locator logs.

When an upgraded member reconnects to the distributed system, it logs all the members it can
see as well as the GemFire version of those members. For example, an upgraded locator will now
detect GemFire members running the older version of GemFire (in this case, the version being
upgraded- GFE 9.0.0) :

[info 2013/06/03 10:03:29.206 PDT frodo <vm_1 thr 1 frodo> tid=0xla] DistributionMana
ger frodo(locatorl:21869:locator)<v16>:28242 started on frodo[15001]. There

were 2 other DMs. others: [frodo(server2:21617)<v4>:14973(version:GFE 9.0.0), fr
odo (serverl1:21069)<v1>:60929(version:GFE 9.0.0)] (locator)

After some members have been upgraded, non-upgraded members will log the following message
when they receive a new membership view:

Membership: received new view [frodo(locatorl:20786)<v0>:32240]4]
[frodo (locatorl:20786)<v0>:32240/51878, frodo(serverl:21069)<v1>:60929/46949,
frodo (server2:21617)<v4>(version:UNKNOWN [ordinal=23]):14973/33919]

Non-upgraded members identify members that have been upgraded to the next version with
version: UNKNOWN.
Cluster configuration affects save and restore

The way in which your cluster configuration was created determines which commands you use to
save and restore that cluster configuration during the upgrade procedure.

o If your system was configured with gfsh commands, relying on the underlying cluster
configuration service, the configuration can be saved in one central location, then applied
to all newly-upgraded members. See Exporting and Importing Cluster Configurations.

o If your system was configured with XML properties specified through the Java API or
configuration files, you must save the configuration for each member before you bring it
down, then re-import it for that member’s upgraded counterpart. See Deploying
Configuration Files without the Cluster Configuration Service.

Rolling Upgrade Procedure

Begin by installing the new version of the software alongside the older version of the software on
all hosts. You will need both versions of the software during the upgrade procedure. See Installing
Pivotal GemFire.

Upgrade locators first, then data members, then clients.

Upgrade Locators
1. On the machine hosting the first locator you wish to upgrade, open a terminal console.

2. Start a gfsh prompt, using the version from your current GemFire installation, and connect
to the currently running locator. For example:

VMware by Broadcom 103

VMware GemFire 9.10 Documentation

gfsh>connect --locator=locator hostname_ or ip address[port]

3. Use gfsh commands to characterize your current installation so you can compare your post-
upgrade system to the current one. For example, use the 1ist members command to view
locators and data members:

locatorl | 172.16.71.1(locatorl:26510:1ocator)<ec><v0>:1024
locator2 | 172.16.71.1(locator2:26511:1ocator)<ec><v1>:1025
| 172.16.71.1(serverl:26514)<v2>:1026
| 172.16.71.1 (server2:26518)<v3>:1027

serverl

server?

4. Save your cluster configuration.

o If you are using the cluster configuration service, use the gfsh export cluster-
configuration command. You only need to do this once, as the newly-upgraded
locator will propagate the configuration to newly-upgraded members as they come
online.

o For an XML configuration, save cache.xml, gemfire.properties, and any other
relevant configuration files to a well-known location. You must repeat this step for
each member you upgrade.

5. Stop the locator. For example:

gfsh>stop locator --name=locatorl

Stopping Locator running in /Users/username/sandbox/locator on 172.16.71.1[1033
4] as locator...

Process ID: 96686

Log File: /Users/username/sandbox/locator/locator.log

No longer connected to 172.16.71.1[1099].

6. Start gfsh from the new GemFire installation. Verify that you are running the newer version
with

gfsh>version

7. Start a locator and import the saved configuration. If you are using the cluster configuration
service, use the same name and directory as the older version you stopped, and the new
locator will access the old locator’s cluster configuration without having to import it in a
separate step:

gfsh>start locator --name=locatorl --enable-cluster-configuration=true --dir=/d
ata/locatorl

Otherwise, use the gfsh import cluster-configuration command or explicitly import .xml
and .properties files, as appropriate.

8. The new locator should reconnect to the same members as the older locator. Use 1ist
members to verify:

VMware by Broadcom 104

VMware GemFire 9.10 Documentation

gfsh>list members

Name | Id
locatorl | 172.16
dinal=651])
locator2 | 172.16.
serverl | 172.16.
server?2 | 172.16.

71.
71.
71.

.1(locatorl:26752:1ocator)<ec><v17>:1024 (version:UNKNOWN [or

l1(locator2:26511:1ocator)<ec><v1>:1025
1 (serverl:26514)<v2>:1026
1(server2:26518)<v3>:1027

9. Upgrade the remaining locators by stopping and restarting them. When you have
completed that step, the system gives a more coherent view of version numbers:

gfsh>list members
Name | Id

locatorl | 172.16
locator2 | 172.16.
serverl | 172.16
serverz2 | 172.16

.1 (locatorl:26752:1locator)<ec><v17>:1024
.1(locator2:26808:1locator)<ec><v30>:1025
.1l (serverl:26514)<v2>:1026 (version:GFE 9.0)
.1 (server2:26518)<v3>:1027 (version:GFE 9.0)

The server entries show that the servers are running an older version of gemfire, in this

case (version:GFE 9.0).

Upgrade Servers

After you have upgraded all of the system’s locators, upgrade the servers.

1.

Upgrade each server, one at a time, by stopping it and restarting it. Restart the server with

the same command-line options with which it was originally started in the previous

installation. For example:

gfsh>stop server --name=serverl

Stopping Cache Server running in /Users/share/serverl on 172.16.71.1[52139] as

serverl...
gfsh>start server --name=serverl --use-cluster-configuration=true --server-port
=0 --dir=/data/serverl

Starting a Geode Server in /Users/share/serverl...

Use the 1ist members command to verify that the server is now running the new version of

GemFire:

gfsh>list members

Name | Id
locatorl | 172.16
locator2 | 172.16
serverl | 172.16
server? | 172.16

.1(locatorl:26752:1ocator)<ec><v17>:1024

.1 (locator2:26808:1locator)<ec><v30>:1025

.1 (serverl:26835)<v32>:1026

.1 (server2:26518)<v3>:1027 (version:GFE 9.0)

Restore data to the data member. If automatic rebalancing is enabled (partitioned region
attribute startup-recovery-delay is set to a value other than -1), data restoration will start
automatically. If automatic rebalancing is deactivated (partitioned region attribute startup-
recovery-delay=-1), you must initiate data restoration by issuing the gfsh rebalance

command.

VMware by Broadcom

105

VMware GemFire 9.10 Documentation

Wait until the newly-started server has been restored before upgrading the next server.
You can repeat various gfsh show metrics command with the --member option or the --
region option to verify that the data member is hosting data and that the amount of data it
is hosting has stabilized.

3. Shut down,restart, and rebalance servers until all data members are running the new
version of GemFire.

Upgrade Clients

Upgrade VMware GemFire clients, following the guidelines described in Upgrading Clients.

Offline Upgrade

Use the offline upgrade procedure when you cannot, or choose not to, perform a rolling upgrade.
For example, a rolling upgrade is not possible for a cluster that has partitioned regions without
redundancy. (Without the redundancy, region entries would be lost when individual servers were
taken out of the cluster during a rolling upgrade.)

Offline Upgrade Guidelines

Versions

For best reliability and performance, all server components of a VMware GemFire system should
run the same version of the software. See Version Compatibilities for more details on how different
versions of GemFire can interoperate.

Data member interdependencies

When you restart your upgraded servers, interdependent data members may hang on startup
waiting for each other. In this case, start the servers in separate command shells so they can start
simultaneously and communicate with one another to resolve dependencies.

Offline Upgrade Procedure

1. Stop any connected clients.

2. On a machine hosting a locator, open a terminal console.

3. Start a gfsh prompt, using the version from your current GemFire installation, and connect
to a currently running locator. For example:

gfsh>connect --locator=locator_hostname or ip address[port]

4. Use gfsh commands to characterize your current installation so you can compare your post-
upgrade system to the current one. For example, use the 1ist members command to view
locators and data members:

locatorl | 172.16.71.1(locatorl:26510:1ocator)<ec><v0>:1024
locator2 | 172.16.71.1(locator2:26511:1ocator)<ec><v1>:1025

VMware by Broadcom

106

VMware GemFire 9.10 Documentation

5.

6.

10.
n.

serverl | 172.16.71.1(serverl:26514)<v2>:1026
server?2 | 172.16.71.1 (server2:26518)<v3>:1027

Save your cluster configuration.

o If you are using the cluster configuration service, use the gfsh export cluster-
configuration command. You only need to do this once, as the newly-upgraded
locator will propagate the configuration to newly-upgraded members as they come
online.

o For an XML configuration, save cache.xml, gemfire.properties, and any other
relevant configuration files to a well-known location. You must repeat this step for
each member you upgrade.

Shut down the entire cluster (by pressing Y at the prompt, this will lose no persisted data):

gfsh>shutdown --include-locators=true
As a lot of data in memory will be lost, including possibly events in queues, d
o you really want to shutdown the entire distributed system? (Y/n): y

Shutdown is triggered

gfsh>
No longer connected to 172.16.71.1[1099].
gfsh>quit

Since GemFire is a Java process, to check before continuing that all GemFire members
successfully stopped, it is useful to use the JDK-included jps command to check running
java processes:

% jps
29664 Jps

On each machine in the cluster, install the new version of the software (alongside the older
version of the software). See Installing Pivotal GemFire.

Redeploy your environment’s configuration files to the new version installation. If you are
using the cluster configuration service, one copy of the exported . zip configuration file is
sufficient, as the first upgraded locator will propagate it to the other members. For XML
configurations, you should have a copy of the saved configuration files for each data
member.

On each machine in the cluster, install any updated server code. Point all client applications
to the new installation of GemFire.

Run the new version of gfsh.

Start a locator and import the saved configuration. If you are using the cluster configuration
service, use the same name and directory as the older version you stopped, and the new
locator will access the old locator’s cluster configuration without having to import it in a
separate step:

gfsh>start locator --name=locatorl --enable-cluster-configuration=true --dir=/d

ata/locatorl

VMware by Broadcom

107

VMware GemFire 9.10 Documentation

Otherwise, use the gfsh import cluster-configuration command or explicitly import .xml
and .properties files, as appropriate.

12. Restart all system data members using the new version of gfsh. Use the same names,
directories, and other properties that were used when starting the system under the
previous version of the software. (Here is where a system startup script comes in handy as a
reference.) Interdependent data members may hang on startup waiting for each other. In
this case, start servers in separate shells so they can communicate with one another to
resolve dependencies.

13. Upgrade VMware GemFire clients, following the guidelines described in Upgrading Clients.

Upgrading Clients

When you upgrade your GemFire server software, you will likely need to update your client
applications in order to maintain compatibility with the upgraded servers. To support real-world
implementations, servers can usually interoperate with a few different versions of the client
software. In general, you will have best performance and reliability if:

o All clients run the same version of the client software.
« Clients and servers both run the latest versions of their respective software.

GemFire server and native client software releases follow similar numbering schemes, but they are
not released in lockstep. For more detailed information regarding version compatibility, see the
Native Client for VMware GemFire product documentation.

Changes you may need to make when you update, recompile, and link your client code include:
« Removing or replacing obsolete identifiers
« Renaming packages

« Reinstating secure client/server messaging

Remove or Replace Obsolete Identifiers

Review the Release Notes for a list of classes, methods, and other identifiers that are no longer
present in the current release. Update client code so it no longer uses any of these removed
identifiers.

Rename Packages

Pivotal GemFire 9 uses the same packages as open-source Apache Geode. Beginning with Gemfire
version 9.0, com.gemstone.gemfire package names are NOW org.apache.geode. The server class
path uses geode-dependencies.jar in place of the no-longer-used gemfire.jar and server-
dependencies.jar. If you have written code that explicitly imports gemfire packages, you must
change those references to use the geode names and recompile.

For C++ clients, update the namespace to use apache: :geode: :client in place of gemfire.
For .NET clients, use Apache.Geode.Client in place of Gemstone.GemFire.Cache.Generic.

The Pivotal GemFire 9.x release is backwards compatible with Pivotal GemFire 8.2.3 and more
recent 8.2 clients, so a version 9 server will understand calls from an 8.2.3 client that uses the old

VMware by Broadcom 108

https://docs.vmware.com/en/Native-Client-for-VMware-GemFire/index.html

VMware GemFire 9.10 Documentation

com.gemstone.gemfire package names. There is one exception: Pivotal GemFire 8.x clients that run
functions on servers using the Execution interface’s execute (Function function) Signature cannot
work with GemFire 9.x servers. Clients that run server-side functions with this signature must be
reimplemented as 9.x clients that use the 9.x package names.

Reinstate Secure Client/Server Messaging After Upgrading

When servers are upgraded to GemFire v9.1.1 or later from an earlier release, their authentication
of client messages is deactivated to facilitate rolling upgrades. If your clients are configured to send
authenticated messages, the servers will honor those messages but will not enforce authentication
until you reinstate authentication on each of the upgraded servers. To reinstate secure
client/server messaging, restart each server with the geode.disallow-internal-messages-without-
credentials system property set to true. For example:

gfsh>start server --name=server name --dir=server config dir \

--J=-Dgeode.disallow-internal-messages-without-credentials=true

Upgrade from Version 8.2 to Version 9

This is the upgrade procedure to a GemFire 9 version from Pivotal GemFire 8.2.3 or a more recent
release of Pivotal GemFire 8.2.

General Upgrade Steps

These steps identify the ordering of an upgrade. A more detailed procedure is given below.

1. Implement package renaming for server-side callbacks in a test environment. The server
class path uses geode-dependencies.jar in place of the no longer used gemfire.jar and
server-dependencies.jar. Change your server-side callbacks and functions to use
org.apache.geode packages instead of com.gemstone.gemfire packages. Also implement
package renaming for any client applications that are to be upgraded to a Pivotal GemFire 9
version.

2. Make backups, so you can restore your GemFire version 8 cluster if the upgrade does not
complete to your satisfaction.

o Back up all existing disk-stores and data.

o Back up all configuration files including gemfire.properties and .xml configurations.

3. Check system requirements and make changes where applicable.
4. Shut down the cluster.
5. Upgrade the Java JDK to v1.8.0_92 or later, if necessary.

6. Install the new version of GemFire, and update environment variables to point to the new
installation.

7. Install revised server-side callbacks and any upgraded clients.
8. Start the cluster using the new GemFire version 9 installation.

9. Test the new installation to assure that the cluster has been properly redeployed.

VMware by Broadcom

109

VMware GemFire 9.10 Documentation

10. Redeploy client applications.
1. Test client applications for proper functionality.

12. Remove the old distribution to prevent inadvertent version conflicts.

Java Notes

e The Pivotal GemFire product download does not include Java. You must download and
install a supported JRE or JDK on each system running GemFire. GemFire recommends the
installation of a full JDK (and not just a JRE) to obtain better performance with gfsh status
and gfsh stop commands.

e To check your current Java version, type java -version at @a command-line prompt.

« Pivotal GemFire 9.x requires Java SE 8, version 92 or a more recent version. Pivotal
GemFire 8.0 was the last GemFire release to support Java SE 6, and Java SE 7 is in End-of-
Life status.

RHEL/Centos: with previous installation via RPM

RPMs existed for GemFire 8.x, but they are not available for GemFire 9.x. To install on a
RHEL/Centos system, follow these upgrade procedure instructions, with a modified final step of
uninstalling the GemFire 8.x version using rpm -e.

Ubuntu: with previous installation via Debian packaging

DEBs existed for GemFire 8.x, but they are not available for GemFire 9.x. To install on an Ubuntu
system, follow the upgrade procedure instructions, with a modified final step of uninstalling the
GemFire 8.x version using dpkg --remove Of dpkg --purge.

Package Renaming

Pivotal GemFire 9.x uses the same packages as open-source Apache Geode. Pivotal GemFire 8.x
did not use the Apache Geode package naming. All com.gemstone.gemfire package names are now
org.apache.geode. If you have written code that explicitly imports gemfire packages, you must
change those references to use the geode Nnames. This applies to all server side code. Search and
replace com.gemstone.gemfire With org.apache.geode.

The Pivotal GemFire 9.x release is backwards compatible with Pivotal GemFire 8.2.3 and more
recent 8.2 clients, so a version 9 server will understand calls from an 8.2.3 client that uses the old
com.gemstone.genfire package names. Pivotal GemFire 9.x peers and servers are not compatible
with Pivotal GemFire 8.2.3 peers or servers.

Pivotal GemFire 8.2.3 and more recent version 8.2 clients that run functions on servers using the
Execution interface’s execute (Function function) signature can not work with 9.x servers. The
clients that run functions with this signature must be reimplemented as 9.x clients which use the
9.x package names.

Any backups or exports using data from a version prior to 8.2.3 cannot be used to restore that
backup, or import that data, into any GemFire version 9.x or later cluster.

VMware by Broadcom

VMware GemFire 9.10 Documentation

The Upgrade Procedure, Step by Step

Follow these steps to upgrade to Pivotal GemFire 9.x on Linux, Unix, or Windows.

1.

Implement package renaming for server-side callbacks in a test environment. The server
class path uses geode-dependencies.jar in place of the no longer used gemfire.jar and
server-dependencies.jar. Change your server-side callbacks and functions to use
org.apache.geode packages instead of com.gemstone.gemfire packages. Also implement
package renaming for any client applications that are to be upgraded to a Pivotal GemFire 9
version.

Make backup copies of all existing disk-stores, server-side code, configuration files, and data
across the entire cluster. To get a backup of the data that includes the most recent changes
may require that traffic across the cluster is stopped before the backup is made.

Shut down the cluster running with the prior version. Open a gfsh prompt:
% gfsh

Connect to the locator:

gfsh>connect --locator=localhost[10334]

Connecting to Locator at [host=localhost, port=10334]
Connecting to Manager at [host=192.0.2.0, port=1099]
Successfully connected to: [host=192.0.2.0, port=1099]

gfsh>list members

Name | Id

_______ I o — o ——— o — —
server?2 | 192.0.2.0(server2:29368)<v2>:35840

locator | 192.0.2.0(locator:29181l:1locator) :36278
serverl | 192.0.2.0(serverl:29285)<v1>:40574

Shut down the entire cluster (by pressing Y at the prompt, this will lose no persisted data):

gfsh>shutdown --include-locators=true

As a lot of data in memory will be lost, including possibly events in queues, do you really want to
shutdown the entire distributed system? (Y/n): Y succeeded in shutting down ™

Since GemFire is a Java process,

to check before continuing that all GemFire members successfully stopped, it is useful to use the
JDK-included 4ps command to check running java processes:

pre

% Jjps

29664 Jps

1.

On each machine in the cluster, upgrade Java, if needed.

2. On the machine hosting the locator you wish to upgrade, install the new version of the

software (alongside the older version of the software). See Installing Pivotal GemFire.

VMware by Broadcom

m

VMware GemFire 9.10 Documentation

3. On each machine in the cluster, install the new version of the software (alongside the older
version of the software). See Installing Pivotal GemFire.

To check that the system finds the new installation, open a gfsh prompt and check the
GemFire version:

[

% gfsh --version
v9.0.0

4. On each machine in the cluster, redeploy your environment’s configuration files to the new
version installation.

5. Restart all system members according to your usual procedures.

6. Upgrade VMware GemFire clients. See Upgrading Clients for details.

7. Once all systems are functioning normally and all tests are successful, remove the old
version of GemFire from each machine in the cluster, to reduce possibility of version
complications in the future. See Uninstalling GemFire for instructions.

Multi-site Upgrade from Version 8.2 to Version 9

Systems that have both persistent disk stores and a bidirectional WAN gateway to replicate data
among sites can implement an upgrade that does not require system down time. It requires
multiple reconfigurations during the process, so that each site can be individually upgraded while
the rest of the system continues.

This procedure will not work reliably for you if any of your WAN-connected systems includes clients
that use continuous queries or subscriptions. In those cases, upgrade each system separately using
the procedure described in Upgrade from Version 8.2 to Version 9.

This procedure assumes that each site has already been upgraded to Pivotal GemFire version 8.2.3
or a more recent 8.2 version.

This diagram shows the initial state of the system.

Site A v8 QatewayJender *“,_!>f”’ Site B v8

GatewaySender B

o

The procedure for upgrading two sites, Site A and Site B:

1. Reconfigure to redirect all traffic away from Site B (which will be the first site that gets
upgraded).

VMware by Broadcom

12

VMware GemFire 9.10 Documentation

. GatewaySender & .
Site A v8 ,_!>f Site B v8

< GatewayZender B
oo O _// {Mo content)
+

o
i

|
(Gt

2. Pause the gateway senders on Site A.

Sitt AV8 o000 (" SiteBv8
GatewaySender B
@ oo O (Mo content)
T 4
()
3. Upgrade Site B to GemFire 9.x.
Site Av8 Site B offline
@ o o O
T 4
(GmED)
4. Start GemFire 9.x on Site B.
Site A v8 4 Site B v9
GatewayZender B
@ oo O Mo content) e
T 4
(GamtED)

VMware by Broadcom n3

VMware GemFire 9.10 Documentation

5. Pause the gateway senders on Site B.

Site Av8 Site B v9

— D

— O

lJ;—*

(CED) (S

6. Start the gateway senders on Site A and wait for Site A’s queues to drain.

Site A v8 G“‘E“?SE:‘-’Q Site B v@

— O
—m= O
-

(Giatn) (GienEz

7. Once the queues have drained sufficiently, reconfigure to redirect all traffic to Site B. Site
A’s queues should now drain the rest of the way.

FC—“

Site A v8 GalewaySender A Site B vO

(Mo content)

g o
|

j/ @ 0 o o]
1
Client B2
8. Upgrade Site A to GemFire 9.x.
Site A offline Site B v9
%% 5 o o
|
D (i) e

9. Once Site A is back up, start Site B’s gateway senders and wait for the queues to drain
sufficiently.

VMware by Broadcom na

VMware GemFire 9.10 Documentation

Site A v9 - Site B v
ecoe

GatewaySender B

Lo @

L @

g
@D (G) Gianr ez

10. Reconfigure to redistribute the load across both Site A and Site B.

Site A v9 GatewaySender A ,_!>f Site B v9 J

GatewaySender B

(9]

Pivotal GemFire in 15 Minutes or Less

Need a quick introduction to Pivotal GemFire? Take this brief tour to try out basic features and
functionality.

Step 1. Install Pivotal GemFire

See Installing Pivotal GemFire for instructions.

Step 2. Use gfsh to start a locator

In a terminal window, use the gfsh command line interface to start up a locator. gfsh (pronounced
“jee-fish”) provides a single, intuitive command-line interface from which you can launch, manage,
and monitor Pivotal GemFire processes, data, and applications. See gfsh.

The locatoris a GemFire process that tells new, connecting members where running members are
located and provides load balancing for server use. A locator, by default, starts up a JMX Manager,
which is used for monitoring and managing a GemFire cluster. The cluster configuration service
uses locators to persist and distribute cluster configurations to cluster members. See Running
GemFire Locator Processes and Overview of the Cluster Configuration Service.

1. Create a scratch working directory (for example, my gemfire) and change directories into it.
gfsh saves locator and server working directories and log files in this location.

2. Start gfsh by typing gfsh at the command line (or gfsh.bat if you are using Windows).

VMware by Broadcom 15

VMware GemFire 9.10 Documentation

Monitor and Manage GemFire
gfsh>

3. At the gfsh prompt, type the start locator command and specify a name for the locator:

gfsh>start locator --name=locatorl
Starting a GemFire Locator in /home/username/my gemfire/locatorl...

Locator in /home/username/my gemfire/locatorl on ubuntu.local[10334] as locator
1 is currently online.

Process ID: 3529

Uptime: 18 seconds

GemFire Version: 9.0.0

Java Version: 1.8.0_272

Log File: /home/username/my gemfire/locatorl/locatorl.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-clust
er-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /home/username/pivotal gemfire-9.0.0/lib/geode-dependencies.jar
Successfully connected to: [host=ubuntu.local, port=1099]

Cluster configuration service is up and running.

Step 3. Start GemFire Pulse

Start up the browser-based GemFire Pulse monitoring tool. GemFire Pulse is a Web Application
that provides a graphical dashboard for monitoring vital, real-time health and performance of
GemFire clusters, members, and regions. See GemFire Pulse.

gfsh>start pulse

Launched GemFire Pulse

>This command launches Pulse and automatically connects you to the JMX Manager running in the
Locator. At the Pulse login screen, type in the default username admin and password admin.

The Pulse application now displays the locator you just started (locator?):

VMware by Broadcom 16

VMware GemFire 9.10 Documentation

0.51 6

134.33 ms

Va's f/l
|

V4%

Step 4. Start a server

A GemFire server is a Pivotal GemFire process that runs as a long-lived, configurable member of a
cluster (also called a distributed system). The GemFire server is used primarily for hosting long-lived
data regions and for running standard GemFire processes such as the server in a client/server
configuration. See Running GemFire Server Processes.

Start the cache server:

gfsh>start server --name=serverl --server-port=40411

This commands starts a cache server named “server1” on the specified port of 40411.

Observe the changes (new member and server) in Pulse. Try expanding the distributed system icon
to see the locator and cache server graphically.

Step 5. Create a replicated, persistent region

In this step you create a region with the gfsh command line utility. Regions are the core building
blocks of the GemFire cluster and provide the means for organizing your data. The region you
create for this exercise employs replication to replicate data across members of the cluster and
utilizes persistence to save the data to disk. See Data Regions.

1. Create a replicated, persistent region:

gfsh>create region --name=regionA --type=REPLICATE PERSISTENT

Member | Status

VMware by Broadcom n7

VMware GemFire 9.10 Documentation

serverl | Region "/regionA" created on "serverl"

Note that the region is hosted on serverl.

2. Use the gfsh command line to view a list of the regions in the cluster.

gfsh>list regions

List of regions

3. List the members of your cluster. The locator and cache server you started appear in the
list:

gfsh>list members
Name | Id

locatorl | 192.0.2.0(locatorl:3529:1ocator)<v0>:59926
serverl | 192.0.2.0(serverl1:3883)<v1>:65390

4. To view specifics about a region, type the following:

gfsh>describe region --name=regionA
Name : regionA

Data Policy : persistent replicate
Hosting Members : serverl

Non-Default Attributes Shared By Hosting Members

Type | Name | Value

5. In Pulse, click the green cluster icon to see all the new members and new regions that you
just added to your cluster.

Note: Keep this gfsh prompt open for the next steps.

Step 6. Manipulate data in the region and demonstrate
persistence
Pivotal GemFire manages data as key/value pairs. In most applications, a Java program adds,

deletes and modifies stored data. You can also use gfsh commands to add and retrieve data. See
Basic GemFire gfsh Commands.

1. Run the following put commands to add some data to the region:

gfsh>put --region=regionA --key="1" --value="one"
Result : true

Key Class : java.lang.String

Key 1

Value Class : java.lang.String

0ld Value : <NULL>

VMware by Broadcom 18

VMware GemFire 9.10 Documentation

gfsh>put --region=regionA --key="2" --value="two"
Result : true

Key Class : java.lang.String

Key 8 2

Value Class : java.lang.String

0ld Value : <NULL>

2. Run the following command to retrieve data from the region:

gfsh>query --query="select * from /regionA"

Result : true

startCount : O

endCount : 20
Rows H
Result

two

one

Note that the result displays the values for the two data entries you created with the put
commands.

See Data Entries.

3. Stop the cache server using the following command:

gfsh>stop server --name=serverl

Stopping Cache Server running in /home/username/my gemfire/serverl on ubuntu.lo
cal[40411] as serverl...

Process ID: 3883

Log File: /home/username/my gemfire/serverl/serverl.log

4. Restart the cache server using the following command:

gfsh>start server --name=serverl --server-port=40411

5. Run the following command to retrieve data from the region again — notice that the data is

still available:
gfsh>query --query="select * from /regionA"
Result : true
startCount : O
endCount : 20
Rows)
Result
two
one

VMware by Broadcom 19

VMware GemFire 9.10 Documentation

Because regionA uses persistence, it writes a copy of the data to disk. When a server
hosting regionA starts, the data is populated into the cache. Note that the result displays
the values for the two data entries you created with the put commands prior to stopping
the server.

See Data Entries.

See Data Regions.

Step 7. Examine the effects of replication

In this step, you start a second cache server. Because regionA is replicated, the data will be
available on any server hosting the region.

1. Start a second cache server:

gfsh>start server --name=server2 --server-port=40412

2. Runthe describe region command to view information about regionA:

gfsh>describe region --name=regionA
Name : regionA
Data Policy : persistent replicate
Hosting Members : serverl

server?2

Non-Default Attributes Shared By Hosting Members
Type | Name | Value
Region | size | 2

Note that you do not need to create regionA again for server2. The output of the
command shows that regionA is hosted on both serverl and server2. When gfsh starts a
server, it requests the configuration from the cluster configuration service which then
distributes the shared configuration to any new servers joining the cluster.

3. Add a third data entry:

gfsh>put --region=regionA --key="3" --value="three"
Result : true

Key Class : java.lang.String

Key 8 3

Value Class : java.lang.String

0ld Value : <NULL>

4. Open the Pulse application (in a Web browser) and observe the cluster topology. You
should see a locator with two attached servers. Click the Data tab to view information

about regionA.

5. Stop the first cache server with the following command:

gfsh>stop server --name=serverl
Stopping Cache Server running in /home/username/my gemfire/serverl on ubuntu.lo

VMware by Broadcom 120

VMware GemFire 9.10 Documentation

cal[40411] as serverl...
Process ID: 4064

Log File: /home/username/my gemfire/serverl/serverl.log

6. Retrieve data from the remaining cache server.

gfsh>query --query="select * from /regionA"

Result : true
startCount : O
endCount : 20
Rows 3 3

Result

two
one

three

Note that the data contains 3 entries, including the entry you just added.

7. Add a fourth data entry:

gfsh>put --region=regionA --key="4" --value="four"
Result : true

Key Class : java.lang.String

Key S

Value Class : java.lang.String

0ld Value : <NULL>

Note that only server2 is running. Because the data is replicated and persisted, all of the
data is still available. But the new data entry is currently only available on server 2.

gfsh>describe region --name=regionA
Name : regionA

Data Policy : persistent replicate
Hosting Members : server?2

Non-Default Attributes Shared By Hosting Members

Region | size | 4

8. Stop the remaining cache server:

gfsh>stop server --name=server?2

Stopping Cache Server running in /home/username/my gemfire/server2 on ubuntu.lo
call[40412] as server2...

Process ID: 4185

Log File: /home/username/my gemfire/server2/server2.log

Step 8. Restart the cache servers in parallel

VMware by Broadcom 121

VMware GemFire 9.10 Documentation

In this step you restart the cache servers in parallel. Because the data is persisted, the data is
available when the servers restart. Because the data is replicated, you must start the servers in
parallel so that they can synchronize their data before starting.

1. Start serverl. Because regionA is replicated and persistent, it needs data from the other
server to start and waits for the server to start:

gfsh>start server --name=serverl --server-port=40411
Starting a GemFire Server in /home/username/my gemfire/serverl...

Note that if you look in the serverl.log file for the restarted server, you will see a log
message similar to the following:

[info 2015/01/14 09:08:13.610 PST serverl <main> tid=0x1] Region /regionA has p
ot

entially stale data. It is waiting for another member to recover the latest dat
a.

My persistent id:

DiskStore ID: 8e2d99a9-4725-47e6-800d-28a26el1d59b1
Name: serverl

Location: /192.0.2.0:/home/username/my gemfire/serverl/.

Members with potentially new data:
[
DiskStore ID: 2e91b003-8954-43f9-8ba9-3c5b0cdd4dfa
Name: server?2
Location: /192.0.2.0:/home/username/my gemfire/server2/.
]
Use the "gemfire list-missing-disk-stores" command to see all disk stores tha
t

are being waited on by other members.

2. In asecond terminal window, change directories to the scratch working directory (for
example, my gemfire) and start gfsh:

[username@localhost ~/my gemfire]$ gfsh

Monitor and Manage GemFire

3. Run the following command to connect to the cluster:

gfsh>connect --locator=localhost[10334]

Connecting to Locator at [host=localhost, port=10334]
Connecting to Manager at [host=ubuntu.local, port=1099]
Successfully connected to: [host=ubuntu.local, port=1099]

4. Start server2:

VMware by Broadcom

122

VMware GemFire 9.10 Documentation

gfsh>start server --name=server2 --server-port=40412

When server2 starts, note that server1 completes its start up in the first gfsh window:

Server in /home/username/my gemfire/serverl on ubuntu.local[40411] as serverl i
s currently online.

Process ID: 3402

Uptime: 1 minute 46 seconds

GemFire Version: 9.0.0

Java Version: 1.8.0_ 272

Log File: /home/username/my gemfire/serverl/serverl.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334] -Dgemfire.use-cluste
r-configuration=true

-XX:0nOutOfMemoryError=kill -KILL %p -Dgemfire.launcher.registerSignalHandlers=
true

-Djava.awt.headless=true -Dsun.rmi.dgc.server.gclInterval=9223372036854775806
Class-Path: /home/username/pivotal gemfire-9.0.0/1lib/geode-dependencies.jar

5. Verify that the locator and two servers are running:

gfsh>list members

Name | Id
________ ‘ . — — — — ———— — — — —— — —— — — — — — — — — —
server?2 | ubuntu(server2:3992)<v8>:21507
serverl | ubuntu(serverl:3402)<v7>:36532

locatorl | ubuntu(locatorl:2813:locator)<v0>:46644

6. Run a query to verify that all the data you entered with the put commands is available:

gfsh>query --query="select * from /regionA"
Result : true

startCount : O

endCount : 20

Rows 3 B

Result

one

two

four

Three

NEXT STEP_NAME : END

7. Stop server2 with the following command:

gfsh>stop server --dir=server2

Stopping Cache Server running in /home/username/my gemfire/server2 on 192.0.2.0
[40412] as server2...

Process ID: 3992

Log File: /home/username/my gemfire/server2/server2.log

8. Run a query to verify that all the data you entered with the put commands is still available:

VMware by Broadcom 123

VMware GemFire 9.10 Documentation

gfsh>query --query="select * from /regionA"
Result : true

startCount : O

endCount : 20

Rows S

Result

one

two

four

Three

NEXT_STEP_NAME : END

Step 9. Shut down the system including your locators

To shut down your cluster, do the following:

1. In the current gfsh session, stop the cluster:

gfsh>shutdown --include-locators=true

See the shutdown manual page.

2. When prompted, type ‘Y’ to confirm the shutdown of the cluster.

As a lot of data in memory will be lost, including possibly events in queues,
do you really want to shutdown the entire distributed system? (Y/n): Y
Shutdown is triggered

gfsh>
No longer connected to ubuntu.local[l099].
gfsh>

3. Type exit to quit the gfsh shell.

Step 10. What to do next...

Here are some suggestions on what to explore next with Pivotal GemFire:

« Continue reading the next section to learn more about the components and concepts that
were just introduced.

e To get more practice using gfsh, see Tutorial—Performing Common Tasks with gfsh.

« To learn about the cluster configuration service, see Tutorial—Creating and Using a Cluster
Configuration.

VMware by Broadcom 124

VMware GemFire 9.10 Documentation

Configuring and Running a Cluster

Use the gfsh command-line utility to configure your VMware GemFire cluster. The cluster
configuration service persists the cluster configurations and distributes the configurations to
members of the cluster. There are also several additional ways to configure a cluster.

Use gfsh to configure regions, disk stores, members, and other VMware GemFire objects. You can
also use gfsh to start and stop locators, servers, and VMware GemFire monitoring tools. As you
execute these commands, the cluster configuration service persists the configuration. When new
members join the cluster, the service distributes the configuration to the new members.

gfsh is the recommended means of configuring and managing your VMware GemFire cluster,
however you can still configure many aspects of a cluster using the older methods of the cache.xml
and gemfire.properties files. See cache.xml and the Reference for configuration parameters. You
can also configure some aspects of a cluster using a Java API. See Managing VMware GemFire.

« Overview of the Cluster Configuration Service

The VMware GemFire cluster configuration service persists cluster configurations created
by gfsh commands to the locators in a cluster and distributes the configurations to
members of the cluster.

e« Tutorial—Creating and Using a Cluster Configuration

A short walk-through that uses a single computer to demonstrate how to use gfsh to
create a cluster configuration for a VMware GemFire cluster.

« Deploying Application JARs to VMware GemFire Members

You can dynamically deploy your application JAR files to specific members or to all
members in your cluster. VMware GemFire automatically keeps track of JAR file versions;
autoloads the deployed JAR files to the CLASSPATH; and auto-registers any functions that
the JAR contains.

« Using Member Groups

VMware GemFire allows you to organize your cluster members into logical member groups.

« Exporting and Importing Cluster Configurations

The cluster configuration service exports and imports configurations created using gfsh for
an entire VMware GempFire cluster.

o Cluster Configuration Files and Troubleshooting

When you use the cluster configuration service in VMware GemFire, you can examine the
generated configuration files in the cluster config directory on the locator. gfsh saves
configuration files at the cluster-level and at the individual group-level.

+ Using gfsh to Manage a Remote Cluster Over HTTP or HTTPS

VMware by Broadcom

125

VMware GemFire 9.10 Documentation

You can connect gfsh via HTTP or HTTPS to a remote cluster and manage the cluster using
gfsh commands.

« Deploying Configuration Files without the Cluster Configuration Service

You can deploy your VMware GemFire configuration files in your system directory structure
or in jar files. You determine how you want to deploy your configuration files and set them
up accordingly.

« Starting Up and Shutting Down Your System

Determine the proper startup and shutdown procedures, and write your startup and
shutdown scripts.

¢« Running VMware GemFire Locator Processes

The locator is a VMware GemFire process that tells new, connecting members where
running members are located and provides load balancing for server use.

« Running VMware GemFire Server Processes

A VMware GemFire server is a process that runs as a long-lived, configurable member of a
client/server system.

« Managing System Output Files

VMware GemFire output files are optional and can become quite large. Work with your
system administrator to determine where to place them to avoid interfering with other
system activities.

+« Firewall Considerations

You can configure and limit port usage for situations that involve firewalls, for example,
between client-server or server-server connections.

Overview of the Cluster Configuration Service

The VMware GemFire cluster configuration service persists cluster configurations created by gfsh
commands to the locators in a cluster and distributes the configurations to members of the cluster.

Why Use the Cluster Configuration Service

We highly recommend that you use the gfsh command line and the cluster configuration service as
the primary mechanism to manage your cluster configuration. Specify configuration within a
cache.xml file for only those items that cannot be specified or altered using gfsh. Using a common
cluster configuration reduces the amount of time you spend configuring individual members and
enforces consistent configurations when bringing up new members in your cluster. You no longer
need to reconfigure each new member that you add to the cluster. You no longer need to worry
about validating your cache.xml file. It also becomes easier to propagate configuration changes
across your cluster and deploy your configuration changes to different environments.

You can use the cluster configuration service to:
e« Save the configuration for an entire VMware GemFire cluster.

« Restart members using a previously-saved configuration.

VMware by Broadcom 126

VMware GemFire 9.10 Documentation

e« Export a configuration from a development environment and migrate that configuration to
create a testing or production system.

« Start additional servers without having to configure each server separately.

« Configure some servers to host certain regions and other servers to host different regions,
and configure all servers to host a set of common regions.

Using the Cluster Configuration Service

To use the cluster configuration service in VMware GemFire, you must use dedicated, standalone
locators in your deployment. You cannot use the cluster configuration service with co-located
locators (locators running in another process such as a server) or in multicast environments.

The standalone locators distribute configuration to all locators in a cluster. Every locator in the
cluster with —-enable-cluster-configuration set to true keeps a record of all cluster-level and
group-level configuration settings.

Note: The default behavior for gfsh is to create and save cluster configurations. You can deactivate
the cluster configuration service by using the --enable-cluster-configuration=false option when
starting locators.

You can load existing configuration into the cluster by using the gfsh import cluster-
configuration command after starting up a locator.

Subsequently, any servers that you start with gfsh that have --use-cluster-configuration set to
true Will pick up the cluster configuration from the locator as well as any appropriate group-level
configurations (for member groups they belong to). To deactivate the cluster configuration service
on a server, you must start the server with the --use-cluster-configuration parameter set to
false. By default, the parameter is set to true.

How the Cluster Configuration Service Works

When you use gfsh commands to create VMware GemFire regions, disk-stores, and other objects,
the cluster configuration service saves the configurations on each locator in the cluster. If you
specify a group when issuing these commands, a separate configuration is saved containing only
configurations that apply to the group.

When you use gfsh to start new VMware GemFire servers, the locator distributes the persisted
configurations to the new server. If you specify a group when starting the server, the server
receives the group-level configuration in addition to the cluster-level configuration. Group-level
configurations are applied after cluster-wide configurations; therefore you can use group-level to
override cluster-level settings.

VMware by Broadcom

127

VMware GemFire 9.10 Documentation

L. Developer/Administrator 3 Developer/Administrator
executes gfsh commands executes gfsh commands to
to configure the cluster. add new members to the cluster.

e S

start locator
start serverl

crea;ce .dg,k-store start server --name=server2
create il start server --name=server3
LoselE o start server --name=server4

deploy

) /

2 gfsh saves the cluster

configuration on the 4. New members request
locator(s). Existing server(s) the configuration from a
using cluster configuration locator.

service are configured.

serverl Locator(s)

5. Locator distributes the configuration
(including regions, disk-stores, jar files) to
new servers joining the cluster.

1. Developer or Administrator executes gfsh commands to configure the cluster.

2. gfsh saves the cluster information on the locators. Existing servers using cluster
configuration are configured.

3. Developer or Administrator executes gfsh to add new members to the cluster.
4. New members request the configuration from a locator.

5. Locator distributes the configuration to new servers joining the cluster. Configuration
includes regions, disk stores, and jar files,

gfsh Commands that Create Cluster Configurations

The following gfsh commands cause the configuration to be written to all locators in the cluster
(the locators write the configuration to disk):

e configure pdx*

VMware by Broadcom 128

VMware GemFire 9.10 Documentation

create region

alter region

alter runtime

destroy region

create index

destroy index

create disk-store
destroy disk-store
create async-event-queue
alter async-event-queue
destroy async-event-queue
deploy jar

undeploy jar

create gateway-sender
destroy gateway-sender
create gateway-receiver
destroy gateway-receiver

alter query-service

* Note that the configure pdx command must be executed before starting your data members.
This command does not affect any currently running members in the system. Data members (with
cluster configuration enabled) that are started after running this command will pick up the new PDX
configuration.

gfsh Limitations

These are the configurations that you cannot create or alter using gfsh. These configurations must
be within a cache.xml file or be applied by using the API:

Client cache configuration
You cannot directly modify the attributes of the following objects:
o function
o custom-load-probe
o compressor
o serializer
o instantiator
o pdx-serializer

Note: The configure pdx command always specifies the
org.apache.geode.pdx.ReflectionBasedAutoSerializer class. You cannot specify a

VMware by Broadcom

129

VMware GemFire 9.10 Documentation

custom PDX serializer in gfsh.

o initializer

o lru-heap-percentage

o lru-memory-size

o partition-resolver

o partition-listener

o transaction-listener

o transaction-writer
e Adding or removing a TransactionListener
¢ Configuring a GatewayConflictResolver

« You cannot specify parameters and values for Java classes for the following:

o gateway-listener

o gateway-conflict-resolver
o gateway-event-filter

o gateway-transport-filter

o gateway-event-substitution-filter

Deactivating the Cluster Configuration Service

If you do not want to use the cluster configuration service, start up your locator with the --enable-
cluster-configuration parameter set to false or do not use standalone locators. You will then
need to configure the cache (via cache.xml or API) separately on all your cluster members.

Tutorial—Creating and Using a Cluster Configuration

A short walk-through that uses a single computer to demonstrate how to use gfsh to create a
cluster configuration for a VMware GemFire cluster.

The gfsh command-line tool allows you to configure and start a VMware GemFire cluster. The
cluster configuration service uses VMware GemFire locators to store the configuration at the group
and cluster levels and serves these configurations to new members as they are started. The
locators store the configurations in a hidden region that is available to all locators and also write the
configuration data to disk as XML files. Configuration data is updated as gfsh commands are
executed.

This section provides a walk-through example of configuring a simple VMware GemFire cluster and
then re-using that configuration in a new context.

1. Create a working directory (For example:/home/username/my geode) and switch to the new
directory. This directory will contain the configurations for your cluster.

2. Start the gfsh command-line tool. For example:

$ gfsh

VMware by Broadcom

130

VMware GemFire 9.10 Documentation

The gfsh command prompt displays.

Monitor and Manage VMware GemFire
gfsh>

3. Start a locator using the command in the following example:

gfsh>start locator --name=locatorl

Starting a VMware GemFire Locator in /Users/username/my geode/locatorl...

Locator in /Users/username/my_ geode/locatorl on 192.0.2.0[10334] as locatorl
is currently online.

Process ID: 70919

Uptime: 12 seconds

VMware GemFire Version: 9.10

Java Version: 1..0 272

Log File: /Users/username/my geode/locatorl/locatorl.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true

-Dgemfire.load-cluster-configuration-from-dir=false

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/1lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

Cluster configuration service is up and running.

Note that gfsh responds with a message indicating that the cluster configuration service is
up and running. If you see a message indicating a problem, review the locator log file for
possible errors. The path to the log file is displayed in the output from gfsh.

4. Start VMware GemFire servers using the commands in the following example:

gfsh>start server --name=serverl --groups=groupl

Starting a VMware GemFire Server in /Users/username/my geode/serverl...

Server in /Users/username/my geode/serverl on 192.0.2.0[40404] as serverl
is currently online.

Process ID: 5627

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/my geode/serverl/serverl.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334] -Dgemfire.groups=gro
upl

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

Class-Path: /Users/username/geode910/1ib/geode-dependencies.jar

gfsh>start server --name=server2 --groups=groupl --server-port=40405

VMware by Broadcom 131

VMware GemFire 9.10 Documentation

Starting a VMware GemFire Server in /Users/username/my_ geode/server2...

Server in /Users/username/my geode/server2 on 192.0.2.0[40405] as server2
is currently online.

Process ID: 5634

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_ 272

Log File: /Users/username/my geode/server2/server2.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334] -Dgemfire.groups=gro
upl

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/1lib/geode-dependencies.jar

gfsh>start server --name=server3 --server-port=40406

Starting a VMware GemFire Server in /Users/username/my_ geode/server3...

Server in /Users/username/my geode/server3 on 192.0.2.0[40406] as server3
is currently online.

Process ID: 5637

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_ 272

Log File: /Users/username/my geode/server3/server3.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10334]

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true

-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true

-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/1ib/geode-dependencies.jar

Note that the gfsh commands you used to start serverl and server2 specify a group
named groupl while the command for server3 did not specify a group name.

5. Create some regions using the commands in the following example:

gfsh>create region --name=regionl --groups=groupl --type=REPLICATE

Member | Status | Message

_______ I —_—————— I o —
serverl | OK | Region "/regionl" created on "serverl"
server2 | OK | Region "/regionl" created on "server2"

Cluster configuration for group 'groupl' is updated.

gfsh>create region --name=region2 --type=REPLICATE

Member | Status | Message

_______ I —_————— I o
serverl | OK | Region "/region2" created on "serverl"
server2 | OK | Region "/region2" created on "server2"
server3 | OK | Region "/region2" created on "server3"

Cluster configuration for group 'cluster' is updated.

VMware by Broadcom 132

VMware GemFire 9.10 Documentation

Note that regionl is created on all cache servers that specified the group named groupl
when starting the cache server (serverl and server2, in this example). region2 is created
on all members because no group was specified.

6. Deploy jar files. Use the gfsh deploy command to deploy application jar files to all members
or to a specified group of members. The following example deploys the mx43-3.0.2.5ar and
ra.jar files from the distribution. (Note: This is only an example, you do not need to deploy
these files to use the Cluster Configuration Service. Alternately, you can use any two jar
files for this demonstration.)

gfsh>deploy --groups=groupl --jars=/lib/mx4j-3.0.2.jar

Deploying files: mx4j-3.0.2.jar
Total file size is: 0.39MB

Continue? (Y/n): y

Member | Deployed JAR | Deployed JAR Location

_______ | ——— e o | S
serverl | mx4j-3.0.2.jar | /Users/username/my geode/serverl/mx4j-3.0.2.vl.jar
server2 | mx4j-3.0.2.jar | /Users/username/my geode/server2/mx4j-3.0.2.vl.jar

gfsh>deploy --jars=/lib/ra.jar

Deploying files: ra.jar
Total file size is: 0.03MB

Continue? (Y/n): y

Member | Deployed JAR | Deployed JAR Location

_______ | ——— e e o ‘ S
serverl | ra.jar | /Users/username/my geode/serverl/ra.vl.jar

server?2 | ra.jar | /Users/username/my geode/server2/ra.vl.jar

server3 | ra.jar | /Users/username/my geode/server2/ra.vl.jar

Note that the mx4§-3.0.2.7ar file was deployed only to the members of groupl and the
ra.jar was deployed to all members.

7. Export the cluster configuration. You can use the gfsh export cluster-configuration
command to create a zip file that contains the cluster’s persisted configuration. The zip file
contains a copy of the contents of the cluster config directory. For example:

gfsh>export cluster-configuration --zip-file-name=/Users/username/myClConfig.zi

p

VMware GemFire writes the cluster configuration to the specified zip file.

File saved to /Users/username/myClConfig.zip

The remaining steps demonstrate how to use the cluster configuration you just created.

8. Shut down the cluster using the following commands:
gfsh>shutdown --include-locators=true
As a lot of data in memory will be lost, including possibly events in queues, d

o you

really want to shutdown the entire distributed system? (Y/n): Y

VMware by Broadcom 133

VMware GemFire 9.10 Documentation

10.
1.

12.

13.

Shutdown is triggered

gfsh>
No longer connected to 192.0.2.0[1099].
gfsh>

Exit the gfsh command shell:

gfsh>quit

Exiting...

Create a new working directory (for example: new geode) and switch to the new directory.

Start the gfsh command shell:

$ gfsh

Start a new locator. For example:

gfsh>start locator --name=locator2 --port=10335

Starting a VMware GemFire Locator in /Users/username/new_geode/locator2...

Locator in /Users/username/new_geode/locator2 on 192.0.2.0[10335] as locator2
is currently online.

Process ID: 5749

Uptime: 15 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/new_geode/locator2/locator2.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true
-Dgemfire.load-cluster-configuration-from-dir=false
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/1ib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

Cluster configuration service is up and running.

Import the cluster configuration using the import cluster-configuration command. For

example:

gfsh>import cluster-configuration --zip-file-name=/Users/username/myClConfig.zi

p
This command will replace the existing cluster configuration, if any, The old c

onfiguration will be backed up in the working directory.

Continue? (Y/n): y

Cluster configuration successfully imported

Note that the locator2 directory now contains a cluster config subdirectory.

14. Start a server that does not reference a group:

gfsh>start server --name=server4 --server-port=40414

Starting a VMware GemFire Server in /Users/username/new_geode/server4...

VMware by Broadcom

134

VMware GemFire 9.10 Documentation

Server in /Users/username/new_geode/server4 on 192.0.2.0[40414] as server4
is currently online.

Process ID: 5813

Uptime: 4 seconds

VMware GemFire Version: 9.10

Java Version: 1..0 272

Log File: /Users/username/new geode/serverd/server4d.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10335]
-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/1lib/geode-dependencies.jar

15. Start another server that references groupi:

gfsh>start server --name=server5 --groups=groupl --server-port=40415
Starting a VMware GemFire Server in /Users/username/new_geode/server5...
Server in /Users/username/new geode/server2 on 192.0.2.0[40415] as server)5
is currently online.

Process ID: 5954

Uptime: 2 seconds

VMware GemFire Version: 9.10

Java Version: 1..0_272

Log File: /Users/username/new_geode/server5/server5.log

JVM Arguments: -Dgemfire.default.locators=192.0.2.0[10335] -Dgemfire.groups=gro
upl

-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/username/geode910/1ib/geode-dependencies.jar

16. Use the 1ist regions command to display the configured regions. Note that region1 and
region2, which were configured in the original cluster level are available.

gfsh>list regions

List of regions

regionl

region2

17. Use the describe region command to see which members host each region. Note that
regionl is hosted only by server5 because server5 was started using the groupl
configuration. region2 is hosted on both server4 and server5 because region2 was created
without a group specified.

gfsh>describe region --name=regionl
Name : regionl

Data Policy : replicate

Hosting Members : server5

Non-Default Attributes Shared By Hosting Members

VMware by Broadcom 135

VMware GemFire 9.10 Documentation

Region | data-policy | REPLICATE

| size | 0
| scope | distributed-ack
gfsh>describe region --name=region2
Name : region2
Data Policy : replicate
Hosting Members : server5
serverd

Non-Default Attributes Shared By Hosting Members

Region | data-policy | REPLICATE
| size | 0

| scope | distributed-ack

This new cluster uses the same configuration as the original system. You can start any
number of servers using this cluster configuration. All servers will receive the cluster-level
configuration. Servers that specify groupl also receive the groupl configuration.

18. Shut down your cluster using the following commands:

gfsh>shutdown --include-locators=true
As a lot of data in memory will be lost, including possibly events in queues,
do you really want to shutdown the entire distributed system? (Y/n): Y

Shutdown is triggered

gfsh>
No longer connected to 192.0.2.0[1099].

Deploying Application JARs to VMware GemFire Members

You can dynamically deploy your application JAR files to specific members or to all members in your
cluster. VMware GemFire automatically keeps track of JAR file versions; autoloads the deployed
JAR files to the CLASSPATH; and auto-registers any functions that the JAR contains.

To deploy and undeploy application JAR files in VMware GemFire, use the gfsh deploy Or undeploy
command. You can deploy a single JAR or multiple JARs (by either specifying the JAR filenames or
by specifying a directory that contains the JAR files), and you can also target the deployment to a
member group or multiple member group. For example, after connecting to the cluster where you
want to deploy the JAR files, you could type at the gfsh prompt:

gfsh> deploy --jars=groupl functions.jar

This command deploys the groupl functions.jar file to all members in the cluster.

To deploy the JAR file to a subset of members, use the --groups argument. For example:

gfsh> deploy --jars=groupl_ functions.jar --groups=MemberGroupl

In the example it is assumed that you have already defined the member group that you want to use
when starting up your members. See Configuring and Running a Cluster for more information on

VMware by Broadcom 136

VMware GemFire 9.10 Documentation

how to define member groups and add a member to a group.

To deploy all the JAR files that are located in a specific directory to all members:

gfsh> deploy --dir=libs/groupl-libs

You can either provide a JAR file name or a directory of JARs for deployment, but you cannot
specify both at once.

To undeploy all previously deployed JAR files throughout the cluster:

gfsh> undeploy

To undeploy a specific JAR file:

gfsh> undeploy --jars=groupl functions.jar

To target a specific member group when undeploying all JAR files:

gfsh> undeploy --groups=MemberGroupl

Only JAR files that have been previously deployed on members in the MemberGroupl group will be
undeployed.

To see a list of all deployed JAR files in your cluster:

gfsh> list deployed

To see a list of all deployed JARs in a specific member group:

gfsh> list deployed --groups=MemberGroupl

Sample output:

Member | Deployed JAR | JAR Location

_________ | e I o —
datanodel | groupl functions.jar | /usr/local/gemfire/deploy/groupl functions.vl.jar
datanode2 | groupl functions.jar | /usr/local/gemfire/deploy/groupl functions.vl.jar

For more information on gfsh usage, see gfsh.

Deployment Location for JAR Files

The system location where JAR files are written on each member is determined by the deploy-
working-dir VMware GemFire property configured for that member. For example, you could have
the following configured in the gemfire.properties file for your member:

#gemfire.properties

deploy-working-dir=/usr/local/gemfire/deploy

This deployment location can be local or a shared network resource (such as a mount location) used
by multiple members in order to reduce disk space usage. If you use a shared directory, you still

VMware by Broadcom

VMware GemFire 9.10 Documentation

need to deploy the JAR file on every member that you want to have access to the application,
because deployment updates the CLASSPATH and auto-registers functions.

About Deploying JAR Files and the Cluster Configuration
Service

By default, the cluster configuration service distributes deployed JAR files to all locators in the
cluster. When you start a new server using gfsh, the locator supplies configuration files and
deployed jar files to the member and writes them to the server’s directory.

See Overview of the Cluster Configuration Service.

Versioning of JAR Files

When you deploy JAR files to a cluster or member group, the JAR file is modified to indicate
version information in its name. Each JAR filename contains a version number inserted just before
the .jar suffix. For example, if you deploy MyClasses.jar five times, the filename is displayed as
MyClasses.v5.jar when you list all deployed jars.

When you deploy a new JAR file, the member receiving the deployment checks whether the JAR
file is a duplicate, either because the JAR file has already been deployed on that member or
because the JAR file has already been deployed to a shared deployment working directory that
other members are also using. If another member has already deployed this JAR file to the shared
directory (determined by doing a byte-for-byte compare to the latest version in its directory), the
member receiving the latest deployment does not write the file to disk. Instead, the member
updates the ClassPathlLoader to use the already deployed JAR file. If a newer version of the JAR
file is detected on disk and is already in use, the deployment is canceled.

When a member begins using a JAR file, the member obtains a shared lock on the file. If the
member receives a newer version by deployment, the member releases the shared lock and tries
to delete the existing JAR file in favor of the newer version. If no other member has a shared lock
on the existing JAR, the existing, older version JAR is deleted.

Automatic Class Path Loading

When a cache is started, the new cache requests that the latest versions of each JAR file in the
current working directory be added to the ClassPathLoader. If a JAR file has already been deployed
to the ClassPathLoader, the ClassPathLoader updates its loaded version if a newer version is found;
otherwise, there is no change. If detected, older versions of the JAR files are deleted if no other
member has a shared lock on them.

Undeploying a JAR file does not automatically unload the classes that were loaded during
deployment. You need to restart your members to unload those classes.

When a cache is closed it requests that all currently deployed JAR files be removed from the
ClassPathLoader.

If you are using a shared deployment working directory, all members sharing the directory should
belong to the same member group. Upon restart, all members that share the same deployment
working directory will deploy and autoload their CLASSPATH with any JARs found in the current

VMware by Broadcom

138

VMware GemFire 9.10 Documentation

working directory. This means that some members may load the JARs even though they are not
part of the member group that received the original deployment.

Automatic Function Registration

When you deploy a JAR file that contains a function (in other words, contains a class that
implements the Function interface), the function is automatically registered through the
FunctionService.registerFunction method. If another JAR file is deployed (either with the same
JAR filename or another filename) with the same function, the new implementation of the function
is registered, overwriting the old one. If a JAR file is undeployed, any functions that were auto-
registered at the time of deployment are unregistered. Because deploying a JAR file that has the
same name multiple times results in the JAR being un-deployed and re-deployed, functions in the
JAR are unregistered and re-registered each time this occurs. If a function with the same ID is
registered from multiple differently named JAR files, the function is unregistered if any of those
JAR files are re-deployed or un-deployed.

During cache.xml load, the parameters for any declarables are saved. If functions found in a JAR file
are also declarable, and have the same class nhame as the declarables whose parameters were
saved after loading cache.xml, then function instances are created using those Parameters and are
also registered. Therefore, if the same function is declared multiple times in the cache.xml with
different sets of parameters, when the JAR is deployed a function is instantiated for each set of
parameters. If any functions are registered using parameters from a cache.xml load, the default, no-
argument function is not registered.

Using Member Groups

VMware GemFire allows you to organize your cluster members into logical member groups.

The use of member groups in VMware GempFire is optional. The benefit of using member groups is
the ability to coordinate certain operations on members based on logical group membership. For
example, by defining and using member groups you can:

o Alter a subset of configuration properties for a specific member or members. See alter
runtime in gfsh.

o« Perform certain disk operations like disk-store compaction across a member group. See
Disk Store Commands for a list of commands.

« Manage specific indexes or regions across all members of a group.

o Start and stop multi-site (WAN) services such as gateway senders and gateway receivers
across a member group.

o« Deploy or undeploy JAR applications on all members in a group.
o« Execute functions on all members of a specific group.

You define group names in the groups property of your member’s gemfire.properties file or upon
member startup in gfsh.

Note: Any roles defined in the currently existing roles property will now be considered a group. If
you wish to add membership roles to your cluster, you should add them as member groups in the
groups property. The roles property has been deprecated in favor of using the groups property.

VMware by Broadcom 139

VMware GemFire 9.10 Documentation

To add a member to a group, add the name of a member group to the gemfire.properties file of
the member prior to startup or you can start up a member in gfsh and pass in the --groups
argument at startup time.

A single member can belong to more than one group.

Member groups can also be used to organize members from either a client’s perspective or from a
peer member’s perspective. See Organizing Peers into Logical Member Groups and Organizing
Servers Into Logical Member Groups for more information. On the client side, you can supply the
member group name when configuring a client’s connection pool. Use the <pool server-group>
element in the client’s cache.xml.

Exporting and Importing Cluster Configurations

The cluster configuration service exports and imports configurations created using gfsh for an
entire VMware GemFire cluster.

The cluster configuration service saves the cluster configuration as you create regions, disk-stores
and other objects using gfsh commands. You can export this configuration as well as any jar files
that contain application files to a ZIP archive and then import this configuration to create a new
Cluster.

Exporting a Cluster Configuration

Issue the gfsh export cluster-configuration command to save the configuration data for your
cluster in a ZIP archive. This ZIP file contains subdirectories for cluster-level configurations and a
directory for each group specified in the cluster. The contents of these directories are described in
Cluster Configuration Files and Troubleshooting.

To export a cluster configuration, run the gfsh export cluster-configuration command while
connected to a VMware GemFire cluster. For example:

export cluster-configuration --zip-file-name=/home/username/configs/myClusterConfig.zi

p

See export cluster-configuration.

Note: gfsh only saves cluster configuration values for configurations specified using gfsh.
Configurations created by the management API are not saved with the cluster configurations.

Importing a Cluster Configuration

Use the gfsh import cluster-configuration command to configure a new cluster based on a
configuration exported from another system. You can import a cluster configuration only into a new
cluster, or into a running cluster that has not yet been configured and contains no defined regions.
That is, when:

¢ There are no running cache servers
or

e« The only running cache servers meet all of the following criteria:
o Have been recently started

VMware by Broadcom 140

VMware GemFire 9.10 Documentation

o Have no regions defined in them
o Have been given no other configuration changes since they started
After you have imported the configuration, any servers you start receive this cluster configuration.

To import a cluster configuration, start one or more locators and then run the gfsh import
cluster-configuration command. For example:

import cluster-configuration --zip-file-name=/home/username/configs/myClusterConfig.zi

P

See import cluster-configuration.

Cluster Configuration Files and Troubleshooting

When you use the cluster configuration service in VMware GemFire, you can examine the
generated configuration. The gfsh export cluster-configuration command outputs configured
properties, the configuration on a per-group basis or for the entire cluster, and the list of deployed
JAR files.

If the output is written to either a ZIP file or an XML file, you can import this configuration to a new
cluster. See Exporting and Importing Cluster Configurations.

Upon the deploy of a JAR file, the JAR file is added to a created directory called cluster config
within the locator’s directory of files. Within cluster config will be another directory named for the
member group that has the configuration. For configurations that apply to all members of a cluster,
the directory is named either cluster or the name specified when starting up the locator with the -
-cluster-config-dir option.

Troubleshooting Tips

« When you start a locator using gfsh, you should see the following message:
Cluster configuration service is up and running.

If you do not see this message, there may be a problem with the cluster configuration
service. Use the status cluster-config-service command to check the status of the
cluster configuration.

o Ifthe command returns RUNNING, the cluster configuration is running normally.

o Ifthe command returns WAITING, run the status locator command. The output of
this command returns the cause of the WAITING status.

¢ When using a cache.xnl file for configuration, there is a specific order to the application of
the configuration in these files. VMware GemFire applies the cluster-wide configuration files
first. Group-level configurations follow. Last will be the configuration in a member’s own
configuration files (cache.xml and gemfire.properties files).

o If a server start fails with the following exception:
ClusterConfigurationNotAvailableException, the cluster configuration service may not be
in the RUNNING state. Because the server requests the cluster configuration from the
locator, which is not available, the start server command fails.

VMware by Broadcom

141

VMware GemFire 9.10 Documentation

« You can determine what configurations a server received from a locator by examining the
server’s log file. See Logging.

e Ifastart server command specifies a cache.xml file that conflicts with the existing cluster
configuration, the server startup may fail.

« If a gfsh command fails because the cluster configuration cannot be saved, the following
message displays:

Failed to persist the configuration changes due to this command,
Revert the command to maintain consistency. Please use "status cluster-config-s
ervice"

to determine whether Cluster configuration service is RUNNING."

« There are some types of configurations that cannot be made using gfsh. See gfsh
Limitations.

Sizing a GemFire Cluster

This topic describes GemFire cluster sizing.

Overview

Sizing a GemFire deployment is a process that involves calculation, as well as experimentation and
testing. Some experimentation and testing is required to arrive at reasonably accurate values for
the key sizing parameters that will work well in practice. This experimentation and testing involves
representative data and workload, starting at a very small scale.

Experimentation and testing is required because memory overhead can vary greatly due to
variations in data and workload. This makes it impractical to calculate the overhead precisely, as it is
a function of too many variables, many of which stem from the Java runtime environment (JVM)
and its memory management mechanism.

Resource Considerations
Memory is the primary means of data storage in GemFire and is the first resource to consider for
sizing purposes.

Horizontal scaling to satisfy memory requirements also scales out all the other hardware resources,
the CPU, network, and disk. Because of this, when memory requirements are satisfied and the
adequate cluster size is determined, often only small adjustments are needed to cover all the other
required resources and complete the sizing process.

Typically, memory drives horizontal scaling, but it can be any of the hardware resources. In addition
to hardware resources, soft resources should be considered. The most important software
resources to consider are file descriptors, mostly for sockets in use, and threads (processes).

Experimentation and Testing

To size a GemFire cluster:

1. Deploy a small representative data set and workload in a small cluster.

VMware by Broadcom 142

VMware GemFire 9.10 Documentation

2. Tune the cluster to the desired performance.

3. Scale out the cluster while ensuring that key performance metrics stay within the desired
SLA.

Testing at full scale is ideal, if you have sufficient resources available to use in testing. If sufficient
resources are not available to use in testing, you can scale out multiple times, a few nodes at a
time, to provide data points to use to project resource usage at full scale. This is an iterative

process that involves analysis and tuning at each step. GemFire statistics can assist in this analysis.

can be aided greatly by GemFire statistics.

For large scale deployments that involve large data volumes, the general guideline is to scale

vertically as much as possible to fit as much data as possible in a single GemFire instance. This helps
minimize the size of the cluster. The limit to vertical scaling may depend on the desired SLA around

node failure.

Requirements and Assumptions

To maximize the accuracy of your GemFire cluster sizing, and to minimize unexpected situations in

your production environment, VMware recommends that you first run tests to characterize
memory and other resource usage under a representative workload.

Requirements:

o A subset of representative data. Typically, representative data that more closely matches
the real data produces more accurate results.

« A matching subset of workload that matches the production workload as closely as possible.

« Hardware resources for testing, ideally the same category as would be used in production:
the same CPU, memory, network, and disk resources per node. At a minimum, you must be

able to run three GemFire data nodes to start, then be able to add a few more node to
validate the scalability. In addition, you must have the same number of hosts for GemFire
clients to be able to create an adequate workload.

o« Familiarity with key GemFire concepts and features, such as partitioned regions,
serialization, etc.

You should follow the documented best practices, such as the JVM GC configuration (CMS and
ParNew), and use the currently supported platforms.

Architectural and Design Considerations

Before a sizing effort can start, the overarching architectural decisions have to be made, such as
which GemFire regions to use for different types of data or what redundancy level to use. The
results of sizing can inform architectural and design decisions for which multiple options are
possible.

Serialization

Serialization can make a significant difference in the per-entry data overhead in memory, and
subsequently in the overall memory requirements.

VMware by Broadcom

143

VMware GemFire 9.10 Documentation

GemFire’s PDX serialization is a serialization format that keeps data in a usable serialized form. This
allows most operations on data entries without having to deserialize them, resulting in both space
and performance benefits. These qualities make the PDX serialization the recommended
serialization approach for most use cases.

DataSerializable is another GemFire serialization mechanism that is more space efficient than either
PDX or Java Serializable. However, unlike PDX, it requires deserialization on any kind of access.

Per-entry Memory Overhead

Listed below are factors that can have significant impact on the memory overhead for data on a per
entry basis, as well as performance:

« Choice of GemFire region type: Different regions have different per-entry overheads. This
overhead is documented below and is included in the sizing spreadsheet.

¢ Choice of the serialization mechanism: GemFire offers multiple serialization options, as
well as the ability to have values stored serialized. As mentioned above, GemFire PDX
serialization is the generally recommended serialization mechanism due to its space and
performance benefits.

« Choice of Keys: Smaller and simpler keys are more efficient in terms of both space and
performance.

+« Use of indexes: Indexing incurs a per-entry overhead, as documented in Memory
Requirements for Cached Data.

For more detailed information and guidelines, see Memory Requirements for Cached Data.

If the data value objects are small but great in number, the per-entry overhead can add up to a
significant memory requirement. You can reduce this overhead by grouping multiple data values
into a single entry or by using containment relationships. For example, you can choose to have
your Order objects contain their line items instead of having a separate OrderLineltems region. If
this option is available, using it may yield performance improvements in addition to space savings.

Partitioned Region Scalability

GemFire partitioned regions scale out by rebalancing their data buckets (partitions) to distribute the
data evenly across all available nodes in a cluster. When new nodes are added to the cluster,
rebalancing causes some buckets to move from the old to the new nodes such that the data is
evenly balanced across all the nodes. For this to work effectively, with the end result being a well-
balanced cluster, there should be at least one order of magnitude more buckets than data nodes
for each partitioned region.

Typically, increasing the number of buckets improves data distribution. However, since the number
of buckets cannot be changed dynamically and without downtime, the projected horizontal scale-
out taken into account when determining the optimal number of buckets. Otherwise, as the system
scales out over time, the data may become less evenly distributed. In the extreme case, when the
number of nodes exceeds the number of buckets, adding new nodes has no effect, and the ability
to scale out is lost.

Related to this is the choice of data partitioning scheme, the goal of which is to yield even data and
workload distribution in the cluster. If problem with the partitioning scheme exists, the data, and
likely the workload, will not be evenly balanced, and scalability will be lost.

VMware by Broadcom 144

https://docs.vmware.com/en/VMware-GemFire/9.10/gf/reference-topics-memory_requirements_for_cache_data.html
https://docs.vmware.com/en/VMware-GemFire/9.10/gf/reference-topics-memory_requirements_for_cache_data.html

VMware GemFire 9.10 Documentation

Redundancy

Typically, choice of redundancy may be driven by data size and by whether or not data can be
retrieved from some other backing store besides GemFire. Other considerations might also be a
factor in the decision.

For example, GemFire can be deployed in an active/active configuration in two data centers such
that each can take on the entire load, but will do so only if necessitated by a failure. Typically, in
such deployments there are four live copies of the data at any time, with two in each datacenter. If
two nodes failed in a single datacenter, the other datacenter would take over the entire workload
until those two nodes were restored. This avoids data loss in the first datacenter. You could instead
set redundancy to two, for a total of three copies of data). This would provide high availability even
in case of a single node failure, and avoids paying the price of rebalancing when a single node fails.
In this case, instead of rebalancing, a single failed node is restarted, while two copies of data still
exist.

Relationship Between Horizontal and Vertical Scale

For deployments that can grow very large, you should allow for the growth by taking advantage of
not just horizontal scalability, but also the ability to store as much data as possible in a single node.
GemFire has been deployed in clusters of over 100 nodes. However, smaller clusters are easier to
manage. So, as a general rule, you should store as much data as possible in a single node while
maintaining a comfortable data movement requirement for re-establishing the redundancy SLA
after a single point of failure. GemFire has been used with heaps of well over 64GB in size..

NUMA Considerations

You should understand the Non-Uniform Memory Architecture (NUMA) memory boundaries when
deciding on the JVM size, and VM size in virtualized deployments.

Most modern CPUs implement this kind of architecture where memory is divided across the CPUs
such that memory directly connected to the bus of each CPU has very fast access whereas memory
accesses by that same CPU on the other portions of memory (directly connected to the other
CPUs) can pay a significant wait-state penalty for accessing data. An example is a system that has
four CPUs with eight cores each and a Non-Uniform Memory Architecture that assigns each CPU
its own portion of the memory. As an example, assume that the total memory on the machine is
256GB. In this case, each NUMA node is 64GB. Growing a JVM larger than 64GB on this machine
will cause wait-states to be induced when the CPUs must cross NUMA node boundaries to access
memory within the heap. For this reason, you should size GemFire JVMs to fit within a single
NUMA node to optimize performance.

GemFire Queues

If any GemFire queueing capabilities are used, such as for WAN distribution, client subscription, or
asynchronous event listeners, you should evaluate the queues’ capacity in the context of the
desired SLA. For example, for how long should gateway or client subscription queues be able to
keep queueing events when the connection is lost? Given that, how large should the queues be
able to grow? An effective way to learn the answers to these kinds of questions is to watch the
queues’ growth during sizing experiments, using GemFire statistics. For more information about
this, see Step 3: Vertical Sizing below.

VMware by Broadcom

145

VMware GemFire 9.10 Documentation

For WAN distribution, you should evaluate the distribution volume requirements and ensure
adequate network bandwidth sizing. If sites connected by the WAN gateway may be down for
extended periods of time, such as days or weeks, you must overflow the gateway queues to disk
and ensure that you have sufficient disk space for those queues. If you have insufficient disk space
for the queues, you may need to shut off the Gateway senders to prevent running out of space.

Sizing Process

To size a GemFire cluster:

1. Domain object sizing: Produce an entry size estimate for all the domain objects. Use this
with number of entries to estimate the total memory requirements.

2. Estimating total memory and system requirements: Based on the data sizes, estimate the
total memory and system requirements using the sizing spreadsheet, which takes into
account GemFire region overhead. This does not account for other overhead, but provides
a starting point.

3. Vertical sizing: Use the results of the previous step as the starting point in configuring a
three-node cluster. Vertical sizing determines the “building block” - the sizing,
configuration, and workload for a single node - by experimentation.

4. Scale-out validation: Iteratively test and adjust the single “building block” node from the
previous step to verify near-linear scalability and performance.

5. Projection to full scale: Use the results of scale-out validation to arrive at the sizing
configuration that meets your desired capacity and SLA.

The following sections provide details about each step.

Step 1: Domain object sizing

Before you can make any other estimates, you must estimate the size of the domain objects to be
stored in the cluster.

An effective way to size a domain object is to run a single instance GemFire test with GemFire
statistics enabled. In this instance, store each domain object to be sized in a dedicated partitioned
region. The test loads a number of instances of each domain object, making sure they all stay in
memory, with no overflow. After running the test, load the statistics file from it into VSD and
examine dataStoreBytesInUse and dataStoreEntryCount partition region stats for each partitioned
region. Dividing the value of datasStoreBytesInUse by the value of dataStoreEntryCount provides an
estimate for the average value size that is as accurate as is possible.

n’ Note: This estimate does not include the key size and entry overhead.

Another way to size domain objects is to use a heap histogram. In this approach you should run a
separate test for each domain object. This simplifies the process of determining what classes are
associated with data entries, based on the number of entries in memory, to figure out what classes

Step 2: Estimating total memory and system requirements

VMware by Broadcom 146

VMware GemFire 9.10 Documentation

You can use the System Sizing Worksheet to approximate your total memory and system
requirements. The System Sizing Worksheet takes into account all the GemFire region related per-
entry overhead, and the desired memory headroom.

The spreadsheet formulas are rough approximations that serve to inform a high-level estimate, as
they do not account for any other overhead such as buffers, threads, queues, application workload,
etc. Additionally, the results obtained from the spreadsheet do not have any performance context.
For this reason, the steps in Step 3: Vertical Sizing use the results for memory allocation per server
obtained from the spreadsheet as the starting point for the vertical sizing process.

Step 3: Vertical Sizing

Use vertical sizing to determine what fraction of the total requirements for storage and workload
can be satisfied with a single data node, and with what resources. This represents a “building block”
(a unit of scale) and includes both the size of the resources and the workload capacity. It also
includes the complete configuration of the building block (system, VM if present, JVM, and
GemkFire).

For example, a result of this step for a simple read-only application might be that a single data node
with a JVM sized to 64G can store 40G of data and support a workload of 5000 get operations per
second within the required latency SLA, without exhausting any resources. You should capture all
the key performance indicators for the application, and verify that they meet the desired SLA. A
complete output of the vertical sizing step includes all the relevant details such as hardware
resources per node, peak capacity, and performance at peak capacity, and notes which resource
becomes a bottleneck at peak capacity.

This approach uses experimentation to determine the optimal values for all relevant configuration
settings, including the system, VM if virtualization is used, JVM, and GemFire configuration to be
used.

To run experiments and tests, you musy have a cluster of three data nodes and a locator, as well as
additional hosts to run clients to generate the application workload. Three data nodes are required
to fully exercise the partitioning of data in partitioned regions across multiple nodes in presence of
data redundancy. As a starting point, the data nodes should be sized based on the estimates
obtained from the sizing spreadsheet completed in Step 2: Estimating total memory and system
requirements.

Typically, the following configuration is used to begin:
¢ A heap headroom of 50% of the old generation
e CMSInitiatingOccupancyFraction is setto 65%
¢ The young generation is sized to 10% of the total heap

GemFire logging and statistics should be enabled for all the test runs. The logs should be routinely
checked for problems. The statistics are analyzed for problems, verification of resources, and
performance. Performance metrics can be collected by the application test logic as well. Any
relevant latency metrics must be collected by the test application.

If WAN distribution is needed, you should set up an identical twin cluster and configure the WAN
distribution between the two clusters. You should also size WAN capacity.

Test runs should exercise a representative application workload, with duration long enough to incur
multiple GC cycles, so that stable resource usage can be confirmed. If any GemFire queues are

VMware by Broadcom 147

VMware GemFire 9.10 Documentation

used, run tests to determine adequate queue sizes that meet the SLA. If disk storage is used,
determine adequate disk store size and configuration per node as part of this exercise.

After each test run, examine the latency metrics collected by the application. Use VSD to examine
the statistics and correlate the resource usage with latencies and throughput observed. You should
examine the following:

¢ Memory (heap, and non-heap, GC)
« CPU
e System load
o Network
o« File descriptors
e Threads
e Queue statistics
For information about VSD and these statistics, see Quick Guide to Useful Statistics.

One of the objectives of vertical sizing is to determine the headroom required to accomplish the
desired performance. This might take several tests to tune the headroom to no more and no less
than needed. A much larger headroom than needed could amount to a significant waste of
resources. A smaller headroom could cause higher GC activity and CPU usage and hurt
performance.

Locator Sizing

Locator JVM sizing may be necessary when JMX Manager is running in the locator JVM, and JMX
is used for monitoring. An effective way to do this is to set the locator heap to 0.5G and monitor it
during the scale-out.

Notes on GC

The most important goal of GC is to avoid full GCs, as they cause pauses which can result in a
GemFire data node to be unresponsive, and, as a result, be expelled from the cluster. The
permanent generation space can trigger a full GC as well, which happens when it fills completely.
You should size this appropriately to avoid this. Additionally, you can instruct the JVM to garbage
collect the permanent generation space along with CMS GC using the following option:

-XX:+CMSClassUnloadingEnabled

You can tune GC for two of the following three:
e Latency
o Throughput
¢ Memory footprint

Heap headroom is important because with GemFire we sacrifice the memory footprint to
accomplish latency and throughput goals.

VMware by Broadcom 148

https://docs.vmware.com/en/VMware-GemFire/9.10/gf/tools_modules-vsd-vsd_useful_statistics.html

VMware GemFire 9.10 Documentation

Long minor GC pauses can be shortened by reducing the young generation. This will likely increase
the frequency of minor collections. Additionally, for very large heaps, for example those of 64G and
above, the old generation impact on minor GC pauses may be reduced by using the following GC
settings:

-XX:+UnlockDiagnosticVMOptions XX:ParGCCardsPerStrideChunk=32768

Step 4: Scale-out Validation

During this step, you scale out the initial three node cluster at least twice, adding at least a few
nodes each time. You should also scale out the client hosts accordingly to be able to create
adequate workload at each step. You should increase the workload proportionally to the scale-out.

There is no definitive rule about how much to increase the cluster size, or in what increments.
Typically, this determination is dictated by available hardware resources.

The goal of this step is to validate the “building block” configuration and capacity at some, larger
than initial, scale. This allows you to project the capacity to full scale with confidence. You may
need to tune the configuration at various points. For example, when you add more nodes to the
cluster, more socket connections, buffers, and threads will be in use on each node, resulting in
higher memory usage per node (both heap and non-heap), as well as increased file descriptors in
use.

If you use JMX for monitoring, watch the heap usage of the locator running the JMX Manager.

Step 5: Projection to Full Scale

After you have completed Step 4: Scale-out Validation, you can determine the total cluster size.
You know the storage and workload capacity of a single node and that you can scale horizontally to
meet the full requirements. Additionally, you have already tuned the cluster configuration to meet
the demands of the application workload.

Sizing Quick Reference

General recommendations to use as a starting point in capacity planning and sizing

Data Node Heap Size Use
Up to 32GB Smaller data volumes (up to a few hundred GB); very low latency required
64GB+ Larger data volumes (500GB+)

CPU Cores per Data Node Use

2to 4 Development; smaller heaps

6to8 Production; performance/system testing; larger heaps
Network Bandwidth Use

1GbE Development

High bandwidth (e.g. Production; performance/system testing

10GbE)

Disk Storage Use

VMware by Broadcom

149

VMware GemFire 9.10 Documentation

Data Node Heap Size Use
DAS, or SAN Always
NAS Do not use; performance and resilience issues

Memory/CPU relationship: mind the NUMA boundary

Virtualization: Do not oversubscribe resources (memory, CPU, storage). Run a single
GemFire data node JVM per VM.

Using gfsh to Manage a Remote Cluster Over HTTP or
HTTPS

You can connect gfsh via HTTP or HTTPS to a remote cluster and manage the cluster using gfsh
commands.

To connect gfsh using the HTTP protocol to a remote cluster:

1.
2.

Launch gfsh. See Starting gfsh.

When starting the remote cluster on the remote host, you can optionally specify --http-
bind-address and --http-service-port as VMware GemFire properties when starting up
your JMX manager (server or locator). These properties can be then used in the URL used
when connecting from your local system to the HTTP service in the remote cluster. For
example:

gfsh>start server --name=serverl --J=-Dgemfire.jmx-manager=true \
--J=-Dgemfire.jmx-manager-start=true --http-service-port=8080 \

--http-service-bind-address=myremotecluster.example.com

This command must be executed directly on the host machine that will ultimately act as the
remote server that hosts the HTTP service for remote administration. (You cannot launch a
server remotely.)

On your local system, run the gfsh connect command to connect to the remote system.
Include the --use-http and --url parameters. For example:

gfsh>connect --use-http=true --url="http://myremotecluster.example.com:8080/geo
de/v1l"

Successfully connected to: VMware GemFire Manager's HTTP service @ http://myrem
otecluster.example.com:8080/geode/v1l

See connect.

gfsh is now connected to the remote system. Most gfsh commands will now execute on
the remote system; however, there are exceptions. The following commands are executed
on the local cluster: - alter disk-store - compact offline-disk-store - describe
offline-disk-store - help - hint - sh (for executing OS commands) - sleep - start
jconsole (however, you can connect JConsole to a remote cluster when gfsh is connected
to the cluster via JMX) - start jvisualvm - start locator - start server - start vsd -
status locator''* - status server ' * - stop locator ' * - stop server * - run (for

executing gfsh scripts) - validate disk-store - version

VMware by Broadcom 150

VMware GemFire 9.10 Documentation

*You can stop and obtain the status of remote locators and servers when gfsh is connected
to the cluster via JMX or HTTP/S by using the --name option for these stop/status
commands. If you are using the --pid or --dir option for these commands, then
thestop/status commands are executed only locally.

To configure SSL for the remote connection (HTTPS), enable SSL for the nttp component in
gemfire.properties or gfsecurity-properties or upon server startup. See SSL for details on
configuring SSL parameters. These SSL parameters also apply to all HTTP services hosted on the
configured JMX Manager, which can include the following:

o Developer REST API service

e« Pulse monitoring tool

Deploying Configuration Files without the Cluster
Configuration Service

You can deploy your VMware GemFire configuration files in your system directory structure or in
jar files. You determine how you want to deploy your configuration files and set them up
accordingly.

Note: If you use the cluster configuration service to create and manage your VMware GemFire
cluster configuration, the procedures described in this section are not needed because VMware
GemFire automatically manages the distribution of the configuration files and jar files to members of
the cluster. See Overview of the Cluster Configuration Service.

You can use the procedures described in this section to distribute configurations that are member-
specific, or for situations where you do not want to use the cluster configuration service.

« Main Steps to Deploying Configuration Files

These are the basic steps for deploying configuration files, with related detail in sections
that follow.

« Default File Specifications and Search Locations

Each file has a default name, a set of file search locations, and a system property you can
use to override the defaults.

« Changing the File Specifications

You can change all file specifications in the gemfire.properties file and at the command
line.

+« Deploying Configuration Files in JAR Files

This section provides a procedure and an example for deploying configuration files in JAR
files.

Main Steps to Deploying Configuration Files

These are the basic steps for deploying configuration files, with related detail in sections that follow.
1. Determine which configuration files you need for your installation.

2. Place the files in your directories or jar files.

VMware by Broadcom 151

VMware GemFire 9.10 Documentation

3.

For any file with a non-default name or location, provide the file specification in the system
properties file and/or in the member CLASSPATH.

VMware GemFire Configuration Files

gemfire.properties. Contains the settings required by members of a cluster. These settings
include licensing, system member discovery, communication parameters, logging, and
statistics. See the VMware GemFire Properties Reference.

gfsecurity.properties. An optional separate file that contains security-related (security-*)
settings that are otherwise defined in gemfire.properties. Placing these member
properties into a separate file allows you to restrict user access to those specific settings.
See the VMware GemFire Properties Reference.

cache.xml. Declarative cache configuration file. This file contains XML declarations for
cache, region, and region entry configuration. You also use it to configure disk stores,
database login credentials, server and remote site location information, and socket
information. See cache.xml.

Default File Specifications and Search Locations

Each file has a default name, a set of file search locations, and a system property you can use to
override the defaults.

To use the default specifications, place the file at the top level of its directory or jar file. The system
properties are standard file specifications that can have absolute or relative pathnames and

filenames.

Note: If you do not specify an absolute file path and name, the search examines all search locations

for the file.
X . Search Locations for Relative File Available Property for File
Default File Specification . .
Specifications Specification
gemfire.properties 1. current directory As a Java system property, use

gemfirePropertyFile
2. home directory

3. CLASSPATH

cache.xml 1. current directory INgemfire.properties, use the

cache-xml-file property
2. CLASSPATH

Examples of valid gemfirePropertyFile specifications:

/zippy/users/jpearson/gemfiretest/gemfire.properties
c:\gemfiretest\gemfire.prp
myGF.properties

testl/gfprops

For the test1/gfprops specification, if you launch your VMware GemFire system member from
/testDir in a Unix file system, VMware GemFire looks for the file in this order until it finds the file

VMware by Broadcom

152

VMware GemFire 9.10 Documentation

or exhausts all locations:
1. /testDir/testl/gfprops
2. <yourHomeDir>/testl/gfprops

3. under every location in your CLASSPATH for test1/gfprops

Changing the File Specifications

You can change all file specifications in the gemfire.properties file and at the command line.

Note: VMware GemFire applications can use the API to pass java.lang.System properties to the
cluster connection. This changes file specifications made at the command line and in the
gemfire.properties file. You can verify an application’s property settings in the configuration
information logged at application startup. The configuration is listed when the gemfire.properties
log-level is set to config or lower.

This invocation of the application, testApplication.TestAppl, provides non-default specifications
for both the cache.xml and gemfire.properties files:

java -Dgemfire.cache-xml-file=\
/gemfireSamples/examples/dist/cacheRunner/queryPortfolios.xml \
-DgemfirePropertyFile=defaultConfigs/gemfire.properties \
testApplication.TestAppl

The gfsh start server command can use the same specifications:

gfsh>start server \
--J=-Dgemfire.cache-xml-file=/gemfireSamples/examples/dist/cacheRunner/queryPortfolio
s.xml \

--J=-DgemfirePropertyFile=defaultConfigs/gemfire.properties

You can also change the specifications for the cache.xml file inside the gemfire.properties file.
Note: Specifications in gemfire.properties files cannot use environment variables.

Example gemfire.properties file with non-default cache.xml specification:

#Tue May 09 17:53:54 PDT 2006
mcast-address=192.0.2.0
mcast-port=10333

locators=cache-xml-file=/gemfireSamples/examples/dist/cacheRunner/queryPortfolios.xml

Deploying Configuration Files in JAR Files

This section provides a procedure and an example for deploying configuration files in JAR files.
Procedure

1. Jar the files.

2. Set the VMware GemFire system properties to point to the files as they reside in the jar file.

3. Include the jar file in your CLASSPATH.

VMware by Broadcom 153

VMware GemFire 9.10 Documentation

4. Verify the jar file copies are the only ones visible to the application at runtime. VMware
GemFire searches the cLassPATH after searching other locations, so the files cannot be
available in the other search areas.

5. Start your application. The configuration file is loaded from the jar file.
Example of Deploying a Configuration JAR

The following example deploys the cache configuration file, myCache.xml, in my.jar. The following
displays the contents of my.jar:

% jar -tf my.jar
META-INF
META-INF/MANIFEST.MF
myConfig/
myConfig/myCache.xml

In this example, you would perform the following steps to deploy the configuration jar file:
1. Set the system property gemfire.cache-xml-file tO myConfig/myCache.xml.
2. Set your cLAsSPATH to include my.jar.

3. Verify there is no file already in the filesystem named . /myConfig/myCache.xml, SO VMware
GemFire will be forced to search the jar file to find it.

When you start your application, the configuration file is loaded from the jar file.

Starting Up and Shutting Down Your System
Determine the proper startup and shutdown procedures, and write your startup and shutdown
scripts.

Well-designed procedures for starting and stopping your system can speed startup and protect
your data. The processes you need to start and stop include server and locator processes and your
other VMware GemFire applications, including clients. The procedures you use depend in part on
your system’s configuration and the dependencies between your system processes.

Use the following guidelines to create startup and shutdown procedures and scripts. Some of these
instructions use gfsh.

Starting Up Your System

You should follow certain order guidelines when starting your VMware GemFire system.

Start servers before you start their client applications. In each cluster, follow these guidelines for
member startup:

e Start locators first. See Running VMware GemFire Locator Processes for examples of
locator start up commands.

e Start cache servers before the rest of your processes unless the implementation requires
that other processes be started ahead of them. See Running VMware GemFire Server
Processes for examples of server start up commands.

VMware by Broadcom 154

VMware GemFire 9.10 Documentation

e If your cluster uses both persistent replicated and non-persistent replicated regions, you
should start up all the persistent replicated members in parallel before starting the non-
persistent regions. This way, persistent members will not delay their startup for other
persistent members with later data.

« For asystem that includes persistent regions, see Start Up and Shut Down with Disk Stores.

o If you are running producer processes and consumer or event listener processes, start the
consumers first. This ensures the consumers and listeners do not miss any notifications or
updates.

« If you are starting up your locators and peer members all at once, you can use the locator-
wait-time property (in seconds) upon process start up. This timeout allows peers to wait for
the locators to finish starting up before attempting to join the cluster.

If the process cannot initially reach a locator, it will sleep for join-retry-sleep milliseconds
between retries until it either connects or the number of seconds specified in locator-
wait-time has elapsed. By default, locator-wait-time is set to zero meaning that a process
that cannot connect to a locator upon startup will throw an exception.

Note: You can optionally override the default timeout period for shutting down individual
processes. This override setting must be specified during member startup. See Shutting Down the
System for details.

Starting Up After Losing Data on Disk

This information pertains to catastrophic loss of VMware GemFire disk store files. If you lose disk
store files, your next startup may hang, waiting for the lost disk stores to come back online. If your
system hangs at startup, use the gfsh command show missing-disk-store to list missing disk stores
and, if needed, revoke missing disk stores so your system startup can complete. You must use the
Disk Store ID to revoke a disk store. These are the two commands:

gfsh>show missing-disk-stores

Disk Store ID Host | Directory

60399215-532b-406£f-b81f-9b5bd8d1lb55a | excalibur | /usr/local/gemfire/deploy/disk stor
el

gfsh>revoke missing-disk-store --id=60399215-532b-406f-b81f-9b5bd8dlb55a

Note: This gfsh commands require that you are connected to the cluster via a JMX Manager node.

Shutting Down the System

Shut down your VMware GemFire system by using either the gfsh shutdown command or by
shutting down individual members one at a time.

Using the shutdown Command

VMware by Broadcom 155

VMware GemFire 9.10 Documentation

If you are using persistent regions, (members are persisting data to disk), you should use the gfsh
shutdown command to stop the running system in an orderly fashion. This command synchronizes
persistent partitioned regions before shutting down, which makes the next startup of the cluster as
efficient as possible.

If possible, all members should be running before you shut them down so synchronization can

occur. Shut down the system using the following gfsh command:

gfsh>shutdown

By default, the shutdown command will only shut down data nodes. If you want to shut down all
nodes including locators, specify the --include-locators=true parameter. For example:

gfsh>shutdown --include-locators=true

This will shut down all locators one by one, shutting down the manager last.

To shutdown all data members after a grace period, specify a time-out option (in seconds).

gfsh>shutdown --time-out=60

To shutdown all members including locators after a grace period, specify a time-out option (in
seconds).

gfsh>shutdown --include-locators=true --time-out=60

Shutting Down System Members Individually

If you are not using persistent regions, you can shut down the cluster by shutting down each
member in the reverse order of their startup. (See Starting Up Your System for the recommended
order of member startup.)

Shut down the cluster members according to the type of member. For example, use the following
mechanisms to shut down members:

e« Use the appropriate mechanism to shut down any VMware GemFire-connected client
applications that are running in the cluster.

e« Shut down any cache servers. To shut down a server, issue the following gfsh command:

gfsh>stop server --name=<...>
or
gfsh>stop server --dir=<server_ working dir>

e« Shut down any locators. To shut down a locator, issue the following gfsh command:

gfsh>stop locator --name=<...>

or

VMware by Broadcom

156

VMware GemFire 9.10 Documentation

gfsh>stop locator --dir=<locator working dir>

e Do not use the command line ki1l -9 to shut down a server under ordinary circumstances.

Especially on systems with a small number of members, using a ki1l instead of a gfsh stop
can cause the partition detection mechanism to place the system in an end state that will
wait forever to reconnect to the terminated server, and there will be no way to restart that
terminated server. If a ki1l command appears the only way to rid the system of a server,
then ki1l allthe processes of the cluster or use ki1l -1INT, which will allow an orderly
shutdown of the process.

Option for System Member Shutdown Behavior

The prsconNecT wWAIT command line argument sets the maximum time for each individual step in
the shutdown process. If any step takes longer than the specified amount, it is forced to end. Each
operation is given this grace period, so the total length of time the cache member takes to shut
down depends on the number of operations and the pDIscoNnNECT WAIT Setting. During the
shutdown process, VMware GemFire produces messages such as:

Disconnect listener still running

The prsconNecT waIT default is 10000 milliseconds.
To change it, set this system property on the Java command line used for member startup. For
example:

gfsh>start server --J=-DDistributionManager.DISCONNECT WAIT=<milliseconds>

Each process can have different prsconNecT wAIT settings.

Running VMware GemFire Locator Processes

The locator is a VMware GemFire process that tells new, connecting members where running
members are located and provides load balancing for server use.

You can run locators as peer locators, server locators, or both:

o Peer locators give joining members connection information to members already running in
the locator’s cluster.

e« Server locators give clients connection information to servers running in the locator’s
cluster. Server locators also monitor server load and send clients to the least-loaded
servers.

By default, locators run as peer and server locators.

You can run the locator standalone or embedded within another VMware GemFire process.
Running your locators standalone provides the highest reliability and availability of the locator
service as a whole.

Locator Configuration and Log Files

Locator configuration and log files have the following properties:

VMware by Broadcom

157

VMware GemFire 9.10 Documentation

« When you start a standalone locator using gfsh, gfsh will automatically load the required
JAR file 1ib/geode-dependencies.jar into the CLASSPATH of the JVM process. If you start
a standalone locator using the LocatorLauncher API, you must specify this JAR file inside
the command used to launch the locator process. For more information on CLASSPATH
settings in VMware GemFire, see Setting Up the CLASSPATH. You can modify the
CLASSPATH by specifying the --classpath parameter.

o Locators are members of the cluster just like any other member. In terms of mcast-port and
locators configuration, a locator should be configured in the same manner as a server.
Therefore, if there are two other locators in the cluster, each locator should reference the
other locators (just like a server member would). For example:

gfsh> start locator --name=locatorl --port=9009 --mcast-port=0 \
—--locators='hostl1[9001],host2[9003]"

e« You can configure locators within the gemfire.properties file or by specifying start-up
parameters on the command line. If you are specifying the locator’s configuration in a
properties file, locators require the same gemfire.properties settings as other members of
the cluster and the same gfsecurity.properties settings if you are using a separate,
restricted access security settings file.

For example, to configure both locators and a multicast port in gemfire.properties:

locators=host1[9001],host2[9003]

mcast-port=0

« There is no cache configuration specific to locators.

« Forlogging output, the locator creates a log file in its current working directory. Log file
output defaults to locator name.log in the locator’s working directory. If you restart a
locator with a previously used locator name, the existing locator_name.log file is
automatically renamed for you (for example, locatorl1-01-01.1log Of locatorl-02-01.1log).
You can modify the level of logging details in this file by specifying a level in the --10g-
level argument when starting up the locator.

e« By default, a locator will start in a subdirectory (named after the locator) under the directory
where gfsh is executed. This subdirectory is considered the current working directory. You
can also specify a different working directory when starting the locator in gfsh.

e By default, a locator that has been shutdown and disconnected due to a network partition
event or member unresponsiveness will restart itself and automatically try to reconnect to
the existing cluster. When a locator is in the reconnecting state, it provides no discovery
services for the cluster. See Handling Forced Cache Disconnection Using Autoreconnect for
more details.

Locators and the Cluster Configuration Service

Locators use the cluster configuration service to save configurations that apply to all cluster
members, or to members of a specified group. The configurations are saved in the Locator’s
directory and are propagated to all locators in a cluster. When you start servers using gfsh, the
servers receive the group-level and cluster-level configurations from the locators.

VMware by Broadcom 158

VMware GemFire 9.10 Documentation

See Overview of the Cluster Configuration Service.

Start the Locator

Use the following guidelines to start the locator:

Standalone locator. Start a standalone locator in one of these ways:

Use the gfsh command-line utility. See gfsh for more information on using gfsh. For
example:

gfsh>start locator --name=locatorl

gfsh> start locator --name=locator2 --bind-address=192.0.2.0 --port=13489

Start the locator using the main method in the
org.apache.geode.distributed.LocatorLauncher class and the Java executable.
Specifically, you use the LocatorLauncher class APl to run an embedded Locator
service in Java application processes that you have created. The directory where
you execute the java command becomes the working directory for the locator
process.

When starting up multiple locators, do not start them up in parallel (in other words,
simultaneously). As a best practice, you should wait approximately 30 seconds for
the first locator to complete startup before starting any other locators. To check the
successful startup of a locator, check for locator log files. To view the uptime of a
running locator, you can use the gfsh status locator command.

Embedded (colocated) locator. Manage a colocated locator at member startup or through
the APIs:

Use the gemfire.properties start-locator setting to start the locator automatically
inside your VMware GemFire member. See the Reference. The locator stops
automatically when the member exits. The property has the following syntax:

#gemfire.properties

start-locator=[address]port|[,server={true]|false},peer={true|false}]

Example:

#gemfire.properties
start-locator=13489

Use org.apache.geode.distributed.LocatorLauncher API to start the locator inside
your code. Use the LocatorLauncher.Builder class to construct an instance of the
LocatorLauncher, and then use the start () method to start a Locator service
embedded in your Java application process. The other methods in the
LocatorLauncher class provide status information about the locator and allow you to
stop the locator.

import org.apache.geode.distributed.LocatorLauncher;

public class MyEmbeddedLocator {

VMware by Broadcom

159

VMware GemFire 9.10 Documentation

public static void main(String[] args) {

LocatorLauncher locatorLauncher = new LocatorLauncher.Builder ()

.setMemberName ("locatorl"
.setPort (13489)
.build () ;

locatorLauncher.start () ;

System.out.println("Locator successfully started");

Here’s another example that embeds the locator within an application, starts it and
then checks the status of the locator before allowing other members to access it:

package example;

import

class MyApplication implements Runnable {
private final LocatorLauncher locatorLauncher;

public MyApplication(final String... args) {

validateArgs (args) ;

locatorLauncher = new LocatorLauncher.Builder ()
.setMemberName (args[0])
.setPort(Integer.parselnt(args[1l])
.setRedirectOutput (true)

.build () ;
}
protected void args(final String[] args) {
}
public void run () {

// start the Locator in-process

locatorLauncher.start () ;

// wait for Locator to start and be ready to accept member (client) c

onnections

locatorLauncher.waitOnStatusResponse (30, 5, TimeUnit.SECONDS) ;

public static void main(final String... args) {

new MyApplication(args) .run();

Then to execute the application, you would run:

VMware by Broadcom 160

VMware GemFire 9.10 Documentation

/working/directory/of/MyApplication$ java \

-server -classpath "path/to/installation/lib/geode-dependencies.jar:/pat
h/to/application/classes.jar" \

example.MyApplication Locatorl 11235

The directory where you execute the java command becomes the working directory
for the locator process.

Check Locator Status

If you are connected to the cluster with gfsh, you can check the status of a running locator by
providing the locator name. For example:

gfsh>status locator --name=locatorl

If you are not connected to a cluster, you can check the status of a local locator by providing the
process ID, the Locator’s host name and port, or the locator’s current working directory. For
example:

gfsh>status locator --pid=2986

or

gfsh>status locator --host=hostl --port=1035

or

$ gfsh status locator --dir=<locator working directory>

where <locator_working_ directory> corresponds to the local working directory where the locator
is running.

If successful, the command returns the following information (with the JVM arguments that were
provided at startup):

$ gfsh status locator --dir=locatorl
Locator in /home/user/locatorl on ubuntu.local[l10334] as locatorl is currently online.
Process ID: 2359
Uptime: 17 minutes 3 seconds
GemFire Version: 8.0.0
Java Version: 1..0_ 272
Log File: /home/user/locatorl/locatorl.log
JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster-conf
iguration-from-dir=false
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true -Dsun.rmi.dg
c.server.gcInterval=9223372036854775806

Class-Path: /Users/username/apache geode/lib/geode-dependencies.jar

Cluster configuration service is up and running.

Stop the Locator

VMware by Broadcom

161

VMware GemFire 9.10 Documentation

If you are connected to the cluster with gfsh, you can stop a running locator by providing the
locator name. For example:

gfsh>stop locator --name=locatorl

If you are not connected to a cluster, you can stop a local locator by specifying the locator’s
process ID or the locator’s current working directory. For example:

gfsh>stop locator --pid=2986

or

gfsh>stop locator --dir=<locator_working directory>

where <locator_working_ directory> corresponds to the local working directory where the locator
is running.

Locators and Multi-Site (WAN) Deployments
If you use a multi-site (WAN) configuration, you can connect a locator to a remote site when
starting the locator.

To connect a new locator process to a remote locator in a WAN configuration, specify the following
at startup:

gfsh> start locator --name=locatorl --port=9009 --mcast-port=0 \
--J='-Dgemfire.remote-locators=192.0.2.0[9009],198.51.100.0[9009]"

Running VMware GemFire Server Processes
A VMware GemFire server is a process that runs as a long-lived, configurable member of a
client/server system.

The VMware GemFire server is used primarily for hosting long-lived data regions and for running
standard VMware GemFire processes such as the server in a client/server configuration. You can
start and stop servers using the following methods:

e The gfsh command-line tool.

¢ Programmatically, through the org.apache.geode.distributed.ServerLauncher APIl. The
serverLauncher API| can only be used for VMware GemFire Servers that were started with
gfsh or with the serverLauncher class itself.

Default Server Configuration and Log Files
The gfsh utility uses a working directory for its configuration files and log files. These are the
defaults and configuration options:

« When you start a standalone server using gfsh, gfsh will automatically load the required
JAR file 1ib/geode-dependencies.jar into the CLASSPATH of the JVM process. If you start
a standalone server using the ServerLauncher API, you must specify this JAR file inside

VMware by Broadcom 162

VMware GemFire 9.10 Documentation

your command to launch the process. For more information on CLASSPATH settings in
VMware GemFire, see Setting Up the CLASSPATH.

e Servers are configured like any other VMware GemFire process, with gemfire.properties
and shared cluster configuration files. It is not programmable except through application
plug-ins. Typically, you provide the gemfire.properties file and the gfsecurity.properties
file. You can also specify a cache.xml file in the cache server’s working directory.

« By default, a new server started with gfsh receives its initial cache configuration from the
cluster configuration service, assuming the locator is running the cluster configuration
service. If you specify a group when starting the server, the server also receives
configurations that apply to a group. The shared configuration consists of cache.xml files,
gemfire.properties files, and deployed jar files. You can disable use of the cluster
configuration service by specifying --use-cluster-configuration=false when starting the
server using gfsh. See Overview of the Cluster Configuration Service.

e If you are using the Spring Framework, you can specify a Spring ApplicationContext XML
file when starting up your server in gfsh by using the --spring-xml-location command-line
option. This option allows you to bootstrap your VMware GemFire server process with your
Spring application’s configuration. See Spring documentation for more information on this
file.

« Forlogging output, log file output defaults to <server-name>.1log in the cache server’s
working directory. If you restart a server with the same server name, the existing log file is
automatically renamed, for example, server1-01-01.1log and server1-02-01.log. YOU can
modify the level of logging details in this file by specifying a level in the --1og-level
argument when starting up the server.

o By default, the server will start in a subdirectory, named after the server’s specified name,
under the directory where gfsh is executed. This subdirectory is considered the current
working directory. You can also specify a different working directory when starting the
cache server in gfsh.

o By default, a server process that has been shutdown and disconnected due to a network
partition event or member unresponsiveness will restart itself and automatically try to
reconnect to the existing cluster. See Handling Forced Cache Disconnection Using
Autoreconnect for more details.

e You can pass JVM parameters to the server’s JVM by using the --J=-
Dproperty.name=value UPON server startup. These parameters can be Java properties or
VMware GemFire properties such as gemfire.jmx-manager. FOr example:

gfsh>start server --name=serverl --J=-Dgemfire.jmx-manager=true \

--J=-Dgemfire.jmx-manager-start=true --J=-Dgemfire.http-port=8080

¢ We recommend that you do not use the -xx:+UseCompressedStrings and -
XX:+UseStringCache JVM configuration properties when starting up servers. These JVM
options can cause issues with data corruption and compatibility.

Start the Server with gfsh

See the gfsh start server command reference page for syntax information.

VMware by Broadcom 163

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-app-ctx

VMware GemFire 9.10 Documentation

These example gfsh start server start commands specify a cache.xml file for cache configuration,
and use different incoming client connection ports:

gfsh>start server --name=serverl \
--cache-xml-file=../ServerConfigs/cache.xml --server-port=40404
gfsh>start server --name=server2 \
--cache-xml-file=../ServerConfigs/cache.xml --server-port=40405

The location of the cache.xml file and the setting for the client connection port could instead be
defined within a gemfire.properties file. Then, start the server specifying the gemfire.properties
file, as in the example command:

gfsh>start server --name=serverl \

--properties-file=/home/username/cluster/gemfire.properties

To start a server with an embedded JMX Manager:

gfsh>start server --name=server2 \

--J=-Dgemfire.jmx-manager=true --J=-Dgemfire.jmx-manager-start=true

When both --max-heap and --initial-heap are specified during server startup, additional GC
parameters are specified on your behalf. If you do not want additional default GC properties set,
then use the -xms & -xmx JVM options to set just these parameters. See Controlling Heap Use with
the Resource Manager for more information. To start a server, providing JVM configuration
settings:

gfsh>start server --name=server3 \

--J=-Xms80m, - Xmx80m --J=-XX:+UseConcMarkSweepGC,-XX:CMSInitiatingOccupancyFraction=65

Start the Server Programmatically

Use the org.apache.geode.distributed.ServerLauncher APl to start the cache server process
inside your code. Use the serverLauncher.Builder class to construct an instance of the
ServerLauncher, and then use the start () method to start the server service. The other methods
in the serverLauncher class provide status information about the server and allow you to stop the
server.

import org.apache.geode.distributed.ServerLauncher;
public class MyEmbeddedServer ({

public static void main (String[] args) {
ServerLauncher serverLauncher = new ServerLauncher.Builder ()
.setMemberName ("serverl")
.setServerPort (40405)
.set ("jmx-manager", "true")
.set ("jmx-manager-start", "true")
.build() ;

serverLauncher.start () ;

System.out.println ("Cache server successfully started");

VMware by Broadcom 164

VMware GemFire 9.10 Documentation

Check Server Status

Once connected to the cluster in gfsh, check the status of a running cache server by providing the
server name:

gfsh>status server --name=serverl

If you are not connected to a cluster, you can check the status of a local cache server by providing
the process ID or the server’s current working directory. For example:

gfsh>status server --pid=2484
or

[

% gfsh status server --dir=serverl
If successful, the output provides information as in this sample:

[

% gfsh status server --dir=serveri4

Server in /home/username/server4 on 192.0.2.0[40404] as server4 is currently online.
Process ID: 49008

Uptime: 2 minutes 4 seconds

VMware GemFire Version: 9.10

Java Version: 1..0 272

Log File: /home/username/serverd/serverd.log

JVM Arguments:

Stop Server

When connected to the cluster in gfsh, stop a running cache server by providing the server name:

gfsh>stop server --name=serverl

If not connected, you can stop a local cache server by specify the server’s current working
directory or the process ID. For example:

gfsh>stop server --pid=2484

or

gfsh>stop server --dir=serverl

You can also use the gfsh shutdown command to shut down all cache servers in an orderly fashion.
Doing a shutdown is the correct approach for systems with persistent regions. See Starting Up and
Shutting Down Your System for more details.

Managing System Output Files

VMware by Broadcom 165

VMware GemFire 9.10 Documentation

VMware GemFire output files are optional and can become quite large. Work with your system
administrator to determine where to place them to avoid interfering with other system activities.

VMware GemFire includes several types of optional output files as described below.

¢« Log Files. Comprehensive logging messages to help you confirm system configuration and
to debug problems in configuration and code. Configure log file behavior in the
gemfire.properties file. See Logging.

o Statistics Archive Files. Standard statistics for caching and distribution activities, which you
can archive on disk. Configure statistics collection and archival in the gemfire.properties,
archive-disk-space-limit and archive-file-size-1limit. See the Reference.

« Disk Store Files. Hold persistent and overflow data from the cache. You can configure
regions to persist data to disk for backup purposes or overflow to disk to control memory
use. The subscription queues that servers use to send events to clients can be overflowed
to disk. Gateway sender queues overflow to disk automatically and can be persisted for high
availability. Configure these through the cache.xml. See Disk Storage.

Firewall Considerations
You can configure and limit port usage for situations that involve firewalls, for example, between
client-server or server-server connections.

+« Firewalls and Connections

Be aware of possible connection problems that can result from running a firewall on your
machine.

+« Firewalls and Ports

Make sure your port settings are configured correctly for firewalls.

Firewalls and Connections

Be aware of possible connection problems that can result from running a firewall on your machine.

VMware GempFire is a network-centric distributed system, so if you have a firewall running on your
machine it could cause connection problems. For example, your connections may fail if your firewall
places restrictions on inbound or outbound permissions for Java-based sockets. You may need to
modify your firewall configuration to permit traffic to Java applications running on your machine.
The specific configuration depends on the firewall you are using.

As one example, firewalls may close connections to VMware GemFire due to timeout settings. If a
firewall senses no activity in a certain time period, it may close a connection and open a new
connection when activity resumes, which can cause some confusion about which connections you
have.

For more information on how VMware GemFire client and servers connect, see the following
topics:

¢ How Client/Server Connections Work
e Socket Communication

e« Controlling Socket Use

VMware by Broadcom

166

VMware GemFire 9.10 Documentation

« Setting Socket Buffer Sizes

Firewalls and Ports

Make sure your port settings are configured correctly for firewalls.
There are several different port settings that need to be considered when using firewalls:

o Port that the cache server listens on. This is configurable using the cache-server element in
cache.xml, on the CacheServer class in Java APIs, and as a command line option to the
gfsh start server command.

By default, if not otherwise specified, VMware GemFire clients and servers discover each
other on a pre-defined port (40404) on the localhost.

e Locator port. VMware GemFire clients can use the locator to automatically discover cache
servers. The locator port is configurable as a command-line option to the gfsh start
locator command. Locators are used in the peer-to-peer cache deployments to discover
other processes. They can be used by clients to locate servers as an alternative to
configuring clients with a collection of server addresses and ports.

By default, if not otherwise specified, VMware GemFire locators use the default port 10334.

o Since locators start up the cluster, locators must also have their ephemeral port range and
TCP port accessible to other members through the firewall.

« For clients, you configure the client to connect to servers using the client’s pool
configuration. The client’s pool configuration has two options: you can create a pool with
either a list of server elements or a list of locator elements. For each element, you specify
the host and port. The ports specified must be made accessible through your firewall.

Limiting Ephemeral Ports for Peer-to-Peer Membership

By default, VMware GemFire assigns ephemeral ports, that is, temporary ports assigned from a
designated range, which can encompass a large number of possible ports. When a firewall is
present, the ephemeral port range usually must be limited to a much smaller number, for example
six. If you are configuring P2P communications through a firewall, you must also set the TCP port
for each process and ensure that UDP traffic is allowed through the firewall.

Properties for Firewall and Port Configuration

This table contains properties potentially involved in firewall behavior, with a brief description of
each property.
Configuration area Property or Setting Definition

peer-to-peer config -
conserve-sockets Specifies whether sockets are shared

by the system member's threads.

VMware by Broadcom 167

VMware GemFire 9.10 Documentation

Configuration area

peer-to-peer config

peer-to-peer config

peer-to-peer config

peer-to-peer config

peer-to-peer config

Configuration Area

cache server config

cache server config

cache server config

Property or Setting

locators

mcast-address

mcast-port

membership-port-range

tcp-port

Property or Setting

hostname-for-clients

max-connections

port (cache.xml) or --port
parameter to the gfsh start server
command

Default Port Configurations

Port Name

Cache Server

HTTP

VMware by Broadcom

Related Configuration Setting

port (cache.xml)

http-service-port

Definition

The list of locators used by system
members. The list must be configured
consistently for every member of the
cluster.

Address used to discover other
members of the cluster. Only used if
mcast-port is non-zero. This attribute
must be consistent across the cluster.

Port used, along with the mcast-
address, for multicast communication
with other members of the cluster. If
zero, multicast is disabled for data
distribution.

The range of ephemeral ports available
for unicast UDP messaging and for TCP
failure detection in the peer-to-peer
cluster.

The TCP port to listen on for cache
communications.

Definition
Hostname or IP address to pass to the

client as the location where the server
is listening.

Maximum number of client
connections for the server. When the
maximum is reached, the server refuses
additional client connections.

Port that the server listens on for client
communication.

Default Port

40404

7070

168

VMware GemFire 9.10 Documentation

Port Name

Locator

Membership Port Range

Memcached Port

Multicast

RMI

TCP

Related Configuration Setting

start-locator (for embedded

locators) or --port parameter to the

gfsh start locator command.

membership-port-range

memcached-port

mcast-port

jmx-manager-port

tcp-port

Default Port

if not specified upon startup or in the
start-locator property, uses default
port 10334

41000 to 61000

not set

1099

ephemeral port

Properties for Firewall and Port Configuration in Multi-Site
(WAN) Configurations

Each gateway receiver uses a single port to accept connections from gateway senders in other
systems. The configuration of a gateway receiver specifies a range of possible port values to use.
VMware GempFire selects an available port from the specified range when the gateway receiver
starts. Configure your firewall so that the full range of possible port values is accessible by gateway
senders from across the WAN.

Configuration Area

multi-site (WAN) config
for gateway sender

multi-site (WAN) config
for locator

multi-site (WAN) config
for gateway receiver

VMware by Broadcom

Property or Setting

hostname-for-senders

remote-locators

start-port and end-port (cache.xml) or -start-
port and -end-port parameters to the gfsh start

gateway receiver command

Definition

Hostname or IP address of the
gateway receiver used by gateway
senders to connect.

List of locators (and their ports) that

are available on the remote WAN site.

Port range that the gateway receiver
can use to listen for gateway sender
communication.

169

VMware GemFire 9.10 Documentation

Basic Configuration and Programming

Basic Configuration and Programming describes how to configure cluster and cache properties for
your VMware GemFire installation. For your applications, it provides guidance for writing code to
manage your cache and cluster connection, data regions, and data entries, including custom
classes.

¢ Cluster and Cache Configuration

To work with your VMware GemFire applications, you use a combination of configuration
files and application code.

¢ Cache Management

The VMware GemFire cache is the entry point to VMware GemFire caching management.
VMware GemFire provides different APls and XML configuration models to support the
behaviors of different members.

« Data Regions

The region is the core building block of the VMware GemFire cluster. All cached data is
organized into data regions and you do all of your data puts, gets, and querying activities
against them.

« Data Entries

The data entry is the key/value pair where you store your data. You can manage your
entries individually and in batches. To use domain objects for your entry values and keys,
you need to follow VMware GemFire requirements for data storage and distribution.

Cluster and Cache Configuration

To work with your VMware GemFire applications, you use a combination of configuration files and
application code.

e Cluster Members

Cluster members are programs that connect to a VMware GemFire cluster. You configure
members to belong to a single cluster, and you can optionally configure them to be clients
or servers to members in other clusters, and to communicate with other clusters.

« Setting Properties

VMware GemFire provides a default cluster configuration for out-of-the-box systems. To
use non-default configurations and to fine-tune your member communication, you can use
a mix of various options to customize your cluster configuration.

« Options for Configuring the Cache and Data Regions

VMware by Broadcom

170

VMware GemFire 9.10 Documentation

To populate your VMware GemFire cache and fine-tune its storage and distribution
behavior, you need to define cached data regions and provide custom configuration for the
cache and regions.

¢ Local and Remote Membership and Caching

For many VMware GemFire discussions, you need to understand the difference between
local and remote membership and caching.

Cluster Members

Cluster members are programs that connect to a VMware GempFire cluster. You configure
members to belong to a single cluster, and you can optionally configure them to be clients or
servers to members in other clusters, and to communicate with other clusters.

Member Overview

Cluster members (or simply “members”) connect to the VMware GemFire cluster when they create
the VMware GemFire data cache. The members’ cluster is configured through VMware GemFire
properties. See gemfire.properties and gfsecurity.properties (VMware GemFire Properties).
VMware GemFire properties specify all necessary information for member startup, initialization, and
communication.

Note: You cannot change a member’s properties while the member is connected to the cluster.
Use the properties to define:
e« How to find and communicate with other members
« How to perform logging and statistics activities
« Which persistent configuration or cache.xml file to use for cache and data region
initialization

« Other options, including event conflation, how to handle network loss, and security settings

Membership and System Topologies

Every VMware GemFire process is a member of a cluster, even if the cluster is defined as
standalone, with just one member. You can run an individual cluster in isolation or you can combine
clusters for vertical and horizontal scaling. See Topology and Communication General Concepts.

« Peer-to-Peer Clusters. Members that define the same member discovery properties
belong to the same cluster and are peers to one another.

o Client/Server Installations. The client/server topology uses relationships that you
configure between members of multiple clusters. You configure some or all of the peersin
one cluster to act as cache servers to clients connecting from outside the cluster. Each
server can host many client processes, managing cache access for all in an efficient,
vertically hierarchical cache configuration. You configure the client applications to connect
to the servers, using a client cache configuration. Clients run as members of standalone
VMware GemFire clusters, with no peers, so all data updates and requests go to the
servers.

VMware by Broadcom

m

VMware GemFire 9.10 Documentation

Multi-site Installations

The multi-site topology uses relationships that you configure between members of multiple
clusters. Through this configuration, you loosely couple two or more clusters for automated data
distribution. This is usually done for sites at geographically separate locations. You configure a
subset of peers in each cluster site with gateway senders and/or gateway receivers to manage
events that are distributed between the sites.

In the context of a single cluster, unless otherwise specified, “remote member” refers to another
member of the same cluster. In client/server and multi-site installations, “remote” generally refers
to members in other clusters. For example, all servers are “remote” to the clients that connect to
them. Each client runs standalone, with connections only to the server tier, so all servers and their
other clients are “remote” to the individual client. All gateway receivers are “remote” to the
gateway senders that connect to them from other clusters, and to those gateway senders’ peers.

Setting Properties

VMware GemFire provides a default configuration for out-of-the-box systems. To use non-default
configurations and to fine-tune your member communication, you can use a mix of various options
to customize your configuration.

VMware GemFire properties are used to join a cluster and configure system member behavior.
Configure your VMware GemFire properties through the gemfire.properties file, the Java API, or
command-line input. Generally, you store all your properties in the gemfire.properties file, but you
may need to provide properties through other means, for example, to pass in security properties
for a username and password that you have received from keyboard input.

Note: Check with your VMware GemFire system administrator before changing properties through
the API, including the gemfire.properties and gfsecurity.properties settings. The system
administrator may need to set properties at the command line or in configuration files. Any change
made through the API overrides those other settings.

Note: The product defaultConfigs directory has a sample gemfire.properties file with all default
settings.

Set properties by any combination of the following. The system looks for the settings in the order
listed:

1. java.lang.System property setting. Usually set at the command line. For applications, set
these in your code or at the command line.

Naming: Specify these properties in the format gemfire.property-name, where property-
name Matches the name in the gemfire.properties file. To set the gemfire property file
name, use gemfirePropertyFile by itself - In the API, set the system properties before the
cache creation call. Example:

° pre
System.setProperty ("gemfirePropertyFile", "gfTest"):;
System.setProperty ("gemfire.mcast-port", "10999");
Cache cache = new CacheFactory () .create();

VMware by Broadcom 172

VMware GemFire 9.10 Documentation

o At the java command line, pass in system properties using the -p switch. Exampile:
java -DgemfirePropertyFile=gfTest -Dgemfire.mcast-port=10999 test.Program

2. Entryin a properties object.
Naming: Specify these properties using the names in the gemfire.properties file. To set

the gemfire property file name, use gemfirePropertyFile. - In the API, create a properties
object and pass it to the cache create method. Example:

pre
Properties properties= new Properties();
properties.setProperty("log-level", "warning");
properties.setProperty("name", "testMember2");
ClientCache userCache =

new ClientCacheFactory(properties) .create();

o For the cache server, pass the properties files on the gfsh command line as
command-line options. Example:

gfsh>start server --name=server name --mcast-port=10338 --properties-file
=serverConfig/gemfire.properties --security-properties-file=gfsecurity.pr

operties
See Running VMware GemFire Server Processes for more information on running
cache servers.

3. Entryin agemfire.properties file. See Deploying Configuration Files without the Cluster
Configuration Service. Example:

cache-xml-file=cache.xml
conserve-sockets=true

disable-tcp=false

4. Default value. The default values are defined within the API for

org.apache.geode.distributed.ConfigurationProperties.

Options for Configuring the Cache and Data Regions

To populate your VMware GemFire cache and fine-tune its storage and distribution behavior, you
need to define cached data regions and provide custom configuration for the cache and regions.

Cache configuration properties define:

o Cache-wide settings such as disk stores, communication timeouts, and settings designating
the member as a server

« Cache data regions
Configure the cache and its data regions through one or more of these methods:

« Through a persistent configuration that you define when issuing commands that use the
gfsh command line utility. The gfsh utility supports the administration, debugging, and

VMware by Broadcom 173

VMware GemFire 9.10 Documentation

deployment of VMware GemFire processes and applications. You can use gfsh to configure
regions, locators, servers, disk stores, event queues, and other objects.

As you issue commands, gfsh saves a set of configurations that apply to the entire cluster
and also saves configurations that only apply to defined groups of members within the
cluster. You can re-use these configurations to create a cluster. See Overview of the
Cluster Configuration Service.

e« Through declarations in the XML file named in the cache-xml-file gemfire.properties
setting. This file is generally referred to as the cache.xnl file, but it can have any name. See
cache.xml.

¢ Through application calls to the org.apache.geode.cache.CacheFactory,
org.apache.geode.cache.Cache and org.apache.geode.cache.Region APIs.

Local and Remote Membership and Caching

For many VMware GemFire discussions, you need to understand the difference between local and
remote membership and caching.

Discussions of VMware GemFire membership and caching activities often differentiate between
local and remote. Local caching always refers to the central member under discussion, if there is
one such obvious member, and remote refers to other members. If there is no clear, single local
member, the discussion assigns names to the members to differentiate. Operations, data,
configuration, and so forth that are “local to member Q” are running or resident inside the member
Q process. Operations, data, configuration, and so on, that are “remote to member Q” are running
or resident inside some other member.

The local cache is the cache belonging to the local member. All other caches are remote, whether
in other members of the same cluster or in different clusters.

Cache Management

The VMware GemFire cache is the entry point to VMware GemFire caching management. VMware
GemFire provides different APIs and XML configuration models to support the behaviors of
different members.

+ Introduction to Cache Management
The cache provides in-memory storage and management for your data.
« Managing a Peer or Server Cache

You start your peer or server cache using a combination of XML declarations and API calls.
Close the cache when you are done.

« Managing a Client Cache

You have several options for client cache configuration. Start your client cache using a
combination of XML declarations and API calls. Close the client cache when you are done.

« Managing a Cache in a Secure System

When you create your cache in a secure system, you provide credentials to the connection
process for authentication by already-running, secure members. Clients connect to secure

VMware by Broadcom

174

VMware GemFire 9.10 Documentation

servers. Peers are authenticated by secure locators or peer members.
« Managing RegionServices for Multiple Secure Users

In a secure system, you can create clients with multiple, secure connections to the servers
from each client. The most common use case is a VMware GemFire client embedded in an
application server that supports data requests from many users. Each user may be
authorized to access a subset of data on the servers. For example, customer users may be
allowed to see and update only their own orders and shipments.

« Launching an Application after Initializing the Cache

You can specify a callback application that is launched after the cache initialization.

Introduction to Cache Management

The cache provides in-memory storage and management for your data.

You organize your data in the cache into data regions, each with its own configurable behavior. You
store your data into your regions in key/value pairs called data entries. The cache also provides
features like transactions, data querying, disk storage management, and logging. See the Javadocs
for org.apache.geode.cache.Cache.

You generally configure caches using the gfsh command-line utility or a combination of XML
declarations and API calls. VMware GemFire loads and processes your XML declarations when you
first create the cache.

VMware GemFire has one cache type for managing server and peer caches and one for managing
client caches. The cache server process automatically creates its server cache at startup. In your
application process, the cache creation returns an instance of the server/peer or client cache. From
that point on, you manage the cache through API calls in your application.

The Caching APIs

VMware GemFire’s caching APIs provide specialized behavior for different system member types
and security settings.

e org.apache.geode.cache.RegionService. Generally, you use the RegionService functionality
through instances of cache and clientCache. You only specifically use instances of
RegionService for limited-access users in secure client applications that service many users.
The Regionservice API provides access to existing cache data regions and to the standard
query service for the cache. For client caches, queries are sent to the server tier. For
server and peer caches, queries are run in the current cache and any available peers.
RegionService is implemented by GemFireCache.

e org.apache.geode.cache.GemFireCache. YOu do not specifically use instances of
GemFireCache, but you use GemFireCache functionality in your instances of cache and
ClientCache. GemFireCache extends RegionService and adds general caching features like
region attributes, disk stores for region persistence and overflow, and access to the
underlying cluster. GemFireCache is implemented by Cache and ClientCache.

e org.apache.geode.cache.Cache. Use the cache interface to manage server and peer caches.
You have one cache per server or peer process. The cache extends GemFireCache and adds

VMware by Broadcom 175

VMware GemFire 9.10 Documentation

server/peer caching features like communication within the cluster, region creation,
transactions and querying, and cache server functionality.

e org.apache.geode~setting cache initializer.cache.ClientCache. Use the clientCache
interface to manage the cache in your clients. You have one clientCache per client
process. The clientCache extends GemFireCache and adds client-specific caching features
like client region creation, subscription keep-alive management for durable clients, querying
on server and client tiers, and RegionService creation for secure access by multiple users
within the client.

The Cache XML

Your cache.xml must be formatted according to the product XML schema definition cache-1.0.xsd.
The schema definition file is available at http://geode.apache.org/schema/cache/cache-1.0.xsd.

You use one format for peer and server caches and another for client caches.

cache.xml for Peer/Server:

<?xml version="1.0" encoding="UTF-8"?>

<cache xmlns="http://geode.apache.org/schema/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

version="1.0">

</cache>

cache.xml for Client:

<?xml version="1.0" encoding="UTF-8"?>

<client-cache
xmlns="http://geode.apache.org/schema/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://geode.apache.org/schema/cache http://geode.apache.org/s

chema/cache/cache-1.0.xsd"

version="1.0">

</client-cache>

For more information on the cache.xnl file, see cache.xml.

Create and Close a Cache

Your system configuration and cache configuration are initialized when you start your member
processes and create each member’'s VMware GemFire cache. If you are using the cluster
configuration service, member processes can pick up its cache configuration from the cluster or
group’s current configuration. See Overview of the Cluster Configuration Service.

The steps in this section use gemfire.properties and cache.xml file examples, except where API is
required. You can configure your cluster properties and cache through the API as well, and you can
use a combination of file configuration and API configuration.

VMware by Broadcom 176

http://geode.apache.org/schema/cache/cache-1.0.xsd

VMware GemFire 9.10 Documentation

The XML examples may not include the full cache.xml file listing. All of your declarative cache
configuration must conform to the cache XSD at http://geode.apache.org/schema/cache/cache-
1.0.xsd.

For all of your VMware GemFire applications:

1. Create your cache, for peer/server applications, or clientCache, for client applications. This
connects to the VMware GemFire system you have configured and initializes any
configured data regions. Use your cache instance to access your regions and perform your
application work.

2. Close your cache when you are done. This frees up resources and disconnects your
application from the cluster in an orderly manner.

Follow the instructions in the subtopics under Cache Management to customize your cache
creation and closure for your application needs. You may need to combine more than one of the
sets of instructions. For example, to create a client cache in a system with security, you would
follow the instructions for creating and closing a client cache and for creating and closing a cache in
a secure system.

Export and Import a Cache Snapshot

To aid in the administration of cache data and speed the setup of new environments, you can
export a snapshot of the entire cache (all regions) and then import the snapshot into a new cache.
For example, you could take a snapshot of the production environment cache in order to import
the cache’s data into a testing environment.

For more details on exporting and importing snapshots of a cache, see Cache and Region
Snapshots.

Cache Management with gfsh and the Cluster Configuration
Service

You can use gfsh commands to mange a server cache. There are gfsh commands to create regions,
start servers, and to create queues and other objects. As you issue these commands, the Cluster
Configuration Service saves cache.xml and gemfire.properties files on the locators and distributes

those configurations to any new members that join the cluster. See Overview of the Cluster
Configuration Service.

Managing a Peer or Server Cache

You start your peer or server cache using a combination of XML declarations and API calls. Close
the cache when you are done.

VMware GemFire peers are members of a VMware GemFire cluster that do not act as clients to
another VMware GempFire cluster. VMware GemFire servers are peers that also listen for and
process client requests.

1. Create your cache:

1. Start up a cluster and the cluster configuration service:

VMware by Broadcom 177

http://geode.apache.org/schema/cache/cache-1.0.xsd

VMware GemFire 9.10 Documentation

1. Start a locator with --enable-cluster-configuration set to true. (It is set
true by default.)

gfsh>start locator --name=locatorl

2. Start up member processes that use the cluster configuration service
(enabled by default):

gfsh>start server --name=serverl --server-port=40404

3. Create regions:

gfsh>create region --name=customerRegion --type=REPLICATE

gfsh>create region --name=ordersRegion --type=PARTITION

2. Orif you are not using the cluster configuration service, directly configure cache.xml
in each member of your cluster. In your cache.xml, use the cache DOCTYPE and
configure your cache inside a <cache> element. Example:

<?xml version="1.0" encoding="UTF-8"?>

<cache
xmlns="http://geode.apache.org/schema/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://geode.apache.org/schema/cache http://geod

e.apache.org/schema/cache/cache-1.0.xsd"

version="1.0">
// NOTE: Use this <cache-server> element only for server processes
<cache-server port="40404"/>
<region name="customerRegion" refid="REPLICATE" />
<region name="ordersRegion" refid="PARTITION" />
</cache>

3. To programmatically create the cache instance:

= |In your Java application, use the cacheFactory create method:
Cache cache = new CacheFactory() .create();

= If you are running a server using the VMware GemFire cacheserver process,
it automatically creates the cache and connection at startup and closes both
when it exits.

The system creates the connection and initializes the cache according to your
gemfire.properties and cache.xml specifications.

2. Close your cache when you are done using the inherited close method of the cache
instance:

cache.close () ;

Managing a Client Cache

VMware by Broadcom 178

VMware GemFire 9.10 Documentation

You have several options for client cache configuration. Start your client cache using a combination
of XML declarations and API calls. Close the client cache when you are done.

VMware GemFire clients are processes that send most or all of their data requests and updates to a
VMware GemFire server system. Clients run as standalone processes, without peers of their own.

Note: VMware GemFire automatically configures the cluster for your clientCache as standalone,
which means the client has no peers. Do not try to set the gemfire.properties mcast-port Or
locators for a client application or the system will throw an exception.

1. Create your client cache:

1. In your cache.xml, use the client-cache DOCTYPE and configure your cache inside
a <client-cache> element. Configure your server connection pool and your regions
as needed. Example:

<?xml version="1.0" encoding="UTF-8"7?>
<client-cache
xmlns="http://geode.apache.org/schema/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://geode.apache.org/schema/cache http://geod
e.apache.org/schema/cache/cache-1.0.xsd"
version="1.0">
<pool name="serverPool">
<locator host="hostl" port="44444"/>
</pool>
<region name="exampleRegion" refid="PROXY"/>

</client-cache>

Note: Applications that use a client-cache may want to set concurrency-checks-
enabled to false for a region in order to see all events for that region. VMware
GemFire server members can continue using concurrency checks, but they will pass
all events to the client cache. This configuration ensures that the client sees all
region events, but it does not prevent the client cache region from becoming out-
of-sync with the server cache. See Consistency for Region Updates.

2. If you use multiple server pools, configure the pool name explicitly for each client
region. Example:

<pool name="svrPooll">
<locator host="hostl" port="40404"/>
</pool>
<pool name="svrPool2">
<locator host="host2" port="40404"/>
</pool>
<region name="clientR1" refid="PROXY" pool-name="svrPooll"/>
<region name="clientR2" refid="PROXY" pool-name="svrPool2"/>
<region name="clientsPrivateR" refid="LOCAL"/>

3. In your Java client application, create the cache using the clientCacheFactory
create method. Example:

ClientCache clientCache = new ClientCacheFactory () .create();

VMware by Broadcom

179

VMware GemFire 9.10 Documentation

This creates the server connections and initializes the client’s cache according to
your gemfire.properties and cache.xml specifications.

2. Close your cache when you are done using the close method of your cache instance:

cache.close () ;

If your client is durable and you want to maintain your durable queues while the client
cache is closed, use:

clientCache.close(true);

Managing a Cache in a Secure System

A secured system does both authentication at connection time and authorization prior to cache
operations. Client apps and cluster members (servers and locators) require configuration and setup
when the securityManager is enabled.

See the section on Security for details. For authentication, see Implementing Authentication.

Managing RegionServices for Multiple Secure Users

In a secure system, you can create clients with multiple, secure connections to the servers from
each client. The most common use case is a VMware GemFire client embedded in an application
server that supports data requests from many users. Each user may be authorized to access a
subset of data on the servers. For example, customer users may be allowed to see and update only
their own orders and shipments.

In a single client, multiple authenticated users can all access the same clientCache through
instances of the rRegionservice interface. Because there are multiple users with varying
authorization levels, access to cached data is done entirely through the servers, where each user’s
authorization can be managed. Follow these steps in addition to the steps in Managing a Cache in a
Secure System.

1. Create your cache and RegionService instances:
1. Configure your client’s server pool for multiple secure user authentication. Example:
<pool name="serverPool" multiuser-authentication="true">

<locator host="hostl" port="44444"/>
</pool>

This enables access through the pool for the Regionservice instances and disables it
for the clientCache instance.

2. After you create your clientCache, from your CclientCache instance, for each user
call the createAuthenticatedview method, providing the user’s particular
credentials. These are create method calls for two users:

Properties properties = new Properties();
properties.setProperty("security-username", custlName) ;
properties.setProperty("security-password", custlPwd);

RegionService regionServicel =

VMware by Broadcom

180

VMware GemFire 9.10 Documentation

clientCache.createAuthenticatedView (properties);

properties = new Properties{();
properties.setProperty("security-username"”, cust2Name);
properties.setProperty("security-password", cust2Pwd);
RegionService regionService2 =

clientCache.createAuthenticatedView (properties) ;

For each user, do all of your caching and region work through the assigned rRegionService
instance. Access to the server cache will be governed by the server’s configured
authorization rules for each individual user.

2. Close your cache by closing the clientcache instance only. Do not close the RegionService
instances first. This is especially important for durable clients.

Requirements and Caveats for RegionService

Once each region is created, you can perform operations on it through the clientcCache instance or
the rRegionservice instances, but not both.

Note: You can use the clientcache to create a region that uses a pool configured for multi-user
authentication, then access and do work on the region using your RegionService instances.

To use RegionService, regions must be configured as eMpTY. Depending on your data access
requirements, this configuration might affect performance, because the client goes to the server
for every get.

Launching an Application after Initializing the Cache

You can specify a callback application that is launched after the cache initialization.

By specifying an <initializer> element in your cache.xml file, you can trigger a callback
application, which is run after the cache has been initialized. Applications that use the cacheserver
script to start up a server can also use this feature to hook into a callback application. To use this
feature, you need to specify the callback class within the <initializer> element. This element
should be added to the end of your cache.xml file.

You can specify the <initializer> element for either server caches or client caches.

The callback class must implement the peclarable interface. When the callback class is loaded, its
init method is called, and any parameters defined in the <initializer> element are passed as
properties.
The following is an example specification.
In cache.xml:
<initializer>
<class-name>MyInitializer</class-name>
<parameter name="members">
<string>2</string>

</parameter>

</initializer>

Here’s the corresponding class definition:

VMware by Broadcom

181

VMware GemFire 9.10 Documentation

import org.apache.geode.cache.Declarable;

public class MyInitializer implements Declarable {
public void init (Properties properties) {

System.out.println (properties.getProperty ("members"));

The following are some additional real-world usage scenarios:
1. Start a SystemMembershipListener
<initializer>

<class-name>TestSystemMembershiplListener</class-name>
</initializer>

2. Write a custom tool that monitors cache resources

<initializer>
<class-name>ResourceMonitorCacheXmlLoader</class-name>

</initializer>

Any singleton or timer task or thread can be instantiated and started using the initializer element.

Data Regions

The region is the core building block of the VMware GemFire cluster. All cached data is organized
into data regions and you do all of your data puts, gets, and querying activities against them.

« Region Management

VMware GemFire provides gfsh commands, APIs, and XML configuration models to
support the configuration and management of data regions.

¢ Region Naming

To be able to perform all available operations on your data regions, follow these region
naming guidelines.

« Region Shortcuts and Custom Named Region Attributes

VMware GemFire provides region shortcut settings, with preset region configurations for
the most common region types. For the easiest configuration, start with a shortcut setting
and customize as needed. You can also store your own custom configurations in the cache
for use by multiple regions.

« Storing and Retrieving Region Shortcuts and Custom Named Region Attributes
Use these examples to get started with VMware GemFire region shortcuts.
« Managing Region Attributes

Use region attributes to fine-tune the region configuration provided by the region shortcut
settings.

¢ Creating Custom Attributes for Regions and Entries

VMware by Broadcom

182

VMware GemFire 9.10 Documentation

Use custom attributes to store information related to your region or its entries in your
cache. These attributes are only visible to the local application and are not distributed.

« Building a New Region with Existing Content

A new region or cluster may need to be loaded with the data of an existing system. There
are two approaches to accomplish this task. The approach used depends upon the
organization of both the new and the existing cluster.

Region Management
Operations that create, destroy, invalidate, clear, and change the configuration of regions work
with gfsh commands, through an XML description, and via API calls.

You store your data in region entry key/value pairs, with keys and values being any object types
your application needs. The org.apache.geode.cache.Region interface implements java.util.Map.

Each region’s attributes define how the data in the region is stored, distributed, and managed. Data
regions can be distributed, partitioned among system members, or local to the member.

Region shortcuts identify commonly-used types of regions. See Region Shortcuts for more
information.

Note: If you change attributes that define a region, you must restart the member for the changes
to take effect.

Creating a Region

Creating a Region with gfsh

A simple and fast way to create a data region in the VMware GemFire cache is to use the gfsh
command-line tool.

Region creation is subject to attribute consistency checks, both internal to the cache and, if the
region is not local, between all caches where the region is defined.

The gfsh create region command reference page details command line options for creating a
region with gfsh.

With gfsh connected to a JMX server, an example command that creates a replicated region is

gfsh>create region --name=regionl --type=REPLICATE

Export the configuration files of your server so that you can save your region’s configuration and
recreate the region with the same attributes the next time you start up your cache server. See
export config for details.

Note: The cluster configuration service, which is enabled by default, automatically saves the
configuration on the locators in the cluster. After you use the gfsh create region command, any
new servers that you start that attach to the same locator receive the same configuration. You can
also create alternate configurations within a cluster by specifying a group when creating the region
and starting servers. See Overview of the Cluster Configuration Service.

Creating a Region Through the cache.xml File

VMware by Broadcom 183

VMware GemFire 9.10 Documentation

A common way to create a data region in the VMware GemFire cache is through cache.xml
declarations. When starting the member with the cache.xml file, the region will be created.

Region creation is subject to attribute consistency checks, both internal to the cache and, if the
region is not local, between all caches where the region is defined.

e Inthe cache.xml file, create a <region> element for the new region as a subelement to the
<cache> element or the <client-cache> element.

« Define the region’s name and use a region shortcut, if one applies.

e Add other attributes as needed to customize the region’s behavior.

cache.xml File Examples

The region declaration of a replicated region named Portfolios:
<region name="Portfolios" refid="REPLICATE"/>

The region declaration of a partitioned region named myRegion:

<region name="myRegion" refid="PARTITION"/>

The region declaration of a partitioned region that backs up content to disk:

<region name="myRegion" refid="PARTITION PERSISTENT"/>

The region declaration of a partitioned region configured with high availability and a modified
storage capacity in the host member:

<region name="myRegion" refid="PARTITION_ REDUNDANT">
<region-attributes>
<partition-attributes local-max-memory="512" />
</region-attributes>

</region>

The region declaration of a replicated region configured with an event listener in which entries
expire:

<region name="myRegion" refid="REPLICATE">
<region-attributes statistics-enabled="true">
<entry-time-to-live>
<expiration-attributes timeout="60" action="destroy"/>
</entry-time-to-live>
<cache-listener>
<class-name>myPackage.MyCachelListener</class-name>
</cache-listener>
</region-attributes>

</region>

Creating a Region Through the API

VMware GemFire’s regions APIs provide specialized behavior for different system member types.

VMware by Broadcom 184

VMware GemFire 9.10 Documentation

« Peer/Server Region APIs. Use these methods, interfaces, and classes for peer/server
region creation. These are in the org.apache.geode.cache package. They correspond to
cache.xml declarations within the <cache> element for creating and configuring regions.

o org.apache.geode.cache.Cache.createRegionFactory . This method takes a
RegionShortcut enum to initiate region configuration, and it returns a RegionFactory.
Use createRegionFactory (), NOt new RegionFactory, tO create a RegionFactory.

o org.apache.geode.cache.RegionFactory. Provides methods to set individual region
attributes and to create the region. The create call returns a Region.

o org.apache.geode.cache.RegionShortcut. Defines common region configurations.

« Client Region APIs. Use these methods, interfaces, and classes for client region creation.
These are in the org.apache.geode.cache.client package. They correspond to cache.xml
declarations in the <client-cache> element for creating and configuring regions.

These are client versions of the Peer/Server Region APIs. These client APIs provide similar
functionality, but are tailored to the needs and behaviors of client regions.

o org.apache.geode.cache.clientCache.createRegionFactory . This method takes a
ClientRegionShortcut enum to initiate region configuration, and returns a
ClientRegionFactory.

o org.apache.geode.cache.client.ClientRegionFactory. Provides methods to set
individual region attributes and to create the region. The create call returns rRegion.

o org.apache.geode.cache.client.ClientRegionShortcut . Defines common region
configurations.

« Region APIs Used For All Member Types. These interfaces and classes are used
universally for region management. These are in the org.apache.geode.cache package.
They correspond to cache.xml declarations in the <cache> and <client-cache> elements for
creating and configuring regions.

o org.apache.geode.cache.Region . Interface for managing regions and their entries.

o org.apache.geode.cache.RegionAttributes . Object holding region configuration
settings.

Use the API to create regions in the cache after startup. For run-time region creation, you need to
use the API.

Region creation is subject to attribute consistency checks, both internal to the cache and, if the
region is not local, between all caches where the region is defined.

1. Use a region shortcut to create your region factory.

o In peers and servers, use org.apache.geode.cache.RegionFactory.

o Inclients, use org.apache.geode.cache.client.ClientRegionFactory.
2. (Optional) Use the region factory to further configure your region.

3. Create your region from the configured region factory.

APl Examples

Create a replicated region named Portfolios:

VMware by Broadcom

185

VMware GemFire 9.10 Documentation

Cache cache = CacheFactory.create();
RegionFactory rf = cache.createRegionFactory (REPLICATE) ;

Region pfloRegion = rf.create("Portfolios");

Create a partitioned region with a listener:

RegionFactory rf =
cache.createRegionFactory (RegionShortcut.PARTITION) ;
rf.addCacheListener (new LoggingCachelistener());

custRegion = rf.create("customer") ;

Create a partitioned region with a partition resolver for colocated regions:

PartitionAttributesFactory paf = new PartitionAttributesFactory<CustomerId, String>();

paf.setPartitionResolver (new CustomerOrderResolver ());

RegionFactory rf =

cache.createRegionFactory (RegionShortcut.PARTITION) ;
rf.setPartitionAttributes (paf.create());
rf.addCachelistener (new LoggingCachelListener());

custRegion = rf.create("customer");

Create a client region with a pool specification:

ClientRegionFactory<String, String> cRegionFactory =
cache.createClientRegionFactory (PROXY) ;

Region<String, String> region =
cRegionFactory.setPoolName ("Pool3") .create ("DATA") ;

Create and Access Data Subregions

An individual region can contain multiple subregions. Subregions are an older feature that will not
be useful in new designs and applications. They are used to create a hierarchical namespace within
a cache, providing naming that feels like paths in a file system. Here are limitations on the use of
subregions:

e A region with LOCAL scope can only have subregions with LOCAL scope.

o Partitioned region types may not be used with subregions. A subregion may not have a
parent that is a partitioned region, and a subregion may not be of type PARTITION.

e« A subregion must have the same scope (GLOBAL, DISTRIBUTED_ACK,
DISTRIBUTED_NO _ACK) as its parent region.

e« Subregion names must be unique within the cache.
You can create subregions using one of the following methods:
e Declaration in the cache.xml:
<?xml version="1.0"?>
<cache
xmlns="http://geode.apache.org/schema/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://geode.apache.org/schema/cache http://geode.apach

e.org/schema/cache/cache-1.0.xsd"

VMware by Broadcom

186

VMware GemFire 9.10 Documentation

version="1.0"
lock-lease="120"
lock-timeout="60"
search-timeout="300">
<!-- Create a region named Portfolios -->
<region name="Portfolios" refid="REPLICATE">
<region name="Private" refid="REPLICATE">

</region>
</region>

</cache>

When the cache.xml is loaded at cache creation, the system automatically creates any
declared regions and subregions.

e RegionFactory API calls:

Cache cache = CacheFactory.create();
RegionFactory rf = cache.createRegionFactory (REPLICATE) ;
Region pfloRegion = rf.create("Portfolios");

Region pvtSubregion = rf.createSubregion(pfloRegion, "Private");

Region method calls with a recursive parameter operate on the given region(s) and then
recursively on all contained subregions.

Update the Configuration of Data Regions

Update your region properties and contents through alter region command, the API or from
cache.xml file declarations.

e« Use the gfsh alter region command.

e Inthe API, use cache and rRegion methods to change configuration parameters and modify
region structure and data.

e Load new XML declarations using the cache.loadCachexml method. Where possible,
declarations in the new cache.xml file supersede existing definitions. For example, if a
region declared in the cache.xml file already exists in the cache, its mutable attributes are
modified according to the file declarations. Immutable attributes are not affected. If a region
does not already exist, it is created. Entries and indexes are created or updated according
to the state of the cache and the file declarations.

Invalidate a Region

An invalidate region operation removes all entry values for a region, while leaving the entry keys
intact. This operation can be invoked only through the API on a Region instance. Event notification
occurs.

// Invalidate the entire distributed region

Region.invalidateRegion() ;

The API also offers a method to invalidate only the entries within the local cache. This method may
not be used on a replicated region, as doing so would invalidate the replication contract.

VMware by Broadcom 187

VMware GemFire 9.10 Documentation

// Invalidate the region within this member

Region.locallInvalidateRegion () ;

Clear a Region

A clear region operation removes all entries from a region. This operation is not available for
partitioned regions. This operation can be invoked through the API on a rRegion instance:

// Remove all entries for the region

Region.clear () ;

It can be invoked with the gfsh command:

gfsh>remove --region=Regionl --all

Event notification occurs for a clear region operation.

Destroy a Region

A destroy region operation removes the entire region. This operation can be invoked through the
API on a rRegion instance:

// Remove the entire region

Region.destroyRegion () ;

A destroy region operation can be invoked with the gfsh command:

gfsh>destroy region --name=Regionl

Event notification occurs for a destroy region operation.
A region can be destroyed by removing the region’s specification from the cache.xmi file.

Destroying the region by an API invocation or by using the gfsh destroy command while all
members are online is the best way to remove a region, as VMware GemFire handles all aspects of
the removal, including removing the region’s persistent disk stores across the online members
hosting the region. Destroying the region by removing its specification from the cache.xml file does
not remove the region’s existing persistent disk stores.

The destroy operation can be propagated only to online members. The system will encounter
restart issues if a region is destroyed while some members are online and others are offline. As
those members that were offline restart, they will block indefinitely, waiting for persistent region
data that no longer exists. To fix this issue, shut down all members that are blocked waiting for the
removed region. Once those members are in the offline state, use the gfsh alter disk-store
command with the --remove option on each offline member to remove the region. Then, restart
each member.

An edge case results in issues when destroying a persistent region (R-removed) by removing its
specification from the cache.xml file, and region R-removed was colocated with another persistent
region (R-remains). The issue occurs because the persistent information contained within R-
remains is inconsistent with the (lack of) specification of R-removed. Upon restart of R-remains, its

VMware by Broadcom 188

VMware GemFire 9.10 Documentation

persisted metadata refers to R-removed as a colocated region, and the startup of R-remains is
dependent on that removed region. Thus, the startup of R-remains blocks, unable to complete.
The issue may manifest with operations on the R-remains region such as a query, put, or get, that
never finishes. To fix this issue, shut down all members with the persisted metadata that refers to
the removed region. Once those members are in the offline state, use the gfsh alter disk-store
command with the --remove option on each offline member to remove the region. Then, restart
each member.

Close a Region

Use this to stop local caching of persistent and partitioned regions without closing the entire cache:

Region.close () ;
The Region.close operation works like the Region.localDestroyRegion operation with these
significant differences:
¢ The close method is called for every callback installed on the region.

« No events are invoked. Of particular note, the entry events, beforeDestroy and
afterDestroy, and the region events, beforeRegionDestroy and afterRegionDestroy, are
not invoked. See Events and Event Handling.

o If persistent, the region is removed from memory but its disk files are retained.

o If partitioned, the region is removed from the local cache. If the partitioned region is
redundant, local data caching fails over to another cache. Otherwise, local data is lost.

Region Naming
To be able to perform all available operations on your data regions, follow these region naming
gquidelines.

« Characters permitted in region names are alphanumeric characters
(ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789), period (.),
underscore (), square brackets ([1), hyphen (-), caret (*) and backquote ().

¢ Region names are case sensitive.
e Do not use the slash character (/).

e Do not begin region names with two underscore characters (), as this is reserved for
internal use.

Region Shortcuts and Custom Named Region Attributes

VMware GemFire provides region shortcut settings, with preset region configurations for the most
common region types. For the easiest configuration, start with a shortcut setting and customize as
needed. You can also store your own custom configurations in the cache for use by multiple
regions.

You configure automated management of data regions and their entries through region shortcuts
and region attributes. These region configuration settings determine such things as where the data

VMware by Broadcom 189

VMware GemFire 9.10 Documentation

resides, how the region is managed in memory, reliability behavior, and the automatic loading,
distribution, and expiration of data entries.

Note: Whenever possible, use region shortcuts to configure your region, and further customize
behavior using region attributes. The shortcut settings are preset with the most common region
configurations.

VMware GemFire provides a number of predefined, shortcut region attributes settings for your use.

You can also define your own custom region attributes and store them with an identifier for later
retrieval. Both types of stored attributes are referred to as named region attributes. You can create
and store your attribute settings in the cache.xml file and through the API.

Retrieve region shortcuts and custom named attributes by providing the ID to the region creation,
in the refid attribute setting. This example uses the shortcut REPLICATE attributes to create a
region:

<region name="testREP" refid="REPLICATE"/>
You can create your own named attributes as needed, by providing an id in your region attributes
declaration. The following region declaration:

1. Retrieves all of the attribute settings provided by the persistent partitioned region shortcut

2. Modifies the shortcut attribute settings by specifying a disk store name to use for
persistence

3. Assigns the new attribute settings to the new region named testPRr

4. Stores the attribute settings in a new custom attributes named testPRPersist:

<disk-store name="testDiskStore" >
<disk-dirs>
<disk-dir>PRPersistl</disk-dir>
<disk-dir>PRPersist2</disk-dir>
</disk-dirs>
</disk-store>
<region name="testPR" >
<region-attributes id="testPRPersist"
refid="PARTITION PERSISTENT" disk-store-name="testDiskStore"/>
</region>

Shortcut Attribute Options

You can select the most common region attributes settings from VMware GemFire’s predefined
named region attributes in these classes:

e org.apache.geode.cache.RegionShortcut. FOr peers and servers.
e org.apache.geode.cache.client.ClientRegionShortcut. For clients.

Shortcut attributes are a convenience only. They are just named attributes that VMware GemFire
has already stored for you. You can override their settings by storing new attributes with the same
id as the predefined attributes.

For a full list of all available region shortcuts, see Region Shortcuts Quick Reference.

The org.apache.geode.cache.RegionShortcut Javadocs give complete listings of the options.

VMware by Broadcom

190

VMware GemFire 9.10 Documentation

RegionShortcuts for Peers and Servers

These are the primary options available in the region shortcut settings. The names listed appear in
the shortcut identifier alone or in combination, like “PARTITION” in PARTITION, PARTITION PROXY, and
PARTITION REDUNDANT.

Cache Data Storage Mode

e PARTITION . Creates a partitioned region. This is a data store for the region. You can also
specify these options with PARTITION:
o PROXY. Data is not stored in the local cache and the member is a data accessor to
the region. This requires other members to create non-proxy copies of the region,
so the data is stored somewhere.

o REDUNDANT. The region stores a secondary copy of all data, for high availability.

« REPLICATE. Creates a replicated region. This is a data store for the region. You can also
specify these options with REPLICATE:

o PrOXY. Data is not stored in the local cache and the member is a data accessor to
the region. This requires other members to create non-proxy copies of the region,
so the data is stored somewhere.

e LoCAL. Creates a region private to the defining member.
Data Eviction

o HEAP LRU. Causes least recently used data to be evicted from memory when the VMware
GemFire resource manager determines that the cache has reached configured storage
limits.

Disk Storage
You can specify these alone or in combination:
e PERSISTENT. Backs up all data to disk, in addition to storing it in memory.

e OVERFLOW. Moves data out of memory and on to disk, when memory use becomes too high.

ClientRegionShortcuts for Clients

These are the primary options available in the client region shortcut settings. The names listed
appear in the shortcut identifier alone or in combination, like “PrRoxY” in PROXY and CACHING PROXY.
Communication with Servers and Data Storage

e« PROXY. Does not store data in the client cache, but connects the region to the servers for
data requests and updates, interest registrations, and so on. The client is a data accessor to
the region.

e CACHING PROXY. Stores data in the client cache and connects the region to the servers for
data requests and updates, interest registrations, and so on.

e LOCAL. Stores data in the client cache and does not connect the region to the servers. This
is a client-side-only region. Note that this is not the same as setting the region’s scope
attribute to rocar.

Data Eviction

VMware by Broadcom

191

VMware GemFire 9.10 Documentation

o HEAP LRU. Causes least recently used data to be evicted from memory when the VMware
GemFire resource manager determines that the cache has reached configured storage
limits.

Disk Storage

With the LOCAL and CACHING data storage shortcut options, you can also specify these disk
storage options, alone or in combination:

e PERSISTENT. Backs up all data to disk, in addition to storing it in memory.

e« OVERFLOW. Moves data out of memory and on to disk, when memory use becomes too high.

Storing and Retrieving Region Shortcuts and Custom
Named Region Attributes

Use these examples to get started with VMware GemFire region shortcuts.

VMware GempFire region shortcuts, in org.apache.geode.cache.RegionShortcut for peers and
servers and org.apache.geode.cache.client.ClientRegionShortcut for clients, are available
wherever you create a region in the cache.xml or through the API. Custom named attributes,
stored by you, are available from the moment you store them on.

The region shortcuts are special VMware GemFire named region attributes, with identifying names.

Create custom named region attributes by setting the attributes and storing them with a unique
identifier in the region attribute id. Retrieve named attributes by providing the shortcut enum
value or the name you assigned in the id to the region creation:

« Inthe API, use the identifier in the region factory creation

¢ Inthe cache.xml, use the identifier in the <region> Or <region-attribute> refid setting.
The refid is available in both elements for convenience

Examples

Example #1
This example shows partitioned region creation in the cache.xml:

e Thefirst region-attributes declaration starts with the predefined PARTITION REDUNDANT
attributes, modifies the 1ocal-max-memory setting, and stores the resulting attributes in the
custom-named mypPartition attributes.

e The region declarations use the new stored attributes, but each has its own interest policy,
which is specified in the individual region creation.

<!-- Retrieving and storing attributes -->
<region-attributes id="myPartition" refid="PARTITION_REDUNDANT">
<partition-attributes local-max-memory="512"/>

</region-attributes>
<!-- Two partitioned regions, one colocated with the other -->

<!-- Attributes are retrieved and applied in the first region -->

<region name="PartitionedRegionl" refid="myPartition"/>

VMware by Broadcom

192

VMware GemFire 9.10 Documentation

<!-- Same stored attributes, modification for this region-->
<region name="PartitionedRegion2" refid="myPartition">
<region-attributes>
<partition-attributes colocated-with="PartitionedRegionl" />
</region-attributes>

</region>

Example #2

This example uses the rRegionFactory API to create a region based on the predefined PARTITION
region shortcut:

final Region diskPortfolios =
new RegionFactory ("PARTITION") .create ("Portfolios");

This example retrieves an attributes template and passes it to the region creation with a modified
pool specification:

ClientRegionFactory<String,String> regionFactory =
cache.createClientRegionFactory (PROXY) ;
Region<String, String> region = regionFactory
.setPoolName ("publisher")
.create ("DATA") ;

Managing Region Attributes

Use region attributes to fine-tune the region configuration provided by the region shortcut
settings.

All region attributes have default settings, so you only need to use region attributes to set the ones
you want to override. See <region-attributes>.

Define Region Attributes

Create region attributes using any of these methods:

o Declarations inside the cache.xml <region> element:

<cache>
<region name="exampleRegion" refid="REPLICATE">
<region-attributes statistics-enabled="true">
<entry-idle-time>
<expiration-attributes timeout="10" action="destroy"/>
</entry-idle-time>
<cache-listener>
<class-name>quickstart.SimpleCachelistener</class-name>
</cache-listener>
</region-attributes>
</region>
</cache>

When the cache.xml is loaded at startup, declared region attributes are automatically
created and applied to the region.

e RegionFactory APl set™ method calls:

VMware by Broadcom 193

VMware GemFire 9.10 Documentation

// Creating a partitioned region using the RegionFactory
RegionFactory rf = cache.createRegionFactory(RegionShortcut.PARTITION) ;
rf.addCachelistener (new LoggingCacheListener());

custRegion = rf.create("customer") ;

// Creating a partitioned region using the RegionFactory, with attribute modifi
cations
RegionFactory rf =

cache.createRegionFactory (RegionShortcut.PARTITION) ;
rf.setPartitionResolver (new CustomerOrderResolver()):;
rf.addCachelListener (new LoggingCachelistener());

custRegion = rf.create("customer") ;

// Creating a client with a Pool Specification Using ClientRegionFactory

ClientRegionFactory<String, String> cRegionFactory =
cache.createClientRegionFactory (PROXY) ;

Region<String, String> region =
cRegionFactory.setPoolName ("Pool3") .create ("DATA") ;

e By issuing the gfsh create region command.

Modify Region Attributes

You can modify a region’s event handlers and expiration and eviction attributes after the region is
created.

Note: Do not modify attributes for existing regions unless absolutely necessary. Creating the
attributes you need at region creation is more efficient.

Modify attributes in one of these ways:

¢ By loading a cache.xml with modified region attribute specifications:

<!-- Change the listener for exampleRegion

<region name="exampleRegion">
<region-attributes statistics-enabled="true">
<cache-listener>
<class-name>quickstart.ComplicatedCachelistener</class—-name>
</cache-listener>
</region-attributes>

</region>

e Using the AttributesMutator API:
1. Retrieve the AttributesMutator from the region

2. Call the mutator set methods to modify attributes:

currRegion = cache.getRegion("root");
AttributesMutator mutator = this.currRegion.getAttributesMutator () ;

mutator.addCachelistener (new LoggingCachelListener());

e By issuing the gfsh alter region command. See alter region.

VMware by Broadcom 194

VMware GemFire 9.10 Documentation

Creating Custom Attributes for Regions and Entries

Use custom attributes to store information related to your region or its entries in your cache. These
attributes are only visible to the local application and are not distributed.

You can define custom user attributes so you can associate data with the region or entry and
retrieve it later. Unlike the other configuration settings, these attributes are used only by your
application.

Note: User attributes are not distributed.
1. Create a Java object with your attribute definitions.
2. Attach the object to the region or to an entry:
o Region.setUserAttribute (userAttributeObject)
o Region.getEntry(key) .setUserAttribute (userAttributeObject)
3. Get the attribute value:
o Region.getUserAttribute ()
o Region.getEntry(key) .getUserAttribute ()

This example stores attributes for later retrieval by a cache writer.

// Attach a user attribute to a Region with database info for table portfolio
Object myAttribute = "portfolio";
final Region portfolios =

new RegionFactory () .setCacheWriter (new PortfolioDBWriter()).create("Portfolio
s");

Portfolios.setUserAttribute (myAttribute) ;

//Implement a cache writer that reads the user attribute setting
public class PortfolioDBWriter extends CacheWriterAdapter {
public void beforeCreate (RegionEvent event) {
table = (String)event.getRegion().getUserAttribute();

// update database table using name from attribute

Limitations and Alternatives

User attributes are not distributed to other processes, so if you need to define each attribute in
every process that uses the region or entry. You need to update every instance of the region
separately. User attributes are not stored to disk for region persistence or overflow, so they cannot
be recovered to reinitialize the region.

If your application requires features not supported by user attributes, an alternative is to create a
separate region to hold this data instead. For instance, a region, AttributesRegion, defined by you,
could use region names as keys and the user attributes as values. Changes to AttributesRegion
would be distributed to other processes, and you could configure the region for persistence or
overflow if needed.

VMware by Broadcom 195

VMware GemFire 9.10 Documentation

Building a New Region with Existing Content

A new region or cluster may need to be loaded with the data of an existing system. There are two
approaches to accomplish this task. The approach used depends upon the organization of both the
new and the existing cluster.

If both the number and the type of members is the same in both the new and the existing cluster,
then the simplest option is to use backup and restore on the persistent disk store contents. Make a
full online backup of the persistent data in the disk store of the existing cluster. Copy the files that
comprise the backup to the new cluster location. A restore instills the data into the new cluster.
See Creating Backups for System Recovery and Operational Management for details on how to
make a backup and use the backup to restore a disk store.

Take a different approach when the number or the type of members is not the same in both the
new and the existing cluster. This approach uses export and import of region data. Export the
region data of the existing cluster to create a snapshot. Copy the snapshot to the new cluster
location. Import the snapshot into the new cluster. See appropriate sections within Cache and
Region Snapshots for details on making and using a snapshot.

Data Entries

The data entry is the key/value pair where you store your data. You can manage your entries
individually and in batches. To use domain objects for your entry values and keys, you need to
follow VMware GemFire requirements for data storage and distribution.

« Managing Data Entries
Program your applications to create, modify, and manage your cached data entries.
« Copy on Read Behavior

Set the copy-on-read region attribute to cause operations that get data to make a copy of
the data, instead of returning a reference to the data.

« Requirements for Using Custom Classes in Data Caching

Follow these guidelines to use custom domain classes for your cached entry keys and
values.

Managing Data Entries

Program your applications to create, modify, and manage your cached data entries.

Note: If you do not have the cache’s copy-on-read attribute set to true, do not change the objects
returned from the Java entry access methods. See Copy on Read Behavior.

Keys

VMware GemFire calls hashCode () on the key to map an entry within the region. The hashcCode ()
return value must be the same for a given key on every server that hosts the region.

An equals () call return value on a given key also must be the same on every server that hosts the
region.

VMware by Broadcom 196

VMware GemFire 9.10 Documentation

A key may be a primitive type or a custom class. For custom classes, see Classes Used as Keys.

Do not use an enumerated type (enum) for a key. The enum hashCode () may not be overridden, and
its hash code is based upon an address. Therefore, the return value for a hashcode () call can be
different on each server, violating the restriction that it must return the same value on every server
that hosts the region.

Create and Update Entries

To create or update an entry in the cache, use rRegion.put. For example:

String name =
String value =

this.currRegion.put (name,value) ;

Note: You can also use the gfsh put command to add entries to a region, and the get command to
retrieve entries from a region. See get and put for more information.

If you want only to create the entry (with a null value and with method failure if the entry already
exists), use Region.create instead.

The getAll Operation

The batch operation Region.getall takes a collection of keys and returns a Map of key-value pairs
for the provided keys. If a given key does not exist in the region, then that key’s value in the
returned map will be null.

The putAll Operation

The batch operation Region.putall takes a Map of key-value pairs, puts them into the cache, and
then distributes them to all other members.

The design of a client application within a client-server design pattern faces the possibility that a
partial operation can occur. Some, all, or none of the specified key-value pairs may be written with
putAll. If either serverOperationException Or ServerConnectivityException isthrown, it can
indicate an incomplete operation.

// Retry if the exception may be due to a transient cause.
for (int retry = 0; retry < 3; retry++) {
throwable = null;
try f{
region.putAll (map) ;
} catch (ServerOperationException e) {
throwable = e.getCause();
if (! (e.getCause() instanceof TimeoutException ||
e.getCause () instanceof LowMemoryException)) {
// Not a transient exception. Do not retry.
break;
}
} catch (ServerConnectivityException e) {

throwable = e;

VMware by Broadcom

197

VMware GemFire 9.10 Documentation

if (throwable != null) {
// Take appropriate action,
// such as logging the exception and rethrowing it.
System.out.println ("putAll failed due to " + throwable);

throw new Exception(throwable);

Either a serverConnectivityException Or @ ServerOperationException With a cause of
TimeoutException OF LowMemoryException can indicate a transient error. A limited quantity of retries
of putall may result in a completed operation. A repeated timeout may imply that the read-
timeout value is not long enough to complete the bulk operation; use the
org.apache.geode.cache.client.PoolFactory.setReadTimeout method to set the read-timeout
value.

Client applications that cannot tolerate partial completion of a putall operation may embed the
operation into a transaction. See Transactions for details.

The processing of a map with many entries and/or extra-large data values may affect system
performance and cause cache update timeouts, especially if the region uses overflow or
persistence to disk. The processing may also cause a LowMemoryException to be thrown.

The removeAll Operation

The removenrll method takes a collection of keys and removes all of the entries for the specified
keys from this region. This call performs the equivalent of callingdestroy (Object) on this region
once for each key in the specified collection. If an entry does not exist, then that key is skipped. An
EntryNotFoundException is not thrown. This operation will be distributed to other caches if the
region’s scope is not set to scope.LOCAL.

The processing of a map with many entries and/or extra-large data values may affect system
performance and cause cache update timeouts, especially if the region uses overflow or
persistence to disk. The processing may also cause a LowMemoryException to be thrown.

Retrieving Region Entries from Proxy Members

The Region.values method call applies to the local region instance only. If you call the values
method from a client region using the PROXY shortcut, the method call will not be redirected to
the server region. To obtain a collection of all values in the Region from a client, you should use
interest registration on ALL_KEYS, or use a query.

If you use the Region.get method from a proxy member, the method call will redirect to the region
on the server if it cannot find the key locally.

Using gfsh to get and put

You can use the gfsh get and put commands to manage data. See get and put.

For example:

get --key=('id':'133abgl24') --region=regionl

// Retrieving when key type is a wrapper (primitive)/String

VMware by Broadcom 198

VMware GemFire 9.10 Documentation

get --key=('133abgl24') --region=/regionl/regionl2 --value-class=data.ProfileDetails

get --key=('1l00L') --region=/regionl/regionl2 --value-class=data.ProfileDetails

--key-class=java.lang.Long

put --key=('id':'133abgl25') --value=('firstname':'James','lastname':'Gosling"')
--region=/regionl --key-class=data.ProfileKey --value-class=data.ProfileDetails

put --key=('133abgl24') --value=('Hello World!!') --region=/region?

put --key=('1l00F') --value=('2146547689879658564") --region=/regionl/regionl?2

--key-class=java.lang.Float --value-class=java.lang.Long

Copy on Read Behavior

Methods that do a get type of operation receive as a return value a direct reference to the cached
object. This provides the value as quickly as possible, but it also makes possible code
implementations that could incorrectly modify the referenced object, bypassing the distribution
framework and causing region entries that are no longer consistent across cluster members.

The code that has the potential for harming cache consistency by using a reference to access and
change a region entry is code that executes within the servers. Examples are cache writers and
listeners, transactions, and functions. A client invocation of a get type of operation that is handled
by the servers is not subject to this potential for harm, as the clients are in a distinct JVM from the
servers, and references do not cross JVM boundaries. That client cannot receive a return value that
is a direct reference to a region entry, as the servers hold the region entries and the servers do not
reside within the client JVM.

To avoid modification of the referenced object, create a copy in one of two ways:

« Change the entry retrieval behavior for your cache by setting the copy-on-read cache
attribute to true; its default value is false. When copy-on-read is true, all entry access
methods return copies of the entries. This protects all server-side code from inadvertently
modifying in-place. This attribute will negatively impact performance and memory
consumption when a copy is not needed, as it takes time and memory to create the copy.
Note that the copy-on-read attribute is applied at the cache level; it cannot be set for
individual regions.

There are two ways to set the copy-on-read attribute:

o Set the attribute in the cache.xml file that defines the cache.

<cache copy-on-read="true">

</cache>
o Use gfsh alter runtime to set the copy-on-read attribute once the servers have
been started.

« Implement server-side code that creates and uses a copy of the returned object. For
objects that are cloneable or serializable, copy the entry value to a new object using
org.apache.geode.CopyHelper.copy. Example:

VMware by Broadcom 199

VMware GemFire 9.10 Documentation

Object o = region.get (key):;
StringBuffer s = (StringBuffer) CopyHelper.copy (o) ;
// further operations on the region entry value will use s

s.toUpperCase () ;

Always use a Region method to then change data in the region. Do not use the reference
returned from the entry access method. If the upper case string should become the new
value for the region entry:

region.put (key, s);

Requirements for Using Custom Classes in Data Caching

Follow these guidelines to use custom domain classes for your cached entry keys and values.

CLASSPATH

Each member’s crasspaTa must include classes for all objects the member accesses.
o For Java applications, use the standard Java CLASSPATH.

o For the cache server process, use the cLasspaATH environment variable or the gfsh start
server’'s --classpath parameter. See Running VMware GemFire Server Processes.

Data is sent between clients and servers in serialized form and the server stores client data in
serialized form. The server does not need to deserialize data to send it to another client or to
access it through a ppxInstance, but it does need to deserialize it to access it in other ways. The
server cLAsSPATH must include the classes for:

e All entry keys
e Entry values in regions that the server persists to disk

« Entry values the server accesses for any reason other than access using a pdxInstance Or
transfer of the full entry value to a client

For information on pdxInstances, see Data Serialization.

Data Serialization

VMware GemFire serializes data entry keys and values for distribution, so all data that VMware
GemFire moves out of the local cache for any reason must be serializable. Additionally, partitioned
regions store data in serialized form. Almost every configuration requires serialization.

For information on the requirements and options for data serialization, see Data Serialization.

Classes Used as Keys

The region uses hashing on keys. If you define a custom class to use as a key, for the class,
override:

e equals

VMware by Broadcom 200

VMware GemFire 9.10 Documentation

e hashCode. The default hashcode inherited from oObject uses identity, which is different in
every system member. In partitioned regions, hashing based on identity puts data in the
wrong place. For details, see the Java API documentation for java.lang.0Object.

Do not call hashCode () on an enum type data member within the key’s custom hashCode ()
implementation. The enum hashCode () may not be overridden, and its hash is based upon an
address. Therefore, an enumerated type’s hashCode () return value can be different on each server,
violating the restriction that hashcode () must return the same value on every server that hosts the
region.

VMware by Broadcom

201

VMware GemFire 9.10 Documentation

Topologies and Communication

Topologies and Communication explains how to plan and configure VMware GemFire member
discovery, peer-to-peer and client/server communication topologies.

Topology and Communication General Concepts

Before you configure your VMware GemFire members, make sure you understand the
options for topology and communication.

Peer-to-Peer Configuration

Use peer-to-peer configuration to set member discovery and communication within a single
cluster.

Client/Server Configuration

In the client/server architecture, a relatively small server farm manages the cached data of
and access to the same data for many client applications. Clients can update and access
data efficiently, leaving the servers to manage data distribution to other clients and any
synchronization with outside data stores.

Multi-site (WAN) Configuration

Use the multi-site configuration to scale horizontally between disparate, loosely-coupled
clusters. A wide-area network (WAN) is the main use case for the multi-site topology.

Topology and Communication General Concepts

Before you configure your VMware GemFire members, make sure you understand the options for
topology and communication.

Topology Types
The VMware GemFire topology options allow you to scale horizontally and vertically.
Planning Topology and Communication

Create a topology plan and a detailed list of machines and communication ports that your
members will use. Configure your VMware GemFire systems and the communication
between systems.

How Member Discovery Works

VMware GemFire provides various options for member discovery within a cluster and
between clients and servers.

How Communication Works

VMware GemFire uses a combination of TCP and UDP unicast and multicast for
communication between members. You can change the default behavior to optimize

VMware by Broadcom 202

VMware GemFire 9.10 Documentation

communication for your system.
« Using Bind Addresses

You use a bind address configuration to send network traffic through non-default network
cards and to distribute the load of network traffic for VMware GemFire across multiple
cards. If no bind address setting is found, VMware GemFire uses the host machine’s default
address.

¢ Choosing Between IPv4 and IPv6

By default, VMware GemFire uses Internet Protocol version 4 for VMware GemFire address
specifications. You can switch to Internet Protocol version 6 if all your machines support it.
You may lose performance, so you need to understand the costs of making the switch.

Topology Types

The VMware GemFire topology options allow you to scale horizontally and vertically.
VMware GemFire provides a variety of cache topologies:
o At the core of all systems is the single, peer-to-peer cluster.

e For horizontal and vertical scaling, you can combine individual systems into client/server
and multi-site (WAN) topologies:
o In client/server systems, a small number of server processes manage data and event
processing for a much larger client group.

o In multi-site systems, several geographically disparate systems are loosely coupled
into a single, cohesive processing unit.

Peer-to-Peer Configuration

The peer-to-peer cluster is the building block for all VMware GemFire installations. Peer-to-peer
alone is the simplest topology. Each cache instance, or member, directly communicates with every
other member in the cluster. This cache configuration is primarily designed for applications that
need to embed a cache within the application process space and participate in a cluster. A typical
example is an application server cluster in which the application and the cache are co-located and
share the same heap.

. . \ (0 . \ (. 0 \
Application Process Application Process Application Process
N 4 N 4
Peer Peer Peer
Cache Cache Cache
(Data) (Data) (Data)
- J - J - J

Client/Server Configuration

The client/server topology is the model for vertical scaling, where clients typically host a small
subset of the data in the application process space and delegate to the server system for the rest.

VMware by Broadcom 203

VMware GemFire 9.10 Documentation

Compared to peer-to-peer by itself, the client/server architecture provides better data isolation,
high fetch performance, and more scalability. If data distribution will put a very heavy load on the
network, a client/server architecture usually gives better performance. In any client/server
installation, the server system is itself a peer-to-peer system, with data distributed between
servers. A client system has a connection pool, which it uses to communicate with servers and
other VMware GemFire members. A client may also contain a local cache.

Application Process)

Client
Cache

) TS T
Lconnecuaon pool Jj

{ }

Server Server Server

Data Data Data

Multi-site Configuration

For horizontal scaling, you can use a loosely coupled multi-site topology. With multi-site, multiple
VMware GemFire systems are loosely coupled, generally across geographical distances with slower
connections, such as with a WAN. This topology provides better performance than the tight
coupling of a single system, and greater independence between locations, so that each site can
function on its own if the connection or remote site become unavailable. In a multi-site installation,
each individual site is a peer-to-peer or Client/Server system.

Member Member Member Member

Gateway Receiver Gateway Sender

WAN/Multi-site Boundary

Gateway Sender Gateway Receiver

Member Member Member Member

Planning Topology and Communication

Create a topology plan and a detailed list of machines and communication ports that your members
will use. Configure your VMware GemFire systems and the communication between systems.

VMware by Broadcom 204

VMware GemFire 9.10 Documentation

Determine Protocols and Addresses
Your configuration governs how your applications find each other and distribute events and data
among themselves.

Work with your system administrator to determine the protocols and addresses you will use for
membership and communication.

1. For each host machine with more than one network adapter card, decide whether to use
the default address or one or more non-default bind addresses. You can use different cards
for peer and server.

2. ldentify any members you want to run as standalone, isolated members with no member
discovery. This can be a good option for clients, because it has faster startup but no peer-
to-peer distribution of any kind.

3. For all non-standalone members:
o Decide how many locators you will use and where they will run. To ensure the most
stable startup and availability, use multiple locators on multiple machines.

o Create a list of your locators’ address and port pairs. You will use the list to
configure your system members, any clients, and the locators themselves.

o If you will use multicasting for communication, note the addresses and ports. Select
both unique multicast ports and unique addresses for your clusters. Note: Use
different port numbers for different systems, even if you use different multicast
addresses. Some operating systems do not keep communication separate between
systems that have unique addresses but the same port number.

Set Up Membership and Communication

Using the protocols and addresses you determined above, do the following:
¢ Set up membership in your systems.
e Set up communication between system members. See Configuring Peer Communication.

e« As needed, set up communication between your systems. See Configuring a Client/Server
System.

How Member Discovery Works

VMware GemFire provides various options for member discovery within a cluster and between
clients and servers.

e Peer Member Discovery
¢ Standalone Member

¢ Client Discovery of Servers

Peer Member Discovery

Peer member discovery is what defines a cluster. All applications and cache servers that use the
same settings for peer discovery are members of the same cluster. Each system member has a

VMware by Broadcom

205

VMware GemFire 9.10 Documentation

unique identity and knows the identities of the other members. A member can belong to only one
cluster at a time. Once they have found each other, members communicate directly, independent
of the discovery mechanism. In peer discovery, VMware GemFire uses a membership coordinator
to manage member joins and departures.

Members discover each other using one or more locators. A locator provides both discovery and
load balancing services. Peer locators manage a dynamic list of cluster members. New members
connect to one of the locators to retrieve the member list, which it uses to join the system.

B e ™\ e
Peer Peer Peer
Data Data Data
w f E4
N v V'

[Locator]4— - — >[Locator]

Peer Discovery Using Locators

Note: Multiple locators ensure the most stable start up and availability for your cluster.

Standalone Member

The standalone member has no peers, does no peer discovery, and so does not use locators. It
creates a cluster connection only to access the VMware GemFire caching features. Running
standalone has a faster startup and is appropriate for any member that is isolated from other
applications. The primary use case is for client applications. Standalone members can be accessed
and monitored if you enable the member to become a JMX Manager.

Client Discovery of Servers

Locators provide clients with dynamic server discovery and server load balancing. Clients are
configured with locator information for the server system, and turn to the locators for directions to
the servers to use. The servers can come and go and their capacity to service new client
connections can vary. The locators continuously monitor server availability and server load
information, providing clients with connection information for the server with the least load at any
time.

Note: For performance and cache coherency, clients must run as standalone members or in
different clusters than their servers.

You do not need to run any special processes to use locators for server discovery. The locators that
provide peer discovery in the server system also provide server discovery for clients to the server
system. This is the standard configuration.

VMware by Broadcom

206

VMware GemFire 9.10 Documentation

s ™ s A e N
Peer Peer Peer
Data Data Data
w f § 4
'S v s

[Locator]4— - — >[Locator]

7 v V\
Client Client

Cache Cache

Client/Server Discovery Using Locators

Multi-site Discovery

In a multi-site (WAN) configuration, a VMware GemFire cluster uses locators to discover remote
VMware GemFire clusters as well as to discover local VMware GemFire members. Each locator in a
WAN configuration uniquely identifies the local cluster to which it belongs, and it can also identify
locators in remote VMware GemFire clusters to which it will connect for WAN distribution.

When a locator starts up, it contacts each remote locator to exchange information about the
available locators and gateway receiver configurations in the remote cluster. In addition to sharing
information about its own cluster, a locator shares information that it has obtained from all other
connected clusters. Each time a new locator starts up or an existing locator shuts down, the
changed information is broadcast to other connected VMware GemFire clusters across the WAN.

See Discovery for Multi-Site Systems for more information.

How Communication Works

VMware GemFire uses a combination of TCP and UDP unicast and multicast for communication
between members. You can change the default behavior to optimize communication for your
system.

Client/server communication and gateway sender to gateway receiver communication uses TCP/IP
sockets. The server listens for client communication at a published address and the client
establishes the connection, sending its location. Similarly, the gateway receiver listens for gateway
sender communication and the connection is established between sites.

In peer systems, for general messaging and region operations distribution, VMware GemFire uses
either TCP or UDP unicast. The default is TCP. You can use TCP or UDP unicast for all
communications or you can use it as the default but then can target specific regions to use UDP
multicast for operations distribution. The best combination for your installation depends in large part
on your data use and event messaging.

VMware by Broadcom 207

VMware GemFire 9.10 Documentation

TCP

TCP (Transmission Control Protocol) provides reliable in-order delivery of the system messages.
TCP is more appropriate than UDP if the data is partitioned, if the cluster is small, or if network
loads are unpredictable. TCP is preferable to UDP unicast in smaller clusters because it implements
more reliable communications at the operating system level than UDP and its performance can be
substantially faster than UDP. As the size of the cluster increases, however, the relatively small
overhead of UDP makes it the better choice. TCP adds new threads and sockets to every member,
causing more overhead as the system grows.

Note: Even when VMware GemFire is configured to use UDP for messaging, VMware GemFire
uses a TCP connection when attempting to detect failed members. See Failure Detection and
Membership Views for more details. In addition, the TCP connection’s ping is not used for keep
alive purposes; it is only used to detect failed members. See TCP/IP KeepAlive Configuration for
TCP keep alive configuration.

UDP Unicast and Multicast

UDP (User Datagram Protocol) is a connectionless protocol which uses far fewer resources than
TCP. Adding another process to the cluster incurs little overhead for UDP messaging. UDP on its
own is not reliable however, and messages are restricted in size to 64k bytes or less, including
overhead for message headers. Large messages must be fragmented and transmitted as multiple
datagram messages. Consequently, UDP is slower than TCP in many cases and unusable in other
cases if network traffic is unpredictable or heavily congested.

UDP is used in VMware GemFire for both unicast and multicast messaging. VMware GemFire
implements retransmission protocols to ensure proper delivery of messages over UDP.

UDP Unicast

UDP unicast is the alternative to TCP for general messaging. UDP is more appropriate than TCP for
unicast messaging when there are a large number of processes in the cluster, the network is not
congested, cached objects are small, and applications can give the cache enough processing time
to read from the network. If you disable TCP, VMware GemFire uses UDP for unicast messaging.

For each member, VMware GemFire selects a unique port for UDP unicast communication. You
can restrict the range used for the selection by setting membership-port-range in the
gemfire.properties file. Example:

membership-port-range=1024-60000

Note: In addition to UDP port configuration, the membership-port-range property defines the TCP
port used for failure detection. See the Reference for a description of the VMware GemFire
property.

UDP Multicast

Your options for general messaging and for default region operations messaging is between TCP
and UDP unicast. You can choose to replace the default with UDP multicast for operations

VMware by Broadcom 208

VMware GemFire 9.10 Documentation

distribution of some or all of your regions. For every region where you want to use multicast, you
set an additional attribute on the region itself.

When multicast is enabled for a region, all processes in the cluster receive all events for the region.
Every member receives each message for the region and has to unpack it, schedule it for
processing, and then process it, all before discovering whether it is interested in the message.
Multicasting is suitable, therefore, for regions that are of general interest in the cluster, where most
or all members have the region defined and are interested in receiving most or all messages for the
region. Multicasting should not be used for regions that are of little general interest in the cluster.

Multicast is most appropriate when the majority of processes in a cluster are using the same cache
regions and need to get updates for them, such as when the processes define replicated regions or
have their regions configured to receive all events.

Even if you use multicast for a region, VMware GemFire will send unicast messages when
appropriate. If data is partitioned, multicast is not a useful option. Even with multicast enabled,
partitioned regions still use unicast for almost all purposes.

Using Bind Addresses

You use a bind address configuration to send network traffic through non-default network cards
and to distribute the load of network traffic for VMware GemFire across multiple cards. If no bind
address setting is found, VMware GemFire uses the host machine’s default address.

Host machines transmit data to the network and receive data from the network through one or
more network cards, also referred to as network interface cards (NIC) or LAN cards. A host with
more than one card is referred to as a multi-homed host. On multi-homed hosts, one network card
is used by default. You can use bind addresses to configure your VMware GemFire members to use
non-default network cards on a multi-homed host.

Note: When you specify a non-default card address for a process, all processes that connect to it
need to use the same address in their connection settings. For example, if you use bind addresses
for your server locators, you must use the same addresses to configure the server pools in your
clients.

Use IPv4 or IPv6 numeric address specifications for your bind address settings. For information on
these specifications, see Choosing Between IPv4 and IPv6. Do not use host names for your address
specifications. Host names resolve to default machine addresses.

Peer and Server Communication

You can configure peer, and server communication so that each communication type uses its own
address or types use the same address. If no setting is found for a specific communication type,
VMware GemFire uses the host machine’s default address.

Note: Bind addresses set through the APIs, like cacheServer and DistributedSystem, take
precedence over the settings discussed here. If your settings are not working, check to make sure
there are no bind address settings being done through API calls.

This table lists the settings used for peer and server communication, ordered by precedence. For
example, for server communication, VMware GemFire searches first for the cache-server bind

VMware by Broadcom 209

VMware GemFire 9.10 Documentation

address, then the gfsh start server server-bind-address setting, and so on until a setting is

found or all possibilities are exhausted.

Property Setting Ordered by Precedence Peer Server

cache.xml <cache-server> bind-address X

gfsh start server command-line --server- X
bind-address

gemfire.properties server-bind-address X

gemfire.properties bind-address X X

Gateway
Receiver

Syntax

<cache-server>bind-address=address

gfsh start server --server-bind-
address=address

server-bind-address=address

bind-address=address

For example, a member started with these configurations in its gemfire.properties and cache.xml
files will use two separate addresses for peer and server communication:

// gemfire.properties setting for peer communication

bind-address=192.0.2.0

//cache.xml settings

<cache>

// Server communication

<cache-server bind-address="192.0.2.1"

<region

Gateway Receiver Communication

If you are using multi-site (WAN) topology, you can also configure gateway receiver communication

(in addition to peer and server communication) so that each communication type uses its own

address.

This table lists the settings used for peer, server, and gateway receiver communication, ordered by
precedence. For example, for gateway receiver communication, VMware GemFire searches first
for a cache.xml <gateway-receiver> bind-address setting. If that is not set, VMware GemFire
searches for the gfsh start server server-bind-address setting, and so on until a setting is found

or all possibilities are exhausted.

Property Setting Ordered by Precedence Peer Server

cache.xml <gateway-receiver> bind-

address
cache.xml <cache-server> bind-address X
gfsh start server command-line --server- X

bind-address
gemfire.properties server-bind-address X

gemfire.properties bind-address X X

VMware by Broadcom

Gateway
Receiver

X

Syntax

<gateway-receiver>bind-
address=address

<cache-server>bind-address=address

gfsh start server --server-bind-
address=address

server-bind-address=address

bind-address=address

210

VMware GemFire 9.10 Documentation

For example, a member started with these configurations in its gemfire.properties and cache.xml
files will use three separate addresses for peer, server, and gateway receiver communication:

// gemfire.properties setting for peer communication
bind-address=192.0.2.0

//cache.xml settings
<cache>
// Gateway receiver configuration

<gateway-receiver start-port="1530" end-port="1551" bind-address="192.0.2.2"/>

// Server communication

<cache-server bind-address="192.0.2.1"

<region

Locator Communication

Set the locator bind address using one of these methods:

¢« On the gfsh command line, specify the bind address when you start the locator, the same
as you specify any other address:

gfsh>start locator --name=my locator --bind-address=ip-address-to-bind --port=p

ortNumber

« Inside a VMware GemFire application, take one of the following actions:

o Automatically start a co-located locator using the gemfire property start-locator,
and specifying the bind address for it in that property setting.

o Use org.apache.geode.distributed.LocatorLauncher API to start the locator inside
your code. Use the LocatorLauncher.Builder class to construct an instance of the
LocatorLauncher, Use the setBindaddress method to specify the IP address to use
and then use the start() method to start a Locator service embedded in your Java
application process.

If your locator uses a bind address, make sure every process that accesses the locator has the
address as well. For peer-to-peer access to the locator, use the locator’s bind address and the
locator’s port in your gemfire.properties locators list. For server discovery in a client/server
installation, use the locator’s bind address and the locator’s port in the locator list you provide to in
the client’s server pool configuration.

Choosing Between IPv4 and IPv6

By default, VMware GemFire uses Internet Protocol version 4 for VMware GemFire address
specifications. You can switch to Internet Protocol version 6 if all your machines support it. You
may lose performance, so you need to understand the costs of making the switch.

e |Pv4 uses a 32-bit address. IPv4 was the first protocol and is still the main one in use, but its
address space is expected to be exhausted within a few years.

VMware by Broadcom 21

VMware GemFire 9.10 Documentation

e |Pv6 uses a 128-bit address. IPv6 succeeds IPv4, and will provide a much greater number of
addresses.

Based on current testing with VMware GemFire , IPv4 is generally recommended. IPv6
connections tend to take longer to form and the communication tends to be slower. Not all
machines support IPv6 addressing. To use IPv6, all machines in your distributed system must
support it or you will have connectivity problems.

Note: Do not mix IPv4 and IPv6 addresses. Use one or the other, across the board.
IPv4 is the default version.
To use IPv6, set the Java property, java.net.preferIPv6Addresses, tO true.

These examples show the formats to use to specify addresses in VMware GemFire .

o |PVv4:
192.0.2.0
e |PVG:

2001:db8:85a3:0:0:8a2e:370:7334

Peer-to-Peer Configuration

Use peer-to-peer configuration to set member discovery and communication within a single
cluster.

« Configuring Peer-to-Peer Discovery
Peer members discover each other using one or more locators.
« Configuring Peer Communication

By default VMware GemFire uses TCP for communication between members of a single
cluster. You can modify this at the member and region levels.

« Organizing Peers into Logical Member Groups

In a peer-to-peer configuration, you can organize members into logical member groups and
use those groups to associate specific data or assign tasks to a pre-defined set of members.

Configuring Peer-to-Peer Discovery

Peer members discover each other using one or more locators.

The gemfire.properties file can list the locators:

locators=<locatorl-address>[<portl>],<locator2-address>[<port2>]

To run a standalone member, the gemfire.properties file disables using locators:

locators=
mcast-address=

mcast-port=0

VMware by Broadcom 212

VMware GemFire 9.10 Documentation

Note: Locator settings must be consistent throughout the cluster.

Configuring Peer Communication
By default VMware GemFire uses TCP for communication between members of a single distributed
system. You can modify this at the member and region levels.

Before you begin, you should have already determined the address and port settings for multicast,
including any bind addresses. See Topology and Communication General Concepts.

See the Reference.
1. Configure general messaging to use TCP or UDP unicast.

TCP is the default protocol for communication. To use it, just make sure you do not have it
disabled in gemfire.properties. Either have no entry for disable-tcp, or have this entry:

disable-tcp=false

To use UDP unicast for general messaging, add this entry to gemfire.properties:

disable-tcp=true
The disable-tcp setting has no effect on the use of TCP locators or the TCP connections
used to detect failed members.
2. Configure any regions you want to distribute using UDP multicast.

1. Configure UDP multicast for region messaging, set non-default multicast address
and port selections in gemfire.properties:

mcast-address=<address>

mcast-port=<port>

2. In cache.xml, enable multicast for each region that needs multicast messaging:

<region-attributes multicast-enabled="true"/>

Note: Improperly configured multicast can affect production systems. If you intend
to use multicast on a shared network, work with your network administrator and
system administrator from the planning stage of the project. In addition, you may
need to address interrelated setup and tuning issues at the VMware GemFire,
operating system, and network level.

Once your members establish their connections to each other, they will send distributed data and
messages according to your configuration.

Organizing Peers into Logical Member Groups

In a peer-to-peer configuration, you can organize members into logical member groups and use
those groups to associate specific data or assign tasks to a pre-defined set of members.

You can use logical member groups to deploy JAR applications across multiple members or to
execute functions across a member group.

VMware by Broadcom 213

VMware GemFire 9.10 Documentation

To add a peer to a member group, you can configure the following:

1.

Add the member group names to the gemfire.properties file for the member. For
example:

#gemfire.properties

groups=Portfolios,ManagementGroupl

A member can belong to more than one member group. If specifying multiple member
groups for a member, use a comma-separated list. Alternatively, if you are using the gfsh
command interface to start up the member, provide the group name or group names as a
parameter.

For example, to start up a server and associate it with member groups, you could type:

gfsh>start server --name=serverl \

--group=Portfolios,ManagementGroupl

For example, to start up a locator and associate it with member groups, you could type:

gfsh>start locator --name=locatorl \

--group=ManagementGroupl

Then you can use the member group names to perform tasks such as deploy applications or
execute functions.
For example, to deploy an application across a member group, you could type the following

in gfsh:

gfsh>deploy --jar=groupl_ functions.jar --group=ManagementGroupl

Client/Server Configuration

In the client/server architecture, a relatively small server farm manages the cached data of and
access to the same data for many client applications. Clients can update and access data efficiently,
leaving the servers to manage data distribution to other clients and any synchronization with
outside data stores.

Standard Client/Server Deployment

In the most common client/server topology, a farm of cache servers provides caching
services to many clients. Cache servers have a homogeneous data store in data regions that
are replicated or partitioned across the server farm.

How Server Discovery Works

VMware GemFire locators provide reliable and flexible server discovery services for your
clients. You can use all servers for all client requests, or group servers according to function,
with the locators directing each client request to the right group of servers.

How Client/Server Connections Work

The server pools in your VMware GemFire client processes manage all client connection
requests to the server tier. To make the best use of the pool functionality, you should

VMware by Broadcom

214

VMware GemFire 9.10 Documentation

understand how the pool manages the server connections.
Configuring a Client/Server System

Configure your server and client processes and data regions to run your client/server
system.

Organizing Servers Into Logical Member Groups

In a client/server configuration, by putting servers into logical member groups, you can
control which servers your clients use and target specific servers for specific data or tasks.
You can configure servers to manage different data sets or to direct specific client traffic to
a subset of servers, such as those directly connected to a back-end database.

Client/Server Example Configurations

For easy configuration, you can start with these example client/server configurations and
modify for your systems.

Fine-Tuning Your Client/Server Configuration

You can fine-tune your client/server system with server load-balancing. For example, you
can configure how often the servers check their load with the cache server 10ad-poll-
interval property, or configure your own server load metrics by implementing the
org.apache.geode.cache.server package.

Standard Client/Server Deployment

In the most common client/server topology, a farm of cache servers provides caching services to
many clients. Cache servers have a homogeneous data store in data regions that are replicated or
partitioned across the server farm.

The client/server data flow proceeds as follows:

Cache servers send their address and load information to the server locator, if locators are
used.

If locators are used, clients request server connection information from the locator. The
locator responds with the address of the least-loaded server.

The client pool checks its connections periodically for proper server load balancing. The
pool rebalances as needed.

Clients can subscribe to events at startup. Events are streamed automatically from the
servers to client listeners and into the client cache.

Client data updates and data requests that the client cache does not fulfill are forwarded
automatically to the servers.

VMware by Broadcom

215

VMware GemFire 9.10 Documentation

Server Farm

-
-
ﬁ Server
Data

=~ - send address and load information to locator
~
'
. send,
receive server .
receive [Locator]
events
cachedata
/V
/ . .
p - request server information from locator,

locator responds with least loaded server

Cache

Client

Cache
Clients

How Server Discovery Works

VMware GemFire locators provide reliable and flexible server discovery services for your clients.
You can use all servers for all client requests, or group servers according to function, with the
locators directing each client request to the right group of servers.

By default, VMware GemFire clients and servers discover each other on a predefined port (40404)
on the localhost. This works, but is not typically the way you would deploy a client/server
configuration. The recommended solution is to use one or more dedicated locators. A locator
provides both discovery and load balancing services. With server locators, clients are configured
with a locator list and locators maintain a dynamic server list. The locator listens at an address and
port for connecting clients and gives the clients server information. The clients are configured with
locator information and have no configuration specific to the servers.

Basic Configuration

In this figure, only one locator is shown, but the recommended configuration uses multiple locators
for high availability.

VMware by Broadcom 216

VMware GemFire 9.10 Documentation

B e N
Server #1 Server #2
listening on listening on
10.80.100.1 : 10.80.100.2 :
40404 40404
[Cache Data Cache Data]

\ send address and load info /

Locator

listening on lucy : 41111

©

request server use 10.80.100.2/
connection 40404

A

client/server
communication

locator at
lucy : 41111

Cache

Client

The locator and servers have the same peer discovery configured in their gemfire.properties:

locators=lucy[41111]

The servers, run on their respective hosts, have this cache-server configuration in their cache.xml:

<cache-server port="40404"

The client’s cache.xml pool configuration and region-attributes:

<pool name="PoolA" ...
<locator host="lucy" port="41111">

<region ...

<region-attributes pool-name="PoolA" ...

Using Member Groups

You can control which servers are used with named member groups. Do this if you want your
servers to manage different data sets or to direct specific client traffic to a subset of servers, such
as those directly connected to a back-end database.

To split data management between servers, configure some servers to host one set of data regions
and some to host another set. Assign the servers to two separate member groups. Then, define
two separate server pools on the client side and assign the pools to the proper corresponding client
regions.

VMware by Broadcom 217

VMware GemFire 9.10 Documentation

In this figure, the client use of the regions is also split, but you could have both pools and both

regions defined in all of your clients.

p
Server #1 Server #2
listening on listening on
10.80.100.1 : 10.80.100.2 :
40404 40404
group: Portfolios group: Products
Portfolios Products
N v N J
Locator
listening on lucy : 41111
Portfolios: 10.80.100.1 : 40404
Products: 10.80.100.2 : 40404
N J
—<connection pool)— —connection pool)—

locator at lucy : 41111
server-group: Portfolios

locator at lucy : 41111
server-group: Products

Products

Client #2

Portfolios

Client #1

This is the gemfire.properties definition for Server 1:

#gemfire.properties

groups=Portfolios

And the pool declaration for Client 1:

<pool name="PortfolioPool" server-group="Portfolios"...
<locator host="lucy" port="41111">

How Client/Server Connections Work

The server pools in your VMware GemFire client processes manage all client connection requests
to the server tier. To make the best use of the pool functionality, you should understand how the

pool manages the server connections.

Client/server communication is done in two distinct ways. Each kind of communication uses a

different type of connection for maximum performance and availability.

Pool connections. The pool connection is used to send individual operations to the server
to update cached data, to satisfy a local cache miss, or to run an ad hoc query. Each pool
connection goes to a host/port location where a server is listening. The server responds to
the request on the same connection. Generally, client threads use a pool connection for an
individual operation and then return the connection to the pool for reuse, but you can
configure to have connections owned by threads. This figure shows pool connections for

VMware by Broadcom

218

VMware GemFire 9.10 Documentation

one client and one server. At any time, a pool may have from zero to many pool
connections to any of the servers.

Server

(Cache)
Data

A

\4

requests to | listener for clients |
other servers

client
server
resoses
requests from

other clients

client threads use pool
connection forcache
operations

Client

e Subscription connections. The subscription connection is used to stream cache events
from the server to the client. To use this, set the client attribute subscription-enabled to
true. The server establishes a queue to asynchronously send subscription events and the
pool establishes a subscription connection to handle the incoming messages. The events
sent depend on how the client subscribes.

e B
Server
[Cache events j
subscription
queues
| | | | | connections to
q ’ , clients)
/ / [] 111
events to subscription .

other clients

used forupdates to cache and
forsending events to listeners

Client

How the Pool Chooses a Server Connection

VMware by Broadcom 219

VMware GemFire 9.10 Documentation

The pool gets server connection information from the server locators or, alternately, from the static
server list.

e« Server Locators. Server locators maintain information about which servers are available
and which has the least load. New connections are sent to the least loaded servers. The
pool requests server information from a locator when it needs a new connection. The pool
randomly chooses the locator to use and the pool sticks with a locator until the connection
fails.

o Static Server List. If you use a static server list, the pool shuffles it once at startup, to
provide randomness between clients with the same list configuration, and then runs
through the list round robin connecting as needed to the next server in the list. There is no
load balancing or dynamic server discovery with the static server list.

How the Pool Connects to a Server

When a pool needs a new connection, it goes through these steps until either it successfully
establishes a connection, it has exhausted all available servers, or the free-connection-timeout is
reached.

1. Requests server connection information from the locator or retrieves the next server from
the static server list.

2. Sends a connection request to the server.

If the pool fails to connect while creating a subscription connection or provisioning the pool to
reach the min-connections setting, it logs a fine level message and retries after the time indicated

by ping-interval.

If an application thread calls an operation that needs a connection and the pool can’t create it, the
operation returns a NoAvailableServersException.

How the Pool Manages Pool Connections

Each pool instance in your client maintains its own connection pool. The pool responds as
efficiently as possible to connection loss and requests for new connections, opening new
connections as needed. When you use a pool with the server locator, the pool can quickly respond
to changes in server availability, adding new servers and disconnecting from unhealthy or dead
servers with little or no impact on your client threads. Static server lists require more close
attention as the client pool is only able to connect to servers at the locations specified in the list.

The pool adds a new pool connection when one of the following happens:
e The number of open connections is less than the Pool’s min-connections setting.

« A thread needs a connection, all open connections are in use, and adding another
connection would not take the open connection count over the pool’s max-connections
setting. If the max-connections setting has been reached, the thread blocks until a
connection becomes available.

The pool closes a pool connection when one of the following occurs:

e« The client receives a connectivity exception from the server.

VMware by Broadcom

220

VMware GemFire 9.10 Documentation

e The server doesn’t respond to a direct request or ping within the client’s configured read-
timeout period. In this case, the pool removes all connections to that server.

e The number of pool connections exceeds the pool’s min-connections setting and the client
doesn’t send any requests over the connection for the idle-timeout period.

When it closes a connection that a thread is using, the pool switches the thread to another server
connection, opening a new one if needed.

How the Pool Manages Subscription Connections

The pool’s subscription connection is established in the same way as the pool connections, by
requesting server information from the locator and then sending a request to the server, or, if you
are using a static server list, by connecting to the next server in the list.

The server sends ping messages once per second by a task scheduled in a timer. You can adjust
the interval with the system property gemfire.serverToClientPingPeriod, specified in milliseconds.
The server sends its ping-interval setting to the client. The client then uses this and a multiplier to
establish a read-timeout in the cache.

You can set the client property subscription-timeout-multiplier to enable timeout of the
subscription feed with failover to another server.

Value options include:
« A value of zero (the default) deactivates timeouts.

e« A value of one or more times out the server connection after the specified number of ping
intervals have elapsed. A value of one is not recommended.

How the Pool Conditions Server Load

When locators are used, the pool periodically conditions its pool connections. Each connection has
an internal lifetime counter. When the counter reaches the configured 1oad-conditioning-
interval, the pool checks with the locator to see if the connection is using the least loaded server.
If not, the pool establishes a new connection to the least loaded server, silently puts it in place of
the old connection, and closes the old connection. In either case, when the operation completes,
the counter starts at zero. Conditioning happens behind the scenes and does not affect your
application’s connection use. This automatic conditioning allows very efficient upscaling of your
server pool. It is also useful following planned and unplanned server outages, during which time the
entire client load will have been placed on a subset of the normal set of servers.

Configuring a Client/Server System

Configure your server and client processes and data regions to run your client/server system.
Prerequisites

« Configure your server system using locators for member discovery. See Configuring Peer-
to-Peer Discovery and Managing a Peer or Server Cache.

« Configure your clients as standalone applications. See Managing a Client Cache.

« Be familiar with cache region configuration. See Data Regions.

VMware by Broadcom

221

VMware GemFire 9.10 Documentation

« Be familiar with server and client configuration properties. See cache.xml.
Procedure
1. Configure servers to listen for clients by completing one or both of the following tasks.

o Configure each application server as a server by specifying the <cache-server>
element in the application’s cache.xml and optionally specifying a non-default port
to listen on for client connections.

For example:

<cache-server port="40404" ... />

o Optional. Configure each cacheserver process with a non-default port to listen on
for client connections.

For example:

prompt> cacheserver start -port="44454"

2. Configure clients to connect to servers. In the client cache.xml, use the server system’s
locator list to configure your client server pools and configure your client regions to use the
pools. For example:

<client-cache>
<pool name="publisher" subscription-enabled="true">
<locator host="lucy" port="41111"/>
<locator host="lucy" port="41111"/>
</pool>

<region name="clientRegion"

<region-attributes pool-name="publisher"

You do not need to provide the complete list of locators to the clients at startup, but you
should provide as complete a list as possible. The locators maintain a dynamic list of locators
and servers and provide the information to the clients as needed.

3. Configure the server data regions for client/server work, following these guidelines. These
do not need to be performed in this order. 1.

Configure your server regions as partitioned or replicated, to provide a cohere
nt cache view of server data to all clients.

Note:

If you do not configure your server regions as partitioned or replicated, you c
an get unexpected results with calls that check server region contents, such as
‘keySetOnServer and ‘containsKeyOnServer . You might get only partial results,
and you might also get inconsistent responses from two consecutive calls. These
results occur because the servers report only on their local cache content and,
without partitioned or replicated regions, they might not have a complete view

of the data in their local caches.

1. When you define your replicated server regions, use any of the REPLICATE
RegionShortcut settings except for REPLICATE PROXY. Replicated server regions
must have distributed-ack Or global scope, and every server that defines the

VMware by Broadcom 222

VMware GemFire 9.10 Documentation

region must store data. The region shortcuts use distributed-ack scope and all
non-proxy settings store data. 3.

When you define your partitioned server regions, use the PARTITION RegionShortcut
options. You can have local data storage in some servers and no local storage in
others.

When you start the server and client systems, the client regions will use the server regions for
cache misses, event subscriptions, querying, and other caching activities.

What to do next

Configure your clients to use the cache and to subscribe to events from the servers as needed by
your application. See Configuring Client/Server Event Messaging.

Organizing Servers Into Logical Member Groups

In a client/server configuration, by putting servers into logical member groups, you can control
which servers your clients use and target specific servers for specific data or tasks. You can
configure servers to manage different data sets or to direct specific client traffic to a subset of
servers, such as those directly connected to a back-end database.

You can also define member groups to deploy JARs in parallel or to perform administrative
commands across a member group.

To add servers to a member group, you can configure the following:

1. Add the member group names to the gemfire.properties file for the server. For example:

groups=Portfolios,ManagementGroupl

A server can belong to more than one member group. If specifying multiple group
membership for the server, use a comma-separated list. Alternatively, if you are using the
gfsh command interface to start up the server, provide a group name as a parameter:

gfsh>start server --name=serverl \

--group=Portfolios,ManagementGroupl

2. To configure a client to connect to a specific member group, modify the client’s cache.xml
file to define a distinct pool for each server-group and assign the pools to the
corresponding client regions:

<pool name="PortfolioPool" server-group="Portfolios"

<locator host="lucy" port="41111">
</pool>

<region name="clientRegion"

<region-attributes pool-name="PortfolioPool"

Client/Server Example Configurations

For easy configuration, you can start with these example client/server configurations and modify for
your systems.

VMware by Broadcom 223

VMware GemFire 9.10 Documentation

Examples of Standard Client/Server Configuration

Generally, locators and servers use the same properties file, which lists locators as the discovery
mechanism for peer members and for connecting clients. For example:

mcast-port=0
locators=localhost[41111]

On the machine where you wish to run the locator (in this example, ‘localhost’), you can start the
locator from a gfsh prompt:

gfsh>start locator --name=locator_ name --port=41111

Or directly from a command line:

prompt# gfsh start locator --name=locator name --port=41111
Specify a name for the locator that you wish to start on the localhost. If you do not specify the
member name, gfsh will automatically pick a random name. This is useful for automation.
The server’s cache.xml declares a cache-server element, which identifies the JVM as a server in

the cluster.

<cache>
<cache-server port="40404" ... />

<region
Once the locator and server are started, the locator tracks the server as a peer in its cluster and as
a server listening for client connections at port 40404.

You can also configure a cache server using the gfsh command-line utility. For example:

gfsh>start server --name=serverl --server-port=40404

See start server.

The client’s cache.xml <client-cache> declaration automatically configures it as a standalone
VMware GemFire application.

The client’s cache.xml:

« Declares a single connection pool with the locator as the reference for obtaining server
connection information.

e Creates cs_region with the client region shortcut configuration, cacuIng proOxy. This
configures it as a client region that stores data in the client cache.

There is only one pool defined for the client, so the pool is automatically assigned to all client
regions.

<client-cache>
<pool name="publisher" subscription-enabled="true">
<locator host="localhost" port="41111"/>
</pool>
<region name="cs_region" refid="CACHING_ PROXY">

VMware by Broadcom 224

VMware GemFire 9.10 Documentation

</region>

</client-cache>

With this, the client is configured to go to the locator for the server connection location. Then any
cache miss or put in the client region is automatically forwarded to the server.

Example—Standalone Publisher Client, Client Pool, and
Region

The following APl example walks through the creation of a standalone publisher client and the
client pool and region.

public static ClientCacheFactory connectStandalone (String name) {

return new ClientCacheFactory ()

.set("log-file", name + ".log")
.set("statistic-archive-file", name + ".gfs")
.set("statistic-sampling-enabled", "true")

.set ("cache-xml-file"™, "")
.addPoolLocator ("localhost", LOCATOR_ PORT) ;

private static void runPublisher () {
ClientCacheFactory ccf = connectStandalone ("publisher");
ClientCache cache = ccf.create();
ClientRegionFactory<String,String> regionFactory =
cache.createClientRegionFactory (PROXY) ;

Region<String, String> region = regionFactory.create ("DATA");
//... do work

cache.close () ;

Example—Standalone Subscriber Client

This APl example creates a standalone subscriber client using the same connectStandalone method
as the previous example.

private static void runSubscriber () throws InterruptedException {
ClientCacheFactory ccf = connectStandalone ("subscriber");
ccf.setPoolSubscriptionEnabled (true) ;
ClientCache cache = ccf.create();
ClientRegionFactory<String, String> regionFactory =
cache.createClientRegionFactory (PROXY) ;
Region<String, String> region = regionFactory
.addCachelistener (new SubscriberListener ()
.create ("DATA") ;
region.registerInterestRegex (".*", // everything
InterestResultPolicy.NONE,
false/*isDurable*/) ;
SubscriberListener myListener =
(SubscriberListener)region.getAttributes () .getCachelisteners() [0];
System.out.println("waiting for publisher to do " + NUM PUTS + " puts...");
myListener.waitForPuts (NUM_PUTS) ;

System.out.println("done waiting for publisher.");

VMware by Broadcom

225

VMware GemFire 9.10 Documentation

cache.close () ;

Example of a Static Server List in Client/Server
Configuration

You can specify a static server list instead of a locator list in the client configuration. With this
configuration, the client’s server information does not change for the life of the client member. You
do not get dynamic server discovery, server load conditioning, or the option of logical server
grouping. This model is useful for very small deployments, such as test systems, where your server
pool is stable. It avoids the administrative overhead of running locators.

This model is also suitable if you must use hardware load balancers. You can put the addresses of
the load balancers in your server list and allow the balancers to redirect your client connections.

The client’s server specification must match the addresses where the servers are listening. In the
server cache configuration file, here are the pertinent settings.

<cache>
<cache-server port="40404" ... />
<region .

The client’s cache.xnl file declares a connection pool with the server explicitly listed and names the
pool in the attributes for the client region. This XML file uses a region attributes template to
initialize the region attributes configuration.

<client-cache>
<pool name="publisher" subscription-enabled="true">
<server host="localhost" port="40404"/>
</pool>
<region name="cs_region" refid="CACHING_PROXY">
</region>

</client-cache>

Fine-Tuning Your Client/Server Configuration

You can fine-tune your client/server system with server load-balancing. For example, you can
configure how often the servers check their load with the cache server 1oad-poll-interval
property, or configure your own server load metrics by implementing the
org.apache.geode.cache.server package.

How Server Load Conditioning Works

When the client pool requests connection information from the server locator, the locator returns
the least-loaded server for the connection type. The pool uses this “best server” response to open
new connections and to condition (rebalance) its existing pool connections.

e« The locator tracks server availability and load according to information that the servers
provide. Each server probes its load metrics periodically and, when it detects a change,
sends new information to the locator. This information consists of current load levels and

VMware by Broadcom 226

VMware GemFire 9.10 Documentation

estimates of how much load would be added for each additional connection. The locator
compares the load information from its servers to determine which servers can best handle
more connections.

e« You can configure how often the servers check their load with the cache server’s 1oad-
poll-interval. You might want to set it lower if you find your server loads fluctuating too
much during normal operation. The lower you set it, however, the more overhead your load
balancing will use.

« Between updates from the servers, the locators estimate which server is the least loaded
by using the server estimates for the cost of additional connections. For example, if the
current pool connection load for a server’s connections is 0.4 and each additional
connection would add 0.1 to its load, the locator can estimate that adding two new pool
connections will take the server’s pool connection load to 0.6.

e Locators do not share connection information among themselves. These estimates provide
rough guidance to the individual locators for the periods between updates from the servers.

VMware GempFire provides a default utility that probes the server and its resource usage to give
load information to the locators. The default probe returns the following load metrics: - The pool
connection load is the number of connections to the server divided by the server’s max-
connections setting. This means that servers with a lower max-connections setting receives fewer
connections than servers with a higher setting. The load is a number between O and 1, where O
means there are no connections, and 1 means the server is at max-connections. The load estimate
for each additional pool connection is 1/max-connections. - The subscription connection load is the
number of subscription queues hosted by this server. The load estimate for each additional
subscription connection is 1.

To use your own server load metrics instead of the default, implement the serverLoadProbe Or
ServerLoadProbeAdapter and related interfaces and classes in the org.apache.geode.cache.server
package. The load for each server is weighed relative to the loads reported by other servers in the
system.

Multi-site (WAN) Configuration
Use the multi-site configuration to scale horizontally between disparate, loosely-coupled clusters. A
wide-area network (WAN) is the main use case for the multi-site topology.

¢« How Multi-site (WAN) Systems Work

The VMware GemFire multi-site implementation connects disparate clusters. The systems
act as one when they are coupled, and they act as independent systems when

communication between sites fails. The coupling is tolerant of weak or slow links between
cluster sites. A wide-area network (WAN) is the main use case for the multi-site topology.

o Multi-site (WAN) Topologies

To configure your multi-site topology, you should understand the recommended topologies
and the topologies to avoid.

« Configuring a Multi-site (WAN) System

Plan and configure your multi-site topology, and configure the regions that will be shared
between systems.

VMware by Broadcom

227

VMware GemFire 9.10 Documentation

« Filtering Events for Multi-Site (WAN) Distribution

You can optionally create gateway sender and/or gateway receiver filters to control which
events are queued and distributed to a remote site, or to modify the data stream that is
transmitted between VMware GemFire sites.

¢ Resolving Conflicting Events

You can optionally create a GatewayConflictResolver cache plug-in to decide whether a
potentially conflicting event that was delivered from another site should be applied to the
local cache.

How Multi-site (WAN) Systems Work

The VMware GemFire multi-site implementation connects distinct clusters. The clusters act as one
distributed system when they are coupled, and they act as independent systems when
communication between sites fails. The coupling is tolerant of weak or slow links between cluster
sites. A wide-area network (WAN) is the main use case for the multi-site topology.

« Overview of Multi-site Caching

A multi-site installation consists of two or more clusters that are loosely coupled. Each site
manages its own cluster, but region data is distributed to remote sites using one or more
logical connections.

« Consistency for WAN Updates

VMware GemFire ensures that all copies of a region eventually reach a consistent state on
all members and clients that host the region, including VMware GemFire members that
distribute region events across a WAN.

« Discovery for Multi-Site Systems

Each VMware GemFire cluster in a WAN configuration uses locators to discover remote
clusters as well as local members.

« Gateway Senders

A VMware GemFire cluster uses a gateway sender to distribute region events to another,
remote VMware GempFire cluster. You can create multiple gateway sender configurations
to distribute region events to multiple remote clusters, and/or to distribute region events
concurrently to another remote cluster.

« Gateway Receivers

A gateway receiver configures a physical connection for receiving region events from
gateway senders in one or more remote VMware GemFire clusters.

Multi-site (WAN) Topologies
To configure your multi-site topology, you should understand the recommended topologies and
the topologies to avoid.

This section describes VMware GemFire’s support for various topologies. Depending on your
application needs, there may be several topologies that work. These are considerations to keep in
mind:

VMware by Broadcom 228

VMware GemFire 9.10 Documentation

« When a VMware GemFire site receives a message from a gateway sender, it forwards it to
the other sites it knows about, excluding those sites that it knows have already seen the
message. Each message contains the initial sender’s ID and the ID of each of the sites the
initial sender sent to, so no site forwards to those sites. However, messages do not pick up
the ID of the sites they pass through, so it is possible in certain topologies for more than
one copy of a message to be sent to one site.

« In some configurations, the loss of one site affects how other sites communicate with one
another.

Fully Connected Mesh Topology

A fully connected mesh network topology is one in which all sites know about each other. This is a
robust configuration, as any one of the sites can go down without disrupting communication
between the other sites. A fully connected mesh topology also guarantees that no site receives
multiple copies of the same message.

A fully connected mesh with three sites is shown in this figure. In this scenario, if site 1 sends an
update to site 2, site 2 forwards to site 3. If site 1 sends an update to sites 2 and 3, neither forwards
to the other. This is likewise true for any other initiating site. If any site is removed, the remaining
two are still fully connected.

v]

Site 1 " Site 2 | — Site 3
us —] EU «—— ASIA

L

Ring Topology

A ring topology is one in which each site forwards information to one other site, and the sites are
connected in a circular manner. This figure shows a ring with three sites. In this topology, if site 1
sends updates to site 2, site 2 forwards the updates to site 3. No updates are forwarded to the
original sender, so site 3 does not send the updates back to site 1.

v]

Sitea1 Site 2 Site 3
us ’ EU ' ’ ASIA

A ring topology guarantees that every site receives one copy of each message sent by any site. In a
ring, every site must stay up to maintain the connection. The failure of any site breaks the ability for
updates to reach all sites. If site 2 went down, for example, site 3 could send to site 1, but site 1
could not send to site 3.

Hybrid Multi-site Topology

There are numerous hybrid network topologies. Some of the sites are fully connected, while others
form a ring.

VMware by Broadcom 229

VMware GemFire 9.10 Documentation

The following figure shows a hybrid topology that forms a ring, with an extra connection that fully
connects sites 1 and 3.

v]

Site1 Site 2 Site 3
us EU ASIA

L

With this hybrid topology, if site 2 went down, it would not affect communication between sites 1
and 3. If site 3 went down, however, site 2 would not be able to send to site 1.

A second example hybrid topology is shown in the figure below. In this tree topology with site 1 as
the root of the tree, sites 2 and 3 do not communicate with each another. This topology works for
an application in which site 1 is a producer and the consumers (sites 2 and 3) have nothing to gain
from being connected to each other. This topology also guarantees that no site receives the same
update twice.

v]

Site 1 — Site 2 Site 3
us f—— EU ASIA

L

Unsupported Topologies

Topologies in which the same update may be delivered twice to a particular site do not work and
are unsupported.

The DAG topology shown in this figure is an example of an unsupported technology. Site 4 will
receive more than one copy of the same message when site 1 sends a message to sites 2 and 3,
and sites 2 and 3 each forward the message to site 4.

Site 2
EU-W
Sitea1 /' \\‘ Site 4
us ASIA
\\A Site 3 /
EU-E

Configuring a Multi-site (WAN) System

Plan and configure your multi-site topology, and configure the regions that will be shared between
systems.

Prerequisites

Before you start, you should understand how to configure membership and communication in
peer-to-peer systems using locators. See Configuring Peer-to-Peer Discovery and Configuring
Peer Communication.

VMware by Broadcom 230

VMware GemFire 9.10 Documentation

WAN deployments increase the messaging demands on a VMware GemFire system. To avoid
hangs related to WAN messaging, always use the default setting of conserve-sockets=false for
VMware GemFire members that participate in a WAN deployment. See Configuring Sockets in
Multi-Site (WAN) Deployments and Making Sure You Have Enough Sockets.

Main Steps

Use the following steps to configure a multi-site system:

1. Plan the topology of your multi-site system. See Multi-site (WAN) Topologies for a
description of different multi-site topologies.

2. Configure membership and communication for each cluster in your multi-site system. You
must use locators for peer discovery in a WAN configuration. See Configuring Peer-to-Peer
Discovery. Start each cluster using a unique distributed-system-id and identify remote
clusters using remote-locators. For example:

mcast-port=0

locators=<locatorl-address>[<portl>],<locator2-address>[<port2>]
distributed-system-id=1
remote-locators=<remote-locator-addrl>[<portl>],<remote-locator-addr2>[<port2>]

3. Configure the gateway senders that you will use to distribute region events to remote
systems. See Configure Gateway Senders.

4. Create the data regions that you want to participate in the multi-site system, specifying the
gateway sender(s) that each region should use for WAN distribution. Configure the same
regions in the target clusters to apply the distributed events. See Create Data Regions for
Multi-site Communication.

5. Configure gateway receivers in each VMware GemFire cluster that will receive region
events from another cluster. See Configure Gateway Receivers.

6. Start cluster member processes in the correct order (locators first, followed by data nodes)
to ensure efficient discovery of WAN resources. See Starting Up and Shutting Down Your
System.

7. (Optional.) Deploy custom conflict resolvers to handle resolve potential conflicts that are
detected when applying events from over a WAN. See Resolving Conflicting Events.

8. (Optional.) Deploy WAN filters to determine which events are distributed over the WAN, or
to modify events as they are distributed over the WAN. See Filtering Events for Multi-Site
(WAN) Distribution.

9. (Optional.) Configure persistence, conflation, and/or dispatcher threads for gateway sender
queues using the instructions in Configuring Multi-Site (WAN) Event Queues.

Configure Gateway Senders

Each gateway sender configuration includes:
« A unigue ID for the gateway sender configuration.

e« The distributed system ID of the remote site to which the sender propagates region events.

VMware by Broadcom 231

VMware GemFire 9.10 Documentation

« A property that specifies whether the gateway sender is a serial gateway sender or a
parallel gateway sender.

« Optional properties that configure the gateway sender queue. These queue properties
determine features such the amount of memory used by the queue, whether the queue is

persisted to disk, and how one or more gateway sender threads dispatch events from the
queue.

Note: To configure a gateway sender that uses gfsh to create the cache.xml configurations
described below, as well as other options, see create gateway-sender.

See WAN Configuration for more information about individual configuration properties.

1. For each VMware GemFire system, choose the members that will host a gateway sender
configuration and distribute region events to remote sites:

o You must deploy a parallel gateway sender configuration on each VMware GemFire
member that hosts a region that uses the sender. Regions using the same parallel
gateway sender ID must be colocated.

o You may choose to deploy a serial gateway sender configuration on one or more
VMware GemFire members in order to provide high availability. However, only one

instance of a given serial gateway sender configuration distributes region events at
any given time.

2. Configure each gateway sender on a VMware GemFire member using gfsh, cache.xml or
Java API:

o gfsh configuration command

gfsh>create gateway-sender --id="sender2" --parallel=true --remote-distri
buted-system-id="2"

gfsh>create gateway-sender --id="sender3" --parallel=true --remote-distri
buted-system-1id="3"

o cache.xml configuration

These example cache.xml entries configure two parallel gateway senders to
distribute region events to two remote VMware GemFire clusters (clusters “2” and
U371):

<cache>
<gateway-sender id="sender2" parallel="true"
remote-distributed-system-id="2"/>
<gateway-sender id="sender3" parallel="true"

remote-distributed-system-id="3"/>

</cache>

o Java configuration

This example code shows how to configure a parallel gateway sender using the API:

// Create or obtain the cache

Cache cache = new CacheFactory () .create();

VMware by Broadcom 232

VMware GemFire 9.10 Documentation

// Configure and create the gateway sender

GatewaySenderFactory gateway = cache.createGatewaySenderFactory ()
gateway.setParallel (true);

GatewaySender sender = gateway.create ("sender2", "2");

sender.start ();

3. Depending on your applications, you may need to configure additional features in each
gateway sender. Things you need to consider are:

o The maximum amount of memory each gateway sender queue can use. When the
queue exceeds the configured amount of memory, the contents of the queue
overflow to disk. For example:

gfsh>create gateway-sender --id=sender2 --parallel=true --remote-distribu
ted-system-1id=2 --maximum-gqueue-memory=150
In cache.xml:

<gateway-sender id="sender2" parallel="true"
remote-distributed-system-id="2"

maximum-queue-memory="150"/>

o Whether to enable disk persistence, and whether to use a named disk store for
persistence or for overflowing queue events. See Persisting an Event Queue. For
example:

gfsh>create gateway-sender --id=sender2 --parallel=true --remote-distribu
ted-system-id=2 \
--maximum-queue-memory=150 --enable-persistence=true --disk-store-name=cl

uster2Store

In cache.xml:

<gateway-sender id="sender2" parallel="true"
remote-distributed-system-id="2"
enable-persistence="true" disk-store-name="cluster2Store"

maximum-queue-memory="150"/>

o The number of dispatcher threads to use for processing events from each each
gateway queue. The dispatcher-threads attribute of the gateway sender specifies
the number of threads that process the queue (default of 5). For example:

gfsh>create gateway-sender --id=sender2 --parallel=true --remote-distribu
ted-system-id=2 \
--dispatcher-threads=2 --order-policy=partition

In cache.xml:

<gateway-sender id="sender2" parallel="false"
remote-distributed-system-id="2"
dispatcher-threads="2" order-policy="partition"/>

Note: When multiple dispatcher threads are configured for a serial queue, each
thread operates on its own copy of the gateway sender queue. Queue configuration

VMware by Broadcom 233

VMware GemFire 9.10 Documentation

attributes such as maximum-queue-memory are repeated for each dispatcher thread
that you configure.

See Configuring Dispatcher Threads and Order Policy for Event Distribution.

o For serial gateway senders (parallel=false) that use multiple dispatcher-threads,
also configure the ordering policy to use for dispatching the events. See Configuring
Dispatcher Threads and Order Policy for Event Distribution.

o Determine whether you should conflate events in the queue. See Conflating Events
in a Queue.

Note: The gateway sender configuration for a specific sender id must be identical on each VMware
GemFire member that hosts the gateway sender.

Create Data Regions for Multi-site Communication

When using a multi-site configuration, you choose which data regions to share between sites.
Because of the high cost of distributing data between disparate geographical locations, not all
changes are passed between sites.

Note these important restrictions on the regions:

o« Replicated regions cannot use a parallel gateway sender. Use a serial gateway sender
instead.

« In addition to configuring regions with gateway senders to distribute events, you must
configure the same regions in the target clusters to apply the distributed events. The region
name in the receiving cluster must exactly match the region name in the sending cluster.

« Regions using the same parallel gateway sender ID must be colocated.

« If any gateway sender configured for the region has the group-transaction-events flag set
to true, then the regions involved in transactions must all have the same gateway senders
configured with this flag set to true. This requires careful configuration of regions with
gateway senders according to the transactions expected in the system.

Example: Assuming the following scenario:
o Gateway-senders:
= senderl: group-transaction-events=true
s sender2: group-transaction-events=true
s sender3: group-transaction-events=true
= sender4: group-transaction-events=false
o Regions:

= regionl: gateway-sender-ids=senderl,sender2,sender4
type: partition
colocated-with: region2,region3

= region2: gateway-sender-ids=senderl,sender2
type: partition
colocated with: regionl,region3

VMware by Broadcom 234

VMware GemFire 9.10 Documentation

= region3: gateway-sender-ids=sender3
type: partition
colocated with: region1,region2

= region4: gateway-sender-ids=sender4
type: replicated

o Events for the same transaction will be guaranteed to be sent in the same batch
depending on the events involved in the transaction:

s For transactions containing events for region1 and region2, it will be
guaranteed that events for those transactions will be delivered in the same
batch by sender1 and sender2.

= For transactions containing events for regionl, region2 and region3, it will
NOT be guaranteed that events for those transactions will be delivered in
the same batch .

s For transactions containing events for region3, it will be guaranteed that
events for those transactions will be delivered in the same batch.

= For transactions containing events for region4, it will NOT be guaranteed
that events for those transactions will be delivered in the same batch.

After you define gateway senders, configure regions to use the gateway senders to distribute
region events.

« gfsh Configuration
gfsh>create region --name=customer --gateway-sender-id=sender2,sender3
or to modify an existing region:
gfsh>alter region --name=customer --gateway-sender-id=sender2, sender3

« cache.xml Configuration

Use the gateway-sender-ids region attribute to add gateway senders to a region. To assign
multiple gateway senders, use a comma-separated list. For example:

<region-attributes gateway-sender-ids="sender2,sender3">

</region-attributes>

« Java API Configuration

This example shows adding two gateway senders (configured in the earlier example) to a
partitioned region:

RegionFactory rf =

cache.createRegionFactory (RegionShortcut.PARTITION) ;
rf.addCachelistener (new LoggingCacheListener());
rf.addGatewaySenderId("sender2");
rf.addGatewaySenderId ("sender3") ;

custRegion = rf.create("customer");

VMware by Broadcom 235

VMware GemFire 9.10 Documentation

Note: When using the Java API, you must configure a parallel gateway sender before you
add its id to a region. This ensures that the sender distributes region events that were
persisted before new cache operations take place. If the gateway sender id does not exist
when you add it to a region, you receive an IllegalStateException.

Configure Gateway Receivers

Always configure a gateway receiver in each VMware GemFire cluster that will receive and apply
region events from another cluster.

A gateway receiver configuration can be applied to multiple VMware GemFire servers for load
balancing and high availability. However, each VMware GemFire member that hosts a gateway
receiver must also define all of the regions for which the receiver may receive an event. If a
gateway receiver receives an event for a region that the local member does not define, VMware
GemFire throws an exception. See Create Data Regions for Multi-site Communication.

Note: You can only host one gateway receiver per member.

A gateway receiver configuration specifies a range of possible port numbers on which to listen. The
VMware GempFire server picks an unused port number from the specified range to use for the
receiver process. You can use this functionality to easily deploy the same gateway receiver
configuration to multiple members.

You can optionally configure gateway receivers to provide a specific IP address or host name for
gateway sender connections. If you configure hostname-for-senders, locators will use the provided
host name or IP address when instructing gateway senders on how to connect to gateway
receivers. If you provide "" or null as the value, by default the gateway receiver’s bind-address will
be sent to clients.

In addition, you can configure gateway receivers to start automatically or, by setting manual-start
to true, to require a manual start. By default, gateway receivers start automatically.

Note: To configure a gateway receiver, you can use gfsh, cache.xml or Java API configurations as
described below. For more information on configuring gateway receivers in gfsh, see create
gateway-receiver.

« gfsh configuration command

gfsh>create gateway-receiver --start-port=1530 --end-port=1551 \

--hostname-for-senders=gatewayl.mycompany.com

« cache.xml Configuration

The following configuration defines a gateway receiver that listens on an unused port in the
range from 1530 to 1550:

<cache>
<gateway-receiver start-port="1530" end-port="1551"
hostname-for-senders="gatewayl.mycompany.com" />

</cache>

« Java API Configuration

VMware by Broadcom

236

VMware GemFire 9.10 Documentation

// Create or obtain the cache

Cache cache = new CacheFactory () .create();

// Configure and create the gateway receiver

GatewayReceiverFactory gateway = cache.createGatewayReceiverFactory() ;
gateway.setStartPort (1530) ;

gateway.setEndPort (1551) ;

gateway.setHostnameForSenders ("gatewayl.mycompany.com") ;

GatewayReceiver receiver = gateway.create();

Note: When using the Java API, you must create any region that might receive events from
a remote site before you create the gateway receiver. Otherwise, batches of events could
arrive from remote sites before the regions for those events have been created. If this
occurs, the local site will throw exceptions because the receiving region does not yet exist.
If you define regions in cache.xml, the correct startup order is handled automatically.

After starting new gateway receivers, you can execute the load-balance gateway-sender command
in gfsh so that a specific gateway sender will be able to rebalance its connections and connect new
remote gateway receivers. Invoking this command redistributes gateway sender connections more
evenly among all the gateway receivers.

Another option is to use the GatewaySender.rebalance Java API.
As an example, assume the following scenario:

1. Create 1receiver in site NY.

2. Create 4 senders in site LN.

3. Create 3 additional receiversin NY.

You can then execute the following in gfsh to see the effects of rebalancing:

gfsh -e "connect --locator=localhost[10331]" -e "list gateways"
(2) Executing - list gateways

GatewaySender Section

GatewaySender Id | Member | Remote Cluster Id | Type
Status | Queued Events | Receiver Location

———————————————— e)
____________________ | S

1n | mymac (ny-1:88641)<v2>:33491 | 2 | Parallel |
Running | O | mymac:5037

1n | mymac (ny-2:88705)<v3>:29329 | 2 | Parallel |
Running | O | mymac:5064

1n | mymac (ny-3:88715)<v4>:36808 | 2 | Parallel |
Running | O | mymac:5132

1n | mymac (ny-4:88724)<v5>:52993 | 2 | Parallel |
Running | O | mymac:5324

GatewayReceiver Section

Member | Port | Sender Count | Senders Connected

mymac (ny-1:88641)<v2>:33491 | 5057 | 24

["mymac (1ln-1:88651)<v2>:4827

VMware by Broadcom

237

VMware GemFire 9.10 Documentation

7", "mymac (1ln-4:88681)<v5>:42784"
43675"]

mymac (ny-2:88705)<v3>:29329
mymac (ny-3:88715)<v4>:36808
mymac (ny-4:88724)<v5>:52993

Execute the load-balance command:

gfsh -e "connect

Yy

"

(2) Executing -

188651
:88651
In-4:88681)<v5>:

() <v2>:
()
()
mymac (1n-4:88681)<v5>:
()
()
()
()

mymac
mymac <v2>:

mymac

In-3:88672
In-3:88672
1n-2:88662
1n-2:88662

mymac <v4>:

mymac <vd>:
mymac <v3>:

mymac <v3>:

Listing gateways in ny again shows the connections are spread much better among the receivers.

gfsh -e "connect

(2) Executing - list gateways
GatewaySender Section

GatewaySender Id |

5082
5371
5247

Result

OK

OK

OK

OK

Member

load-balance gateway-sender

, "mymac (1ln-2:

o

--locator=localhost[10441]"

--locator=localhost[10331]"

-e "load-balance gateway-sender

--id=ny

Message

88662)<v3>:12796"

I [
I 0]
I 0]

GatewaySender ny

GatewaySender ny

GatewaySender ny

GatewaySender ny

is rebalanced on

is rebalanced on

is rebalanced on

is rebalanced on

,"mymac (1ln-3:88672)<v4>:

==1El=m

member

member

member

member

-e "list gateways"...

36808

52993

Status | Queued Events | Receiver Location
________________ ‘ — o ——— e ———— o —
_______ ‘ ——— e I —— e
1n | mymac(ny-1:88641)<v2>:
Running | O | mymac:5037

1n | mymac (ny-2:88705)<v3>:
Running | O | mymac:5064

1n | mymac (ny-3:88715)<v4>:
Running | O | mymac:5132

1n | mymac (ny-4:88724)<v5>:
Running | O | mymac:5324

GatewayReceiver Section

mymac (ny-1:88641)<v2>:33491

7", "mymac (1ln-4:88681)<v5>:42784"
12796"]

mymac (ny-2:88705)<v3>:29329

7", "mymac (1ln-4:88681)<v5>:42784",

mymac (ny-3:88715)<v4>:36808

VMware by Broadcom

"mymac (1ln-3:88672)<v4>:43675"]

5057

5082

5371

Sender Count

9

4

4

Remote Cluster Id |

| Parallel |

| Parallel |

| Parallel |

| Parallel |

| Senders Connected

| ["mymac (1n-1:88651)<v2>:4827

,"mymac (1ln-3:88672)<v4>:43675"

,"mymac (1ln-2:88662) <v3>:

| ["mymac (1ln-1:88651)<v2>:4827

| ["mymac (1n-1:88651)<v2>:4827

238

VMware GemFire 9.10 Documentation

7", "mymac (1ln-4:88681)<v5>:42784", "mymac (1n-3:88672)<v4>:43675"]
mymac (ny-4:88724)<v5>:52993 | 5247 | 3 | ["mymac (1n-1:88651)<v2>:4827
7", "mymac (1ln-4:88681)<v5>:42784", "mymac (1n-3:88672)<v4>:43675"]

Running the load balance command in site In again produces even better balance.

Member | Port | Sender Count | Senders Connected

mymac (ny-1:88641)<v2>:33491 | 5057 | 7 | ["mymac (1n-1:88651)<v2>:4827
7", "mymac (1ln-4:88681)<v5>:42784","mymac (1n-2:88662)<v3>:12796", "mymac (1n-3:88672)<v4>:
43675"]

mymac (ny-2:88705) <v3>:29329 | 5082 | 3 | ["mymac (1ln-1:88651)<v2>:4827
7", "mymac (1ln-3:88672)<v4>:43675", "mymac (1ln-2:88662)<v3>:12796"
mymac (ny-3:88715)<v4>:36808 | 5371 | 5 | ["mymac (1ln-1:88651)<v2>:4827

7", "mymac (1ln-4:88681)<v5>:42784", "mymac (1n-2:88662)<v3>:12796", "mymac (1n-3:88672)<v4>:
43675"]
mymac (ny-4:88724)<v5>:52993 | 5247 | 6 | ["mymac (1ln-1:88651)<v2>:4827
7", "mymac (1ln-4:88681)<v5>:42784", "mymac (1ln-2:88662)<v3>:12796", "mymac (1ln-3:88672)<v4>:
43675"]

Configuring One IP Address and Port to Access All Gateway
Receivers in a Site

You may have a WAN deployment in which you do not want to expose the IP address and port of
every gateway receiver to other sites, but instead expose just one IP address and port for all
gateway receivers. This way, the internal topology of the site is hidden to other sites. This case is
quite common in cloud deployments, in which a reverse proxy/load balancer distributes incoming
requests to the site (in this case, replication requests) among the available servers (in this case,
gateway receivers).

VMware GemFire supports this configuration by means of a particular use of the hostname-for-
senders, start-port and end-port parameters of the gateway receiver.

In order to configure a WAN deployment that hides the gateway receivers behind the same IP
address and port,

o All the gateway receivers must have the same value for the hostname-for-senders
parameter (the hostname or IP address to be used by clients to access them)

o All gateway receivers must have the same value in the start-port and end-port
parameters (the ports to be used by clients to access them).

The following example shows a deployment in which all gateway receivers of a site are accessed via
the “gatewayl.mycompany.com” hostname and port “1971”; every gateway receiver in the site
must be configured as follows:

gfsh> create gateway-receiver --hostname-for-senders="gatewayl.mycompany.com" --start-
port=1971 --end-port=1971

The following output shows how the receiver side would look like after this configuration if four
gateway receivers were configured:

VMware by Broadcom 239

VMware GemFire 9.10 Documentation

Cluster-ny gfsh>list gateways

GatewayReceiver Section

Member | Port | Sender Count | Senders Connected
---------------------------------- | ==== | —==mmmmmmmm = | e e
192.168.1.20(ny1:21901)<v1>:41000 | 1971 | 1 | 192.168.0.13(1lnd4:22520)<v4>:
41005
192.168.2.20(ny2:22150)<v2>:41000 | 1971 | 2 | 192.168.0.13(1n2:22004)<v2>:
41003, 192.168.0.13(1n3:22252)<v3>:41004
192.168.3.20(ny3:22371)<v3>:41000 | 1971 | 2 | 192.168.0.13(1n3:22252)<v3>:
41004, 192.168.0.13(1n2:22004)<v2>:41003
192.168.4.20(ny4:22615)<v4>:41000 | 1971 | 3 | 192.168.0.13(1n4:22520)<v4>:

41005, 192.168.0.13(1nl1:21755)<v1>:41002, 192.168.0.13(1nl1:21755)<v1>:41002

When the gateway senders on one site are started, they get the information about the gateway
receivers of the remote site from the locator(s) running on the remote site. The remote locator
provides a list of gateway receivers to send replication events to (one element per gateway
receiver running in the site), with all of them listening on the same hostname and port. From the
gateway sender’s standpoint, it is as if only one gateway receiver is on the other side.

The following output shows the gateways information at the sender side, in which it can be seen
that there is only one IP address/hostname and port for the receiver location
(gatewayl.mycompany.com:1971), while the reality is that there are four gateway receivers on the
other side.

Cluster-1n gfsh>list gateways
GatewaySender Section

GatewaySender Id | Member | Remote Cluster Id | Type
Status | Queued Events | Receiver Location

________________ ‘ e —— e o —_———— e —
_____________________ | ——— e o ‘ e

ny | 192.168.0.13(1n2:22004)<v2>:41003 | 2 | Parallel |
Running and Connected | 0 | gatewayl.mycompany.com:1971

ny [192.168.0.13(1n3:22252)<v3>:41004 | 2 | Parallel |
Running and Connected | O | gatewayl.mycompany.com:1971

ny [192.168.0.13(1n4:22520)<v4>:41005 | 2 | Parallel |
Running and Connected | 0 | gatewayl.mycompany.com:1971

ny [192.168.0.13(1nl:21755)<v1>:41002 | 2 | Parallel |
Running and Connected | 0 | gatewayl.mycompany.com:1971

In order for the gateway senders to communicate with the remote gateway receivers, a reverse
proxy/load balancer service must be in place in the deployment in order to receive the requests
directed to the gateway receivers on the |IP address and port configured, and to forward the
requests to one of the gateway receivers on the remote site.

Filtering Events for Multi-Site (WAN) Distribution

You can optionally create gateway sender and/or gateway receiver filters to control which events
are queued and distributed to a remote site, or to modify the data stream that is transmitted
between VMware GemFire sites.

VMware by Broadcom 240

VMware GemFire 9.10 Documentation

You can implement and deploy two different types of filter for multi-site events:

e GatewayEventFilter. A GatewayEventFilter implementation determines whether a region
event is placed in a gateway sender queue and/or whether an event in a gateway queue is
distributed to a remote site. You can optionally add one or more GatewayEventFilter
implementations to a gateway sender, etiher in the cache.xml configuration file or using the
Java API.

VMware GemFire makes a synchronous call to the filter’'s beforeEnqueue method before it
places a region event in the gateway sender queue. The filter returns a boolean value that
specifies whether the event should be added to the queue.

VMware GemFire asynchronously calls the filter’s beforeTransmit method to determine
whether the gateway sender dispatcher thread should distribute the event to a remote
gateway receiver.

For events that are distributed to another site, VMware GemFire calls the listener’s
afterAcknowledgement method to indicate that is has received an ack from the remote site
after the event was received.

o GatewayTransportFilter. Use a GatewayTransportFilter implementation to process the TCP
stream that sends a batch of events that is distributed from one VMware GemFire cluster to
another over a WAN. A GatewayTransportFilter is typically used to perform encryption or
compression on the data that distributed. You install the same GatewayTransportFilter
implementation on both a gateway sender and gateway receiver.

When a gateway sender processes a batch of events for distribution, VMware GemFire
delivers the stream to the getInputstream method of a configured GatewayTransportFilter
implementation. The filter processes and returns the stream, which is then transmitted to
the gateway receiver. When the gateway receiver receives the batch, VMware GemFire
calls the getoutputstream method of a configured filter, which again processes and returns
the stream so that the events can be applied in the local cluster.

Configuring Multi-Site Event Filters

You install a GatewayEventFilter implementation to a configured gateway sender in order to
decide which events are queued and distributed. You install a GatewayTransportFilter
implementation to both a gateway sender and a gateway receiver to process the stream of batched
events that are distributed between two sites:

¢ XML example

<cache>
<gateway-sender id="remoteA" parallel="true" remote-distributed-system-id
="1l">
<gateway-event-filter>
<class-name>org.apache.geode.util.SampleEventFilter</class-name>
<parameter name="paraml">
<string>"valuel"</string>
</parameter>
</gateway-event-filter>
<gateway-transport-filter>
<class-name>org.apache.geode.util.SampleTransportFilter</class-name>

<parameter name="paraml">

VMware by Broadcom

241

VMware GemFire 9.10 Documentation

<string>"valuel"</string>
</parameter>
</gateway-transport-filter>
</gateway-sender>
</cache>

<cache>

<gateway-receiver start-port="1530" end-port="1551">
<gateway-transport-filter>
<class-name>org.apache.geode.util.SampleTransportFilter</class-name>
<parameter name="paraml">
<string>"valuel"</string>
</parameter>
</gateway-transport-filter>
</gateway-receiver>

</cache>

o gfsh example

gfsh>create gateway-sender --id=remoteA --parallel=true --remote-distributed-id
—wqnm
--gateway-event-filter=org.apache.geode.util.SampleEventFilter

--gateway-transport-filter=org.apache.geode.util.SampleTransportFilter

See create gateway-sender.

gfsh>create gateway-receiver --start-port=1530 --end-port=1551 \

--gateway-transport-filter=org.apache.geode.util.SampleTransportFilter

Note: You cannot specify parameters and values for the Java class you specify with the --
gateway-transport-filter option.

See create gateway-receiver.

o APl example

Cache cache = new CacheFactory () .create();

GatewayEventFilter efilter = new SampleEventFilter();

GatewayTransportFilter tfilter = new SampleTransportFilter();

GatewaySenderFactory gateway = cache.createGatewaySenderFactory () ;
gateway.setParallel (true) ;

gateway.addGatewayEventFilter (efilter);

gateway.addTransportFilter (tfilter);

GatewaySender sender = gateway.create("remoteA", "1");

sender.start () ;

Cache cache = new CacheFactory () .create();
GatewayTransportFilter tfilter = new SampleTransportFilter();
GatewayReceiverFactory gateway = cache.createGatewayReceiverFactory() ;

gateway.setStartPort (1530);
gateway.setEndPort (1551) ;

VMware by Broadcom 242

VMware GemFire 9.10 Documentation

gateway.addTransportFilter (tfilter);
GatewayReceiver receiver = gateway.create();

receiver.start () ;

Resolving Conflicting Events

You can optionally create a GatewayConflictResolver cache plug-in to decide whether a potentially
conflicting event that was delivered from another site should be applied to the local cache.

By default, all regions perform consistency checks when a member applies an update received
either from another cluster member or from a remote cluster over the WAN. The default
consistency checking for WAN events is described in How Consistency Is Achieved in WAN
Deployments.

You can override the default consistency checking behavior by writing and configuring a custom
GatewayConflictResolver. The GatewayConflictResolver implementation can use the timestamp
and distributed system ID included in a WAN update event to determine whether or not to apply
the update. For example, you may decide that updates from a particular cluster should always
“win” a conflict when the timestamp difference between updates is less than some fixed period of
time.

Implementing a GatewayConflictResolver

Note: A GatewayConflictResolver implementation is called only for update events that could cause
a conflict in the region. This corresponds to update events that have a different distributed system
ID than the distributed system that last updated the region entry. If the same distributed system ID
makes consecutive updates to a region entry, no conflict is possible, and the
GatewayConflictResolver iS not called.

Procedure
1. Program the event handler:
1. Create a class that implements the GatewayConflictResolver interface.

2. If you want to declare the handler in cache.xml, implement the
org.apache.geode.cache.Declarable interface as well.

3. Implement the handler’s onEvent () method to determine whether the WAN event
should be allowed. onEvent () receives both a TimestampedEntryEvent and a
GatewayConflictHelper instance. TimestampedEntryEvent has methods for obtaining
the timestamp and distributed system ID of both the update event and the current
region entry. Use methods in the GatewayConflictHelper to either disallow the
update event (retaining the existing region entry value) or provide an alternate
value.

Example:

public void onEvent (TimestampedEntryEvent event, GatewayConflictHelper h

elper) {
if (event.getOperation () .isUpdate()) {
ShoppingCart oldCart = (ShoppingCart)event.getOldvValue();
ShoppingCart newCart = (ShoppingCart)event.getNewValue ()

oldCart.updateFromConflictingState (newCart) ;

VMware by Broadcom

243

VMware GemFire 9.10 Documentation

helper.changeEventValue (oldCart);

Note: In order to maintain consistency in the region, your conflict resolver must
always resolve two events in the same way regardless of which event it receives
first.

2. |Install the conflict resolver for the cache, using either the cache.xnl file or the Java API.

cache.xml

<cache>
<gateway-conflict-resolver>
<class-name>myPackage.MyConflictResolver</class-name>

</gateway-conflict-resolver>

</cache>

Java API

// Create or obtain the cache

Cache cache = new CacheFactory () .create();

// Create and add a conflict resolver

cache.setGatewayConflictResolver (new MyConflictResolver) ;

VMware by Broadcom

244

VMware GemFire 9.10 Documentation

Managing VMware GemFire

Managing VMware GemFire describes how to plan and implement tasks associated with managing,
monitoring, and troubleshooting VMware GemFire.

« VMware GemFire Management and Monitoring

VMware GemFire provides APIs and tools for managing your distributed system and
monitoring the health of your distributed system members.

« Managing Heap and Off-heap Memory

By default, VMware GemFire uses the JVM heap. VMware GemFire also offers an option to
store data off heap. This section describes how to manage heap and off-heap memory to
best support your application.

« Disk Storage

With VMware GemFire disk stores, you can persist data to disk as a backup to your in-
memory copy and overflow data to disk when memory use gets too high.

« Cache and Region Snapshots

Snapshots allow you to save region data and reload it later. A typical use case is loading
data from one environment into another, such as capturing data from a production system
and moving it into a smaller QA or development system.

¢ Region Compression
This section describes region compression, its benefits and usage.
« Network Partitioning

VMware GemFire architecture and management features help detect and resolve network
partition problems.

e« Security

The security framework establishes trust by authenticating components and members upon
connection. It facilitates the authorization of operations.

¢« Performance Tuning and Configuration

A collection of tools and controls allow you to monitor and adjust VMware GemFire
performance.

« Logging

Comprehensive logging messages help you confirm system configuration and debug
problems in configuration and code.

+ Statistics

VMware by Broadcom

245

VMware GemFire 9.10 Documentation

Every application and server in a distributed system can access statistical data about
VMware GemFire operations. You can configure the gathering of statistics by using the
alter runtime command of gfsh or in the gemfire.properties file to facilitate system
analysis and troubleshooting.

Troubleshooting and System Recovery

This section provides strategies for handling common errors and failure situations.

VMware GemFire Management and Monitoring

VMware GemFire provides APIs and tools for managing your cluster and monitoring the health of
your members.

Management and Monitoring Features

VMware GemFire uses a federated Open MBean strategy to manage and monitor all
members of the cluster. This strategy gives you a consolidated, single-agent view of the
cluster.

Overview of VMware GemFire Management and Monitoring Tools

VMware GemFire provides a variety of management tools you can use to manage a
VMware GemFire cluster.

Architecture and Components

VMware GemFire’s management and monitoring system consists of one JMX Manager
node (there should only be one) and one or more managed nodes within a cluster. All
members in the cluster are manageable through MBeans and VMware GemFire
Management Service APIs.

JMX Manager Operations

Any member can host an embedded JMX Manager, which provides a federated view of all
MBeans for the cluster. The member can be configured to be a manager at startup or
anytime during its life by invoking the appropriate API calls on the ManagementService.

Federated MBean Architecture

VMware GemFire uses MBeans to manage and monitor different parts of VMware GemFire.

VMware GemFire’s federated MBean architecture is scalable and allows you to have a
single-agent view of a VMware GemFire cluster.

Configuring RMI Registry Ports and RMI Connectors

VMware GemFire programmatically emulates out-of-the-box JMX provided by Java and
creates a JMXServiceURL with RMI Registry and RMI Connector ports on all manageable
members.

Executing gfsh Commands through the Management API

You can also use management APIs to execute gfsh commands programmatically.

Management and Monitoring Features

VMware by Broadcom

246

VMware GemFire 9.10 Documentation

VMware GemFire uses a federated Open MBean strategy to manage and monitor all members of
the cluster. This strategy gives you a consolidated, single-agent view of the cluster.

Application and manager development is much easier because you do not have to find the right
MBeanServer to make a request on an MBean. Instead, you interact with a single MBeanServer
that aggregates MBeans from all other local and remote MBeanServers.

Some other key advantages and features of VMware GemFire administration architecture:

« VMware GemFire monitoring is tightly integrated into VMware GemFire’s processes
instead of running in a separately installed and configured monitoring agent. You can use
the same framework to actually manage VMware GemFire and perform administrative
operations, not just monitor it.

o All VMware GemFire MBeans are MXBeans. They represent useful and relevant information
on the state of the cluster and all its members. Because MXBeans use the Open MBean
model with a predefined set of types, clients and remote management programs no longer
require access to model-specific classes representing your MBean types. Using MXBeans
adds flexibility to your selection of clients and makes the VMware GemFire management
and monitoring much easier to use.

¢ Each member in the cluster is manageable through MXBeans, and each member hosts its
own MXBeans in a Platform MBeanServer.

« Any VMware GemFire member can be configured to provide a federated view of all the
MXBeans for all members in a VMware GemFire cluster.

¢ VMware GemFire has also modified its use of JMX to be industry-standard and friendly to
generic JMX clients. You can now easily monitor or manage the cluster by using any third-
party tool that is compliant with JMX. For example, JConsole.

References

For more information on MXBeans and Open MBeans, see:
o http://docs.oracle.com/javase/8/docs/api/javax/management/MXBean.html

o http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/package-
summary.html

Overview of VMware GemFire Management and Monitoring
Tools

VMware GemFire provides a variety of management tools you can use to manage a VMware
GemFire cluster.

The VMware GemFire management and monitoring tools allow you to configure all members and
processes of a cluster, monitor operations in the system, and start and stop the members.
Internally, VMware GemFire uses Java MBeans, specifically MXBeans, to expose management
controls and monitoring features. You can monitor and control VMware GemFire by writing Java
programs that use these MXBeans, or you can use one of several tools provided with VMware
GemFire to monitor and manage your cluster. The primary tool for these tasks is the gfsh
command-line tool, as described in this section.

VMware by Broadcom 247

http://docs.oracle.com/javase/8/docs/api/javax/management/MXBean.html
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/package-summary.html

VMware GemFire 9.10 Documentation

VMware GemFire provides the following tools to manage a VMware GemFire installation:

gfsh Command-line tool

The gfsh command line tool provides a set of commands you use to configure, manage, and
monitor a cluster. gfsh is the recommended tool for managing your cluster.

Use gfsh to:

gfsh runs in its own shell, or you can execute gfsh commands directly from the OS command line.
gfsh can interact with remote systems using the http protocol. You can also write scripts that run in

Start and stop VMware GemFire processes, such as locators and cache servers
Deploy applications

Create and destroy regions

Execute functions

Manage disk stores

Import and export data

Monitor VMware GemFire processes

Launch VMware GemFire monitoring tools

Shut down a cluster

Script various operations involving VMware GemFire members

Save the configuration for all members of a cluster

a gfsh shell to automate system startup.

You can use gfsh to create shared cluster configurations for your cluster. You can define

configurations that apply to the entire cluster, or that apply only to groups of similar members that

all share a common configuration. VMware GemFire locators maintain these configurations as a

hidden region and distribute the configuration to all locators in the cluster. The locator also persists
the shared configurations on disk as cluster.xml and cluster.properties files. You can use those

shared cluster configuration files to re-start your system, migrate the system to a new
environment, add new members to a cluster, or to restore existing members after a failure.

A basic cluster configuration consists of:

cluster.xml file shared by the cluster
cluster.properties file shared by the cluster

Deployed jar files containing application Java classes.

See Overview of the Cluster Configuration Service and Cluster Configuration Files and
Troubleshooting for additional details on gfsh cluster configuration files.

Using the gfsh tool, you can easily migrate a VMware GemFire-based application from a
development environment into a testing or production environment.

Executing gfsh commands with the management API

VMware by Broadcom

248

VMware GemFire 9.10 Documentation

You can also use VMware GemFire’s management APIs to execute gfsh commands in a Java class.
See Executing gfsh Commands through the Management API.

Member Configuration Management

When you issue gfsh commands and have the cluster configuration service enabled (on a locator),
VMware GemFire saves the configurations created within gfsh by building a cluster.xml and
cluster.properties files for the entire cluster, or group of members.

You can also directly create configurations using cache.xml and gemfire.properties files and
manage the members individually.

Java Management Extension (JMX) MBeans

VMware GemFire uses a federated Open MBean strategy to manage and monitor all members of
the cluster. Your Java classes interact with a single MBeanServer that aggregates MBeans from
other local and remote members. Using this strategy gives you a consolidated, single-agent view of
the cluster.

VMware GemFire’s implementation of JMX is industry-standard and friendly to generic JMX clients.
You can monitor or manage the cluster by using any third-party tool that is compliant with JMX.
For example, JConsole.

See VMware GemFire Management and Monitoring

VMware GemFire Java API

The VMware GemFire API provides a set of Java classes you can use to manage and monitor a
cluster. See the org.apache.geode.management package in the javadocs.

VMware GemFire Pulse

VMware GemFire Pulse is a Web Application that provides a graphical dashboard for monitoring
vital, real-time health and performance of VMware GemFire clusters, members, and regions.

Use Pulse to examine total memory, CPU, and disk space used by members, uptime statistics,
client connections, and critical notifications. Pulse communicates with a VMware GemFire JMX
manager to provide a complete view of your VMware GemFire deployment.

See VMware GemFire Pulse.

JConsole

JConsole is a JMX monitoring utility provided with a Java Development Kit (JDK). You use gfsh to
connect to VMware GemFire, and then launch JConsole with a gfsh command. The JConsole
application allows you to browse MBeans, attributes, operations, and notifications. See Browsing
VMware GemFire MBeans through JConsole.

Architecture and Components

VMware by Broadcom 249

VMware GemFire 9.10 Documentation

VMware GemFire’s management and monitoring system consists of one JMX Manager node (there
should only be one) and one or more managed nodes within a cluster. All members in the cluster
are manageable through MBeans and VMware GemFire Management Service APIs.

Architecture

The following diagram depicts the architecture of the management and monitoring system
components.

Management and Monitoring Tools

Other JMX Clients
Fulze afsh [JConsola,
jvisuahem)
| |

1 I |

) 4
| RMI Connector |

‘ OO O O _.MQ S QB::SENEF

b A

JMX Manager ."‘n.ﬁ:.'a:nfxellW

P Fbaans
i'l:lm

[Managamam Service :] —bllrl.lanagamam Service j

@ MBean Server MBean Server
Maomber Y Mm‘nbﬂr
i (@) O r

b Looal viewof
ymanagad noda onky
Managed Node . ddn ') | AMI Connactor Managed Node |
[JConsole, Wiew of remoin
pvisuahem managed node

In this architecture every VMware GemFire member is manageable. All VMware GemFire MBeans
for the local VMware GemFire processes are automatically registered in the Platform MBeanServer
(the default MBeanServer of each JVM that hosts platform MXBeans.)

Managed Node

Each member of a cluster is a managed node. Any node that is not currently also acting as a JMX
Manager node is referred to simply as a managed node. A managed node has the following
resources so that it can answer JMX queries both locally and remotely:

o« Local MXBeans that represent the locally monitored components on the node. See List of
VMware GemFire JMX MBeans for a list of possible MXBeans existing for the managed
node.

e Built-in platform MBeans.

JMX Manager Node

A JMX Manager node is a member that can manage other VMware GemFire members—that is,
other managed nodes—as well as itself. A JMX Manager node can manage all other members in
the cluster.

VMware by Broadcom 250

VMware GemFire 9.10 Documentation

To convert a managed node to a JMX Manager node, you configure the VMware GemFire property
jmx-manager=true, iN the gemfire.properties file, and start the member as a JMX Manager node.

You start the member as a JMX Manager node when you provide --J=-Dgemfire.jmx-manager=true
as an argument to either the start server Or start locator command. See Starting a JMX
Manager for more information.

The JMX Manager node has the following extra resources allocated so that it can answer JMX
queries:

¢ RMI connector that allows JMX clients to connect to and access all MXBeans in the cluster.

e« Local MXBeans that represent the locally monitored components on this node, same as any
other managed node.

e Aggregate MXBeans:
o DistributedSystemMXBean

o DistributedRegionMXBean

o DistributedLockServiceMXBean
¢ ManagerMXBean with Scope=ALL, which allows various cluster-wide operations.
e« Proxy to MXBeans on managed nodes.

e Built-in platform MXBeans.

JMX Integration

Management and monitoring tools such as gfsh command-line interface and Pulse use JMX/RMI as
the communication layer to connect to VMware GemFire nodes. All VMware GemFire processes
by default allow JMX connections to the Platform MBeanServer from localhost. By default, both
managed nodes and JMX manager nodes have RMI connectors enabled to allow JMX client
connections.

JConsole (and other similar JMX clients that support Sun’s Attach API) can connect to any local
JVM without requiring an RMI connector by using the Attach API. This allows connections from the
same machine.

JConsole (and other JMX clients) can connect to any JVM if that JVM is configured to start an RMI
connector. This allows remote connections from other machines.

JConsole can connect to any VMware GemFire member, but if it connects to a non-JMX-Manager
member, JConsole only detects the local MBeans for the node, and not MBeans for the cluster.

When a VMware GemFire locator or server becomes a JMX Manager for the cluster, it enables the
RMI connector. JConsole can then connect only to that one JVM to view the MBeans for the entire
cluster. It does not need to connect to all the other JVMs. VMware GemFire manages the inter-
JVM communication required to provide a federated view of all MBeans in the cluster.

gfsh can only connect to a JMX Manager or to a locator. If connected to a locator, the locator
provides the necessary connection information for the existing JMX Manager. If the locator detects
a JMX Manager is not already running in the cluster, the locator makes itself a JMX Manager. gfsh
cannot connect to other non-Manager or non-locator members.

VMware by Broadcom

VMware GemFire 9.10 Documentation

For information on how to configure the RMI registry and RMI connector, see Configuring RM|
Registry Ports and RMI Connectors.

Management APIs

VMware GemFire management APIs represent the VMware GemFire cluster to a JMX user.
However, they do not provide functionality that is otherwise present in JMX. They only provide a
gateway into various services exclusively offered by VMware GemFire monitoring and
management.

The entry point to VMware GemFire management is through the ManagementService interface.
For example, to create an instance of the Management Service:

ManagementService service = ManagementService.getManagementService (cache);

The resulting ManagementService instance is specific to the provided cache and its cluster. The
implementation of getManagementService is a singleton for now but may eventually support
multiple cache instances.

You can use the VMware GemFire management APIs to accomplish the following tasks:
e« Monitor the health status of clients.
« Obtain the status and results of individual disk backups.
« View metrics related to disk usage and performance for a particular member.
« Browse VMware GemFire properties set for a particular member.
o View JVM metrics such as memory, heap, and thread usage.
« View network metrics, such as bytes received and sent.

« View partition region attributes such as total number of buckets, redundant copy, and
maximum memory information.

« View persistent member information such as disk store ID.
« Browse region attributes.
See the JavaDocs for the org.apache.geode.management package for more details.

You can also execute gfsh commands using the ManagementService API. See Executing gfsh
Commands through the Management API and the JavaDocs for the
org.apache.geode.management .cli package.

VMware GemFire Management and Monitoring Tools

This section lists the currently available tools for managing and monitoring VMware GemFire:

« gfsh. VMware GemFire command-line interface that provides a simple & powerful
command shell that supports the administration, debugging and deployment of VMware
GemFire applications. It features context sensitive help, scripting and the ability to invoke
any commands from within the application using a simple API. See gfsh.

« VMware GemFire Pulse. Easy-to-use, browser-based dashboard for monitoring VMware
GemFire deployments. VMware GemFire Pulse provides an integrated view of all VMware

VMware by Broadcom

252

VMware GemFire 9.10 Documentation

GemFire members within a cluster. See VMware GemFire Pulse.

« Pulse Data Browser. This VMware GemFire Pulse utility provides a graphical interface for
performing OQL ad-hoc queries in a VMware GemFire cluster. See Data Browser.

« Other Java Monitoring Tools such as JConsole and jvisualvm. JConsole is a JMX-based
management and monitoring tool provided in the Java 2 Platform that provides information
on the performance and consumption of resources by Java applications. See
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html. Java
VisualVM (jvisualvm) is a profiling tool for analyzing your Java Virtual Machine. Java
VisualVM is useful to Java application developers to troubleshoot applications and to
monitor and improve the applications’ performance. Java VisualVM can allow developers to
generate and analyse heap dumps, track down memory leaks, perform and monitor garbage
collection, and perform lightweight memory and CPU profiling. For more details on using
jvisualvm, see http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html.

Starting a JMX Manager

JMX Manager nodes are members that manage other VMware GemFire members (as well as
themselves). A JMX Manager node can manage all other members in the cluster. Typically a locator
will function as the JMX Manager, but you can also turn any other member such as a server into a
JMX Manager node as well.

To allow a server to become a JMX Manager you configure VMware GemFire property jmx-
manager=true, iN the server'sgemfire.properties file. This property configures the node to become
a JMX Manager node passively; if gfsh cannot locate a JMX Manager when connecting to the
cluster, the server node will be started as a JMX Manager node.

Note: The default property setting for all locators is gemfire.jmx-manager=true. For other
members, the default property setting is gemfire.jmx-manager=false.

To force a server to become a JMX Manager node whenever it is started, set the VMware GemFire
properties jmx-manager-start=true and jmx-manager=true iN the server’s gemfire.properties file.
Note that both of these properties must be set to true for the node.

To start the member as a JMX Manager node on the command line, provide--J=-Dgemfire. jmx-
manager-start=true and --J=-Dgemfire.jmx-manager=true as arguments to either the start
server Of start locator command.

For example, to start a server as a JMX Manager on the gfsh command line:

gfsh>start server --name=<server-name> --J=-Dgemfire.jmx-manager=true \

--J=-Dgemfire.jmx-manager-start=true

By default, any locator can become a JMX Manager when started. When you start up a locator, if
no other JMX Manager is detected in the cluster, the locator starts one automatically. If you start a
second locator, it will detect the current JMX Manager and will not start up another JMX Manager
unless the second locator’s gemfire. jmx-manager-start property is set to true.

For most deployments, you only need to have one JMX Manager per cluster. However, you can
run more than one JMX Manager if necessary. If you want to provide high-availability and

redundancy for the Pulse monitoring tool, or if you are running additional JMX clients other than
gfsh, then use the jmx-manager-start=true property to force individual nodes (either locators or

VMware by Broadcom 253

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html

VMware GemFire 9.10 Documentation

servers) to become JMX Managers at startup. Since there is some performance overhead to being
a JMX Manager, we recommend using locators as JMX Managers. If you do not want a locator to
become a JMX manager, then you must use the jmx-manager=false property when you start the
locator.

After the node becomes a JMX Manager, all other jmx-manager-* configuration properties listed in
Configuring a JMX Manager are applied.

The following is an example of starting a new locator that also starts an embedded JMX Manager
(after detecting that another JMX Manager does not exist). In addition, gfsh also automatically
connects you to the new JMX Manager. For example:

gfsh>start locator --name=locatorl

Starting a VMware GemFire Locator in /Users/username/apache-geode/locatorl...

Locator in /Users/username/apache-geode/locatorl on 192.0.2.0[10334] as locatorl
is currently online.

Process ID: 27144

Uptime: 5 seconds

VMware GemFire Version: 9.10

Java Version: 1..0 272

Log File: /Users/username/apache-geode/locatorl/locatorl.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true
-Dgemfire.load-cluster-configuration-from-dir=false
-Dgemfire.launcher.registerSignalHandlers=true

-Djava.awt.headless=true -Dsun.rmi.dgc.server.gclnterval=9223372036854775806
Class-Path: /Users/username/apache-geode/lib/geode-core-1.2.0.jar

:/Users/username/apache-geode/lib/geode-dependencies.jar
Successfully connected to: JMX Manager [host=192.0.2.0, port=1099]

Cluster configuration service is up and running.

Locators also keep track of all nodes that can become a JMX Manager.

Immediately after creating its cache, the JMX Manager node begins federating the MBeans from
other members. After the JMX Manager node is ready, the JMX Manager node sends a notification
to all other members informing them that it is a new JMX Manager. The other members then put
complete MBean states for themselves into each of their hidden management regions.

At any point, you can determine whether a node is a JMX Manager by using the MemberMXBean
isManager() method.

Using the Java API, any managed node that has been configured with jmx-manager=true can also
be turned into a JMX Manager Node by invoking the ManagementService startManager() method.

Note: If you start the JMX Manager programmatically and wish to enable command processing, you
must also add the absolute path of gfsh-dependencies.jar (located in the 1ib directory of your
installation) to the CLASSPATH of your application. Do not copy this library to your CLASSPATH,
because this library refers to other dependencies in 1ib by a relative path.

Configuring a JMX Manager

In the gemfire.properties file, you configure a JMX manager as follows.

VMware by Broadcom 254

VMware GemFire 9.10 Documentation

Property

http-service-port

http-service-bind-address

jmx-manager

jmx-manager-access-file

jmx-manager-bind-address

VMware by Broadcom

Description Default

If non-zero, then VMware GemFire 7070
starts an embedded HTTP service that

listens on this port. The HTTP service

is used to host the VMware GemFire

Pulse Web application. If you are

hosting the Pulse web app on your

own Web server, then disable this

embedded HTTP service by setting

this property to zero. Ignored if jmx-

manager is false.

If set, then the VMware GemFire not set
member binds the embedded HTTP

service to the specified address. If this

property is not set but the HTTP

service is enabled using http-

service-port, then VMware GemFire

binds the HTTP service to the

member's local address.

false (with Locator exception)

If true then this member can become
a JMX Manager. All other jmx-
manager-* properties are used when
it does become a JMX Manager. If this
property is false then all other ymx-
manager-* properties are ignored.

The default value is true on locators.

not set
By default the JMX Manager allows

full access to all MBeans by any client.
If this property is set to the name of a
file, then it can restrict clients to only
reading MBeans; they cannot modify
MBeans. The access level can be
configured differently in this file for
each user name defined in the
password file. For more information
about the format of this file see
Oracle's documentation of the
com.sun.management.jmxremote.acc
ess.file system property. Ignored if
Jmx-manager is false or if ymx-
manager-port iS Zero.

By default, the JMX Manager when not set
configured with a port listens on all
the local host's addresses. You can
use this property to configure which
particular IP address or host name the
JMX Manager will listen on. This
property is ignored if jmx-manager is
false or ymx-manager-port is zero.
This address also applies to the
VMware GemFire Pulse server if you
are hosting a Pulse web application.

255

VMware GemFire 9.10 Documentation

Property

jmx-manager-hostname-for-clients

jmx-manager-password-file

jmx-manager-port

jmx-manager-ssl-enabled

jmx-manager-start

VMware by Broadcom

Description

Hostname given to clients that ask the
locator for the location of a JMX
Manager. By default the IP address of
the JMX Manager is used. However,
for clients on a different network, you
can configure a different hostname to
be given to clients. Ignored if ymx-
manager is false or if jmx-manager-
port is zero.

By default the JMX Manager allows
clients without credentials to connect.
If this property is set to the name of a
file, only clients that connect with
credentials that match an entry in this
file will be allowed. Most JVMs
require that the file is only readable
by the owner. For more information
about the format of this file see
Oracle's documentation of the
com.sun.management.jmxremote.pas
sword.file system property. Ignored if
jmx-manager is false or if jmx-
manager-port is zero.

Port on which this JMX Manager
listens for client connections. If this
property is set to zero, VMware
GemFire does not allow remote client
connections. Alternatively, use the
standard system properties
supported by the JVM for configuring
access from remote JMX clients.
Ignored if jmx-manager is false. The
Default RMI port is 1099.

If true and jmx-manager-port is not
zero, the JMX Manager accepts only
SSL connections. The ssl-enabled
property does not apply to the JMX
Manager, but the other SSL properties
do. This allows SSL to be configured
for just the JMX Manager without
needing to configure it for the other
VMware GemFire connections.
lgnored if ymx-manager is false.

If true, this member starts a JMX
Manager when it creates a cache. In
most cases you should not set this
property to true because a JMX
Manager is automatically started
when needed on a member that sets
jmx-manager to true. Ignored if jmx-
manager is false.

Default

not set

not set

1099

false

false

256

VMware GemFire 9.10 Documentation

Property Description Default

jmx-manager-update-rate The rate, in milliseconds, at which this 2000
member pushes updates to any JMX
Managers. Currently this value should
be greater than or equal to the
statistic-sample-rate. Setting this
value too high causes gfsh and
VMware GemFire Pulse to see stale
values.

Stopping a JMX Manager

To stop a JMX Manager using gfsh, simply shut down the locator or server hosting the JMX
Manager.

For a locator:

gfsh>stop locator --dir=locatorl

Stopping Locator running in /home/user/test2/locatorl on ubuntu.local[l10334] as locato
rl...

Process ID: 2081

Log File: /home/user/test2/locatorl/locatorl.log

No longer connected to ubuntu.local[l1099].
For a server:

gfsh>stop server --dir=serverl

Stopping Cache Server running in /home/user/test2/serverl ubuntu.local[40404] as serve
Zlooo

Process ID: 1156

Log File: /home/user/test2/serverl/serverl.log

No longer connected to ubuntu.local[l1099].

Notice that gfsh has automatically disconnected you from the stopped JMX Manager.

To stop a JMX manager using the management API, use the ManagementService stopManager()
method to stop a member from being a JMX Manager.

When a Manager stops, it removes all federated MBeans from other members from its Platform
MBeanServer. It also emits a notification to inform other members that it is no longer considered a
JMX Manager.

Federated MBean Architecture

VMware GemFire uses MBeans to manage and monitor different parts of VMware GemFire.
VMware GempFire’s federated MBean architecture is scalable and allows you to have a single-agent
view of a VMware GemFire cluster.

VMware by Broadcom 257

VMware GemFire 9.10 Documentation

Federation of VMware GemFire MBeans and
MBeanServers

Federation of the MBeanServers means that one member, the JMX Manager Node, can provide a
proxied view of all the MBeans that the MBeanServer hosts. Federation also means that operations
and notifications are spread across the cluster.

VMware GemFire federation takes care of the following functionality:
¢ MBean proxy creation
« MBean state propagation
« Notifications propagation

o Operation invocation

MBean Proxy Naming Conventions

Each VMware GemFire MBean follows a particular naming convention for easier grouping. For
example:

GemFire:type=Member, service=LockService,name=<dlsName>, memberName=<memberName>

At the JMX Manager node, this MBean will be registered with GemFire/<memberld> as domain.
The following are some sample MBean names:

MemberMBean:

GemFire:type=Member, member=<Nodel>

Use of MXBeans

In its Management API, VMware GemFire provides MXBeans to ensure that any MBeans that are
created are usable by any client, including remote clients, without requiring the client to access
specific classes in order to access contents of the MBean.

MBean Proxy Creation

VMware GemFire proxies are inherently local MBeans. Every VMware GemFire JMX manager
member hosts proxies pointing to the local MBeans of every managed node. Proxy MBeans will also
emit any notification emitted by local MBeans in managed nodes when an event occurs in that
managed node.

Note: Aggregate MBeans on the JMX Manager node are not proxied.

List of VMware GemFire JMX MBeans

This topic provides descriptions for the various management and monitoring MBeans that are
available in VMware GemFire.

VMware by Broadcom 258

VMware GemFire 9.10 Documentation

The following diagram illustrates the relationship between the different JMX MBeans that have
been developed to manage and monitor VMware GemFire.

4 2\
JMX Manager Node
— v 3 (ManagerMXBean
[DistributedSystemMXBean |, | .
1 J
A [DistributedRegionMXBean L
on)
(DistributedLockServiceMXBean N
0..N
N
Y
4 N\
(LockServiceMXBean]
{ MemberMXBean J L 0.N
i 4[DiskStoreMXBean |
0.N)
{AsyncEventQueueMXBeanJ
0..N
LocatorMXBean
0.1
4[CacheServerMXBean J
1
[RegionMXBean)
Managed Node LA y
\§ J
\§ J

« JMX Manager MBeans
This section describes the MBeans that are available on the JMX Manager node.
« Managed Node MBeans

This section describes the MBeans that are available on all managed nodes.

JMX Manager MBeans

This section describes the MBeans that are available on the JMX Manager node.

The JMX Manager node includes all local beans listed under Managed Node MBeans and the
following beans that are available only on the JMX Manager node:

¢ ManagerMXBean
e DistributedSystemMXBean
o DistributedRegionMXBean

« DistributedLockServiceMXBean

VMware by Broadcom

VMware GemFire 9.10 Documentation

ManagerMXBean

Represents the VMware GemFire Management layer for the hosting member. Controls the scope

of management. This MBean provides start and stop methods to turn a managed node into a JMX

Manager node or to stop a node from being a JMX Manager. For potential managers (mx-
manager=true and jmx-manager-start=false), this MBean is created when a Locator requests it.

Note: You must configure the node to allow it to become a JMX Manager. See Configuring a JMX
Manager for configuration information.

MBean Details

Scope ALL

Proxied No

Object Name GemFire:type=Member, service=Manager,member=<name-or-dist-member-id>
Instances Per Node 1

See the org.apache.geode.management .ManagerMxBean JavaDocs for information on available MBean

methods and attributes.

DistributedSystemMXBean

System-wide aggregate MBean that provides a high-level view of the entire cluster including all
members (cache servers, peers, locators) and their caches. At any given point of time, it can
provide a snapshot of the complete cluster and its operations.

The DistributedSystemMXBean provides APIs for performing cluster-wide operations such as
backing up all members, shutting down all members or showing various cluster metrics.

You can attach a standard JMX NotificationListener to this MBean to listen for notifications
throughout the cluster. See VMware GemFire JMX MBean Notifications for more information.

This MBean also provides some MBean model navigation APIS. These APIs should be used to
navigate through all the MBeans exposed by a VMware GemFire System.

MBean Details

Scope Aggregate

Proxied No

Object Name GempFire:type=Distributed,service=System
Instances Per Node 1

See the org.apache.geode.management .DistributedSystemMxBean JavaDocs for information on
available MBean methods and attributes.

DistributedRegionMXBean

System-wide aggregate MBean of a named region. It provides a high-level view of a region for all
members hosting and/or using that region. For example, you can obtain a list of all members that

VMware by Broadcom

260

VMware GemFire 9.10 Documentation

are hosting the region. Some methods are only available for partitioned regions.

MBean Details

Scope Aggregate

Proxied No

Object Name GempFire:type=Distributed,service=Region,name=<regionName>
Instances Per Node 0..N

See the org.apache.geode.management .DistributedRegionMxBean JavaDocs for information on
available MBean methods and attributes.

DistributedLockServiceMXBean

Represents a named instance of DistributedlLockService . Any number of DistributedLockService
can be created in a member.

A named instance of DistributedlLockService defines a space for locking arbitrary names across the
cluster defined by a specified distribution manager. Any number of DistributedLockService
instances can be created with different service names. For all processes in the cluster that have
created an instance of DistributedLockService with the same name, no more than one thread is
permitted to own the lock on a given name in that instance at any point in time. Additionally, a
thread can lock the entire service, preventing any other threads in the system from locking the
service or any names in the service.

MBean Details

Scope Aggregate

Proxied No

Object Name GempFire:type=Distributed,service=LockService,name=<dIsName>
Instances Per Node O0..N

See the org.apache.geode.management .DistributedLockServiceMxBean JavaDocs for information on
available MBean methods and attributes.

Managed Node MBeans

This section describes the MBeans that are available on all managed nodes.
MBeans that are available on all managed nodes include:

¢ MemberMXBean

o CacheServerMXBean

e RegionMXBean

e LockServiceMXBean

e DiskStoreMXBean

VMware by Broadcom 261

VMware GemFire 9.10 Documentation

¢ AsyncEventQueueMXBean
¢ LocatorMXBean
e LuceneServiceMXBean

JMX Manager nodes will have managed node MBeans for themselves since they are also
manageable entities in the cluster.

MemberMXBean

Member’s local view of its connection and cache. It is the primary gateway to manage a particular
member. It exposes member level attributes and statistics. Some operations like
createCacheServer () and createManager () Will help to create some VMware GemFire resources.
Any JMX client can connect to the MBean server and start managing a VMware GemFire Member
by using this MBean.

See MemberMXBean Notifications for a list of notifications emitted by this MBean.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,member=<name-or-dist-member-id>

Instances Per Node 1

See the org.apache.geode.management .MemberMxBean JavaDocs for information on available MBean
methods and attributes.

CacheServerMXBean

Represents the VMware GemFire CacheServer. Provides data and notifications about server,
subscriptions, durable queues and indices.

See CacheServerMXBean Notifications for a list of notifications emitted by this MBean.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,service=CacheServer,member=<name-or-dist-member-id>

Instances Per Node 1

See the org.apache.geode.management .CacheServerMxBean JavaDocs for information on available
MBean methods and attributes.

RegionMXBean

Member’s local view of region.

VMware by Broadcom

262

VMware GemFire 9.10 Documentation

MBean Details

Scope Local

Proxied Yes

Object Name GempFire:type=Member,service=Region,name=<regionName>member=<name-or-dist-member-
id>

Instances Per O..N

Node

See the org.apache.geode.management .RegionMxBean JavaDocs for information on available MBean
methods and attributes.

LockServiceMXBean

Represents a named instance of a LockService . Any number of LockServices can be created in a
member.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,service=LockService,name=<dIsName> member=<name-or-dist-

member-id>

Instances Per O..N
Node

See the org.apache.geode.management . LockServiceMxBean JavaDocs for information on available
MBean methods and attributes.

DiskStoreMXBean

Represents a DiskStore object which provides disk storage for one or more regions

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,service=DiskStore,name=<name> member=<name-or-dist-member-id>

Instances Per Node O..N

See the org.apache.geode.management .DiskStoreMxBean JavaDocs for information on available
MBean methods and attributes.

AsyncEventQueueMXBean

VMware by Broadcom 263

VMware GemFire 9.10 Documentation

An AsyncEventQueueMXBean provides access to an AsyncEventQueue, which represent the
channel over which events are delivered to the AsyncEventListener.

MBean Details

Scope Local
Proxied Yes
Object Name GempFire:type=Member,service= AsyncEventQueue,queue=<queue-id>member=<name-or-dist-

member-id>

Instances Per O..N
Node

See the org.apache.geode.management . AsyncEventQueueMxBean JavaDocs for information on
available MBean methods and attributes.

LocatorMXBean

A LocatorMXBean represents a locator.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,service=Locator,port=<port>member=<name-or-dist-member-id>

Instances Per Node 0.1

See the org.apache.geode.management . LocatorMxBean JavaDocs for information on available MBean
methods and attributes.

LuceneServiceMXBean

The member’s local view of existing Lucene indexes.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:service=CacheService,name=LuceneService,type=Member,member=<name-or-dist-

member-id>

Instances Per 0.1
Node

See the org.apache.geode.cache.lucene.management . LuceneServiceMxBean JavaDocs for
information on available MBean methods and attributes.

GatewaySenderMXBean

VMware by Broadcom 264

VMware GemFire 9.10 Documentation

A GatewaySenderMXBean represents a gateway sender.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,service=GatewaySender,gatewaySender=<sender-id>member=<name-or-

dist-member-id>

Instances Per 0.1
Node

See the org.apache.geode.management . GatewaySenderMxBean JavaDocs for information on available
MBean methods and attributes.

GatewayReceiverMXBean

A GatewayReceiverMXBean represents a gateway receiver.

MBean Details

Scope Local
Proxied Yes
Object Name GemFire:type=Member,service=GatewayReceiver,member=<name-or-dist-member-id>

Instances Per Node 0.1

See the org.apache.geode.management .GatewayReceiverMxBean JavaDocs for information on
available MBean methods and attributes.

Browsing VMware GemFire MBeans through JConsole

You can browse all the VMware GemFire MBeans in your cluster by using JConsole.
To view VMware GemFire MBeans through JConsole, perform the following steps:
1. Start a gfsh prompt.

2. Connect to a running cluster by either connecting to a locator with an embedded JMX
Manager or connect directly to a JMX Manager. For example:

gfsh>connect --locator=locatorl[10334]
or
gfsh>connect --jmx-manager=locatorl[1099]

3. Start JConsole:

gfsh>start jconsole

VMware by Broadcom 265

VMware GemFire 9.10 Documentation

If successful, the message Running JDK JConsole appears. The JConsole application
launches and connects directly to the JMX Manager using RMI.

4. On the JConsole screen, click on the MBeans tab. Expand GemFire. Then expand each
MBean to browse individual MBean attributes, operations and notifications.

The following is an example screenshot of the MBean hierarchy in a VMware GemFire
Cluster:

Management Console

B servicesjn mFireStymon; jndi/

iGemFine: servicestanager, type=Member, memberslocator 1
3
iGemFire:type=Member, member=locstor |

VMware GemFire JMX MBean Notifications

VMware GemFire MBeans emit notifications when specific events occur or if an alert is raised in the
VMware GemFire system. Using standard JMX APIs, users can add notification handlers to listen for
these events.

« Notification Federation

All notifications emitted from managed nodes are federated to all JMX Managers in the
system.

o List of JMX MBean Notifications

This topic lists all available JMX notifications emitted by VMware GemFire MBeans.

Notification Federation

All notifications emitted from managed nodes are federated to all JMX Managers in the system.

VMware by Broadcom 266

VMware GemFire 9.10 Documentation

These notifications are federated and then emitted by the DistributedSystemMXBean. If you attach
a javax.management .NotificationListener tO your DistributedSystemMXBean, the
NotificationListener can listen to notifications from all MemberMXBeans and all
CacheServerMXBeans.

Attaching Listeners to MXBeans

When you attach a notification listener to the DistributedSystemMXBean, the
DistributedSystemMXBean then acts as the notification hub for the entire cluster. You do not have
to attach a listener to each individual member or cache server MBean in order to listen to all the
notifications in the cluster.

The following is an example of attaching a NotificationListener to an MBean using the JMX
MBeanServer API:

NotificationListener myListener = ...
ObjectName mbeanName = ...

MBeanServer.addNotificationListener (mbeanName, myListener, null, null);

JMX Managers will emit notifications for all cluster members with two exceptions:

« If you use cache.xml to define resources such as regions and disks, then notifications for
these resources are not federated to the JMX Manager. In those cases, the
DistributedSystemMXBean cannot emit those notifications.

« If a JMX Manager is started after a resource has been created, the JMX Manager cannot
emit notifications for that resource.

System Alert Notifications

System alerts are VMware GemFire alerts wrapped within a JMX notification. The JMX Manager
registers itself as an alert listener with each member of the system, and by default, it receives all
messages logged with the SEVERE alert level by any node in the cluster. Consequently, the
DistributedSystemMXBean will then emit notifications for these alerts on behalf of the
DistributedSystem.

By default, the JMX Manager registers itself to send notifications only for SEVERE level alerts. To
change the alert level that the JMX Manager will send notifications for, use the
DistributedMXBean.changeAlertLevel method. Possible alert levels to set are WARNING, ERROR,
SEVERE, and NONE. After changing the level, the JMX Manager will only emit that level of log
message as notifications.

Notification objects include type, source and message attributes. System alerts also include the

userData attribute. For system alerts, the notification object attributes correspond to the following:

o type: system.alert
e source: Distributed System ID
¢ message: alert message

o« userData: name or ID of the member that raised the alert

VMware by Broadcom

267

VMware GemFire 9.10 Documentation

List of JMX MBean Notifications

This topic lists all available JMX notifications emitted by VMware GemFire MBeans.

Notifications are emitted by the following MBeans:

« MemberMXBean Notifications

« MemberMXBean Gateway Notifications

« CacheServerMXBean Notifications

+ DistributedSystemMXBean Notifications

MemberMXBean Notifications

Notification Type

gemfire.distributedsystem.

ed

gemfire.distributedsystem.

d

gemfire.distributedsystem.

gemfire.distributedsystem.

gemfire.distributedsystem.

created

gemfire.distributedsystem.

closed

gemfire.distributedsystem
created

gemfire.distributedsystem.

d

gemfire.distributedsystem.

ed

gemfire.distributedsystem

cache.region.creat

cache.region.close

cache.disk.created

cache.disk.closed

cache.lockservice.

cache.lockservice.

.async.event.queue.

cache.server.starte

cache.server.stopp

Jlocator.started

Notification
Source

Member name or
1D

Member name or
1D

Member name or
1D

Member name or
1D

Member name or
1D

Member name or
1D

Member name or
1D

Member name or
1D

Member name or
ID

Member name or
ID

Message

Region Created with Name <Region Name>

Region Destroyed/Closed with Name <Region
Name>

DiskStore Created with Name <DiskStore Name>

DiskStore Destroyed/Closed with Name
<DiskStore Name>

LockService Created with Name <LockService
Name>

Lockservice Closed with Name <LockService

Name>

Async Event Queue is Created in the VM

Cache Server is Started in the VM

Cache Server is stopped in the VM

Locator is Started in the VM

MemberMXBean Gateway Notifications

Notification Type

gemfire.distributedsystem.gateway.sender.create

d

gemfire.distributedsystem.gateway.sender.starte

d

VMware by Broadcom

Notification
Source

ID

ID

Member name or

Member name or

Message

GatewaySender Created in the VM

GatewaySender Started in the VM <Sender
Id>

268

VMware GemFire 9.10 Documentation

Notification Type

gemfire.distributedsystem.gateway.sender.stopp
ed

gemfire.distributedsystem.gateway.sender.pause
d

gemfire.distributedsystem.gateway.sender.resum
ed

gemfire.distributedsystem.gateway.receiver.creat
ed

gemfire.distributedsystem.gateway.receiver.start
ed

gemfire.distributedsystem.gateway.receiver.stop
ped

gemfire.distributedsystem.cache.server.started

Notification
Source

Member name or
ID

Member name or
ID

Member name or
ID

Member name or
ID

Member name or
ID

Member name or
ID

Member name or
ID

CacheServerMXBean Notifications

Notification Type

gemfire.distributedsystem.cacheserver.client.joined

gemfire.distributedsystem.cacheserver.client.left

gemfire.distributedsystem.cacheserver.client.crashed

Notification Source

CacheServer MBean Name

CacheServer MBean Name

CacheServer MBean name

Message

GatewaySender Stopped in the VM <Sender
ld>

GatewaySender Paused in the VM <Sender
ld>

GatewaySender Resumed in the VM <Sender
Id>

GatewayReceiver Created in the VM

GatewayReceiver Started in the VM

GatewayReceiver Stopped in the VM

Cache Server is Started in the VM

Message

Client joined with Id <Client ID>

Client crashed with Id <Client ID>

Client left with Id <Client ID>

DistributedSystemMXBean Notifications

Notification Type

gemfire.distributedsystem.cache.m
ember.joined joined
gemfire.distributedsystem.cache.m

ember.departed departed

gemfire.distributedsystem.cache.m

ember.suspect suspected

system.alert.*

Notification Source

Name or ID of member who

Name or ID of member who

Name or ID of member who is

DistributedSystem(“<Distributed
System ID”>)

Message

Member Joined <Member Name or ID>

Member Departed <Member Name or ID>
has crashed = <true/false>

Member Suspected <Member Name or ID>
By <Who Suspected>

Alert Message

Configuring RMI Registry Ports and RMI Connectors

VMware GemFire programmatically emulates out-of-the-box JMX provided by Java and creates a
JMXServiceURL with RMI Registry and RMI Connector ports on all manageable members.

Configuring JMX Manager Port and Bind Addresses

VMware by Broadcom

269

VMware GemFire 9.10 Documentation

You can configure a specific connection port and address when launching a process that will host
the VMware GemFire JMX Manager. To do this, specify values for the ymx-manager-bind-address,
which specifies the JMX manager’s IP address and jmx-manager-port, which defines the RMI
connection port.

The default VMware GemFire JMX Manager RMI port is 1099. You may need to modify this default
if 1099 is reserved for other uses.

Using Out-of-the-Box RMI Connectors

If for some reason you need to use standard JMX RMI in your deployment for other monitoring
purposes, set the VMware GemFire property jmx-manager-port to O on any members where you
want to use standard JMX RMI.

If you use out-of-the-box JMX RMI instead of starting an embedded VMware GemFire JMX
Manager, you should consider setting -Dsun.rmi.dgc.server.gcInterval=Long.MAX VALUE-1 when
starting the JVM for customer applications and client processes. Every VMware GemFire process
internally sets this setting before creating and starting the JMX RMI connector in order to prevent
full garbage collection from pausing processes.

Executing gfsh Commands through the Management API

You can also use management APIs to execute gfsh commands programmatically.

Note: If you start the JMX Manager programmatically and wish to enable command processing, you
must also add the absolute path of gfsh-dependencies.jar (located in SGEMFIRE/1ib of your
VMware GemFire installation) to the CLASSPATH of your application. Do not copy this library to
your CLASSPATH because this library refers to other dependencies in sGEMFIRE/1ib by a relative
path. The following code samples demonstrate how to process and execute gfsh commands using
the Java API.

First, retrieve a CommandService instance.

Note: The CommandService API is currently only available on JMX Manager nodes.

// Get existing CommandService instance or create new if it doesn't exist

commandService = CommandService.createLocalCommandService (cache) ;

// OR simply get CommandService instance if it exists, don't create new one

CommandService commandService = CommandService.getUsablelLocalCommandService () ;

Next, process the command and its output:

// Process the user specified command String

Result regionListResult = commandService.processCommand("list regions");
// Iterate through Command Result in String form line by line

while (regionListResult.hasNextLine()) {

System.out.println(regionListResult.nextLine());

VMware by Broadcom

270

VMware GemFire 9.10 Documentation

Alternatively, instead of processing the command, you can create a CommandStatement Object
from the command string which can be re-used.

// Create a command statement that can be reused multiple times

CommandStatement showDeadLocksCmdStmt = commandService.createCommandStatement
("show dead-locks --file=deadlock-info.txt");

Result showDeadlocksResult = showDeadLocksCmdStmt.process|();

// If there is a file as a part of Command Result, it can be saved

// to a specified directory

if (showDeadlocksResult.hasIncomingFiles()) {
showDeadlocksResult.saveIncomingFiles (System.getProperty ("user.dir") +

"/commandresults") ;

Managing Heap and Off-heap Memory

By default, VMware GemFire uses the JVM heap. VMware GemFire also offers an option to store
data off heap. This section describes how to manage heap and off-heap memory to best support
your application.

Tuning the JVM’s Garbage Collection Parameters

Because VMware GemFire is specifically designed to manipulate data held in memory, you can
optimize your application’s performance by tuning the way VMware GemFire uses the JVM heap.

See your JVM documentation for all JVM-specific settings that can be used to improve garbage
collection (GC) response. At a minimum, do the following:

1. Set the initial and maximum heap switches, -xms and -xmx, to the same values. The gfsh
start server options --initial-heap and --max-heap accomplish the same purpose, with
the added value of providing resource manager defaults such as eviction threshold and
critical threshold.

2. Configure your JVM for concurrent mark-sweep (CMS) garbage collection.

3. If your JVM allows, configure it to initiate CMS collection when heap use is at least 10%
lower than your setting for the resource manager eviction-heap-percentage. You want the
collector to be working when VMware GempFire is evicting or the evictions will not result in
more free memory. For example, if the eviction-heap-percentage is set to 65, set your
garbage collection to start when the heap use is no higher than 55%.

JVM CMS switch flag CMS initiation (begin at heap % N)

Sun HotSpot -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=N
JRockit -Xgc:gencon -XXgcTrigger:N

IBM -Xgcpolicy:gencon N/A

For the gfsh start server command, pass these settings with the --J switch, for example:

--J=-XX:+UseConcMarkSweepGC.

The following is an example of setting JVM for an application:

VMware by Broadcom 271

VMware GemFire 9.10 Documentation

$ java app.MyApplication -Xms=30m -Xmx=30m -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOc

cupancyFraction=60

Note: Do not use the -xx:+UseCompressedStrings and -Xx:+UseStringCache JVM configuration
properties when starting up servers. These JVM options can cause issues with data corruption and
compatibility.

Or, using gfsh:

$ gfsh start server --name=app.MyApplication --initial-heap=30m --max-heap=30m \
--J=-XX:+UseConcMarkSweepGC --J=-XX:CMSInitiatingOccupancyFraction=60

Using the VMware GemFire Resource Manager

The VMware GemFire resource manager works with your JVM’s tenured garbage collector to
control heap use and protect your member from hangs and crashes due to memory overload.

The VMware GemFire resource manager prevents the cache from consuming too much memory
by evicting old data. If the garbage collector is unable to keep up, the resource manager refuses
additions to the cache until the collector has freed an adequate amount of memory.

The resource manager has two threshold settings, each expressed as a percentage of the total
tenured heap. Both are deactivated by default.

1. Eviction Threshold. Above this, the manager orders evictions for all regions with eviction-
attributes set tO 1ru-heap-percentage. This prompts dedicated background evictions,
independent of any application threads and it also tells all application threads adding data to
the regions to evict at least as much data as they add. The JVM garbage collector removes
the evicted data, reducing heap use. The evictions continue until the manager determines
that heap use is again below the eviction threshold.

The resource manager enforces eviction thresholds only on regions whose LRU eviction
policies are based on heap percentage. Regions whose eviction policies based on entry
count or memory size use other mechanisms to manage evictions. See Eviction for more
detail regarding eviction policies.

2. Critical Threshold. Above this, all activity that might add data to the cache is refused. This
threshold is set above the eviction threshold and is intended to allow the eviction and GC
work to catch up. This JVM, all other JVMs in the distributed system, and all clients to the
system receive LowMemoryException for operations that would add to this critical member’s
heap consumption. Activities that fetch or reduce data are allowed. For a list of refused
operations, see the Javadocs for the ResourceManager method setCriticalHeapPercentage.

Critical threshold is enforced on all regions, regardless of LRU eviction policy, though it can
be set to zero to deactivate its effect.

VMware by Broadcom

272

VMware GemFire 9.10 Documentation

Eviction Critical
Threshold Threshold

NORMAL LOSS OF LOSS OF FULL

OPERATION IN-MEMORY DATA FUNCTIONALITY GC

AND PERFOBMANCE

Resource Manager VM

blocks additions to HANG
member’s cache.

Resource Manager runs heap LRU evictions in all
available regions. GC works to clear evicted objects. OME

0%

Percent of Tenured Memory Used 100%

When heap use passes the eviction threshold in either direction, the manager logs an info-level
message.

When heap use exceeds the critical threshold, the manager logs an error-level message. Avoid
exceeding the critical threshold. Once identified as critical, the VMware GemFire member becomes
a read-only member that refuses cache updates for all of its regions, including incoming distributed
updates.

For more information, see org.apache.geode.cache.control.ResourceManager in the online API
documentation.

How Background Eviction Is Performed

When the manager kicks off evictions:

1.

From all regions in the local cache that are configured for heap LRU eviction, the
background eviction manager creates a randomized list containing one entry for each
partitioned region bucket (primary or secondary) and one entry for each non-partitioned
region. So each partitioned region bucket is treated the same as a single, non-partitioned
region.

The background eviction manager starts four evictor threads for each processor on the local
machine. The manager passes each thread its share of the bucket/region list. The manager
divides the bucket/region list as evenly as possible by count, and not by memory
consumption.

Each thread iterates round-robin over its bucket/region list, evicting one LRU entry per
bucket/region until the resource manager sends a signal to stop evicting.

See also Memory Requirements for Cached Data.

Controlling Heap Use with the Resource Manager

VMware by Broadcom

273

VMware GemFire 9.10 Documentation

Resource manager behavior is closely tied to the triggering of Garbage Collection (GC) activities,
the use of concurrent garbage collectors in the JVM, and the number of parallel GC threads used
for concurrency.

The recommendations provided here for using the manager assume you have a solid understanding
of your Java VM’s heap management and garbage collection service.

The resource manager is available for use in any VMware GemFire member, but you may not want
to activate it everywhere. For some members it might be better to occasionally restart after a hang
or OME crash than to evict data and/or refuse distributed caching activities. Also, members that do
not risk running past their memory limits would not benefit from the overhead the resource
manager consumes. Cache servers are often configured to use the manager because they
generally host more data and have more data activity than other members, requiring greater
responsiveness in data cleanup and collection.

For the members where you want to activate the resource manager:
1. Configure VMware GemFire for heap LRU management.

2. Set the JVM GC tuning parameters to handle heap and garbage collection in conjunction
with the VMware GemFire manager.

3. Monitor and tune heap LRU configurations and your GC configurations.

4. Before going into production, run your system tests with application behavior and data
loads that approximate your target systems so you can tune as well as possible for
production needs.

5. In production, keep monitoring and tuning to meet changing needs.

Configure VMware GemFire for Heap LRU Management

The configuration terms used here are cache.xml elements and attributes, but you can also

configure through gfsh and the org.apache.geode.cache.control.ResourceManager and Region
APls.

1. When starting up your server, set initial-heap and max-heap to the same value.

2. Set the resource-manager critical-heap-percentage threshold. This should be as as close
to 100 as possible while still low enough so the manager’s response can prevent the
member from hanging or getting outofMemoryError. The threshold is zero (no threshold) by
default. Note: When you set this threshold, it also enables a query monitoring feature that
prevents most out-of-memory exceptions when executing queries or creating indexes. See
Monitoring Queries for Low Memory.

3. Set the resource-manager eviction-heap-percentage threshold to a value lower than the
critical threshold. This should be as high as possible while still low enough to prevent your
member from reaching the critical threshold. The threshold is zero (no threshold) by default.

4. Decide which regions will participate in heap eviction and set their eviction-attributes to
lru-heap-percentage. See Eviction. The regions you configure for eviction should have
enough data activity for the evictions to be useful and should contain data your application
can afford to delete or offload to disk.

gfsh example:

VMware by Broadcom

274

VMware GemFire 9.10 Documentation

gfsh>start server --name=serverl --initial-heap=30m --max-heap=30m \

--critical-heap-percentage=80 --eviction-heap-percentage=60
cache.xml example:

<cache>
<region refid="REPLICATE HEAP LRU" />

<resource-manager critical-heap-percentage="80" eviction-heap-percentage="60"/>
</cache>

Note: The resource-manager specification must appear after the region declarations in your
cache.xml file.

Set the JVM GC Tuning Parameters

If your JVM allows, configure it to initiate concurrent mark-sweep (CMS) garbage collection when
heap use is at least 10% lower than your setting for the resource manager eviction-heap-
percentage. You want the collector to be working when VMware GemFire is evicting or the
evictions will not result in more free memory. For example, if the eviction-heap-percentage is set
to 65, set your garbage collection to start when the heap use is no higher than 55%.

Monitor and Tune Heap LRU Configurations

In tuning the resource manager, your central focus should be keeping the member below the
critical threshold. The critical threshold is provided to avoid member hangs and crashes, but
because of its exception-throwing behavior for distributed updates, the time spent in critical
negatively impacts the entire distributed system. To stay below critical, tune so that the VMware
GemFire eviction and the JVM’s GC respond adequately when the eviction threshold is reached.

Use the statistics provided by your JVM to make sure your memory and GC settings are sufficient
for your needs.

The VMware GemFire ResourceManagerStats provide information about memory use and the
manager thresholds and eviction activities.

If your application spikes above the critical threshold on a regular basis, try lowering the eviction
threshold. If the application never goes near critical, you might raise the eviction threshold to gain
more usable memory without the overhead of unneeded evictions or GC cycles.

The settings that will work well for your system depend on a number of factors, including these:

« The size of the data objects you store in the cache: Very large data objects can be
evicted and garbage collected relatively quickly. The same amount of space in use by many
small objects takes more processing effort to clear and might require lower thresholds to
allow eviction and GC activities to keep up.

« Application behavior: Applications that quickly put a lot of data into the cache can more
easily overrun the eviction and GC capabilities. Applications that operate more slowly may

be more easily offset by eviction and GC efforts, possibly allowing you to set your thresholds

higher than in the more volatile system.

VMware by Broadcom

275

VMware GemFire 9.10 Documentation

e Your choice of JVM: Each JVM has its own GC behavior, which affects how efficiently the
collector can operate, how quickly it kicks in when needed, and other factors.

In this sample statistics chart in VSD, the manager’s evictions and the JVM’s GC efforts are good
enough to keep heap use very close to the eviction threshold. The eviction threshold could be
increased to a setting closer to the critical threshold, allowing the member to keep more data in
tenured memory without the risk of overwhelming the JVM. This chart also shows the blocks of
times when the manager was running cache evictions.

Chart Line ﬂ b Filar _‘l_I,T

RLLRTL T RTR AL

polte 3E s Z0rax SS0mERT | SIS o TATIE

!

|I.I S l"l'—\J'—) A ||r’|'| PAs L RS L pe T U T N "I.ﬂ Lt Ve —
LT b) A L S i L A T A et e 1 Y

L5200 ey
Time & i
. — 1. Reoowcetdaracgerstals, o icaMhrachad
L\"a ol Reopurcebianager stals, e 0onThreshokd
—— 5. Reoourcadaraaerstals, teruredbasp Joad
6. Redouwrcabtaraagerstals, aqdonEtanEq-ets evdziiznzlolE-ets

In this next chart, it looks like the manager’s evictions are kicking in at the right time, but the CMS
garbage collector is not starting soon enough to keep memory use in check. It might be that it is
not configured to start as soon as it should. It should be started just before the eviction threshold is
reached. Or there might be some other issue with the garbage collection service.

VMware by Broadcom 276

VMware GemFire 9.10 Documentation

Chart Llne L n e n I:-:-Isc’.bna ﬂ I'etszoInz: = | ﬂ RRTRIE
= sars HT nn OO0 n=s < 0 nea= - M3 s 7 NaMaT™ o ~
£ sminmnn - e
C T
C .=
e § —— '
- =
1 ~
c .
L 00000 — A
v I
g - d
= -
o o
v -
c -~
< L J
I s =
T T T T
B TN UiE1:qU Up 24z
* Awchphe =i ti o= -es_mcpe e e honing iee acen Gl GRS ds s awasks 24207
[?\,.% — TEEOUr G AN R SHElAThreshald 1. REsiu endsnsgsratsts heapl-HcaEysanis
L SeEEouUrcaMansgess swerlonsatsveme = 5. REsiurTenisnagsrEtsts tEnotazHasglasd
— eSOl A kAN A e , 2= hnThrashold G, CINZU EMMak e ean, coleclisnz e

Resource Manager Example Configurations

These examples set the critical threshold to 85 percent of the tenured heap and the eviction

threshold to 75 percent. The region bigbataStore is configured to participate in the resource
manager’s eviction activities.

e« gfsh Example:

gfsh>start server --name=serverl --initial-heap=30m --max-heap=30m \

--critical-heap-percentage=85 --eviction-heap-percentage=75

gfsh>create region --name=bigDataStore --type=PARTITION_ HEAP LRU

o XML:

<cache>

<region name="bigDataStore" refid="PARTITION_HEAP_LRU"/>

<resource-manager critical-heap-percentage="85" eviction-heap-percentage="75"/>
</cache>

Note: The resource-manager specification must appear after the region declarations in your
cache.xml file.

o Java:
Cache cache = CacheFactory.create();
ResourceManager rm = cache.getResourceManager () ;

rm.setCriticalHeapPercentage (85) ;

rm.setEvictionHeapPercentage (75) ;

RegionFactory rf =

cache.createRegionFactory (RegionShortcut.PARTITION HEAP LRU);

Region region = rf.create("bigDataStore");

VMware by Broadcom 277

VMware GemFire 9.10 Documentation

Use Case for the Example Code

This is one possible scenario for the configuration used in the examples:
e A 64-bit Java VM with 8 Gb of heap space on a 4 CPU system running Linux.

e« The data region bigDataStore has approximately 2-3 million small values with average entry
size of 512 bytes. So approximately 4-6 Gb of the heap is for region storage.

¢ The member hosting the region also runs an application that may take up to 1 Gb of the
heap.

e« The application must never run out of heap space and has been crafted such that data loss
in the region is acceptable if the heap space becomes limited due to application issues, so
the default 1ru-heap-percentage action destroy is suitable.

¢ The application’s service guarantee makes it very intolerant of outofMemoryException errors.

Testing has shown that leaving 15% head room above the critical threshold when adding
data to the region gives 99.5% uptime with no outOfMemoryException €rrors, when
configured with the CMS garbage collector using -xx:CMSInitiatingOccupancyFraction=70.

Managing Off-Heap Memory
VMware GemFire can be configured to store region values in off-heap memory, which is memory
within the JVM that is not subject to Java garbage collection.

Garbage collection (GC) within a JVM can prove to be a performance impediment. A server cannot
exert control over when garbage collection within the JVM heap memory takes place, and the
server has little control over the triggers for invocation. Off-heap memory offloads values to a
storage area that is not subject to Java GC. By taking advantage of off-heap storage, an application
can reduce the amount of heap storage that is subject to GC overhead.

Off-heap memory works in conjunction with the heap, it does not replace it. The keys are stored in
heap memory space. VMware GemFire’s own memory manager handles the off-heap memory with
better performance than the Java garbage collector would for certain sets of region data.

The resource manager monitors the contents of off-heap memory and invokes memory
management operations in accordance with two thresholds similar to those used for monitoring the
JVM heap: eviction-off-heap-percentage and critical-off-heap-percentage.

On-heap and Off-heap Objects

The following objects are always stored in the JVM heap:
¢ Region metadata
¢ Entry metadata
o Keys
e Indexes
e Subscription queue elements
The following objects can be stored in off-heap memory:

¢ Values - maximum value size is 2GB

VMware by Broadcom

278

VMware GemFire 9.10 Documentation

+« Reference counts
e List of free memory blocks
¢ WAN queue elements

Note: Do not use functional range indexes with off-heap data, as they are not supported. An
attempt to do so generates an exception.

Off-heap Recommendations

Off-heap storage is best suited to data patterns where:
e Stored values are relatively uniform in size
e Stored values are mostly less than 128K in size
¢ The usage patterns involve cycles of many creates followed by destroys or clear
e« The values do not need to be frequently deserialized
« Many of the values are long-lived reference data

Be aware that VMware GemFire has to perform extra work to access the data stored in off-heap
memory since it is stored in serialized form. This extra work may cause some use cases to run
slower in an off-heap configuration, even though they use less memory and avoid garbage
collection overhead. However, even with the extra deserialization, off-heap storage may give you
the best performance. Features that may increase overhead include

o frequent updates
o stored values of widely varying sizes
e deltas

e qQueries

Implementation Details

The off-heap memory manager is efficient at handling region data values that are all the same size
or are of fixed sizes. With fixed and same-sized data values allocated within the off-heap memory,
freed chunks can often be re-used, and there is little or no need to devote cycles to
defragmentation.

Region values that are less than or equal to eight bytes in size will not reside in off-heap memory,
even if the region is configured to use off-heap memory. These very small size region values reside
in the JVM heap in place of a reference to an off-heap location. This performance enhancement
saves space and load time.

Controlling Off-heap Use with the Resource Manager

The VMware GemFire resource manager controls off-heap memory by means of two thresholds, in
much the same way as it does JVM heap memory. See Using the VMware GemFire Resource
Manager. The resource manager prevents the cache from consuming too much off-heap memory
by evicting old data. If the off-heap memory manager is unable to keep up, the resource manager

VMware by Broadcom 279

VMware GemFire 9.10 Documentation

refuses additions to the cache until the off-heap memory manager has freed an adequate amount
of memory.

The resource manager has two threshold settings, each expressed as a percentage of the total off-
heap memory. Both are disabled by default.

1.

Eviction Threshold. The percentage of off-heap memory at which eviction should begin.
Evictions continue until the resource manager determines that off-heap memory use is
again below the eviction threshold. Set the eviction threshold with the eviction-off-heap-
percentage region attribute. The resource manager enforces an eviction threshold only on
regions with the HEAP_LRU characteristic. If critical threshold is non-zero, the default
eviction threshold is 5% below the critical threshold. If critical threshold is zero, the default
eviction threshold is 80% of total off-heap memory.

The resource manager enforces eviction thresholds only on regions whose LRU eviction
policies are based on heap percentage. Regions whose eviction policies based on entry
count or memory size use other mechanisms to manage evictions. See Eviction for more
detail regarding eviction policies.

Critical Threshold. The percentage of off-heap memory at which the cache is at risk of
becoming inoperable. When cache use exceeds the critical threshold, all activity that might
add data to the cache is refused. Any operation that would increase consumption of off-
heap memory throws a LowMemoryException instead of completing its operation. Set the
critical threshold with the critical-off-heap-percentage region attribute.

Critical threshold is enforced on all regions, regardless of LRU eviction policy, though it can
be set to zero to disable its effect.

Specifying Off-heap Memory

To use off-heap memory, specify the following options when setting up servers and regions:

Start the JVM as described in Tuning the JVM’s Garbage Collection Parameters. In
particular, set the initial and maximum heap sizes to the same value. Sizes less than 32GB
are optimal when you plan to use off-heap memory.

From gfsh, start each server that will support off-heap memory with a non-zero off-heap-
memory-size value, specified in megabytes (m) or gigabytes (g). If you plan to use the
resource manager, specify critical threshold, eviction threshold, or (in most cases) both.

Example:
gfsh> start server --name=serverl --initial-heap=10G --max-heap=10G --off-heap-
memory-size=200G \
--lock-memory=true --critical-off-heap-percentage=90 --eviction-off-heap-percen
tage=80

Mark regions whose entry values should be stored off-heap by setting the off-heap region
attribute to true Configure other region attributes uniformly for all members that host data
for the same region. .

Example:

gfsh>create region --name=regionl --type=PARTITION HEAP LRU --off-heap=true

VMware by Broadcom

280

VMware GemFire 9.10 Documentation

gfsh Off-heap Support

gfsh supports off-heap memory in server and region creation operations and in reporting functions:

alter disk-store
--off-heap=(true | false) resets the off-heap attribute for the specified region. See alter disk-
store for details.

create region
--off-heap=(true | false)sets the off-heap attribute for the specified region. See create region
for details.

describe member
displays off-heap size

describe offline-disk-store
shows if an off-line region is off-heap

describe region
displays the value of a region’s off-heap attribute

show metrics
includes off-heap metrics maxMemory, freeMemory, usedMemory, objects, fragmentation and

defragmentationTime

start server
supports off-heap options --1ock-memory, -—off-heap-memory-size, --critical-off-heap-
percentage, and --eviction-off-heap-percentage See start server for details.

ResourceManager API

The org.apache.geode.cache.control.ResourceManager interface defines methods that support off-
heap use:

e public void setCriticalOffHeapPercentage (float Percentage)
e public float getCriticalOffHeapPercentage ()
e public void setEvictionOffHeapPercentage (float Percentage)
e public float getEvictionOffHeapPercentage ()
The gemfire.properties file supports one off-heap property:
off-heap-memory-size

Specifies the size of off-heap memory in megabytes (m) or gigabytes (g). For example:

off-heap-memory-size=4096m

off-heap-memory-size=120g

See gemfire.properties and gfsecurity.properties (VMware GemFire Properties) for details.
The cache.xml file supports one region attribute:

off-heap(=true | false)
Specifies that the region uses off-heap memory; defaults to false. For example:

VMware by Broadcom 281

VMware GemFire 9.10 Documentation

<region-attributes
off-heap="true">

</region-attributes>

See <region-attributes> for details.
The cache.xml file supports two resource manager attributes:

critical-off-heap-percentage=value
Specifies the percentage of off-heap memory at or above which the cache is considered in danger
of becoming inoperable due to out of memory exceptions. See <resource-manager> for details.

eviction-off-heap-percentage=value

Specifies the percentage of off-heap memory at or above which eviction should begin. Can be set
for any region, but actively operates only in regions configured for HEAP_LRU eviction. See
<resource-manager> for details.

For example:

<cache>

<resource-manager
critical-off-heap-percentage="99.9"

eviction-off-heap=-percentage="85"/>

</cache>

Tuning Off-heap Memory Usage

VMware GemFire collects statistics on off-heap memory usage which you can view with the gfsh
show metrics command. See Off-Heap (OffHeapMemoryStats) for a description of available off-
heap statistics.

Off-heap memory is optimized, by default, for storing values of 128 KB in size. This figure is known
as the “maximum optimized stored value size,” which we will denote here by
maxOptStoredValSize. If your data typically runs larger, you can enhance performance by
increasing the OFF_HEAP_FREE_LIST_COUNT system parameter to a number larger than
maxOptStoredvalSize/8, where maxOptStoredValSize is expressed in KB (1024 bytes). So, the
default values correspond to:

128 KB / 8 = (128 * 1024) / 8 = 131,072 / 8 = 16,384
-Dgemfire.OFF HEAP FREE LIST COUNT=16384

To optimize for a maximum optimized stored value size that is twice the default, or 256 KB, the free
list count should be doubled:

-Dgemfire.OFF HEAP FREE LIST COUNT=32768

During the tuning process, you can toggle the off-heap region attribute on and off, leaving other
off-heap settings and parameters in place, in order to compare your application’s on-heap and off-
heap performance.

VMware by Broadcom 282

VMware GemFire 9.10 Documentation

Locking Memory (Linux Systems Only)

On Linux systems, you can lock memory to prevent the operating system from paging out heap or

off-heap memory.

To use this feature:

1.

Configure the operating system limits for locked memory. Increase the operating system’s
ulimit -1 value (the maximum size that may be locked in memory) from the default
(typically 32 KB or 64 KB) to at least the total amount of memory used by VMware GemFire
for on-heap or off-heap storage. To view the current setting, enter ulimit -a at a shell
prompt and find the value for max locked memory:

ulimit -a

max locked memory (kbytes, -1) 64

Use ulimit -1 max-size-in-kbytes to raise the limit. For example, to set the locked
memory limit to 64 GB:

ulimit -1 64000000

Using locked memory in this manner increases the time required to start VMware GemFire.
The additional time required to start VMware GemFire depends on the total amount of
memory used, and can range from several seconds to 10 minutes or more. To improve
startup time and reduce the potential of member timeouts, instruct the kernel to free
operating system page caches just before starting a VMware GemFire member by issuing
the following command:

$ echo 1 > /proc/sys/vm/drop caches

Start each VMware GemFire data store with the gfsh -lock-memory=true option. If you
deploy more than one server per host, begin by starting each server sequentially. Starting
servers sequentially avoids a race condition in the operating system that can cause failures
(even machine crashes) if you accidentally over-allocate the available RAM. After you verify
that the system configuration is stable, you can then start servers concurrently.

Disk Storage

With VMware GemFire disk stores, you can persist data to disk as a backup to your in-memory
copy and overflow data to disk when memory use gets too high.

How Disk Stores Work
Overflow and persistence use disk stores individually or together to store data.
Disk Store File Names and Extensions

Disk store files include store management files, access control files, and the operation log,
or oplog, files, consisting of one file for deletions and another for all other operations.

Disk Store Operation Logs

VMware by Broadcom 283

VMware GemFire 9.10 Documentation

At creation, each operation log is initialized at the disk store’s max-oplog-size, with the size
divided between the crf and drf files. When the oplog is closed, VMware GemFire shrinks
the files to the space used in each file.

« Configuring Disk Stores

In addition to the disk stores you specify, VMware GemFire has a default disk store that it
uses when disk use is configured with no disk store name specified. You can modify default
disk store behavior.

¢« Optimizing a System with Disk Stores
Optimize availability and performance by following the guidelines in this section.
e Start Up and Shut Down with Disk Stores

This section describes what happens during startup and shutdown and provides procedures
for those operations.

« Disk Store Management

The gfsh command-line tool has a number of options for examining and managing your disk
stores. The gfsh tool, the cache.xml file and the DiskStore APIs are your management tools
for online and offline disk stores.

+ Creating Backups for System Recovery and Operational Management

A backup is a copy of persisted data from a disk store. A backup is used to restore the disk
store to the state it was in when the backup was made. The appropriate back up and
restore procedures differ based upon whether the cluster is online or offline. An online
system has currently running members. An offline system does not have any running
members.

How Disk Stores Work

Overflow and persistence use disk stores individually or together to store data.
Disk storage is available for these items:
¢ Regions. Persist and/or overflow data from regions.

e« Server’s client subscription queues. Overflow the messaging queues to control memory
use.

« Gateway sender queues. Persist these for high availability. These queues always overflow.

« PDX serialization metadata. Persist metadata about objects you serialize using VMware
GemFire PDX serialization.

Each member has its own set of disk stores, and they are completely separate from the disk stores
of any other member. For each disk store, define where and how the data is stored to disk. You
can store data from multiple regions and queues in a single disk store.

This figure shows a member with disk stores D through R defined. The member has two persistent
regions using disk store D and an overflow region and an overflow queue using disk store R.

VMware by Broadcom 284

VMware GemFire 9.10 Documentation

Cadhes Server
Fogion & Fegion 20
distritnted- acdk distribngted-ad
persistent Reiot, B LEIT orerflovr
dick-store-rane=D persictart partitioned dick-ctore-ratne=F
dicki-store-turne=Ir Tt suheoipt
orerflonar
Cchied ey ard weahaes dick-ctore-turne=F

¥ & Disk Stores >

DiskStore R fles

What VMware GemFire Writes to the Disk Store

VMware GemFire writes the following to the disk store:

Persisted and overflowed data as specified when the disk store was created and configured

The members that host the store and information on their status, such as which members
are online and which members are offline and time stamps

A disk store identifier

Which regions are in the disk store, specified by region name and including selected
attributes

Names of colocated regions on which the regions in the disk store depend

A record of all operations on the regions

VMware GemFire does not write indexes to disk.

Disk Store State

The files for a disk store are used by VMware GemFire as a group. Treat them as a single entity. If
you copy them, copy them all together. Do not change the file names.

Disk store access and management differs according to whether the member is online or offline.
While a member is running, its disk stores are online. When the member exits and is not running,
its disk stores are offline.

Online, a disk store is owned and managed by its member process. To run operations on an
online disk store, use API calls in the member process, or use the gfsh command-line
interface.

Offline, the disk store is just a collection of files in the host file system. The files are
accessible based on file system permissions. You can copy the files for backup or to move
the member’s disk store location. You can also run some maintenance operations, such as
file compaction and validation, by using the gfsh command-line interface. When offline, the
disk store’s information is unavailable to the cluster. For partitioned regions, region data is
split between multiple members, and therefore the start up of a member is dependent on

VMware by Broadcom

285

VMware GemFire 9.10 Documentation

all members, and must wait for all members to be online. An attempt to access an entry
that is stored on disk by an offline member results in a PartitionOfflineException.

Disk Store File Names and Extensions

Disk store files include store management files, access control files, and the operation log, or oplog,
files, consisting of one file for deletions and another for all other operations.

The next tables describe file names and extensions; they are followed by example disk store files.

File Names

File names have three parts: usage identifier, disk store name, and oplog sequence number.

First Part of File Name: Usage Identifier

Values Used for Examples
OVERFLO Oplog data from overflow regions and queues only. OVERFLOWoverflowDS1_1.crf
W
BACKUP Oplog data from persistent and persistent+overflow regions BACKUPoverflowDST1.if,
and queues. BACKUPDEFAULT.if
DRLK_IF Access control - locking the disk store. DRLK_IFoverflowDS1.1k,

DRLK_IFDEFAULT.Ik

Second Part of File Name: Disk Store Name

Values Used for Examples
<disk store Non-default disk stores. name=*“overflowDS1”
name> DRLK_IFoverflowDS1.lk, name="“persistDS1”

BACKUPpersistDS1_1.crf

DEFAULT Default disk store name, used when persistence or DRLK_IFDEFAULT.Ik,
overflow are specified on a region or queue but no disk BACKUPDEFAULT_1.crf
store is named.

Third Part of File Name: oplog Sequence Number

Values Used for Examples
Sequence numberinthe Oplog data files only. OVERFLOWoverflowDS1_1.crf, BACKUPpersistDS1_2.crf,
format _n Numbering starts with 1. BACKUPpersistDS1_3.crf

File Extensions

File
. Used for Notes
extension
if Disk store metadata Stored in the first disk-dir listed for the store. Negligible size - not
considered in size control.
Ik Disk store access control Stored in the first disk-dir listed for the store. Negligible size - not

considered in size control.

VMware by Broadcom

286

VMware GemFire 9.10 Documentation

File
. Used for Notes
extension
crf Oplog: create, update, and Pre-allocated 90% of the total max-oplog-size at creation.
invalidate operations
drf Oplog: delete operations Pre-allocated 10% of the total max-oplog-size at creation.
krf Oplog: key and crf offset Created after the oplog has reached the max-oplog-size. Used to

information improve performance at startup.
Example files for disk stores persistDS1 and overflowDST:

bash-2.05$% 1ls -tlr persistDatal/

total 8

—IW-IW-Ir-- 1 person users 188 Mar 4 06:17 BACKUPpersistDS1.if
—IW-rw-r--— 1l person users 0 Mar 4 06:18 BACKUPpersistDS1 1.drf
—rw-rw-r-- 1 person users 38 Mar 4 06:18 BACKUPpersistDS1 l.crf

bash-2.05$%$ 1ls -tlr overflowDatal/
total 1028

“TW-rW-r-- 1 person users 0 Mar 4 06:21 DRLK IFoverflowDS1l.1lk
“IrwW-rw-r-- 1 person users 0 Mar 4 06:21 BACKUPoverflowDS1l.if
“rW-Irw-r-- 1 person users 1073741824 Mar 4 06:21 OVERFLOWoverflowDS1l 1l.crf

Example default disk store files for a persistent region:

bash-2.05$% 1ls -tlr

total 106

—IW-rw-r--— 1l person users 1010 Mar 8 15:01 defTest.xml
drwxrwxr-x 2 person users 512 Mar 8 15:01 backupDirectory
“rW-Irw-r-- 1 person users 0 Mar 8 15:01 DRLK IFDEFAULT.lk
—“ITW-rw-r-- 1 person users 107374183 Mar 8 15:01 BACKUPDEFAULT 1.drf
“ITW-rWw-r-- 1 person users 966367641 Mar 8 15:01 BACKUPDEFAULT 1l.crf
—rw-rw-r-- 1 person users 172 Mar 8 15:01 BACKUPDEFAULT.if

Disk Store Operation Logs

At creation, each operation log is initialized at the disk store’s max-oplog-size, with the size divided
between the crf and drf files. When the oplog is closed, VMware GemFire shrinks the files to the
space used in each file.

After the oplog is closed, VMware GemFire also attempts to create a krf file, which contains the
key names as well as the offset for the value within the crf file. Although this file is not required for
startup, if it is available, it will improve startup performance by allowing VMware GemFire to load
the entry values in the background after the entry keys are loaded.

When an operation log is full, VMware GemFire automatically closes it and creates a new log with
the next sequence number. This is called oplog rolling. You can also request an oplog rolling
through the API call biskStore.forceRoll. YOu may want to do this immediately before
compacting your disk stores, so the latest oplog is available for compaction.

Note: Log compaction can change the names of the disk store files. File number sequencing is
usually altered, with some existing logs removed or replaced by newer logs with higher numbering.
VMware GemFire always starts a new log at a number higher than any existing number.

VMware by Broadcom 287

VMware GemFire 9.10 Documentation

This example listing shows the logs in a system with only one disk directory specified for the store.
The first log (BACKUPCacheOverflow 1.crf and BACKUPCacheOverflow 1.drf) has been closed and the
system is writing to the second log.

bash-2.05$%$ 1s -tlra
total 55180

drwxrwxr-x 7 person users 512 Mar 22 13:56

“ITW-rw-r-- 1 person users 0 Mar 22 13:57 BACKUPCacheOverflow 2.drf
—“ITW-rw-r-- 1 person users 426549 Mar 22 13:57 BACKUPCacheOverflow 2.crf
“TW-YrW-r-—- 1 person users 0 Mar 22 13:57 BACKUPCacheOverflow_1.drf
—“ITW-TW-T—— 1 person users 936558 Mar 22 13:57 BACKUPCacheOverflow_l.crf
—IW-Irw-Ir-- 1l person users 1924 Mar 22 13:57 BACKUPCacheOverflow.if
drwxrwxr-x 2 person users 2560 Mar 22 13:57

The system rotates through all available disk directories to write its logs. The next log is always
started in a directory that has not reached its configured capacity, if one exists.

When Disk Store Oplogs Reach the Configured Disk
Capacity

If no directory exists that is within its capacity limits, how VMware GemFire handles this depends
on whether automatic compaction is enabled.

o If auto-compaction is enabled, VMware GemFire creates a new oplog in one of the
directories, going over the limit, and logs a warning that reports:

Even though the configured directory size limit has been exceeded a
new oplog will be created. The current limit is of XXX. The current

space used in the directory is YYY.

Note: When auto-compaction is enabled, dir-size does not limit how much disk space is
used. VMware GemFire will perform auto-compaction, which should free space, but the
system may go over the configured disk limits.

o If auto-compaction is disabled, VMware GemFire does not create a new oplog, operations

in the regions attached to the disk store block, and VMware GemFire logs this error:

Disk is full and rolling is disabled. No space can be created

Configuring Disk Stores

In addition to the disk stores you specify, VMware GemFire has a default disk store that it uses
when disk use is configured with no disk store name specified. You can modify default disk store
behavior.

« Designing and Configuring Disk Stores

You define disk stores in your cache, then you assign them to your regions and queues by
setting the disk-store-name attribute in your region and queue configurations.

« Disk Store Configuration Parameters

VMware by Broadcom 288

VMware GemFire 9.10 Documentation

You define your disk stores by using the gfsh create disk-store command or in <disk-
store> subelements of your cache declaration in cache.xml. All disk stores are available for
use by all of your regions and queues.

« Modifying the Default Disk Store

You can modify the behavior of the default disk store by specifying the attributes you want
for the disk store named “DEFAULT”.

Designing and Configuring Disk Stores

You define disk stores in your cache, then you assign them to your regions and queues by setting

the disk-store-name attribute in your region and queue configurations.

Note: Besides the disk stores you specify, VMware GemFire has a default disk store that it uses
when disk use is configured with no disk store name specified. By default, this disk store is saved to
the application’s working directory. You can change its behavior, as indicated in Create and
Configure Your Disk Stores and Modifying the Default Disk Store.

e« Design Your Disk Stores

o« Create and Configure Your Disk Stores

« Configuring Regions, Queues, and PDX Serialization to Use the Disk Stores

e Configuring Disk Stores on Gateway Senders

Design Your Disk Stores

Before you begin, you should understand VMware GemFire Basic Configuration and Programming.

1. Work with your system designers and developers to plan for anticipated disk storage
requirements in your testing and production caching systems. Take into account space and
functional requirements.

o

For efficiency, separate data that is only overflowed in separate disk stores from
data that is persisted or persisted and overflowed. Regions can be overflowed,
persisted, or both. Server subscription queues are only overflowed.

When calculating your disk requirements, figure in your data modification patterns
and your compaction strategy. VMware GemFire creates each oplog file at the max-
oplog-size, which defaults to 1 GB. Obsolete operations are removed from the
oplogs only during compaction, so you need enough space to store all operations
that are done between compactions. For regions where you are doing a mix of
updates and deletes, if you use automatic compaction, a good upper bound for the
required disk space is

(1 / (compaction_threshold/100)) * data size

where data size is the total size of all the data you store in the disk store. So, for the
default compaction-threshold of 50, the disk space is roughly twice your data size.
Note that the compaction thread could lag behind other operations, causing disk
use to rise temporarily above the upper bound. If you disable automatic compaction,

VMware by Broadcom

289

VMware GemFire 9.10 Documentation

the amount of disk required depends on how many obsolete operations accumulate
between manual compactions.

2. Work with your host system administrators to determine where to place your disk store
directories, based on your anticipated disk storage requirements and the available disks on
your host systems.

o Make sure the new storage does not interfere with other processes that use disk on
your systems. If possible, store your files to disks that are not used by other
processes, including virtual memory or swap space. If you have multiple disks
available, for the best performance, place one directory on each disk.

o Use different directories for different members. You can use any number of
directories for a single disk store.

Create and Configure Your Disk Stores

1. In the locations you have chosen, create all directories you will specify for your disk stores
to use. VMware GemFire throws an exception if the specified directories are not available
when a disk store is created. You do not need to populate these directories with anything.

2. Open a gfsh prompt and connect to the cluster.
3. At the gfsh prompt, create and configure a disk store:
o Specify the name (--name) of the disk-store.

= Choose disk store names that reflect how the stores should be used and
that work for your operating systems. Disk store names are used in the disk
file names:

= Use disk store names that satisfy the file naming requirements for
your operating system. For example, if you store your data to disk in
a Windows system, your disk store names could not contain any of
these reserved characters, < >:"/\ | ? *.

= Do not use very long disk store names. The full file names must fit
within your operating system limits. On Linux, for example, the
standard limitation is 255 characters.

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480

o Configure the directory locations (--dir) and the maximum space to use for the
store (specified after the disk directory name by # and the maximum number in
megabytes).

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480

o Optionally, you can configure the store’s file compaction behavior. In conjunction
with this, plan and program for any manual compaction. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480

\

VMware by Broadcom

VMware GemFire 9.10 Documentation

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t

rue

o If needed, configure the maximum size (in MB) of a single oplog. When the current
files reach this size, the system rolls forward to a new file. You get better
performance with relatively small maximum file sizes. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480
\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t
rue \

--max-oplog-size=512

o If needed, modify queue management parameters for asynchronous queueing to
the disk store. You can configure any region for synchronous or asynchronous
queueing (region attribute disk-synchronous). Server queues and gateway sender
gueues always operate synchronously. When either the queue-size (number of
operations) or time-interval (milliseconds) is reached, enqueued data is flushed to
disk. You can also synchronously flush unwritten data to disk through the piskStore
flushToDisk method. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480
\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t
rue \

--max-oplog-size=512 --queue-size=10000 --time-interval=15

o If needed, modify the size (specified in bytes) of the buffer used for writing to disk.
Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480
\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t
rue \

--max-oplog-size=512 --queue-size=10000 --time-interval=15 --write-buffer
-size=65536

o If needed, modify the disk-usage-warning-percentage and disk-usage-critical-
percentage thresholds that determine the percentage (default: 90%) of disk usage
that will trigger a warning and the percentage (default: 99%) of disk usage that will
generate an error and shut down the member cache. Example:

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow data#20480
\

--compaction-threshold=40 --auto-compact=false --allow-force-compaction=t
rue \

--max-oplog-size=512 --queue-size=10000 --time-interval=15 --write-buffer
-size=65536 \

--disk-usage-warning-percentage=80 --disk-usage-critical-percentage=98

The following is the complete disk store cache.xml configuration example:

<disk-store name="serverOverflow" compaction-threshold="40"

auto-compact="false" allow-force-compaction="true"

VMware by Broadcom

VMware GemFire 9.10 Documentation

max-oplog-size="512" queue-size="10000"
time-interval="15" write-buffer-size="65536"
disk-usage-warning-percentage="80"
disk-usage-critical-percentage="98">
<disk-dirs>

<disk-dir>c:\overflow_data</disk-dir>

<disk-dir dir-size="20480">d:\overflow data</disk-dir>
</disk-dirs>

</disk-store>

Note: As an alternative to defining cache.xml on every server in the cluster- if you have the cluster
configuration service enabled, when you create a disk store in gfsh, you can share the disk store’s
configuration with the rest of cluster. See Overview of the Cluster Configuration Service.

Modifying Disk Stores

You can modify an offline disk store by using the alter disk-store command. If you are modifying the
default disk store configuration, use “DEFAULT” as the disk-store name.

Configuring Regions, Queues, and PDX Serialization to Use
the Disk Stores
The following are examples of using already created and named disk stores for Regions, Queues,
and PDX Serialization.
Example of using a disk store for region persistence and overflow:

e gfsh:

gfsh>create region --name=regionName --type=PARTITION PERSISTENT OVERFLOW \

--disk-store=serverPersistOverflow
e cache.xml

<region refid="PARTITION_ PERSISTENT OVERFLOW" disk-store-name="persistOverflow
lu/>

Example of using a named disk store for server subscription queue overflow (cache.xml):

<cache-server port="40404">
<client-subscription
eviction-policy="entry"
capacity="10000"
disk-store-name="queueOverflow2"/>

</cache-server>

Example of using a named disk store for PDX serialization metadata (cache.xml):

<pdx read-serialized="true"
persistent="true"
disk-store-name="SerializationDiskStore">

</pdx>

VMware by Broadcom 292

VMware GemFire 9.10 Documentation

Configuring Disk Stores on Gateway Senders

Gateway sender queues are always overflowed and may be persisted. Assign them to overflow disk

stores if you do not persist, and to persistence disk stores if you do.

Persisted data from a parallel gateway sender must go to the same disk store as used by the
region, because parallel gateway sender queues must be colocated with their regions to operate
correctly.

Example of using a named disk store for a serial gateway sender queue persistence:

e dfsh:
gfsh>create gateway-sender --id=persistedSenderl --remote-distributed-system-id
=1 \
--enable-persistence=true --disk-store-name=diskStoreA --maximum-queue-memory=1
00

e cache.xml:

<cache>
<gateway-sender id="persistedsenderl" parallel="true"
remote-distributed-system-id="1"
enable-persistence="true"
disk-store-name="diskStoreA"

maximum-queue-memory="100"/>

</cache>

Examples of using the default disk store for a serial gateway sender queue persistence and

overflow:
e dfsh:
gfsh>create gateway-sender --id=persistedSenderl --remote-distributed-system-id
=1\
--enable-persistence=true --maximum-queue-memory=100

e cache.xml:

<cache>
<gateway-sender id="persistedsenderl" parallel="true"
remote-distributed-system-id="1"
enable-persistence="true"

maximum-queue-memory="100"/>

</cache>

Disk Store Configuration Parameters

You define your disk stores by using the gfsh create disk-store command or in <disk-store>
subelements of your cache declaration in cache.xml. All disk stores are available for use by all of
your regions and queues.

VMware by Broadcom

293

VMware GemFire 9.10 Documentation

These <disk-store> attributes and subelements have corresponding gfsh create disk-store
command-line parameters as well as getter and setter methods in the
org.apache.geode.cache.DiskStoreFactory and org.apache.geode.cache.DiskStore APIs.

Disk Store Configuration Attributes and Elements

disk-store attribute Description Default

name String used to identify this disk store. DEFAULT
All regions and gueues select their
disk store by specifying this name.

allow-force-compaction Boolean indicating whether to allow false
manual compaction through the API
or command-line tools.

auto-compact Boolean indicating whether to true
automatically compact a file when its
live data content percentage drops
below the compaction-threshold.

compaction-threshold Percentage (0..100) of live data (non- 50
garbage content) remaining in the
operation log, below which it is
eligible for compaction. As garbage
is created (by entry destroys, entry
updates, and region destroys and
creates) the percentage of remaining
live data declines. Falling below this
percentage initiates compaction if
auto-compactionis turned on. If not,
the file will be eligible for manual
compaction at a later time.

disk-usage-critical-percentage Disk usage above this threshold 99
generates an error message and shuts
down the member's cache. For
example, if the threshold is set to
99%, then falling under 10 GB of free
disk space on a1 TB drive generates
the error and shuts down the cache.

Set to "0" (zero) to disable.

disk-usage-warning-percentage Disk usage above this threshold 90
generates a warning message. For
example, if the threshold is set to
90%, then ona 1 TB drive falling
under 100 GB of free disk space
generates the warning.

Set to "0" (zero) to disable.

max-oplog-size The largest size, in megabytes, to 1024
allow an operation log to become
before automatically rolling to a new
file. This size is the combined sizes of
the oplog files.

VMware by Broadcom

VMware GemFire 9.10 Documentation

disk-store attribute Description Default

queue-size For asynchronous queueing. The 0
maximum number of operations to
allow into the write queue before
automatically flushing the queue.
Operations that would add entries to
the queue block until the queue is
flushed. A value of zero implies no
size limit. Reaching this limit or the
time-interval limit will cause the
queue to flush.

time-interval For asynchronous queueing. The 1000
number of milliseconds that can
elapse before data is flushed to disk.
Reaching this limit or the queue-size
limit causes the queue to flush.

write-buffer-size Size of the buffer, in bytes, used to 32768
write to disk.

disk-store

Description Default
subelement
<disk-dirs> Defines the system directories where the disk store is written and their . with no size
maximum sizes. limit

disk-dirs Element
The <disk-dirs> element defines the host system directories to use for the disk store. It contains
one or more single <disk-dir> elements with the following contents:

e« The directory specification, provided as the text of the disk-dir element.

¢ An optional dir-size attribute specifying the maximum amount of space, in megabytes, to
use for the disk store in the directory. By default, there is no limit. The space used is
calculated as the combined sizes of all oplog files.

You can specify any number of disk-dir subelements to the disk-dirs element. The data is spread
evenly among the active disk files in the directories, keeping within any limits you set.

Example:
<disk-dirs>
<disk-dir>/hostl/users/gf/memberA DStore</disk-dir>
<disk-dir>/host2/users/gf/memberA DStore</disk-dir>

<disk-dir dir-size="20480">/host3/users/gf/memberA DStore</disk-dir>
</disk-dirs>

Note: The directories must exist when the disk store is created or the system throws an exception.
VMware GemFire does not create directories.

Use different disk-dir specifications for different disk stores. You cannot use the same directory for
the same named disk store in two different members.

Modifying the Default Disk Store

VMware by Broadcom 295

VMware GemFire 9.10 Documentation

You can modify the behavior of the default disk store by specifying the attributes you want for the
disk store named “DEFAULT”.

Whenever you use disk stores without specifying the disk store to use, VMware GemFire uses the
disk store named “DEFAULT”.

For example, these region and queue configurations specify persistence and/or overflow, but do
not specify the disk-store-name. Because no disk store is specified, these use the disk store named
“DEFAULT".

Examples of using the default disk store for region persistence and overflow:

e« gfsh:

gfsh>create region --name=regionName --type=PARTITION PERSISTENT OVERFLOW

e cache.xml

<region refid="PARTITION PERSISTENT OVERFLOW"/>

Example of using the default disk store for server subscription queue overflow (cache.xml):

<cache-server port="40404">
<client-subscription eviction-policy="entry" capacity="10000"/>

</cache-server>

Change the Behavior of the Default Disk Store

VMware GempFire initializes the default disk store with the default disk store configuration settings.
You can modify the behavior of the default disk store by specifying the attributes you want for the
disk store named “DEFAULT”. The only thing you can’t change about the default disk store is the
name.

The following example changes the default disk store to allow manual compaction and to use
multiple, non-default directories:

cache.xml:

<disk-store name="DEFAULT" allow-force-compaction="true">
<disk-dirs>
<disk-dir>/export/thor/customerData</disk-dir>
<disk-dir>/export/odin/customerData</disk-dir>
<disk-dir>/export/embla/customerData</disk-dir>
</disk-dirs>
</disk-store>

Optimizing a System with Disk Stores

Optimize availability and performance by following the guidelines in this section.

1. VMware GemFire recommends the use of ext4 filesystems when operating on Linux or
Solaris platforms. The ext4 filesystem supports preallocation, which benefits disk startup
performance. If you are using ext3 filesystems in latency-sensitive environments with high
write throughput, you can improve disk startup performance by setting the maxoplogsize

VMware by Broadcom

296

VMware GemFire 9.10 Documentation

(see the DiskStoreFactory.setMaxOplogSize) to a value lower than the default 1 GB and by
disabling preallocation by specifying the system property gemfire.preAllocateDisk=false
upon VMware GemFire process startup.

2. When you start your system, start all the members that have persistent regions at roughly
the same time. Create and use startup scripts for consistency and completeness.

3. Shut down your system using the gfsh shutdown command. This is an ordered shutdown
that positions your disk stores for a faster startup.

4. Configure critical usage thresholds (disk-usage-warning-percentage and disk-usage-
critical-percentage) for the disk. By default, these are set to 80% for warning and 99% for
errors that will shut down the cache.

5. Decide on a file compaction policy and, if needed, develop procedures to monitor your files
and execute regular compaction.

6. Decide on a backup strategy for your disk stores and follow it. You can back up a running
sytem by using the backup disk-store command.

7. If you remove any persistent region or change its configuration while your disk store is
offline, consider synchronizing the regions in your disk stores.

Start Up and Shut Down with Disk Stores

This section describes what happens during startup and shutdown and provides procedures for
those operations.

Start Up

When you start a member with a persistent region, the data is retrieved from disk stores to
recreate the member’s persistent region. If the member does not hold all of the most recent data
for the region, then other members have the data, and region creation blocks, waiting for the those
other members. A partitioned region with colocated entries also blocks on start up, waiting for the
entries of the colocated region to be available. A persistent gateway sender is treated the same as
a colocated region, so it can also block region creation.

With a log level of info or below, the system provides messaging about the wait. Here, the disk
store for server2 has the most recent data for the region, and server1 is waiting for server2.

Region /people has potentially stale data.
It is waiting for another member to recover the latest data.

My persistent id:

DiskStore ID: 6893751lee74d4fbd-b4780d844e6d5ce”
Name: serverl
Location: /192.0.2.0:/home/dsmith/serverl/.

Members with potentially new data:

[
DiskStore ID: 160d415538c44ab0-9f7d97baela2f8de
Name: server?
Location: /192.0.2.0:/home/dsmith/server2/.

VMware by Broadcom

297

VMware GemFire 9.10 Documentation

Use the "gfsh show missing-disk-stores" command to see all disk stores

that are being waited on by other members.

When the most recent data is available, the system updates the region, logs a message, and
continues the startup.

[info 2010/04/09 10:52:13.010 PDT CacheRunner <main> tid=0x1]

Done waiting for the remote data to be available.

If the member’s disk store has data for a region that is never created, the data remains in the disk
store.

Each member’s persistent regions load and go online as quickly as possible, not waiting
unnecessarily for other members to complete. For performance reasons, these actions occur
asynchronously:

« Once at least one copy of each and every bucket is recovered from disk, the region is
available. Secondary buckets will load asynchronously.

« Entry keys are loaded from the key file in the disk store before considering entry values.
Once all keys are loaded, VMware GemFire loads the entry values asynchronously. If a
value is requested before it has loaded, the value will immediately be fetched from the disk
store.

Start Up Procedure

To start a system with disk stores:

1. Start all members with persisted data first and at the same time. Exactly how you do
this depends on your members. Make sure to start members that host colocated regions, as
well as persistent gateway senders.

While they are initializing their regions, the members determine which have the most
recent region data, and initialize their regions with the most recent data.

For replicated regions, where you define persistence only in some of the region’s host
members, start the persistent replicate members prior to the non-persistent replicate
members to make sure the data is recovered from disk.

This is an example bash script for starting members in parallel. The script waits for the
startup to finish. It exits with an error status if one of the jobs fails.

#!/bin/bash
ssh servera "cd /my/directory; gfsh start server --name=servera &

ssh serverb "cd /my/directory; gfsh start server --name=serverb &

STATUS=0;

for job in “Jjobs -p°

do

echo $job

wait $job;

JOB_STATUS=$?;

test $STATUS -eq 0 && STATUS=$JOB_STATUS;
done

exit $STATUS;

VMware by Broadcom

VMware GemFire 9.10 Documentation

2. Respond to blocked members. When a member blocks waiting for more recent data from
another member, the member waits indefinitely rather than coming online with stale data.
Check for missing disk stores with the gfsh show missing-disk-stores command. See
Handling Missing Disk Stores.

o If no disk stores are missing, the cache initialization must be slow for some other
reason. Check the information on member hangs in Diagnosing System Problems.

o If disk stores are missing that you think should be there:

= Make sure you have started the member. Check the logs for any failure
messages. See Logging.

= Make sure your disk store files are accessible. If you have moved your
member or disk store files, you must update your disk store configuration to
match.

o If disk stores are missing that you know are lost, because you have deleted them or
their files are otherwise unavailable, revoke them so the startup can continue.

Example Startup to lllustrate Ordering

The following lists the two possibilities for starting up a replicated persistent region after a
shutdown. Assume that Member A (MA) exits first, leaving persisted data on disk for RegionP.
Member B (MB) continues to run operations on RegionP, which update its disk store and leave the
disk store for MA in a stale condition. MB exits, leaving the most up-to-date data on disk for
RegionP.

e Restart order 1
1. MBis started first. MB identifies that it has the most recent disk data for RegionP
and initializes the region from disk. MB does not block.

2. MA is started, recovers its data from disk, and updates region data as needed from
the data in MB.

e Restart order 2

1. MA is started first. MA identifies that it does not have the most recent disk data and
blocks, waiting for MB to start before recreating RegionP in MA.

2. MBis started. MB identifies that it has the most recent disk data for RegionP and
initializes the region from disk.

3. MA recovers its RegionP data from disk and updates region data as needed from
the data in MB.

Shutdown

If more than one member hosts a persistent region or queue, the order in which the various
members shut down may be significant upon restart of the system. The last member to exit the
system or shut down has the most up-to-date data on disk. Each member knows which other
system members were online at the time of exit or shutdown. This permits a member to acquire
the most recent data upon subsequent start up.

For a replicated region with persistence, the last member to exit has the most recent data.

VMware by Broadcom 299

VMware GemFire 9.10 Documentation

For a partitioned region every member persists its own buckets. A shutdown using gfsh shutdown
will synchronize the disk stores before exiting, so all disk stores hold the most recent data. Without
an orderly shutdown, some disk stores may have more recent bucket data than others.

The best way to shut down a system is to invoke the gfsh shutdown command with all members
running. All online data stores will be synchronized before shutting down, so all hold the most
recent data copy. To shut down all members other than locators:

gfsh>shutdown

To shut down all members, including locators:

gfsh>shutdown --include-locators=true

Disk Store Management

The gfsh command-line tool has a number of options for examining and managing your disk stores.
The gfsh tool, the cache.xml file and the DiskStore APIs are your management tools for online and
offline disk stores.

See Disk Store Commands for a list of available commands.
« Disk Store Management Commands and Operations
« Validating a Disk Store
+« Running Compaction on Disk Store Log Files
« Keeping a Disk Store Synchronized with the Cache
« Configuring Disk Free Space Monitoring
« Handling Missing Disk Stores
o Altering When Buffers Are Flushed to Disk

You can configure VMware GemFire to write immediately to disk and you may be able to
modify your operating system behavior to perform buffer flushes more frequently.

Disk Store Management Commands and Operations

You can manage your disk stores using the gfsh command-line tool. For more information on gfsh
commands, see gfsh and Disk Store Commands.

Note: Each of these commands operates either on the online disk stores or offline disk stores, but
not both.

Online or Offline

gfsh Command See ...
Command
alter disk-store Off Keeping a Disk Store Synchronized with the Cache
compact disk-store On Running Compaction on Disk Store Log Files
backup disk-store On Creating Backups for System Recovery and Operational
Management

VMware by Broadcom 300

VMware GemFire 9.10 Documentation

Online or Offline

gfsh Command See ...
Command
compact offline-disk- Off Running Compaction on Disk Store Log Files
store
export offline-disk- Off Creating Backups for System Recovery and Operational
store Management
revoke missing-disk- On Handling Missing Disk Stores
store
show missing-disk-stores On Handling Missing Disk Stores
shutdown On Start Up and Shut Down with Disk Stores
validate offline disk- Off Validating a Disk Store
store

For complete command syntax of any gfsh command, run help <command> at the gfsh command
line.

Online Disk Store Operations

For online operations, gfsh must be connected to a cluster via a JMX manager and sends the
operation requests to the members that have disk stores. These commands will not run on offline
disk stores.

Offline Disk Store Operations

For offline operations, gfsh runs the command against the specified disk store and its specified
directories. You must specify all directories for the disk store. For example:

gfsh>compact offline-disk-store --name=mydiskstore --disk-dirs=MyDirs

Offline operations will not run on online disk stores. The tool locks the disk store while it is running,
so the member cannot start in the middle of an operation.

If you try to run an offline command for an online disk store, you get a message like this:

gfsh>compact offline-disk-store --name=DEFAULT --disk-dirs=sl
This disk store is in use by another process. "compact disk-store" can

be used to compact a disk store that is currently in use.

Validating a Disk Store

The validate offline-disk-store command verifies the health of your offline disk store and gives
you information about the regions in it, the total entries, and the number of records that would be
removed if you compacted the store.

Use this command at these times:
« Before compacting an offline disk store to help decide whether it’s worth doing.

« Before restoring or modifying a disk store.

VMware by Broadcom

301

VMware GemFire 9.10 Documentation

« Any time you want to be sure the disk store is in good shape.

Example:

gfsh>validate offline-disk-store --name=dsl --disk-dirs=hostB/bupDirectory

Running Compaction on Disk Store Log Files

When a cache operation is added to a disk store, any preexisting operation record for the same
entry becomes obsolete, and VMware GemFire marks it as garbage. For example, when you create
an entry, the create operation is added to the store. If you update the entry later, the update
operation is added and the create operation becomes garbage. VMware GemFire does not remove
garbage records as it goes, but it tracks the percentage of non-garbage (live data) remaining in
each operation log, and provides mechanisms for removing garbage to compact your log files.

VMware GemFire compacts an old operation log by copying all non-garbage records into the
current log and discarding the old files. As with logging, oplogs are rolled as needed during
compaction to stay within the max oplog setting.

The system is configured by default to automatically compact any closed operation log when its
non-garbage content drops below a certain percentage. This automatic compaction is well suited
to most VMware GemFire implementations. In some circumstances, you may choose to manually
initiate compaction for online and offline disk stores.

Log File Compaction for the Online Disk Store

Currert log file
Ouring compaction e p—— ald log file
oplog record oplog record
‘ff mrkage
cache :;_—__—""" sritiore qrkage
-~%—| oplog record
~——| oplog record

Currert log file
Mfter cormpaction opiog record wld log ﬁl}/
oplog recond o] r
oplog record el 2
oplog record =
cache o oplog record ol r
H'I'P : opl o record o e
ﬁ | oplog record | / .

For the online disk store, the current operation log is not available for compaction, no matter how
much garbage it contains. You can use DiskStore.forceRoll to close the current oplog, making it
eligible for compaction. See Disk Store Operation Logs for details.

Offline compaction runs essentially in the same way, but without the incoming cache operations.
Also, because there is no currently open log, the compaction creates a new one to get started.

VMware by Broadcom 302

VMware GemFire 9.10 Documentation

Run Online Compaction

Old log files become eligible for online compaction when their live data (hon-garbage) content
drops below a configured percentage of the total file. A record is garbage when its operation is
superseded by a more recent operation for the same object. During compaction, the non-garbage
records are added to the current log along with new cache operations. Online compaction does not
block current system operations.

« Automatic compaction. When auto-compact is true, VMware GemFire automatically
compacts each oplog when its non-garbage (live data) content drops below the
compaction-threshold. This takes cycles from your other operations, so you may want to
deactivate this and only do manual compaction, to control the timing.

¢ Manual compaction. To run manual compaction:

o Set the disk store attribute allow-force-compaction to true. This causes VMware
GemFire to maintain extra data about the files so it can compact on demand. This is
deactivated by default to save space. You can run manual online compaction at any
time while the system is running. Oplogs eligible for compaction based on the
compaction-threshold are compacted into the current oplog.

o Run manual compaction as needed. VMware GemFire has two types of manual
compaction:

= Compact the logs for a single online disk store through the API, with the
forceCompaction method. This method first rolls the oplogs and then
compacts them. Example:

myCache.findDiskStore ("myDiskStore") .forceCompaction () ;

= Using gfsh, compact a disk store with the compact disk-store command.

Examples:
gfsh>compact disk-store --name=Diskl
gfsh>compact disk-store --name=Diskl --group=MemberGroupl,MemberGr
oup?2

Note: You need to be connected to a JMX Manager in gfsh to run this
command.

Run Offline Compaction

Offline compaction is a manual process. All log files are compacted as much as possible, regardless
of how much garbage they hold. Offline compaction creates new log files for the compacted log
records.

Using gfsh, compact individual offline disk stores with the compact offline-disk-store command:

gfsh>compact offline-disk-store --name=Disk2 --disk-dirs=/Disks/Disk2

gfsh>compact offline-disk-store --name=Disk2 --disk-dirs=/Disks/Disk?2
--max-oplog-size=512 -J=-Xmx1024m

VMware by Broadcom

303

VMware GemFire 9.10 Documentation

Note: Do not perform offline compaction on the baseline directory of an incremental backup.

You must provide all of the directories in the disk store. If no oplog max size is specified, VMware
GemFire uses the system default.

Offline compaction can take a lot of memory. If you get a java.lang.outOfMemory error while
running this, you may need to increase your heap size with the -J=-xmx parameter.

Performance Benefits of Manual Compaction

You can improve performance during busy times if you deactivate automatic compaction and run
your own manual compaction during lighter system load or during downtimes. You could run the
API call after your application performs a large set of data operations. You could run compact disk-
store command every night when system use is very low.

To follow a strategy like this, you need to set aside enough disk space to accommodate all non-
compacted disk data. You might need to increase system monitoring to make sure you do not
overrun your disk space. You may be able to run only offline compaction. If so, you can set allow-

force-compaction to false and avoid storing the information required for manual online compaction.

Directory Size Limits

Reaching directory size limits during compaction has different results depending on whether you
are running an automatic or manual compaction:

e« For automatic compaction, the system logs a warning, but does not stop.

« For manual compaction, the operation stops and returns a biskAccessException to the
calling process, reporting that the system has run out of disk space.

Example Compaction Run

In this example offline compaction run listing, the disk store compaction had nothing to do in the
* 3.= files, so they were left alone. The * 4.~ files had garbage records, so the oplog from them
was compacted into the new * 5.+ files.

bash-2.05$%$ 1ls -ltra backupDirectory

total 28

—rw-rw-r-- 1 user users 3 Apr 7 14:56 BACKUPdsl_3.drf
“IrW-rw-r-- 1 user users 25 Apr 7 14:56 BACKUPdsl 3.crf
drwxrwxr-x 3 user users 1024 Apr 7 15:02 .

—IW-rw-r-- 1 user users 7085 Apr 7 15:06 BACKUPdsl.if
—IW-TrW-T—— 1 user users 18 Apr 7 15:07 BACKUPdsl_ 4.drf
“IrWw-Irw-r-- 1 user users 1070 Apr 7 15:07 BACKUPdsl 4.crf
drwxrwxr-x 2 user users 512 Apr 7 15:07

bash-2.05$ gfsh

gfsh>validate offline-disk-store --name=dsl --disk-dirs=backupDirectory

/root: entryCount=6
/partitioned region entryCount=1 bucketCount=10
Disk store contains 12 compactable records.

Total number of region entries in this disk store is: 7

VMware by Broadcom

304

VMware GemFire 9.10 Documentation

gfsh>compact offline-disk-store --name=dsl --disk-dirs=backupDirectory
Offline compaction removed 12 records.
Total number of region entries in this disk store is: 7

gfsh>exit

bash-2.05$ 1ls -ltra backupDirectory

total 16

—“ITW-rw-r-- 1 user users 3 Apr 7 14:56 BACKUPdsl 3.drf
“TW-YrW-r-—- 1 user users 25 Apr 7 14:56 BACKUPdsl 3.crf
drwxrwxr-x 3 user users 1024 Apr 7 15:02 ..

“ITW-rw-r-- 1 user users 0 Apr 7 15:08 BACKUPdsl 5.drf
—“ITW-rw-r-- 1 user users 638 Apr 7 15:08 BACKUPdsl 5.crf
—IW-rw-r-- 1 user users 2788 Apr 7 15:08 BACKUPdsl.if
drwxrwxr-x 2 user users 512 Apr 7 15:09

bash-2.05$

Keeping a Disk Store Synchronized with the Cache

Recovering data from an offline disk store proceeds most quickly when the configuration of the
offline data matches that of the online data.

Whenever you change or remove persistent regions (by modifying your cache.xml or the code that
configures the regions), then you should alter the corresponding offline disk-store to match. If you
don’t, then the next time this disk-store is recovered it will recover all of that region’s data into a
temporary region using the old configuration. The old configuration will still consume the old
configured resources (heap memory, off-heap memory). If those resources are no longer available
(for example the old configuration of the region was off-heap but you decide to no longer configure
off-heap memory on the JVM), the disk-store recovery will fail.

It is common practice to have more than one off-line disk store, because each member of the
cluster usually has its own copy. Be sure to apply the same alter disk-store command to each
offline copy of the disk store.

Change Region Configuration

When your disk store is offline, you can keep the configuration for its regions up-to-date with your
cache.xml and API settings. The disk store retains a subset of the region configuration attributes.
(For a list of the retained attributes, see alter disk-store). If the configurations do not match at
startup, the cache.xml and API override any disk store settings and the disk store is automatically
updated to match. So you do not need to modify your disk store to keep your cache configuration
and disk store synchronized, but you will save startup time and memory if you do.

For example, to change the initial capacity of the region named “partitioned_region” in the disk
store:

gfsh>alter disk-store --name=myDiskStoreName --region=partitioned_region
—--disk-dirs=/firstDiskStoreDir, /secondDiskStoreDir, /thirdDiskStoreDir
--initialCapacity=20

To list all modifiable settings and their current values for a region, run the command with no actions
specified:

VMware by Broadcom 305

VMware GemFire 9.10 Documentation

gfsh>alter disk-store --name=myDiskStoreName --region=partitioned region
--disk-dirs=/firstDiskStoreDir, /secondDiskStoreDir, /thirdDiskStoreDir

Take a Region Out of Your Cache Configuration and Disk
Store

You might remove a region from your application if you decide to rename it or to split its data into
two entirely different regions. Any significant data restructuring can cause you to retire some data
regions.

This applies to the removal of regions while the disk store is offline. Regions you destroy through
API calls or by gfsh are automatically removed from the disk store of online members.

In your application development, when you discontinue use of a persistent region, remove the
region from the member’s disk store as well.

Note: Perform the following operations with caution. You are permanently removing data.
You can remove the region from the disk store in one of two ways:

o« Delete the entire set of disk store files. Your member will initialize with an empty set of files
the next time you start it. Exercise caution when removing the files from the file system, as
more than one region can be specified to use the same disk store directories.

e Selectively remove the discontinued region from the disk store with a command such as:

gfsh>alter disk-store --name=myDiskStoreName --region=partitioned region

--disk-dirs=/firstDiskStoreDir, /secondDiskStoreDir, /thirdDiskStoreDir --remove

To guard against unintended data loss, VMware GemFire maintains the region in the disk store until
you manually remove it. Regions in the disk stores that are not associated with any region in your
application are still loaded into temporary regions in memory and kept there for the life of the
member. The system has no way of detecting whether the cache region will be created by your
API at some point, so it keeps the temporary region loaded and available.

Configuring Disk Free Space Monitoring

To modify disk-usage-warning-percentage and disk-usage-critical-percentage thresholds,
specify the parameters when executing the gfsh create disk-store command.

gfsh>create disk-store --name=serverOverflow --dir=c:\overflow_data#20480 \
--compaction-threshold=40 --auto-compact=false --allow-force-compaction=true \
--max-oplog-size=512 --queue-size=10000 --time-interval=15 --write-buffer-size=65536 \

--disk-usage-warning-percentage=80 --disk-usage-critical-percentage=98

By default, disk usage above 80% triggers a warning message. Disk usage above 99% generates an
error and shuts down the member cache that accesses that disk store. To disable disk store
monitoring, set the parameters to O.

To view the current threshold values set for an existing disk store, use the gfsh describe disk-store
command:

VMware by Broadcom 306

VMware GemFire 9.10 Documentation

gfsh>describe disk-store --member=serverl --name=DiskStorel

You can also use the following piskstoreMxBean method APIs to configure and obtain these
thresholds programmatically.

e getDiskUsageCriticalPercentage
e getDiskUsageWarningPercentage
e setDiskUsageCriticalPercentage
e setDiskUsageWarningPercentage

You can obtain statistics on disk space usage and the performance of disk space monitoring by
accessing the following statistics:

e diskSpace

e maximumSpace

e volumeSize

e volumeFreeSpace

e volumeFreeSpaceChecks
e volumeFreeSpaceTime

See Disk Space Usage (DiskDirStatistics).

Handling Missing Disk Stores

This section applies to disk stores that hold the latest copy of your data for at least one region.

Show Missing Disk Stores
Using gfsh, the show missing-disk-stores command lists all disk stores with most recent data that
are being waited on by other members.

For replicated regions, this command only lists missing members that are preventing other
members from starting up. For partitioned regions, this command also lists any offline data stores,
even when other data stores for the region are online, because their offline status may be causing
PartitionOfflineExceptions in cache operations or preventing the system from satisfying
redundancy.

Example:

gfsh>show missing-disk-stores

Disk Store ID | Host | Directory

60399215-532b-406f-b81f-9b5bd8d1lb55a | excalibur | /usr/local/gemfire/deploy/disk_stor
el

Note: You need to be connected to JMX Manager in gfsh to run this command.

Note: The disk store directories listed for missing disk stores may not be the directories you have
currently configured for the member. The list is retrieved from the other running members—the

VMware by Broadcom

307

VMware GemFire 9.10 Documentation

ones who are reporting the missing member. They have information from the last time the missing
disk store was online. If you move your files and change the member’s configuration, these
directory locations will be stale.

Disk stores usually go missing because their member fails to start. The member can fail to start for a
number of reasons, including:

o Disk store file corruption. You can check on this by validating the disk store.
e Incorrect cluster configuration for the member
o Network partitioning

o Drive failure

Revoke Missing Disk Stores

This section applies to disk stores for which both of the following are true:

« Disk stores that have the most recent copy of data for one or more regions or region
buckets.

o Disk stores that are unrecoverable, such as when you have deleted them, or their files are
corrupted or on a disk that has had a catastrophic failure.

When you cannot bring the latest persisted copy online, use the revoke command to tell the other
members to stop waiting for it. Once the store is revoked, the system finds the remaining most
recent copy of data and uses that.

Note: Once revoked, a disk store cannot be reintroduced into the system.

Use gfsh show missing-disk-stores to properly identify the disk store you need to revoke. The
revoke command takes the disk store ID as input, as listed by that command.

Example:

gfsh>revoke missing-disk-store --id=60399215-532b-406£f-b81f-9b5bd8dlb55a

Missing disk store successfully revoked

Altering When Buffers Are Flushed to Disk

You can configure VMware GemFire to write immediately to disk and you may be able to modify
your operating system behavior to perform buffer flushes more frequently.

Typically, VMware GemFire writes disk data into the operating system’s disk buffers and the
operating system periodically flushes the buffers to disk. Increasing the frequency of writes to disk
decreases the likelihood of data loss from application or machine crashes, but it impacts
performance. Your other option, which may give you better performance, is to use VMware
GemFire’s in-memory data backups. Do this by storing your data in multiple replicated regions or in
partitioned regions that are configured with redundant copies. See Region Types.

Modifying Disk Flushes for the Operating System

You may be able to change the operating system settings for periodic flushes. You may also be able
to perform explicit disk flushes from your application code. For information on these options, see

VMware by Broadcom 308

VMware GemFire 9.10 Documentation

your operating system’s documentation. For example, in Linux you can change the disk flush
interval by modifying the setting /proc/sys/vm/dirty expire centiseconds. It defaults to 30
seconds. To alter this setting, see the Linux documentation for dirty expire centiseconds.

Modifying VMware GemFire to Flush Buffers on Disk Writes

You can have VMware GemFire flush the disk buffers on every disk write. Do this by setting the
system property gemfire.syncWrites to true at the command line when you start your VMware
GemFire member. You can only modify this setting when you start a member. When this is set,
VMware GemFire uses a Java RandomAccessFile with the flags “rwd”, which causes every file
update to be written synchronously to the storage device. This only guarantees your data if your
disk stores are on a local device. See the Java documentation for java.I0.RandomAccessFile.

To modify the setting for a VMware GemFire application, add this to the java command line when
you start the member:

-Dgemfire.syncWrites=true
To modify the setting for a cache server, use this syntax:

gfsh>start server --name=... --J=-Dgemfire.syncWrites=true

Creating Backups for System Recovery and Operational
Management

A backup is a copy of persisted data from a disk store. A backup is used to restore the disk store to

the state it was in when the backup was made. The appropriate back up and restore procedures
differ based upon whether the cluster is online or offline. An online system has currently running
members. An offline system does not have any running members.

¢ Making a Backup While the System Is Online

« What a Full Online Backup Saves

« What an Incremental Online Backup Saves

o Disk Store Backup Directory Structure and Contents

o Offline Members—Manual Catch-Up to an Online Backup

¢ Restore Using a Backup Made While the System Was Online

Making a Backup While the System Is Online

The gfsh command backup disk-store creates a backup of the disk stores for all members running

in the cluster. The backup works by passing commands to the running system members; therefore,

the members need to be online for this operation to succeed. Each member with persistent data
creates a backup of its own configuration and disk stores. The backup does not block any activities
within the cluster, but it does use resources.

Note: Do not try to create backup files from a running system by using your operating system’s file
copy commands. This would create incomplete and unusable copies.

VMware by Broadcom

309

VMware GemFire 9.10 Documentation

Preparing to Make a Backup

Consider compacting your disk store before making a backup. If auto-compaction is turned
off, you may want to do a manual compaction to save on the quantity of data copied over
the network by the backup. For more information on configuring a manual compaction, see
Manual Compaction.

Take the backup when region operations are quiescent, to avoid the possibility of an
inconsistency between region data and an asynchronous event queue (AEQ) or a WAN
Gateway sender (which uses a persistent queue). A region operation that causes a persisted
write to a region involves a disk operation. The associated queue operation also causes a
disk operation. These two disk operations are not made atomically, so if a backup is made
between the two disk operations, then the backup represents inconsistent data in the
region and the queue.

Run the backup during a period of low activity in your system. The backup does not block
system activities, but it uses file system resources on all hosts in your cluster, and it can
affect performance.

Configure each member with any additional files or directories to be backed up by
modifying the member’s cache.xml file. Additional items that ought to be included in the
backup:

o application jar files

o other files that the application needs when starting, such as a file that sets the
classpath

For example, to include file myExtraBackupstuff in the backup, the cache.xml file

specification of the data store would include:

<backup>./myExtraBackupStuff</backup>
Directories are recursively copied, with any disk stores that are found excluded from this
user-specified backup.

Back up to a SAN (recommended) or to a directory that all members can access. Make sure
the directory exists and has the proper permissions for all members to write to the directory
and create subdirectories.

The directory specified for the backup can be used multiple times. Each time a backup is
made, a new subdirectory is created within the specified directory, and that new
subdirectory’s name represents the date and time.

You can use one of two locations for the backup:

o asingle physical location, such as a network file server, for example:

/export/fileServerDirectory/gemfireBackupLocation

o adirectory that is local to all host machines in the system, for example:

./gemfireBackupLocation

VMware by Broadcom 310

VMware GemFire 9.10 Documentation

« Make sure all members with persistent data are running in the system, because offline
members cannot back up their disk stores. Output from the backup command will not
identify members hosting replicated regions that are offline.

How to Do a Full Online Backup

1. If auto-compaction is disabled, and manual compaction is needed:

gfsh>compact disk-store --name=Diskl

2. Runthe gfsh backup disk-store command, specifying the backup directory location. For
example:

gfsh>backup disk-store --dir=/export/fileServerDirectory/gemfireBackupLocation

The output will list information for each member that has successfully backed up disk stores.
The tabular information will contain the member’s name, its UUID, the directory backed up,
and the host name of the member.

Any online member that fails to complete its backup will leave a file named

INCOMPLETE BACKUP in its highest level backup directory. The existence of this file identifies
that the backup file contains only a partial backup, and it cannot be used in a restore
operation.

3. Validate the backup for later recovery use. On the command line, each backup can be

checked with commands such as

cd 2010-04-10-11-35/straw_14871 53406 34322/diskstores/dsl
gfsh validate offline-disk-store --name=dsl --disk-dirs=/home/dsmith/dirl

How to Do an Incremental Backup
An incremental backup contains items that have changed since a previous backup was made.
To do an incremental backup, specify the backup directory that the incremental backup will be

based upon with the --baseline-dir argument. For example:

gfsh>backup disk-store --dir=/export/fileServerDirectory/gemfireBackupLocation

--baseline-dir=/export/fileServerDirectory/gemfireBackupLocation/2012-10-01-12-30

The output will appear the same as the output for a full online backup.

Any online member that fails to complete its incremental backup will leave a file named
INCOMPLETE BACKUP in its highest level backup directory. The existence of this file identifies that the
backup file contains only a partial backup, and it cannot be used in a restore operation. The next
time a backup is made, a full backup will be made.

What a Full Online Backup Saves

For each member with persistent data, a full backup includes the following:
o Disk store files for all members containing persistent region data.

« Files and directories specified in the cache.xml configuration file as <backup> elements. For
example:

VMware by Broadcom 3N

VMware GemFire 9.10 Documentation

<backup>./systemConfig/gf.jar</backup>
<backup>/users/user/gfSystemInfo/myCustomerConfig.doc</backup>

« Deployed JAR files that were deployed using the gfsh deploy command.

« Configuration files from the member startup.
o gemfire.properties, including the properties with which the member was started.
o cache.xml, if used.

These configuration files are not automatically restored, to avoid interfering with more
recent configurations. In particular, if these are extracted from a primary jar file, copying
the separate files into your working area can override the files in the jar. If you want to
back up and restore these files, add them as custom <backup> elements.

e A restore script, called restore.bat on Windows, and called restore.sh on Linux. This
script may later be used to do a restore. The script copies files back to their original
locations.

What an Incremental Online Backup Saves

An incremental backup saves the difference between the last backup and the current data. An
incremental backup copies only operations logs that are not already present in the baseline
directories for each member. For incremental backups, the restore script contains explicit
references to operation logs in one or more previously chained incremental backups. When the
restore script is run from an incremental backup, it also restores the operation logs from previous
incremental backups that are part of the backup chain.

If members are missing from the baseline directory because they were offline or did not exist at the
time of the baseline backup, those members place full backups of all their files into the incremental
backup directory.

Disk Store Backup Directory Structure and Contents

$ cd thebackupdir

$ 1s -R

./2012-10-18-13-44-53:

dasmith e6410 serverl 8623 vl 33892 dasmith e6410 server2 8940 v2 45565

./2012-10-18-13-44-53/dasmith e6410 serverl 8623 vl 33892:

config diskstores README.txt restore.sh user

./2012-10-18-13-44-53/dasmith e6410 serverl 8623 vl 33892/config:
cache.xml

./2012-10-18-13-44-53/dasmith_e6410_serverl 8623 vl 33892/diskstores:
DEFAULT

./2012-10-18-13-44-53/dasmith_e6410_serverl 8623 vl 33892/diskstores/DEFAULT:
diro0

./2012-10-18-13-44-53/dasmith e6410 serverl 8623 vl 33892/diskstores/DEFAULT/dir0:
BACKUPDEFAULT 1.crf BACKUPDEFAULT 1.drf BACKUPDEFAULT.if

VMware by Broadcom

312

VMware GemFire 9.10 Documentation

./2012-10-18-13-44-53/dasmith_e6410_serverl 8623 vl 33892/user:

Offline Members—Manual Catch-Up to an Online Backup

If you must have a member offline during an online backup, you can manually back up its disk
stores. Bring this member’s files into the online backup framework manually, and create a restore
script by hand starting with a copy of another member’s script:

1. Duplicate the directory structure of a backed up member for this member.

2. Rename directories as needed to reflect this member’s particular backup, including disk
store names.

3. Clear out all files other than the restore script.
4. Copy in this member’s files.

5. Modify the restore script to work for this member.

Restore Using a Backup Made While the System Was
Online

The restore.sh Or restore.bat script copies files back to their original locations.
1. Restore your disk stores while cache members are offline and the system is down.

2. Look at each of the restore scripts to see where they will place the files and make sure the
destination locations are ready. A restore script will refuse to copy over files with the same
names.

3. Run each restore script on the host where the backup originated.
The restore copies these files back to their original location:
« Disk store files for all stores containing persistent region data.

« Any files or directories you have configured to be backed up in the cache.xml <backup>
elements.

Cache and Region Snapshots

Snapshots allow you to save region data and reload it later. A typical use case is loading data from
one environment into another, such as capturing data from a production system and moving it into
a smaller QA or development system.

In effect, you can load data from one cluster into another cluster. Administrators export a snapshot
of a region or an entire cache (multiple regions) and later import the snapshot into another region
or cluster by using the RegionSnapshotService Or CacheSnapshotService interface and the

Region.getSnapshotService Of Cache.getSnapshotService method.

The snapshot file is a binary file that contains all data from a particular region. The binary format
contains serialized key/value pairs and supports PDX type registry to allow the deserialization of
PDX data. The snapshot can be directly imported into a region or read entry-by-entry for further
processing or transformation into other formats.

VMware by Broadcom 313

VMware GemFire 9.10 Documentation

Note: The previous Region.loadSnapshot and Region.saveSnapshot APIS have been deprecated.
Data written in this format is not compatible with the new APIs.

« Usage and Performance Notes
Optimize the cache and region snapshot feature by understanding how it performs.
+« Exporting Cache and Region Snapshots

To save VMware GemFire cache or region data to a snapshot that you can later load into
another cluster or region, use the cache.getSnapshotService.save API,
region.getSnapshotService.save API, or the gfsh command-line interface (export data).

+« Importing Cache and Region Snapshots

To import a VMware GemFire cache or region data snapshot that you previously exported
into another cluster or region, use the cache.getSnapshotService.load API,
region.getSnapshotService.load API, or the gfsh command-line interface (import data).

o Filtering Entries During Import or Export

You can customize your snapshot by filtering entries during the import or export of a region
or a cache.

« Reading Snapshots Programmatically

You can read a snapshot entry-by-entry for further processing or transformation into other
formats.

Usage and Performance Notes

Optimize the cache and region snapshot feature by understanding how it performs.

Cache Consistency and Concurrent Operations

Importing and exporting region data is an administrative operation, and certain simultaneous
runtime conditions can cause the import or export operation to fail such as when you are
rebalancing partitioned region buckets or experience a network partition event. This behavior is
expected, and you should retry the operation. Redoing an export overwrites an incomplete
snapshot file, and redoing an import updates partially imported data.

The snapshot feature does not guarantee consistency. Concurrent cache operations during a
snapshot import or export can cause data consistency issues. If snapshot consistency is important,
we recommend that you take your application offline before export and import, to provide a quiet
period ensures data consistency in your snapshot.

For example, modifications to region entries during an export can result in a snapshot that contains
some but not all updates. If entries { A, B } are updated to { A’, B’} during the export, the snapshot
can contain { A, B’ } depending on the write order. Also, modifications to region entries during an
import can cause lost updates in the cache. If the region contains entries { A, B } and the snapshot
contains { A’, B’ }, concurrent updates { A*, B* } can result in the region containing { A*, B’ } after
the import completes.

The default behavior is to perform all I/O operations on the node where the snapshot operations
are invoked. This will involve either collecting or dispersing data over the network if the region is a

VMware by Broadcom 314

VMware GemFire 9.10 Documentation

partitioned region.

Performance Considerations

When using the data snapshot feature, be aware of the following performance considerations:

« Importing and exporting cache or region snapshots causes additional CPU and network
load. You may need to increase CPU capacity or network bandwidth depending on your
applications and infrastructure. In addition, if you export regions that have been configured
to overflow to disk, you may require additional disk 1/O to perform the export.

« When exporting partitioned region data, allocate additional heap memory so the member
performing the export can buffer data gathered from other cache members. Allocate at
least TOMB per member to your heap in addition to whatever configuration is necessary to
support your application or cache.

Exporting Cache and Region Snapshots

To save VMware GemFire cache or region data to a snapshot that you can later load into another
cluster or region, use the cache.getSnapshotService.save API, region.getSnapshotService.save
API, or the gfsh command-line interface (export data).

If an error occurs during export, the export halts and the snapshot operation is canceled. Typical
errors that halt an export include scenarios such as full disk, problems with file permissions, and
network partitioning.

Exporting Cache Snapshots

When you export an entire cache, it exports all regions in the cache as individual snapshot files into
a directory. If no directory is specified, the default is the current directory. A snapshot file is created
for each region, and the export operation automatically names each snapshot filename using the
following convention:

snapshot-<region>[-<subregion>]*

When the export operation writes the snapshot filename, it replaces each forward slash (‘//’) in the
region path with a dash (‘-’).

Using Java API:

File mySnapshotDir = ...
Cache cache = ...

cache.getSnapshotService () .save (mySnapshotDir, SnapshotFormat.GEMFIRE) ;

Optionally, you can set a filter on the snapshot entries during the export. See Filtering Entries
During Import or Export for an example.

Exporting a Region Snapshot

You can also export a specific region using the API or gfsh commands below.

VMware by Broadcom 315

VMware GemFire 9.10 Documentation

Note: In the case of non-persistent regions, the snapshot that you export contains both in-cache
entries and entries that overflow to disk.

Java API:

File mySnapshot =
Region<String, MyObject> region =

region.getSnapshotService () .save (mySnapshot, SnapshotFormat.GEMFIRE) ;

ofsh:

Open a gfsh prompt. After connecting to a VMware GemFire cluster, at the prompt type:

gfsh>export data --region=Region --file=FileName.gfd --member=MemberName

where Region corresponds to the name of the region that you want to export, FileName (must end

in .gfd) corresponds to the name of the export file and MemberName corresponds to a member
that hosts the region. For example:

gfsh>export data --region=regionl --file=regionl 2012 10 _10.gfd --member=serverl

The snapshot file will be written on the remote member at the location specified by the --file
argument. For example, in the example command above, the regionl 2012 10 10.g£d file will be
written in the working directory of serverl. For more information on this command, see export
data.

Export Example with Options

These examples show how to include the parallel option for exporting partitioned regions. Note
that the parallel option takes a directory rather than a file; see export data for details.

Java API:

File mySnapshotDir =
Region<String, MyObject> region =

SnapshotOptions<Integer, MyObject> options =

region.getSnapshotServive.createOptions().setParallelMode (true);
region.getSnapshotService () .save (mySnapshotDir, SnapshotFormat.GEMFIRE, options);
ofsh:

The Java APl example, above, accomplishes the same purpose as the following gfsh command:

gfsh>export data --parallel --region=regionl --dir=regionl 2012 10 10 --member=serverl

Importing Cache and Region Snapshots

To import a VMware GemFire cache or region data snapshot that you previously exported into
another cluster or region, use the cache.getSnapshotService.load API,
region.getSnapshotService.load API, or the gfsh command-line interface (import data).

VMware by Broadcom

316

VMware GemFire 9.10 Documentation

Import Requirements

Before you import a region snapshot:

« Make sure the cache is configured correctly. Configure all registered PdxSerializers,
DataSerializers, and Instantiators; create regions; and ensure the classpath contains any
required classes.

¢ When you import a snapshot containing PDX types, you must wait until the exported type
definitions are imported into the cache before inserting data that causes type conflicts. It is
recommended that you wait for the import to complete before inserting data.

Import Limitations

During an import, the cachewWriter and CacheListener callbacks are not invoked.

If an error occurs during import, the import is halted and the region will contain some but not all
snapshot data.

The state of a cache client is indeterminate after an import. It is likely that the data in the client’s
cache is inconsistent with the imported data. Take the client offline during the import and restart it
after the import completes.

Importing Cache Snapshots

When you import a cache snapshot, the snapshot file is imported into the same region (match
determined by name) that was used during snapshot export. When you import a cache, you import
all snapshot files located within a directory into the cache. The API attempts to load all files in the
specified directory.

Java API:

File mySnapshotDir = ...

Cache cache = ...

cache.getSnapshotService () .load (mySnapshotDir, SnapshotFormat.GEMFIRE) ;

Importing a Region Snapshot

Java API:

File mySnapshot = ...
Region<String, MyObject> region = ...

region.getSnapshotService () .load (mySnapshot, SnapshotFormat.GEMFIRE) ;

gfsh:

Open a gfsh prompt. After connecting to a VMware GemFire cluster, at the prompt type:

gfsh>import data --region=Region --file=FileName.gfd --member=MemberName

VMware by Broadcom 317

VMware GemFire 9.10 Documentation

where Region corresponds to the name of the region that you want to import data into; FileName

(must end in .gfd) corresponds to the name of the file to be imported; and MemberName
corresponds to a member that hosts the region. For example:

gfsh>import data --region=regionl --file=regionl 2012 10 _10.g9fd --member=server?2
The snapshot file must already reside on the specified member at the location specified in the --
file argument before import.

For more information on this command, see import data. For an example of how to invoke this
command with additional options, see Export Example with Options.

Filtering Entries During Import or Export

You can customize your snapshot by filtering entries during the import or export of a region or a
cache.

For example, use filters to limit the export of data to a certain date range. If you set up a filter on
the import or export of a cache, the filter is applied to every single region in the cache.

The following example filters snapshot data by even numbered keys.

File mySnapshot =
Region<Integer, MyObject> region =

SnapshotFilter<Integer, MyObject> even = new SnapshotFilter<Integer, MyObject> () {
@Override

public boolean accept (Entry<Integer, MyObject> entry) {

return entry.getKey() % 2 == 0;
}
}i
RegionSnapshotService<Integer, MyObject> snapsrv = region.getSnapshotService();
SnapshotOptions<Integer, MyObject> options = snapsrv.createOptions().setFilter (even);

// only save cache entries with an even key

snapsrv.save (mySnapshot, SnapshotFormat.GEMFIRE, options);

Reading Snapshots Programmatically

You can read a snapshot entry-by-entry for further processing or transformation into other formats.

The following is an example of a snapshot reader that processes entries from a previously
generated snapshot file.

File mySnapshot =
SnapshotIterator<String, MyObject> iter = SnapshotReader.read(mySnapshot);
try |
while (iter.hasNext()) {
Entry<String, MyObject> entry = iter.next();

String key = entry.getKey ()
MyObject value = entry.getValue();

System.out.println(key + " = " + value);

VMware by Broadcom

318

VMware GemFire 9.10 Documentation

}
} finally {

iter.close();

Region Compression

This section describes region compression, its benefits and usage.

One way to reduce memory consumption by VMware GemFire is to enable compression in your
regions. VMware GemFire allows you to compress in-memory region values using pluggable
compressors (compression codecs). VMware GemFire includes the Snappy compressor as the built-
in compression codec; however, you can implement and specify a different compressor for each
compressed region.

What Gets Compressed

When you enable compression in a region, all values stored in the region are compressed while in
memory. Keys and indexes are not compressed. New values are compressed when put into the in-
memory cache and all values are decompressed when being read from the cache. Values are not
compressed when persisted to disk. Values are decompressed before being sent over the wire to
other peer members or clients.

When compression is enabled, each value in the region is compressed, and each region entry is
compressed as a single unit. It is not possible to compress individual fields of an entry.

You can have a mix of compressed and non-compressed regions in the same cache.
¢« Guidelines on Using Compression
This topic describes factors to consider when deciding on whether to use compression.
« How to Enable Compression in a Region
This topic describes how to enable compression on your region.
« Working with Compressors

When using region compression, you can use the default Snappy compressor included with
VMware GemFire or you can specify your own compressor.

¢ Comparing Performance of Compressed and Non-Compressed Regions

The comparative performance of compressed regions versus non-compressed regions can
vary depending on how the region is being used and whether the region is hosted in a
memory-bound JVM.

Guidelines on Using Compression

This topic describes factors to consider when deciding on whether to use compression.

Review the following guidelines when deciding on whether or not to enable compression in your
region:

¢ Use compression when JVM memory usage is too high. Compression allows you to store
more region data in-memory and to reduce the number of expensive garbage collection

VMware by Broadcom 319

http://google.github.io/snappy/

VMware GemFire 9.10 Documentation

cycles that prevent JVMs from running out of memory when memory usage is high.
To determine if JVM memory usage is high, examine the the following statistics:

o vmStats>freeMemory

o vmStats->maxMemory

o ConcurrentMarkSweep->collectionTime

If the amount of free memory regularly drops below 20% - 25% or the duration of the
garbage collection cycles is generally on the high side, then the regions hosted on that JVM
are good candidates for having compression enabled.

« Consider the types and lengths of the fields in the region’s entries. Since compression is
performed on each entry separately (and not on the region as a whole), consider the
potential for duplicate data across a single entry. Duplicate bytes are compressed more
easily. Also, since region entries are first serialized into a byte area before being
compressed, how well the data might compress is determined by the number and length of
duplicate bytes across the entire entry and not just a single field. Finally, the larger the
entry the more likely compression will achieve good results as the potential for duplicate
bytes, and a series of duplicate bytes, increases.

« Consider the type of data you wish to compress. The type of data stored has a significant
impact on how well the data may compress. String data will generally compress better than
numeric data simply because string bytes are far more likely to repeat; however, that may
not always be the case. For example, a region entry that holds a couple of short, unique
strings may not provide as much memory savings when compressed as another region
entry that holds a large number of integer values. In short, when evaluating the potential
gains of compressing a region, consider the likelihood of having duplicate bytes, and more
importantly the length of a series of duplicate bytes, for a single, serialized region entry. In
addition, data that has already been compressed, such as JPEG format files, can actually
cause more memory to be used.

« Compress if you are storing large text values. Compression is beneficial if you are storing
large text values (such as JSON or XML) or blobs in VMware GemFire that would benefit
from compression.

« Consider whether fields being queried against are indexed. You can query against
compressed regions; however, if the fields you are querying against have not been indexed,
then the fields must be decompressed before they can be used for comparison. In short,
you may incur some query performance costs when querying against non-indexed fields.

o Objects stored in the compression region must be serializable. Compression only
operates on byte arrays, therefore objects being stored in a compressed region must be
serializable and deserializable. The objects can either implement the Serializable interface or
use one of the other VMware GemFire serialization mechanisms (such as PdxSerializable).
Implementers should always be aware that when compression is enabled the instance of an
object put into a region will not be the same instance when taken out. Therefore, transient
attributes will lose their value when the containing object is put into and then taken out of a
region.

« Compressed regions will enable cloning by default. Setting a compressor and then
disabling cloning results in an exception. The options are incompatible because the process

VMware by Broadcom 320

VMware GemFire 9.10 Documentation

of compressing/serializing and then decompressing/deserializing will result in a different
instance of the object being created and that may be interpreted as cloning the object.

How to Enable Compression in a Region

This topic describes how to enable compression on your region.

To enable compression on your region, set the following region attribute in your cache.xml:

<?xml version="1.0" encoding= "UTF-8"2>
<cache xmlns="http://geode.apache.org/schema/cache"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://geode.apache.org/schema/cache http://geode.apache.org/s
chema/cache/cache-1.0.xsd"

version="1.0"” lock-lease="120" lock-timeout= "60" search-timeout= "300" 1is-serve
r= "true" copy-on-read= "false" >

<region name="compressedRegion" >

<region-attributes data-policy="replicate" ... />
<compressor>
<class-name>org.apache.geode.compression.SnappyCompressor</class-name>

</compressor>
</region-attributes>

</region>
</cache>

In the Compressor element, specify the class-name for your compressor implementation. This
example specifies the Snappy compressor, which is bundled with VMware GemFire . You can also
specify a custom compressor. See Working with Compressors for an example.

Compression can be enabled during region creation using gfsh or programmatically as well.

Using gfsh:

gfsh>create-region --name="CompressedRegion” --compressor="org.apache.geode.compressio

n.SnappyCompressor”;

API:

regionFactory.setCompressor (new SnappyCompressor());

or

regionFactory.setCompressor (SnappyCompressor.getDefaultInstance()) ;

How to Check Whether Compression is Enabled

You can also check whether a region has compression enabled by querying which codec is being
used. A null codec indicates that no compression is enabled for the region.

Region myRegion = cache.getRegion ("myRegion") ;

Compressor compressor = myRegion.getAttributes () .getCompressor();

VMware by Broadcom

321

VMware GemFire 9.10 Documentation

Working with Compressors

When using region compression, you can use the default Snappy compressor included with
VMware GemFire or you can specify your own compressor.

The compression API consists of a single interface that compression providers must implement. The
default compressor (SnappyCompressor) is the single compression implementation that comes
bundled with the product. Note that since the Compressor is stateless, there only needs to be a
single instance in any JVM; however, multiple instances may be used without issue. The single,
default instance of the SnappyCompressor may be retrieved with the
SnappyCompressor.getDefaultInstance () Static method.

Note: The Snappy codec included with VMware GemFire cannot be used with Solaris deployments.
Snappy is only supported on Linux, Windows, and macOS deployments of VMware GemFire.

This example provides a custom Compressor implementation:

package com.mybiz.myproduct.compression;
import org.apache.geode.compression.Compressor;

public class LZWCompressor implements Compressor {

private final LZWCodec lzwCodec = new LZWCodec();

@Override
public byte[] compress(byte[] input) {

return lzwCodec.compress (input) ;

@Override
public byte[] decompress (byte[] input) {
return lzwCodec.decompress (input) ;

To use the new custom compressor on a region:

1. Make sure that the new compressor package is available in the classpath of all JVMs that
will host the region.

2. Configure the custom compressor for the region using any of the following mechanisms:

Using gfsh:

gfsh>create-region --name="CompressedRegion” \

—--compressor="com.mybiz.myproduct.compression.LZWCompressor”

Using API:

For example:

regionFactory.setCompressor (new LZWCompressor());

cache.xml:

<region-attributes>

<Compressor>

VMware by Broadcom 322

VMware GemFire 9.10 Documentation

<class-name>com.mybiz.myproduct.compression.LZWCompressor</class-name>
</Compressor>

</region-attributes>

Changing the Compressor for an Already Compressed
Region

You typically enable compression on a region at the time of region creation. You cannot modify the
Compressor or disable compression for the region while the region is online.

However, if you need to change the compressor or disable compression, you can do so by
performing the following steps:

1. Shut down the members hosting the region you wish to modify.

2. Modify the cache.xml file for the member either specifying a new compressor or removing
the compressor attribute from the region.

3. Restart the member.

Comparing Performance of Compressed and Non-
Compressed Regions

The comparative performance of compressed regions versus non-compressed regions can vary
depending on how the region is being used and whether the region is hosted in a memory-bound
JVM.

When considering the cost of enabling compression, you should consider the relative cost of
reading and writing compressed data as well as the cost of compression as a percentage of the
total time spent managing entries in a region. As a general rule, enabling compression on a region
will add 30% - 60% more overhead for region create and update operations than for region get
operations. Because of this, enabling compression will create more overhead on regions that are
write heavy than on regions that are read heavy.

However, when attempting to evaluate the performance cost of enabling compression you should
also consider the cost of compression relative to the overall cost of managing entries in a region. A
region may be tuned in such a way that it is highly optimized for read and/or write performance.
For example, a replicated region that does not save to disk will have much better read and write
performance than a partitioned region that does save to disk. Enabling compression on a region
that has been optimized for read and write performance will provide more noticeable results than
using compression on regions that have not been optimized this way. More concretely,
performance may degrade by several hundred percent on a read/write optimized region whereas it
may only degrade by 5 to 10 percent on a non-optimized region.

A final note on performance relates to the cost when enabling compression on regions in a memory
bound JVM. Enabling compression generally assumes that the enclosing JVM is memory bound
and therefore spends a lot of time for garbage collection. In that case performance may improve by
as much as several hundred percent as the JVM will be running far fewer garbage collection cycles
and spending less time when running a cycle.

Monitoring Compression Performance

VMware by Broadcom 323

VMware GemFire 9.10 Documentation

The following statistics provide monitoring for cache compression:
o compressTime
e decompressTime
e compressions
e decompressions
e preCompressedBytes
e postCompressedBytes

See Cache Performance (CachePerfStats) for statistic descriptions.

Network Partitioning
VMware GemFire architecture and management features help detect and resolve network partition
problems.

« How Network Partitioning Management Works

VMware GemFire handles network outages by using a weighting system to determine
whether the remaining available members have a sufficient quorum to continue as a cluster.

« Failure Detection and Membership Views

VMware GemFire uses failure detection to remove unresponsive members from
membership views.

¢ Membership Coordinators, Lead Members and Member Weighting

Network partition detection uses a designated membership coordinator and a weighting
system that accounts for a lead member to determine whether a network partition has
occurred.

« Network Partitioning Scenarios

This topic describes network partitioning scenarios and what happens to the partitioned
sides of the cluster.

« Configure VMware GemFire to Handle Network Partitioning
This section lists the configuration steps for network partition detection.
« Preventing Network Partitions

This section provides a short list of things you can do to prevent network partition from
occurring.

How Network Partitioning Management Works

VMware GemFire handles network outages by using a weighting system to determine whether the
remaining available members have a sufficient quorum to continue as a cluster.

Individual members are each assigned a weight, and the quorum is determined by comparing the
total weight of currently responsive members to the previous total weight of responsive members.

VMware by Broadcom 324

VMware GemFire 9.10 Documentation

Your cluster can split into separate running systems when members lose the ability to see each
other. The typical cause of this problem is a failure in the network. When a partitioned system is
detected, only one side of the system keeps running and the other side automatically shuts down.

The network partitioning detection feature is enabled by default with a true value for the enable-
network-partition-detection property. See Configure VMware GemFire to Handle Network
Partitioning for details. Quorum weight calculations are always performed and logged regardless of
this configuration setting.

The overall process for detecting a network partition is as follows:

1. The cluster starts up. When you start up a cluster, start the locators first, start the cache
servers second, and then start other members such as applications or processes that access

cluster data.

2. After the members start up, the oldest member, typically a locator, assumes the role of the
membership coordinator. Peer discovery occurs as members come up and members
generate a membership discovery list for the cluster. Locators hand out the membership
discovery list as each member process starts up. This list typically contains a hint on who the

current membership coordinator is.

3. Members join and if necessary, depart the cluster:

o

Member processes make a request to the coordinator to join the cluster. If
authenticated, the coordinator creates a new membership view, hands the new
membership view to the new member, and begins the process of sending the new
membership view (to add the new member or members) by sending out a view
preparation message to existing members in the view.

While members are joining the system, it is possible that members are also leaving
or being removed through the normal failure detection process. Failure detection
removes unresponsive or slow members. See Managing Slow Receivers and Failure
Detection and Membership Views for descriptions of the failure detection process. If
a new membership view is sent out that includes one or more failed processes, the
coordinator will log the new weight calculations. At any point, if quorum loss is
detected due to unresponsive processes, the coordinator will also log a severe level
message to identify the failed processes:

Possible loss of quorum detected due to loss of {0} cache processes: {1}

where {0} is the number of processes that failed and {1} lists the processes.

4. Whenever the coordinator is alerted of a membership change (a member either joins or
leaves the cluster), the coordinator generates a new membership view. The membership
view is generated by a two-phase protocol:

1.

In the first phase, the membership coordinator sends out a view preparation
message to all members and waits 12 seconds for a view preparation ack return
message from each member. If the coordinator does not receive an ack message
from a member within 12 seconds, the coordinator attempts to connect to the
member’s failure-detection socket. If the coordinator cannot connect to the
member’s failure-detection socket, the coordinator declares the member dead and
starts the membership view protocol again from the beginning.

VMware by Broadcom 325

VMware GemFire 9.10 Documentation

2. Inthe second phase, the coordinator sends out the new membership view to all
members that acknowledged the view preparation message or passed the
connection test.

5. Each time the membership coordinator sends a view, each member calculates the total
weight of members in the current membership view and compares it to the total weight of
the previous membership view. Some conditions to note:

o When the first membership view is sent out, there are no accumulated losses. The
first view only has additions.

o A new coordinator may have a stale view of membership if it did not see the last
membership view sent by the previous (failed) coordinator. If new members were
added during that failure, then the new members may be ignored when the first
new view is sent out.

o If members were removed during the fail over to the new coordinator, then the
new coordinator will have to determine these losses during the view preparation
step.

6. With a default value of enable-network-partition-detection, any member that detects
that the total membership weight has dropped below 51% within a single membership view
change (loss of quorum) declares a network partition event. The coordinator sends a
network-partitioned-detected UDP message to all members (even to the non-responsive
ones) and then closes the cluster with a ForcedbisconnectException. If @ member fails to
receive the message before the coordinator closes the system, the member is responsible
for detecting the event on its own.

The presumption is that when a network partition is declared, the members that comprise a
quorum will continue operations. The surviving members elect a new coordinator, designate a lead
member, and so on.

Failure Detection and Membership Views

VMware GemFire uses failure detection to remove unresponsive members from membership
views.

Failure Detection

Network partitioning has a failure detection protocol that is not subject to hanging when NICs or
machines fail. Failure detection has each member observe messages from the peer to its right
within the membership view (see “Membership Views” below for the view layout). A member that
suspects the failure of its peer to the right sends a datagram heartbeat request to the suspect
member. With no response from the suspect member, the suspicious member broadcasts a
SuspectMembersMessage datagram message to all other members. The coordinator attempts to
connect to the suspect member. If the connection attempt is unsuccessful, the suspect member is
removed from the membership view. The suspect member is sent a message to disconnect from
the cluster and close the cache. In parallel to the receipt of the suspectMembersMessage, a
distributed algorithm promotes the leftmost member within the view to act as the coordinator, if
the coordinator is the suspect member.

VMware by Broadcom 326

VMware GemFire 9.10 Documentation

Failure detection processing is also initiated on a member if the gemfire.properties ack-wait-
threshold elapses before receiving a response to a message, if a TCP/IP connection cannot be
made to the member for peer-to-peer (P2P) messaging, and if no other traffic is detected from the
member.

Note: The TCP connection ping is not used for connection keep alive purposes; it is only used to
detect failed members. See TCP/IP KeepAlive Configuration for TCP keep alive configuration.

If a new membership view is sent out that includes one or more failed members, the coordinator
will log new quorum weight calculations. At any point, if quorum loss is detected due to
unresponsive processes, the coordinator will also log a severe level message to identify the failed
members:

Possible loss of quorum detected due to loss of {0} cache processes: {1}

in which {0} is the number of processes that failed and {1} lists the members (cache processes).

Membership Views

The following is a sample membership view:

[info 2012/01/06 11:44:08.164 PST bridgegemfirel <UDP Incoming Message Handler> tid=0x
1£f]

Membership: received new view [ent (5767)<v0>:8700|16] [ent(5767)<v0>:8700/44876,

ent (5829)<v1>:48034/55334, ent(5875)<v2>:4738/54595, ent (5822)<v5>:49380/39564,

ent (8788)<v7>:24136/53525]

The components of the membership view are as follows:

e The first part of the view ([ent (5767)<v0>:8700|16] in the example above) corresponds to
the view ID. It identifies:

o the address and processld of the membership coordinator: ent (5767) in example
above.

o the view-number (<vxx>) of the membership view that the member first appeared
in: <v0> in example above.

o membership-port of the membership coordinator: 8700 in the example above.
o view-number: 16 in the example above

e The second part of the view lists all of the member processes in the current view.
[ent (5767)<v0>:8700/44876, ent (5829)<v1>:48034/55334, ent (5875)<v2>:4738/54595,
ent (5822)<v5>:49380/39564, ent (8788)<v7>:24136/53525] in the example above.

e« The overall format of each listed member is:Address (processId) <vXX>:membership-
port/distribution port. The membership coordinator is almost always the first member in
the view and the rest are ordered by age.

¢ The membership-port is the JGroups TCP UDP port that it uses to send datagrams. The
distribution-port is the TCP/IP port that is used for cache messaging.

¢ Each member watches the member to its right for failure detection purposes.

VMware by Broadcom

327

VMware GemFire 9.10 Documentation

Membership Coordinators, Lead Members and Member
Weighting

Network partition detection uses a designated membership coordinator and a weighting system
that accounts for a lead member to determine whether a network partition has occurred.

Membership Coordinators and Lead Members

The membership coordinator is a member that manages entry and exit of other members of the
cluster. With network partition detection enabled, the coordinator can be any VMware GemFire
member but locators are preferred. In a locator-based system, if all locators are in the reconnecting
state, the system continues to function, but new members are not able to join until a locator has
successfully reconnected. After a locator has reconnected, the reconnected locator will take over
the role of coordinator.

When a coordinator is shutting down, it sends out a view that removes itself from the list and the
other members must determine who the new coordinator is.

The lead member is determined by the coordinator. Any member that has enabled network
partition detection, is not hosting a locator, and is not an administrator interface-only member is
eligible to be designated as the lead member by the coordinator. The coordinator chooses the
longest-lived member that fits the criteria.

The purpose of the lead member role is to provide extra weight. It does not perform any specific
functionality.

Member Weighting System

By default, individual members are assigned the following weights:
« Each member has a weight of 10 except the lead member.
¢ The lead member is assigned a weight of 15.
« Locators have a weight of 3.

You can modify the default weights for specific members by defining the gemfire.member-weight
system property upon startup.

The weights of members prior to the view change are added together and compared to the weight
of lost members. Lost members are considered members that were removed between the last
view and the completed send of the view preparation message. If membership is reduced by a
certain percentage within a single membership view change, a network partition is declared.

The loss percentage threshold is 51 (meaning 51%). Note that the percentage calculation uses
standard rounding. Therefore, a value of 50.51 is rounded to 51. If the rounded loss percentage is
equal to or greater than 51%, the membership coordinator initiates shut down.

Sample Member Weight Calculations

This section provides some example calculations.

VMware by Broadcom 328

VMware GemFire 9.10 Documentation

Example 1: Cluster with 12 members. 2 locators, 10 cache servers (one cache server is designated
as lead member.) View total weight equals 111.

e 4 cache servers become unreachable. Total membership weight loss is 40 (36%). Since 36%
is under the 51% threshold for loss, the cluster stays up.

e« 1locator and 4 cache servers (including the lead member) become unreachable.
Membership weight loss equals 48 (43%). Since 43% is under the 51% threshold for loss, the
cluster stays up.

e 5 cache servers (not including the lead member) and both locators become unreachable.
Membership weight loss equals 56 (49%). Since 49% is under the 51% threshold for loss, the
cluster stays up.

¢ 5 cache servers (including the lead member) and 1 locator become unreachable.
Membership weight loss equals 58 (52%). Since 52% is greater than the 51% threshold, the
coordinator initiates shutdown.

e 6 cache servers (not including the lead member) and both locators become unreachable.
Membership weight loss equals 66 (59%). Since 59% is greater than the 51% threshold, the
newly elected coordinator (a cache server since no locators remain) will initiate shutdown.

Example 2: Cluster with 4 members. 2 cache servers (1 cache server is designated lead member), 2
locators. View total weight is 31.

o Cache server designated as lead member becomes unreachable. Membership weight loss
equals 15 or 48%. Cluster stays up.

« Cache server designated as lead member and 1 locator become unreachable. Member
weight loss equals 18 or 58%. Membership coordinator initiates shutdown. If the locator that
became unreachable was the membership coordinator, the other locator is elected
coordinator and then initiates shutdown.

Even if network partitioning is not enabled, if quorum loss is detected due to unresponsive
processes, the locator will also log a severe level message to identify the failed processes:

Possible loss of gquorum detected due to loss of {0} cache processes: {1}

where {0} is the number of processes that failed and {1} lists the processes.

Enabling network partition detection allows only one subgroup to survive a split. The rest of the
system is disconnected and the caches are closed.

When a shutdown occurs, the members that are shut down will log the following alert message:

Exiting due to possible network partition event due to loss of {0} cache processes:
{1}

where {0} is the count of lost members and {1} is the list of lost member IDs.

Network Partitioning Scenarios

This topic describes network partitioning scenarios and what happens to the partitioned sides of the
Cluster.

VMware by Broadcom 329

VMware GemFire 9.10 Documentation

e B
Network Partition Scenario - Total weight of 111
/ Surviving Side \ / Losing Side \
4 1 ()
M1 M2 M7 M8
(weight=3) (weight=15) (weight=3) (weight=10)
Locator & Membershi Cache Server &
[L Coordinator Jg] (Lead Member [Locator l | Cache Server I
e N 4 \ w
M3 M4 M9 M10
(weight=10) (weight=10) (weight=10) (weight=10)
VX
Cache Server Cache Server | Cache Server | | Cache Server I
s A 4 N (
M5 M6 M1l M12
(weight=10) (weight=10) (weight=10) (weight=10)
Cache Server Cache Server | Cache Server 1 | Cache Server 1
- Detects membership weight loss of - Detects membership weight loss of 52%
ah - Locator assumes coordinator role and shuts
K - This distributed system stays up / K system down /
\ J

What the Losing Side Does

In a network partitioning scenario, the “losing side” constitutes the cluster partition where the
membership coordinator has detected that there is an insufficient quorum of members to continue.

The membership coordinator calculates membership weight change after sending out its view
preparation message. If a quorum of members does not remain after the view preparation phase,
the coordinator on the “losing side” declares a network partition event and sends a network-
partition-detected UDP message to the members. The coordinator then closes its cluster with a
ForcedDisconnectException. If @ member fails to receive the message before the coordinator closes
the connection, it is responsible for detecting the event on its own.

When the losing side discovers that a network partition event has occurred, all peer members
receive a RegionDestroyedException With Operation: FORCED DISCONNECT.

If a cacheListener is installed, the afterRegionDestroy callback is invoked with a
RegionDestroyedEvent, as shown in this example logged by the losing side’s callback. The peer
member process IDs are 14291 (lead member) and 14296, and the locator is 14289.

[info 2008/05/01 11:14:51.853 PDT <CloserThread> tid=0x4al]

Invoked splitBrain.SBListener: afterRegionDestroy in clientl whereIWasRegistered: 1429
1

event.isReinitializing(): false

event.getDistributedMember () : thor (14291):40440/34132

event.getCallbackArgument () : null

event.getRegion(): /TestRegion

event.isOriginRemote () : false

Operation: FORCED_DISCONNECT

VMware by Broadcom 330

VMware GemFire 9.10 Documentation

Operation.isDistributed(): false

Operation.isExpiration(): false

Peers still actively performing operations on the cache may see shutdownExceptionS Or
CacheClosedExceptions With Caused by: ForcedDisconnectException.

What Isolated Members Do

When a member is isolated from all locators, it is unable to receive membership view changes. It
can’t know if the current coordinator is present or, if it has left, whether there are other members
available to take over that role. In this condition, a member will eventually detect the loss of all
other members and will use the loss threshold to determine whether it should shut itself down. In
the case of a cluster with 2 locators and 2 cache servers, the loss of communication with the non-
lead cache server plus both locators would result in this situation and the remaining cache server
would eventually shut itself down.

Configure VMware GemFire to Handle Network
Partitioning

This section lists configuration considerations relating to network partition detection.

The system uses a combination of member coordinators and system members, designated as lead
members, to detect and resolve network partitioning problems.

¢ Network partition detection works in all environments. Using multiple locators mitigates the
effect of network partitioning. See Configuring Peer-to-Peer Discovery.

« Network partition detection is enabled by default. The default setting in the

gemfire.properties file is

enable-network-partition-detection=true

Processes that do not have network partition detection enabled are not eligible to be the
lead member, so their failure will not trigger declaration of a network partition.

All system members should have the same setting for enable-network-partition-
detection. If they do not, the system throws a GemFireConfigException upon startup.

e The property enable-network-partition-detection must be true if you are using either
partitioned or persistent regions. If you create a persistent region and enable-network-
partition-detection to set to false, you will receive the following warning message:

Creating persistent region {0}, but enable-network-partition-detection is set t
o false.

Running with network partition detection disabled can lead to an unrecove
rable system in the

event of a network split."

« Configure regions you want to protect from network partitioning with a scope setting of
DISTRIBUTED ACK Of GLOBAL. DO not use DISTRIBUTED NO ACK scope. This prevents
operations from being performed throughout the cluster before a network partition is

VMware by Broadcom

331

VMware GemFire 9.10 Documentation

detected. Note: VMware GemFire issues an alert if it detects DISTRIBUTED NO ACK regions
when network partition detection is enabled:

Region {0} is being created with scope {1} but enable-network-partition-detecti
on is enabled in the distributed system.

This can lead to cache inconsistencies if there is a network failure.

¢ These other configuration parameters affect or interact with network partitioning detection.
Check whether they are appropriate for your installation and modify as needed.

o If you have network partition detection enabled, the threshold percentage value for
allowed membership weight loss is automatically configured to 51. You cannot
modify this value. Note: The weight loss calculation uses round to nearest.
Therefore, a value of 50.51 is rounded to 51 and will cause a network partition.

o Failure detection is initiated if a member’s ack-wait-threshold (default is 15
seconds) and ack-severe-alert-threshold (15 seconds) properties elapse before
receiving a response to a message. If you modify the ack-wait-threshold
configuration value, you should modify ack-severe-alert-threshold to match the
other configuration value.

o Ifthe system has clients connecting to it, the clients’ cache.xml pool read-timeout
should be set to at least three times the member-timeout setting in the server’s
gemfire.properties file. The default pool read-timeout setting is 10000
milliseconds.

o You can adjust the default weights of members by specifying the system property
gemfire.member-weight upon startup. For example, if you have some VMs that host
a needed service, you could assign them a higher weight upon startup.

« By default, members that are forced out of the cluster by a network partition event will
automatically restart and attempt to reconnect. Data members will attempt to reinitialize
the cache. See Handling Forced Cache Disconnection Using Autoreconnect.

Preventing Network Partitions

This section provides a short list of things you can do to prevent a network partition from occurring.
To avoid a network partition:

e« Use NIC teaming for redundant connectivity. See
http://www .cisco.com/en/US/docs/solutions/Enterprise/Data_Center/vmware/VMware .html#wp696452
for more information.

o It is best if all servers share a common network switch. Having multiple network switches
increases the possibility of a network partition occurring. If multiple switches must be used,
redundant routing paths should be available, if possible. The weight of members sharing a
switch in a multi-switch configuration will determine which partition survives if there is an
inter-switch failure.

¢« Interms of VMware GemFire configuration, consider the weighting of members. For
example, you could assign important processes a higher weight.

VMware by Broadcom 332

http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/vmware/VMware.html#wp696452

VMware GemFire 9.10 Documentation

Security

The security framework permits authentication of connecting components and authorization of
operations for all communicating components of the cluster.

Security Implementation Introduction and Overview

Encryption, SSL secure communication, authentication, and authorization help to secure
the cluster.

Security Detail Considerations

This section gathers discrete details in one convenient location to better help you assess
and configure the security of your environment.

Enable Security with Property Definitions
Authentication

A cluster using authentication bars malicious peers or clients, and deters inadvertent access
to its cache.

Authorization

Client operations on a cache server can be restricted or completely blocked based on the
roles and permissions assigned to the credentials submitted by the client.

Post Processing of Region Data
SSL

SSL protects your data in transit between applications.

Security Implementation Introduction and Overview

Security Features

Encryption, SSL secure communication, authentication, and authorization features help to secure

the cluster.

Security features include:

A single security interface for all components. The single authentication and
authorization mechanism simplifies the security implementation. It views and interacts with
all components in a consistent manner.

System-wide role-based access control. Roles regiment authorized operations requested
by the various components.

SSL communication. Allows configuration of connections to be SSL-based, rather than
plain socket connections. You can enable SSL separately for peer-to-peer, client, JMX,
gateway senders and receivers, and HTTP connections.

Post processing of region data. Return values for operations that return region values
may be formatted.

Overview

VMware by Broadcom

333

VMware GemFire 9.10 Documentation

An authentication and authorization mechanism forms the core of the internal security of the
cluster. Communications may be further protected by enabling SSL for data in transit.

Authentication verifies the identity of communicating components, leading to control over
participation. The variety of participants include peer members, servers, clients, originators of JMX
operations, Pulse, gateway senders and receivers representing WAN members of the system, and
commands arriving from gfsh on behalf of system users or administrators.

Connection requests trigger the invocation of an authentication callback. This special-purpose
callback is written as part of the application, and it attempts to authenticate the requester by
whatever algorithm it chooses. The result is either a returned principal representing the requester’s
authenticated identity or an exception indicating that the requester has not been authenticated.
The principal becomes part of any request for operations, which go through the authorization
process.

Given authentication, isolation and access to cache data and system state can be further protected
by implementing the authorization mechanism, also implemented as a special-purpose callback as
part of the application. For example, the protection may be to permit only certain system
administrators to start and stop servers. The authority to do this needs to be limited to specific
verified accounts, preventing those without the authorization. An implementation of the
authorization callback will require that an authenticate identity accompanies all requests to the
system, and that the system maintains a representation of which identities are permitted to
complete which actions or cache commands.

Security Detail Considerations

This section gathers discrete details in one convenient location to better help you assess and
configure the security of your environment.

« External Interfaces, Ports, and Services

VMware GemFire processes use either UDP or TCP/IP ports to communicate with other
processes or clients.

¢ Resources That Must Be Protected

Certain VMware GemFire configuration files should be readable and writeable only by the
dedicated user who runs servers.

e« Log File Locations

By default, the log files are located in the working directory used when you started the
corresponding processes.

¢ Where to Place Security Configuration Settings

External Interfaces, Ports, and Services

VMware GemFire processes use either UDP or TCP/IP ports to communicate with other processes
or clients.

For example:

¢ Members can use multicast to communicate with peer members. You specify multicast
addresses and multicast ports in your gemfire.properties file or as parameters on the

VMware by Broadcom 334

VMware GemFire 9.10 Documentation

command-line when starting the members using gfsh.
« Clients connect to a locator to discover cache servers.

o JMX clients (such as gfsh and JConsole) can connect to JMX Managers and other
manageable members on the pre-defined RMI port 1099. You can configure a different port
if necessary.

« [Each gateway receiver usually has a port range where it listens for incoming
communication.

See Firewalls and Ports for the complete list of ports used by VMware GemFire, their default
values, and how to configure them if you do not want to use the default value.

VMware GemFire does not have any external interfaces or services that need to be enabled or
opened.

Resources That Must Be Protected

These configuration files should be readable and writeable only by the dedicated user who runs
servers:

e gemfire.properties

° cache.xml

e gfsecurity.properties A default gfsecurity.properties is not provided in the
defaultConfigs directory. If you choose to use this properties file, you must create it
manually. A clear text user name and associated clear text password may be in this file for
authentication purposes. The file system’s access rights are relied upon to protect this
sensitive information.

The default location of the gemfire.properties and cache.xml configuration files is the
defaultConfigs child directory of the main installation directory.

Log File Locations
By default, the log files are located in the working directory used when you started the
corresponding processes.

For VMware GemFire members (locators and cache servers), you can also specify a custom
working directory location when you start each process. See Logging for more details.

The log files are as follows:
e locator-name.log: Contains logging information for the locator process.
e server-name.log: Contains logging information for a cache server process.

e gfsh-3%u %g.log: Contains logging information of an individual gfsh environment and
session.

Note: By default, gfsh session logging is disabled. To enable gfsh logging, you must set the
Java system property -Dgfsh. log-level=desired log level. See Configuring the gfsh
Environment for more information.

These log files should be readable and writable only by the dedicated user who runs the servers.

VMware by Broadcom

335

VMware GemFire 9.10 Documentation

Where to Place Security Configuration Settings

Any security-related (properties that begin with security-+*) configuration properties that are

normally configured in gemfire.properties can be moved to a separate gfsecurity.properties file.

Placing these configuration settings in a separate file allows you to restrict access to security
configuration data. This way, you can still allow read or write access for your gemfire.properties
file.

Upon startup, VMware GemFire processes will look for the gfsecurity.properties file in the
following locations in order:

e current working directory
e« user’'s home directory
o classpath

If any password-related security properties are listed in the file but have a blank value, the process
will prompt the user to enter a password upon startup.

Enable Security with Property Definitions

security-manager Property

The authentication callback and the authorization callback that implement the securityManager
interface are specified with the security-manager property. When this property is defined,
authentication and authorization are enabled. The definition of the security-manager property is
the fully qualified name of the class that implements the securityManager interface. For example:

security-manager = com.example.security.MySecurityManager

Apply security-manager to All Members

To ensure that the security-manager property is applied consistently across a cluster, follow these
guidelines:

e Specify the security-manager property in a properties file, such as gemfire.properties, not
in a cluster configuration file (such as cluster.properties).

« Specify the properties file when you start the first locator for the cluster.

Is Cluster Management Enabled?

The next steps in applying the security-manager property across the cluster depend on whether
cluster management is enabled. Cluster management is enabled when two conditions are met:

e Every locator in the cluster sets --enable-cluster-configuration=true.
e Every server in the cluster sets --use-cluster-configuration=true.

These are the default settings, so unless you have changed them, cluster management is probably
enabled for your system, but be sure and confirm before proceeding. Some systems that
implement cluster management for most members might include a few servers that do not

VMware by Broadcom

336

VMware GemFire 9.10 Documentation

participate (for which --use-cluster-configuration=false). See Using the Cluster Configuration
Service for details.

Apply security-manager to Non-participating Servers

+ If cluster management is enabled (the default), the locator will propagate the security-
manager Setting to all members (locators and servers) that are subsequently started.

o If cluster management is enabled but some servers do not participate in cluster
management (that is, servers for which --use-cluster-configuration=false), you must
specify the security-manager property for those non-participating servers. Make sure its
value is exactly identical to that specified for the first locator.

¢ If cluster management is not enabled, you must specify the security-manager property
for all servers. Make sure its value is exactly identical to that specified for the first locator.

Callbacks

All components of the system invoke the same callbacks. Here are descriptions of the components
and the connections that they make with the system.

¢ A client connects with a server and makes operation requests of that server. The callbacks
invoked are those defined by the securityManager interface for that server.

e A server connects with a locator, invoking the authenticate callback defined for that
locator.

« Components communicating with a locator’'s JMX manager connect and make operation
requests of the locator. The callbacks invoked are those defined by the securityManager
interface for that locator. Both gfsh and pulse use this form of communication.

e« Applications communicating via the REST API make of a server invoke security callbacks
upon connection and operation requests.

¢ Requests that a gateway sender makes of a locator invoke security callbacks defined for
that locator.

security-post-processor Property

The postProcessor interface allows the definition of a set of callbacks that are invoked after
operations that get data, but before the data is returned. This permits the callback to intervene and
format the data that is to be returned. The callbacks do not modify the region data, only the data to
be returned.

Enable the post processing of data by defining the security-post-processor property with the
path to the definition of the interface. For example,

security-post-processor = com.example.security.MySecurityPostProcessing

Authentication

Authentication verifies the identities of components within the cluster such as peers, clients, and
those connecting to a JMX manager.

VMware by Broadcom 337

VMware GemFire 9.10 Documentation

¢ Implementing Authentication

All components of the cluster authenticate the same way, through a custom-written
method.

« Authentication Example

The example demonstrates the basics of an implementation of the
SecurityManager.authenticate method.

Implementing Authentication

Authentication lends a measure of security to a cluster by verifying the identity of components as
they connect to the system. All components use the same authentication mechanism.

How Authentication Works

When a component initiates a connection to the cluster, the securityManager.authenticate
method is invoked. The component provides its credentials in the form of properties as a parameter
to the authenticate method. The credential is presumed to be the two properties security-
username and security-password. The authenticate method is expected to either return an object
representing a principal or throw an AuthenticationFailedException.

A well-designed authenticate method will have a set of known user and password pairs that can
be compared to the credential presented or will have a way of obtaining those pairs.

How a Server Sets Its Credential

In order to connect with a locator that does authentication, a server will need to set its credential,
composed of the two properties security-username and security-password. Choose one of these
two ways to accomplish this:

e Set security-username and security-password in the server’s gfsecurity.properties file
that will be read upon server start up, as in the example

security-username=admin

security-password=xyz1234
The user name and password are stored in cleartext, so the gfsecurity.properties file
must be protected by restricting access with file system permissions.
e Implement authInitialize interface for the server.

o Set the property security-peer-auth-init, so that an object of the class that
implements the authInitialize interface will be instantiated. Set the property to
one of these two values:

s Set property security-peer-auth-init to the fully-qualified class name that
implements the authInitialize interface as in the example

security-peer-auth-init=com.example.security.ServerAuthenticate

VMware by Broadcom 338

VMware GemFire 9.10 Documentation

s Set property security-peer-auth-init to the fully-qualified method name of
a method that instantiates an object of the class that implements the
AuthInitialize interface as in the example

security-peer-auth-init=com.example.security.ServerAuthenticate.create

o Implement the getCredentials method within the AuthInitialize interface to
acquire values for the security-username and security-password properties in
whatever way it wishes. It might look up values in a database or another external

resource.

Gateway senders and receivers communicate as a component of their server member. Therefore,
the credential of the server become those of the gateway sender or receiver.

How a Client Cache Sets Its Credential

In order to connect with a locator or a server that does authentication, a client will need to set its
credential, composed of the two properties security-username and security-password. Choose
one of these two ways to accomplish this:

e Set the security-username and security-password properties for the client using the API:

Properties properties = new Properties();
properties.setProperty("security-username", "exampleuser23");
properties.setProperty ("security-password", "xyzl1l234");
ClientCache cache = new ClientCacheFactory(properties) .create();

Take care that credentials set in this manner are not accessible to observers of the code.

¢ Implement AuthInitialize interface for the client.

o Set the property security-client-auth-init, SO that an object of the class that
implements the authinitialize interface will be instantiated. Set the property to
one of these two values:

= Set property security-client-auth-init to the fully-qualified class name
that implements the AuthInitialize interface:

security-client-auth-init=com.example.security.ClientAuthInitialize

s Set property security-client-auth-init to the fully-qualified name of a
static method that instantiates an object of the class that implements the

AuthInitialize interface:

security-client-auth-init=com.example.security.ClientAuthInitialize.creat

@

o Implement the getCredentials method of the authInitialize interface for the
client. The implementation of getCredentials acquires values for the security-
username and security-password properties in whatever way it wishes. It might look
up values in a database or another external resource, or it might prompt for values.

VMware by Broadcom 339

VMware GemFire 9.10 Documentation

How Other Components Set Their Credentials

gfsh prompts for the user name and password upon invocation of agfsh connect command.
Pulse prompts for the user name and password upon start up.

Due to the stateless nature of the REST API, a web application or other component that speaks to
a server or locator via the REST API goes through authentication on each request. The header of
the request needs to include attributes that define values for security-username and security-

password.

Implement SecurityManager Interface

Complete these items to implement authentication done by either a locator or a server.

« Decide upon an authentication algorithm. The Authentication Example stores a set of user
name and password pairs that represent the identities of components that will connect to
the system. This simplistic algorithm returns the user name as a principal if the user name
and password passed to the authenticate method are a match for one of the stored pairs.

¢ Define the security-manager property. See Enable Security with Property Definitions for
details about this property.

o Implement the authenticate method of the securityManager interface.

« Define any extra resources that the implemented authentication algorithm needs in order
to make a decision.

Authentication Example

This example demonstrates the basics of an implementation of the securityManager.authenticate
method. The remainder of the example may be found in the VMware GemFire source code in the
geode-core/src/main/java/org/apache/geode/examples/security directory.

Of course, the security implementation of every installation is unique, so this example cannot be
used in a production environment. Its use of the user name as a returned principal upon successful
authentication is a particularly poor design choice, as any attacker that discovers the
implementation can potentially spoof the system.

This example assumes that a set of user name and password pairs representing users that may be
successfully authenticated has been read into a data structure upon initialization. Any component
that presents the correct password for a user name successfully authenticates, and its identity is
verified as that user. Therefore, the implementation of the authenticate method checks that the
user name provided within the credentials parameter is in its data structure. If the user name is
present, then the password provided within the credentials parameter is compared to the data
structure’s known password for that user name. Upon a match, the authentication is successful.

public Object authenticate(final Properties credentials)
throws AuthenticationFailedException ({
String user = credentials.getProperty(ResourceConstants.USER _NAME) ;
String password = credentials.getProperty (ResourceConstants.PASSWORD) ;

User userObj = this.userNameToUser.get (user);
if (userObj == null) {

VMware by Broadcom

340

VMware GemFire 9.10 Documentation

throw new AuthenticationFailedException (

"SampleSecurityManager: wrong username/password");

if (user != null
&& !'userObj.password.equals (password)
&& !"".equals (user)) {
throw new AuthenticationFailedException (

"SampleSecurityManager: wrong username/password");

return user;

Authorization
Cluster and cache operations can be restricted, intercepted and modifed, or completely blocked
based on configured access rights set for the various cluster components.

« Implementing Authorization

To use authorization for client/server systems, your client connections must be
authenticated by their servers.

e Method Invocation Authorizers

Authorizers used during query execution, how to configure them and how to implement
your own.

o Authorization Examples

This topic discusses the authorization examples provided in the product under geode-

core/src/main/java/org/apache/geode/examples/security.

Implementing Authorization

How Authorization Works

When a component requests an operation, the securityManager.authorize method is invoked. It is
passed the principal of the operation’s requester and a ResourcePermission, which describes the
operation requested.

The implementation of the securityManager.authorize method makes a decision as to whether or
not the principal will be granted permission to carry out the operation. It returns a boolean in which
a return value of true permits the operation, and a return value of false prevents the operation.

A well-designed authorize method will have or will have a way of obtaining a mapping of principals
to the operations (in the form of resource permissions) that they are permitted to do.

Resource Permissions

All operations are described by an instance of the ResourcePermission class. A permission contains
the rResource data member, which classifies whether the operation as working on

e cache data; value is pATA

VMware by Broadcom 34

VMware GemFire 9.10 Documentation

e the cluster; value is CLUSTER
A permission also contains the operation data member, which classifies whether the operation as
e reading; value is READ
« changing information; value is WRITE
e« making administrative changes; value is MANAGE
The operations are not hierarchical; MANAGE does not imply WRITE, and WRITE does not imply READ.

Some DATA operations further specify a region name in the permission. This permits restricting
operations on that region to only those authorized principals. And within a region, some operations
may specify a key. This permits restricting operations on that key within that region to only those
authorized principals.

Some CLUSTER operations further specify a finer-grained target for the operation. Specify the target
with a string value of:

e DISK to target operations that write to a disk store

e GATEWAY to target operations that manage gateway senders and receivers

e QUERY to target operations that manage both indexes and continuous queries
e DEPLOY to target operations that deploy code to servers

e LUCENE to target Lucene index operations

This table classifies the permissions assigned for operations common to a Client-Server interaction.

Client Operation Assigned ResourcePermission

get function attribute CLUSTER:READ
create region DATA:MANAGE
destroy region DATA:MANAGE
Region.Keyset DATA:READ:RegionName
Region.query DATA:READ:RegionName
Region.getAll DATA:READ:RegionName

Region.getAll with a list of
keys

Region.getEntry

Region.containsKeyOnServer(
key)

Region.get(key)

Region.registerinterest(key)

Region.registerinterest(regex)

Region.unregisterinterest(key)

Region.unregisterinterest(rege
X)

VMware by Broadcom

DATA:READ:RegionName:Key

DATA:READ:RegionName

DATA:READ:RegionName:Key

DATA:READ:RegionName:Key
DATA:READ:RegionName:Key
DATA:READ:RegionName

DATA:READ:RegionName:Key

DATA:READ:RegionName

342

VMware GemFire 9.10 Documentation

Client Operation

execute function

clear region
Region.putAll
Region.clear
Region.removeAll
Region.destroy(key)
Region.invalidate(key)
Region.destroy(key)
Region.put(key)
Region.replace
queryService.newCq

CqQuery.stop

This table classifies the permissions assigned for gfsh operations.

gfsh Command

alter async-event-queue
alter disk-store

alter query-service
alter region

alter runtime

backup disk-store
change loglevel
clear defined indexes
close durable-client
close durable-cq
compact disk-store
configure pdx

create async-event-queue

create defined indexes
create disk-store

create gateway-receiver

VMware by Broadcom

Assigned ResourcePermission

Defaults to DATA:WRITE. Override Function.getRequiredPermissions to change the

permission.

DATA:WRITE:RegionName
DATA:WRITE:RegionName
DATA:WRITE:RegionName

DATA:WRITE:RegionName

DATA:WRITE:RegionName:Key
DATA:WRITE:RegionName:Key
DATA:WRITE:RegionName:Key
DATA:WRITE:RegionName:Key

DATA:WRITE:RegionName:Key

DATA:READ:RegionName

CLUSTER:MANAGE:QUERY

Assigned ResourcePermission

CLUSTER:MANAGE:DEPLOY

CLUSTER:MANAGE:DISK

CLUSTER:MANAGE

DATA:MANAGE:RegionName

CLUSTER:MANAGE

DATA:READ and CLUSTER:WRITE:DISK

CLUSTER:WRITE

CLUSTER:MANAGE:QUERY

CLUSTER:MANAGE:QUERY

CLUSTER:MANAGE:QUERY

CLUSTER:MANAGE:DISK

CLUSTER:MANAGE

CLUSTER:MANAGE:DEPLOY, plus CLUSTER:WRITE:DISK if the associated region is

persistent

CLUSTER:MANAGE:QUERY

CLUSTER:MANAGE:DISK

CLUSTER:MANAGE:GATEWAY

343

VMware GemFire 9.10 Documentation

gfsh Command

create gateway-sender
create index

create jndi-binding
create lucene index
create region

define index

deploy

describe client
describe config
describe disk-store
describe jndi-binding
describe lucene index
describe member
describe offline-disk-store
describe query-service
describe region
destroy async-event-queue
destroy disk-store
destroy function
destroy index

destroy jndi-binding
destroy lucene index
destroy region

execute function

export cluster-configuration
export config

export data

export logs

export offline-disk-store
export stack-traces

gc

VMware by Broadcom

Assigned ResourcePermission

CLUSTER:MANAGE:GATEWAY
CLUSTER:MANAGE:QUERY
CLUSTER:MANAGE
CLUSTER:MANAGE:LUCENE
DATA:MANAGE, plus CLUSTER:WRITE:DISK if the associated region is persistent
CLUSTER:MANAGE:QUERY
CLUSTER:MANAGE:DEPLOY
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ:LUCENE
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:MANAGE
CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:DEPLOY
CLUSTER:MANAGE:QUERY
CLUSTER:MANAGE
CLUSTER:MANAGE:LUCENE
DATA:MANAGE

Defaults to DATA:WRITE. Override Function.getRequiredPermissions to change
the permission.

CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ

CLUSTER:MANAGE

344

VMware GemFire 9.10 Documentation

gfsh Command

get -key=key1 -region=regionl
import data

import cluster-configuration
list async-event-queues

list clients

list deployed

list disk-stores

list durable-cqgs

list functions

list gateways

list indexes

list jndi-binding

list lucene indexes

list members

list regions

load-balance gateway-sender
locate entry

netstat

pause gateway-sender

put --key=key1 --region=regioni
query

rebalance

remove

resume async-event-queue-
dispatcher

resume gateway-sender
revoke mising-disk-store
search lucene

show dead-locks

show log

show metrics

show missing-disk-stores

VMware by Broadcom

Assigned ResourcePermission

DATA:READ:RegionName:Key
DATA:WRITE:RegionName
CLUSTER:MANAGE
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ:QUERY
CLUSTER:READ
CLUSTER:READ:LUCENE
CLUSTER:READ
CLUSTER:READ
CLUSTER:MANAGE:GATEWAY
DATA:READ:RegionName:Key
CLUSTER:READ
CLUSTER:MANAGE:GATEWAY
DATA:WRITE:RegionName:Key
DATA:READ:RegionName

DATA:MANAGE

DATA:WRITE:RegionName or DATA:WRITE:RegionName:Key

CLUSTER:MANAGE

CLUSTER:MANAGE:GATEWAY

CLUSTER:MANAGE:DISK

DATA:READ:RegionName

CLUSTER:READ

CLUSTER:READ

CLUSTER:READ

CLUSTER:READ

345

VMware GemFire 9.10 Documentation

gfsh Command

show subscription-queue-size
shutdown

start gateway-receiver

start gateway-sender

start server

status cluster-config-service
status gateway-receiver
status gateway-sender
status locator

status server

stop gateway-receiver

stop gateway-receiver

stop locator

stop server

undeploy

The gfsh connect does not have a permission, as it is the operation that invokes authentication.
These gfsh commands do not have permission defined, as they do not interact with the cluster:

Assigned ResourcePermission

CLUSTER:READ
CLUSTER:MANAGE
CLUSTER:MANAGE:GATEWAY
CLUSTER:MANAGE:GATEWAY
CLUSTER:MANAGE
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:READ
CLUSTER:MANAGE:GATEWAY
CLUSTER:MANAGE:GATEWAY
CLUSTER:MANAGE
CLUSTER:MANAGE

CLUSTER:MANAGE:DEPLOY

gfsh
gfsh
gfsh
gfsh
gfsh
gfsh
gfsh
gfsh
gfsh

gfsh

describe connection, which describes the gfsh end of the connection

debug, Which toggles the mode within gfsh

exit

help

hint

history

run, although individual commands within the script will go through authorization
set variable

sh

sleep

validate offline-disk-store

gfsh

version

This table classifies the permissions assigned for JMX operations.

JMX Operation Assighed ResourcePermission

DistributedSystemMXBean.shutdownAllIMembers

CLUSTER:MANAGE

VMware by Broadcom

346

VMware GemFire 9.10 Documentation

JMX Operation

ManagerMXBean.start

ManagerMXBean.stop
ManagerMXBean.createManager
ManagerMXBean.shutDownMember

Mbeans get attributes
MemberMXBean.showlLog
DistributedSystemMXBean.changerAlertLevel
ManagerMXBean.setPulseURL
ManagerMXBean.setStatusMessage
CacheServerMXBean.closeAllContinuousQuery
CacheServerMXBean.closeContinuousQuery
CacheServerMXBean.executeContinuousQuery

CgQuery.execute

CqQuery.executeWithlinitialResults

DiskStoreMXBean.flush
DiskStoreMXBean.forceCompaction
DiskStoreMXBean.forceRoll
DiskStoreMXBean.setDiskUsageCriticalPercentage
DiskStoreMXBean.setDiskUsageWarningPercentage
DistributedSystemMXBean.revokeMissingDiskStores
DistributedSystemMXBean.setQueryCollectionsDepth
DistributedSystemMXBean.setQueryResultSetLimit
DistributedSystemMXBean.backupAllMembers

DistributedSystemMXBean.queryData

DistributedSystemMXBean.queryDataForCompressedResul

t

GatewayReceiverMXBean.pause

GatewayReceiverMXBean.rebalance

GatewayReceiverMXBean.resume

GatewayReceiverMXBean.start

GatewayReceiverMXBean.stop

VMware by Broadcom

Assigned ResourcePermission

CLUSTER:MANAGE
CLUSTER:MANAGE
CLUSTER:MANAGE
CLUSTER:MANAGE
CLUSTER:READ
CLUSTER:READ
CLUSTER:WRITE
CLUSTER:WRITE
CLUSTER:WRITE
CLUSTER:MANAGE:QUERY
CLUSTER:MANAGE:QUERY
DATA:READ

DATA:READ:RegionName and
CLUSTER:MANAGE:QUERY

DATA:READ:RegionName and
CLUSTER:MANAGE:QUERY

CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:DISK
CLUSTER:MANAGE:QUERY

CLUSTER:MANAGE:QUERY

DATA:READ and CLUSTER:WRITE:DISK

DATA:READ

DATA:READ

CLUSTER:MANAGE:GATEWAY

CLUSTER:MANAGE:GATEWAY

CLUSTER:MANAGE:GATEWAY

CLUSTER:MANAGE:GATEWAY

CLUSTER:MANAGE:GATEWAY

347

VMware GemFire 9.10 Documentation

JMX Operation Assigned ResourcePermission
GatewaySenderMXBean.pause CLUSTER:MANAGE:GATEWAY
GatewaySenderMXBean.rebalance CLUSTER:MANAGE:GATEWAY
GatewaySenderMXBean.resume CLUSTER:MANAGE:GATEWAY
GatewaySenderMXBean.start CLUSTER:MANAGE:GATEWAY
GatewaySenderMXBean.stop CLUSTER:MANAGE:GATEWAY
LockServiceMXBean.becomelLockGrantor CLUSTER:MANAGE
MemberMXBean.compactAllDiskStores CLUSTER:MANAGE:DISK

Implement Authorization

Complete these items to implement authorization.

« Decide upon an authorization algorithm. The Authorization Example stores a mapping of
which principals (users) are permitted to do which operations. The algorithm bases its
decision on a look up of the permissions granted to the principal attempting the operation.

¢ Define the security-manager property. See Enable Security with Property Definitions for
details about this property.

e Implement the authorize method of the securityManager interface.

« Define any extra resources that the implemented authorization algorithm needs in order to
make a decision.

Authorization of Function Execution

By default, a function executed on servers requires that the entity invoking the function have
DATA:WRITE permission on the region(s) involved. Since the default permission may not be
appropriate for all functions, the permissions required may be altered.

To implement a different set of permissions, override the Function.getRequiredPermissions ()
method in the function’s class. The method should return a collection of the permissions required
of the entity that invokes an execution of the function.

Authorization of Methods Invoked from Queries

Enabling the securityManager affects queries by restricting the methods that a running query may
invoke. See Method Invocations and Method Invocation Authorizers for details.

Method Invocation Authorizers

Overview

When the securityManager is enabled, by default VMware GemFire throws a
NotAuthorizedException when a method within a query is invoked and does not belong to the list of
default allowed methods, given in RestrictedMethodAuthorizer.

VMware by Broadcom 348

VMware GemFire 9.10 Documentation

The MethodInvocationAuthorizer is used to determine whether a specific method invocation on a
given object should be allowed or denied during the execution of a particular OQL query.

Allowing users to execute arbitrary methods on any object present within the VMware GemFire
member’s classpath could impact the integrity of the data and the system on which VMware
GemFire is running. In order to avoid this problem, it is always recommended to enable a
SecurityManager at the cluster level, give users only the permissions they require, and configure a
MethodInvocationAuthorizer that meets your needs.

The main threats to which a VMware GemFire cluster might be exposed without a
MethodInvocationAuthorizer are highlighted below.

Java Reflection

Allows the user to do anything within the JVM.

SELECT * FROM /region r WHERE r.getClass().forName('java.lang.Runtime').getDeclaredMet
hods () [0] .invoke ()

Cache Modification

Allows the user to do anything with the cache: close it, access other regions, etc.

SELECT * FROM /region.getCache () .close ()

Region Modification
Allows the user to destroy, add or invalidate the entire rRegion, or specific entries.
SELECT * FROM /region.destroyRegion ()

SELECT * FROM /region.put('xyz', 'abc')
SELECT * FROM /region.invalidate('xyz')

Region Modification

Allows the user to mutate the state of specific entries.

"SELECT r.setName ('newName') FROM /region r°
|

VMware GemFire Authorizers

VMware GemFire provides four authorizers out of the box, each one designed and implemented
for a specific use case in mind. It is recommended to always use one of these authorizers, and only
implement your own if your use case needs are not already met by one of them.

All of the implementations provided by VMware GemFire are designed to prevent security
problems and have been thoroughly tested. Extra care should be taken, however, when
configuring the internals of some of the authorizers as an incorrect configuration might introduce
security holes into the system.

The table below shows a summary of which security threats are fully addressed by each authorizer
and which ones might be exploitable, depending on how they are configured (details are shown
later for each implementation).

VMware by Broadcom 349

VMware GemFire 9.10 Documentation

Authorizer \ Threat Reflection Cache Access Region Access Entry Modification
RestrictedMethodAuthorizer (V] o o o
UnrestrictedMethodAuthorizer (v] (/] o [
RegExMethodAuthorizer (V] o o o
JavaBeanAccessorMethodAuthorizer O O Q Q

RestrictedMethodAuthorizer

The default MethodInvocationAuthorizer used by VMware GemFire to determine whether a
method is allowed to be executed on a specific object instance or not.

The implementation forbids the invocation of all methods during a query execution, except for the
ones shown below:

Class Allowed Methods

java.lang.Object equals, toString, compareTo

java.lang.Boolean booleanValue

java.lang.Number byteValue, intValue, doubleValue, floatValue, longValue, shortvValue

java.util.Date after,before, getTime

java.sqgl.Timestamp getNanos

java.lang.String chartAt, codePointAt, codePointBefore, codePointCount, compareToIgnoreCase, concat,

contains, contentEquals, endsWith, equalsIgnoreCase, getBytes, hashCode, indexOf
intern, isEmpty, lastIndexOf, length, matches, offsetByCodePoints, replace, replaceAll,

replaceFirst, split, startsWith, substring, toCharArray, toLowerCase, toUpperCase, trim

java.util.Map.Entr getKey, getValue

y
org.apache.geode.c

ache.Region.Entry

java.util.Collecti get, entrySet, keySet, values, getEntries, getValues, containsKey
on, java.util.Map,
org.apache.geode.c

ache.Region

The authorizer also provides utilities that can be used by custom implementations to determine
whether a method is permanently forbidden or, if the method belongs to VMware GemFire,
whether it is considered safe to be used within a query execution.

The methods getClass, readObject, readResolve, readObjectNoData, writeObject and
writeReplace are permanently forbidden.

The below table shows those methods that belong to VMware GemFire and are considered safe
(for methods on org.apache.geode.cache.Region, the authorizer also verifies that the user has the
DATA:READ:RegionName Permission).

Class Allowed Methods

org.apache.geode.cache.Region.Entry getKey, getValue

VMware by Broadcom

350

VMware GemFire 9.10 Documentation

Class Allowed Methods

org.apache.geode.cache.Region get, entrySet, keySet, values, getEntries, getValues, containsKey

UnrestrictedMethodAuthorizer

A less restrictive MethodInvocationAuthorizer that allows any method invocation during the query
execution as long as the following conditions are met:

¢ The method is not considered permanently forbidden by the RestrictedMethodAuthorizer.

¢ The method does not belong to VMware GemFire, or does belong but is considered safe by
the RestrictedMethodAuthorizer.

This authorizer implementation addresses only three of the four main security risks: Java
Reflection, Cache Modification and Region Modification. The Region Entry Modification
security risk still exists: users with the DATA:READ:RegionName permission will be able to execute
ANY method (even those that mutate the object) on the entries stored within the region and on
instances used as bind parameters of the query, so this authorizer implementation must be used
with extreme care.

Note: Usage of this authorizer is recommended for secured clusters on which only trusted users
and applications have access to the query engine. It might also be used on clusters on which all
entries stored are immutable.

JavaBeanAccessorMethodAuthorizer

A more flexible MethodInvocationAuthorizer that allows methods to be invoked during a query
execution if and only if all of the following conditions are met:

¢ The method is not considered permanently forbidden by the RestrictedMethodAuthorizer.

¢ The method does not belong to VMware GemFire, or does belong but is considered safe by
the RestrictedMethodAuthorizer.

« The method follows the design patterns for accessor methods described in the JavaBean
Specification 1.01; that is, the method name begins with is or get.

« The target object on which the method will be executed belongs to a set of pre-configured
packages.

When used as intended, and assuming that all region entries and bind parameters follow the
JavaBean Specification 1.01, this authorizer implementation addresses all four security risks: Java
Reflection, Cache Modification, Region Modification and Region Entry Modification. It should
be noted, however, that the Region Entry Modification security threat might be re-introduced:
users with the DATA:READ:RegionName privilege will be able to execute any method whose name
starts with is or get on the objects stored within the region and on instances used as bind
parameters, providing they are in the pre-configured packages. If those methods do not fully follow
the JavaBean Specification 1.01 in that accessors do not mutate the object state, then instances
could be potentially modified in place.

Note: Usage of this authorizer is only recommended for secured clusters on which the user has full
confidence in that all objects stored within the regions and used as bind parameters follow the

VMware by Broadcom 351

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

VMware GemFire 9.10 Documentation

JavaBean Specification 1.01. It might also be used on clusters on which all entries stored are
immutable.

RegExMethodAuthorizer

A fully flexible MethodInvocationAuthorizer that allows methods to be invoked during the query
execution only if the the following conditions are met:

¢ The method is not considered permanently forbidden by the RestrictedMethodAuthorizer.

¢ The method does not belong to VMware GemFire, or does belong but is considered safe by
the RestrictedMethodAuthorizer.

e« The fully qualified method name matches at least one of the pre-configured regular
expressions.

When correctly configured, this authorizer implementation addresses the four main security risks:
Java Reflection, Cache Modification, Region Modification and Region Entry Modification.

For the statement to remain true, however, the regular expressions used must be correctly
configured so no mutator methods ever match. If the regular expressions are not restrictive
enough, the rRegion Entry Modification Security risk might be potentially re-introduced: users
with the DATA:READ:RegionName privilege will be able to execute methods (even those modifying
the entry) on the objects stored within the region and on instances used as bind parameters of the

query.

Note: This authorizer must be used with extreme care, it is the most powerful in terms of flexibility
and versatility (full control through regular expressions regarding what to allow and what to forbid);
but it is also the most dangerous as one small mistake in the configured regular expressions can
unexpectedly allow a wide variety of non safe methods to be executed.

Note: Usage of this authorizer implementation is only recommended for scenarios in which the user
knows exactly what code is deployed to the cluster, allowing a correct configuration of the regular
expressions used. It might also be used on clusters on which all entries stored are immutable.

Custom Authorizers

How Authorization Works

It is important to note that the query engine does not have any information about the actual type
of the objects while pre-processing or parsing the query itself, neither can it obtain these details
before actually executing the query. The actual check to determine whether a method is allowed
or not must be executed while the objects are being traversed by the query engine in runtime.

The query engine, however, remembers whether a specific method has been already authorized or
not for the current query execution context, meaning that the authorization will be executed
only once in the lifetime of a particular query for every new method seen while traversing the
objects. Nevertheless, the authorizer implementation must be highly performant as it will be
invoked by VMware GemFire in runtime during the actual query execution.

Implementing a Method Authorizer

Complete these items to implement a custom method authorizer.

VMware by Broadcom 352

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

VMware GemFire 9.10 Documentation

e Decide which methods from your domain model should be allowed to be invoked during a
query execution.

e Decide which resources, if any, you will need in order to determine whether a method can
be invoked or not.

e Implement the initialize method of the MethodInvocationAuthorizer interface to fully
configure your implementation, based on the resources needed to execute the
authorization.

¢ Implement the authorize method of the MethodInvocationAuthorizer interface. It must
determine whether a method is allowed to be executed on a particular object instance
during a query execution. The implementation should be lightning fast and thread safe.

Changing the Method Authorizer

You can set the MethodInvocationAuthorizer to be used by the query engine through the gfsh
command-line utility. In addition, you can modify the configured MethodInvocationAuthorizer while
members are already running by using the alter query-service command. It is always advisable to
make these changes during periods of low activity, though.

The following constraints apply when the MethodInvocationAuthorizer used by the cluster is
changed in runtime:

e« Queries started after the MethodInvocationAuthorizer is changed will use the newly
configured authorizer.

« Queries in flight are not affected. Before the query starts, it picks up the already configured
MethodInvocationAuthorizer and will use it until the execution finishes.

« Indexes configured with an expression using methods forbidden by the newly configured
MethodInvocationAuthorizer Will be marked as invalid the next time a mapping is added or
removed from the index.

e« Continuous queries already running will pick up the newly configured
MethodInvocationAuthorizer the next time the CQ is processed upon the arrival of a cache
event. If the CQ has methods forbidden by the newly configured
MethodInvocationAuthorizer, any subsequent execution will result in an error during the
CQ processing, and the onError method will be invoked for the associated cqListener.

Note: In order to improve performance, the continuous query engine uses an internal cache to
avoid executing the query in scenarios for which the answer can be automatically inferred. These
results might become invalid after applying the new security rules, so VMware GemFire deactivates
the usage of this optimization until the member is restarted or the query is registered again.

Authorization Example

Disclaimer

The security implementation of every installation is unique. These examples are provided for
illustrative purposes only and must not be used in a production environment.

VMware by Broadcom 353

VMware GemFire 9.10 Documentation

The examples demonstrate the basics for implementing both user authorization
(SecurityManager.authorize) and method invocation authorization
(MethodInvocationAuthorizer.authorize) during query executions. The remainder of the examples
may be found within the VMware GemFire source code under the geode-
core/src/main/java/org/apache/geode/examples/security directory.

User Authorization Example

This example assumes that a set of users, a set of roles that a user might take on within the system,
and a mapping of users to their roles are described in a JSON format file. The roles define a set of
authorized resource permissions granted for users in those roles. Code not shown here parses the
file to compose a data structure with the information on roles and users. The authorize callback
denies permission for any operation that does not have a principal representing the identity of the
operation’s requester. Given the principal, the method iterates through the data structure
searching for the necessary permissions for the principal. When the necessary permission is found,
authorization is granted by returning the value true. If the permission is not found in the data
structure, then the method returns false, denying authorization of the operation.

public boolean authorize(final Object principal, final ResourcePermission context) {

if (principal == null) return false;
User user = this.userNameToUser.get (principal.toString());
if (user == null) return false; // this user is not authorized to do anything

// check if the user has this permission defined in the context
for (Role role : this.userNameToUser.get (user.name).roles) {
for (Permission permitted : role.permissions) {
if (permitted.implies(context)) {

return true;

return false;

Method Invocation Authorization Example

This example assumes that the entire domain model is deployed to the cluster and that the user is
allowed to modify these classes. The authorize callback denies access to methods that have been

permanently forbidden by the RestrictedMethodAuthorizer and returns false right away. When the

method is not permanently forbidden, the implementation checks whether the method has been
annotated with a custom annotation. When the necessary annotation is found, authorization is
granted by returning the value true. If the annotation is not found, then the method returns false,
denying the invocation of the method during the query execution.

public boolean authorize (Method method, Object target) {
// Check if forbidden by default.
if (defaultAuthorizer.isPermanentlyForbiddenMethod (method, target)) {

return false;

VMware by Broadcom

354

VMware GemFire 9.10 Documentation

// Check if annotation is present

return method.isAnnotationPresent (Authorized.class);

Post Processing of Region Data

The postProcessor interface allows the definition of a callback that is invoked after any and all client
and gfsh operations that get data, but before the data is returned. It permits the callback to
intervene and format the data that is to be returned. The callbacks must not modify the region
data, only the data to be returned.

The processRegionvalue method is given the principal of the operation requester. The operation
will already have been completed, implying that the principal will have been authorized to complete
the requested operation. The post processing can therefore format the returned data based on the
identity of the requester (principal).

By default, the key and value parameters to the processRegionvalue method are references to the
region entry. Modify copies of these parameters to avoid changing the region entries. Copy on
Read Behavior discusses the issue.

The processRegionvalue method is invoked for these API calls:
e Region.get
e Region.getAll
. Query.execute
. CgQuery.execute
e CgQuery.executeWithInitialResults
e CglListener.onEvent

o« for arelevant region event from CacheListener.afterUpdate for which there is interest
registered with Region.registerInterest

Care should be taken when designing a system that implements the post processing callback. It
incurs the performance penalty of an extra method invocation on every get operation.

Implement Post Processing

Complete these items to implement post processing.

e Define the security-post-processor property. See Enable Security with Property
Definitions for details about this property.

e Implement the processkRegionvalue method of the postpProcessor interface.

SSL

SSL protects your data in transit between applications by ensuring that only the applications
identified by you can share cluster data.

To be secure, the data that is cached in a VMware GemFire system must be protected during
storage, distribution, and processing. At any time, data in a cluster may be in one or more of these

VMware by Broadcom

355

VMware GemFire 9.10 Documentation

locations:
e In memory
e On disk
« In transit between processes (for example, in an internet or intranet)

For the protection of data in memory or on disk, VMware GemFire relies on your standard system
security features such as firewalls, operating system settings, and JDK security settings.

The SSL implementation ensures that only the applications identified by you can share cluster data
in transit. In this figure, the data in the visible portion of the cluster is secured by the firewall and by
security settings in the operating system and in the JDK. The data in the disk files, for example, is
protected by the firewall and by file permissions. Using SSL for data distribution provides secure
communication between VMware GemFire system members inside and outside the firewalls.

e | tacine, WY

dxl omerflons or
perdicterie

-

111
b 4p hesp
riermbar rerber
\, } /
5EL
FIREWALL
Di=tribut ed System

« Configuring SSL

You configure SSL for mutual authentication between members and to protect your data
during distribution. You can use SSL alone or in conjunction with the other VMware
GempFire security options.

¢ SSL Sample Implementation

A simple example demonstrates the configuration and startup of VMware GemFire system
components with SSL.

Configuring SSL

You can configure SSL for authentication between members and to protect your data during
distribution. You can use SSL alone or in conjunction with the other VMware GemFire security
options.

VMware GemFire SSL connections use the Java Secure Sockets Extension (JSSE) package, so the
properties described here apply to VMware GemFire servers and to Java-based clients. SSL
configuration in non-Java clients may differ — see the client’s documentation for details.

SSL-Configurable Components

VMware by Broadcom

356

VMware GemFire 9.10 Documentation

You can specify that SSL be used system-wide, or you can independently configure SSL for specific
system components. The following list shows the system components that can be separately
configured to communicate using SSL, and the kind of communications to which each component
name refers:

cluster

Peer-to-peer communications among members of a cluster
gateway

Communication across WAN gateways from one site to another
wrweb**

All web-based services hosted on the configured server, which can include the Developer

REST API service, the Management REST API service (used for remote cluster management)

and the Pulse monitoring tool's web-based user interface.

e
Java management extension communications, including communications with the “gfsh’
utility. The Pulse monitoring tool uses JMX for server-side communication with a locator, but
SSL applies to this connection only if Pulse is located on an app server separate from the
locator. When Pulse and the locator are colocated, JMX communication between the two
does not involve a TCP connection, so SSL does not apply.

locator
Communication with and between locators

*server**
Communication between clients and servers

ok g **

All of the above (use SSL system-wide)

Specifying that a component is enabled for SSL applies to the component’s server-socket side and
its client-socket side. For example, if you enable SSL for locators, then any process that
communicates with a locator must also have SSL enabled. If you provide "" as the value, SSL is
turned off for all components.

SSL Configuration Properties

You can use VMware GemFire configuration properties to enable or disable SSL, to identify SSL
ciphers and protocols, and to provide the location and credentials for key and trust stores.

ssl-enabled-components
List of components for which to enable SSL. Component list can be "" (disable SSL), "all", or
a comma-separated list of components.

ssl-endpoint-identification-enabled
A boolean value that, when set to true, causes clients to validate the server's hostname
using the server's certificate. The default value is false. Enabling endpoint identification
guards against DNS man-in-the-middle attacks when trusting certificates that are not self-
signed.

**ssl-use-default-context™*
A boolean value that, when set to true, allows VMware GemFire to use the default SSL
context as returned by SSLContext.getInstance('Default') or set by using
SSLContext.setDefault(). When enabled, also causes ssl-endpoint-identification-enabled to
be set to true.

VMware by Broadcom

357

VMware GemFire 9.10 Documentation

ssl-require-authentication
Requires two-way authentication, applies to all components except web. Boolean - if true
(the default), two-way authentication is required.
**ssl-web-require-authentication™*
Requires two-way authentication for web component. Boolean - if true, two-way
authentication is required. Default is false (one-way authentication only).
ssl-default-alias
A server uses one key store to hold its SSL certificates. All components on that server can

share a single certificate, designated by the ssl-default-alias property. If ssl-default-alias is not

specified, the first certificate in the key store acts as the default certificate.

ssl- _component_-alias=string
You can configure a separate certificate for any component. All certificates reside in the
same key store, but can be designated by separate aliases that incorporate the component
name, using this syntax, where _component_ is the name of a component. When a
component-specific alias is specified, it overrides the ssl-default-alias for the _component_
specified. For example, ssl-locator-alias would specify a name for the locator component's
certificate in the system key store.

**ssl-ciphers™*
A comma-separated list of the valid ciphers for TCP/IP connections with TLS encryption
enabled. A setting of 'any' allows the JSSE provider to select an appropriate cipher that it
supports.

ssl-protocols
A comma-separated list of the valid protocol versions for TCP/IP connections with TLS
encryption enabled. A setting of 'any' attempts to use your JSSE provider's TLSv1.3, or
TLSV1.2 if v1.3 is not available.

**ssl-keystore, ssl-keystore-password™*
The path to the key store and the key store password, specified as strings

ssl-truststore, ssl-truststore-password
The path to the trust store and the trust store password, specified as strings

ssl-keystore-type, ssl-truststore-type
The types of the key store and trust store, specified as strings. The default for both is "JKS",
indicating a Java key store or trust store.

Example: secure communications throughout

To implement secure SSL communications throughout an entire cluster, each process should
enable SSL for all components.

ssl-enabled-components=all
ssl-endpoint-identification-enabled=true
ssl-keystore=secure/keystore.dat
ssl-keystore-password=changeit
ssl-truststore=secure/truststore.dat

ssl-truststore-password=changeit

If the key store has multiple certificates you may want to specify the alias of the one you wish to
use for each process. For instance, ssl-default-alias=Hiroki.

Example: non-secure cluster communications, secure client/server

VMware by Broadcom

358

VMware GemFire 9.10 Documentation

In this example, SSL is used to secure communications between the client and the server:
Server properties

Cluster SSL is not enabled.

ssl-enabled-components=server, locator
ssl-server-alias=server
ssl-keystore=secure/keystore.dat
ssl-keystore-password=changeit
ssl-truststore=secure/truststore.dat
ssl-truststore-password=changeit

ssl-default-alias=Server-Cert

Locator properties

Cluster SSL is not enabled.

ssl-enabled-components=locator
ssl-locator-alias=locator
ssl-keystore=secure/keystore.dat
ssl-keystore-password=changeit
ssl-truststore=secure/truststore.dat
ssl-truststore-password=changeit

ssl-default-alias=Locator-Cert

Client properties

On Java clients, the list of enabled components reflects the server’s configuration so the client
knows how it is expected to communicate with (for example) servers and locators. Paths to
keystore and truststore are local to the client.

In this example, the client’s trust store must trust both locator and server certificates. Since the
client does not specify a certificate alias, SSL will use the default certificate in its key store.

ssl-enabled-components=server, locator
ssl-endpoint-identification-enabled=true
ssl-keystore=secret/keystore.dat
ssl-keystore-password=changeit
ssl-truststore=secret/truststore.dat

ssl-truststore-password=changeit

SSL Property Reference Tables

The following table lists the components you can configure to use SSL.

Table 1. SSL-Configurable Components

Component Communication Types

cluster Peer-to-peer communications among members of a cluster
gateway Communication across WAN gateways from one site to another
web Web-based communication, including REST interfaces

jmx Java management extension communications, including gfsh

VMware by Broadcom 359

VMware GemFire 9.10 Documentation

Component

locator

server

all

Communication Types

Communication with and between locators

Communication between clients and servers

All of the above

The following table lists the properties you can use to configure SSL on your VMware GemFire

system.

Table 2. SSL Configuration Properties

Property

ssl-enabled-compon
ents

ssl-endpoint-identifi
cation-enabled

ssl-use-default-cont
ext

ssl-require-
authentication

ssl-web-require-auth
entication

ssl-default-alias
ssl-component-alias
ssl-ciphers
ssl-protocols
ssl-keystore

ssl-keystore-
password

ssl-keystore-type
ssl-truststore

ssl-truststore-
password

ssl-truststore-type

Procedure

1. Make sure your Java installation includes the JSSE API and familiarize yourself with its use.

Description

list of components for which to enable
SSL

causes clients to validate server
hostname using server certificate

allows VMware GemFire to use the
default SSL context

requires two-way authentication,
applies to all components except web

requires two-way authentication for
web component

default certificate name
component-specific certificate name
list of SSL ciphers

list of SSL protocols

path to key store

key store password

trust store type
path to trust store

trust store password

trust store type

Value

“all”, "", or comma-separated list of components:
cluster, gateway, web, jmx, locator, server

boolean - if true, does validation; defaults to false

boolean - if true, uses the default SSL context. Also
sets ssl-endpoint-identification-enabled to true;
defaults to false

boolean - if true (the default), two-way authentication
is required

boolean - if true, two-way authentication is required.
Default is false (one-way authentication only)

string - if empty, use first certificate in key store
string - applies to specified component
comma-separated list (default “any”)
comma-separated list (default “any”)

string

string

string

string

string

string

For information, see the Oracle JSSE website.

2. Configure SSL as needed for each connection type:

VMware by Broadcom

360

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

VMware GemFire 9.10 Documentation

1. Use locators for member discovery within the clusters and for client discovery of
servers. See Configuring Peer-to-Peer Discovery and Configuring a Client/Server
System.

2. Configure SSL properties as necessary for different component types, using the
properties described above. For example, to enable SSL for communication
between clients and servers you would configure properties in the
gemfire.properties file similar to:

ssl-enabled-components=server

ssl-protocols=any

ssl-ciphers=SSL RSA WITH NULL MD5, SSL RSA WITH NULL SHA
ssl-keystore=/path/to/trusted.keystore
ssl-keystore-password=password
ssl-truststore=/path/to/trusted.keystore

ssl-truststore-password=password

SSL Sample Implementation

A simple example demonstrates the configuration and startup of VMware GemFire system
components with SSL.

Provider-Specific Configuration File

This example uses a keystore created by the Java keytool application to provide the proper
credentials to the provider. To create the keystore, run the keytool utility:

keytool -genkey \

-alias self \

-dname "CN=trusted" \
-validity 3650 \

-keypass password \

-keystore ./trusted.keystore \
-storepass password \

-storetype JKS

This creates a . /trusted.keystore file to be used later.

gemfire.properties File

You can enable SSL in the gemfire.properties file. In this example, SSL is enabled for all
components.

ssl-enabled-components=all
mcast-port=0

locators=<hostaddress>[<port>]

gfsecurity.properties File

You can specify the provider-specific settings in a gfsecurity.properties file, which can then be
secured by restricting access to this file. The following example configures the default JSSE

VMware by Broadcom 361

VMware GemFire 9.10 Documentation

provider settings included with the JDK.

ssl-keystore=/path/to/trusted.keystore
ssl-keystore-password=password
ssl-truststore=/path/to/trusted.keystore
ssl-truststore-password=password
security-username=xxxx

security-userPassword=yyyy

Locator Startup

Before starting other system members, we started the locator with the SSL and provider-specific
configuration settings. After properly configuring gemfire.properties and gfsecurity.properties,
start the locator and provide the location of the properties files. If any of the password fields are left
empty, you will be prompted to